Science.gov

Sample records for require muscle spindle-derived

  1. Gamma motor neurons express distinct genetic markers at birth and require muscle spindle-derived GDNF for postnatal survival

    PubMed Central

    2009-01-01

    Background Gamma motor neurons (γ-MNs) selectively innervate muscle spindle intrafusal fibers and regulate their sensitivity to stretch. They constitute a distinct subpopulation that differs in morphology, physiology and connectivity from α-MNs, which innervate extrafusal muscle fibers and exert force. The mechanisms that control the differentiation of functionally distinct fusimotor neurons are unknown. Progress on this question has been limited by the absence of molecular markers to specifically distinguish and manipulate γ-MNs. Recently, it was reported that early embryonic γ-MN precursors are dependent on GDNF. Using this knowledge we characterized genetic strategies to label developing γ-MNs based on GDNF receptor expression, showed their strict dependence for survival on muscle spindle-derived GDNF and generated an animal model in which γ-MNs are selectively lost. Results In mice heterozygous for both the Hb9::GFP transgene and a tau-lacZ-labeled (TLZ) allele of the GDNF receptor Gfrα1, we demonstrated that small motor neurons with high Gfrα1-TLZ expression and lacking Hb9::GFP display structural and synaptic features of γ-MNs and are selectively lost in mutants lacking target muscle spindles. Loss of muscle spindles also results in the downregulation of Gfrα1 expression in some large diameter MNs, suggesting that spindle-derived factors may also influence populations of α-MNs with β-skeletofusimotor collaterals. These molecular markers can be used to identify γ-MNs from birth to the adult and to distinguish γ- from β-motor axons in the periphery. We also found that postnatal γ-MNs are also distinguished by low expression of the neuronal nuclear protein (NeuN). With these markers of γ-MN identity, we show after conditional elimination of GDNF from muscle spindles that the survival of γ-MNs is selectively dependent on spindle-derived GDNF during the first 2 weeks of postnatal development. Conclusion Neonatal γ-MNs display a unique molecular

  2. Functionally reduced sensorimotor connections form with normal specificity despite abnormal muscle spindle development: the role of spindle-derived neurotrophin 3.

    PubMed

    Shneider, Neil A; Mentis, George Z; Schustak, Joshua; O'Donovan, Michael J

    2009-04-15

    The mechanisms controlling the formation of synaptic connections between muscle spindle afferents and spinal motor neurons are believed to be regulated by factors originating from muscle spindles. Here, we find that the connections form with appropriate specificity in mice with abnormal spindle development caused by the conditional elimination of the neuregulin 1 receptor ErbB2 from muscle precursors. However, despite a modest ( approximately 30%) decrease in the number of afferent terminals on motor neuron somata, the amplitude of afferent-evoked synaptic potentials recorded in motor neurons was reduced by approximately 80%, suggesting that many of the connections that form are functionally silent. The selective elimination of neurotrophin 3 (NT3) from muscle spindles had no effect on the amplitude of afferent-evoked ventral root potentials until the second postnatal week, revealing a late role for spindle-derived NT3 in the functional maintenance of the connections. These findings indicate that spindle-derived factors regulate the strength of the connections but not their initial formation or their specificity.

  3. Functionally reduced sensorimotor connections form with normal specificity despite abnormal muscle spindle development: the role of spindle-derived NT3

    PubMed Central

    Shneider, Neil A.; Mentis, George Z.; Schustak, Joshua; O’Donovan, Michael J.

    2009-01-01

    Summary The mechanisms controlling the formation of synaptic connections between muscle spindle afferents and spinal motor neurons are believed to be regulated by factors originating from muscle spindles. Here, we find that the connections form with appropriate specificity in mice with abnormal spindle development caused by the conditional elimination of the neuregulin1 receptor ErbB2 from muscle precursors. However, despite a modest (~30%) decrease in the number of afferent terminals on motor neuron somata, the amplitude of afferent-evoked synaptic potentials recorded in motor neurons was reduced by ~80%, suggesting that many of the connections that form are functionally silent. The selective elimination of neurotrophin 3 (NT3) from muscle spindles had no effect on the amplitude of afferent-evoked ventral root potentials until the second postnatal week, revealing a late role for spindle-derived NT3 in the functional maintenance of the connections. These findings indicate that spindle-derived factors regulate the strength of the connections, but not their initial formation or their specificity. PMID:19369542

  4. Wnt7A identifies embryonic γ-motor neurons and reveals early postnatal dependence of γ-motor neurons on a muscle spindle-derived signal.

    PubMed

    Ashrafi, Soha; Lalancette-Hébert, Melanie; Friese, Andreas; Sigrist, Markus; Arber, Silvia; Shneider, Neil A; Kaltschmidt, Julia A

    2012-06-20

    Motor pools comprise a heterogeneous population of motor neurons that innervate distinct intramuscular targets. While the organization of motor neurons into motor pools has been well described, the time course and mechanism of motor pool diversification into functionally distinct classes remains unclear. γ-Motor neurons (γ-MNs) and α-motor neurons (α-MNs) differ in size, molecular identity, synaptic input and peripheral target. While α-MNs innervate extrafusal skeletal muscle fibers to mediate muscle contraction, γ-MNs innervate intrafusal fibers of the muscle spindle, and regulate sensitivity of the muscle spindle in response to stretch. In this study, we find that the secreted signaling molecule Wnt7a is selectively expressed in γ-MNs in the mouse spinal cord by embryonic day 17.5 and continues to molecularly distinguish γ-from α-MNs into the third postnatal week. Our data demonstrate that Wnt7a is the earliest known γ-MN marker, supporting a model of developmental divergence between α- and γ-MNs at embryonic stages. Furthermore, using Wnt7a expression as an early marker of γ-MN identity, we demonstrate a previously unknown dependence of γ-MNs on a muscle spindle-derived, GDNF-independent signal during the first postnatal week.

  5. Mechanisms regulating the specificity and strength of muscle afferent inputs in the spinal cord

    PubMed Central

    Mentis, George Z.; Alvarez, Francisco J.; Shneider, Neil A.; Siembab, Valerie C.; O'Donovan, Michael J.

    2010-01-01

    We investigated factors controlling the development of connections between muscle spindle afferents, spinal motor neurons and inhibitory Renshaw cells. Several mutants were examined to establish the role of muscle spindles, muscle spindle-derived NT3 and excess NT3 in determining the specificity and strength of these connections. The findings suggest that although spindle-derived factors are not necessary for the initial formation and specificity of the synapses, spindle-derived NT3 seems necessary for strengthening homonymous connections between Ia afferents and motor neurons during the second postnatal week. We also found evidence for functional monosynaptic connections between sensory afferents and neonatal Renshaw cells although the density of these synapses decreases at P15. We conclude that muscle spindle synapses are weakened on Renshaw cells while they are strengthened on motor neurons. Interestingly, the loss of sensory synapses on Renshaw cells was reversed in mice over-expresssing NT3 in the periphery, suggesting that different levels of NT3 are required for functional maintenance and strengthening of spindle afferent inputs on motor neurons and Renshaw cells. PMID:20536937

  6. Mechanisms regulating the specificity and strength of muscle afferent inputs in the spinal cord.

    PubMed

    Mentis, George Z; Alvarez, Francisco J; Shneider, Neil A; Siembab, Valerie C; O'Donovan, Michael J

    2010-06-01

    We investigated factors controlling the development of connections between muscle spindle afferents, spinal motor neurons, and inhibitory Renshaw cells. Several mutants were examined to establish the role of muscle spindles, muscle spindle-derived NT3, and excess NT3 in determining the specificity and strength of these connections. The findings suggest that although spindle-derived factors are not necessary for the initial formation and specificity of the synapses, spindle-derived NT3 seems necessary for strengthening homonymous connections between Ia afferents and motor neurons during the second postnatal week. We also found evidence for functional monosynaptic connections between sensory afferents and neonatal Renshaw cells although the density of these synapses decreases at P15. We conclude that muscle spindle synapses are weakened on Renshaw cells while they are strengthened on motor neurons. Interestingly, the loss of sensory synapses on Renshaw cells was reversed in mice overexpressing NT3 in the periphery, suggesting that different levels of NT3 are required for functional maintenance and strengthening of spindle afferent inputs on motor neurons and Renshaw cells.

  7. Trbp Is Required for Differentiation of Myoblasts and Normal Regeneration of Skeletal Muscle

    PubMed Central

    Ding, Jian; Nie, Mao; Liu, Jianming; Hu, Xiaoyun; Ma, Lixin; Deng, Zhong-Liang; Wang, Da-Zhi

    2016-01-01

    Global inactivation of Trbp, a regulator of miRNA pathways, resulted in developmental defects and postnatal lethality in mice. Recently, we showed that cardiac-specific deletion of Trbp caused heart failure. However, its functional role(s) in skeletal muscle has not been characterized. Using a conditional knockout model, we generated mice lacking Trbp in the skeletal muscle. Unexpectedly, skeletal muscle specific Trbp mutant mice appear to be phenotypically normal under normal physiological conditions. However, these mice exhibited impaired muscle regeneration and increased fibrosis in response to cardiotoxin-induced muscle injury, suggesting that Trbp is required for muscle repair. Using cultured myoblast cells we further showed that inhibition of Trbp repressed myoblast differentiation in vitro. The impaired myogenesis is associated with reduced expression of muscle-specific miRNAs, miR-1a and miR-133a. Together, our study demonstrated that Trbp participates in the regulation of muscle differentiation and regeneration. PMID:27159388

  8. Intestinal smooth muscle is required for patterning the enteric nervous system.

    PubMed

    Graham, Hannah K; Maina, Ivy; Goldstein, Allan M; Nagy, Nandor

    2017-04-01

    The development of the enteric nervous system (ENS) and intestinal smooth muscle occurs in a spatially and temporally correlated manner, but how they influence each other is unknown. In the developing mid-gut of the chick embryo, we find that α-smooth muscle actin expression, indicating early muscle differentiation, occurs after the arrival of migrating enteric neural crest-derived cells (ENCCs). In contrast, hindgut smooth muscle develops prior to ENCC arrival. Smooth muscle development is normal in experimentally aganglionic hindguts, suggesting that proper development and patterning of the muscle layers does not rely on the ENS. However, inhibiting early smooth muscle development severely disrupts ENS patterning without affecting ENCC proliferation or apoptosis. Our results demonstrate that early intestinal smooth muscle differentiation is required for patterning the developing ENS. © 2017 Anatomical Society.

  9. Effects of temperature and force requirements on muscle work and power output.

    PubMed

    Olberding, Jeffrey P; Deban, Stephen M

    2017-03-17

    Performance of muscle-powered movements depends on temperature through its effects on muscle contractile properties. In vitro stimulation of Cuban treefrog (Osteopilus septentrionalis) plantaris muscles reveals that interactions between force and temperature affect the mechanical work of muscle. At low temperatures (9 - 17°C), muscle work depends on temperature when shortening at any force, and temperature effects are greater at higher forces. At warmer temperatures (13 - 21°C), muscle work depends on temperature when shortening with intermediate and high forces (≥ 30% P0). Shortening velocity is most strongly affected by temperature at low temperature intervals and high forces. Power is also most strongly affected at low temperature intervals but this effect is minimized at intermediate forces. Effects of temperature on muscle force explain these interactions; force production decreases at lower temperatures, increasing the challenge of moving a constant force relative to the muscle's capacity. These results suggest that animal performance that requires muscles to do work with low forces relative to a muscle's maximum force production will be robust to temperature changes, and this effect should be true whether muscle acts directly or through elastic-recoil mechanisms and whether force is prescribed (i.e. internal) or variable (i.e. external). Conversely, performance requiring muscles to shorten with relatively large forces is expected to be more sensitive to temperature changes.

  10. Pharyngeal satellite cells undergo myogenesis under basal conditions and are required for pharyngeal muscle maintenance

    PubMed Central

    Randolph, Matthew E.; Phillips, Brittany L.; Choo, Hyo-Jung; Vest, Katherine E.; Vera, Yandery; Pavlath, Grace K.

    2015-01-01

    The pharyngeal muscles of the nasal, oral, and laryngeal pharynxes are required for swallowing. Pharyngeal muscles are preferentially affected in some muscular dystrophies yet spared in others. Muscle stem cells, called satellite cells, may be critical factors in the development of pharyngeal muscle disorders; however, very little is known about pharyngeal satellite cells (PSC) and their role in pharyngeal muscles. We show that PSC are distinct from the commonly studied hindlimb satellite cells both transcriptionally and biologically. Under basal conditions PSC proliferate, progress through myogenesis, and fuse with pharyngeal myofibers. Furthermore, PSC exhibit biologic differences dependent on anatomic location in the pharynx. Importantly, PSC are required to maintain myofiber size and myonuclear number in pharyngeal myofibers. Together, these results demonstrate that PSC are critical for pharyngeal muscle maintenance and suggest that satellite cell impairment could contribute to pharyngeal muscle pathology associated with various muscular dystrophies and aging. PMID:26178867

  11. Pharyngeal Satellite Cells Undergo Myogenesis Under Basal Conditions and Are Required for Pharyngeal Muscle Maintenance.

    PubMed

    Randolph, Matthew E; Phillips, Brittany L; Choo, Hyo-Jung; Vest, Katherine E; Vera, Yandery; Pavlath, Grace K

    2015-12-01

    The pharyngeal muscles of the nasal, oral, and laryngeal pharynxes are required for swallowing. Pharyngeal muscles are preferentially affected in some muscular dystrophies yet spared in others. Muscle stem cells, called satellite cells, may be critical factors in the development of pharyngeal muscle disorders; however, very little is known about pharyngeal satellite cells (PSC) and their role in pharyngeal muscles. We show that PSC are distinct from the commonly studied hindlimb satellite cells both transcriptionally and biologically. Under basal conditions PSC proliferate, progress through myogenesis, and fuse with pharyngeal myofibers. Furthermore, PSC exhibit biologic differences dependent on anatomic location in the pharynx. Importantly, PSC are required to maintain myofiber size and myonuclear number in pharyngeal myofibers. Together, these results demonstrate that PSC are critical for pharyngeal muscle maintenance and suggest that satellite cell impairment could contribute to pharyngeal muscle pathology associated with various muscular dystrophies and aging.

  12. The Toll pathway is required in the epidermis for muscle development in the Drosophila embryo

    NASA Technical Reports Server (NTRS)

    Halfon, M. S.; Keshishian, H.

    1998-01-01

    The Toll signaling pathway functions in several Drosophila processes, including dorsal-ventral pattern formation and the immune response. Here, we demonstrate that this pathway is required in the epidermis for proper muscle development. Previously, we showed that the zygotic Toll protein is necessary for normal muscle development; in the absence of zygotic Toll, close to 50% of hemisegments have muscle patterning defects consisting of missing, duplicated and misinserted muscle fibers (Halfon, M.S., Hashimoto, C., and Keshishian, H., Dev. Biol. 169, 151-167, 1995). We have now also analyzed the requirements for easter, spatzle, tube, and pelle, all of which function in the Toll-mediated dorsal-ventral patterning pathway. We find that spatzle, tube, and pelle, but not easter, are necessary for muscle development. Mutations in these genes give a phenotype identical to that seen in Toll mutants, suggesting that elements of the same pathway used for Toll signaling in dorsal-ventral development are used during muscle development. By expressing the Toll cDNA under the control of distinct Toll enhancer elements in Toll mutant flies, we have examined the spatial requirements for Toll expression during muscle development. Expression of Toll in a subset of epidermal cells that includes the epidermal muscle attachment cells, but not Toll expression in the musculature, is necessary for proper muscle development. Our results suggest that signals received by the epidermis early during muscle development are an important part of the muscle patterning process.

  13. MMP-10 is required for efficient muscle regeneration in mouse models of injury and muscular dystrophy.

    PubMed

    Bobadilla, Míriam; Sáinz, Neira; Rodriguez, José Antonio; Abizanda, Gloria; Orbe, Josune; de Martino, Alba; García Verdugo, José Manuel; Páramo, José A; Prósper, Felipe; Pérez-Ruiz, Ana

    2014-02-01

    Matrix metalloproteinases (MMPs), a family of endopeptidases that are involved in the degradation of extracellular matrix components, have been implicated in skeletal muscle regeneration. Among the MMPs, MMP-2 and MMP-9 are upregulated in Duchenne muscular dystrophy (DMD), a fatal X-linked muscle disorder. However, inhibition or overexpression of specific MMPs in a mouse model of DMD (mdx) has yielded mixed results regarding disease progression, depending on the MMP studied. Here, we have examined the role of MMP-10 in muscle regeneration during injury and muscular dystrophy. We found that skeletal muscle increases MMP-10 protein expression in response to damage (notexin) or disease (mdx mice), suggesting its role in muscle regeneration. In addition, we found that MMP-10-deficient muscles displayed impaired recruitment of endothelial cells, reduced levels of extracellular matrix proteins, diminished collagen deposition, and decreased fiber size, which collectively contributed to delayed muscle regeneration after injury. Also, MMP-10 knockout in mdx mice led to a deteriorated dystrophic phenotype. Moreover, MMP-10 mRNA silencing in injured muscles (wild-type and mdx) reduced muscle regeneration, while addition of recombinant human MMP-10 accelerated muscle repair, suggesting that MMP-10 is required for efficient muscle regeneration. Furthermore, our data suggest that MMP-10-mediated muscle repair is associated with VEGF/Akt signaling. Thus, our findings indicate that MMP-10 is critical for skeletal muscle maintenance and regeneration during injury and disease. © AlphaMed Press.

  14. Alternative requirements for Vestigial, Scalloped, and Dmef2 during muscle differentiation in Drosophila melanogaster.

    PubMed

    Deng, Hua; Hughes, Sarah C; Bell, John B; Simmonds, Andrew J

    2009-01-01

    Vertebrate development requires the activity of the myocyte enhancer factor 2 (mef2) gene family for muscle cell specification and subsequent differentiation. Additionally, several muscle-specific functions of MEF2 family proteins require binding additional cofactors including members of the Transcription Enhancing Factor-1 (TEF-1) and Vestigial-like protein families. In Drosophila there is a single mef2 (Dmef2) gene as well single homologues of TEF-1 and vestigial-like, scalloped (sd), and vestigial (vg), respectively. To clarify the role(s) of these factors, we examined the requirements for Vg and Sd during Drosophila muscle specification. We found that both are required for muscle differentiation as loss of sd or vg leads to a reproducible loss of a subset of either cardiac or somatic muscle cells in developing embryos. This muscle requirement for Sd or Vg is cell specific, as ubiquitous overexpression of either or both of these proteins in muscle cells has a deleterious effect on muscle differentiation. Finally, using both in vitro and in vivo binding assays, we determined that Sd, Vg, and Dmef2 can interact directly. Thus, the muscle-specific phenotypes we have associated with Vg or Sd may be a consequence of alternative binding of Vg and/or Sd to Dmef2 forming alternative protein complexes that modify Dmef2 activity.

  15. HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy

    PubMed Central

    Beharry, Adam W.; Sandesara, Pooja B.; Roberts, Brandon M.; Ferreira, Leonardo F.; Senf, Sarah M.; Judge, Andrew R.

    2014-01-01

    ABSTRACT The Forkhead box O (FoxO) transcription factors are activated, and necessary for the muscle atrophy, in several pathophysiological conditions, including muscle disuse and cancer cachexia. However, the mechanisms that lead to FoxO activation are not well defined. Recent data from our laboratory and others indicate that the activity of FoxO is repressed under basal conditions via reversible lysine acetylation, which becomes compromised during catabolic conditions. Therefore, we aimed to determine how histone deacetylase (HDAC) proteins contribute to activation of FoxO and induction of the muscle atrophy program. Through the use of various pharmacological inhibitors to block HDAC activity, we demonstrate that class I HDACs are key regulators of FoxO and the muscle-atrophy program during both nutrient deprivation and skeletal muscle disuse. Furthermore, we demonstrate, through the use of wild-type and dominant-negative HDAC1 expression plasmids, that HDAC1 is sufficient to activate FoxO and induce muscle fiber atrophy in vivo and is necessary for the atrophy of muscle fibers that is associated with muscle disuse. The ability of HDAC1 to cause muscle atrophy required its deacetylase activity and was linked to the induction of several atrophy genes by HDAC1, including atrogin-1, which required deacetylation of FoxO3a. Moreover, pharmacological inhibition of class I HDACs during muscle disuse, using MS-275, significantly attenuated both disuse muscle fiber atrophy and contractile dysfunction. Together, these data solidify the importance of class I HDACs in the muscle atrophy program and indicate that class I HDAC inhibitors are feasible countermeasures to impede muscle atrophy and weakness. PMID:24463822

  16. The RNA-binding protein Rbfox1 regulates splicing required for skeletal muscle structure and function

    PubMed Central

    Pedrotti, Simona; Giudice, Jimena; Dagnino-Acosta, Adan; Knoblauch, Mark; Singh, Ravi K.; Hanna, Amy; Mo, Qianxing; Hicks, John; Hamilton, Susan; Cooper, Thomas A.

    2015-01-01

    The Rbfox family of RNA-binding proteins is highly conserved with established roles in alternative splicing (AS) regulation. High-throughput studies aimed at understanding transcriptome remodeling have revealed skeletal muscle as displaying one of the largest number of AS events. This finding is consistent with requirements for tissue-specific protein isoforms needed to sustain muscle-specific functions. Rbfox1 is abundant in vertebrate brain, heart and skeletal muscle. Genome-wide genetic approaches have linked the Rbfox1 gene to autism, and a brain-specific knockout mouse revealed a critical role for this splicing regulator in neuronal function. Moreover, a Caenorhabditis elegans Rbfox1 homolog regulates muscle-specific splicing. To determine the role of Rbfox1 in muscle function, we developed a conditional knockout mouse model to specifically delete Rbfox1 in adult tissue. We show that Rbfox1 is required for muscle function but a >70% loss of Rbfox1 in satellite cells does not disrupt muscle regeneration. Deep sequencing identified aberrant splicing of multiple genes including those encoding myofibrillar and cytoskeletal proteins, and proteins that regulate calcium handling. Ultrastructure analysis of Rbfox1−/− muscle by electron microscopy revealed abundant tubular aggregates. Immunostaining showed mislocalization of the sarcoplasmic reticulum proteins Serca1 and Ryr1 in a pattern indicative of colocalization with the tubular aggregates. Consistent with mislocalization of Serca1 and Ryr1, calcium handling was drastically altered in Rbfox1−/− muscle. Moreover, muscle function was significantly impaired in Rbfox1−/− muscle as indicated by decreased force generation. These results demonstrate that Rbfox1 regulates a network of AS events required to maintain multiple aspects of muscle physiology. PMID:25575511

  17. Calpain and caspase-3 play required roles in immobilization-induced limb muscle atrophy.

    PubMed

    Talbert, Erin E; Smuder, Ashley J; Min, Kisuk; Kwon, Oh Sung; Powers, Scott K

    2013-05-15

    Prolonged skeletal muscle inactivity results in a rapid decrease in fiber size, primarily due to accelerated proteolysis. Although several proteases are known to contribute to disuse muscle atrophy, the ubiquitin proteasome system is often considered the most important proteolytic system during many conditions that promote muscle wasting. Emerging evidence suggests that calpain and caspase-3 may also play key roles in inactivity-induced atrophy of respiratory muscles, but it remains unknown if these proteases are essential for disuse atrophy in limb skeletal muscles. Therefore, we tested the hypothesis that activation of both calpain and caspase-3 is required for locomotor muscle atrophy induced by hindlimb immobilization. Seven days of immobilization (i.e., limb casting) promoted significant atrophy in type I muscle fibers of the rat soleus muscle. Independent pharmacological inhibition of calpain or caspase-3 prevented this casting-induced atrophy. Interestingly, inhibition of calpain activity also prevented caspase-3 activation, and, conversely, inhibition of caspase-3 prevented calpain activation. These findings indicate that a regulatory cross talk exists between these proteases and provide the first evidence that the activation of calpain and caspase-3 is required for inactivity-induced limb muscle atrophy.

  18. Vestigial is required during late-stage muscle differentiation in Drosophila melanogaster embryos.

    PubMed

    Deng, Hua; Bell, John B; Simmonds, Andrew J

    2010-10-01

    The somatic muscles of Drosophila develop in a complex pattern that is repeated in each embryonic hemi-segment. During early development, progenitor cells fuse to form a syncytial muscle, which further differentiates via expression of muscle-specific factors that induce specific responses to external signals to regulate late-stage processes such as migration and attachment. Initial communication between somatic muscles and the epidermal tendon cells is critical for both of these processes. However, later establishment of attachments between longitudinal muscles at the segmental borders is largely independent of the muscle-epidermal attachment signals, and relatively little is known about how this event is regulated. Using a combination of null mutations and a truncated version of Sd that binds Vg but not DNA, we show that Vestigial (Vg) is required in ventral longitudinal muscles to induce formation of stable intermuscular attachments. In several muscles, this activity may be independent of Sd. Furthermore, the cell-specific differentiation events induced by Vg in two cells fated to form attachments are coordinated by Drosophila epidermal growth factor signaling. Thus, Vg is a key factor to induce specific changes in ventral longitudinal muscles 1-4 identity and is required for these cells to be competent to form stable intermuscular attachments with each other.

  19. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy

    PubMed Central

    Goh, Qingnian; Millay, Douglas P

    2017-01-01

    Fusion of skeletal muscle stem/progenitor cells is required for proper development and regeneration, however the significance of this process during adult muscle hypertrophy has not been explored. In response to muscle overload after synergist ablation in mice, we show that myomaker, a muscle specific membrane protein essential for myoblast fusion, is activated mainly in muscle progenitors and not myofibers. We rendered muscle progenitors fusion-incompetent through genetic deletion of myomaker in muscle stem cells and observed a complete reduction of overload-induced hypertrophy. This blunted hypertrophic response was associated with a reduction in Akt and p70s6k signaling and protein synthesis, suggesting a link between myonuclear accretion and activation of pro-hypertrophic pathways. Furthermore, fusion-incompetent muscle exhibited increased fibrosis after muscle overload, indicating a protective role for normal stem cell activity in reducing myofiber strain associated with hypertrophy. These findings reveal an essential contribution of myomaker-mediated stem cell fusion during physiological adult muscle hypertrophy. DOI: http://dx.doi.org/10.7554/eLife.20007.001 PMID:28186492

  20. Barx2 is expressed in satellite cells and is required for normal muscle growth and regeneration.

    PubMed

    Meech, Robyn; Gonzalez, Katie N; Barro, Marietta; Gromova, Anastasia; Zhuang, Lizhe; Hulin, Julie-Ann; Makarenkova, Helen P

    2012-02-01

    Muscle growth and regeneration are regulated through a series of spatiotemporally dependent signaling and transcriptional cascades. Although the transcriptional program controlling myogenesis has been extensively investigated, the full repertoire of transcriptional regulators involved in this process is far from defined. Various homeodomain transcription factors have been shown to play important roles in both muscle development and muscle satellite cell-dependent repair. Here, we show that the homeodomain factor Barx2 is a new marker for embryonic and adult myoblasts and is required for normal postnatal muscle growth and repair. Barx2 is coexpressed with Pax7, which is the canonical marker of satellite cells, and is upregulated in satellite cells after muscle injury. Mice lacking the Barx2 gene show reduced postnatal muscle growth, muscle atrophy, and defective muscle repair. Moreover, loss of Barx2 delays the expression of genes that control proliferation and differentiation in regenerating muscle. Consistent with the in vivo observations, satellite cell-derived myoblasts cultured from Barx2(-/-) mice show decreased proliferation and ability to differentiate relative to those from wild-type or Barx2(+/-) mice. Barx2(-/-) myoblasts show reduced expression of the differentiation-associated factor myogenin as well as cell adhesion and matrix molecules. Finally, we find that mice lacking both Barx2 and dystrophin gene expression have severe early onset myopathy. Together, these data indicate that Barx2 is an important regulator of muscle growth and repair that acts via the control of satellite cell proliferation and differentiation.

  1. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy.

    PubMed

    Goh, Qingnian; Millay, Douglas P

    2017-02-10

    Fusion of skeletal muscle stem/progenitor cells is required for proper development and regeneration, however the significance of this process during adult muscle hypertrophy has not been explored. In response to muscle overload after synergist ablation in mice, we show that myomaker, a muscle specific membrane protein essential for myoblast fusion, is activated mainly in muscle progenitors and not myofibers. We rendered muscle progenitors fusion-incompetent through genetic deletion of myomaker in muscle stem cells and observed a complete reduction of overload-induced hypertrophy. This blunted hypertrophic response was associated with a reduction in Akt and p70s6k signaling and protein synthesis, suggesting a link between myonuclear accretion and activation of pro-hypertrophic pathways. Furthermore, fusion-incompetent muscle exhibited increased fibrosis after muscle overload, indicating a protective role for normal stem cell activity in reducing myofiber strain associated with hypertrophy. These findings reveal an essential contribution of myomaker-mediated stem cell fusion during physiological adult muscle hypertrophy.

  2. Vestigial Is Required during Late-Stage Muscle Differentiation in Drosophila melanogaster Embryos

    PubMed Central

    Deng, Hua; Bell, John B.

    2010-01-01

    The somatic muscles of Drosophila develop in a complex pattern that is repeated in each embryonic hemi-segment. During early development, progenitor cells fuse to form a syncytial muscle, which further differentiates via expression of muscle-specific factors that induce specific responses to external signals to regulate late-stage processes such as migration and attachment. Initial communication between somatic muscles and the epidermal tendon cells is critical for both of these processes. However, later establishment of attachments between longitudinal muscles at the segmental borders is largely independent of the muscle–epidermal attachment signals, and relatively little is known about how this event is regulated. Using a combination of null mutations and a truncated version of Sd that binds Vg but not DNA, we show that Vestigial (Vg) is required in ventral longitudinal muscles to induce formation of stable intermuscular attachments. In several muscles, this activity may be independent of Sd. Furthermore, the cell-specific differentiation events induced by Vg in two cells fated to form attachments are coordinated by Drosophila epidermal growth factor signaling. Thus, Vg is a key factor to induce specific changes in ventral longitudinal muscles 1–4 identity and is required for these cells to be competent to form stable intermuscular attachments with each other. PMID:20685961

  3. Neuromuscular synaptic patterning requires the function of skeletal muscle dihydropyridine receptors

    PubMed Central

    Chen, Fujun; Liu, Yun; Sugiura, Yoshie; Allen, Paul D.; Gregg, Ronald G.; Lin, Weichun

    2011-01-01

    Developing skeletal myofibers in vertebrates are intrinsically “pre-patterned” for motor nerve innervation. However, the intrinsic factors that regulate muscle pre-patterning remain unknown. Here we show that a functional skeletal muscle dihydropyridine receptor (DHPR, the L-type Ca2+ channel in muscle) is required for muscle pre-patterning during the development of the neuromuscular junction (NMJ). Targeted deletion of the β1 subunit of DHPR (Cacnb1) in mice leads to muscle pre-patterning defects, aberrant innervation and precocious maturation of the NMJ. Reintroducing the Cacnb1 gene into Cacnb1−/− muscles reverses the pre-patterning defects and restores normal development of the NMJ. The mechanism by which DHPRs govern muscle pre-patterning is independent of their role in excitation-contraction coupling (E-C coupling), but requires Ca2+ influx through the L-type Ca2+ channel. Our findings demonstrate that the skeletal muscle DHPR retrogradely regulates the patterning and formation of the NMJ. PMID:21441923

  4. Adaptive skeletal muscle action requires anticipation and "conscious broadcasting".

    PubMed

    Poehlman, T Andrew; Jantz, Tiffany K; Morsella, Ezequiel

    2012-01-01

    Historically, the conscious and anticipatory processes involved in voluntary action have been associated with the loftiest heights of nervous function. Concepts like mental time travel, "theory of mind," and the formation of "the self" have been at the center of many attempts to determine the purpose of consciousness. Eventually, more reductionistic accounts of consciousness emerged, proposing rather that conscious states play a much more basic role in nervous function. Though the widely held integration consensus proposes that conscious states integrate information-processing structures and events that would otherwise be independent, Supramodular Interaction Theory (SIT) argues that conscious states are necessary for the integration of only certain kinds of information. As revealed in this selective review, this integration is related to what is casually referred to as "voluntary" action, which is intimately related to the skeletal muscle output system. Through a peculiar form of broadcasting, conscious integration often controls and guides action via "ideomotor" mechanisms, where anticipatory processes play a central role. Our selective review covers evidence (including findings from anesthesia research) for the integration consensus, SIT, and ideomotor theory.

  5. Maintenance Energy Requirements of Double-Muscled Belgian Blue Beef Cows

    PubMed Central

    Fiems, Leo O.; De Boever, Johan L.; Vanacker, José M.; De Campeneere, Sam

    2015-01-01

    Simple Summary Double-muscled Belgian Blue animals are extremely lean, characterized by a deviant muscle fiber type with more fast-glycolytic fibers, compared to non-double-muscled animals. This fiber type may result in lower maintenance energy requirements. On the other hand, lean meat animals mostly have a higher rate of protein turnover, which requires more energy for maintenance. Therefore, maintenance requirements of Belgian Blue cows were investigated based on a zero body weight gain. This technique showed that maintenance energy requirements of double-muscled Belgian Blue beef cows were close to the mean requirements of cows of other beef genotypes. Abstract Sixty non-pregnant, non-lactating double-muscled Belgian Blue (DMBB) cows were used to estimate the energy required to maintain body weight (BW). They were fed one of three energy levels for 112 or 140 days, corresponding to approximately 100%, 80% or 70% of their total energy requirements. The relationship between daily energy intake and BW and daily BW change was developed using regression analysis. Maintenance energy requirements were estimated from the regression equation by setting BW gain to zero. Metabolizable and net energy for maintenance amounted to 0.569 ± 0.001 and 0.332 ± 0.001 MJ per kg BW0.75/d, respectively. Maintenance energy requirements were not dependent on energy level (p > 0.10). Parity affected maintenance energy requirements (p < 0.001), although the small numerical differences between parities may hardly be nutritionally relevant. Maintenance energy requirements of DMBB beef cows were close to the mean energy requirements of other beef genotypes reported in the literature. PMID:26479139

  6. Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance

    PubMed Central

    Lira, Vitor A.; Okutsu, Mitsuharu; Zhang, Mei; Greene, Nicholas P.; Laker, Rhianna C.; Breen, David S.; Hoehn, Kyle L.; Yan, Zhen

    2013-01-01

    Pathological and physiological stimuli, including acute exercise, activate autophagy; however, it is unknown whether exercise training alters basal levels of autophagy and whether autophagy is required for skeletal muscle adaptation to training. We observed greater autophagy flux (i.e., a combination of increased LC3-II/LC3-I ratio and LC3-II levels and reduced p62 protein content indicating a higher rate of initiation and resolution of autophagic events), autophagy protein expression (i.e., Atg6/Beclin1, Atg7, and Atg8/LC3) and mitophagy protein Bnip3 expression in tonic, oxidative muscle compared to muscles of either mixed fiber types or of predominant glycolytic fibers in mice. Long-term voluntary running (4 wk) resulted in increased basal autophagy flux and expression of autophagy proteins and Bnip3 in parallel to mitochondrial biogenesis in plantaris muscle with mixed fiber types. Conversely, exercise training promoted autophagy protein expression with no significant increases of autophagy flux and mitochondrial biogenesis in the oxidative soleus muscle. We also observed increased basal autophagy flux and Bnip3 content without increases in autophagy protein expression in the plantaris muscle of sedentary muscle-specific Pgc-1α transgenic mice, a genetic model of augmented mitochondrial biogenesis. These findings reveal that endurance exercise training-induced increases in basal autophagy, including mitophagy, only take place if an enhanced oxidative phenotype is achieved. However, autophagy protein expression is mainly dictated by contractile activity independently of enhancements in oxidative phenotype. Exercise-trained mice heterozygous for the critical autophagy protein Atg6 showed attenuated increases of basal autophagy flux, mitochondrial content, and angiogenesis in skeletal muscle, along with impaired improvement of endurance capacity. These results demonstrate that increased basal autophagy is required for endurance exercise training-induced skeletal

  7. Fusimotor drive may adjust muscle spindle feedback to task requirements in humans.

    PubMed

    Ribot-Ciscar, Edith; Hospod, Valérie; Roll, Jean-Pierre; Aimonetti, Jean-Marc

    2009-02-01

    The aim of the present study was to investigate whether the fusimotor control of muscle spindle sensitivity may depend on the movement parameter the task is focused on, either the velocity or the final position reached. The unitary activities of 18 muscle spindle afferents were recorded by microneurography at the common peroneal nerve. We compared in two situations the responses of muscle spindle afferents to ankle movements imposed while the subject was instructed not to pay attention to or to pay attention to the movement, both in the absence of visual cues. In the two situations, three ramp-and-hold movements were imposed in random order. In one situation, the three movements differed by their velocity and in the other by the final position reached. The task consisted in ranking the three movements according to the parameter under consideration (for example, slow, fast, and medium). The results showed that paying attention to movement velocity gave rise to a significant increase in the dynamic and static responses of muscle afferents. In contrast, focusing attention on the final position reached made the muscle spindle feedback better discriminate the different positions and depressed its capacity to discriminate movement velocities. Changes are interpreted as reflecting dynamic and static gamma activation, respectively. The present results support the view that the fusimotor drive depends on the parameter the task is focused on, so that the muscle afferent feedback is adjusted to the task requirements.

  8. Dietary copper in excess of nutritional requirement reduces plasma and breast muscle cholesterol of chickens.

    PubMed

    Bakalli, R I; Pesti, G M; Ragland, W L; Konjufca, V

    1995-02-01

    Male commercial broiler strain chickens were fed from hatching to 42 d of age either a control diet (based on corn and soybean meal) or the control diet supplemented with 250 mg copper/kg diet from cupric sulfate pentahydrate (for 35 or 42 d). Hypocholesterolemia (11.8% reduction) and decreased breast muscle cholesterol (20.4% reduction) were observed in copper-supplemented birds. There was a slight increase (P > .05) in breast muscle copper (14.5%), and all levels were very low (< .5 mg/kg). Feeding copper for 42 vs 35 d resulted in lower levels of cholesterol in the plasma (12.9 vs 10.8% reduction) and breast muscle (24.6 vs 16.2% reduction). Very similar results were found in two additional experiments in which hypocholesterolemia and reduced breast muscle cholesterol were associated with reduced plasma triglycerides and blood reduced glutathione. It is well known that hypercholesterolemia is a symptom of dietary copper deficiency. The data presented here indicate that blood and breast muscle cholesterol are inversely related to dietary copper in excess of the dietary requirement for maximal growth. The cholesterol content of the edible muscle tissue of broiler chickens can be reduced by approximately 25% after feeding a supranormal level of copper for 42 d without altering the growth of the chickens or substantially increasing the copper content of the edible meat.

  9. Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice.

    PubMed

    Murach, Kevin A; White, Sarah H; Wen, Yuan; Ho, Angel; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2017-07-10

    Pax7+ satellite cells are required for skeletal muscle fiber growth during post-natal development in mice. Satellite cell-mediated myonuclear accretion also appears to persist into early adulthood. Given the important role of satellite cells during muscle development, we hypothesized that the necessity of satellite cells for adaptation to an imposed hypertrophic stimulus depends on maturational age. Pax7(CreER)-R26R(DTA) mice were treated for 5 days with vehicle (satellite cell-replete, SC+) or tamoxifen (satellite cell-depleted, SC-) at 2 months (young) and 4 months (mature) of age. Following a 2-week washout, mice were subjected to sham surgery or 10 day synergist ablation overload of the plantaris (n = 6-9 per group). The surgical approach minimized regeneration, de novo fiber formation, and fiber splitting while promoting muscle fiber growth. Satellite cell density (Pax7+ cells/fiber), embryonic myosin heavy chain expression (eMyHC), and muscle fiber cross sectional area (CSA) were evaluated via immunohistochemistry. Myonuclei (myonuclei/100 mm) were counted on isolated single muscle fibers. Tamoxifen treatment depleted satellite cells by ≥90% and prevented myonuclear accretion with overload in young and mature mice (p < 0.05). Satellite cells did not recover in SC- mice after overload. Average muscle fiber CSA increased ~20% in young SC+ (p = 0.07), mature SC+ (p < 0.05), and mature SC- mice (p < 0.05). In contrast, muscle fiber hypertrophy was prevented in young SC- mice. Muscle fiber number increased only in mature mice after overload (p < 0.05), and eMyHC expression was variable, specifically in mature SC+ mice. Reliance on satellite cells for overload-induced hypertrophy is dependent on maturational age, and global responses to overload differ in young versus mature mice.

  10. Brahma is required for cell cycle arrest and late muscle gene expression during skeletal myogenesis

    PubMed Central

    Albini, Sonia; Coutinho Toto, Paula; Dall’Agnese, Alessandra; Malecova, Barbora; Cenciarelli, Carlo; Felsani, Armando; Caruso, Maurizia; Bultman, Scott J; Puri, Pier Lorenzo

    2015-01-01

    Although the two catalytic subunits of the SWI/SNF chromatin-remodeling complex—Brahma (Brm) and Brg1—are almost invariably co-expressed, their mutually exclusive incorporation into distinct SWI/SNF complexes predicts that Brg1- and Brm-based SWI/SNF complexes execute specific functions. Here, we show that Brg1 and Brm have distinct functions at discrete stages of muscle differentiation. While Brg1 is required for the activation of muscle gene transcription at early stages of differentiation, Brm is required for Ccnd1 repression and cell cycle arrest prior to the activation of muscle genes. Ccnd1 knockdown rescues the ability to exit the cell cycle in Brm-deficient myoblasts, but does not recover terminal differentiation, revealing a previously unrecognized role of Brm in the activation of late muscle gene expression independent from the control of cell cycle. Consistently, Brm null mice displayed impaired muscle regeneration after injury, with aberrant proliferation of satellite cells and delayed formation of new myofibers. These data reveal stage-specific roles of Brm during skeletal myogenesis, via formation of repressive and activatory SWI/SNF complexes. PMID:26136374

  11. Notch signal reception is required in vascular smooth muscle cells for ductus arteriosus closure

    PubMed Central

    Krebs, Luke T.; Norton, Christine R.; Gridley, Thomas

    2017-01-01

    Summary The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus, and is one of the most common congenital heart defects. Our previous work demonstrated that vascular smooth muscle cell expression of the Jag1 gene, which encodes a ligand for Notch family receptors, is essential for postnatal closure of the ductus arteriosus in mice. However, it was not known what cell population was responsible for receiving the Jag1-mediated signal. Here we show, using smooth muscle cell-specific deletion of the Rbpj gene, which encodes a transcription factor that mediates all canonical Notch signaling, that Notch signal reception in the vascular smooth muscle cell compartment is required for ductus arteriosus closure. These data indicate that homotypic vascular smooth muscle cell interactions are required for proper contractile smooth muscle cell differentiation and postnatal closure of the ductus arteriosus in mice. PMID:26742650

  12. Notch signal reception is required in vascular smooth muscle cells for ductus arteriosus closure.

    PubMed

    Krebs, Luke T; Norton, Christine R; Gridley, Thomas

    2016-02-01

    The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus, and is one of the most common congenital heart defects. Our previous work demonstrated that vascular smooth muscle cell expression of the Jag1 gene, which encodes a ligand for Notch family receptors, is essential for postnatal closure of the ductus arteriosus in mice. However, it was not known what cell population was responsible for receiving the Jag1-mediated signal. Here we show, using smooth muscle cell-specific deletion of the Rbpj gene, which encodes a transcription factor that mediates all canonical Notch signaling, that Notch signal reception in the vascular smooth muscle cell compartment is required for ductus arteriosus closure. These data indicate that homotypic vascular smooth muscle cell interactions are required for proper contractile smooth muscle cell differentiation and postnatal closure of the ductus arteriosus in mice. © 2016 Wiley Periodicals, Inc.

  13. Dystonia redefined as central non-paretic loss of control of muscle action: a concept including inability to activate muscles required for a specific movement, or 'negative dystonia'.

    PubMed

    Mezaki, Takahiro

    2007-01-01

    Dystonia is defined as a syndrome of sustained muscle contractions, frequently causing twisting and repetitive movements, or abnormal postures. Although this definition comprises an essential feature of dystonia, the clinical observation indicates that there is an additional aspect of dystonia; failure to adequately activate muscles required for specific movement, exemplified by the lack of contractions of the levator palpebrae superioris muscles in apraxia of lid opening, as well as by inability to activate appropriate muscles in cervical dystonia or in the paretic form of writer's cramp, and possibly by dropped head syndrome or camptocormia seen in parkinsonian patients without apparent truncal dystonia or rigidity. Taking this "negative dystonia" into consideration, the author proposes a revised definition of dystonia as a symptom characterized by the central non-paretic loss of voluntary control of muscle activities, which may result in either excessive or deficient contractions of muscles, frequently causing twisting and repetitive movements, limitation of movements, or abnormal postures.

  14. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration

    PubMed Central

    Zhang, Qing; Wang, Yingjie; Man, Lili; Zhu, Ziwen; Bai, Xue; Wei, Sumei; Liu, Yan; Liu, Mei; Wang, Xiaochuan; Gu, Xiaosong; Wang, Yongjun

    2016-01-01

    Reactive oxygen species (ROS) participate in various physiological and pathological functions following generation from different types of cells. Here we explore ROS functions on spontaneous tail regeneration using gecko model. ROS were mainly produced in the skeletal muscle after tail amputation, showing a temporal increase as the regeneration proceeded. Inhibition of the ROS production influenced the formation of autophagy in the skeletal muscles, and as a consequence, the length of the regenerating tail. Transcriptome analysis has shown that NADPH oxidase (NOX2) and the subunits (p40phox and p47phox) are involved in the ROS production. ROS promoted the formation of autophagy through regulation of both ULK and MAPK activities. Our results suggest that ROS produced by skeletal muscles are required for the successful gecko tail regeneration. PMID:26853930

  15. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration.

    PubMed

    Zhang, Qing; Wang, Yingjie; Man, Lili; Zhu, Ziwen; Bai, Xue; Wei, Sumei; Liu, Yan; Liu, Mei; Wang, Xiaochuan; Gu, Xiaosong; Wang, Yongjun

    2016-02-08

    Reactive oxygen species (ROS) participate in various physiological and pathological functions following generation from different types of cells. Here we explore ROS functions on spontaneous tail regeneration using gecko model. ROS were mainly produced in the skeletal muscle after tail amputation, showing a temporal increase as the regeneration proceeded. Inhibition of the ROS production influenced the formation of autophagy in the skeletal muscles, and as a consequence, the length of the regenerating tail. Transcriptome analysis has shown that NADPH oxidase (NOX2) and the subunits (p40(phox) and p47(phox)) are involved in the ROS production. ROS promoted the formation of autophagy through regulation of both ULK and MAPK activities. Our results suggest that ROS produced by skeletal muscles are required for the successful gecko tail regeneration.

  16. Syd/JIP3 and JNK Signaling Are Required for Myonuclear Positioning and Muscle Function

    PubMed Central

    Schulman, Victoria K.; Folker, Eric S.; Rosen, Jonathan N.; Baylies, Mary K.

    2014-01-01

    Highlighting the importance of proper intracellular organization, many muscle diseases are characterized by mispositioned myonuclei. Proper positioning of myonuclei is dependent upon the microtubule motor proteins, Kinesin-1 and cytoplasmic Dynein, and there are at least two distinct mechanisms by which Kinesin and Dynein move myonuclei. The motors exert forces both directly on the nuclear surface and from the cell cortex via microtubules. How these activities are spatially segregated yet coordinated to position myonuclei is unknown. Using Drosophila melanogaster, we identified that Sunday Driver (Syd), a homolog of mammalian JNK-interacting protein 3 (JIP3), specifically regulates Kinesin- and Dynein-dependent cortical pulling of myonuclei without affecting motor activity near the nucleus. Specifically, Syd mediates Kinesin-dependent localization of Dynein to the muscle ends, where cortically anchored Dynein then pulls microtubules and the attached myonuclei into place. Proper localization of Dynein also requires activation of the JNK signaling cascade. Furthermore, Syd functions downstream of JNK signaling because without Syd, JNK signaling is insufficient to promote Kinesin-dependent localization of Dynein to the muscle ends. The significance of Syd-dependent myonuclear positioning is illustrated by muscle-specific depletion of Syd, which impairs muscle function. Moreover, both myonuclear spacing and locomotive defects in syd mutants can be rescued by expression of mammalian JIP3 in Drosophila muscle tissue, indicating an evolutionarily conserved role for JIP3 in myonuclear movement and highlighting the utility of Drosophila as a model for studying mammalian development. Collectively, we implicate Syd/JIP3 as a novel regulator of myogenesis that is required for proper intracellular organization and tissue function. PMID:25522254

  17. UTX demethylase activity is required for satellite cell–mediated muscle regeneration

    PubMed Central

    Wang, Chaochen; Nakka, Kiran; Benyoucef, Aissa; Sebastian, Soji; Zhuang, Lenan; Chu, Alphonse; Palii, Carmen G.; Camellato, Brendan; Brand, Marjorie

    2016-01-01

    The X chromosome–encoded histone demethylase UTX (also known as KDM6A) mediates removal of repressive trimethylation of histone H3 lysine 27 (H3K27me3) to establish transcriptionally permissive chromatin. Loss of UTX in female mice is embryonic lethal. Unexpectedly, male UTX-null mice escape embryonic lethality due to expression of UTY, a paralog that lacks H3K27 demethylase activity, suggesting an enzyme-independent role for UTX in development and thereby challenging the need for active H3K27 demethylation in vivo. However, the requirement for active H3K27 demethylation in stem cell–mediated tissue regeneration remains untested. Here, we employed an inducible mouse KO that specifically ablates Utx in satellite cells (SCs) and demonstrated that active H3K27 demethylation is necessary for muscle regeneration. Loss of UTX in SCs blocked myofiber regeneration in both male and female mice. Furthermore, we demonstrated that UTX mediates muscle regeneration through its H3K27 demethylase activity, as loss of demethylase activity either by chemical inhibition or knock-in of demethylase-dead UTX resulted in defective muscle repair. Mechanistically, dissection of the muscle regenerative process revealed that the demethylase activity of UTX is required for expression of the transcription factor myogenin, which in turn drives differentiation of muscle progenitors. Thus, we have identified a critical role for the enzymatic activity of UTX in activating muscle-specific gene expression during myofiber regeneration and have revealed a physiological role for active H3K27 demethylation in vivo. PMID:26999603

  18. Identification of novel MYO18A interaction partners required for myoblast adhesion and muscle integrity

    PubMed Central

    Cao, Jian-Meng; Cheng, Xiao-Ning; Li, Shang-Qi; Heller, Stefan; Xu, Zhi-Gang; Shi, De-Li

    2016-01-01

    The unconventional myosin MYO18A that contains a PDZ domain is required for muscle integrity during zebrafish development. However, the mechanism by which it functions in myofibers is not clear. The presence of a PDZ domain suggests that MYO18A may interact with other partners to perform muscle-specific functions. Here we performed double-hybrid screening and co-immunoprecipitation to identify MYO18A-interacting proteins, and have identified p190RhoGEF and Golgin45 as novel partners for the MYO18A PDZ domain. We have also identified Lurap1, which was previously shown to bind MYO18A. Functional analyses indicate that, similarly as myo18a, knockdown of lurap1, p190RhoGEF and Golgin45 by morpholino oligonucleotides disrupts dystrophin localization at the sarcolemma and produces muscle lesions. Simultaneous knockdown of myo18a with either of these genes severely disrupts myofiber integrity and dystrophin localization, suggesting that they may function similarly to maintain myofiber integrity. We further show that MYO18A and its interaction partners are required for adhesion of myoblasts to extracellular matrix, and for the formation of the Golgi apparatus and organization of F-actin bundles in myoblast cells. These findings suggest that MYO18A has the potential to form a multiprotein complex that links the Golgi apparatus to F-actin, which regulates muscle integrity and function during early development. PMID:27824130

  19. The ATP required for potentiation of skeletal muscle contraction is released via pannexin hemichannels.

    PubMed

    Riquelme, Manuel A; Cea, Luis A; Vega, José L; Boric, Mauricio P; Monyer, Hannah; Bennett, Michael V L; Frank, Marina; Willecke, Klaus; Sáez, Juan C

    2013-12-01

    During repetitive stimulation of skeletal muscle, extracellular ATP levels raise, activating purinergic receptors, increasing Ca2+ influx, and enhancing contractile force, a response called potentiation. We found that ATP appears to be released through pannexin1 hemichannels (Panx1 HCs). Immunocytochemical analyses and function were consistent with pannexin1 localization to T-tubules intercalated with dihydropyridine and ryanodine receptors in slow (soleus) and fast (extensor digitorum longus, EDL) muscles. Isolated myofibers took up ethidium (Etd+) and released small molecules (as ATP) during electrical stimulation. Consistent with two glucose uptake pathways, induced uptake of 2-NBDG, a fluorescent glucose derivative, was decreased by inhibition of HCs or glucose transporter (GLUT4), and blocked by dual blockade. Adult skeletal muscles apparently do not express connexins, making it unlikely that connexin hemichannels contribute to the uptake and release of small molecules. ATP release, Etd+ uptake, and potentiation induced by repetitive electrical stimulation were blocked by HC blockers and did not occur in muscles of pannexin1 knockout mice. MRS2179, a P2Y1R blocker, prevented potentiation in EDL, but not soleus muscles, suggesting that in fast muscles ATP activates P2Y1 but not P2X receptors. Phosphorylation on Ser and Thr residues of pannexin1 was increased during potentiation, possibly mediating HC opening. Opening of Panx1 HCs during repetitive activation allows efflux of ATP, influx of glucose and possibly Ca2+ too, which are required for potentiation of contraction. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.

  20. Functional phosphatome requirement for protein homeostasis, networked mitochondria, and sarcomere structure in C. elegans muscle.

    PubMed

    Lehmann, Susann; Bass, Joseph J; Barratt, Thomas F; Ali, Mohammed Z; Szewczyk, Nathaniel J

    2017-08-01

    Skeletal muscle is central to locomotion and metabolic homeostasis. The laboratory worm Caenorhabditis elegans has been developed into a genomic model for assessing the genes and signals that regulate muscle development and protein degradation. Past work has identified a receptor tyrosine kinase signalling network that combinatorially controls autophagy, nerve signal to muscle to oppose proteasome-based degradation, and extracellular matrix-based signals that control calpain and caspase activation. The last two discoveries were enabled by following up results from a functional genomic screen of known regulators of muscle. Recently, a screen of the kinome requirement for muscle homeostasis identified roughly 40% of kinases as required for C. elegans muscle health; 80 have identified human orthologues and 53 are known to be expressed in skeletal muscle. To complement this kinome screen, here, we screen most of the phosphatases in C. elegans. RNA interference was used to knockdown phosphatase-encoding genes. Knockdown was first conducted during development with positive results also knocked down only in fully developed adult muscle. Protein homeostasis, mitochondrial structure, and sarcomere structure were assessed using transgenic reporter proteins. Genes identified as being required to prevent protein degradation were also knocked down in conditions that blocked proteasome or autophagic degradation. Genes identified as being required to prevent autophagic degradation were also assessed for autophagic vesicle accumulation using another transgenic reporter. Lastly, bioinformatics were used to look for overlap between kinases and phosphatases required for muscle homeostasis, and the prediction that one phosphatase was required to prevent mitogen-activated protein kinase activation was assessed by western blot. A little over half of all phosphatases are each required to prevent abnormal development or maintenance of muscle. Eighty-six of these phosphatases have known

  1. Muscle force and muscle torque in humans require different methods when adjusting for differences in body size.

    PubMed

    Jaric, Slobodan; Radosavljevic-Jaric, Snezana; Johansson, Hakan

    2002-07-01

    Different methods for adjusting muscle strength ( S) to normalise for differences in various estimates of body size [such as body mass ( m) or, infrequently, some other anthropometrical measurements] have been either proposed or applied when presenting the results of muscle function tests in various medical, ergonomic, and sport related studies. However, the fact that the relationship between S and body size may differ when muscle torque (measured using a standard isokinetic apparatus) and muscle force (measured using a dynamometer) are recorded has not been taken into account. To address this problem, we tested both muscle force and muscle torque under isometric conditions in six different muscle groups. The relationship assumed between S and m was S=k.m(b) and, according to a simple mechanical model based on geometrical similarity we developed, the exponential parameter b would be expected to equal 1.00 and 0.67 for torque and force, respectively. The experimentally obtained values for the parameter b were higher for muscle torque than for muscle force in five out of the six muscle groups tested ( P=0.068; Wilcoxon matched pairs test). Despite a relatively wide scatter, the mean (SD) values were also close to those predicted, being b=0.67 (0.19) (corresponding to the allometric scaling method) and b=1.02 (0.34) (corresponding to the ratio standards method) for muscle force and for muscle torque, respectively. Therefore, we concluded that the ratio standards and allometric scaling should be employed to adjust S for body size when muscle torque and muscle force, respectively, are tested.

  2. DAAM Is Required for Thin Filament Formation and Sarcomerogenesis during Muscle Development in Drosophila

    PubMed Central

    Molnár, Imre; Migh, Ede; Szikora, Szilárd; Kalmár, Tibor; Végh, Attila G.; Deák, Ferenc; Barkó, Szilvia; Bugyi, Beáta; Orfanos, Zacharias; Kovács, János; Juhász, Gábor; Váró, György; Nyitrai, Miklós; Sparrow, John; Mihály, József

    2014-01-01

    During muscle development, myosin and actin containing filaments assemble into the highly organized sarcomeric structure critical for muscle function. Although sarcomerogenesis clearly involves the de novo formation of actin filaments, this process remained poorly understood. Here we show that mouse and Drosophila members of the DAAM formin family are sarcomere-associated actin assembly factors enriched at the Z-disc and M-band. Analysis of dDAAM mutants revealed a pivotal role in myofibrillogenesis of larval somatic muscles, indirect flight muscles and the heart. We found that loss of dDAAM function results in multiple defects in sarcomere development including thin and thick filament disorganization, Z-disc and M-band formation, and a near complete absence of the myofibrillar lattice. Collectively, our data suggest that dDAAM is required for the initial assembly of thin filaments, and subsequently it promotes filament elongation by assembling short actin polymers that anneal to the pointed end of the growing filaments, and by antagonizing the capping protein Tropomodulin. PMID:24586196

  3. Phosphoinositide Regulation of Integrin Trafficking Required for Muscle Attachment and Maintenance

    PubMed Central

    Ribeiro, Inês; Yuan, Lin; Tanentzapf, Guy; Dowling, James J.; Kiger, Amy

    2011-01-01

    Muscles must maintain cell compartmentalization when remodeled during development and use. How spatially restricted adhesions are regulated with muscle remodeling is largely unexplored. We show that the myotubularin (mtm) phosphoinositide phosphatase is required for integrin-mediated myofiber attachments in Drosophila melanogaster, and that mtm-depleted myofibers exhibit hallmarks of human XLMTM myopathy. Depletion of mtm leads to increased integrin turnover at the sarcolemma and an accumulation of integrin with PI(3)P on endosomal-related membrane inclusions, indicating a role for Mtm phosphatase activity in endocytic trafficking. The depletion of Class II, but not Class III, PI3-kinase rescued mtm-dependent defects, identifying an important pathway that regulates integrin recycling. Importantly, similar integrin localization defects found in human XLMTM myofibers signify conserved MTM1 function in muscle membrane trafficking. Our results indicate that regulation of distinct phosphoinositide pools plays a central role in maintaining cell compartmentalization and attachments during muscle remodeling, and they suggest involvement of Class II PI3-kinase in MTM-related disease. PMID:21347281

  4. The Erk MAP kinase pathway is activated at muscle spindles and is required for induction of the muscle spindle-specific gene Egr3 by neuregulin1.

    PubMed

    Herndon, Carter A; Ankenbruck, Nick; Fromm, Larry

    2014-02-01

    Muscle spindles are sensory receptors composed of specialized muscle fibers, known as intrafusal muscle fibers, along with the endings of sensory neuron axons that innervate these muscle fibers. Formation of muscle spindles requires neuregulin1 (NRG1), which is released by sensory axons, activating ErbB receptors in muscle cells that are contacted. The transcription factor Egr3 is transcriptionally induced by NRG1, which in turn activates various target genes involved in forming intrafusal fibers. We have previously shown that, in cultured muscle cells, NRG1 signaling activates the Egr3 gene through SRF and CREB, which bind to a composite regulatory element, and that NRG1 signaling targets SRF by stimulating nuclear translocation of SRF coactivators myocardin-related transcription factor (MRTF)-A and MRTF-B and targets CREB by phosphorylation. The current studies examined signaling relays that might function in the NRG1 pathway upstream of SRF and CREB. We found that transcriptional induction of Egr3 in response to NRG1 requires the MAP kinase Erk1/2, which acts upstream of CREB to induce its phosphorylation. MRTFs are targeted by the Rho-actin pathway, yet in the absence of Rho-actin signaling, even though MRTFs fail to be translocated to the nucleus, NRG1 induces Egr3 transcription. In mouse muscle in vivo, activation of Erk1/2 is enhanced selectively where muscle spindles are located. These results suggest that Erk1/2 acts in intrafusal fibers of muscle spindles to induce transcription of Egr3 and that Egr3 induction occurs independently of MRTFs and involves Erk1/2 acting on other transcriptional regulatory targets that interact with the SRF-CREB regulatory element. Copyright © 2013 Wiley Periodicals, Inc.

  5. Spontaneous tension oscillation (SPOC) of muscle fibers and myofibrils minimum requirements for SPOC.

    PubMed

    Ishiwata, S; Anazawa, T; Fujita, T; Fukuda, N; Shimizu, H; Yasuda, K

    1993-01-01

    Several years ago, we found a new chemical condition for the spontaneous oscillatory contraction of glycerinated skeletal muscle and named it "SPOC". The condition was such that MgATP coexists with its hydrolytic products, MgADP and inorganic phosphate (Pi). Micromolar concentrations of free Ca2+ were not necessarily required for this oscillation. Here, we summarize our recent work on the mechano-chemical properties of SPOC not only in glycerinated single fibers and myofibrils of skeletal muscle (fast type) but also in glycerinated small bundles of cardiac muscle; the isometric tension and its oscillation were examined at various concentrations of MgATP, MgADP and Pi while controlling the concentration of free Ca2+; we constructed a three-dimensional "state diagram" taken against the concentrations of MgADP, Pi and free Ca2+. The 3-D state diagram clearly showed the existence of three regions corresponding to three muscular states; the SPOC region was located in between the regions for contraction (without oscillation) and relaxation. Based on these results, we discuss the mechanism of SPOC, especially the minimum requirements for its occurrence. Finally, we suggest that slow shortening and quick lengthening repeatedly occur every half-sarcomere through the transition between the two states, where weak-force-generating complexes or strong-force-generating complexes are dominant; the transition may be induced by a coupling with the mechanical states of cross-bridges and/or thin filaments.

  6. Amontillado is required for Drosophila Slit processing and for tendon-mediated muscle patterning

    PubMed Central

    Ordan, Elly

    2016-01-01

    ABSTRACT Slit cleavage into N-terminal and C-terminal polypeptides is essential for restricting the range of Slit activity. Although the Slit cleavage site has been characterized previously and is evolutionally conserved, the identity of the protease that cleaves Slit remains elusive. Our previous analysis indicated that Slit cleavage is essential to immobilize the active Slit-N at the tendon cell surfaces, mediating the arrest of muscle elongation. In an attempt to identify the protease required for Slit cleavage we performed an RNAi-based assay in the ectoderm and followed the process of elongation of the lateral transverse muscles toward tendon cells. The screen led to the identification of the Drosophila homolog of pheromone convertase 2 (PC2), Amontillado (Amon), as an essential protease for Slit cleavage. Further analysis indicated that Slit mobility on SDS polyacrylamide gel electrophoresis (SDS-PAGE) is slightly up-shifted in amon mutants, and its conventional cleavage into the Slit-N and Slit-C polypeptides is attenuated. Consistent with the requirement for amon to promote Slit cleavage and membrane immobilization of Slit-N, the muscle phenotype of amon mutant embryos was rescued by co-expressing a membrane-bound form of full-length Slit lacking the cleavage site and knocked into the slit locus. The identification of a novel protease component essential for Slit processing may represent an additional regulatory step in the Slit signaling pathway. PMID:27628033

  7. Muscle contraction is required to maintain the pool of muscle progenitors via YAP and NOTCH during fetal myogenesis

    PubMed Central

    Esteves de Lima, Joana; Bonnin, Marie-Ange; Birchmeier, Carmen; Duprez, Delphine

    2016-01-01

    The importance of mechanical activity in the regulation of muscle progenitors during chick development has not been investigated. We show that immobilization decreases NOTCH activity and mimics a NOTCH loss-of-function phenotype, a reduction in the number of muscle progenitors and increased differentiation. Ligand-induced NOTCH activation prevents the reduction of muscle progenitors and the increase of differentiation upon immobilization. Inhibition of NOTCH ligand activity in muscle fibers suffices to reduce the progenitor pool. Furthermore, immobilization reduces the activity of the transcriptional co-activator YAP and the expression of the NOTCH ligand JAG2 in muscle fibers. YAP forced-activity in muscle fibers prevents the decrease of JAG2 expression and the number of PAX7+ cells in immobilization conditions. Our results identify a novel mechanism acting downstream of muscle contraction, where YAP activates JAG2 expression in muscle fibers, which in turn regulates the pool of fetal muscle progenitors via NOTCH in a non-cell-autonomous manner. DOI: http://dx.doi.org/10.7554/eLife.15593.001 PMID:27554485

  8. The nuclear orphan receptor COUP-TFII is required for limb and skeletal muscle development.

    PubMed

    Lee, Christopher T; Li, Luoping; Takamoto, Norio; Martin, James F; Demayo, Francesco J; Tsai, Ming-Jer; Tsai, Sophia Y

    2004-12-01

    The nuclear orphan receptor COUP-TFII is widely expressed in multiple tissues and organs throughout embryonic development, suggesting that COUP-TFII is involved in multiple aspects of embryogenesis. Because of the early embryonic lethality of COUP-TFII knockout mice, the role of COUP-TFII during limb development has not been determined. COUP-TFII is expressed in lateral plate mesoderm of the early embryo prior to limb bud formation. In addition, COUP-TFII is also expressed in the somites and skeletal muscle precursors of the limbs. Therefore, in order to study the potential role of COUP-TFII in limb and skeletal muscle development, we bypassed the early embryonic lethality of the COUP-TFII mutant by using two methods. First, embryonic chimera analysis has revealed an obligatory role for COUP-TFII in limb bud outgrowth since mutant cells are unable to contribute to the distally growing limb mesenchyme. Second, we used a conditional-knockout approach to ablate COUP-TFII specifically in the limbs. Loss of COUP-TFII in the limbs leads to hypoplastic skeletal muscle development, as well as shorter limbs. Taken together, our results demonstrate that COUP-TFII plays an early role in limb bud outgrowth but not limb bud initiation. Also, COUP-TFII is required for appropriate development of the skeletal musculature of developing limbs.

  9. A novel isoform of MAP4 organises the paraxial microtubule array required for muscle cell differentiation

    PubMed Central

    Mogessie, Binyam; Roth, Daniel; Rahil, Zainab; Straube, Anne

    2015-01-01

    The microtubule cytoskeleton is critical for muscle cell differentiation and undergoes reorganisation into an array of paraxial microtubules, which serves as template for contractile sarcomere formation. In this study, we identify a previously uncharacterised isoform of microtubule-associated protein MAP4, oMAP4, as a microtubule organising factor that is crucial for myogenesis. We show that oMAP4 is expressed upon muscle cell differentiation and is the only MAP4 isoform essential for normal progression of the myogenic differentiation programme. Depletion of oMAP4 impairs cell elongation and cell–cell fusion. Most notably, oMAP4 is required for paraxial microtubule organisation in muscle cells and prevents dynein- and kinesin-driven microtubule–microtubule sliding. Purified oMAP4 aligns dynamic microtubules into antiparallel bundles that withstand motor forces in vitro. We propose a model in which the cooperation of dynein-mediated microtubule transport and oMAP4-mediated zippering of microtubules drives formation of a paraxial microtubule array that provides critical support for the polarisation and elongation of myotubes. DOI: http://dx.doi.org/10.7554/eLife.05697.001 PMID:25898002

  10. Development of extraocular muscles require early signals from periocular neural crest and the developing eye

    PubMed Central

    Bohnsack, Brenda L.; Gallina, Donika; Thompson, Hannah; Kasprick, Daniel; Lucarelli, Mark J.; Dootz, Gregory; Nelson, Christine; McGonnell, Imelda M.; Kahana, Alon

    2011-01-01

    Purpose Identify and explain morphologic changes of the extraocular muscles (EOMs) in anophthalmic patients. Methods Retrospective chart review of patients with congenital anophthalmia, using MRI and intraoperative findings to characterize EOM morphology. We then employ molecular biology techniques in zebrafish and chick embryos to determine the relationships among the developing eye, periocular neural crest, and EOMs. Results In three human patients with bilateral congenital anophthalmia and preoperative orbital imaging, we observed a spectrum of EOM morphologies ranging from indiscernible muscle tissue to well-formed, organized EOMs. Timing of eye loss in zebrafish and chick embryos correlated with the morphology of EOM organization in the orbit (“eye socket”). In congenitally eyeless Rx3 zebrafish mutants, or following genetic ablation of the cranial neural crest cells, EOMs failed to organize, which was independent of other craniofacial muscle development. Conclusions Orbital development is dependent on interactions between the eye, neural crest, and developing EOMs. Timing of the ocular insult, in relation to neural crest migration and EOM development, is a key determinant of aberrant EOM organization. Additional research will be required to study patients with unilateral and syndromic anophthalmia, and assess for possible differences in clinical outcomes among patients with varied EOM morphology. Clinical relevance The presence and organization of EOMs in anophthalmic sockets may serve as a marker for the timing of genetic or teratogenic insults, improving genetic counseling, and assisting with surgical reconstruction and family counseling efforts. PMID:21482859

  11. Maintenance Energy Requirements of Double-Muscled Belgian Blue Beef Cows.

    PubMed

    Fiems, Leo O; De Boever, Johan L; Vanacker, José M; De Campeneere, Sam

    2015-02-13

    Sixty non-pregnant, non-lactating double-muscled Belgian Blue (DMBB) cows were used to estimate the energy required to maintain body weight (BW). They were fed one of three energy levels for 112 or 140 days, corresponding to approximately 100%, 80% or 70% of their total energy requirements. The relationship between daily energy intake and BW and daily BW change was developed using regression analysis. Maintenance energy requirements were estimated from the regression equation by setting BW gain to zero. Metabolizable and net energy for maintenance amounted to 0.569 ± 0.001 and 0.332 ± 0.001 MJ per kg BW(0.75)/d, respectively. Maintenance energy requirements were not dependent on energy level (p > 0.10). Parity affected maintenance energy requirements (p < 0.001), although the small numerical differences between parities may hardly be nutritionally relevant. Maintenance energy requirements of DMBB beef cows were close to the mean energy requirements of other beef genotypes reported in the literature.

  12. CAS-1, a C. elegans cyclase-associated protein, is required for sarcomeric actin assembly in striated muscle.

    PubMed

    Nomura, Kazumi; Ono, Kanako; Ono, Shoichiro

    2012-09-01

    Assembly of contractile apparatuses in striated muscle requires precisely regulated reorganization of the actin cytoskeletal proteins into sarcomeric organization. Regulation of actin filament dynamics is one of the essential processes of myofibril assembly, but the mechanism of actin regulation in striated muscle is not clearly understood. Actin depolymerizing factor (ADF)/cofilin is a key enhancer of actin filament dynamics in striated muscle in both vertebrates and nematodes. Here, we report that CAS-1, a cyclase-associated protein in Caenorhabditis elegans, promotes ADF/cofilin-dependent actin filament turnover in vitro and is required for sarcomeric actin organization in striated muscle. CAS-1 is predominantly expressed in striated muscle from embryos to adults. In vitro, CAS-1 binds to actin monomers and enhances exchange of actin-bound ATP/ADP even in the presence of UNC-60B, a muscle-specific ADF/cofilin that inhibits the nucleotide exchange. As a result, CAS-1 and UNC-60B cooperatively enhance actin filament turnover. The two proteins also cooperate to shorten actin filaments. A cas-1 mutation is homozygous lethal with defects in sarcomeric actin organization. cas-1-mutant embryos and worms have aggregates of actin in muscle cells, and UNC-60B is mislocalized to the aggregates. These results provide genetic and biochemical evidence that cyclase-associated protein is a critical regulator of sarcomeric actin organization in striated muscle.

  13. Bidirectional signaling between calcium channels of skeletal muscle requires multiple direct and indirect interactions

    PubMed Central

    Sheridan, David C.; Takekura, Hiroaki; Franzini-Armstrong, Clara; Beam, Kurt G.; Allen, Paul D.; Perez, Claudio F.

    2006-01-01

    We have defined regions of the skeletal muscle ryanodine receptor (RyR1) essential for bidirectional signaling with dihydropyridine receptors (DHPRs) and for the organization of DHPR into tetrad arrays by expressing RyR1–RyR3 chimerae in dyspedic myotubes. RyR1–RyR3 constructs bearing RyR1 residues 1–1681 restored wild-type DHPR tetrad arrays and, in part, skeletal-type excitation–contraction (EC) coupling (orthograde signaling) but failed to enhance DHPR Ca2+ currents (retrograde signaling) to WT RyR1 levels. Within this region, the D2 domain (amino acids 1272–1455), although ineffective on its own, dramatically enhanced the formation of tetrads and EC coupling rescue by constructs that otherwise are only partially effective. These findings suggest that the orthograde signal and DHPR tetrad formation require the contributions of numerous RyR regions. Surprisingly, we found that RyR3, although incapable of supporting EC coupling or tetrad formation, restored a significant level of Ca2+ current, revealing a functional interaction with the skeletal muscle DHPR. Thus, our data support the hypotheses that (i) the structural/functional link between RyR1 and the skeletal muscle DHPR requires multiple interacting regions, (ii) the D2 domain of RyR1 plays a key role in stabilizing this interaction, and (iii) a form of retrograde signaling from RyR3 to the DHPR occurs in the absence of direct protein–protein interactions. PMID:17172444

  14. Fine regulation of RhoA and Rock is required for skeletal muscle differentiation.

    PubMed

    Castellani, Loriana; Salvati, Erica; Alemà, Stefano; Falcone, Germana

    2006-06-02

    The RhoA GTPase controls a variety of cell functions such as cell motility, cell growth, and gene expression. Previous studies suggested that RhoA mediates signaling inputs that promote skeletal myogenic differentiation. We show here that levels and activity of RhoA protein are down-regulated in both primary avian myoblasts and mouse satellite cells undergoing differentiation, suggesting that a fine regulation of this GTPase is required. In addition, ectopic expression of activated RhoA in primary quail myocytes, but not in mouse myocytes, inhibits accumulation of muscle-specific proteins and cell fusion. By disrupting RhoA signaling with specific inhibitors, we have shown that this GTPase, although required for cell identity in proliferating myoblasts, is not essential for commitment to terminal differentiation and muscle gene expression. Ectopic expression of an activated form of its downstream effector, Rock, impairs differentiation of both avian and mouse myoblasts. Conversely, Rock inhibition with specific inhibitors and small interfering RNA-mediated gene silencing leads to accelerated progression in the lineage and enhanced cell fusion, underscoring a negative regulatory function of Rock in myogenesis. Finally, we have reported that Rock acts independently from RhoA in preventing myoblast exit from the cell cycle and commitment to differentiation and may receive signaling inputs from Raf-1 kinase.

  15. Myocardin is required for maintenance of vascular and visceral smooth muscle homeostasis during postnatal development.

    PubMed

    Huang, Jianhe; Wang, Tao; Wright, Alexander C; Yang, Jifu; Zhou, Su; Li, Li; Yang, Jisheng; Small, Aeron; Parmacek, Michael S

    2015-04-07

    Myocardin is a muscle-restricted transcriptional coactivator that activates a serum response factor (SRF)-dependent gene program required for cardiogenesis and embryonic survival. To identify myocardin-dependent functions in smooth muscle cells (SMCs) during postnatal development, mice harboring a SMC-restricted conditional, inducible Myocd null mutation were generated and characterized. Tamoxifen-treated SMMHC-Cre(ERT2)/Myocd(F/F) conditional mutant mice die within 6 mo of Myocd gene deletion, exhibiting profound derangements in the structure of great arteries as well as the gastrointestinal and genitourinary tracts. Conditional mutant mice develop arterial aneurysms, dissection, and rupture, recapitulating pathology observed in heritable forms of thoracic aortic aneurysm and dissection (TAAD). SMCs populating arteries of Myocd conditional mutant mice modulate their phenotype by down-regulation of SMC contractile genes and up-regulation of extracellular matrix proteins. Surprisingly, this is accompanied by SMC autonomous activation of endoplasmic reticulum (ER) stress and autophagy, which over time progress to programmed cell death. Consistent with these observations, Myocd conditional mutant mice develop remarkable dilation of the stomach, small intestine, bladder, and ureters attributable to the loss of visceral SMCs disrupting the muscularis mucosa. Taken together, these data demonstrate that during postnatal development, myocardin plays a unique, and important, role required for maintenance and homeostasis of the vasculature, gastrointestinal, and genitourinary tracts. The loss of myocardin in SMCs triggers ER stress and autophagy, which transitions to apoptosis, revealing evolutionary conservation of myocardin function in SMCs and cardiomyocytes.

  16. Smad2/3 Proteins Are Required for Immobilization-induced Skeletal Muscle Atrophy.

    PubMed

    Tando, Toshimi; Hirayama, Akiyoshi; Furukawa, Mitsuru; Sato, Yuiko; Kobayashi, Tami; Funayama, Atsushi; Kanaji, Arihiko; Hao, Wu; Watanabe, Ryuichi; Morita, Mayu; Oike, Takatsugu; Miyamoto, Kana; Soga, Tomoyoshi; Nomura, Masatoshi; Yoshimura, Akihiko; Tomita, Masaru; Matsumoto, Morio; Nakamura, Masaya; Toyama, Yoshiaki; Miyamoto, Takeshi

    2016-06-03

    Skeletal muscle atrophy promotes muscle weakness, limiting activities of daily living. However, mechanisms underlying atrophy remain unclear. Here, we show that skeletal muscle immobilization elevates Smad2/3 protein but not mRNA levels in muscle, promoting atrophy. Furthermore, we demonstrate that myostatin, which negatively regulates muscle hypertrophy, is dispensable for denervation-induced muscle atrophy and Smad2/3 protein accumulation. Moreover, muscle-specific Smad2/3-deficient mice exhibited significant resistance to denervation-induced muscle atrophy. In addition, expression of the atrogenes Atrogin-1 and MuRF1, which underlie muscle atrophy, did not increase in muscles of Smad2/3-deficient mice following denervation. We also demonstrate that serum starvation promotes Smad2/3 protein accumulation in C2C12 myogenic cells, an in vitro muscle atrophy model, an effect inhibited by IGF1 treatment. In vivo, we observed IGF1 receptor deactivation in immobilized muscle, even in the presence of normal levels of circulating IGF1. Denervation-induced muscle atrophy was accompanied by reduced glucose intake and elevated levels of branched-chain amino acids, effects that were Smad2/3-dependent. Thus, muscle immobilization attenuates IGF1 signals at the receptor rather than the ligand level, leading to Smad2/3 protein accumulation, muscle atrophy, and accompanying metabolic changes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Smad2/3 Proteins Are Required for Immobilization-induced Skeletal Muscle Atrophy*

    PubMed Central

    Tando, Toshimi; Hirayama, Akiyoshi; Furukawa, Mitsuru; Sato, Yuiko; Kobayashi, Tami; Funayama, Atsushi; Kanaji, Arihiko; Hao, Wu; Watanabe, Ryuichi; Morita, Mayu; Oike, Takatsugu; Miyamoto, Kana; Soga, Tomoyoshi; Nomura, Masatoshi; Yoshimura, Akihiko; Tomita, Masaru; Matsumoto, Morio; Nakamura, Masaya; Toyama, Yoshiaki; Miyamoto, Takeshi

    2016-01-01

    Skeletal muscle atrophy promotes muscle weakness, limiting activities of daily living. However, mechanisms underlying atrophy remain unclear. Here, we show that skeletal muscle immobilization elevates Smad2/3 protein but not mRNA levels in muscle, promoting atrophy. Furthermore, we demonstrate that myostatin, which negatively regulates muscle hypertrophy, is dispensable for denervation-induced muscle atrophy and Smad2/3 protein accumulation. Moreover, muscle-specific Smad2/3-deficient mice exhibited significant resistance to denervation-induced muscle atrophy. In addition, expression of the atrogenes Atrogin-1 and MuRF1, which underlie muscle atrophy, did not increase in muscles of Smad2/3-deficient mice following denervation. We also demonstrate that serum starvation promotes Smad2/3 protein accumulation in C2C12 myogenic cells, an in vitro muscle atrophy model, an effect inhibited by IGF1 treatment. In vivo, we observed IGF1 receptor deactivation in immobilized muscle, even in the presence of normal levels of circulating IGF1. Denervation-induced muscle atrophy was accompanied by reduced glucose intake and elevated levels of branched-chain amino acids, effects that were Smad2/3-dependent. Thus, muscle immobilization attenuates IGF1 signals at the receptor rather than the ligand level, leading to Smad2/3 protein accumulation, muscle atrophy, and accompanying metabolic changes. PMID:27129272

  18. Development of a subset of forelimb muscles and their attachment sites requires the ulnar-mammary syndrome gene Tbx3

    PubMed Central

    Colasanto, Mary P.; Eyal, Shai; Mohassel, Payam; Bamshad, Michael; Bonnemann, Carsten G.; Zelzer, Elazar; Moon, Anne M.

    2016-01-01

    ABSTRACT In the vertebrate limb over 40 muscles are arranged in a precise pattern of attachment via muscle connective tissue and tendon to bone and provide an extensive range of motion. How the development of somite-derived muscle is coordinated with the development of lateral plate-derived muscle connective tissue, tendon and bone to assemble a functional limb musculoskeletal system is a long-standing question. Mutations in the T-box transcription factor, TBX3, have previously been identified as the genetic cause of ulnar-mammary syndrome (UMS), characterized by distinctive defects in posterior forelimb bones. Using conditional mutagenesis in mice, we now show that TBX3 has a broader role in limb musculoskeletal development. TBX3 is not only required for development of posterior forelimb bones (ulna and digits 4 and 5), but also for a subset of posterior muscles (lateral triceps and brachialis) and their bone eminence attachment sites. TBX3 specification of origin and insertion sites appears to be tightly linked with whether these particular muscles develop and may represent a newly discovered mechanism for specification of anatomical muscles. Re-examination of an individual with UMS reveals similar previously unrecognized muscle and bone eminence defects and indicates a conserved role for TBX3 in regulating musculoskeletal development. PMID:27491074

  19. Tbx4 and Tbx5 acting in connective tissue are required for limb muscle and tendon patterning

    PubMed Central

    Hasson, Peleg; DeLaurier, April; Bennett, Michael; Grigorieva, Elena; Naiche, L. A.; Papaioannou, Virginia E.; Mohun, Timothy J.; Logan, Malcolm P.O.

    2010-01-01

    Summary Proper functioning of the musculo-skeletal system requires the precise integration of bones, muscles and tendons. Complex morphogenetic events ensure that these elements are linked together in the appropriate 3D configuration. It has been difficult, however, to tease apart the mechanisms that regulate tissue morphogenesis. We find that deletion of Tbx5 in forelimb (or Tbx4 in hindlimbs) specifically affects muscle and tendon patterning without disrupting skeletal development thus suggesting that distinct cues regulate these processes. We identify muscle connective tissue as the site of action of these transcription factors and show that N-Cadherin and β-Catenin are key downstream effectors acting in muscle connective tissue regulating soft-tissue morphogenesis. In humans, TBX5 mutations lead to Holt-Oram syndrome, which is characterised by forelimb musculo-skeletal defects. Our results suggest that a focus on connective tissue is required to understand the aetiology of diseases affecting soft tissue formation. PMID:20152185

  20. Establishment of the Muscle-Tendon Junction During Thorax Morphogenesis in Drosophila Requires the Rho-Kinase.

    PubMed

    Vega-Macaya, Franco; Manieu, Catalina; Valdivia, Mauricio; Mlodzik, Marek; Olguín, Patricio

    2016-11-01

    The assembly of the musculoskeletal system in Drosophila relies on the integration of chemical and mechanical signaling between the developing muscles with ectodermal cells specialized as "tendon cells." Mechanical tension generated at the junction of flight muscles and tendon cells of the notum epithelium is required for muscle morphogenesis, and is balanced by the epithelium in order to not deform. We report that Drosophila Rho kinase (DRok) is necessary in tendon cells to assemble stable myotendinous junctions (MTJ), which are required for muscle morphogenesis and survival. In addition, DRok is required in tendon cells to maintain epithelial shape and cell orientation in the notum, independently of chascon (chas). Loss of DRok function in tendon cells results in mis-orientation of tendon cell extensions and abnormal accumulation of Thrombospondin and βPS-integrin, which may cause abnormal myotendinous junction formation and muscle morphogenesis. This role does not depend exclusively on nonmuscular Myosin-II activation (Myo-II), indicating that other DRok targets are key in this process. We propose that DRok function in tendon cells is key to promote the establishment of MTJ attachment and to balance mechanical tension generated at the MTJ by muscle compaction. Copyright © 2016 by the Genetics Society of America.

  1. The integrin-adhesome is required to maintain muscle structure, mitochondrial ATP production, and movement forces in Caenorhabditis elegans.

    PubMed

    Etheridge, Timothy; Rahman, Mizanur; Gaffney, Christopher J; Shaw, Debra; Shephard, Freya; Magudia, Jignesh; Solomon, Deepak E; Milne, Thomas; Blawzdziewicz, Jerzy; Constantin-Teodosiu, Dumitru; Greenhaff, Paul L; Vanapalli, Siva A; Szewczyk, Nathaniel J

    2015-04-01

    The integrin-adhesome network, which contains >150 proteins, is mechano-transducing and located at discreet positions along the cell-cell and cell-extracellular matrix interface. A small subset of the integrin-adhesome is known to maintain normal muscle morphology. However, the importance of the entire adhesome for muscle structure and function is unknown. We used RNA interference to knock down 113 putative Caenorhabditis elegans homologs constituting most of the mammalian adhesome and 48 proteins known to localize to attachment sites in C. elegans muscle. In both cases, we found >90% of components were required for normal muscle mitochondrial structure and/or proteostasis vs. empty vector controls. Approximately half of these, mainly proteins that physically interact with each other, were also required for normal sarcomere and/or adhesome structure. Next we confirmed that the dystrophy observed in adhesome mutants associates with impaired maximal mitochondrial ATP production (P < 0.01), as well as reduced probability distribution of muscle movement forces compared with wild-type animals. Our results show that the integrin-adhesome network as a whole is required for maintaining both muscle structure and function and extend the current understanding of the full complexities of the functional adhesome in vivo. © The Author(s).

  2. Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle.

    PubMed

    Jurynec, Michael J; Xia, Ruohong; Mackrill, John J; Gunther, Derrick; Crawford, Thomas; Flanigan, Kevin M; Abramson, Jonathan J; Howard, Michael T; Grunwald, David Jonah

    2008-08-26

    Mutations affecting the seemingly unrelated gene products, SepN1, a selenoprotein of unknown function, and RyR1, the major component of the ryanodine receptor intracellular calcium release channel, result in an overlapping spectrum of congenital myopathies. To identify the immediate developmental and molecular roles of SepN and RyR in vivo, loss-of-function effects were analyzed in the zebrafish embryo. These studies demonstrate the two proteins are required for the same cellular differentiation events and are needed for normal calcium fluxes in the embryo. SepN is physically associated with RyRs and functions as a modifier of the RyR channel. In the absence of SepN, ryanodine receptors from zebrafish embryos or human diseased muscle have altered biochemical properties and have lost their normal sensitivity to redox conditions, which likely accounts for why mutations affecting either factor lead to similar diseases.

  3. Chest Press Exercises With Different Stability Requirements Result in Similar Muscle Damage Recovery in Resistance-Trained Men.

    PubMed

    Ferreira, Diogo V; Ferreira-Júnior, João B; Soares, Saulo R S; Cadore, Eduardo L; Izquierdo, Mikel; Brown, Lee E; Bottaro, Martim

    2017-01-01

    Ferreira, DV, Ferreira-Júnior, JB, Soares, SRS, Cadore, EL, Izquierdo, M, Brown, LE, and Bottaro, M. Chest press exercises with different stability requirements result in similar muscle damage recovery in resistance trained men. J Strength Cond Res 31(1): 71-79, 2017-This study investigated the time course of 96 hours of muscle recovery after 3 different chest press exercises with different stability requirements in resistance-trained men. Twenty-seven men (23.5 ± 3.8 years) were randomly assigned to one of the 3 groups: (a) Smith machine bench press; (b) barbell bench press; or (c) dumbbell bench press. Participants performed 8 sets of 10 repetition maximum with 2 minutes rest between sets. Muscle thickness, peak torque (PT), and soreness were measured pre, post, 24, 48, 72, and 96 hours after exercise. There were no differences in the time course of PT or muscle thickness values of the pectoralis major (p = 0.98 and p = 0.91, respectively) or elbow extensors (p = 0.07 and p = 0.86, respectively) between groups. Muscle soreness of the pectoralis major was also not different between groups (p > 0.05). However, the Smith machine and barbell groups recovered from triceps brachii muscle soreness by 72 hours after exercise (p > 0.05), whereas the dumbbell group did not present any triceps brachii muscle soreness after exercise (p > 0.05). In conclusion, resistance-trained men experience similar muscle damage recovery after Smith machine, barbell, and dumbbell chest press exercise. However, muscle soreness of the elbow extensors takes a longer time to recover after using a barbell chest press exercise.

  4. Grb2-associated binder-1 is required for extrafusal and intrafusal muscle fiber development.

    PubMed

    Park, So Y; Jang, So Y; Shin, Yoon K; Yoon, Byeol A; Lee, Hye J; Park, Hwan T

    2017-07-05

    The neuregulin-1 (NRG1) signaling pathway plays an important role in the development of the peripheral neuromuscular system, including in muscle spindle and postnatal myelination. We previously showed that NRG1 on the axonal membrane regulates peripheral nerve myelination through Grb2-associated binder 1 (Gab1), a scaffolding mediator of receptor tyrosine kinase signaling. Here, we determined the role of Gab1 in the development of muscles and the muscle spindle using muscle-specific conditional Gab1 knockout mice. The mutant mice showed general retardation in muscular growth and hypotrophy of extrafusal muscle fibers. In addition, the muscle-specific Gab1 knockout mutant exhibited significant underdevelopment of muscle spindles, which are normally regulated by NRG1, and abnormal proprioceptive behavior. Furthermore, the selective knockdown of Gab1 in C2C12 muscle cells reduced NRG1-induced expression of Egr3, a critical transcription factor for muscle spindle development. However, Gab2 knockout mice did not show any defects in the development of muscles or muscle spindles. Our findings suggest that Gab1 is an essential signaling molecule in mediating axonal NRG1 signaling for the development of both extrafusal and intrafusal muscle fibers.

  5. Extensive alternative splicing transitions during postnatal skeletal muscle development are required for calcium handling functions

    PubMed Central

    Brinegar, Amy E; Xia, Zheng; Loehr, James Anthony; Li, Wei; Rodney, George Gerald

    2017-01-01

    Postnatal development of skeletal muscle is a highly dynamic period of tissue remodeling. Here, we used RNA-seq to identify transcriptome changes from late embryonic to adult mouse muscle and demonstrate that alternative splicing developmental transitions impact muscle physiology. The first 2 weeks after birth are particularly dynamic for differential gene expression and alternative splicing transitions, and calcium-handling functions are significantly enriched among genes that undergo alternative splicing. We focused on the postnatal splicing transitions of the three calcineurin A genes, calcium-dependent phosphatases that regulate multiple aspects of muscle biology. Redirected splicing of calcineurin A to the fetal isoforms in adult muscle and in differentiated C2C12 slows the timing of muscle relaxation, promotes nuclear localization of calcineurin target Nfatc3, and/or affects expression of Nfatc transcription targets. The results demonstrate a previously unknown specificity of calcineurin isoforms as well as the broader impact of alternative splicing during muscle postnatal development. PMID:28826478

  6. Extensive alternative splicing transitions during postnatal skeletal muscle development are required for calcium handling functions.

    PubMed

    Brinegar, Amy E; Xia, Zheng; Loehr, James Anthony; Li, Wei; Rodney, George Gerald; Cooper, Thomas A

    2017-08-11

    Postnatal development of skeletal muscle is a highly dynamic period of tissue remodeling. Here, we used RNA-seq to identify transcriptome changes from late embryonic to adult mouse muscle and demonstrate that alternative splicing developmental transitions impact muscle physiology. The first 2 weeks after birth are particularly dynamic for differential gene expression and alternative splicing transitions, and calcium-handling functions are significantly enriched among genes that undergo alternative splicing. We focused on the postnatal splicing transitions of the three calcineurin A genes, calcium-dependent phosphatases that regulate multiple aspects of muscle biology. Redirected splicing of calcineurin A to the fetal isoforms in adult muscle and in differentiated C2C12 slows the timing of muscle relaxation, promotes nuclear localization of calcineurin target Nfatc3, and/or affects expression of Nfatc transcription targets. The results demonstrate a previously unknown specificity of calcineurin isoforms as well as the broader impact of alternative splicing during muscle postnatal development.

  7. Role of Subscapularis Repair on Muscle Force Requirements with Reverse Shoulder Arthroplasty.

    PubMed

    Hansen, Matthew L; Nayak, Aniruddh; Narayanan, Madusudanan Sathia; Worhacz, Kellen; Stowell, Richard; Jacofsky, Marc C; Roche, Christopher P

    2015-12-01

    Concomitant repair of the subscapularis with reverse shoulder arthroplasty (rTSA) is controversial. To evaluate the biomechanical impact of subscapularis repair with rTSA, a cadaveric shoulder controller quantified the muscle forces required to elevate the arm during scapular abduction with the elbow flexed at 90°. The results of this study demonstrate that concomitant subscapularis repair with rTSA creates a biomechanically unfavorable condition during arm elevation. Specifically, repair of the subscapularis significantly increased the force required by the deltoid and posterior rotator cuff and also significantly increased the joint reaction force relative to when the subscapularis was not repaired. These results also demonstrated that both the 42 mm Grammont and 42 mm Equinoxe® rTSA prostheses significantly decreased the mean force required by the posterior rotator cuff and also significantly decreased the mean joint reaction force over the range of motion relative to the native joint with a rotator cuff tear (supraspinatus). As the posterior rotator cuff is often compromised in patients undergoing rTSA, patients may not be able to sustain these elevated forces in the infraspinatus and teres minor required to counteract the adduction and internal rotation moments generated by the subscapularis during activities of daily living. Similarly, the elevated posterior deltoid force and joint reaction loads could be deleterious to the long-term life of the prosthesis and can also increase the risk of loosening and fractures. For all these reasons, rTSA functional outcomes may be compromised if the subscapularis is repaired.

  8. ANG II is required for optimal overload-induced skeletal muscle hypertrophy

    NASA Technical Reports Server (NTRS)

    Gordon, S. E.; Davis, B. S.; Carlson, C. J.; Booth, F. W.

    2001-01-01

    ANG II mediates the hypertrophic response of overloaded cardiac muscle, likely via the ANG II type 1 (AT(1)) receptor. To examine the potential role of ANG II in overload-induced skeletal muscle hypertrophy, plantaris and/or soleus muscle overload was produced in female Sprague-Dawley rats (225-250 g) by the bilateral surgical ablation of either the synergistic gastrocnemius muscle (experiment 1) or both the gastrocnemius and plantaris muscles (experiment 2). In experiment 1 (n = 10/group), inhibiting endogenous ANG II production by oral administration of an angiotensin-converting enzyme (ACE) inhibitor during a 28-day overloading protocol attenuated plantaris and soleus muscle hypertrophy by 57 and 96%, respectively (as measured by total muscle protein content). ACE inhibition had no effect on nonoverloaded (sham-operated) muscles. With the use of new animals (experiment 2; n = 8/group), locally perfusing overloaded soleus muscles with exogenous ANG II (via osmotic pump) rescued the lost hypertrophic response in ACE-inhibited animals by 71%. Furthermore, orally administering an AT(1) receptor antagonist instead of an ACE inhibitor produced a 48% attenuation of overload-induced hypertrophy that could not be rescued by ANG II perfusion. Thus ANG II may be necessary for optimal overload-induced skeletal muscle hypertrophy, acting at least in part via an AT(1) receptor-dependent pathway.

  9. ANG II is required for optimal overload-induced skeletal muscle hypertrophy

    NASA Technical Reports Server (NTRS)

    Gordon, S. E.; Davis, B. S.; Carlson, C. J.; Booth, F. W.

    2001-01-01

    ANG II mediates the hypertrophic response of overloaded cardiac muscle, likely via the ANG II type 1 (AT(1)) receptor. To examine the potential role of ANG II in overload-induced skeletal muscle hypertrophy, plantaris and/or soleus muscle overload was produced in female Sprague-Dawley rats (225-250 g) by the bilateral surgical ablation of either the synergistic gastrocnemius muscle (experiment 1) or both the gastrocnemius and plantaris muscles (experiment 2). In experiment 1 (n = 10/group), inhibiting endogenous ANG II production by oral administration of an angiotensin-converting enzyme (ACE) inhibitor during a 28-day overloading protocol attenuated plantaris and soleus muscle hypertrophy by 57 and 96%, respectively (as measured by total muscle protein content). ACE inhibition had no effect on nonoverloaded (sham-operated) muscles. With the use of new animals (experiment 2; n = 8/group), locally perfusing overloaded soleus muscles with exogenous ANG II (via osmotic pump) rescued the lost hypertrophic response in ACE-inhibited animals by 71%. Furthermore, orally administering an AT(1) receptor antagonist instead of an ACE inhibitor produced a 48% attenuation of overload-induced hypertrophy that could not be rescued by ANG II perfusion. Thus ANG II may be necessary for optimal overload-induced skeletal muscle hypertrophy, acting at least in part via an AT(1) receptor-dependent pathway.

  10. Smooth muscle cell recruitment to lymphatic vessels requires PDGFB and impacts vessel size but not identity.

    PubMed

    Wang, Yixin; Jin, Yi; Mäe, Maarja Andaloussi; Zhang, Yang; Ortsäter, Henrik; Betsholtz, Christer; Mäkinen, Taija; Jakobsson, Lars

    2017-08-29

    Tissue-fluid drains through blind-ended lymphatic capillaries, via smooth muscle cell (SMC)-covered collecting vessels into venous circulation. Both defective SMC recruitment to collecting vessels and ectopic recruitment to lymphatic capillaries are thought to contribute to vessel failure, leading to lymphedema. However, mechanisms controlling lymphatic SMC recruitment and their role in vessel maturation are unknown. Here we demonstrate that platelet-derived growth factor B (PDGFB) regulates lymphatic SMC recruitment in multiple vascular beds. PDGFB is selectively expressed by lymphatic endothelial cells (LECs) of collecting vessels. LEC-specific deletion of Pdgfb prevented SMC recruitment causing dilation and failure of pulsatile contraction of collecting vessels. However, vessel remodelling and identity were unaffected. Unexpectedly, PDGFB overexpression in LECs did not induce SMC recruitment to capillaries. This was explained by the demonstrated requirement of PDGFB extracellular matrix (ECM) retention for lymphatic SMC recruitment, and low presence of PDGFB-binding ECM components around lymphatic capillaries. These results demonstrate a requirement of LEC-autonomous PDGFB expression and retention for SMC recruitment to lymphatic vessels and suggest an ECM-controlled checkpoint preventing SMC investment of capillaries, which is a common feature in lymphedematous skin. © 2017. Published by The Company of Biologists Ltd.

  11. Runx1 Transcription Factor Is Required for Myoblasts Proliferation during Muscle Regeneration

    PubMed Central

    Umansky, Kfir Baruch; Gruenbaum-Cohen, Yael; Tsoory, Michael; Feldmesser, Ester; Goldenberg, Dalia; Brenner, Ori; Groner, Yoram

    2015-01-01

    Following myonecrosis, muscle satellite cells proliferate, differentiate and fuse, creating new myofibers. The Runx1 transcription factor is not expressed in naïve developing muscle or in adult muscle tissue. However, it is highly expressed in muscles exposed to myopathic damage yet, the role of Runx1 in muscle regeneration is completely unknown. Our study of Runx1 function in the muscle’s response to myonecrosis reveals that this transcription factor is activated and cooperates with the MyoD and AP-1/c-Jun transcription factors to drive the transcription program of muscle regeneration. Mice lacking dystrophin and muscle Runx1 (mdx - /Runx1 f/f), exhibit impaired muscle regeneration leading to age-dependent muscle waste, gradual decrease in motor capabilities and a shortened lifespan. Runx1-deficient primary myoblasts are arrested at cell cycle G1 and consequently differentiate. Such premature differentiation disrupts the myoblasts’ normal proliferation/differentiation balance, reduces the number and size of regenerating myofibers and impairs muscle regeneration. Our combined Runx1-dependent gene expression, ChIP-seq, ATAC-seq and histone H3K4me1/H3K27ac modification analyses revealed a subset of Runx1-regulated genes that are co-occupied by MyoD and c-Jun in mdx - /Runx1 f/f muscle. The data provide unique insights into the transcriptional program driving muscle regeneration and implicate Runx1 as an important participant in the pathology of muscle wasting diseases. PMID:26275053

  12. The ChIP-seq-Defined Networks of Bcl-3 Gene Binding Support Its Required Role in Skeletal Muscle Atrophy

    PubMed Central

    Jackman, Robert W.; Wu, Chia-Ling; Kandarian, Susan C.

    2012-01-01

    NF-kappaB transcriptional activation is required for skeletal muscle disuse atrophy. We are continuing to study how the activation of NF-kB regulates the genes that encode the protein products that cause atrophy. Using ChIP-sequencing we found that Bcl-3, an NF-kB transcriptional activator required for atrophy, binds to the promoters of a number of genes whose collective function describes two major aspects of muscle wasting. By means of bioinformatics analysis of ChIP-sequencing data we found Bcl-3 to be directing transcription networks of proteolysis and energy metabolism. The proteolytic arm of the Bcl-3 networks includes many E3 ligases associated with proteasomal protein degradation, including that of the N-end rule pathway. The metabolic arm appears to be involved in organizing the change from oxidative phosphorylation to glycolysis in atrophying muscle. For one gene, MuRF1, ChIP-sequencing data identified the location of Bcl-3 and p50 binding in the promoter region which directed the creation of deletant and base-substitution mutations of MuRF1 promoter constructs to determine the effect on gene transcription. The results provide the first direct confirmation that the NF-kB binding site is involved in the muscle unloading regulation of MuRF1. Finally, we have combined the ChIP-sequencing results with gene expression microarray data from unloaded muscle to map several direct targets of Bcl-3 that are transcription factors whose own targets describe a set of indirect targets for NF-kB in atrophy. ChIP-sequencing provides the first molecular explanation for the finding that Bcl3 knockout mice are resistant to disuse muscle atrophy. Mapping the transcriptional regulation of muscle atrophy requires an unbiased analysis of the whole genome, which we show is now possible with ChIP-sequencing. PMID:23251550

  13. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading

    PubMed Central

    ZHANG, Zong-Kang; LI, Jie; LIU, Jin; GUO, Baosheng; LEUNG, Albert; ZHANG, Ge; ZHANG, Bao-Ting

    2016-01-01

    Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment could significantly attenuate the decreases in the phosphorylation level of PI3K at p110 catalytic subunit and its downstream markers related to protein synthesis, and inhibit the increases in protein degradation markers at mRNA and protein levels in rat soleus muscle following 28-day hindlimb unloading. In addition, the decreases in soleus muscle mass, muscle fiber cross-sectional area, twitch force, specific force, contraction time and half relaxation time could be significantly attenuated by the high dose ICT treatment. The low dose ICT treatment could moderately attenuate the above changes induced by unloading. Wortmannin, a specific inhibitor of PI3K at p110 catalytic subunit, could abolish the above effects of ICT in vitro and in vivo, indicating that PI3K/Akt signaling could be required by ICT to counteract skeletal muscle atrophy following mechanical unloading. PMID:26831566

  14. The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and skeletal muscle development

    PubMed Central

    Kirchmaier, Bettina C.; Poon, Kar Lai; Schwerte, Thorsten; Huisken, Jan; Winkler, Christoph; Jungblut, Benno; Stainier, Didier Y.; Brand, Thomas

    2013-01-01

    The Popeye domain containing (Popdc) genes encode a family of transmembrane proteins with an evolutionary conserved Popeye domain. These genes are abundantly expressed in striated muscle tissue, however their function is not well understood. In this study we have investigated the role of the popdc2 gene in zebrafish. Popdc2 transcripts were detected in the embryonic myocardium and transiently in the craniofacial and tail musculature. Morpholino oligonucleotide-mediated knockdown of popdc2 resulted in aberrant development of skeletal muscle and heart. Muscle segments in the trunk were irregularly shaped and craniofacial muscles were severely reduced or even missing. In the heart, pericardial edema was prevalent in the morphants and heart chambers were elongated and looping was abnormal. These pathologies in muscle and heart were alleviated after reducing the morpholino concentration. However the heart still was abnormal displaying cardiac arrhythmia at later stages of development. Optical recordings of cardiac contractility revealed irregular ventricular contractions with a 2:1, or 3:1 atrial/ventricular conduction ratio, which caused a significant reduction in heart frequency. Recordings of calcium transients with high spatiotemporal resolution using a transgenic calcium indicator line (Tg(cmlc2:gCaMP)s878) and SPIM microscopy confirmed the presence of a severe arrhythmia phenotype. Our results identify popdc2 as a gene important for striated muscle differentiation and cardiac morphogenesis. In addition it is required for the development of the cardiac conduction system. PMID:22290329

  15. Phospholemman is not required for the acute stimulation of Na+-K+-ATPase α2-activity during skeletal muscle fatigue

    PubMed Central

    Manoharan, Palanikumar; Radzyukevich, Tatiana L.; Hakim Javadi, Hesamedin; Stiner, Cory A.; Landero Figueroa, Julio A.; Lingrel, Jerry B

    2015-01-01

    The Na+-K+-ATPase α2-isoform in skeletal muscle is rapidly stimulated during muscle use and plays a critical role in fatigue resistance. The acute mechanisms that stimulate α2-activity are not completely known. This study examines whether phosphorylation of phospholemman (PLM/FXYD1), a regulatory subunit of Na+-K+-ATPase, plays a role in the acute stimulation of α2 in working muscles. Mice lacking PLM (PLM KO) have a normal content of the α2-subunit and show normal exercise capacity, in contrast to the greatly reduced exercise capacity of mice that lack α2 in the skeletal muscles. Nerve-evoked contractions in vivo did not induce a change in total PLM or PLM phosphorylated at Ser63 or Ser68, in either WT or PLM KO. Isolated muscles of PLM KO mice maintain contraction and resist fatigue as well as wild type (WT). Rb+ transport by the α2-Na+-K+-ATPase is stimulated to the same extent in contracting WT and contracting PLM KO muscles. Phosphorylation of sarcolemmal membranes prepared from WT but not PLM KO skeletal muscles stimulates the activity of both α1 and α2 in a PLM-dependent manner. The stimulation occurs by an increase in Na+ affinity without significant change in Vmax and is more effective for α1 than α2. These results demonstrate that phosphorylation of PLM is capable of stimulating the activity of both isozymes in skeletal muscle; however, contractile activity alone is not sufficient to induce PLM phosphorylation. Importantly, acute stimulation of α2, sufficient to support exercise and oppose fatigue, does not require PLM or its phosphorylation. PMID:26468207

  16. Membrane damage-induced vesicle–vesicle fusion of dysferlin-containing vesicles in muscle cells requires microtubules and kinesin

    PubMed Central

    McDade, Joel R.; Michele, Daniel E.

    2014-01-01

    Mutations in the dysferlin gene resulting in dysferlin-deficiency lead to limb-girdle muscular dystrophy 2B and Myoshi myopathy in humans. Dysferlin has been proposed as a critical regulator of vesicle-mediated membrane resealing in muscle fibers, and localizes to muscle fiber wounds following sarcolemma damage. Studies in fibroblasts and urchin eggs suggest that trafficking and fusion of intracellular vesicles with the plasma membrane during resealing requires the intracellular cytoskeleton. However, the contribution of dysferlin-containing vesicles to resealing in muscle and the role of the cytoskeleton in regulating dysferlin-containing vesicle biology is unclear. Here, we use live-cell imaging to examine the behavior of dysferlin-containing vesicles following cellular wounding in muscle cells and examine the role of microtubules and kinesin in dysferlin-containing vesicle behavior following wounding. Our data indicate that dysferlin-containing vesicles move along microtubules via the kinesin motor KIF5B in muscle cells. Membrane wounding induces dysferlin-containing vesicle–vesicle fusion and the formation of extremely large cytoplasmic vesicles, and this response depends on both microtubules and functional KIF5B. In non-muscle cell types, lysosomes are critical mediators of membrane resealing, and our data indicate that dysferlin-containing vesicles are capable of fusing with lysosomes following wounding which may contribute to formation of large wound sealing vesicles in muscle cells. Overall, our data provide mechanistic evidence that microtubule-based transport of dysferlin-containing vesicles may be critical for resealing, and highlight a critical role for dysferlin-containing vesicle–vesicle and vesicle–organelle fusion in response to wounding in muscle cells. PMID:24203699

  17. Glutaredoxin-2 Is Required to Control Oxidative Phosphorylation in Cardiac Muscle by Mediating Deglutathionylation Reactions*

    PubMed Central

    Mailloux, Ryan J.; Xuan, Jian Ying; McBride, Skye; Maharsy, Wael; Thorn, Stephanie; Holterman, Chet E.; Kennedy, Christopher R. J.; Rippstein, Peter; deKemp, Robert; da Silva, Jean; Nemer, Mona; Lou, Marjorie; Harper, Mary-Ellen

    2014-01-01

    Glutaredoxin-2 (Grx2) modulates the activity of several mitochondrial proteins in cardiac tissue by catalyzing deglutathionylation reactions. However, it remains uncertain whether Grx2 is required to control mitochondrial ATP output in heart. Here, we report that Grx2 plays a vital role modulating mitochondrial energetics and heart physiology by mediating the deglutathionylation of mitochondrial proteins. Deletion of Grx2 (Grx2−/−) decreased ATP production by complex I-linked substrates to half that in wild type (WT) mitochondria. Decreased respiration was associated with increased complex I glutathionylation diminishing its activity. Tissue glucose uptake was concomitantly increased. Mitochondrial ATP output and complex I activity could be recovered by restoring the redox environment to that favoring the deglutathionylated states of proteins. Grx2−/− hearts also developed left ventricular hypertrophy and fibrosis, and mice became hypertensive. Mitochondrial energetics from Grx2 heterozygotes (Grx2+/−) were also dysfunctional, and hearts were hypertrophic. Intriguingly, Grx2+/− mice were far less hypertensive than Grx2−/− mice. Thus, Grx2 plays a vital role in modulating mitochondrial metabolism in cardiac muscle, and Grx2 deficiency leads to pathology. As mitochondrial ATP production was restored by the addition of reductants, these findings may be relevant to novel redox-related therapies in cardiac disease. PMID:24727547

  18. A muscle-specific intron enhancer required for rescue of indirect flight muscle and jump muscle function regulates Drosophila tropomyosin I gene expression

    SciTech Connect

    Schultz, J.A.; Gremke, L.; Storti, R.V. ); Tansey, T. )

    1991-04-01

    The control of expression of the Drosophila melanogaster tropomyosin I (TmI) gene has been investigated by P-element transformation and rescue of the flightless TmI mutant strain, Ifm(3)3. To localize cis-acting DNA sequences that control TmI gene expression, Ifm(3)3 flies were transformed with P-element plasmids containing various deletions and rearrangements of the TmI gene. The effects of these mutations on TmI gene expression were studied by analyzing both the extent of rescue of the Ifm(3)3 mutant phenotypes and determining TmI RNA levels in the transformed flies by primer extension analysis. The results of this analysis indicate that a region located within intron 1 of the gene is necessary and sufficient for directing muscle-specific TmI expression in the adult fly. This intron region has characteristics of a muscle regulatory enhancer element that can function in conjunction with the heterologous nonmuscle hsp70 promoter to promote rescue of the mutant phenotypes and to direct expression of an hsp70-Escherichia coli lacZ reporter gene in adult muscle. The enhancer can be subdivided further into two domains of activity based on primer extension analysis of TmI mRNA levels and on the rescue of mutant phenotypes.

  19. Numb is required to prevent p53-dependent senescence following skeletal muscle injury

    PubMed Central

    Le Roux, Isabelle; Konge, Julie; Le Cam, Laurent; Flamant, Patricia; Tajbakhsh, Shahragim

    2015-01-01

    Regeneration relies on coordinated action of multiple cell types to reconstitute the damaged tissue. Here we inactivate the endocytic adaptor protein Numb in skeletal muscle stem cells prior to chronic or severe muscle injury in mice. We observe two types of senescence in regenerating muscle; a transient senescence in non-myogenic cells of control and Numb mutant mice that partly depends on INK4a/ARF activity, and a persistent senescence in myogenic cells lacking Numb. The senescence levels of Numb-deficient muscle is reduced to wild type levels by an anti-oxidant treatment or p53 ablation, resulting in functional rescue of the regenerative potential in Numb mutants. Ex vivo experiments suggest that Numb-deficient senescent cells recruit macrophages to sustain inflammation and drive fibrosis, two hallmarks of the impaired muscle regeneration in Numb mutants. These findings provide insights into previously reported developmental and oncogenic senescence that are also differentially regulated by p53. PMID:26503169

  20. Contraction-induced increase in muscle insulin sensitivity: requirement for a serum factor.

    PubMed

    Gao, J; Gulve, E A; Holloszy, J O

    1994-02-01

    The insulin sensitivity of glucose transport is enhanced in skeletal muscle after a bout of exercise. In a previous study, stimulation of washed muscles to contract in vitro, in contrast to exercise, did not result in an increase in insulin sensitivity. The purpose of the present study was to explain this apparent discrepancy. We found that, although rat epitrochlearis muscles stimulated to contract in vitro after 15 min of incubation in Krebs-Henseleit buffer did not develop increased insulin sensitivity, muscles stimulated to contract immediately after being dissected showed a small but significant enhancement of the stimulation of 3-O-methyl-D-glucose transport by 30 microU/ml insulin. Furthermore, muscles stimulated to contract in situ and then allowed to recover in vitro showed as large an increase in insulin sensitivity as that which occurs after a bout of swimming. To follow up these findings suggesting involvement of a humoral factor, we incubated epitrochlearis muscles in serum before and during contractile activity in vitro. Epitrochlearis muscle insulin sensitivity was enhanced to as great an extent after in vitro contractile activity in serum as after swimming. Experiments involving charcoal treatment, ultrafiltration, or trypsin digestion provided evidence that the serum factor that interacts with contractions to enhance insulin sensitivity is a protein.

  1. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish

    PubMed Central

    Housley, Michael P.; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A.; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y. R.

    2016-01-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy. PMID:27294373

  2. Smooth muscle fascicular reorientation is required for esophageal morphogenesis and dependent on Cdo

    PubMed Central

    Romer, Anthony I.; Singh, Jagmohan; Rattan, Satish

    2013-01-01

    Postnatal maturation of esophageal musculature involves proximal-to-distal replacement of smooth muscle with skeletal muscle by elusive mechanisms. We report that this process is impaired in mice lacking the cell surface receptor Cdo and identify the underlying developmental mechanism. A myogenic transition zone containing proliferative skeletal muscle precursor cells migrated in a proximal–distal direction, leaving differentiated myofibers in its wake. Distal to the transition zone, smooth muscle fascicles underwent a morphogenetic process whereby they changed their orientation relative to each other and to the lumen. Consequently, a path was cleared for the transition zone, and smooth muscle ultimately occupied only the distal-most esophagus; there was no loss of smooth muscle. Cdo−/− mice were specifically defective in fascicular reorientation, resulting in an aberrantly proximal skeletal–smooth muscle boundary. Furthermore, Cdo−/− mice displayed megaesophagus and achalasia, and their lower esophageal sphincter was resistant to nitric oxide–induced relaxation, suggesting a developmental linkage between patterning and sphincter function. Collectively, these results illuminate mechanisms of esophageal morphogenesis and motility disorders. PMID:23569214

  3. Muscle Cell Fate Choice Requires the T-Box Transcription Factor Midline in Drosophila

    PubMed Central

    Kumar, Ram P.; Dobi, Krista C.; Baylies, Mary K.; Abmayr, Susan M.

    2015-01-01

    Drosophila Midline (Mid) is an ortholog of vertebrate Tbx20, which plays roles in the developing heart, migrating cranial motor neurons, and endothelial cells. Mid functions in cell-fate specification and differentiation of tissues that include the ectoderm, cardioblasts, neuroblasts, and egg chambers; however, a role in the somatic musculature has not been described. We identified mid in genetic and molecular screens for factors contributing to somatic muscle morphogenesis. Mid is expressed in founder cells (FCs) for several muscle fibers, and functions cooperatively with the T-box protein H15 in lateral oblique muscle 1 and the segment border muscle. Mid is particularly important for the specification and development of the lateral transverse (LT) muscles LT3 and LT4, which arise by asymmetric division of a single muscle progenitor. Mid is expressed in this progenitor and its two sibling FCs, but is maintained only in the LT4 FC. Both muscles were frequently missing in mid mutant embryos, and LT4-associated expression of the transcription factor Krüppel (Kr) was lost. When present, LT4 adopted an LT3-like morphology. Coordinately, mid misexpression caused LT3 to adopt an LT4-like morphology and was associated with ectopic Kr expression. From these data, we concluded that mid functions first in the progenitor to direct development of LT3 and LT4, and later in the FCs to influence whichever of these differentiation profiles is selected. Mid is the first T-box factor shown to influence LT3 and LT4 muscle identity and, along with the T-box protein Optomotor-blind-related-gene 1 (Org-1), is representative of a new class of transcription factors in muscle specification. PMID:25614583

  4. Gamma-sarcoglycan is required for the response of archvillin to mechanical stimulation in skeletal muscle

    PubMed Central

    Spinazzola, Janelle M.; Smith, Tara C.; Liu, Min; Luna, Elizabeth J.; Barton, Elisabeth R.

    2015-01-01

    Loss of gamma-sarcoglycan (γ-SG) induces muscle degeneration and signaling defects in response to mechanical load, and its absence is common to both Duchenne and limb girdle muscular dystrophies. Growing evidence suggests that aberrant signaling contributes to the disease pathology; however, the mechanisms of γ-SG-mediated mechanical signaling are poorly understood. To uncover γ-SG signaling pathway components, we performed yeast two-hybrid screens and identified the muscle-specific protein archvillin as a γ-SG and dystrophin interacting protein. Archvillin protein and message levels were significantly upregulated at the sarcolemma of murine γ-SG-null (gsg−/−) muscle but delocalized in dystrophin-deficient mdx muscle. Similar elevation of archvillin protein was observed in human quadriceps muscle lacking γ-SG. Reintroduction of γ-SG in gsg−/− muscle by rAAV injection restored archvillin levels to that of control C57 muscle. In situ eccentric contraction of tibialis anterior (TA) muscles from C57 mice caused ERK1/2 phosphorylation, nuclear activation of P-ERK1/2 and stimulus-dependent archvillin association with P-ERK1/2. In contrast, TA muscles from gsg−/− and mdx mice exhibited heightened P-ERK1/2 and increased nuclear P-ERK1/2 localization following eccentric contractions, but the archvillin–P-ERK1/2 association was completely ablated. These results position archvillin as a mechanically sensitive component of the dystrophin complex and demonstrate that signaling defects caused by loss of γ-SG occur both at the sarcolemma and in the nucleus. PMID:25605665

  5. Endogenous mesenchymal stromal cells in bone marrow are required to preserve muscle function in mdx mice.

    PubMed

    Fujita, Ryo; Tamai, Katsuto; Aikawa, Eriko; Nimura, Keisuke; Ishino, Saki; Kikuchi, Yasushi; Kaneda, Yasufumi

    2015-03-01

    The physiological role of "endogenous" bone marrow (BM) mesenchymal stromal cells (MSCs) in tissue regeneration is poorly understood. Here, we show the significant contribution of unique endogenous BM-MSC populations to muscle regeneration in Duchenne muscular dystrophy (DMD) mice (mdx). Transplantation of BM cells (BMCs) from 10-week-old mdx into 3-4-week-old mdx mice increased inflammation and fibrosis and reduced muscle function compared with mdx mice that received BMCs from 10-week-old wild-type mice, suggesting that the alteration of BMC populations in mdx mice affects the progression of muscle pathology. Two distinct MSC populations in BM, that is, hematopoietic lineage (Lin)(-) /ckit(-) /CD106(+) /CD44(+) and Lin(-) /ckit(-) /CD106(+) /CD44(-) cells, were significantly reduced in 10-week-old mdx mice in disease progression. The results of a whole-transcriptome analysis indicated that these two MSC populations have distinct gene expression profiles, indicating that the Lin(-) /ckit(-) /CD106(+) /CD44(+) and Lin(-) /ckit(-) /CD106(+) /CD44(-) MSC populations are proliferative- and dormant-state populations in BM, respectively. BM-derived Lin(-) /CD106(+) /CD44(+) MSCs abundantly migrated to damaged muscles and highly expressed tumor necrosis factor-alpha-stimulated gene/protein-6 (TSG-6), an anti-inflammatory protein, in damaged muscles. We also demonstrated that TSG-6 stimulated myoblast proliferation. The injection of Lin(-) /ckit(-) /CD106(+) /CD44(+) MSCs into the muscle of mdx mice successfully ameliorated muscle dysfunction by decreasing inflammation and enhancing muscle regeneration through TSG-6-mediated activities. Thus, we propose a novel function of the unique endogenous BM-MSC population, which countered muscle pathology progression in a DMD model.

  6. Glutamine Synthetase in Muscle Is Required for Glutamine Production during Fasting and Extrahepatic Ammonia Detoxification*

    PubMed Central

    He, Youji; Hakvoort, Theodorus B. M.; Köhler, S. Eleonore; Vermeulen, Jacqueline L. M.; de Waart, D. Rudi; de Theije, Chiel; ten Have, Gabrie A. M.; van Eijk, Hans M. H.; Kunne, Cindy; Labruyere, Wilhelmina T.; Houten, Sander M.; Sokolovic, Milka; Ruijter, Jan M.; Deutz, Nicolaas E. P.; Lamers, Wouter H.

    2010-01-01

    The main endogenous source of glutamine is de novo synthesis in striated muscle via the enzyme glutamine synthetase (GS). The mice in which GS is selectively but completely eliminated from striated muscle with the Cre-loxP strategy (GS-KO/M mice) are, nevertheless, healthy and fertile. Compared with controls, the circulating concentration and net production of glutamine across the hindquarter were not different in fed GS-KO/M mice. Only a ∼3-fold higher escape of ammonia revealed the absence of GS in muscle. However, after 20 h of fasting, GS-KO/M mice were not able to mount the ∼4-fold increase in glutamine production across the hindquarter that was observed in control mice. Instead, muscle ammonia production was ∼5-fold higher than in control mice. The fasting-induced metabolic changes were transient and had returned to fed levels at 36 h of fasting. Glucose consumption and lactate and ketone-body production were similar in GS-KO/M and control mice. Challenging GS-KO/M and control mice with intravenous ammonia in stepwise increments revealed that normal muscle can detoxify ∼2.5 μmol ammonia/g muscle·h in a muscle GS-dependent manner, with simultaneous accumulation of urea, whereas GS-KO/M mice responded with accumulation of glutamine and other amino acids but not urea. These findings demonstrate that GS in muscle is dispensable in fed mice but plays a key role in mounting the adaptive response to fasting by transiently facilitating the production of glutamine. Furthermore, muscle GS contributes to ammonia detoxification and urea synthesis. These functions are apparently not vital as long as other organs function normally. PMID:20064933

  7. TGF-{beta} receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation

    SciTech Connect

    Droguett, Rebeca; Cabello-Verrugio, Claudio; Santander, Cristian; Brandan, Enrique

    2010-09-10

    Skeletal muscle differentiation is strongly inhibited by transforming growth factor type {beta} (TGF-{beta}), although muscle formation as well as regeneration normally occurs in an environment rich in this growth factor. In this study, we evaluated the role of intracellular regulatory Smads proteins as well as TGF-{beta}-receptors (TGF-{beta}-Rs) during skeletal muscle differentiation. We found a decrease of TGF-{beta} signaling during differentiation. This phenomenon is explained by a decline in the levels of the regulatory proteins Smad-2, -3, and -4, a decrease in the phosphorylation of Smad-2 and lost of nuclear translocation of Smad-3 and -4 in response to TGF-{beta}. No change in the levels and inhibitory function of Smad-7 was observed. In contrast, we found that TGF-{beta}-R type I (TGF-{beta}-RI) and type II (TGF-{beta}-RII) increased on the cell surface during skeletal muscle differentiation. To analyze the direct role of the serine/threonine kinase activities of TGF-{beta}-Rs, we used the specific inhibitor SB 431542 and the dominant-negative form of TGF-{beta}-RII lacking the cytoplasmic domain. The TGF-{beta}-Rs were important for successful muscle formation, determined by the induction of myogenin, creatine kinase activity, and myosin. Silencing of Smad-2/3 expression by specific siRNA treatments accelerated myogenin, myosin expression, and myotube formation; although when SB 431542 was present inhibition in myosin induction and myotube formation was observed, suggesting that these last steps of skeletal muscle differentiation require active TGF-{beta}-Rs. These results suggest that both down-regulation of Smad regulatory proteins and cell signaling through the TGF-{beta} receptors independent of Smad proteins are essential for skeletal muscle differentiation.

  8. Myosin light chain phosphorylation is required for peak power output of mouse fast skeletal muscle in vitro.

    PubMed

    Bowslaugh, Joshua; Gittings, William; Vandenboom, Rene

    2016-11-01

    The skeletal myosin light chain kinase (skMLCK) catalyzed phosphorylation of the myosin regulatory light chain (RLC) is associated with potentiation of force, work, and power in rodent fast twitch muscle. The purpose of this study was to compare concentric responses of EDL from wild-type (WT) and skMLCK devoid (skMLCK(-/-)) muscles at a range of shortening speeds (0.05 to 0.70 V max) around that expected to produce maximal power (in vitro, 25 °C) both before (unpotentiated) and after (potentiated) a potentiating stimulus (PS). When collapsed across all speeds tested, neither unpotentiated force, work, or power differed between genotypes (all data n = 10, P < 0.05). In contrast, although both genotypes displayed speed-dependent increases, these increases were greater for WT than skMLCK(-/-) muscles. For example, when collapsed across the six fastest speeds we tested, both concentric force and power were increased 30-34 % in WT but only 15-17 % in skMLCK(-/-) muscles. In contrast, at the two slowest speeds, these parameters were increased in WT but decreased in skMLCK(-/-) muscles (8-10 and 7-9 %, respectively). Intriguingly, potentiation of concentric force and power was optimal near speeds producing maximal power in both genotypes. Because the PS elevated RLC phosphorylation above resting levels in WT but not in skMLCK(-/-) muscles, our data suggest that skMLCK-catalyzed phosphorylation of the RLC is required for maximal concentric power output of mouse EDL muscle stimulated at high frequency in vitro.

  9. Stereotypic founder cell patterning and embryonic muscle formation in Drosophila require nautilus (MyoD) gene function

    PubMed Central

    Wei, Qin; Rong, Yikang; Paterson, Bruce M.

    2007-01-01

    nautilus is the only MyoD-related gene in Drosophila. Nautilus expression begins around stage 9 at full germ-band extension in a subset of mesodermal cells organized in a stereotypic pattern in each hemisegment. The muscle founder cell marker Duf-LacZ, produced by the enhancer trap line rP298LacZ, is coexpressed in numerous Nautilus-positive cells when founders first appear. Founders entrain muscle identity through the restricted expression of transcription factors such as S59, eve, and Kr, all of which are observed in subsets of the nautilus expressing founders. We inactivated the nautilus gene using homology-directed gene targeting and Gal4/UAS regulated RNAi to determine whether loss of nautilus gene activity affected founder cell function. Both methods produced a range of defects that included embryonic muscle disruption, reduced viability and female sterility, which could be rescued by hsp70-nautilus cDNA transgenes. Our results demonstrate Nautilus expression marks early founders that give rise to diverse muscle groups in the embryo, and that nautilus gene activity is required to seed the correct founder myoblast pattern that prefigures the muscle fiber arrangement during embryonic development. PMID:17376873

  10. Myocardin is differentially required for the development of smooth muscle cells and cardiomyocytes

    PubMed Central

    Hoofnagle, Mark H.; Neppl, Ronald L.; Berzin, Erica L.; Teg Pipes, G. C.; Olson, Eric N.; Wamhoff, Brian W.; Somlyo, Avril V.

    2011-01-01

    Myocardin is a serum response factor (SRF) coactivator exclusively expressed in cardiomyocytes and smooth muscle cells (SMCs). However, there is highly controversial evidence as to whether myocardin is essential for normal differentiation of these cell types, and there are no data showing whether cardiac or SMC subtypes exhibit differential myocardin requirements during development. Results of the present studies showed the virtual absence of myocardin−/− visceral SMCs or ventricular myocytes in chimeric myocardin knockout (KO) mice generated by injection of myocardin−/− embryonic stem cells (ESCs) into wild-type (WT; i.e., myocardin+/+ ESC) blastocysts. In contrast, myocardin−/− ESCs readily formed vascular SMC, albeit at a reduced frequency compared with WT ESCs. In addition, myocardin−/− ESCs competed equally with WT ESCs in forming atrial myocytes. The ultrastructural features of myocardin−/− vascular SMCs and cardiomyocytes were unchanged from their WT counterparts as determined using a unique X-ray microprobe transmission electron microscopic method developed by our laboratory. Myocardin−/− ESC-derived SMCs also showed normal contractile properties in an in vitro embryoid body SMC differentiation model, other than impaired thromboxane A2 responsiveness. Together, these results provide novel evidence that myocardin is essential for development of visceral SMCs and ventricular myocytes but is dispensable for development of atrial myocytes and vascular SMCs in the setting of chimeric KO mice. In addition, results suggest that as yet undefined defects in development and/or maturation of ventricular cardiomyocytes may have contributed to early embryonic lethality observed in conventional myocardin KO mice and that observed deficiencies in development of vascular SMC may have been secondary to these defects. PMID:21357509

  11. Runx2 Expression in Smooth Muscle Cells Is Required for Arterial Medial Calcification in Mice

    PubMed Central

    Lin, Mu-En; Chen, Theodore; Leaf, Elizabeth M.; Speer, Mei Y.; Giachelli, Cecilia M.

    2016-01-01

    Arterial medial calcification (AMC) is a hallmark of aging, diabetes, and chronic kidney disease. Smooth muscle cell (SMC) transition to an osteogenic phenotype is a common feature of AMC, and is preceded by expression of runt-related transcription factor 2 (Runx2), a master regulator of bone development. Whether SMC-specific Runx2 expression is required for osteogenic phenotype change and AMC remains unknown. We therefore created an improved targeting construct to generate mice with floxed Runx2 alleles (Runx2f/f) that do not produce truncated Runx2 proteins after Cre recombination, thereby preventing potential off-target effects. SMC-specific deletion using SM22–recombinase transgenic allele mice (Runx2ΔSM) led to viable mice with normal bone and arterial morphology. After vitamin D overload, arterial SMCs in Runx2f/f mice expressed Runx2, underwent osteogenic phenotype change, and developed severe AMC. In contrast, vitamin D–treated Runx2ΔSM mice had no Runx2 in blood vessels, maintained SMC phenotype, and did not develop AMC. Runx2 deletion did not affect serum calcium, phosphate, fibroblast growth factor-23, or alkaline phosphatase levels. In vitro, Runx2f/f SMCs calcified to a much greater extent than those derived from Runx2ΔSM mice. These data indicate a critical role of Runx2 in SMC osteogenic phenotype change and mineral deposition in a mouse model of AMC, suggesting that Runx2 and downstream osteogenic pathways in SMCs may be useful therapeutic targets for treating or preventing AMC in high-risk patients. PMID:25987250

  12. EHD1 mediates vesicle trafficking required for normal muscle growth and transverse tubule development.

    PubMed

    Posey, Avery D; Swanson, Kaitlin E; Alvarez, Manuel G; Krishnan, Swathi; Earley, Judy U; Band, Hamid; Pytel, Peter; McNally, Elizabeth M; Demonbreun, Alexis R

    2014-03-15

    EHD proteins have been implicated in intracellular trafficking, especially endocytic recycling, where they mediate receptor and lipid recycling back to the plasma membrane. Additionally, EHDs help regulate cytoskeletal reorganization and induce tubule formation. It was previously shown that EHD proteins bind directly to the C2 domains in myoferlin, a protein that regulates myoblast fusion. Loss of myoferlin impairs normal myoblast fusion leading to smaller muscles in vivo but the intracellular pathways perturbed by loss of myoferlin function are not well known. We now characterized muscle development in EHD1-null mice. EHD1-null myoblasts display defective receptor recycling and mislocalization of key muscle proteins, including caveolin-3 and Fer1L5, a related ferlin protein homologous to myoferlin. Additionally, EHD1-null myoblast fusion is reduced. We found that loss of EHD1 leads to smaller muscles and myofibers in vivo. In wildtype skeletal muscle EHD1 localizes to the transverse tubule (T-tubule), and loss of EHD1 results in overgrowth of T-tubules with excess vesicle accumulation in skeletal muscle. We provide evidence that tubule formation in myoblasts relies on a functional EHD1 ATPase domain. Moreover, we extended our studies to show EHD1 regulates BIN1 induced tubule formation. These data, taken together and with the known interaction between EHD and ferlin proteins, suggests that the EHD proteins coordinate growth and development likely through mediating vesicle recycling and the ability to reorganize the cytoskeleton. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Notch pathway repression by vestigial is required to promote indirect flight muscle differentiation in Drosophila melanogaster.

    PubMed

    Bernard, F; Dutriaux, A; Silber, J; Lalouette, A

    2006-07-01

    Drosophila dorsal longitudinal muscles develop during metamorphosis by fusion of myoblasts with larval templates. It has been shown that both vestigial and Notch are crucial for correct formation of these muscles. We investigated the relationship between vestigial and the Notch pathway during this process. Using Enhancer of Split Region Transcript m6 gene expression as a reporter of Notch pathway activity, we were able to demonstrate that this pathway is only active in myoblasts. Moreover, close examination of the cellular location of several of the main actors of the N pathway (Notch, Delta, neuralized, Serrate, Mind bomb1 and fringe) during dorsal longitudinal muscle development enabled us to find that Notch receptor can play multiple roles in adult myogenesis. We report that the locations of the two Notch ligands (Delta and Serrate) are different. Interestingly, we found that fringe, which encodes a glycosyltransferase that modifies the affinity of the Notch receptor for its ligands, is expressed in muscle fibers and in a subset of myoblasts. In addition, we demonstrate that fringe expression is essential for Notch pathway inhibition and muscle differentiation. Lastly, we report that, in vestigial mutants, fringe expression is lost, and when fringe is overexpressed, a significant rescue of indirect flight muscle degeneration is obtained. Altogether, our data show that a vestigial-differentiating function is achieved through the inhibition of the Notch pathway.

  14. EHD1 mediates vesicle trafficking required for normal muscle growth and tubule development

    PubMed Central

    Posey, Avery D.; Swanson, Kaitlin E.; Alvarez, Manuel G.; Krishnan, Swathi; Earley, Judy E.; Band, Hamid; Pytel, Peter; McNally, Elizabeth M.; Demonbreun, Alexis R.

    2014-01-01

    EHD proteins have been implicated in intracellular trafficking, especially endocytic recycling, where they mediate receptor and lipid recycling back to the plasma membrane. Additionally, EHDs help regulate cytoskeletal reorganization and induce tubule formation. It was previously shown that EHD proteins bind directly to the C2 domains in myoferlin, a protein that regulates myoblast fusion. Loss of myoferlin impairs normal myoblast fusion leading to smaller muscles in vivo but the intracellular pathways perturbed by loss of myoferlin function are not well known. We now characterized muscle development in EHD1-null mice. EHD1-null myoblasts display defective receptor recycling and mislocalization of key muscle proteins, including caveolin-3 and Fer1L5, a related ferlin protein homologous to myoferlin. Additionally, EHD1-null myoblast fusion is reduced. We found that loss of EHD1 leads to smaller muscles and myofibers in vivo. In wildtype skeletal muscle EHD1 localizes to the transverse tubule (T-tubule), and loss of EHD1 results in overgrowth of T-tubules with excess vesicle accumulation in skeletal muscle. We provide evidence that tubule formation in myoblasts relies on a functional EHD1 ATPase domain. Moreover, we extended our studies to show EHD1 regulates BIN1 induced tubule formation. These data, taken together and with the known interaction between EHD and ferlin proteins, suggests that the EHD proteins coordinate growth and development likely through mediating vesicle recycling and the ability to reorganize the cytoskeleton. PMID:24440153

  15. Notch Signalling Is Required for the Formation of Structurally Stable Muscle Fibres in Zebrafish

    PubMed Central

    Pascoal, Susana; Esteves de Lima, Joana; Leslie, Jonathan D.; Hughes, Simon M.; Saúde, Leonor

    2013-01-01

    Background Accurate regulation of Notch signalling is central for developmental processes in a variety of tissues, but its function in pectoral fin development in zebrafish is still unknown. Methodology/Principal Findings Here we show that core elements necessary for a functional Notch pathway are expressed in developing pectoral fins in or near prospective muscle territories. Blocking Notch signalling at different levels of the pathway consistently leads to the formation of thin, wavy, fragmented and mechanically weak muscles fibres and loss of stress fibres in endoskeletal disc cells in pectoral fins. Although the structural muscle genes encoding Desmin and Vinculin are normally transcribed in Notch-disrupted pectoral fins, their proteins levels are severely reduced, suggesting that weak mechanical forces produced by the muscle fibres are unable to stabilize/localize these proteins. Moreover, in Notch signalling disrupted pectoral fins there is a decrease in the number of Pax7-positive cells indicative of a defect in myogenesis. Conclusions/Significance We propose that by controlling the differentiation of myogenic progenitor cells, Notch signalling might secure the formation of structurally stable muscle fibres in the zebrafish pectoral fin. PMID:23840804

  16. Activation of autophagy by globular adiponectin is required for muscle differentiation.

    PubMed

    Gamberi, Tania; Modesti, Alessandra; Magherini, Francesca; D'Souza, Donna M; Hawke, Thomas; Fiaschi, Tania

    2016-04-01

    Regulated autophagy is a critical component for a healthy skeletal muscle mass, such that dysregulation of the autophagic processes correlates with severe myopathies. Thus, defining the biological molecules involved in the autophagic processes within skeletal muscle is of great importance. Here we demonstrate that globular adiponectin (gAd) activates autophagy in skeletal muscle myoblasts via an AMPK-dependent mechanism. Activation of autophagy through gAd promotes myoblast survival and apoptosis inhibition during serum starvation and the gAd-activated autophagy orchestrates the myogenic properties of the hormone. Consistent with this conclusion, inhibition of gAd-activated autophagy by both a pharmacological (chloroquine) or siRNA approach greatly inhibited muscle differentiation, as demonstrated by reductions in myosin heavy chain expression and myotube formation. Further support for the role of adiponectin in autophagy comes from the skeletal muscles of adiponectin KO mice which display decreased LC3 II expression and a myopathic phenotype (heterogeneous fiber sizes, numerous central nuclei). Overall, these findings demonstrate that gAd activates autophagy in myoblasts and that gAd-activated autophagy drives the myogenic properties of this hormone.

  17. Peroxisomes Are Required for Lipid Metabolism and Muscle Function in Drosophila melanogaster

    PubMed Central

    Faust, Joseph E.; Manisundaram, Arvind; Ivanova, Pavlina T.; Milne, Stephen B.; Summerville, James B.; Brown, H. Alex; Wangler, Michael; Stern, Michael; McNew, James A.

    2014-01-01

    Peroxisomes are ubiquitous organelles that perform lipid and reactive oxygen species metabolism. Defects in peroxisome biogenesis cause peroxisome biogenesis disorders (PBDs). The most severe PBD, Zellweger syndrome, is characterized in part by neuronal dysfunction, craniofacial malformations, and low muscle tone (hypotonia). These devastating diseases lack effective therapies and the development of animal models may reveal new drug targets. We have generated Drosophila mutants with impaired peroxisome biogenesis by disrupting the early peroxin gene pex3, which participates in budding of pre-peroxisomes from the ER and peroxisomal membrane protein localization. pex3 deletion mutants lack detectible peroxisomes and die before or during pupariation. At earlier stages of development, larvae lacking Pex3 display reduced size and impaired lipid metabolism. Selective loss of peroxisomes in muscles impairs muscle function and results in flightless animals. Although, hypotonia in PBD patients is thought to be a secondary effect of neuronal dysfunction, our results suggest that peroxisome loss directly affects muscle physiology, possibly by disrupting energy metabolism. Understanding the role of peroxisomes in Drosophila physiology, specifically in muscle cells may reveal novel aspects of PBD etiology. PMID:24945818

  18. Peroxisomes are required for lipid metabolism and muscle function in Drosophila melanogaster.

    PubMed

    Faust, Joseph E; Manisundaram, Arvind; Ivanova, Pavlina T; Milne, Stephen B; Summerville, James B; Brown, H Alex; Wangler, Michael; Stern, Michael; McNew, James A

    2014-01-01

    Peroxisomes are ubiquitous organelles that perform lipid and reactive oxygen species metabolism. Defects in peroxisome biogenesis cause peroxisome biogenesis disorders (PBDs). The most severe PBD, Zellweger syndrome, is characterized in part by neuronal dysfunction, craniofacial malformations, and low muscle tone (hypotonia). These devastating diseases lack effective therapies and the development of animal models may reveal new drug targets. We have generated Drosophila mutants with impaired peroxisome biogenesis by disrupting the early peroxin gene pex3, which participates in budding of pre-peroxisomes from the ER and peroxisomal membrane protein localization. pex3 deletion mutants lack detectible peroxisomes and die before or during pupariation. At earlier stages of development, larvae lacking Pex3 display reduced size and impaired lipid metabolism. Selective loss of peroxisomes in muscles impairs muscle function and results in flightless animals. Although, hypotonia in PBD patients is thought to be a secondary effect of neuronal dysfunction, our results suggest that peroxisome loss directly affects muscle physiology, possibly by disrupting energy metabolism. Understanding the role of peroxisomes in Drosophila physiology, specifically in muscle cells may reveal novel aspects of PBD etiology.

  19. Muscle activation and energy-requirements for varying postures in children and adolescents with cerebral palsy.

    PubMed

    Verschuren, Olaf; Peterson, Mark D; Leferink, Svenja; Darrah, Johanna

    2014-11-01

    To determine energy expenditure and muscle activity among children and adolescents with cerebral palsy (CP), across several conditions that approximate sedentary behavior, and standing. Subjects with spastic CP (n = 19; 4-20 years of age; Gross Motor Function Classification System Expanded and Revised [GMFCS-E&R] levels I-V) participated in this cohort study. Energy-expenditure and muscle activity were measured during lying supine, sitting with support, sitting without support, and standing. Energy-expenditure was measured using indirect calorimetry and expressed in metabolic equivalents (METs). Muscle activation was recorded using surface electromyography. The recorded values were calculated for every child and then averaged per posture. Mean energy expenditure was >1.5 METs during standing for all GMFCS-E&R levels. There was a nonsignificant trend for greater muscle activation for all postures with less support. Only for children classified at GMFCS-E&R level III did standing result in significantly greater muscle activation (P < .05) compared with rest. Across all GMFCS-E&R levels, children and adolescents with CP had elevated energy expenditure during standing that exceeded the sedentary threshold of 1.5 METs. Our findings suggest that changing a child's position to standing may contribute to the accumulation of light activity and reduction of long intervals of sedentary behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Smyd1b is required for skeletal and cardiac muscle function in zebrafish

    PubMed Central

    Li, Huiqing; Zhong, Yongwang; Wang, Zengfeng; Gao, Jie; Xu, Jin; Chu, Wuying; Zhang, Jianshe; Fang, Shenyun; Du, Shao Jun

    2013-01-01

    Smyd1b is a member of the Smyd family that is specifically expressed in skeletal and cardiac muscles. Smyd1b plays a key role in thick filament assembly during myofibrillogenesis in skeletal muscles of zebrafish embryos. To better characterize Smyd1b function and its mechanism of action in myofibrillogenesis, we analyzed the effects of smyd1b knockdown on myofibrillogenesis in skeletal and cardiac muscles of zebrafish embryos. The results show that knockdown of smyd1b causes significant disruption of myofibril organization in both skeletal and cardiac muscles of zebrafish embryos. Microarray and quantitative reverse transcription-PCR analyses show that knockdown of smyd1b up-regulates heat shock protein 90 (hsp90) and unc45b gene expression. Biochemical analysis reveals that Smyd1b can be coimmunoprecipitated with heat shock protein 90 α-1 and Unc45b, two myosin chaperones expressed in muscle cells. Consistent with its potential function in myosin folding and assembly, knockdown of smyd1b significantly reduces myosin protein accumulation without affecting mRNA expression. This likely results from increased myosin degradation involving unc45b overexpression. Together these data support the idea that Smyd1b may work together with myosin chaperones to control myosin folding, degradation, and assembly into sarcomeres during myofibrillogenesis. PMID:24068325

  1. Muscle activation and energy-requirements for varying postures in children and adolescents with cerebral palsy

    PubMed Central

    Peterson, Mark D.; Leferink, Svenja; Darrah, Johanna

    2015-01-01

    Objective To determine energy expenditure and muscle activity among children and adolescents with cerebral palsy (CP), across several conditions that approximate sedentary behavior, and standing. Study design Subjects with spastic CP (n=19; 4–20 years of age; Gross Motor Function Classification System [GMFCS] levels I to V) participated in this cohort study. Energy-expenditure and muscle activity were measured during lying supine, sitting with support, sitting without support, and standing. Energy-expenditure was measured using indirect calorimetry and expressed in metabolic equivalents (METs). Muscle activation was recorded using surface electromyography. The recorded values were calculated for every child and then averaged per posture. Results Mean energy expenditure was >1.5 METs during standing for all GMFCS levels. There was a non-significant trend for greater muscle activation for all postures with less support. Only for children classified at GMFCS level III standing resulted in significantly greater muscle activation (p<0.05) compared with rest. Conclusion Across all GMFCS levels, children and adolescents with CP had elevated energy expenditure during standing that exceeded the sedentary threshold of 1.5 METs. Our findings suggest that changing a child’s position to standing may contribute to the accumulation of light activity and reduction of long intervals of sedentary behavior. PMID:25151195

  2. Muscle force and excursion requirements and moment arm analysis of a posterior-superior offset reverse total shoulder prosthesis.

    PubMed

    Onstot, Brian R; Jacofsky, Marc C; Hansen, Matthew L

    2013-01-01

    Current reverse total shoulder arthroplasty prosthesis designs do not permit offset of the humerus in the sagittal plane. Posteriorly shifting the humerus has the theoretical benefit of lengthening the infraspinatus and teres minor muscles and their external rotation moment arms, thereby improving the tension and efficiency of each external rotator and subsequently requiring each muscle to produce less force to rotate the arm. A cadaveric shoulder controller was used to quantify the impact of a novel posterior-superior offset reverse shoulder prosthesis on muscle length, moment arms, and muscle forces relative to a non-offset reverse shoulder design during two different motions: scapular plane abduction and internal/external rotation. The results of this study demonstrate that both the non-offset and offset reverse shoulder designs had similar force and excursion demands of the infraspinatus and teres minor muscles during both scapular abduction and internal and external rotation. Additionally, the offset reverse shoulder design was associated with significantly less over-tensioning of the middle and posterior deltoid and significantly more anatomic tensioning of the teres minor than the non-offset design. However, the offset reverse shoulder was observed to have more impingement than the non-offset design. These findings support the feasibility of this design: by restoring a more anatomic resting length to the deltoid and teres minor, the posterior-superior offset rTSA design may provide better teres minor function and rotational strength and may decrease the incidence of acromial stress fractures relative to the non-offset design. Clinical follow-up is required to confirm these findings.

  3. Surgical Treatment of Hip Instability in Patients With Lower Lumbar Level Myelomeningocele: Is Muscle Transfer Required?

    PubMed

    Yildirim, Timur; Gursu, Sarper; Bayhan, İlhan Avni; Sofu, Hakan; Bursali, Aysegul

    2015-10-01

    Treatment of hip instability in patients with lower lumbar level myelomeningocele is clinically challenging. Muscle transfer procedures, release of contractures, and intertrochanteric varus-rotation osteotomies have been described to restore weak or absent abductor strength as well as relocation of the hip. However, controlled trials evaluating hip instability in lower lumbar myelomeningocele are limited in the current literature. The purposes of this study were to compare the (1) radiographic evidence for joint stability; (2) clinical outcomes (including abductor strength, ambulatory ability, and residual use of orthoses); and (3) complications between patients undergoing combined periarticular contracture releases and bony procedures with and without external oblique abdominal muscle transfers. Between 2004 and 2013, 14 pediatric patients (16 hips) were treated for hip instability secondary to myelomeningocele using releases with or without muscle transfer. From those, 13 patients (15 hips) with a mean age of 6 years who had L3 to L5 level involvement were evaluated retrospectively. The patients were separated into two groups. Nine hips (in eight patients) were treated by performing a combination of external oblique abdominal muscle transfer to the greater trochanter, periarticular release of contractures, and bony procedures. These were compared with six hips (five patients) treated by performing a combination of periarticular release of contractures and bony procedures without external oblique abdominal muscle transfer. This study compared the results between two surgeons, one of whom always performed these muscle transfers in this setting and the other who never performed muscle transfer during the study period. The patients were clinically followed up at a mean of 41 months (range, 14-122 months); none of the patients was lost to followup. Radiographic evaluation criteria included Reimer's migration index, acetabular index, femoral neck-shaft angle, pelvic

  4. Actin scaffolding by clathrin heavy chain is required for skeletal muscle sarcomere organization.

    PubMed

    Vassilopoulos, Stéphane; Gentil, Christel; Lainé, Jeanne; Buclez, Pierre-Olivier; Franck, Agathe; Ferry, Arnaud; Précigout, Guillaume; Roth, Robyn; Heuser, John E; Brodsky, Frances M; Garcia, Luis; Bonne, Gisèle; Voit, Thomas; Piétri-Rouxel, France; Bitoun, Marc

    2014-05-12

    The ubiquitous clathrin heavy chain (CHC), the main component of clathrin-coated vesicles, is well characterized for its role in intracellular membrane traffic and endocytosis from the plasma membrane (PM). Here, we demonstrate that in skeletal muscle CHC regulates the formation and maintenance of PM-sarcomere attachment sites also known as costameres. We show that clathrin forms large coated lattices associated with actin filaments and the muscle-specific isoform of α-actinin at the PM of differentiated myotubes. Depletion of CHC in myotubes induced a loss of actin and α-actinin sarcomeric organization, whereas CHC depletion in vivo induced a loss of contractile force due to the detachment of sarcomeres from the PM. Our results suggest that CHC contributes to the formation and maintenance of the contractile apparatus through interactions with costameric proteins and highlight an unconventional role for CHC in skeletal muscle that may be relevant to pathophysiology of neuromuscular disorders.

  5. Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle.

    PubMed

    Haas, T L; Milkiewicz, M; Davis, S J; Zhou, A L; Egginton, S; Brown, M D; Madri, J A; Hudlicka, O

    2000-10-01

    Proteolysis of the capillary basement membrane is a hallmark of inflammation-mediated angiogenesis, but it is undetermined whether proteolysis plays a critical role in the process of activity-induced angiogenesis. Matrix metalloproteinases (MMPs) constitute the major class of proteases responsible for degradation of basement membrane proteins. We observed significant elevations of mRNA and protein levels of both MMP-2 and membrane type 1 (MT1)-MMP (2.9 +/- 0.7- and 1.5 +/- 0.1-fold above control, respectively) after 3 days of chronic electrical stimulation of rat skeletal muscle. Inhibition of MMP activity via the inhibitor GM-6001 prevented the growth of new capillaries as assessed by the capillary-to-fiber ratio (1.34 +/- 0.08 in GM-6001-treated muscles compared with 1.69 +/- 0.03 in control 7-day-stimulated muscles). This inhibition correlated with a significant reduction in the number of capillaries with observable breaks in the basement membrane, as assessed by electron microscopy (0.27 +/- 0.27% in GM-6001-treated muscles compared with 3.72 +/- 0.65% in control stimulated muscles). Proliferation of capillary-associated cells was significantly elevated by 2 days and remained elevated throughout 14 days of stimulation. Capillary-associated cell proliferation during muscle stimulation was not affected by MMP inhibition (80.3 +/- 9.3 nuclei in control and 63.5 +/- 8.5 nuclei in GM-6001-treated animals). We conclude that MMP proteolysis of capillary basement membrane proteins is a critical component of physiological angiogenesis, and we postulate that capillary-associated proliferation precedes and occurs independently of endothelial cell sprout formation.

  6. Heterotrimeric G Stimulatory Protein α Subunit Is Required for Intestinal Smooth Muscle Contraction in Mice.

    PubMed

    Qin, Xiaoteng; Liu, Shangming; Lu, Qiulun; Zhang, Meng; Jiang, Xiuxin; Hu, Sanyuan; Li, Jingxin; Zhang, Cheng; Gao, Jiangang; Zhu, Min-Sheng; Feil, Robert; Li, Huashun; Chen, Min; Weinstein, Lee S; Zhang, Yun; Zhang, Wencheng

    2017-04-01

    -obstruction, compared with tissues from controls. Gsa is required for intestinal smooth muscle contraction in mice, and its levels are reduced in ileum biopsies of patients with chronic intestinal pseudo-obstruction. Mice with disruption of Gnas might be used to study human chronic intestinal pseudo-obstruction. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. Gαi2 Signaling Is Required for Skeletal Muscle Growth, Regeneration, and Satellite Cell Proliferation and Differentiation

    PubMed Central

    Minetti, Giulia C.; Feige, Jerome N.; Bombard, Florian; Heier, Annabelle; Morvan, Fredric; Nürnberg, Bernd; Leiss, Veronika; Birnbaumer, Lutz

    2014-01-01

    We have previously shown that activation of Gαi2, an α subunit of the heterotrimeric G protein complex, induces skeletal muscle hypertrophy and myoblast differentiation. To determine whether Gαi2 is required for skeletal muscle growth or regeneration, Gαi2-null mice were analyzed. Gαi2 knockout mice display decreased lean body mass, reduced muscle size, and impaired skeletal muscle regeneration after cardiotoxin-induced injury. Short hairpin RNA (shRNA)-mediated knockdown of Gαi2 in satellite cells (SCs) leads to defective satellite cell proliferation, fusion, and differentiation ex vivo. The impaired differentiation is consistent with the observation that the myogenic regulatory factors MyoD and Myf5 are downregulated upon knockdown of Gαi2. Interestingly, the expression of microRNA 1 (miR-1), miR-27b, and miR-206, three microRNAs that have been shown to regulate SC proliferation and differentiation, is increased by a constitutively active mutant of Gαi2 [Gαi2(Q205L)] and counterregulated by Gαi2 knockdown. As for the mechanism, this study demonstrates that Gαi2(Q205L) regulates satellite cell differentiation into myotubes in a protein kinase C (PKC)- and histone deacetylase (HDAC)-dependent manner. PMID:24298018

  8. Upper extremity muscle tone and response of tidal volume during manually assisted breathing for patients requiring prolonged mechanical ventilation

    PubMed Central

    Morino, Akira; Shida, Masahiro; Tanaka, Masashi; Sato, Kimihiro; Seko, Toshiaki; Ito, Shunsuke; Ogawa, Shunichi; Yokoi, Yuka; Takahashi, Naoaki

    2015-01-01

    [Purpose] The aim of the present study was to examine, in patients requiring prolonged mechanical ventilation, if the response of tidal volume during manually assisted breathing is dependent upon both upper extremity muscle tone and the pressure intensity of manually assisted breathing. [Subjects] We recruited 13 patients on prolonged mechanical ventilation, and assessed their upper extremity muscle tone using the modified Ashworth scale (MAS). The subjects were assigned to either the low MAS group (MAS≤2, n=7) or the high MAS group (MAS≥3, n=6). [Methods] The manually assisted breathing technique was applied at a pressure of 2 kgf and 4 kgf. A split-plot ANOVA was performed to compare the tidal volume of each pressure during manually assisted breathing between the low and the high MAS groups. [Results] Statistical analysis showed there were main effects of the upper extremity muscle tone and the pressure intensity of the manually assisted breathing technique. There was no interaction between these factors. [Conclusion] Our findings reveal that the tidal volume during the manually assisted breathing technique for patients with prolonged mechanical ventilation depends upon the patient’s upper extremity muscle tone and the pressure intensity. PMID:26357431

  9. Macrophage PPARγ is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones

    PubMed Central

    Hevener, Andrea L.; Olefsky, Jerrold M.; Reichart, Donna; Nguyen, M.T. Audrey; Bandyopadyhay, Gautam; Leung, Ho-Yin; Watt, Matthew J.; Benner, Chris; Febbraio, Mark A.; Nguyen, Anh-Khoi; Folian, Brian; Subramaniam, Shankar; Gonzalez, Frank J.; Glass, Christopher K.; Ricote, Mercedes

    2007-01-01

    PPARγ is required for fat cell development and is the molecular target of antidiabetic thiazolidinediones (TZDs), which exert insulin-sensitizing effects in adipose tissue, skeletal muscle, and liver. Unexpectedly, we found that inactivation of PPARγ in macrophages results in the development of significant glucose intolerance plus skeletal muscle and hepatic insulin resistance in lean mice fed a normal diet. This phenotype was associated with increased expression of inflammatory markers and impaired insulin signaling in adipose tissue, muscle, and liver. PPARγ-deficient macrophages secreted elevated levels of factors that impair insulin responsiveness in muscle cells in a manner that was enhanced by exposure to FFAs. Consistent with this, the relative degree of insulin resistance became more severe in mice lacking macrophage PPARγ following high-fat feeding, and these mice were only partially responsive to TZD treatment. These findings reveal an essential role of PPARγ in macrophages for the maintenance of whole-body insulin action and in mediating the antidiabetic actions of TZDs. PMID:17525798

  10. Organelle positioning in muscles requires cooperation between two KASH proteins and microtubules

    PubMed Central

    Elhanany-Tamir, Hadas; Yu, Yanxun V.; Shnayder, Miri; Jain, Ankit; Welte, Michael

    2012-01-01

    Striated muscle fibers are characterized by their tightly organized cytoplasm. Here, we show that the Drosophila melanogaster KASH proteins Klarsicht (Klar) and MSP-300 cooperate in promoting even myonuclear spacing by mediating a tight link between a newly discovered MSP-300 nuclear ring and a polarized network of astral microtubules (aMTs). In either klar or msp-300ΔKASH, or in klar and msp-300 double heterozygous mutants, the MSP-300 nuclear ring and the aMTs retracted from the nuclear envelope, abrogating this even nuclear spacing. Anchoring of the myonuclei to the core acto-myosin fibrillar compartment was mediated exclusively by MSP-300. This protein was also essential for promoting even distribution of the mitochondria and ER within the muscle fiber. Larval locomotion is impaired in both msp-300 and klar mutants, and the klar mutants were rescued by muscle-specific expression of Klar. Thus, our results describe a novel mechanism of nuclear spacing in striated muscles controlled by the cooperative activity of MSP-300, Klar, and astral MTs, and demonstrate its physiological significance. PMID:22927463

  11. Ck2-Dependent Phosphorylation Is Required to Maintain Pax7 Protein Levels in Proliferating Muscle Progenitors

    PubMed Central

    González, Natalia; Moresco, James J.; Bustos, Francisco; Yates, John R.; Olguín, Hugo C.

    2016-01-01

    Skeletal muscle regeneration and long term maintenance is directly link to the balance between self-renewal and differentiation of resident adult stem cells known as satellite cells. In turn, satellite cell fate is influenced by a functional interaction between the transcription factor Pax7 and members of the MyoD family of muscle regulatory factors. Thus, changes in the Pax7-to-MyoD protein ratio may act as a molecular rheostat fine-tuning acquisition of lineage identity while preventing precocious terminal differentiation. Pax7 is expressed in quiescent and proliferating satellite cells, while its levels decrease sharply in differentiating progenitors Pax7 is maintained in cells (re)acquiring quiescence. While the mechanisms regulating Pax7 levels based on differentiation status are not well understood, we have recently described that Pax7 levels are directly regulated by the ubiquitin-ligase Nedd4, thus promoting proteasome-dependent Pax7 degradation in differentiating satellite cells. Here we show that Pax7 levels are maintained in proliferating muscle progenitors by a mechanism involving casein kinase 2-dependent Pax7 phosphorylation at S201. Point mutations preventing S201 phosphorylation or casein kinase 2 inhibition result in decreased Pax7 protein in proliferating muscle progenitors. Accordingly, this correlates directly with increased Pax7 ubiquitination. Finally, Pax7 down regulation induced by casein kinase 2 inhibition results in precocious myogenic induction, indicating early commitment to terminal differentiation. These observations highlight the critical role of post translational regulation of Pax7 as a molecular switch controlling muscle progenitor fate. PMID:27144531

  12. RyR1-specific requirement for depolarization-induced Ca2+ sparks in urinary bladder smooth muscle.

    PubMed

    Fritz, Nicolas; Morel, Jean-Luc; Jeyakumar, Loice H; Fleischer, Sidney; Allen, Paul D; Mironneau, Jean; Macrez, Nathalie

    2007-11-01

    Ryanodine receptor subtype 1 (RyR1) has been primarily characterized in skeletal muscle but several studies have revealed its expression in smooth muscle. Here, we used Ryr1-null mice to investigate the role of this isoform in Ca(2+) signaling in urinary bladder smooth muscle. We show that RyR1 is required for depolarization-induced Ca(2+) sparks, whereas RyR2 and RyR3 are sufficient for spontaneous or caffeine-induced Ca(2+) sparks. Immunostaining revealed specific subcellular localization of RyR1 in the superficial sarcoplasmic reticulum; by contrast, RyR2 and RyR3 are mainly expressed in the deep sarcoplasmic reticulum. Paradoxically, lack of depolarization-induced Ca(2+) sparks in Ryr1(-/-) myocytes was accompanied by an increased number of cells displaying spontaneous or depolarization-induced Ca(2+) waves. Investigation of protein expression showed that FK506-binding protein (FKBP) 12 and FKBP12.6 (both of which are RyR-associated proteins) are downregulated in Ryr1(-/-) myocytes, whereas expression of RyR2 and RyR3 are unchanged. Moreover, treatment with rapamycin, which uncouples FKBPs from RyR, led to an increase of RyR-dependent Ca(2+) signaling in wild-type urinary bladder myocytes but not in Ryr1(-/-) myocytes. In conclusion, although decreased amounts of FKBP increase Ca(2+) signals in Ryr1(-/-) urinary bladder myocytes the depolarization-induced Ca(2+) sparks are specifically lost, demonstrating that RyR1 is required for depolarization-induced Ca(2+) sparks and suggesting that the intracellular localization of RyR1 fine-tunes Ca(2+) signals in smooth muscle.

  13. Pyruvate and citric acid cycle carbon requirements in isolated skeletal muscle mitochondria.

    PubMed

    Messer, Jeffrey I; Jackman, Matthew R; Willis, Wayne T

    2004-03-01

    Carbohydrate depletion precipitates fatigue in skeletal muscle, but, because pyruvate provides both acetyl-CoA for mainline oxidation and anaplerotic carbon to the citric acid cycle (CAC), the mechanism remains obscure. Thus pyruvate and CAC kinetic parameters were independently quantified in mitochondria isolated from rat mixed skeletal muscle. Mitochondrial oxygen consumption rate (Jo) was measured polarographically while either pyruvate or malate was added stepwise in the presence of a saturating concentration of the other substrate. These substrate titrations were carried out across a physiological range of fixed extramitochondrial ATP free energy states (DeltaGP), established with a creatine kinase energy clamp, and also at saturating [ADP]. The apparent Km,malate for mitochondrial Jo ranged from 21 to 32 microM, and the apparent Km,pyruvate ranged from 12 to 26 microM, with both substrate Km values increasing as DeltaGP declined. Vmax for both substrates also increased as DeltaGP fell, reflecting thermodynamic control of Jo. Reported in vivo skeletal muscle [malate] are >10-fold greater than the Km,malate determined in this study. In marked contrast, the K(m,pyruvate) determined is near the [pyruvate] reported in muscle approaching exhaustion associated with glycogen depletion. When data were evaluated in the context of a linear thermodynamic force-flow (DeltaGP-Jo) relationship, the DeltaGP-Jo slope was essentially insensitive to changes in [malate] in the range observed in vivo but decreased markedly with declining [pyruvate] across the physiological range. Mitochondrial respiration is particularly sensitive to variations in [pyruvate] in the physiological range. In contrast, physiological [malate] exerts very little, if any, influence on mitochondrial pyruvate oxidation measured in vitro.

  14. Dynamic calcium requirements for activation of rabbit papillary muscle calculated from tension-independent heat.

    PubMed

    Blanchard, E M; Mulieri, L A; Alpert, N R

    1990-04-03

    The heat generated by right ventricular papillary muscles of rabbits was measured after adenosine triphosphate (ATP) splitting by the contractile proteins was chemically inhibited. This tension-independent heat (TIH) (1 mJ/g wet weight) was used to calculate the total calcium (Ca) cycled in a muscle twitch by assuming that 87% of TIH was due to Ca2+ transport by the sarcoplasmic reticulum with a coupling ratio of 2 Ca2+/ATP split; the enthalpy of creatine phosphate hydrolysis buffering ATP was taken as -34 KJ/mol. The estimated Ca turnover per muscle twitch at 21 degrees C, 0.2 Hz pacing rate, and 2.5 mM Ca in the Krebs solution was approximately equal to 50 nmol/g wet weight. There was a tight positive correlation between TIH and mechanical activation during steady-state measurements but no correlation during the sharp increase in mechanical activation (treppe) when stimulation was resumed after a rest period. It is suggested that while total Ca cycling remains unchanged during the initial period of tension treppe, the free Ca2+ transient and mechanical activation increase sharply due to resaturation of high affinity Ca2+ buffers, other than troponin C, depleted of Ca2+ during the rest period.

  15. Calmodulin kinase II is required for angiotensin II-mediated vascular smooth muscle hypertrophy

    PubMed Central

    Li, Hui; Li, Weiwei; Gupta, Arun K.; Mohler, Peter J.; Anderson, Mark E.

    2010-01-01

    Despite our understanding that medial smooth muscle hypertrophy is a central feature of vascular remodeling, the molecular pathways underlying this pathology are still not well understood. Work over the past decade has illustrated a potential role for the multifunctional calmodulin-dependent kinase CaMKII in smooth muscle cell contraction, growth, and migration. Here we demonstrate that CaMKII is enriched in vascular smooth muscle (VSM) and that CaMKII inhibition blocks ANG II-dependent VSM cell hypertrophy in vitro and in vivo. Specifically, systemic CaMKII inhibition with KN-93 prevented ANG II-mediated hypertension and medial hypertrophy in vivo. Adenoviral transduction with the CaMKII peptide inhibitor CaMKIIN abrogated ANG II-induced VSM hypertrophy in vitro, which was augmented by overexpression of CaMKII-δ2. Finally, we identify the downstream signaling components critical for ANG II- and CaMKII-mediated VSM hypertrophy. Specifically, we demonstrate that CaMKII induces VSM hypertrophy by regulating histone deacetylase 4 (HDAC4) activity, thereby stimulating activity of the hypertrophic transcription factor MEF2. MEF2 transcription is activated by ANG II in vivo and abrogated by the CaMKII inhibitor KN-93. Together, our studies identify a complete pathway for ANG II-triggered arterial VSM hypertrophy and identify new potential therapeutic targets for chronic human hypertension. PMID:20023119

  16. Calmodulin kinase II is required for angiotensin II-mediated vascular smooth muscle hypertrophy.

    PubMed

    Li, Hui; Li, Weiwei; Gupta, Arun K; Mohler, Peter J; Anderson, Mark E; Grumbach, Isabella M

    2010-02-01

    Despite our understanding that medial smooth muscle hypertrophy is a central feature of vascular remodeling, the molecular pathways underlying this pathology are still not well understood. Work over the past decade has illustrated a potential role for the multifunctional calmodulin-dependent kinase CaMKII in smooth muscle cell contraction, growth, and migration. Here we demonstrate that CaMKII is enriched in vascular smooth muscle (VSM) and that CaMKII inhibition blocks ANG II-dependent VSM cell hypertrophy in vitro and in vivo. Specifically, systemic CaMKII inhibition with KN-93 prevented ANG II-mediated hypertension and medial hypertrophy in vivo. Adenoviral transduction with the CaMKII peptide inhibitor CaMKIIN abrogated ANG II-induced VSM hypertrophy in vitro, which was augmented by overexpression of CaMKII-delta2. Finally, we identify the downstream signaling components critical for ANG II- and CaMKII-mediated VSM hypertrophy. Specifically, we demonstrate that CaMKII induces VSM hypertrophy by regulating histone deacetylase 4 (HDAC4) activity, thereby stimulating activity of the hypertrophic transcription factor MEF2. MEF2 transcription is activated by ANG II in vivo and abrogated by the CaMKII inhibitor KN-93. Together, our studies identify a complete pathway for ANG II-triggered arterial VSM hypertrophy and identify new potential therapeutic targets for chronic human hypertension.

  17. Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest

    PubMed Central

    Manderfield, Lauren J.; Aghajanian, Haig; Engleka, Kurt A.; Lim, Lillian Y.; Liu, Feiyan; Jain, Rajan; Li, Li; Olson, Eric N.; Epstein, Jonathan A.

    2015-01-01

    Notch signaling has well-defined roles in the assembly of arterial walls and in the development of the endothelium and smooth muscle of the vasculature. Hippo signaling regulates cellular growth in many tissues, and contributes to regulation of organ size, in addition to other functions. Here, we show that the Notch and Hippo pathways converge to regulate smooth muscle differentiation of the neural crest, which is crucial for normal development of the aortic arch arteries and cranial vasculature during embryonic development. Neural crest-specific deletion of the Hippo effectors Yap and Taz produces neural crest precursors that migrate normally, but fail to produce vascular smooth muscle, and Notch target genes such as Jagged1 fail to activate normally. We show that Yap is normally recruited to a tissue-specific Jagged1 enhancer by directly interacting with the Notch intracellular domain (NICD). The Yap-NICD complex is recruited to chromatin by the DNA-binding protein Rbp-J in a Tead-independent fashion. Thus, Hippo signaling can modulate Notch signaling outputs, and components of the Hippo and Notch pathways physically interact. Convergence of Hippo and Notch pathways by the mechanisms described here might be relevant for the function of these signaling cascades in many tissues and in diseases such as cancer. PMID:26253400

  18. Smooth muscle cell proliferation in the occluded rat carotid artery: lack of requirement for luminal platelets.

    PubMed Central

    Guyton, J. R.; Karnovsky, M. J.

    1979-01-01

    The relationship of intimal smooth muscle cell proliferation in the permanently occluded rat carotid artery to the presence or absence of luminal platelets was examined. Blood was rinsed from the arterial lumen immediately after occlusion and was replaced by autologous, citrated platelet-rich plasma (PRP, 6 to 20 X 10(5) platelets/microliter) or filtered platelet-poor plasma (PPP, less than 100 platelets/microliter). Occluded arteries were studied after 1 to 28 days by light and electron microscopy. Events occurring within the first 2 days included fibrin clot formation, endothelial degeneration and denudation, transmural migration of polymorphonucelar leukocytes and monocytes, and, in PRP-filled arteries, degranulation and disappearance of platelets. By 7 days a neointima was formed by macrophages and undifferentiated cells. The latter cells had some features of vascular smooth muscle cells and were apparently derived from medial cells which traversed the internal elastic lamina. After 14 days, identifiable smooth muscle cells emerged as the predominant cell type in a rapidly growing intimal plaque. No differences could be discerned between arteries originally filled with PRP or PPP. This experimental model is similar to atherosclerosis in dimensions of avascular area and in coexistence of degenerative, inflammatory, and proliferative processes. Cell proliferation deep within an atherosclerotic plaque could be initiated by factors other than platelets, perhaps by products of inflammatory cells. Images Figure 4 Figure 7 Figure 6 Figure 1 Figure 2 Figure 3 Figure 8 Figure 5 PMID:426040

  19. Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo: Nrk2b and NAD+ in muscle morphogenesis.

    PubMed

    Goody, Michelle F; Kelly, Meghan W; Lessard, Kevin N; Khalil, Andre; Henry, Clarissa A

    2010-08-15

    Cell-matrix adhesion complexes (CMACs) play fundamental roles during morphogenesis. Given the ubiquitous nature of CMACs and their roles in many cellular processes, one question is how specificity of CMAC function is modulated. The clearly defined cell behaviors that generate segmentally reiterated axial skeletal muscle during zebrafish development comprise an ideal system with which to investigate CMAC function during morphogenesis. We found that Nicotinamide riboside kinase 2b (Nrk2b) cell autonomously modulates the molecular composition of CMACs in vivo. Nrk2b is required for normal Laminin polymerization at the myotendinous junction (MTJ). In Nrk2b-deficient embryos, at MTJ loci where Laminin is not properly polymerized, muscle fibers elongate into adjacent myotomes and are abnormally long. In yeast and human cells, Nrk2 phosphorylates Nicotinamide Riboside and generates NAD+ through an alternative salvage pathway. Exogenous NAD+ treatment rescues MTJ development in Nrk2b-deficient embryos, but not in laminin mutant embryos. Both Nrk2b and Laminin are required for localization of Paxillin, but not beta-Dystroglycan, to CMACs at the MTJ. Overexpression of Paxillin in Nrk2b-deficient embryos is sufficient to rescue MTJ integrity. Taken together, these data show that Nrk2b plays a specific role in modulating subcellular localization of discrete CMAC components that in turn plays roles in musculoskeletal development. Furthermore, these data suggest that Nrk2b-mediated synthesis of NAD+ is functionally upstream of Laminin adhesion and Paxillin subcellular localization during MTJ development. These results indicate a previously unrecognized complexity to CMAC assembly in vivo and also elucidate a novel role for NAD+ during morphogenesis. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Muscle-specific function of the centronuclear myopathy and Charcot-Marie-Tooth neuropathy-associated dynamin 2 is required for proper lipid metabolism, mitochondria, muscle fibers, neuromuscular junctions and peripheral nerves.

    PubMed

    Tinelli, Elisa; Pereira, Jorge A; Suter, Ueli

    2013-11-01

    The ubiquitously expressed large GTPase Dynamin 2 (DNM2) plays a critical role in the regulation of intracellular membrane trafficking through its crucial function in membrane fission, particularly in endocytosis. Autosomal-dominant mutations in DNM2 cause tissue-specific human disorders. Different sets of DNM2 mutations are linked to dominant intermediate Charcot-Marie-Tooth neuropathy type B, a motor and sensory neuropathy affecting primarily peripheral nerves, or autosomal-dominant centronuclear myopathy (CNM) presenting with primary damage in skeletal muscles. To understand the underlying disease mechanisms, it is imperative to determine to which degree the primary affected cell types require DNM2. Thus, we used cell type-specific gene ablation to examine the consequences of DNM2 loss in skeletal muscle cells, the major relevant cell type involved in CNM. We found that DNM2 function in skeletal muscle is required for proper mouse development. Skeletal muscle-specific loss of DNM2 causes a reduction in muscle mass and in the numbers of muscle fibers, altered muscle fiber size distributions, irregular neuromuscular junctions (NMJs) and isolated degenerating intramuscular peripheral nerve fibers. Intriguingly, a lack of muscle-expressed DNM2 triggers an increase of lipid droplets (LDs) and mitochondrial defects. We conclude that loss of DNM2 function in skeletal muscles initiates a chain of harmful parallel and serial events, involving dysregulation of LDs and mitochondrial defects within altered muscle fibers, defective NMJs and peripheral nerve degeneration. These findings provide the essential basis for further studies on DNM2 function and malfunction in skeletal muscles in health and disease, potentially including metabolic diseases such as diabetes.

  1. The Caenorhabditis elegans NK-2 homeobox gene ceh-22 activates pharyngeal muscle gene expression in combination with pha-1 and is required for normal pharyngeal development.

    PubMed

    Okkema, P G; Ha, E; Haun, C; Chen, W; Fire, A

    1997-10-01

    Pharyngeal muscle development in the nematode Caenorhabditis elegans appears to share similarities with cardiac muscle development in other species. We have previously described CEH-22, an NK-2 class homeodomain transcription factor similar to Drosophila tinman and vertebrate Nkx2-5, which is expressed exclusively in the pharyngeal muscles. In vitro, CEH-22 binds the enhancer from myo-2, a pharyngeal muscle-specific myosin heavy chain gene. In this paper, we examine the role CEH-22 plays in pharyngeal muscle development and gene activation by (a) ectopically expressing ceh-22 in transgenic C. elegans and (b) examining the phenotype of a ceh-22 loss-of-function mutant. These experiments indicate that CEH-22 is an activator of myo-2 expression and that it is required for normal pharyngeal muscle development. However, ceh-22 is necessary for neither formation of the pharyngeal muscles, nor for myo-2 expression. Our data suggest parallel and potentially compensating pathways contribute to pharyngeal muscle differentiation. We also examine the relationship between ceh-22 and the pharyngeal organ-specific differentiation gene pha-1. Mutations in ceh-22 and pha-1 have strongly synergistic effects on pharyngeal muscle gene expression; in addition, a pha-1 mutation enhances the lethal phenotype caused by a mutation in ceh-22. Wild-type pha-1 is not required for the onset of ceh-22 expression but it appears necessary for maintained expression of ceh-22.

  2. STIM1 signaling controls store operated calcium entry required for development and contractile function in skeletal muscle

    PubMed Central

    Stiber, Jonathan; Hawkins, April; Zhang, Zhu-Shan; Wang, Sunny; Burch, Jarrett; Graham, Victoria; Ward, Cary C.; Seth, Malini; Finch, Elizabeth; Malouf, Nadia; Williams, R. Sanders; Eu, Jerry P.; Rosenberg, Paul

    2009-01-01

    It is now well established that stromal interaction molecule 1 (STIM1) is the calcium sensor of endoplasmic reticulum (ER) stores required to activate store-operated calcium entry (SOC) channels at the surface of non-excitable cells. Yet little is known about STIM1 in excitable cells such as striated muscle where the complement of calcium regulatory molecules is rather disparate from that of non-excitable cells. Here, we show that STIM1 is expressed in both myotubes and adult skeletal muscle. Myotubes lacking functional STIM1 fail to exhibit SOC and fatigue rapidly. Moreover, mice lacking functional STIM1 die perinatally from a skeletal myopathy. In addition, STIM1 haploinsufficiency confers a contractile defect only under conditions where rapid refilling of stores would be needed. These findings provide novel insight to the role of STIM1 in skeletal muscle and suggest that STIM1 has a universal role as an ER/SR calcium sensor in both excitable and non-excitable cells. PMID:18488020

  3. Skeletal muscle contraction. The thorough definition of the contractile event requires both load acceleration and load mass to be known.

    PubMed

    Grazi, Enrico; Pozzati, Sara

    2010-06-18

    The scope of this work is to show that the correct and complete definition of the system of muscle contraction requires the knowledge of both the mass and the acceleration of the load. The aim is achieved by making use of a model of muscle contraction that operates into two phases. The first phase considers the effects of the power stroke in the absence of any hindrance. In the second phase viscous hindrance is introduced to match the experimental speed and yield of the contraction. It is shown that, at constant force of the load, changing load acceleration changes the time course of the pre-steady state of myofibril contraction. The decrease of the acceleration of the load from 9.8 m.s(-2) to 1 m.s(-2) increases the time length of the pre-steady state of the contraction from a few microseconds to many hundreds of microseconds and decreases the stiffness of the active fibre. We urge that in the study of muscle contraction both the mass and the acceleration of the load are specified.

  4. Structural requirements for voltage-dependent block of muscle sodium channels by phenol derivatives

    PubMed Central

    Haeseler, G; Piepenbrink, A; Bufler, J; Dengler, R; Aronson, J K; Piepenbrock, S; Leuwer, M

    2001-01-01

    We have studied the effects of four different phenol derivatives, with methyl and halogen substituents, on heterologously expressed human skeletal muscle sodium channels, in order to find structural determinants of blocking potency.All compounds blocked skeletal muscle sodium channels in a concentration-dependent manner. The methylated phenol 3-methylphenol and the halogenated phenol 4-chlorophenol blocked sodium currents on depolarization from −100 mV to 0 mV with IC50 values of 2161 and 666 μM respectively. Methylation of the halogenated compound further increased potency, reducing the IC50 to 268 μM in 2-methyl-4-chlorophenol and to 150 μM in 3,5-dimethyl-4-chlorophenol.Membrane depolarization before the test depolarization increased sodium channel blockade. When depolarizations were started from −70 mV or when a 2.5 s prepulse was introduced before the test pulse inducing slow inactivation, the IC50 was reduced more than 3 fold in all compounds. The values of KD for the fast-inactivated state derived from drug-induced shifts in steady-state availability curves were 14 μM for 3,5-dimethyl-4-chlorophenol, 19 μM for 2-methyl-4-chlorophenol, 26 μM for 4-chlorophenol and 115 μM for 3-methylphenol.All compounds accelerated the current decay during depolarization and slowed recovery from fast inactivation. No relevant frequency-dependent block after depolarizing pulses applied at 10, 50 and 100 Hz was detected for any of the compounds.All the phenol derivatives that we examined are effective blockers of skeletal muscle sodium channels, especially in conditions that are associated with membrane depolarization. Blocking potency is increased by halogenation and by methylation with increasing numbers of methyl groups. PMID:11309264

  5. Frequency modulation during song in a suboscine does not require vocal muscles.

    PubMed

    Amador, Ana; Goller, Franz; Mindlin, Gabriel B

    2008-05-01

    The physiology of sound production in suboscines is poorly investigated. Suboscines are thought to develop song innately unlike the closely related oscines. Comparing phonatory mechanisms might therefore provide interesting insight into the evolution of vocal learning. Here we investigate sound production and control of sound frequency in the Great Kiskadee (Pitangus sulfuratus) by recording air sac pressure and vocalizations during spontaneously generated song. In all the songs and calls recorded, the modulations of the fundamental frequency are highly correlated to air sac pressure. To test whether this relationship reflects frequency control by changing respiratory activity or indicates synchronized vocal control, we denervated the syringeal muscles by bilateral resection of the tracheosyringeal nerve. After denervation, the strong correlation between fundamental frequency and air sac pressure patterns remained unchanged. A single linear regression relates sound frequency to air sac pressure in the intact and denervated birds. This surprising lack of control by syringeal muscles of frequency in Kiskadees, in strong contrast to songbirds, poses the question of how air sac pressure regulates sound frequency. To explore this question theoretically, we assume a nonlinear restitution force for the oscillating membrane folds in a two mass model of sound production. This nonlinear restitution force is essential to reproduce the frequency modulations of the observed vocalizations.

  6. SOX7 Is Required for Muscle Satellite Cell Development and Maintenance.

    PubMed

    Rajgara, Rashida F; Lala-Tabbert, Neena; Marchildon, François; Lamarche, Émilie; MacDonald, Jennifer K; Scott, Daryl A; Blais, Alexandre; Skerjanc, Ilona S; Wiper-Bergeron, Nadine

    2017-10-10

    Satellite cells are skeletal-muscle-specific stem cells that are activated by injury to proliferate, differentiate, and fuse to enable repair. SOX7, a member of the SRY-related HMG-box family of transcription factors is expressed in quiescent satellite cells. To elucidate SOX7 function in skeletal muscle, we knocked down Sox7 expression in embryonic stem cells and primary myoblasts and generated a conditional knockout mouse in which Sox7 is excised in PAX3(+) cells. Loss of Sox7 in embryonic stem cells reduced Pax3 and Pax7 expression. In vivo, conditional knockdown of Sox7 reduced the satellite cell population from birth, reduced myofiber caliber, and impaired regeneration after acute injury. Although Sox7-deficient primary myoblasts differentiated normally, impaired myoblast fusion and increased sensitivity to apoptosis in culture and in vivo were observed. Taken together, these results indicate that SOX7 is dispensable for myogenesis but is necessary to promote satellite cell development and survival. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish.

    PubMed

    Fujii, Tomoaki; Tsunesumi, Shin-ichiro; Yamaguchi, Kiyoshi; Watanabe, Sumiko; Furukawa, Yoichi

    2011-01-01

    Modifications of histone tails are involved in the regulation of a wide range of biological processes including cell cycle, cell survival, cell division, and cell differentiation. Among the modifications, histone methylation plays a critical role in cardiac and skeletal muscle differentiation. In our earlier studies, we found that SMYD3 has methyltransferase activity to histone H3 lysine 4, and that its up-regulation is involved in the tumorigenesis of human colon, liver, and breast. To clarify the role of Smyd3 in development, we have studied its expression patterns in zebrafish embryos and the effect of its suppression on development using Smyd3-specific antisense morpholino-oligonucleotides. We here show that transcripts of smyd3 were expressed in zebrafish embryos at all developmental stages examined and that knockdown of smyd3 in embryos resulted in pericardial edema and defects in the trunk structure. In addition, these phenotypes were associated with abnormal expression of three heart-chamber markers including cmlc2, amhc and vmhc, and abnormal expression of myogenic regulatory factors including myod and myog. These data suggest that Smyd3 plays an important role in the development of heart and skeletal muscle.

  8. Transmembrane Protein 184A Is a Receptor Required for Vascular Smooth Muscle Cell Responses to Heparin.

    PubMed

    Pugh, Raymond J; Slee, Joshua B; Farwell, Sara Lynn N; Li, Yaqiu; Barthol, Trista; Patton, Walter A; Lowe-Krentz, Linda J

    2016-03-04

    Vascular cell responses to exogenous heparin have been documented to include decreased vascular smooth muscle cell proliferation following decreased ERK pathway signaling. However, the molecular mechanism(s) by which heparin interacts with cells to induce those responses has remained unclear. Previously characterized monoclonal antibodies that block heparin binding to vascular cells have been found to mimic heparin effects. In this study, those antibodies were employed to isolate a heparin binding protein. MALDI mass spectrometry data provide evidence that the protein isolated is transmembrane protein 184A (TMEM184A). Commercial antibodies against three separate regions of the TMEM184A human protein were used to identify the TMEM184A protein in vascular smooth muscle cells and endothelial cells. A GFP-TMEM184A construct was employed to determine colocalization with heparin after endocytosis. Knockdown of TMEM184A eliminated the physiological responses to heparin, including effects on ERK pathway activity and BrdU incorporation. Isolated GFP-TMEM184A binds heparin, and overexpression results in additional heparin uptake. Together, these data support the identification of TMEM184A as a heparin receptor in vascular cells.

  9. Troponin T3 expression in skeletal and smooth muscle is required for growth and postnatal survival: characterization of Tnnt3(tm2a(KOMP)Wtsi) mice.

    PubMed

    Ju, Yawen; Li, Jie; Xie, Chao; Ritchlin, Christopher T; Xing, Lianping; Hilton, Matthew J; Schwarz, Edward M

    2013-09-01

    The troponin complex, which consists of three regulatory proteins (troponin C, troponin I, and troponin T), is known to regulate muscle contraction in skeletal and cardiac muscle, but its role in smooth muscle remains controversial. Troponin T3 (TnnT3) is a fast skeletal muscle troponin believed to be expressed only in skeletal muscle cells. To determine the in vivo function and tissue-specific expression of Tnnt3, we obtained the heterozygous Tnnt3+/flox/lacZ mice from Knockout Mouse Project (KOMP) Repository. Tnnt3(lacZ/+) mice are smaller than their WT littermates throughout development but do not display any gross phenotypes. Tnnt3(lacZ/lacZ) embryos are smaller than heterozygotes and die shortly after birth. Histology revealed hemorrhagic tissue in Tnnt3(lacZ/lacZ) liver and kidney, which was not present in Tnnt3(lacZ/+) or WT, but no other gross tissue abnormalities. X-gal staining for Tnnt3 promoter-driven lacZ transgene expression revealed positive staining in skeletal muscle and diaphragm and smooth muscle cells located in the aorta, bladder, and bronchus. Collectively, these findings suggest that troponins are expressed in smooth muscle and are required for normal growth and breathing for postnatal survival. Moreover, future studies with this mouse model can explore TnnT3 function in adult muscle function using the conditional-inducible gene deletion approach

  10. Calmodulin Methyltransferase Is Required for Growth, Muscle Strength, Somatosensory Development and Brain Function.

    PubMed

    Haziza, Sitvanit; Magnani, Roberta; Lan, Dima; Keinan, Omer; Saada, Ann; Hershkovitz, Eli; Yanay, Nurit; Cohen, Yoram; Nevo, Yoram; Houtz, Robert L; Sheffield, Val C; Golan, Hava; Parvari, Ruti

    2015-08-01

    Calmodulin lysine methyl transferase (CaM KMT) is ubiquitously expressed and highly conserved from plants to vertebrates. CaM is frequently trimethylated at Lys-115, however, the role of CaM methylation in vertebrates has not been studied. CaM KMT was found to be homozygously deleted in the 2P21 deletion syndrome that includes 4 genes. These patients present with cystinuria, severe intellectual disabilities, hypotonia, mitochondrial disease and facial dysmorphism. Two siblings with deletion of three of the genes included in the 2P21 deletion syndrome presented with cystinuria, hypotonia, a mild/moderate mental retardation and a respiratory chain complex IV deficiency. To be able to attribute the functional significance of the methylation of CaM in the mouse and the contribution of CaM KMT to the clinical presentation of the 2p21deletion patients, we produced a mouse model lacking only CaM KMT with deletion borders as in the human 2p21deletion syndrome. No compensatory activity for CaM methylation was found. Impairment of complexes I and IV, and less significantly III, of the mitochondrial respiratory chain was more pronounced in the brain than in muscle. CaM KMT is essential for normal body growth and somatosensory development, as well as for the proper functioning of the adult mouse brain. Developmental delay was demonstrated for somatosensory function and for complex behavior, which involved both basal motor function and motivation. The mutant mice also had deficits in motor learning, complex coordination and learning of aversive stimuli. The mouse model contributes to the evaluation of the role of methylated CaM. CaM methylation appears to have a role in growth, muscle strength, somatosensory development and brain function. The current study has clinical implications for human patients. Patients presenting slow growth and muscle weakness that could result from a mitochondrial impairment and mental retardation should be considered for sequence analysis of the Ca

  11. Calmodulin Methyltransferase Is Required for Growth, Muscle Strength, Somatosensory Development and Brain Function

    PubMed Central

    Haziza, Sitvanit; Magnani, Roberta; Lan, Dima; Keinan, Omer; Saada, Ann; Hershkovitz, Eli; Yanay, Nurit; Cohen, Yoram; Nevo, Yoram; Houtz, Robert L.; Sheffield, Val C.; Golan, Hava; Parvari, Ruti

    2015-01-01

    Calmodulin lysine methyl transferase (CaM KMT) is ubiquitously expressed and highly conserved from plants to vertebrates. CaM is frequently trimethylated at Lys-115, however, the role of CaM methylation in vertebrates has not been studied. CaM KMT was found to be homozygously deleted in the 2P21 deletion syndrome that includes 4 genes. These patients present with cystinuria, severe intellectual disabilities, hypotonia, mitochondrial disease and facial dysmorphism. Two siblings with deletion of three of the genes included in the 2P21 deletion syndrome presented with cystinuria, hypotonia, a mild/moderate mental retardation and a respiratory chain complex IV deficiency. To be able to attribute the functional significance of the methylation of CaM in the mouse and the contribution of CaM KMT to the clinical presentation of the 2p21deletion patients, we produced a mouse model lacking only CaM KMT with deletion borders as in the human 2p21deletion syndrome. No compensatory activity for CaM methylation was found. Impairment of complexes I and IV, and less significantly III, of the mitochondrial respiratory chain was more pronounced in the brain than in muscle. CaM KMT is essential for normal body growth and somatosensory development, as well as for the proper functioning of the adult mouse brain. Developmental delay was demonstrated for somatosensory function and for complex behavior, which involved both basal motor function and motivation. The mutant mice also had deficits in motor learning, complex coordination and learning of aversive stimuli. The mouse model contributes to the evaluation of the role of methylated CaM. CaM methylation appears to have a role in growth, muscle strength, somatosensory development and brain function. The current study has clinical implications for human patients. Patients presenting slow growth and muscle weakness that could result from a mitochondrial impairment and mental retardation should be considered for sequence analysis of the Ca

  12. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle.

    PubMed

    Sparks, Lauren M; Xie, Hui; Koza, Robert A; Mynatt, Randall; Hulver, Matthew W; Bray, George A; Smith, Steven R

    2005-07-01

    Obesity and type 2 diabetes have been associated with a high-fat diet (HFD) and reduced mitochondrial mass and function. We hypothesized a HFD may affect expression of genes involved in mitochondrial function and biogenesis. To test this hypothesis, we fed 10 insulin-sensitive males an isoenergetic HFD for 3 days with muscle biopsies before and after intervention. Oligonucleotide microarray analysis revealed 297 genes were differentially regulated by the HFD (Bonferonni adjusted P < 0.001). Six genes involved in oxidative phosphorylation (OXPHOS) decreased. Four were members of mitochondrial complex I: NDUFB3, NDUFB5, NDUFS1, and NDUFV1; one was SDHB in complex II and a mitochondrial carrier protein SLC25A12. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC1) alpha and PGC1beta mRNA were decreased by -20%, P < 0.01, and -25%, P < 0.01, respectively. In a separate experiment, we fed C57Bl/6J mice a HFD for 3 weeks and found that the same OXPHOS and PGC1 mRNAs were downregulated by approximately 90%, cytochrome C and PGC1alpha protein by approximately 40%. Combined, these results suggest a mechanism whereby HFD downregulates genes necessary for OXPHOS and mitochondrial biogenesis. These changes mimic those observed in diabetes and insulin resistance and, if sustained, may result in mitochondrial dysfunction in the prediabetic/insulin-resistant state.

  13. Inhibition of smooth muscle cell proliferation by adiponectin requires proteolytic conversion to its globular form.

    PubMed

    Fuerst, Melissa; Taylor, Carla G; Wright, Brenda; Tworek, Leslee; Zahradka, Peter

    2012-10-01

    Accelerated atherosclerosis is the primary cardiovascular manifestation of diabetes and correlates inversely with levels of circulating adiponectin, an anti-atherosclerotic adipokine that declines in diabetes. We therefore initiated a study to examine the mechanisms by which adiponectin, a hormone released from adipose tissue, influences the proliferation of vascular smooth muscle cells (SMCs). Addition of adiponectin to quiescent porcine coronary artery SMCs increased both protein and DNA synthesis and concurrently activated ERK1/2 and Akt. By contrast, globular adiponectin, a truncated form of this protein, exhibited anti-mitogenic properties as indicated by the inhibition of protein and DNA synthesis in SMCs stimulated with platelet-derived growth factor (PDGF). Whereas globular adiponectin did not stimulate growth-related signal transduction pathways, it was able to block the PDGF-dependent phosphorylation of eukaryotic elongation factor 2 kinase, a regulator of protein synthesis. Proteolysis of adiponectin with trypsin, which produces globular adiponectin, reversed the growth-stimulating actions of the undigested protein. As the existence of globular adiponectin remains controversial, western blotting was used to establish its presence in rat serum. We found that globular adiponectin was detectable in rat serum, but this result was not obtained with all antibodies. The contrasting properties of adiponectin and its globular form with respect to SMC proliferation suggest that protection against atherosclerosis may therefore be mediated, in part, by the level of globular adiponectin.

  14. Smad4 is required for the development of cardiac and skeletal muscle in zebrafish.

    PubMed

    Yang, Jie; Wang, Junnai; Zeng, Zhen; Qiao, Long; Zhuang, Liang; Jiang, Lijun; Wei, Juncheng; Ma, Quanfu; Wu, Mingfu; Ye, Shuangmei; Gao, Qinglei; Ma, Ding; Huang, Xiaoyuan

    Transforming growth factor-beta (TGF-beta) regulates cellular functions and plays key roles in development and carcinogenesis. Smad4 is the central intracellular mediator of TGF-beta signaling and plays crucial roles in tissue regeneration, cell differentiation, embryonic development, regulation of the immune system and tumor progression. To clarify the role of smad4 in development, we examined both the pattern of smad4 expression in zebrafish embryos and the effect of smad4 suppression on embryonic development using smad4-specific antisense morpholino-oligonucleotides. We show that smad4 is expressed in zebrafish embryos at all developmental stages examined and that embryonic knockdown of smad4 results in pericardial edema, decreased heartbeat and defects in the trunk structure. Additionally, these phenotypes were associated with abnormal expression of the two heart-chamber markers, cmlc2 and vmhc, as well as abnormal expression of three makers of myogenic terminal differentiation, mylz2, smyhc1 and mck. Furthermore, a notable increase in apoptosis was apparent in the smad4 knockdown embryos, while no obvious reduction in cell proliferation was observed. Collectively, these data suggest that smad4 plays an important role in heart and skeletal muscle development. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  15. Subtilisin-like proprotein convertase PACE4 is required for skeletal muscle differentiation.

    PubMed

    Yuasa, Keizo; Masuda, Tetsuya; Yoshikawa, Chihiro; Nagahama, Masami; Matsuda, Yoshiko; Tsuji, Akihiko

    2009-09-01

    Most growth factors stimulate myoblast proliferation and prevent differentiation, whereas insulin-like growth factors (IGFs) promote myoblast differentiation through the phosphatidylinositol 3-kinase (PI3K) pathway. Subtilisin-like proprotein convertases (SPCs) are involved in cell growth and differentiation via activation of pro-growth factors. However, the role of SPCs in myogenesis remains poorly understood. Here we show that PACE4, a member of the SPC family, plays a critical role in myogenic differentiation of C2C12 cells. PACE4 mRNA levels increased markedly during myogenesis, whereas the expression of other member of SPC family, furin and PC6, remained unchanged. The expression pattern of pro-IGF-II, which is processed extracellularly by SPCs, was similar to that of PACE4. The expression of shRNA targeting PACE4, but not furin, suppressed the expression of the muscle-specific myosin light chain (MLC). Interestingly, reduced expression of MLC was restored following treatment with recombinant mature IGF-II. Finally, we demonstrated that the PI3K inhibitor LY294002 blocked the induction of PACE4 mRNA, a result not observed when another myogenic differentiation inhibitor, SB203580 (p38 MAP kinase inhibitor), was employed, indicating the presence of a positive feedback loop regulating PACE4 expression. These results suggest that PACE4 plays an important role in myogenic differentiation through its association with the IGF-II pathway.

  16. Adaptive Skeletal Muscle Action Requires Anticipation and “Conscious Broadcasting”

    PubMed Central

    Poehlman, T. Andrew; Jantz, Tiffany K.; Morsella, Ezequiel

    2012-01-01

    Historically, the conscious and anticipatory processes involved in voluntary action have been associated with the loftiest heights of nervous function. Concepts like mental time travel, “theory of mind,” and the formation of “the self” have been at the center of many attempts to determine the purpose of consciousness. Eventually, more reductionistic accounts of consciousness emerged, proposing rather that conscious states play a much more basic role in nervous function. Though the widely held integration consensus proposes that conscious states integrate information-processing structures and events that would otherwise be independent, Supramodular Interaction Theory (SIT) argues that conscious states are necessary for the integration of only certain kinds of information. As revealed in this selective review, this integration is related to what is casually referred to as “voluntary” action, which is intimately related to the skeletal muscle output system. Through a peculiar form of broadcasting, conscious integration often controls and guides action via “ideomotor” mechanisms, where anticipatory processes play a central role. Our selective review covers evidence (including findings from anesthesia research) for the integration consensus, SIT, and ideomotor theory. PMID:23264766

  17. The essential light chain is required for full force production by skeletal muscle myosin.

    PubMed Central

    VanBuren, P; Waller, G S; Harris, D E; Trybus, K M; Warshaw, D M; Lowey, S

    1994-01-01

    Myosin, a molecular motor that is responsible for muscle contraction, is composed of two heavy chains each with two light chains. The crystal structure of subfragment 1 indicates that both the regulatory light chains (RLCs) and the essential light chains (ELCs) stabilize an extended alpha-helical segment of the heavy chain. It has recently been shown in a motility assay that removal of either light chain markedly reduces actin filament sliding velocity without a significant loss in actin-activated ATPase activity. Here we demonstrate by single actin filament force measurements that RLC removal has little effect on isometric force, whereas ELC removal reduces isometric force by over 50%. These data are interpreted with a simple mechanical model where subfragment 1 behaves as a torque motor whose leyer arm length is sensitive to light-chain removal. Although the effect of removing RLCs fits within the confines of this model, altered crossbridge kinetics, as reflected in a reduced unloaded duty cycle, probably contributes to the reduced velocity and force production of ELC-deficient myosins. Images Fig. 2 PMID:7809049

  18. The mammalian Sin3 proteins are required for muscle development and sarcomere specification.

    PubMed

    van Oevelen, Chris; Bowman, Christopher; Pellegrino, Jessica; Asp, Patrik; Cheng, Jemmie; Parisi, Fabio; Micsinai, Mariann; Kluger, Yuval; Chu, Alphonse; Blais, Alexandre; David, Gregory; Dynlacht, Brian D

    2010-12-01

    The highly related mammalian Sin3A and Sin3B proteins provide a versatile platform for chromatin-modifying activities. Sin3-containing complexes play a role in gene repression through deacetylation of nucleosomes. Here, we explore a role for Sin3 in myogenesis by examining the phenotypes resulting from acute somatic deletion of both isoforms in vivo and from primary myotubes in vitro. Myotubes ablated for Sin3A alone, but not Sin3B, displayed gross defects in sarcomere structure that were considerably enhanced upon simultaneous ablation of both isoforms. Massively parallel sequencing of Sin3A- and Sin3B-bound genomic loci revealed a subset of target genes directly involved in sarcomere function that are positively regulated by Sin3A and Sin3B proteins. Both proteins were coordinately recruited to a substantial number of genes. Interestingly, depletion of Sin3B led to compensatory increases in Sin3A recruitment at certain target loci, but Sin3B was never found to compensate for Sin3A loss. Thus, our analyses describe a novel transcriptional role for Sin3A and Sin3B proteins associated with maintenance of differentiated muscle cells.

  19. Agonist-evoked calcium entry in vascular smooth muscle cells requires IP3 receptor-mediated activation of TRPC1.

    PubMed

    Tai, Khalid; Hamaide, Marie-Christine; Debaix, Huguette; Gailly, Philippe; Wibo, Maurice; Morel, Nicole

    2008-03-31

    Transient receptor potential canonical (TRPC) proteins have been proposed to function as plasma membrane Ca2+ channels activated by store depletion and/or by receptor stimulation. However, their role in the increase in cytosolic Ca2+ activated by contractile agonists in vascular smooth muscle is not yet elucidated. The present study was designed to investigate the functional and molecular properties of the Ca2+ entry pathway activated by endothelin-1 in primary cultured aortic smooth muscle cells. Measurement of the Ca2+ signal in fura-2-loaded cells allowed to characterize endothelin-1-evoked Ca2+ entry, which was resistant to dihydropyridine, and was blocked by 2-aminoethoxydiphenylborate (2-APB) and micromolar concentration of Gd3+. It was not activated by store depletion, but was inhibited by the endothelin ETA receptor antagonist BQ-123, and by heparin. On the opposite, thapsigargin-induced store depletion activated a Ca2+ entry pathway that was not affected by 2-APB, BQ-123 or heparin, and was less sensitive to Gd3+ than was endothelin-1-evoked Ca2+ entry. Investigation of the gene expression of TRPC isoforms by real-time RT-PCR revealed that TRPC1 was the most abundant. In cells transfected with TRPC1 small interfering RNA sequence, TRPC1 mRNA and protein expression were decreased by 72+/-3% and 86+/-2%, respectively, while TRPC6 expression was unaffected. In TRPC1 knockdown cells, both endothelin-1-evoked Ca2+ entry and store-operated Ca2+ entry evoked by thapsigargin were blunted. These results indicate that in aortic smooth muscle cells, TRPC1 is not only involved in Ca2+ entry activated by store depletion but also in receptor-operated Ca2+ entry, which requires inositol (1,4,5) triphosphate receptor activation.

  20. A comparison of muscle activity and 1-RM strength of three chest-press exercises with different stability requirements.

    PubMed

    Saeterbakken, Atle H; van den Tillaar, Roland; Fimland, Marius S

    2011-03-01

    The purpose of this study was to compare one-repetition maximum (1-RM) and muscle activity in three chest-press exercises with different stability requirements (Smith machine, barbell, and dumbbells). Twelve healthy, resistance-trained males (age 22.7 ± 1.7 years, body mass 78.6 ± 7.6 kg, stature 1.80 ± 0.06 m) were tested for 1-RM of the three chest-press exercises in counterbalanced order with 3-5 days of rest between the exercises. One-repetition maximum and electromyographic activity of the pectoralis major, deltoid anterior, biceps, and triceps brachii were recorded in the exercises. The dumbbell load was 14% less than that for the Smith machine (P ≤ 0.001, effect size [ES] = 1.05) and 17% less than that for the barbell (P ≤ 0.001, ES = 1.11). The barbell load was ∼3% higher than that for the Smith machine (P = 0.016, ES = 0.18). Electrical activity in the pectoralis major and anterior deltoid did not differ during the lifts. Electrical activity in the biceps brachii increased with stability requirements (i.e. Smith machine requirements in the chest press (dumbbells) result in similar (pectoralis major and anterior deltoid), lower (triceps brachii) or higher (biceps brachii) muscle activity. These findings have implications for athletic training and rehabilitation.

  1. The MEF-3 motif is required for MEF-2-mediated skeletal muscle-specific induction of the rat aldolase A gene.

    PubMed Central

    Hidaka, K; Yamamoto, I; Arai, Y; Mukai, T

    1993-01-01

    The rat aldolase A gene contains two alternative promoters and two alternative first exons. The distal promoter M is expressed at a high level only in skeletal muscle. Previous in vitro transfection studies identified the region from -202 to -85 as an enhancer that is responsible for dramatic activation during the differentiation of chicken primary myoblasts. This enhancer contains an A/T-rich sequence resembling the MEF-2 motif, which is an important element of muscle enhancers and promoters. In this study, we demonstrate that the MEF-2 sequence is essential but not sufficient for the activity of the enhancer. Another region required for the activity was recognized by a nuclear factor, tentatively named MAF1. MAF1 was found in both muscle cells and nonmuscle cells, and MAF1 from both cell types was indistinguishable by gel retardation and DNase I footprint experiments. The sequence required for MAF1 binding is very similar to the MEF-3 motif, which is an element of the skeletal muscle-specific enhancer of the cardiac troponin C gene. Because MAF1 and MEF-3 are closely related in both recognition sequence and distribution, MAF1 and MEF-3 probably represent the same nuclear factor which may play an important role in muscle gene transcription. Thus, the muscle-specific induction of the aldolase A gene is governed by muscle-specific MEF-2 and existing MEF-3 (MAF1). Images PMID:8413246

  2. Embryonic even skipped-Dependent Muscle and Heart Cell Fates Are Required for Normal Adult Activity, Heart Function, and Lifespan

    PubMed Central

    Fujioka, Miki; Wessells, Robert J.; Han, Zhe; Liu, Jiandong; Fitzgerald, Kerry; Yusibova, Galina L.; Zamora, Monica; Ruiz-Lozano, Pilar; Bodmer, Rolf; Jaynes, James B.

    2009-01-01

    The Drosophila pair-rule gene even skipped (eve) is required for embryonic segmentation and later in specific cell lineages in both the nervous system and the mesoderm. We previously generated eve mesoderm-specific mutants by combining an eve null mutant with a rescuing transgene that includes the entire locus, but with the mesodermal enhancer removed. This allowed us to analyze in detail the defects that result from a precisely targeted elimination of mesodermal eve expression in the context of an otherwise normal embryo. Absence of mesodermal eve causes a highly selective loss of the entire eve-expressing lineage in this germ layer, including those progeny that do not continue to express eve, suggesting that mesodermal eve precursor specification is not implemented. Despite the resulting absence of a subset of muscles and pericardial cells, mesoderm-specific eve mutants survive to fertile adulthood, providing an opportunity to examine the effects of these developmental abnormalities on adult fitness and heart function. We find that in these mutants, flying ability, myocardial performance under normal and stressed conditions, and lifespan are severely reduced. These data imply a nonautonomous role of the affected pericardial cells and body wall muscles in developing and/or maintaining cardiac performance and possibly other functions contributing to normal lifespan. Given the similarities of molecular-genetic control between Drosophila and vertebrates, these findings suggest that peri/epicardial influences may well be important for proper myocardial function. PMID:16239588

  3. Palmitate acutely raises glycogen synthesis in rat soleus muscle by a mechanism that requires its metabolization (Randle cycle).

    PubMed

    Massao Hirabara, Sandro; de Oliveira Carvalho, Carla Roberta; Mendonça, José Roberto; Piltcher Haber, Esther; Fernandes, Luiz Claudio; Curi, Rui

    2003-04-24

    The acute effect of palmitate on glucose metabolism in rat skeletal muscle was examined. Soleus muscles from Wistar male rats were incubated in Krebs-Ringer bicarbonate buffer, for 1 h, in the absence or presence of 10 mU/ml insulin and 0, 50 or 100 microM palmitate. Palmitate increased the insulin-stimulated [(14)C]glycogen synthesis, decreased lactate production, and did not alter D-[U-(14)C]glucose decarboxylation and 2-deoxy-D-[2,6-(3)H]glucose uptake. This fatty acid decreased the conversion of pyruvate to lactate and [1-(14)C]pyruvate decarboxylation and increased (14)CO(2) produced from [2-(14)C]pyruvate. Palmitate reduced insulin-stimulated phosphorylation of insulin receptor substrate-1/2, Akt, and p44/42 mitogen-activated protein kinases. Bromopalmitate, a non-metabolizable analogue of palmitate, reduced [(14)C]glycogen synthesis. A strong correlation was found between [U-(14)C]palmitate decarboxylation and [(14)C]glycogen synthesis (r=0.99). Also, palmitate increased intracellular content of glucose 6-phosphate in the presence of insulin. These results led us to postulate that palmitate acutely potentiates insulin-stimulated glycogen synthesis by a mechanism that requires its metabolization (Randle cycle). The inhibitory effect of palmitate on insulin-stimulated protein phosphorylation might play an important role for the development of insulin resistance in conditions of chronic exposure to high levels of fatty acids.

  4. The requirement of Mettl3-promoted MyoD mRNA maintenance in proliferative myoblasts for skeletal muscle differentiation.

    PubMed

    Kudou, Kensuke; Komatsu, Tetsuro; Nogami, Jumpei; Maehara, Kazumitsu; Harada, Akihito; Saeki, Hiroshi; Oki, Eiji; Maehara, Yoshihiko; Ohkawa, Yasuyuki

    2017-09-01

    Myogenic progenitor/stem cells retain their skeletal muscle differentiation potential by maintaining myogenic transcription factors such as MyoD. However, the mechanism of how MyoD expression is maintained in proliferative progenitor cells has not been elucidated. Here, we found that MyoD expression was reduced at the mRNA level by cell cycle arrest in S and G2 phases, which in turn led to the absence of skeletal muscle differentiation. The reduction of MyoD mRNA was correlated with the reduced expression of factors regulating RNA metabolism, including methyltransferase like 3 (Mettl3), which induces N(6)-methyladenosine (m(6)A) modifications of RNA. Knockdown of Mettl3 revealed that MyoD RNA was specifically downregulated and that this was caused by a decrease in processed, but not unprocessed, mRNA. Potential m(6)A modification sites were profiled by m(6)A sequencing and identified within the 5' untranslated region (UTR) of MyoD mRNA. Deletion of the 5' UTR revealed that it has a role in MyoD mRNA processing. These data showed that Mettl3 is required for MyoD mRNA expression in proliferative myoblasts. © 2017 The Authors.

  5. SIRT1 is required for mitochondrial biogenesis reprogramming in hypoxic human pulmonary arteriolar smooth muscle cells.

    PubMed

    Li, Pengyun; Liu, Yan; Burns, Nana; Zhao, Ke-Seng; Song, Rui

    2017-03-22

    Although recent studies have reported that mitochondria are putative oxygen sensors underlying hypoxic pulmonary vasoconstriction, little is known concerning the sirtuin 1 (SIRT1)-mediated mitochondrial biogenesis regulatory program in pulmonary arteriolar smooth muscle cells (PASMCs) during hypoxia/reoxygenation (H/R). We investigated the epigenetic regulatory mechanism of mitochondrial biogenesis and function in human PASMCs during H/R. Human PASMCs were exposed to hypoxia of 24-48 h and reoxygenation of 24-48 h. The expression of SIRT1 was reduced in a time-dependent manner. Mitochondrial transcription factor A (TFAM) expression was increased during hypoxia and decreased during reoxygenation, while the release of TFAM was increased in a time-dependent manner. Lentiviral overexpression of SIRT1 preserved SIRT3 deacetylase activity in human PASMCs exposed to H/R. Knockdown of PGC-1α suppressed the effect of SIRT1 on SIRT3 activity. Knockdown of SIRT3 abrogated SIRT1-mediated deacetylation of cyclophilin D (CyPD). Notably, knockdown of SIRT3 or PGC-1α suppressed the incremental effect of SIRT1 on mitochondrial TFAM, mitochondrial DNA (mtDNA) content and cellular ATP levels. Importantly, polydatin restored SIRT1 levels in human PASMCs exposed to H/R. Knockdown of SIRT1 suppressed the effect of polydatin on mitochondrial TFAM, mtDNA content and cellular ATP levels. In conclusion, SIRT1 expression is decreased in human PASMCs during H/R. TFAM expression in mitochondria is reduced and the release of TFAM is increased by H/R. PGC-1α/SIRT3/CyPD mediates the protective effect of SIRT1 on expression and release of TFAM and mitochondrial biogenesis and function. Polydatin improves mitochondrial biogenesis and function by enhancing SIRT1 expression in hypoxic human PASMCs.

  6. Converging the capabilities of EAP artificial muscles and the requirements of bio-inspired robotics

    NASA Astrophysics Data System (ADS)

    Hanson, David F.; White, Victor

    2004-07-01

    The characteristics of Electro-actuated polymers (EAP) are typically considered inadequate for applications in robotics. But in recent years, there has been both dramatic increases in EAP technological capbilities and reductions in power requirements for actuating bio-inspired robotics. As the two trends continue to converge, one may anticipate that dramatic breakthroughs in biologically inspired robotic actuation will result due to the marraige of these technologies. This talk will provide a snapshot of how EAP actuator scientists and roboticists may work together on a common platform to accelerate the growth of both technologies. To demonstrate this concept of a platform to accelerate this convergence, the authors will discuss their work in the niche application of robotic facial expression. In particular, expressive robots appear to be within the range of EAP actuation, thanks to their low force requirements. Several robots will be shown that demonstrate realistic expressions with dramatically decreased force requirements. Also, detailed descriptions will be given of the engineering innovations that have enabled these robotics advancements-most notably, Structured-Porosity Elastomer Materials (SPEMs). SPEM manufacturing techniques create delicate cell-structures in a variety of elastomers that maintain the high elongation characteristics of the mother material, but because of the porisity, behave as sponge-materials, thus lower the force required to emulate facial expressions to levels output by several extant EAP actuators.

  7. Effect of 12-month resistance and endurance training on quality, quantity, and function of skeletal muscle in older adults requiring long-term care.

    PubMed

    Yoshiko, Akito; Kaji, Takashi; Sugiyama, Hiroki; Koike, Teruhiko; Oshida, Yoshiharu; Akima, Hiroshi

    2017-11-01

    Older adults requiring long-term care will experience age-associated deterioration of the quality and quantity of skeletal muscle if no interventions are performed. Long-term training is considered a typical intervention method and is effective for improvement of both muscle quantity and physical function. However, how such training affects muscle quality [i.e., fat-to-muscle ratio as determined by echo intensity (EI)] in older adults requiring long-term care remains unclear. The purpose of this study was to investigate the effects of a 12-month physical training intervention on the quality and quantity of skeletal muscle, physical function, and blood chemistry in older adults requiring long-term care. Seventeen older adults requiring long-term care (Tr-group) and 15 healthy older adults (Cont-group) participated in this study. Patients in the Tr-group performed exercises consisting of resistance and endurance training once or twice a week for 12months. The EI and muscle thickness of the thigh were calculated from the rectus femoris and biceps femoris using B-mode transverse ultrasound images. Physical functions (isometric knee extension peak torque, sit-to-stand test, 5-m normal/maximal speed walking, handgrip strength, and timed up and go test) and blood lipid components including adipocytokines were measured at three points, i.e. baseline and 6 and 12months after. The thigh EI was significantly lower after 6months of training than baseline, and it returned to the initial level after 12months of training (baseline, 70.2±8.3a.u.; 6months, 64.1±11.2a.u.; 12months, 72.3±7.2a.u.). The thigh muscle thickness, 5-m maximal speed walking, and knee extension torque were significantly improved after 12months of training (P<0.05). The blood chemistry parameters did not significantly change. These results demonstrate that a 12-month training intervention contributes to improvement of muscle quantity and function with tentative changes in muscle quality but has no effect

  8. Structural requirement of the regulatory light chain of smooth muscle myosin as a substrate for myosin light chain kinase.

    PubMed

    Ikebe, M; Reardon, S; Schwonek, J P; Sanders, C R; Ikebe, R

    1994-11-11

    The substrate structure required for skeletal and smooth muscle myosin light chain kinases (MLC kinase) was studied by using various mutant regulatory light chains of smooth muscle myosin. The deletion of the NH2-terminal 10 residues did not greatly affect the kinetic parameters of smooth MLC kinase; however, deletion of an additional 3 residues, Lys11-Arg13, prevented phosphorylation. In contrast, deletion of Lys11-Arg13 did not completely abolish the phosphorylation for skeletal MLC kinase, and deletion of three additional residues was required for complete inhibition. Substitution of Arg16 with Glu markedly decreased Vmax for both smooth and skeletal MLC kinases. Substitution of Lys11-Arg13 with acidic or noncharged residues decreased Vmax, but these changes were much lower than that occurring on substitution of Arg16. Replacement of Lys11-Arg13 with acidic residues reduced the affinity of the free LC20 but had little effect on the myosin-incorporated LC20. These results were different from those previously obtained with synthetic peptide analogs (Kemp, B. E., Pearson, R. B., and House, C. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 7471-7475) and suggest that a cluster of the basic amino acid residues are not fundamentally important for substrate recognition. The structural simulation revealed that the guanidyl group of Arg16 but not the corresponding Glu13 of skeletal light chain resides in close proximity to Ser19, suggesting that the guanidyl group of Arg16 stabilizes the phosphate transfer and that the introduction of Glu at the 16th position would significantly destabilized this reaction.

  9. Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo

    PubMed Central

    Goody, Michelle F.; Kelly, Meghan W.; Lessard, Kevin N.; Khalil, Andre; Henry, Clarissa A.

    2010-01-01

    Cell-matrix adhesion complexes (CMACs) play fundamental roles during morphogenesis. Given the ubiquitous nature of CMACs and their roles in many cellular processes, one question is how specificity of CMAC function is modulated. The clearly defined cell behaviors that generate segmentally reiterated axial skeletal muscle during zebrafish development comprise an ideal system with which to investigate CMAC function during morphogenesis. We found that Nicotinamide riboside kinase 2b (Nrk2b) cell autonomously modulates the molecular composition of CMACs in vivo. Nrk2b is required for normal Laminin polymerization at the myotendinous junction (MTJ). In Nrk2b-deficient embryos, at MTJ loci where Laminin is not properly polymerized, muscle fibers elongate into adjacent myotomes and are abnormally long. In yeast and human cells, Nrk2 phosphorylates Nicotinamide Riboside and generates NAD+ through an alternative salvage pathway. Exogenous NAD+ treatment rescues MTJ development in Nrk2b-deficient embryos, but not in laminin mutant embryos. Both Nrk2b and Laminin are required for localization of Paxillin, but not β-Dystroglycan, to CMACs at the MTJ. Overexpression of Paxillin in Nrk2b-deficient embryos is sufficient to rescue MTJ integrity. Taken together, these data show that Nrk2b plays a specific role in modulating subcellular localization of discrete CMAC components that in turn play roles in musculoskeletal development. Furthermore, these data suggest that Nrk2b-mediated synthesis of NAD+ is functionally upstream of Laminin adhesion and Paxillin subcellular localization during MTJ development. These results indicate a previously unrecognized complexity to CMAC assembly in vivo and also elucidate a novel role for NAD+ during morphogenesis. PMID:20566368

  10. TIF-IA-dependent regulation of ribosome synthesis in drosophila muscle is required to maintain systemic insulin signaling and larval growth.

    PubMed

    Ghosh, Abhishek; Rideout, Elizabeth J; Grewal, Savraj S

    2014-10-01

    The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.

  11. TIF-IA-Dependent Regulation of Ribosome Synthesis in Drosophila Muscle Is Required to Maintain Systemic Insulin Signaling and Larval Growth

    PubMed Central

    Ghosh, Abhishek; Rideout, Elizabeth J.; Grewal, Savraj S.

    2014-01-01

    The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis—a limiting step in ribosome biogenesis—via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2—a secreted factor that binds and inhibits dILP activity—from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis. PMID:25356674

  12. Increased mitochondrial emission of reactive oxygen species and calpain activation are required for doxorubicin-induced cardiac and skeletal muscle myopathy

    PubMed Central

    Min, Kisuk; Kwon, Oh-Sung; Smuder, Ashley J; Wiggs, Michael P; Sollanek, Kurt J; Christou, Demetra D; Yoo, Jeung-Ki; Hwang, Moon-Hyon; Szeto, Hazel H; Kavazis, Andreas N; Powers, Scott K

    2015-01-01

    Although doxorubicin (DOX) is a highly effective anti-tumour agent used to treat a variety of cancers, DOX administration is associated with significant side effects, including myopathy of both cardiac and skeletal muscles. The mechanisms responsible for DOX-mediated myopathy remain a topic of debate. We tested the hypothesis that both increased mitochondrial reactive oxygen species (ROS) emission and activation of the cysteine protease calpain are required for DOX-induced myopathy in rat cardiac and skeletal muscle. Cause and effect was determined by administering a novel mitochondrial-targeted anti-oxidant to prevent DOX-induced increases in mitochondrial ROS emission, whereas a highly-selective pharmacological inhibitor was exploited to inhibit calpain activity. Our findings reveal that mitochondria are a major site of DOX-mediated ROS production in both cardiac and skeletal muscle fibres and the prevention of DOX-induced increases in mitochondrial ROS emission protects against fibre atrophy and contractile dysfunction in both cardiac and skeletal muscles. Furthermore, our results indicate that DOX-induced increases in mitochondrial ROS emission are required to activate calpain in heart and skeletal muscles and, importantly, calpain activation is a major contributor to DOX-induced myopathy. Taken together, these findings show that increased mitochondrial ROS production and calpain activation are significant contributors to the development of DOX-induced myopathy in both cardiac and skeletal muscle fibres. PMID:25643692

  13. Increased mitochondrial emission of reactive oxygen species and calpain activation are required for doxorubicin-induced cardiac and skeletal muscle myopathy.

    PubMed

    Min, Kisuk; Kwon, Oh-Sung; Smuder, Ashley J; Wiggs, Michael P; Sollanek, Kurt J; Christou, Demetra D; Yoo, Jeung-Ki; Hwang, Moon-Hyon; Szeto, Hazel H; Kavazis, Andreas N; Powers, Scott K

    2015-04-15

    Although doxorubicin (DOX) is a highly effective anti-tumour agent used to treat a variety of cancers, DOX administration is associated with significant side effects, including myopathy of both cardiac and skeletal muscles. The mechanisms responsible for DOX-mediated myopathy remain a topic of debate. We tested the hypothesis that both increased mitochondrial reactive oxygen species (ROS) emission and activation of the cysteine protease calpain are required for DOX-induced myopathy in rat cardiac and skeletal muscle. Cause and effect was determined by administering a novel mitochondrial-targeted anti-oxidant to prevent DOX-induced increases in mitochondrial ROS emission, whereas a highly-selective pharmacological inhibitor was exploited to inhibit calpain activity. Our findings reveal that mitochondria are a major site of DOX-mediated ROS production in both cardiac and skeletal muscle fibres and the prevention of DOX-induced increases in mitochondrial ROS emission protects against fibre atrophy and contractile dysfunction in both cardiac and skeletal muscles. Furthermore, our results indicate that DOX-induced increases in mitochondrial ROS emission are required to activate calpain in heart and skeletal muscles and, importantly, calpain activation is a major contributor to DOX-induced myopathy. Taken together, these findings show that increased mitochondrial ROS production and calpain activation are significant contributors to the development of DOX-induced myopathy in both cardiac and skeletal muscle fibres.

  14. Dystrophin and utrophin expression require sarcospan: loss of α7 integrin exacerbates a newly discovered muscle phenotype in sarcospan-null mice.

    PubMed

    Marshall, Jamie L; Chou, Eric; Oh, Jennifer; Kwok, Allan; Burkin, Dean J; Crosbie-Watson, Rachelle H

    2012-10-15

    Sarcospan (SSPN) is a core component of the major adhesion complexes in skeletal muscle, the dystrophin- and utrophin (Utr)-glycoprotein complexes (DGC and UGC). We performed a rigorous analysis of SSPN-null mice and discovered that loss of SSPN decreased DGC and UGC abundance, leading to impaired laminin-binding activity and susceptibility to eccentric contraction-induced injury in skeletal muscle. We show that loss of SSPN increased levels of α7β1 integrin. To genetically test whether integrin compensates for the loss of DGC and UGC function in SSPN-nulls, we generated mice lacking both SSPN and α7 integrin (DKO, double knockout). Muscle regeneration, sarcolemma integrity and fibrosis were exacerbated in DKO mice and were remarkably similar to muscle from Duchenne muscular dystrophy (DMD) patients, suggesting that secondary loss of integrin contributes significantly to pathogenesis. Expression of the DGC and UGC, laminin binding and Akt signaling were negatively impacted in DKO muscle, resulting in severely diminished specific force properties. We demonstrate that SSPN is a necessary component of dystrophin and Utr function and that SSPN modulation of integrin signaling is required for extracellular matrix attachment and muscle force development.

  15. skNAC (skeletal Naca), a muscle-specific isoform of Naca (nascent polypeptide-associated complex alpha), is required for myofibril organization.

    PubMed

    Li, Huiqing; Randall, William R; Du, Shao-Jun

    2009-06-01

    Myofibrillogenesis, the precise assembly of sarcomeric proteins into the highly organized sarcomeres, is essential for muscle cell differentiation and function. Myofibrillogenesis requires proper folding and assembly of newly synthesized sarcomeric proteins. sknac (skeletal naca) is an alternatively spliced isoform of naca, which encodes the nascent polypeptide-associated complex alpha polypeptide that binds to newly synthesized polypeptides emerging from the ribosome. sknac is specifically expressed in skeletal and cardiac muscles. However, little is known about the function of skNAC in muscle development in vivo. To determine skNAC function, we have isolated and characterized the sknac gene from zebrafish. Zebrafish sknac cDNA differs from naca by containing an extra large exon that encodes 815 aa. Knockdown of sknac expression by antisense oligos resulted in zebrafish embryos with skeletal muscle defects. The sknac-knockdown embryos showed a paralyzed phenotype with little muscle contraction. In contrast, injection of a control oligo had no effect. Immunostaining and histological analyses revealed that sknac-knockdown embryos contained disorganized thick and thin filaments. Western blot analysis revealed that myosin protein levels were significantly reduced. Collectively, these results demonstrate that skNAC plays a vital role in myofibril assembly and function during muscle cell differentiation.

  16. Phospholemman is not required for the acute stimulation of Na⁺-K⁺-ATPase α₂-activity during skeletal muscle fatigue.

    PubMed

    Manoharan, Palanikumar; Radzyukevich, Tatiana L; Hakim Javadi, Hesamedin; Stiner, Cory A; Landero Figueroa, Julio A; Lingrel, Jerry B; Heiny, Judith A

    2015-12-15

    The Na(+)-K(+)-ATPase α2-isoform in skeletal muscle is rapidly stimulated during muscle use and plays a critical role in fatigue resistance. The acute mechanisms that stimulate α2-activity are not completely known. This study examines whether phosphorylation of phospholemman (PLM/FXYD1), a regulatory subunit of Na(+)-K(+)-ATPase, plays a role in the acute stimulation of α2 in working muscles. Mice lacking PLM (PLM KO) have a normal content of the α2-subunit and show normal exercise capacity, in contrast to the greatly reduced exercise capacity of mice that lack α2 in the skeletal muscles. Nerve-evoked contractions in vivo did not induce a change in total PLM or PLM phosphorylated at Ser63 or Ser68, in either WT or PLM KO. Isolated muscles of PLM KO mice maintain contraction and resist fatigue as well as wild type (WT). Rb(+) transport by the α2-Na(+)-K(+)-ATPase is stimulated to the same extent in contracting WT and contracting PLM KO muscles. Phosphorylation of sarcolemmal membranes prepared from WT but not PLM KO skeletal muscles stimulates the activity of both α1 and α2 in a PLM-dependent manner. The stimulation occurs by an increase in Na(+) affinity without significant change in Vmax and is more effective for α1 than α2. These results demonstrate that phosphorylation of PLM is capable of stimulating the activity of both isozymes in skeletal muscle; however, contractile activity alone is not sufficient to induce PLM phosphorylation. Importantly, acute stimulation of α2, sufficient to support exercise and oppose fatigue, does not require PLM or its phosphorylation.

  17. Adult expression of PGC-1α and -1β in skeletal muscle is not required for endurance exercise-induced enhancement of exercise capacity.

    PubMed

    Ballmann, Christopher; Tang, Yawen; Bush, Zachary; Rowe, Glenn C

    2016-12-01

    Exercise has been shown to be the best intervention in the treatment of many diseases. Many of the benefits of exercise are mediated by adaptions induced in skeletal muscle. The peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family of transcriptional coactivators has emerged as being key mediators of the exercise response and is considered to be essential for many of the adaptions seen in skeletal muscle. However, the contribution of the PGC-1s in skeletal muscle has been evaluated by the use of either whole body or congenital skeletal muscle-specific deletion. In these models, PGC-1s were never present, thereby opening the possibility to developmental compensation. Therefore, we generated an inducible muscle-specific deletion of PGC-1α and -1β (iMyo-PGC-1DKO), in which both PGC-1α and -β can be deleted specifically in adult skeletal muscle. These iMyo-PGC-1DKO animals were used to assess the role of both PGC-1α and -1β in adult skeletal muscle and their contribution to the exercise training response. Untrained iMyo-PGC-1DKO animals exhibited a time-dependent decrease in exercise performance 8 wk postdeletion, similar to what was observed in the congenital muscle-specific PGC-1DKOs. However, after 4 wk of voluntary training, the iMyo-PGC-1DKOs exhibited an increase in exercise performance with a similar adaptive response compared with control animals. This increase was associated with an increase in electron transport complex (ETC) expression and activity in the absence of PGC-1α and -1β expression. Taken together these data suggest that PGC-1α and -1β expression are not required for training-induced exercise performance, highlighting the contribution of PGC-1-independent mechanisms. Copyright © 2016 the American Physiological Society.

  18. Striated muscle activator of Rho signaling is required for myotube survival but does not influence basal protein synthesis or degradation.

    PubMed

    Wallace, Marita A; Russell, Aaron P

    2013-08-15

    Skeletal muscle mass is regulated by sensing and transmitting extracellular mechanical stress signals to intracellular signaling pathways controlling protein synthesis and degradation. Striated muscle activator of Rho signaling (STARS) is a muscle-specific actin-binding protein that is sensitive to extracellular stress signals. STARS stimulates actin polymerization and influences serum response factor (SRF) and peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α transcription of genes involved in muscle growth, structure, and contraction. The role of STARS in skeletal muscle cells is not well understood. This study investigated whether STARS influenced C2C12 myotube growth by regulating protein synthesis and degradation. The influence of STARS on Pgc-1α, Srf, and Errα mRNA levels, as well as several of their downstream targets involved in muscle cell growth, contraction, and metabolism, was also investigated. STARS overexpression increased actin polymerization, with no effect on protein synthesis, protein degradation, or Akt phosphorylation. STARS overexpression increased Pgc-1α, Srf, Ckmt2, Cpt-1β, and Mhc1 mRNA. STARS knockdown reduced actin polymerization and increased cell death and dead cell protease activity. It also increased markers of inflammation (Casp1, Il-1β, and Mcp-1), regeneration (Socs3 and Myh8), and fast myosin isoforms (Mhc2a and Mhc2x). We show for the first time in muscle cells that STARS overexpression increases actin polymerization and shifts the muscle cell to a more oxidative phenotype. The suppression of STARS causes cell death and increases markers of necrosis, inflammation, and regeneration. As STARS levels are suppressed in clinical models associated with increased necrosis and inflammation, such as aging and limb immobilization, rescuing STARS maybe a future therapeutic strategy to maintain skeletal muscle function and attenuate contraction-induced muscle damage.

  19. The Caenorhabditis elegans T-box factor MLS-1 requires Groucho co-repressor interaction for uterine muscle specification.

    PubMed

    Miller, Raymond R; Okkema, Peter G

    2011-08-01

    T-box proteins are conserved transcription factors that play crucial roles in development of all metazoans; and, in humans, mutations affecting T-box genes are associated with a variety of congenital diseases and cancers. Despite the importance of this transcription factor family, very little is known regarding how T-box factors regulate gene expression. The Caenorhabditis elegans genome contains 21 T-box genes, and their characterized functions include cell fate specification in a variety of tissues. The C. elegans Tbx1 sub-family member MLS-1 functions during larval development to specify the fate of non-striated uterine muscles; and, in mls-1 mutants, uterine muscles are transformed to a vulval muscle fate. Here we demonstrate that MLS-1 function depends on binding to the Groucho-family co-repressor UNC-37. MLS-1 interacts with UNC-37 via a conserved eh1 motif, and the MLS-1 eh1 motif is necessary for MLS-1 to specify uterine muscle fate. Moreover, unc-37 loss-of-function produces uterine muscle to vulval muscle fate transformation similar to those observed in mls-1 mutants. Based on these results, we conclude that MLS-1 specifies uterine muscle fate by repressing target gene expression, and this function depends on interaction with UNC-37. Moreover, we suggest that MLS-1 shares a common mechanism for transcriptional repression with related T-box factors in other animal phyla.

  20. The Caenorhabditis elegans T-Box Factor MLS-1 Requires Groucho Co-Repressor Interaction for Uterine Muscle Specification

    PubMed Central

    Miller, Raymond R.; Okkema, Peter G.

    2011-01-01

    T-box proteins are conserved transcription factors that play crucial roles in development of all metazoans; and, in humans, mutations affecting T-box genes are associated with a variety of congenital diseases and cancers. Despite the importance of this transcription factor family, very little is known regarding how T-box factors regulate gene expression. The Caenorhabditis elegans genome contains 21 T-box genes, and their characterized functions include cell fate specification in a variety of tissues. The C. elegans Tbx1 sub-family member MLS-1 functions during larval development to specify the fate of non-striated uterine muscles; and, in mls-1 mutants, uterine muscles are transformed to a vulval muscle fate. Here we demonstrate that MLS-1 function depends on binding to the Groucho-family co-repressor UNC-37. MLS-1 interacts with UNC-37 via a conserved eh1 motif, and the MLS-1 eh1 motif is necessary for MLS-1 to specify uterine muscle fate. Moreover, unc-37 loss-of-function produces uterine muscle to vulval muscle fate transformation similar to those observed in mls-1 mutants. Based on these results, we conclude that MLS-1 specifies uterine muscle fate by repressing target gene expression, and this function depends on interaction with UNC-37. Moreover, we suggest that MLS-1 shares a common mechanism for transcriptional repression with related T-box factors in other animal phyla. PMID:21852953

  1. A Remodeled Hsp90 Molecular Chaperone Ensemble with the Novel Cochaperone Aarsd1 Is Required for Muscle Differentiation.

    PubMed

    Echeverría, Pablo C; Briand, Pierre-André; Picard, Didier

    2016-04-01

    Hsp90 is the ATP-consuming core component of a very abundant molecular chaperone machine that handles a substantial portion of the cytosolic proteome. Rather than one machine, it is in fact an ensemble of molecular machines, since most mammalian cells express two cytosolic isoforms of Hsp90 and a subset of up to 40 to 50 cochaperones and regulate their interactions and functions by a variety of posttranslational modifications. We demonstrate that the Hsp90 ensemble is fundamentally remodeled during muscle differentiation and that this remodeling is not just a consequence of muscle differentiation but possibly one of the drivers to accompany and to match the vast proteomic changes associated with this process. As myoblasts differentiate into myotubes, Hsp90α disappears and only Hsp90β remains, which is the only isoform capable of interacting with the novel muscle-specific Hsp90 cochaperone Aarsd1L. Artificially maintaining Hsp90α or knocking down Aarsd1L expression interferes with the differentiation of C2C12 myotubes. During muscle differentiation, Aarsd1L replaces the more ubiquitous cochaperone p23 and in doing so dampens the activity of the glucocorticoid receptor, one of the Hsp90 clients relevant to muscle functions. This cochaperone switch protects muscle cells against the inhibitory effects of glucocorticoids and may contribute to preventing muscle wasting induced by excess glucocorticoids.

  2. A Remodeled Hsp90 Molecular Chaperone Ensemble with the Novel Cochaperone Aarsd1 Is Required for Muscle Differentiation

    PubMed Central

    Echeverría, Pablo C.; Briand, Pierre-André

    2016-01-01

    Hsp90 is the ATP-consuming core component of a very abundant molecular chaperone machine that handles a substantial portion of the cytosolic proteome. Rather than one machine, it is in fact an ensemble of molecular machines, since most mammalian cells express two cytosolic isoforms of Hsp90 and a subset of up to 40 to 50 cochaperones and regulate their interactions and functions by a variety of posttranslational modifications. We demonstrate that the Hsp90 ensemble is fundamentally remodeled during muscle differentiation and that this remodeling is not just a consequence of muscle differentiation but possibly one of the drivers to accompany and to match the vast proteomic changes associated with this process. As myoblasts differentiate into myotubes, Hsp90α disappears and only Hsp90β remains, which is the only isoform capable of interacting with the novel muscle-specific Hsp90 cochaperone Aarsd1L. Artificially maintaining Hsp90α or knocking down Aarsd1L expression interferes with the differentiation of C2C12 myotubes. During muscle differentiation, Aarsd1L replaces the more ubiquitous cochaperone p23 and in doing so dampens the activity of the glucocorticoid receptor, one of the Hsp90 clients relevant to muscle functions. This cochaperone switch protects muscle cells against the inhibitory effects of glucocorticoids and may contribute to preventing muscle wasting induced by excess glucocorticoids. PMID:26884463

  3. Transforming growth factor type beta (TGF-β) requires reactive oxygen species to induce skeletal muscle atrophy.

    PubMed

    Abrigo, Johanna; Rivera, Juan Carlos; Simon, Felipe; Cabrera, Daniel; Cabello-Verrugio, Claudio

    2016-05-01

    Transforming growth factor beta 1 (TGF-β1) is a classical modulator of skeletal muscle and regulates several processes, such as myogenesis, regeneration, and muscle function in skeletal muscle diseases. Skeletal muscle atrophy, characterised by the loss of muscle strength and mass, is one of the pathological conditions regulated by TGF-β. Atrophy also results in increased myosin heavy chain (MHC) degradation and the expression of two muscle-specific E3 ubiquitin ligases, atrogin-1 and MuRF-1. Reactive oxygen species (ROS) are modulators of muscle wasting, and NAD(P)H oxidase (NOX) is one of the main sources of ROS. While it was recently found that TGF-β1 induces atrophy in skeletal muscle, the underlying mechanism is not fully understood. In this study, the role of NOX-derived ROS in skeletal muscle atrophy induced by TGF-β was assessed. TGF-β1 induced an atrophic effect in C2C12 myotubes, as evidenced by decreased myotube diameter and MHC levels, together with increased MuRF-1 levels. Concomitantly, TGF-β increased NOX-induced ROS contents. Interestingly, NOX inhibition through apocynin and the antioxidant treatment with N-acetyl cysteine (NAC) decreased increased ROS levels in myotubes. Additionally, both apocynin and NAC completely prevented the decreased MHC, decreased myotube diameter, and increased MuRF-1 induced by TGF-β. Injection of TGF-β1 into the tibialis anterior muscle induced atrophy, as observed by decreased fibre diameter and MHC levels, together with increased MuRF-1 levels. Likewise, TGF-β increased the ROS contents in the smaller fibres of skeletal muscle. Additionally, the administration of NAC to mice prevented all atrophic effects and the increase in ROS induced by TGF-β in the tibialis anterior. This is the first study to report that TGF-β has an atrophic effect dependent on NOX-induced ROS in skeletal muscle. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Phosphorylation of GATA-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition

    PubMed Central

    Xie, Yi; Jin, Yu; Merenick, Bethany L.; Ding, Min; Fetalvero, Kristina M.; Wagner, Robert J.; Mai, Alice; Gleim, Scott; Tucker, David; Birnbaum, Morris J.; Ballif, Bryan A.; Luciano, Amelia K.; Sessa, William C.; Rzucidlo, Eva M.; Powell, Richard J.; Hou, Lin; Zhao, Hongyu; Hwa, John; Yu, Jun; Martin, Kathleen A.

    2015-01-01

    Vascular smooth muscle cells (VSMCs) undergo transcriptionally regulated reversible differentiation in growing and injured blood vessels. This de-differentiation also contributes to VSMC hyperplasia following vascular injury, including that caused by angioplasty and stenting. Stents provide mechanical support and can contain and release rapamycin, an inhibitor of the mammalian target of rapamycin complex 1 (mTORC1). Rapamycin suppresses VSMC hyperplasia and promotes VSMC differentiation. We report that rapamycin-induced differentiation of VSMCs required the transcription factor GATA-6. Inhibition of mTORC1 stabilized GATA-6 and promoted the nuclear accumulation of GATA-6, its binding to DNA, and its transactivation of promoters encoding contractile proteins and inhibitors of proliferation. These effects were mediated by phosphorylation of GATA-6 at Ser290, potentially by Akt2, a kinase that is activated in VSMCs when mTORC1 is inhibited. Rapamycin induced phosphorylation of GATA-6 in wild-type mice, but not in Akt2−/− mice. Intimal hyperplasia after arterial injury was greater in Akt2−/− mice than in wild-type mice, and the exacerbated response in Akt2−/− mice was rescued to a greater extent by local overexpression of the wild-type or phosphomimetic (S290D) mutant GATA-6 than by that of the phosphorylation-deficient (S290A) mutant. Our data indicated that GATA-6 and Akt2 are involved in the mTORC1-mediated regulation of VSMC proliferation and differentiation. Identifying the downstream transcriptional targets of mTORC1 may provide cell type-specific drug targets to combat cardiovascular diseases associated with excessive proliferation of VSMCs. PMID:25969542

  5. Selenoprotein N Was Required for the Regulation of Selenium on the Uterine Smooth Muscle Contraction in Mice.

    PubMed

    Zhou, Jingxuan; Li, Chengye; Gu, Gaoqin; Wang, Qi; Guo, Mengyao

    2017-08-23

    Selenium (Se) is an essential micronutrient affecting various aspects of health. The balance of the Se concentration has an important protective and promoter effect on physiological function in inducing muscular disorders in smooth muscle. Selenoprotein N (SelN) is closely related to Ca(2+) release. The present study aimed to determine the effects and mechanism of action of dietary Se on uterine smooth muscle contraction via SelN using a mouse model. Quantitative polymerase chain reaction (qPCR) analysis was performed to detect mRNA levels. Western blotting was performed to detect protein levels. The results of the immunohistochemical analysis showed that Se had an effect on the uterine smooth muscle. The Se-supplement increased the release of Ca(2+), Ca(2+)-calmodulin (CaM) expression, myosin light chain kinase (MLCK) expression, and myosin light chain (MLC) phosphorylation but did not affect ROCK and RhoA in uterine smooth muscle. Furthermore, the lack of Se showed an opposite impact. The effects of Se regulation were closely related to SelN. The interference of mouse SelN was performed on the uterine smooth muscle cell. Additionally, the results displayed the regulation of Se on the release of Ca(2+), CaM expression, MLCK expression, and MLC phosphorylation were significant inhibited, and there was no effect on ROCK and RhoA. In conclusion, Se played an important role in regulating the process of contraction in uterine smooth muscle with SelN.

  6. Noradrenergic modulation of masseter muscle activity during natural rapid eye movement sleep requires glutamatergic signalling at the trigeminal motor nucleus.

    PubMed

    Schwarz, Peter B; Mir, Saba; Peever, John H

    2014-08-15

    Noradrenergic neurotransmission in the brainstem is closely coupled to changes in muscle activity across the sleep-wake cycle, and noradrenaline is considered to be a key excitatory neuromodulator that reinforces the arousal-related stimulus on motoneurons to drive movement. However, it is unknown if α-1 noradrenoceptor activation increases motoneuron responsiveness to excitatory glutamate (AMPA) receptor-mediated inputs during natural behaviour. We studied the effects of noradrenaline on AMPA receptor-mediated motor activity at the motoneuron level in freely behaving rats, particularly during rapid eye movement (REM) sleep, a period during which both AMPA receptor-triggered muscle twitches and periods of muscle quiescence in which AMPA drive is silent are exhibited. Male rats were subjected to electromyography and electroencephalography recording to monitor sleep and waking behaviour. The implantation of a cannula into the trigeminal motor nucleus of the brainstem allowed us to perfuse noradrenergic and glutamatergic drugs by reverse microdialysis, and thus to use masseter muscle activity as an index of motoneuronal output. We found that endogenous excitation of both α-1 noradrenoceptor and AMPA receptors during waking are coupled to motor activity; however, REM sleep exhibits an absence of endogenous α-1 noradrenoceptor activity. Importantly, exogenous α-1 noradrenoceptor stimulation cannot reverse the muscle twitch suppression induced by AMPA receptor blockade and nor can it elevate muscle activity during quiet REM, a phase when endogenous AMPA receptor activity is subthreshold. We conclude that the presence of an endogenous glutamatergic drive is necessary for noradrenaline to trigger muscle activity at the level of the motoneuron in an animal behaving naturally.

  7. TEAD transcription factors are required for normal primary myoblast differentiation in vitro and muscle regeneration in vivo.

    PubMed

    Joshi, Shilpy; Davidson, Guillaume; Le Gras, Stéphanie; Watanabe, Shuichi; Braun, Thomas; Mengus, Gabrielle; Davidson, Irwin

    2017-02-01

    The TEAD family of transcription factors (TEAD1-4) bind the MCAT element in the regulatory elements of both growth promoting and myogenic differentiation genes. Defining TEAD transcription factor function in myogenesis has proved elusive due to overlapping expression of family members and their functional redundancy. We show that silencing of either Tead1, Tead2 or Tead4 did not effect primary myoblast (PM) differentiation, but that their simultaneous knockdown strongly impaired differentiation. In contrast, Tead1 or Tead4 silencing impaired C2C12 differentiation showing their different contributions in PMs and C2C12 cells. Chromatin immunoprecipitation identified enhancers associated with myogenic genes bound by combinations of Tead4, Myod1 or Myog. Tead4 regulated distinct gene sets in C2C12 cells and PMs involving both activation of the myogenic program and repression of growth and signaling pathways. ChIP-seq from mature mouse muscle fibres in vivo identified a set of highly transcribed muscle cell-identity genes and sites bound by Tead1 and Tead4. Although inactivation of Tead4 in mature muscle fibres caused no obvious phenotype under normal conditions, notexin-induced muscle regeneration was delayed in Tead4 mutants suggesting an important role in myogenic differentiation in vivo. By combining knockdown in cell models in vitro with Tead4 inactivation in muscle in vivo, we provide the first comprehensive description of the specific and redundant roles of Tead factors in myogenic differentiation.

  8. TEAD transcription factors are required for normal primary myoblast differentiation in vitro and muscle regeneration in vivo

    PubMed Central

    Joshi, Shilpy; Le Gras, Stéphanie; Watanabe, Shuichi; Braun, Thomas

    2017-01-01

    The TEAD family of transcription factors (TEAD1-4) bind the MCAT element in the regulatory elements of both growth promoting and myogenic differentiation genes. Defining TEAD transcription factor function in myogenesis has proved elusive due to overlapping expression of family members and their functional redundancy. We show that silencing of either Tead1, Tead2 or Tead4 did not effect primary myoblast (PM) differentiation, but that their simultaneous knockdown strongly impaired differentiation. In contrast, Tead1 or Tead4 silencing impaired C2C12 differentiation showing their different contributions in PMs and C2C12 cells. Chromatin immunoprecipitation identified enhancers associated with myogenic genes bound by combinations of Tead4, Myod1 or Myog. Tead4 regulated distinct gene sets in C2C12 cells and PMs involving both activation of the myogenic program and repression of growth and signaling pathways. ChIP-seq from mature mouse muscle fibres in vivo identified a set of highly transcribed muscle cell-identity genes and sites bound by Tead1 and Tead4. Although inactivation of Tead4 in mature muscle fibres caused no obvious phenotype under normal conditions, notexin-induced muscle regeneration was delayed in Tead4 mutants suggesting an important role in myogenic differentiation in vivo. By combining knockdown in cell models in vitro with Tead4 inactivation in muscle in vivo, we provide the first comprehensive description of the specific and redundant roles of Tead factors in myogenic differentiation. PMID:28178271

  9. Muscle PGC-1α is required for long term systemic and local adaptations to a ketogenic diet in mice.

    PubMed

    Schnyder, Svenia; Svensson, Kristoffer; Cardel, Bettina; Handschin, Christoph

    2017-02-21

    Low carbohydrate/high-fat (LCHF) diets are increasingly popular dietary interventions for body weight control and as treatment for different pathological conditions. However, the mechanisms of action are still poorly understood, in particular in long-term administration. Besides liver, brain and heart, skeletal muscle is one of the major organs involved in the regulation of physiological and pathophysiological ketosis. We now assessed the role of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in skeletal muscle of male wild type control (CTRL) and PGC-1α muscle-specific knockout (PGC-1α mKO) mice upon 12 weeks of LCHF diet feeding. Interestingly, LCHF diet administration increased oxygen consumption in a muscle PGC-1α-dependent manner concomitant with a blunted transcriptional induction of genes involved in fatty acid oxidation and impairment in exercise performance. These data reveal a new role for muscle PGC-1α in regulating the physiological adaptation to long-term LCHF diet administration.

  10. Are type III-IV muscle afferents required for a normal steady-state exercise hyperpnoea in humans?

    PubMed

    Dempsey, Jerome A; Blain, Grégory M; Amann, Markus

    2014-02-01

    When tested in isolation, stimuli associated with respiratory CO2 exchange, feedforward central command and type III-IV muscle afferent feedback have each been shown to be capable of eliciting exercise-like cardio-ventilatory responses, but their relative contributions in a setting of physiological exercise remains controversial. We reasoned that in order to determine whether any of these regulators are obligatory to the exercise hyperpnoea each needs to be removed or significantly diminished in a setting of physiological steady-state exercise, during which all recognized stimuli (and other potential modulators) are normally operative. In the past few years we and others have used intrathecal fentanyl, a μ-opiate receptor agonist, in humans to reduce the input from type III-IV opiate-sensitive muscle afferents. During various types of intensities and durations of exercise a sustained hypoventilation, as well as reduced systemic pressure and cardioacceleration, were consistently observed with this blockade. These data provide the basis for the hypothesis that type III-IV muscle afferents are obligatory to the hyperpnoea of mild to moderate intensity rhythmic, large muscle, steady-state exercise. We discuss the limitations of these studies, the reasons for their disagreement with previous negative findings, the nature of the muscle afferent feedback stimulus and the need for future investigations.

  11. Heat-shock protein 90α1 is required for organized myofibril assembly in skeletal muscles of zebrafish embryos

    PubMed Central

    Du, Shao Jun; Li, Huiqing; Bian, Yuehong; Zhong, Yongwang

    2008-01-01

    Heat-shock protein 90α (Hsp90α) is a member of the molecular chaperone family involved in protein folding and assembly. The role of Hsp90α in the developmental process, however, remains unclear. Here we report that zebrafish contains two Hsp90α genes, Hsp90α1, and Hsp90α2. Hsp90α1 is specifically expressed in developing somites and skeletal muscles of zebrafish embryos. We have demonstrated that Hsp90α1 is essential for myofibril organization in skeletal muscles of zebrafish embryos. Knockdown of Hsp90α1 resulted in paralyzed zebrafish embryos with poorly organized myofibrils in skeletal muscles. In contrast, knockdown of Hsp90α2 had no effect on muscle contraction and myofibril organization. The filament defects could be rescued in a cell autonomous manner by an ectopic expression of Hsp90α1. Biochemical analyses revealed that knockdown of Hsp90α1 resulted in significant myosin degradation and up-regulation of unc-45b gene expression. These results indicate that Hsp90α1 plays an important role in muscle development, likely through facilitating myosin folding and assembly into organized myofibril filaments. PMID:18182494

  12. SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos

    PubMed Central

    Tan, Xungang; Rotllant, Josep; Li, Huiqing; DeDeyne, Patrick; Du, Shao Jun

    2006-01-01

    Histone modification has emerged as a fundamental mechanism for control of gene expression and cell differentiation. Recent studies suggest that SmyD1, a novo SET domain-containing protein, may play a critical role in cardiac muscle differentiation. However, its role in skeletal muscle development and its mechanism of actions remains elusive. Here we report that SmyD1a and SmyD1b, generated by alternative splicing of SmyD1 gene, are histone methyltransferases that play a key role in skeletal and cardiac muscle contraction. SmyD1a and SmyD1b are specifically expressed in skeletal and cardiac muscles of zebrafish embryos. Knockdown of SmyD1a and SmyD1b expression by morpholino antisense oligos resulted in malfunction of skeletal and cardiac muscles. The SmyD1 morphant embryos (embryos injected with morpholino oligos) could not swim and had no heartbeat. Myofibril organization in the morphant embryos was severely disrupted. The affected myofibers appeared as immature fibers with centrally located nuclei. Together, these data indicate that SmyD1a and SmyD1b are histone methyltransferases and play a critical role in myofibril organization during myofiber maturation. PMID:16477022

  13. Are type III–IV muscle afferents required for a normal steady-state exercise hyperpnoea in humans?

    PubMed Central

    Dempsey, Jerome A; Blain, Grégory M; Amann, Markus

    2014-01-01

    When tested in isolation, stimuli associated with respiratory CO2 exchange, feedforward central command and type III–IV muscle afferent feedback have each been shown to be capable of eliciting exercise-like cardio-ventilatory responses, but their relative contributions in a setting of physiological exercise remains controversial. We reasoned that in order to determine whether any of these regulators are obligatory to the exercise hyperpnoea each needs to be removed or significantly diminished in a setting of physiological steady-state exercise, during which all recognized stimuli (and other potential modulators) are normally operative. In the past few years we and others have used intrathecal fentanyl, a μ-opiate receptor agonist, in humans to reduce the input from type III–IV opiate-sensitive muscle afferents. During various types of intensities and durations of exercise a sustained hypoventilation, as well as reduced systemic pressure and cardioacceleration, were consistently observed with this blockade. These data provide the basis for the hypothesis that type III–IV muscle afferents are obligatory to the hyperpnoea of mild to moderate intensity rhythmic, large muscle, steady-state exercise. We discuss the limitations of these studies, the reasons for their disagreement with previous negative findings, the nature of the muscle afferent feedback stimulus and the need for future investigations. PMID:24000177

  14. Muscle PGC-1α is required for long term systemic and local adaptations to a ketogenic diet in mice

    PubMed Central

    Cardel, Bettina; Handschin, Christoph

    2017-01-01

    Low carbohydrate/high-fat (LCHF) diets are increasingly popular dietary interventions for body weight control and as treatment for different pathological conditions. However, the mechanisms of action are still poorly understood, in particular in long-term administration. Besides liver, brain and heart, skeletal muscle is one of the major organs involved in the regulation of physiological and pathophysiological ketosis. We now assessed the role of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in skeletal muscle of male wild type control (CTRL) and PGC-1α muscle-specific knockout (PGC-1α mKO) mice upon 12 weeks of LCHF diet feeding. Interestingly, LCHF diet administration increased oxygen consumption in a muscle PGC-1α-dependent manner concomitant with a blunted transcriptional induction of genes involved in fatty acid oxidation and impairment in exercise performance. These data reveal a new role for muscle PGC-1α in regulating the physiological adaptation to long-term LCHF diet administration. PMID:28223292

  15. Tbx1 is required autonomously for cell survival and fate in the pharyngeal core mesoderm to form the muscles of mastication

    PubMed Central

    Kong, Ping; Racedo, Silvia E.; Macchiarulo, Stephania; Hu, Zunju; Carpenter, Courtney; Guo, Tingwei; Wang, Tao; Zheng, Deyou; Morrow, Bernice E.

    2014-01-01

    Velo-cardio-facial/DiGeorge syndrome, also known as 22q11.2 deletion syndrome, is a congenital anomaly disorder characterized by craniofacial anomalies including velo-pharyngeal insufficiency, facial muscle hypotonia and feeding difficulties, in part due to hypoplasia of the branchiomeric muscles. Inactivation of both alleles of mouse Tbx1, encoding a T-box transcription factor, deleted on chromosome 22q11.2, results in reduction or loss of branchiomeric muscles. To identify downstream pathways, we performed gene profiling of microdissected pharyngeal arch one (PA1) from Tbx1+/+ and Tbx1−/− embryos at stages E9.5 (somites 20–25) and E10.5 (somites 30–35). Basic helix–loop–helix (bHLH) transcription factors were reduced, while secondary heart field genes were increased in expression early and were replaced by an increase in expression of cellular stress response genes later, suggesting a change in gene expression patterns or cell populations. Lineage tracing studies using Mesp1Cre and T-Cre drivers showed that core mesoderm cells within PA1 were present at E9.5 but were greatly reduced by E10.5 in Tbx1−/− embryos. Using Tbx1Cre knock-in mice, we found that cells are lost due to apoptosis, consistent with increase in expression of cellular stress response genes at E10.5. To determine whether Tbx1 is required autonomously in the core mesoderm, we used Mesp1Cre and T-Cre mesodermal drivers in combination with inactivate Tbx1 and found reduction or loss of branchiomeric muscles from PA1. These mechanistic studies inform us that Tbx1 is required upstream of key myogenic genes needed for core mesoderm cell survival and fate, between E9.5 and E10.5, resulting in formation of the branchiomeric muscles. PMID:24705356

  16. Tbx1 is required autonomously for cell survival and fate in the pharyngeal core mesoderm to form the muscles of mastication.

    PubMed

    Kong, Ping; Racedo, Silvia E; Macchiarulo, Stephania; Hu, Zunju; Carpenter, Courtney; Guo, Tingwei; Wang, Tao; Zheng, Deyou; Morrow, Bernice E

    2014-08-15

    Velo-cardio-facial/DiGeorge syndrome, also known as 22q11.2 deletion syndrome, is a congenital anomaly disorder characterized by craniofacial anomalies including velo-pharyngeal insufficiency, facial muscle hypotonia and feeding difficulties, in part due to hypoplasia of the branchiomeric muscles. Inactivation of both alleles of mouse Tbx1, encoding a T-box transcription factor, deleted on chromosome 22q11.2, results in reduction or loss of branchiomeric muscles. To identify downstream pathways, we performed gene profiling of microdissected pharyngeal arch one (PA1) from Tbx1(+/+) and Tbx1(-/-) embryos at stages E9.5 (somites 20-25) and E10.5 (somites 30-35). Basic helix-loop-helix (bHLH) transcription factors were reduced, while secondary heart field genes were increased in expression early and were replaced by an increase in expression of cellular stress response genes later, suggesting a change in gene expression patterns or cell populations. Lineage tracing studies using Mesp1(Cre) and T-Cre drivers showed that core mesoderm cells within PA1 were present at E9.5 but were greatly reduced by E10.5 in Tbx1(-/-) embryos. Using Tbx1(Cre) knock-in mice, we found that cells are lost due to apoptosis, consistent with increase in expression of cellular stress response genes at E10.5. To determine whether Tbx1 is required autonomously in the core mesoderm, we used Mesp1(Cre) and T-Cre mesodermal drivers in combination with inactivate Tbx1 and found reduction or loss of branchiomeric muscles from PA1. These mechanistic studies inform us that Tbx1 is required upstream of key myogenic genes needed for core mesoderm cell survival and fate, between E9.5 and E10.5, resulting in formation of the branchiomeric muscles.

  17. Requirement of plasminogen binding to its cell-surface receptor α-enolase for efficient regeneration of normal and dystrophic skeletal muscle.

    PubMed

    Díaz-Ramos, Àngels; Roig-Borrellas, Anna; García-Melero, Ana; Llorens, Ana; López-Alemany, Roser

    2012-01-01

    Adult regenerative myogenesis is central for restoring normal tissue structure and function after muscle damage. In muscle repair after injury, as in severe myopathies, damaged and necrotic fibers are removed by infiltrating inflammatory cells and then replaced by muscle stem cells or satellite cells, which will fuse to form new myofibers. Extracellular proteolysis mediated by uPA-generated plasmin plays a critical role in controlling inflammation and satellite-cell-dependent myogenesis. α-enolase has been described as plasminogen receptor in several cell types, where it acts concentrating plasmin proteolytic activity on the cell surface. In this study, we investigated whether α-enolase plasminogen receptor plays a regulatory role during the muscular repair process. Inhibitors of α-enolase/plasminogen binding: MAb11G1 (a monoclonal antibody against α-enolase) and ε-aminocaproic acid, EACA (a lysine analogue) inhibited the myogenic abilities of satellite cells-derived myoblasts. Furthermore, knockdown of α-enolase decreased myogenic fusion of myoblasts. Injured wild-type mice and dystrophic mdx mice were also treated with MAb11G1 and EACA. These treatments had negative impacts on muscle repair impairing satellite cell functions in vitro in agreement with blunted growth of new myofibers in vivo. Furthermore, both MAb11G1 and EACA treatments impaired adequate inflammatory cell infiltration and promoted extracellular matrix deposition in vivo, which resulted in persistent degeneration. These results demonstrate the novel requirement of α-enolase for restoring homeostasis of injured muscle tissue, by controlling the pericellular localization of plasmin activity.

  18. Integrin α PAT-2/CDC-42 signaling is required for muscle-mediated clearance of apoptotic cells in Caenorhabditis elegans.

    PubMed

    Hsieh, Hsiao-Han; Hsu, Tsung-Yuan; Jiang, Hang-Shiang; Wu, Yi-Chun

    2012-01-01

    Clearance of apoptotic cells by engulfment plays an important role in the homeostasis and development of multicellular organisms. Despite the fact that the recognition of apoptotic cells by engulfment receptors is critical in inducing the engulfment process, the molecular mechanisms are still poorly understood. Here, we characterize a novel cell corpse engulfment pathway mediated by the integrin α subunit PAT-2 in Caenorhabditis elegans and show that it specifically functions in muscle-mediated engulfment during embryogenesis. Inactivation of pat-2 results in a defect in apoptotic cell internalization. The PAT-2 extracellular region binds to the surface of apoptotic cells in vivo, and the intracellular region may mediate signaling for engulfment. We identify essential roles of small GTPase CDC-42 and its activator UIG-1, a guanine-nucleotide exchange factor, in PAT-2-mediated cell corpse removal. PAT-2 and CDC-42 both function in muscle cells for apoptotic cell removal and are co-localized in growing muscle pseudopods around apoptotic cells. Our data suggest that PAT-2 functions through UIG-1 for CDC-42 activation, which in turn leads to cytoskeletal rearrangement and apoptotic cell internalization by muscle cells. Moreover, in contrast to PAT-2, the other integrin α subunit INA-1 and the engulfment receptor CED-1, which signal through the conserved signaling molecules CED-5 (DOCK180)/CED-12 (ELMO) or CED-6 (GULP) respectively, preferentially act in epithelial cells to mediate cell corpse removal during mid-embryogenesis. Our results show that different engulfing cells utilize distinct repertoires of receptors for engulfment at the whole organism level.

  19. 40-Hz square-wave stimulation requires less energy to produce muscle contraction: compared with the TASER® X26 conducted energy weapon.

    PubMed

    Comeaux, James A; Jauchem, James R; Cox, D Duane; Crane, Carrie C; D'Andrea, John A

    2013-07-01

    Conducted energy weapons (CEWs) (including the Advanced TASER(®) X26 model produced by TASER International, Inc.) incapacitate individuals by causing muscle contractions. In this study using anesthetized swine, the potential incapacitating effect of primarily monophasic, 19-Hz voltage imposed by the commercial CEW was compared with the effect of voltages imposed by a laboratory device that created 40-Hz square waves. Forces of muscle contraction were measured with the use of strain gauges. Stimulation with 40-Hz square waves required less pulse energy than stimulation with the commercial CEW to produce similar muscle contraction. The square-pulse stimulation, at the higher repetition rate, caused a more complete tetanus at a lower energy. Use of such a simple shape of waveform may be used to make future nonlethal weapon devices more efficient. © 2013 American Academy of Forensic Sciences Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.

  20. Recovery of prostacyclin synthesis in vascular smooth muscle cells following self-inactivation and requirement for growth factors

    SciTech Connect

    Bailey, J.M.; Hla, T.T.; Pash, J.M.

    1986-05-01

    The cyclooxygenase enzyme system is a prime example of a metabolic pathway that is regulated by self inactivation. This is believed to occur in part via the irreversible reaction of the endoperoxide intermediate species with the cyclooxygenase enzyme. This inactivation and recovery of activity is similar to the inactivation observed with aspirin which irreversibly acetylates the enzyme. Self inactivation was studied in cultured rat and bovine aorta smooth muscle cells. The production of the prostanoid PGI2 was demonstrated by incubation of a monolayer of cells with 12 ..mu..M C-14 labeled arachidonic acid. Products were analyzed by thin layer chromatography and identified by their comigration with authentic standards and confirmed by gas chromatography/mass spectrometry. Preincubation of the cells for 10 minutes with arachidonic acid at concentrations as low as 1 ..mu..g/mL inactivated the cells to a second challenge with radiolabeled arachidonic acid. Recovery from self inactivation took place over a three hour time period and was similar to the recovery observed with aspirin pretreatment. Recovery was inhibited by addition of 10 ..mu..g/mL cycloheximide to the medium indicating that it involves synthesis of cyclooxygenase protein. Epidermal growth factor was identified as a serum factor responsible for the rapid recovery of cyclooxygenase activity in rat and bovine aorta smooth muscle cells.

  1. Phosphatidylinositol 3-kinase and calcium-activated transcription pathways are required for VLDL-induced smooth muscle cell proliferation.

    PubMed

    Lipskaia, Larissa; Pourci, Marie-Luce; Deloménie, Claudine; Combettes, Laurent; Goudounèche, Dominique; Paul, Jean-Louis; Capiod, Thierry; Lompré, Anne-Marie

    2003-05-30

    Little is known regarding the molecular mechanisms of atherogenicity of triglyceride-rich lipoproteins such as very low-density lipoproteins (VLDLs). We examined the effect of VLDL on proliferation of rat aortic smooth muscle cells, intracellular Ca2+ handling, and activity of cAMP-responsive element binding protein (CREB) and nuclear factor of activated T cells (NFAT) transcription factors. VLDL, isolated from human serum, dose- and time-dependently promoted proliferation. After 4 hours of exposure to VLDL (0.15 g/L proteins), the caffeine-induced Ca2+ release was inhibited and the IP3-sensitive Ca2+ release induced by ATP (10 micromol/L) was markedly prolonged. In quiescent cells, CREB was phosphorylated (pCREB) and NFAT was present in the cytosol, whereas in cells exposed to VLDL for 4 to 24 hours, pCREB disappeared and NFAT was translocated to the nucleus. VLDL-induced NFAT translocation and proliferation were blocked by cyclosporin A and LY294002 involving calcineurin and phosphatidylinositol 3-kinase (PI3K) pathways. Indeed, VLDLs rapidly phosphorylate protein kinase B and glycogen synthase kinase-3beta in a PI3K-dependent way. These results provide the first evidence that VLDLs induce smooth muscle cell proliferation by activating the PI3K pathway and nuclear NFAT translocation. Blockade of the Ca2+-induced Ca2+ release mechanism and dephosphorylation of pCREB contribute but were not sufficient to induce a proliferating phenotype.

  2. Induction of Anoikis following myoblast transplantation into SCID mouse muscles requires the Bit1 and FADD pathways.

    PubMed

    Bouchentouf, M; Benabdallah, B F; Rousseau, J; Schwartz, L M; Tremblay, J P

    2007-06-01

    Seventy-five percent of the myoblasts transplanted in the mouse muscle die during the first 4 days following transplantation. The purpose of this study was to determine if anoikis plays a role in this phenomenon. Survival and proliferation of myoblasts in vitro were determined by Hoescht-PI labeling and cell counts respectively. In vivo cell survival and proliferation were quantified by injecting human male myoblasts labeled with (14)C-thymidine in SCID mouse muscles. Survival and proliferation of the transplanted myoblasts were evaluated by scintigraphy and quantitative PCR of human Y chromosomal DNA. Inclusion of the extracellular matrix protein fibronectin enhanced transplanted myoblast survival by 1.7-fold while vitronectin improved their proliferation by 1.8-fold. Reductions in FADD and Bit1 expression reduced anoikis in vitro and improved the injected myoblast survival in vivo. Ectopic expression of the anti-apoptotic protein Bcl-2 completely abolished myoblast anoikis in vitro and enhanced cell survival by 3.1-fold in vivo. Cell death following transplantation appears to me mediated in part by anoikis. Inclusion of extracellular matrix proteins enhanced both survival and proliferation. Reduced expression of the proapoptotic proteins Bit1 and FADD or overexpression of Bcl-2 improved myoblast survival.

  3. Org-1 is required for the diversification of circular visceral muscle founder cells and normal midgut morphogenesis

    PubMed Central

    Schaub, Christoph; Frasch, Manfred

    2013-01-01

    The T-Box family of transcription factors plays fundamental roles in the generation of appropriate spatial and temporal gene expression profiles during cellular differentiation and organogenesis in animals. In this study we report that the Drosophila Tbx1 orthologue optomotor-blind-related-gene-1 (org-1) exerts a pivotal function in the diversification of circular visceral muscle founder cell identities in Drosophila. In embryos mutant for org-1, the specification of the midgut musculature per se is not affected, but the differentiating midgut fails to form the anterior and central midgut constrictions and lacks the gastric caeca. We demonstrate that this phenotype results from the nearly complete loss of the founder cell specific expression domains of several genes known to regulate midgut morphogenesis, including odd-paired (opa), teashirt (tsh), Ultrabithorax (Ubx), decapentaplegic (dpp) and wingless (wg). To address the mechanisms that mediate the regulatory inputs from org-1 towards Ubx, dpp, and wg in these founder cells we genetically dissected known visceral mesoderm specific cis-regulatory-modules (CRMs) of these genes. The analyses revealed that the activities of the dpp and wg CRMs depend on org-1, the CRMs are bound by Org-1 in vivo and their T-Box binding sites are essential for their activation in the visceral muscle founder cells. We conclude that Org-1 acts within a well-defined signaling and transcriptional network of the trunk visceral mesoderm as a crucial founder cell-specific competence factor, in concert with the general visceral mesodermal factor Biniou. As such, it directly regulates several key genes involved in the establishment of morphogenetic centers along the anteroposterior axis of the visceral mesoderm, which subsequently organize the formation of midgut constrictions and gastric caeca and thereby determine the morphology of the midgut. PMID:23380635

  4. Recovery of whisking function promoted by manual stimulation of the vibrissal muscles after facial nerve injury requires insulin-like growth factor 1 (IGF-1).

    PubMed

    Kiryakova, S; Söhnchen, J; Grosheva, M; Schuetz, U; Marinova, Ts; Dzhupanova, R; Sinis, N; Hübbers, C U; Skouras, E; Ankerne, J; Fries, J W U; Irintchev, A; Dunlop, S A; Angelov, D N

    2010-04-01

    Recently, we showed that manual stimulation (MS) of denervated vibrissal muscles enhanced functional recovery following facial nerve cut and suture (FFA) by reducing poly-innervation at the neuro-muscular junctions (NMJ). Although the cellular correlates of poly-innervation are established, with terminal Schwann cells (TSC) processes attracting axon sprouts to "bridge" adjacent NMJ, molecular correlates are poorly understood. Since quantitative RT-PCR revealed a rapid increase of IGF-1 mRNA in denervated muscles, we examined the effect of daily MS for 2 months after FFA in IGF-1(+/-) heterozygous mice; controls were wild-type (WT) littermates including intact animals. We quantified vibrissal motor performance and the percentage of NMJ bridged by S100-positive TSC. There were no differences between intact WT and IGF-1(+/-) mice for vibrissal whisking amplitude (48 degrees and 49 degrees ) or the percentage of bridged NMJ (0%). After FFA and handling alone (i.e. no MS) in WT animals, vibrissal whisking amplitude was reduced (60% lower than intact) and the percentage of bridged NMJ increased (42% more than intact). MS improved both the amplitude of vibrissal whisking (not significantly different from intact) and the percentage of bridged NMJ (12% more than intact). After FFA and handling in IGF-1(+/-) mice, the pattern was similar (whisking amplitude 57% lower than intact; proportion of bridged NMJ 42% more than intact). However, MS did not improve outcome (whisking amplitude 47% lower than intact; proportion of bridged NMJ 40% more than intact). We conclude that IGF-I is required to mediate the effects of MS on target muscle reinnervation and recovery of whisking function. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Comparison between mechanical power requirements of flight estimated using an aerodynamic model and in vitro muscle performance in the cockatiel (Nymphicus hollandicus).

    PubMed

    Morris, Charlotte R; Askew, Graham N

    2010-08-15

    There have been few comparisons between the relationship between the mechanical power requirements of flight and flight speed obtained using different approaches. It is unclear whether differences in the power-speed relationships reported in the literature are due to the use of different techniques for determining flight power or due to inter-specific differences. Here we compare the power-speed relationships in cockatiels (Nymphicus hollandicus) determined using both an aerodynamic model and measurements of in vitro performance of bundles of pectoralis muscle fibres under simulated in vivo strain and activity patterns. Aerodynamic power was calculated using different ranges of values for the coefficients in the equations: induced power factor (k 1.0-1.4), the profile (C(D, pro) 0.01-0.03) and parasite drag (C(D, par) 0.05-0.195) coefficients. We found that the aerodynamic power-speed relationship was highly sensitive to the values assumed for these coefficients and best fit the power calculated from in vitro muscle performance when k=1.2, C(D, pro)=0.02 and C(D, par)=0.13.

  6. Sema4d is required for the development of the hindbrain boundary and skeletal muscle in zebrafish

    SciTech Connect

    Yang, Jie; Zeng, Zhen; Wei, Juncheng; Jiang, Lijun; Ma, Quanfu; Wu, Mingfu; Huang, Xiaoyuan; Ye, Shuangmei; Li, Ye; Ma, Ding; Gao, Qinglei

    2013-04-05

    Highlights: ► Sema4d was expressed at all developmental stages of zebrafish. ► Knockdown of sema4d in embryos resulted in defects in the hindbrain and the trunk structure. ► Knockdown of sema4d in embryos upregulated the expression of three hindbrain rhombomere markers. ► Knockdown of sema4d in embryos increased the expression of myogenic regulatory factors. ► Knockdown of sema4d in embryos resulted in an obvious increase of cell apoptosis. -- Abstract: Semaphorin4d (SEMA4D), also known as CD100, an oligodendrocyte secreted R-Ras GTPase-activating protein (GAP), affecting axonal growth is involved in a range of processes including cell adhesion, motility, angiogenesis, immune responses and tumour progression. However, its actual physiological mechanisms and its role in development remain unclear. This study has focused on the role of sema4d in the development and expression patterns in zebrafish embryos and the effect of its suppression on development using sema4d-specific antisense morpholino-oligonucleotides. In this study the knockdown of sema4d, expressed at all developmental stages, lead to defects in the hindbrain and trunk structure of zebrafish embryos. In addition, these phenotypes appeared to be associated with the abnormal expression of three hindbrain rhombomere boundary markers, wnt1, epha4a and foxb1.2, and two myogenic regulatory factors, myod and myog. Further, a notable increase of cell apoptosis appeared in the sema4d knockdown embryos, while no obvious reduction in cell proliferation was observed. Collectively, these data suggest that sema4d plays an important role in the development of the hindbrain and skeletal muscle.

  7. Muscle Cramps

    MedlinePlus

    Muscle cramps are sudden, involuntary contractions or spasms in one or more of your muscles. They often occur after exercise or at night, ... to several minutes. It is a very common muscle problem. Muscle cramps can be caused by nerves ...

  8. Muscle Disorders

    MedlinePlus

    Your muscles help you move and help your body work. Different types of muscles have different jobs. There are many problems that can affect muscles. Muscle disorders can cause weakness, pain or even ...

  9. Muscle atrophy

    MedlinePlus

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy: disuse and neurogenic. Disuse atrophy is caused by not using the muscles enough . This type of atrophy can often be ...

  10. Your Muscles

    MedlinePlus

    ... of the heart because it controls the heartbeat. Skeletal Muscle Now, let's talk about the kind of muscle ... soccer ball into the goal. These are your skeletal muscles — sometimes called striated (say: STRY-ay-tud) muscle ...

  11. Angiotensin II-induced pro-fibrotic effects require p38MAPK activity and transforming growth factor beta 1 expression in skeletal muscle cells.

    PubMed

    Morales, María Gabriela; Vazquez, Yaneisi; Acuña, María José; Rivera, Juan Carlos; Simon, Felipe; Salas, José Diego; Alvarez Ruf, Joel; Brandan, Enrique; Cabello-Verrugio, Claudio

    2012-11-01

    Fibrotic disorders are typically characterised by excessive connective tissue and extracellular matrix (ECM) deposition that preclude the normal healing of different tissues. Several skeletal muscle dystrophies are characterised by extensive fibrosis. Among the factors involved in skeletal muscle fibrosis is angiotensin II (Ang-II), a key protein of the renin-angiotensin system (RAS). We previously demonstrated that myoblasts responded to Ang-II by increasing the ECM protein levels mediated by AT-1 receptors, implicating an Ang-II-induced reactive oxygen species (ROS) by a NAD(P)H oxidase-dependent mechanism. In this paper, we show that in myoblasts, Ang-II induced the increase of transforming growth factor beta 1 (TGF-β1) and connective tissue growth factor (CTGF) expression through its AT-1 receptor. This effect is dependent of the NAD(P)H oxidase (NOX)-induced ROS, as indicated by a decrease of the expression of both pro-fibrotic factors when the ROS production was inhibited via the NOX inhibitor apocynin. The increase in pro-fibrotic factors levels was paralleled by enhanced p38MAPK and ERK1/2 phosphorylation in response to Ang-II. However, only the p38MAPK activity was critical for the Ang-II-induced fibrotic effects, as indicated by the decrease in the Ang-II-induced TGF-β1 and CTGF expression and fibronectin levels by SB-203580, an inhibitor of the p38MAPK, but not by U0126, an inhibitor of ERK1/2 phosphorylation. Furthermore, we showed that the Ang-II-dependent p38MAPK activation, but not the ERK1/2 phosphorylation, was necessary for the NOX-derived ROS. In addition, we demonstrated that TGF-β1 expression was required for the Ang-II-induced pro-fibrotic effects evaluated by using SB-431542, an inhibitor of TGF-βRI kinase activity, and by knocking down TGF-β1 levels by shRNA technique. These results strongly suggest that the fibrotic response to Ang-II is mediated by the AT-1 receptor and requires the p38MAPK phosphorylation, NOX-induced ROS, and TGF

  12. Biphasic Erk1/2 activation sequentially involving Gs and Gi signaling is required in beta3-adrenergic receptor-induced primary smooth muscle cell proliferation.

    PubMed

    Hadi, Tarik; Barrichon, Marina; Mourtialon, Pascal; Wendremaire, Maeva; Garrido, Carmen; Sagot, Paul; Bardou, Marc; Lirussi, Frédéric

    2013-05-01

    The beta3 adrenergic receptor (B3-AR) reportedly induces cell proliferation, but the signaling pathways that were proposed, involving either Gs or Gi coupling, remain controversial. To further investigate the role of G protein coupling in B3-AR induced proliferation, we stimulated primary human myometrial smooth muscle cells with SAR150640 (B3-AR agonist) in the absence or presence of variable G-protein inhibitors. Specific B3-AR stimulation led to an Erk1/2 induced proliferation. We observed that the proliferative effects of B3-AR require two Erk1/2 activation peaks (the first after 3min, the second at 8h). Erk1/2 activation at 3min was mimicked by forskolin (adenylyl-cyclase activator), and was resistant to pertussis toxin (Gi inhibitor), suggesting a Gs protein signaling. This first signaling also required the downstream Gs signaling effectors PKA and Src. However, Erk1/2 activation at 8h turned out to be pertussis toxin-dependent, and PKA-independent, indicating a Gi signaling pathway in which Src and PI3K were required. The pharmacological inhibition of both the Gs and Gi pathway abolished B3-AR-induced proliferation. Altogether, these data indicate that B3-AR-induced proliferation depends on the biphasic activation of Erk1/2 sequentially induced by the Gs/PKA/Src and Gi/Src/PI3K signaling pathways. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. FGF-2 is required to prevent astrogliosis in the facial nucleus after facial nerve injury and mechanical stimulation of denervated vibrissal muscles.

    PubMed

    Hizay, Arzu; Seitz, Mark; Grosheva, Maria; Sinis, Nektarios; Kaya, Yasemin; Bendella, Habib; Sarikcioglu, Levent; Dunlop, Sarah A; Angelov, Doychin N

    2016-03-01

    Recently, we have shown that manual stimulation of paralyzed vibrissal muscles after facial-facial anastomosis reduced the poly-innervation of neuromuscular junctions and restored vibrissal whisking. Using gene knock outs, we found a differential dependence of manual stimulation effects on growth factors. Thus, insulin-like growth factor-1 and brain-derived neurotrophic factor are required to underpin manual stimulation-mediated improvements, whereas FGF-2 is not. The lack of dependence on FGF-2 in mediating these peripheral effects prompted us to look centrally, i.e. within the facial nucleus where increased astrogliosis after facial-facial anastomosis follows "synaptic stripping". We measured the intensity of Cy3-fluorescence after immunostaining for glial fibrillary acidic protein (GFAP) as an indirect indicator of synaptic coverage of axotomized neurons in the facial nucleus of mice lacking FGF-2 (FGF-2(-/-) mice). There was no difference in GFAP-Cy3-fluorescence (pixel number, gray value range 17-103) between intact wildtype mice (2.12±0.37×10(7)) and their intact FGF-2(-/-) counterparts (2.12±0.27×10(7)) nor after facial-facial anastomosis +handling (wildtype: 4.06±0.32×10(7); FGF-2(-/-): 4.39±0.17×10(7)). However, after facial-facial anastomosis, GFAP-Cy3-fluorescence remained elevated in FGF-2(-/-)-animals (4.54±0.12×10(7)), whereas manual stimulation reduced the intensity of GFAP-immunofluorescence in wild type mice to values that were not significantly different from intact mice (2.63±0.39×10). We conclude that FGF-2 is not required to underpin the beneficial effects of manual stimulation at the neuro-muscular junction, but it is required to minimize astrogliosis in the brainstem and, by implication, restore synaptic coverage of recovering facial motoneurons.

  14. Skeletal muscle

    USDA-ARS?s Scientific Manuscript database

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  15. Muscle as a secretory organ.

    PubMed

    Pedersen, Bente K

    2013-07-01

    Skeletal muscle is the largest organ in the body. Skeletal muscles are primarily characterized by their mechanical activity required for posture, movement, and breathing, which depends on muscle fiber contractions. However, skeletal muscle is not just a component in our locomotor system. Recent evidence has identified skeletal muscle as a secretory organ. We have suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert either autocrine, paracrine, or endocrine effects should be classified as "myokines." The muscle secretome consists of several hundred secreted peptides. This finding provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs such as adipose tissue, liver, pancreas, bones, and brain. In addition, several myokines exert their effects within the muscle itself. Many proteins produced by skeletal muscle are dependent upon contraction. Therefore, it is likely that myokines may contribute in the mediation of the health benefits of exercise.

  16. Recovery of Dominant, Autosomal Flightless Mutants of Drosophila Melanogaster and Identification of a New Gene Required for Normal Muscle Structure and Function

    PubMed Central

    Cripps, R. M.; Ball, E.; Stark, M.; Lawn, A.; Sparrow, J. C.

    1994-01-01

    To identify further mutations affecting muscle function and development in Drosophila melanogaster we recovered 22 autosomal dominant flightless mutations. From these we have isolated eight viable and lethal alleles of the muscle myosin heavy chain gene, and seven viable alleles of the indirect flight muscle (IFM)-specific Act88F actin gene. The Mhc mutations display a variety of phenotypic effects, ranging from reductions in myosin heavy chain content in the indirect flight muscles only, to reductions in the levels of this protein in other muscles. The Act88F mutations range from those which produce no stable actin and have severely abnormal myofibrillar structure, to those which accumulate apparently normal levels of actin in the flight muscles but which still have abnormal myofibrils and fly very poorly. We also recovered two recessive flightless mutants on the third chromosome. The remaining five dominant flightless mutations are all lethal alleles of a gene named lethal(3)Laker. The Laker alleles have been characterized and the gene located in polytene bands 62A10,B1-62B2,4. Laker is a previously unidentified locus which is haplo-insufficient for flight. In addition, adult wild-type heterozygotes and the lethal larval trans-heterozygotes show abnormalities of muscle structure indicating that the Laker gene product is an important component of muscle. PMID:8056306

  17. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  18. Structural requirements for charged lipid molecules to directly increase or suppress K+ channel activity in smooth muscle cells. Effects of fatty acids, lysophosphatidate, acyl coenzyme A and sphingosine

    PubMed Central

    1994-01-01

    We determined the structural features necessary for fatty acids to exert their action on K+ channels of gastric smooth muscle cells. Examination of the effects of a variety of synthetic and naturally occurring lipid compounds on K+ channel activity in cell-attached and excised membrane patches revealed that negatively charged analogs of medium to long chain fatty acids (but not short chain analogs) as well as certain other negatively charged lipids activate the channels. In contrast, positively charged, medium to long chain analogs suppress activity, and neutral analogs are without effect. The key requirements for effective compounds seem to be a sufficiently hydrophobic domain and the presence of a charged group. Furthermore, those negatively charged compounds unable to "flip" across the bilayer are effective only when applied at the cytosolic surface of the membrane, suggesting that the site of fatty acid action is also located there. Finally, because some of the effective compounds, for example, the fatty acids themselves, lysophosphatidate, acyl Coenzyme A, and sphingosine, are naturally occurring substances and can be liberated by agonist- activated or metabolic enzymes, they may act as second messengers targeting ion channels. PMID:8195783

  19. Muscle disorder

    MedlinePlus

    Myopathic changes; Myopathy; Muscle problem ... Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs ...

  20. The optimal neural strategy for a stable motor task requires a compromise between level of muscle cocontraction and synaptic gain of afferent feedback

    PubMed Central

    Dideriksen, Jakob L.; Negro, Francesco

    2015-01-01

    Increasing joint stiffness by cocontraction of antagonist muscles and compensatory reflexes are neural strategies to minimize the impact of unexpected perturbations on movement. Combining these strategies, however, may compromise steadiness, as elements of the afferent input to motor pools innervating antagonist muscles are inherently negatively correlated. Consequently, a high afferent gain and active contractions of both muscles may imply negatively correlated neural drives to the muscles and thus an unstable limb position. This hypothesis was systematically explored with a novel computational model of the peripheral nervous system and the mechanics of one limb. Two populations of motor neurons received synaptic input from descending drive, spinal interneurons, and afferent feedback. Muscle force, simulated based on motor unit activity, determined limb movement that gave rise to afferent feedback from muscle spindles and Golgi tendon organs. The results indicated that optimal steadiness was achieved with low synaptic gain of the afferent feedback. High afferent gains during cocontraction implied increased levels of common drive in the motor neuron outputs, which were negatively correlated across the two populations, constraining instability of the limb. Increasing the force acting on the joint and the afferent gain both effectively minimized the impact of an external perturbation, and suboptimal adjustment of the afferent gain could be compensated by muscle cocontraction. These observations show that selection of the strategy for a given contraction implies a compromise between steadiness and effectiveness of compensations to perturbations. This indicates that a task-dependent selection of neural strategy for steadiness is necessary when acting in different environments. PMID:26203102

  1. Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids.

    PubMed

    Dickinson, Jared M; Fry, Christopher S; Drummond, Micah J; Gundermann, David M; Walker, Dillon K; Glynn, Erin L; Timmerman, Kyle L; Dhanani, Shaheen; Volpi, Elena; Rasmussen, Blake B

    2011-05-01

    The relationship between mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis during instances of amino acid surplus in humans is based solely on correlational data. Therefore, the goal of this study was to use a mechanistic approach specifically designed to determine whether increased mTORC1 activation is requisite for the stimulation of muscle protein synthesis following L-essential amino acid (EAA) ingestion in humans. Examination of muscle protein synthesis and signaling were performed on vastus lateralis muscle biopsies obtained from 8 young (25 ± 2 y) individuals who were studied prior to and following ingestion of 10 g of EAA during 2 separate trials in a randomized, counterbalanced design. The trials were identical except during 1 trial, participants were administered a single oral dose of a potent mTORC1 inhibitor (rapamycin) prior to EAA ingestion. In response to EAA ingestion, an ~60% increase in muscle protein synthesis was observed during the control trial, concomitant with increased phosphorylation of mTOR (Ser(2448)), ribosomal S6 kinase 1 (Thr(389)), and eukaryotic initiation factor 4E binding protein 1 (Thr(37/46)). In contrast, prior administration of rapamycin completely blocked the increase in muscle protein synthesis and blocked or attenuated activation of mTORC1-signaling proteins. The inhibition of muscle protein synthesis and signaling was not due to differences in either extracellular or intracellular amino acid availability, because these variables were similar between trials. These data support a fundamental role for mTORC1 activation as a key regulator of human muscle protein synthesis in response to increased EAA availability. This information will be useful in the development of evidence-based nutritional therapies targeting mTORC1 to counteract muscle wasting associated with numerous clinical conditions.

  2. Tra2β Protein Is Required for Tissue-specific Splicing of a Smooth Muscle Myosin Phosphatase Targeting Subunit Alternative Exon*

    PubMed Central

    Fu, Kang; Mende, Ylva; Bhetwal, Bhupal P.; Baker, Salah; Perrino, Brian A.; Wirth, Brunhilde; Fisher, Steven A.

    2012-01-01

    Alternative splicing of the smooth muscle myosin phosphatase targeting subunit (Mypt1) exon 23 (E23) is tissue-specific and developmentally regulated and, thus, an attractive model for the study of smooth muscle phenotypic specification. We have proposed that Tra2β functions as a tissue-specific activator of Mypt1 E23 splicing on the basis of concordant expression patterns and Tra2β activation of Mypt1 E23 mini-gene splicing in vitro. In this study we examined the relationship between Tra2β and Mypt1 E23 splicing in vivo in the mouse. Tra2β was 2- to 5-fold more abundant in phasic smooth muscle tissues, such as the portal vein, small intestine, and small mesenteric artery, in which Mypt1 E23 is predominately included as compared with the tonic smooth muscle tissues, such as the aorta and inferior vena cava, in which Mypt1 E23 is predominately skipped. Tra2β was up-regulated in the small intestine postnatally, concordant with a switch to Mypt1 E23 splicing. Targeting of Tra2β in smooth muscle cells using SM22α-Cre caused a substantial reduction in Mypt1 E23 inclusion specifically in the intestinal smooth muscle of heterozygotes, indicating sensitivity to Tra2β gene dosage. The switch to the Mypt1 E23 skipped isoform coding for the C-terminal leucine zipper motif caused increased sensitivity of the muscle to the relaxant effects of 8-Br-cyclic guanosine monophosphate (cGMP). We conclude that Tra2β is necessary for the tissue-specific splicing of Mypt1 E23 in the phasic intestinal smooth muscle. Tra2β, by regulating the splicing of Mypt1 E23, sets the sensitivity of smooth muscle to cGMP-mediated relaxation. PMID:22437831

  3. Wnt/β-catenin signaling via Axin2 is required for myogenesis and, together with YAP/Taz and Tead1, active in IIa/IIx muscle fibers.

    PubMed

    Huraskin, Danyil; Eiber, Nane; Reichel, Martin; Zidek, Laura M; Kravic, Bojana; Bernkopf, Dominic; von Maltzahn, Julia; Behrens, Jürgen; Hashemolhosseini, Said

    2016-09-01

    Canonical Wnt/β-catenin signaling plays an important role in myogenic differentiation, but its physiological role in muscle fibers remains elusive. Here, we studied activation of Wnt/β-catenin signaling in adult muscle fibers and muscle stem cells in an Axin2 reporter mouse. Axin2 is a negative regulator and a target of Wnt/β-catenin signaling. In adult muscle fibers, Wnt/β-catenin signaling is only detectable in a subset of fast fibers that have a significantly smaller diameter than other fast fibers. In the same fibers, immunofluorescence staining for YAP/Taz and Tead1 was detected. Wnt/β-catenin signaling was absent in quiescent and activated satellite cells. Upon injury, Wnt/β-catenin signaling was detected in muscle fibers with centrally located nuclei. During differentiation of myoblasts expression of Axin2, but not of Axin1, increased together with Tead1 target gene expression. Furthermore, absence of Axin1 and Axin2 interfered with myoblast proliferation and myotube formation, respectively. Treatment with the canonical Wnt3a ligand also inhibited myotube formation. Wnt3a activated TOPflash and Tead1 reporter activity, whereas neither reporter was activated in the presence of Dkk1, an inhibitor of canonical Wnt signaling. We propose that Axin2-dependent Wnt/β-catenin signaling is involved in myotube formation and, together with YAP/Taz/Tead1, associated with reduced muscle fiber diameter of a subset of fast fibers. © 2016. Published by The Company of Biologists Ltd.

  4. Interleukin-15 directly stimulates pro-oxidative gene expression in skeletal muscle in-vitro via a mechanism that requires interleukin-15 receptor alpha.

    PubMed

    O'Connell, Grant C; Pistilli, Emidio E

    2015-03-13

    Interleukin-15 (IL-15) signaling is heavily regulated by a high specificity IL-15 binding protein known as interleukin-15 receptor alpha (IL-15Rα). In-vivo disruption of IL-15Rα in the constitutive IL-15Rα knock-out (IL-15RαKO) mouse results in a shift towards an oxidative muscle phenotype characterized by dramatic increases in mitochondrial density. The IL-15RαKO mouse displays elevated levels of IL-15 transcript in muscle tissue, along with increased circulating levels of IL-15. As a result, it has been suggested that loss of IL-15Rα from skeletal muscle enhances muscle IL-15 secretion, and that muscle-derived IL-15 acts in an autocrine fashion to elicit pro-oxidative effects. However, this proposed mechanism of IL-15/IL-15Rα action in skeletal muscle is based primarily on in-vivo associative observations, and has yet to be explored in a direct manner. Thus, our purpose was to assess the immediate influence of IL-15Rα on the capacity of skeletal muscle to secrete and respond to IL-15, and also to determine whether IL-15 has the ability to act directly on skeletal muscle to induce pro-oxidative changes. These aims were addressed in-vitro using primary myogenic cultures derived from IL-15RαKO mice and B6129 controls, as well as cultures of the C2C12 immortalized myogenic cell line. Cultures obtained from IL-15RαKO mice displayed a diminished capacity to secrete IL-15 in relation to B6129 controls. Acute treatment of B6129-derived cultures with recombinant IL-15 increased transcriptional expression of the pro-oxidative genes PGC1α and PPARδ. IL-15 treatment failed to elicit a similar response in cultures generated from IL-15RαKO mice. Chronic treatment of C2C12 cultures with IL-15 during myogenic differentiation resulted in mature myocytes with greater mitochondrial density in relation to vehicle treated controls. Collectively, these results provide evidence that IL-15 has the capacity to act directly on skeletal muscle in a pro-oxidative manner, and

  5. Repression of the cardiac myosin light chain‐2 gene in skeletal muscle requires site‐specific association of antithetic regulator, Nished, and HDACs

    PubMed Central

    Mathew, Sumy; Galatioto, Josephine; Mascareno, Eduardo

    2008-01-01

    Abstract The transcriptional activation mechanisms that regulate tissue‐specific expression of cardiac muscle genes have been extensively investigated, but little is known of the regulatory events involved in repression of cardiac‐specific genes in non‐cardiac cells. We have previously reported that Nished, a ubiquitous transcription factor, interacts with a positive sequence element, the Intron Regulatory Element (IRE) as well as a negatively acting element, the Cardiac‐Specific Sequence (CSS), in myosin light chain‐2 (MLC2v) gene to promote activation and repression of the gene in cardiac and skeletal muscle cells respectively. Here, we show that the negative regulation of cardiac MLC2v gene in skeletal muscle cells is mediated via the interaction of Nished with histone deacetylase (HDAC) co‐repressor. Treatment of cells with the HDAC inhibitor, Trichostatin A (TSA), alleviates the repressor activity of Nished in a dose‐dependent manner. Co‐transfection studies in primary muscle cells in culture and in Nished expressing stable skeletal muscle cell line demonstrate that Nished down‐regulates the cardiac MLC2 gene expression when its association is restricted to CSS alone. Chromatin immunoprecipitation data suggest that the CSS‐mediated repression of cardiac MLC2v gene in skeletal muscle cells excludes the participation of the positive element IRE despite the presence of an identical Nished binding site. Taken together, it appears that the negative control of MLC2v transcription is based on a dual mode of regulations, one that affords inaccessibility of IRE to Nished and second that promotes the formation of the transcription repression complex at the inhibitory CSS site to silence the cardiac gene in skeletal muscle cell. PMID:19604314

  6. Repression of the cardiac myosin light chain-2 gene in skeletal muscle requires site-specific association of antithetic regulator, Nished, and HDACs.

    PubMed

    Mathew, Sumy; Galatioto, Josephine; Mascareno, Eduardo; Siddiqui, M A Q

    2009-08-01

    The transcriptional activation mechanisms that regulate tissue-specific expression of cardiac muscle genes have been extensively investigated, but little is known of the regulatory events involved in repression of cardiac-specific genes in non-cardiac cells. We have previously reported that Nished, a ubiquitous transcription factor, interacts with a positive sequence element, the Intron Regulatory Element (IRE) as well as a negatively acting element, the Cardiac-Specific Sequence (CSS), in myosin light chain-2 (MLC2v) gene to promote activation and repression of the gene in cardiac and skeletal muscle cells respectively. Here, we show that the negative regulation of cardiac MLC2v gene in skeletal muscle cells is mediated via the interaction of Nished with histone deacetylase (HDAC) co-repressor. Treatment of cells with the HDAC inhibitor, Trichostatin A (TSA), alleviates the repressor activity of Nished in a dose-dependent manner. Co-transfection studies in primary muscle cells in culture and in Nished expressing stable skeletal muscle cell line demonstrate that Nished down-regulates the cardiac MLC2 gene expression when its association is restricted to CSS alone. Chromatin immunoprecipitation data suggest that the CSS-mediated repression of cardiac MLC2v gene in skeletal muscle cells excludes the participation of the positive element IRE despite the presence of an identical Nished binding site. Taken together, it appears that the negative control of MLC2v transcription is based on a dual mode of regulations, one that affords inaccessibility of IRE to Nished and second that promotes the formation of the transcription repression complex at the inhibitory CSS site to silence the cardiac gene in skeletal muscle cell.

  7. Double-muscled and conventional cattle have the same net energy requirements if these are related to mature and current body protein mass, and to gain composition.

    PubMed

    Schiavon, S; Bittante, G

    2012-11-01

    The hypothesis tested in this paper is that double-muscled (DBM) and conventional cattle, considerably differing in body composition, have similar NE requirements when: a) NE(m) is scaled as a function of current (P(i)) and adult (P(m)) protein mass; and b) ME for gain (ME(g)) is estimated from protein (Pr) and lipid (Lr) retention and their partial ME use efficiencies, the k(p) and k(l) values, respectively. First, 2 databases were examined: 1 was developed combining well known literature information from comparative slaughter trials conducted on British beef steers; the other was based on a trial conducted using extremely lean DBM Piemontese bulls. From the first database, NE(m) was calculated to be 1.625 × P(i) ÷ P(m) × P(m)(0.73) (MJ/kg(0.73)). From the second database, the daily ME(g) was determined as 22.8 MJ × Pr ÷ k(p) + 38.74 MJ × Lr ÷ k(l), assuming (from prior reports) that k(p) = 0.20 and k(l) = 0.75. Thereafter, ME(m) was defined as ME intake minus ME(g), and, hence, NE(m) was predicted as 1.625 × P(i) ÷ P(m) × P(m)(0.73) (where 1.625 was the value obtained from the first dataset). The resulting k(m) (NE(m)/ME(m)) averaged 0.67. This k(m) value did not differ from that (0.65; P = 0.12) predicted by Garrett's equation, which uses dietary ME content as the only predictive variable. Second, the procedure was tested for the ability to detect effects on k(m) caused by increasing BW and dietary factors not estimable from the dietary ME content only. Data were gathered from a trial involving 48 DBM Piemontese bulls divided into 4 groups fed 1 of 4 diets differing in CP content (145 or 108 g/kg DM), with or without addition of 80 g/d of rumen-protected CLA (rpCLA). Bulls were examined at 3 consecutive periods of growth, corresponding to 365, 512 and 631 kg of average BW. All energy balance items were influenced by increasing BW, except k(m) (P = 0.61), in agreement with the expectation that NE(m) requirement depends on the degree of maturity (P

  8. The insulin-like growth factor (IGF)-I E-peptides are required for isoform-specific gene expression and muscle hypertrophy after local IGF-I production

    PubMed Central

    DeMeo, J; Lei, Hanqin

    2010-01-01

    Insulin-like growth factor I (IGF-I) coordinates proliferation and differentiation in a wide variety of cell types. The igf1 gene not only produces IGF-I, but also generates multiple carboxy-terminal extensions, the E-peptides, through alternative splicing leading to different isoforms. It is not known if the IGF-I isoforms share a common pathway for their actions, or if there are specific actions of each protein. Viral administration of murine IGF-IA, IGF-IB, and mature IGF, which lacked an E-peptide extension, was utilized to identify IGF-I isoform-specific responsive genes in muscles of young growing mice. Microarray analysis revealed responses that were driven by increased IGF-I regardless of the presence of E-peptide, such as Bcl-XL. In contrast, distinct expression patterns were observed after viral delivery of IGF-IA or IGF-IB, which included matrix metalloproteinase 13 (MMP13). Expression of Bcl-XL was prevented when viral administration of the IGF-I isoforms was performed into muscles of MKR mice, which lack functional IGF-I receptors on the muscle fibers. However, MMP13 expression persisted under the same conditions after viral injection of IGF-IB. At 4 mo after viral delivery, expression of IGF-IA or IGF-IB promoted muscle hypertrophy, but viral delivery of mature IGF-I failed to increase muscle mass. These studies provide evidence that local production of IGF-I requires the E-peptides to drive hypertrophy in growing muscle and that both common and unique pathways exist for the IGF-I isoforms to promote biological effects. PMID:20133429

  9. NOX2-dependent ROS is required for HDAC5 nuclear efflux and contributes to HDAC4 nuclear efflux during intense repetitive activity of fast skeletal muscle fibers

    PubMed Central

    Liu, Yewei; Hernández-Ochoa, Erick O.; Randall, William R.

    2012-01-01

    Reactive oxygen species (ROS) have been linked to oxidation and nuclear efflux of class IIa histone deacetylase 4 (HDAC4) in cardiac muscle. Here we use HDAC-GFP fusion proteins expressed in isolated adult mouse flexor digitorum brevis muscle fibers to study ROS mediation of HDAC localization in skeletal muscle. H2O2 causes nuclear efflux of HDAC4-GFP or HDAC5-GFP, which is blocked by the ROS scavenger N-acetyl-l-cysteine (NAC). Repetitive stimulation with 100-ms trains at 50 Hz, 2/s (“50-Hz trains”) increased ROS production and caused HDAC4-GFP or HDAC5-GFP nuclear efflux. During 50-Hz trains, HDAC5-GFP nuclear efflux was completely blocked by NAC, but HDAC4-GFP nuclear efflux was only partially blocked by NAC and partially blocked by the calcium-dependent protein kinase (CaMK) inhibitor KN-62. Thus, during intense activity both ROS and CaMK play roles in nuclear efflux of HDAC4, but only ROS mediates HDAC5 nuclear efflux. The 10-Hz continuous stimulation did not increase the rate of ROS production and did not cause HDAC5-GFP nuclear efflux but promoted HDAC4-GFP nuclear efflux that was sensitive to KN-62 but not NAC and thus mediated by CaMK but not by ROS. Fibers from NOX2 knockout mice lacked ROS production and ROS-dependent nuclear efflux of HDAC5-GFP or HDAC4-GFP during 50-Hz trains but had unmodified Ca2+ transients. Our results demonstrate that ROS generated by NOX2 could play important roles in muscle remodeling due to intense muscle activity and that the nuclear effluxes of HDAC4 and HDAC5 are differentially regulated by Ca2+ and ROS during muscle activity. PMID:22648949

  10. Using individual-muscle specific instead of across-muscle mean data halves muscle simulation error.

    PubMed

    Blümel, Marcus; Guschlbauer, Christoph; Hooper, Scott L; Büschges, Ansgar

    2012-11-01

    Hill-type parameter values measured in experiments on single muscles show large across-muscle variation. Using individual-muscle specific values instead of the more standard approach of across-muscle means might therefore improve muscle model performance. We show here that using mean values increased simulation normalized RMS error in all tested motor nerve stimulation paradigms in both isotonic and isometric conditions, doubling mean simulation error from 9 to 18 (different at p < 0.0001). These data suggest muscle-specific measurement of Hill-type model parameters is necessary in work requiring highly accurate muscle model construction. Maximum muscle force (F (max)) showed large (fourfold) across-muscle variation. To test the role of F (max) in model performance we compared the errors of models using mean F (max) and muscle-specific values for the other model parameters, and models using muscle-specific F (max) values and mean values for the other model parameters. Using muscle-specific F (max) values did not improve model performance compared to using mean values for all parameters, but using muscle-specific values for all parameters but F (max) did (to an error of 14, different from muscle-specific, mean all parameters, and mean only F (max) errors at p ≤ 0.014). Significantly improving model performance thus required muscle-specific values for at least a subset of parameters other than F (max), and best performance required muscle-specific values for this subset and F (max). Detailed consideration of model performance suggested that remaining model error likely stemmed from activation of both fast and slow motor neurons in our experiments and inadequate specification of model activation dynamics.

  11. Muscle biopsy

    MedlinePlus

    ... that affect the muscles (such as trichinosis or toxoplasmosis ) Inherited muscle disorders such as muscular dystrophy or ... nodosa Polymyalgia rheumatica Polymyositis - adult Thyrotoxic periodic paralysis Toxoplasmosis Trichinosis Review Date 7/21/2016 Updated by: ...

  12. Modeling Muscles

    ERIC Educational Resources Information Center

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  13. Modeling Muscles

    ERIC Educational Resources Information Center

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  14. Type III-IV muscle afferents are not required for steady-state exercise hyperpnea in healthy subjects and patients with COPD or heart failure.

    PubMed

    Poon, Chi-Sang; Song, Gang

    2015-09-15

    Blockade of group III-IV muscle afferents by intrathecal injection of the μ-opioid agonist fentanyl (IF) in humans has been variously reported to depress exercise hyperpnea in some studies but not others. A key unanswered question is whether such an effect is transient or persists in the steady state. Here we show that in healthy subjects undergoing constant-load cycling exercise IF significantly slows the transient exercise ventilatory kinetics but has no discernible effect on the ventilatory response when exercise is sufficiently prolonged. Thus, the ventilatory response to group III-IV muscle afferents input in healthy subjects is not a simple reflex but acts like a high-pass filter with maximum sensitivity during early-phase exercise and is reset in the late phase. In patients with chronic heart failure (CHF) IF causes sustained CO2 retention not only during exercise but also in the resting state, where muscle afferents feedback is minimal. In patients with chronic obstructive pulmonary disease (COPD), IF also elicits sustained decreases in the exercise ventilatory response but with little or no resultant CO2 retention due to concomitant decreases in physiological VD/VT (dead space-to-ventilation ratio). These results support the proposition that optimal long-term regulation of exercise hyperpnea in health and in disease is determined centrally by the respiratory controller through the continuing adaptation of an internal model which dynamically tracks the metabolic CO2 load and the ventilatory inefficiency 1/1-VD/VT that must be overcome for the maintenance of arterial PCO2 homeostasis, rather than being reflexively driven by group III-IV muscle afferents feedback per se. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Fgfr4 is required for effective muscle regeneration in vivo. Delineation of a MyoD-Tead2-Fgfr4 transcriptional pathway.

    PubMed

    Zhao, Po; Caretti, Giuseppina; Mitchell, Stephanie; McKeehan, Wallace L; Boskey, Adele L; Pachman, Lauren M; Sartorelli, Vittorio; Hoffman, Eric P

    2006-01-06

    Fgfr4 has been shown to be important for appropriate muscle development in chick limb buds; however, Fgfr4 null mice show no phenotype. Here, we show that staged induction of muscle regeneration in Fgfr4 null mice becomes highly abnormal at the time point when Fgfr4 is normally expressed. By 7 days of regeneration, differentiation of myotubes became poorly coordinated and delayed by both histology and embryonic myosin heavy chain staining. By 14 days much of the muscle was replaced by fat and calcifications. To begin to dissect the molecular pathways involving Fgfr4, we queried the promoter sequences for transcriptional factor binding sites and tested candidate regulators in a 27-time point regeneration series. The Fgfr4 promoter region contained a Tead protein binding site (M-CAT 5'-CATTCCT-3'), and Tead2 showed induction during regeneration commensurate with Fgfr4 regulation. Co-transfection of Tead2 and Fgfr4 promoter reporter constructs into C2C12 myotubes showed Tead2 to activate Fgfr4, and mutation of the M-CAT motif in the Fgfr4 promoter abolished these effects. Immunostaining for Tead2 showed timed expression in myotube nuclei consistent with the mRNA data. Query of the expression timing and genomic sequences of Tead2 suggested direct regulation by MyoD, and consistent with this, MyoD directly bound to two strong E-boxes in the first intron of Tead2 by chromatin immunoprecipitation assay. Moreover, co-transfection of MyoD and Tead2 intron reporter constructs into 10T1/2 cells activated reporter activity in a dose-dependent manner. This activation was greatly reduced when the two E-boxes were mutated. Our data suggest a novel MyoD-Tead2-Fgfr4 pathway important for effective muscle regeneration.

  16. Insulin is required for amino acid stimulation of dual pathways for translational control in skeletal muscle in the late-gestation ovine fetus.

    PubMed

    Brown, Laura D; Rozance, Paul J; Barry, James S; Friedman, Jacob E; Hay, William W

    2009-01-01

    During late gestation, amino acids and insulin promote skeletal muscle protein synthesis. However, the independent effects of amino acids and insulin on the regulation of mRNA translation initiation in the fetus are relatively unknown. The purpose of this study was to determine whether acute amino acid infusion in the late-gestation ovine fetus, with and without a simultaneous increase in fetal insulin concentration, activates translation initiation pathway(s) in skeletal muscle. Fetuses received saline (C), mixed amino acid infusion plus somatostatin infusion to suppress amino acid-stimulated fetal insulin secretion (AA+S), mixed amino acid infusion with concomitant physiological increase in fetal insulin (AA), or high-dose insulin infusion with euglycemia and euaminoacidemia (HI). After a 2-h infusion period, fetal skeletal muscle was harvested under in vivo steady-state conditions and frozen for quantification of proteins both upstream and downstream of mammalian target of rapamycin (mTOR). In the AA group, we found a threefold increase in ribosomal protein S6 kinase (p70(S6k)) and Erk1/2 phosphorylation; however, blocking the physiological rise in insulin with somatostatin in the AA+S group prevented this increase. In the HI group, Akt, Erk1/2, p70(S6k), and ribosomal protein S6 were highly phosphorylated and 4E-binding protein 1 (4E-BP1) associated with eukaryotic initiation factor (eIF)4E decreased by 30%. These data show that insulin is a significant regulator of intermediates involved in translation initiation in ovine fetal skeletal muscle. Furthermore, the effect of amino acids is dependent on a concomitant increase in fetal insulin concentrations, because amino acid infusion upregulates p70(S6k) and Erk only when amino acid-stimulated increase in insulin occurs.

  17. Myomaker is essential for muscle regeneration.

    PubMed

    Millay, Douglas P; Sutherland, Lillian B; Bassel-Duby, Rhonda; Olson, Eric N

    2014-08-01

    Regeneration of injured adult skeletal muscle involves fusion of activated satellite cells to form new myofibers. Myomaker is a muscle-specific membrane protein required for fusion of embryonic myoblasts, but its potential involvement in adult muscle regeneration has not been explored. We show that myogenic basic helix-loop-helix (bHLH) transcription factors induce myomaker expression in satellite cells during acute and chronic muscle regeneration. Moreover, genetic deletion of myomaker in adult satellite cells completely abolishes muscle regeneration, resulting in severe muscle destruction after injury. Myomaker is the only muscle-specific protein known to be absolutely essential for fusion of embryonic and adult myoblasts.

  18. Myomaker is essential for muscle regeneration

    PubMed Central

    Millay, Douglas P.; Sutherland, Lillian B.; Bassel-Duby, Rhonda

    2014-01-01

    Regeneration of injured adult skeletal muscle involves fusion of activated satellite cells to form new myofibers. Myomaker is a muscle-specific membrane protein required for fusion of embryonic myoblasts, but its potential involvement in adult muscle regeneration has not been explored. We show that myogenic basic helix–loop–helix (bHLH) transcription factors induce myomaker expression in satellite cells during acute and chronic muscle regeneration. Moreover, genetic deletion of myomaker in adult satellite cells completely abolishes muscle regeneration, resulting in severe muscle destruction after injury. Myomaker is the only muscle-specific protein known to be absolutely essential for fusion of embryonic and adult myoblasts. PMID:25085416

  19. Effects and feasibility of exercise therapy combined with branched-chain amino acid supplementation on muscle strengthening in frail and pre-frail elderly people requiring long-term care: a crossover trial.

    PubMed

    Ikeda, Takashi; Aizawa, Junya; Nagasawa, Hiroshi; Gomi, Ikuko; Kugota, Hiroyuki; Nanjo, Keigo; Jinno, Tetsuya; Masuda, Tadashi; Morita, Sadao

    2016-04-01

    This study examined the effects and feasibility of a twice-weekly combined therapy of branched-chain amino acids (BCAAs) and exercise on physical function improvement in frail and pre-frail elderly people requiring long-term care. We used a crossover design in which the combination of exercise and nutritional interventions was carried out twice a week during cycles A (3 months) and B (3 months) and the exercise intervention alone was performed during the washout period. The exercise intervention entailed the following 5 training sets: 3 sets of muscle training at 30% of maximum voluntary contraction, 1 set of aerobic exercise, and 1 set of balance training. For the nutritional intervention, 6 g of BCAAs or 6 g of maltodextrin was consumed 10 min before starting the exercise. We determined upper and lower limb isometric strength, performance on the Functional Reach Test (FRT) and the Timed Up and Go test, and activity level. In the comparison between the BCAA group and the control group after crossover, the improvement rates in gross lower limb muscle strength (leg press, knee extension) and FRT performance were significantly greater (by approximately 10%) in the BCAA group. In the comparison between different orders of BCAA administration, significant effects were shown for the leg press in both groups only when BCAAs were given. The combination of BCAA intake and exercise therapy yielded significant improvements in gross lower limb muscle strength and dynamic balance ability.

  20. Muscle Strength and Poststroke Hemiplegia: A Systematic Review of Muscle Strength Assessment and Muscle Strength Impairment.

    PubMed

    Kristensen, Otto H; Stenager, Egon; Dalgas, Ulrik

    2017-02-01

    To systematically review (1) psychometric properties of criterion isokinetic dynamometry testing of muscle strength in persons with poststroke hemiplegia (PPSH); and (2) literature that compares muscle strength in patients poststroke with that in healthy controls assessed by criterion isokinetic dynamometry. A systematic literature search of 7 databases was performed. Included studies (1) enrolled participants with definite poststroke hemiplegia according to defined criteria; (2) assessed muscle strength or power by criterion isokinetic dynamometry; (3) had undergone peer review; and (4) were available in English or Danish. The psychometric properties of isokinetic dynamometry were reviewed with respect to reliability, validity, and responsiveness. Furthermore, comparisons of strength between paretic, nonparetic, and comparable healthy muscles were reviewed. Twenty studies covering 316 PPSH were included. High intraclass correlation coefficient (ICC) inter- and intrasession reliability was reported for isokinetic dynamometry, which was independent of the tested muscle group, contraction mode, and contraction velocity. Slightly higher ICC values were found for the nonparetic extremity. Standard error of the mean (SEM) values showed that a change of 7% to 20% was required for a real group change to take place for most muscle groups, with the knee extensors showing the smallest SEM% values. The muscle strength of paretic muscles showed deficits when compared with both healthy and nonparetic muscles, independent of muscle group, contraction mode, and contraction velocity. Nonparetic muscles only showed minor strength impairments when compared with healthy muscles. Criterion isokinetic dynamometry is a reliable test in persons with stroke, generally showing marked reductions in muscle strength of paretic and, to a lesser degree, nonparetic muscles when compared with healthy controls, independent of muscle group, contraction mode, and contraction velocity. Copyright

  1. AMP-activated protein kinase is required for exercise-induced peroxisome proliferator-activated receptor co-activator 1 translocation to subsarcolemmal mitochondria in skeletal muscle.

    PubMed

    Smith, Brennan K; Mukai, Kazutaka; Lally, James S; Maher, Amy C; Gurd, Brendon J; Heigenhauser, George J F; Spriet, Lawrence L; Holloway, Graham P

    2013-03-15

    In skeletal muscle, mitochondria exist as two subcellular populations known as subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria. SS mitochondria preferentially respond to exercise training, suggesting divergent transcriptional control of the mitochondrial genomes. The transcriptional co-activator peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and mitochondrial transcription factor A (Tfam) have been implicated in the direct regulation of the mitochondrial genome in mice, although SS and IMF differences may exist, and the potential signalling events regulating the mitochondrial content of these proteins have not been elucidated. Therefore, we examined the potential for PGC-1α and Tfam to translocate to SS and IMF mitochondria in human subjects, and performed experiments in rodents to identify signalling mechanisms regulating these translocation events. Acute exercise in humans and rats increased PGC-1α content in SS but not IMF mitochondria. Acute exposure to 5-aminoimidazole-4-carboxamide-1-β-ribofuranoside in rats recapitulated the exercise effect of increased PGC-1α protein within SS mitochondria only, suggesting that AMP-activated protein kinase (AMPK) signalling is involved. In addition, rendering AMPK inactive (AMPK kinase dead mice) prevented exercise-induced PGC-1α translocation to SS mitochondria, further suggesting that AMPK plays an integral role in these translocation events. In contrast to the conserved PGC-1α translocation to SS mitochondria across species (humans, rats and mice), acute exercise only increased mitochondrial Tfam in rats. Nevertheless, in rat resting muscle PGC-1α and Tfam co-immunoprecipate with α-tubulin, suggesting a common cytosolic localization. These data suggest that exercise causes translocation of PGC-1α preferentially to SS mitochondria in an AMPK-dependent manner.

  2. The Caenorhabditis elegans gene unc-89, required fpr muscle M-line assembly, encodes a giant modular protein composed of Ig and signal transduction domains

    PubMed Central

    1996-01-01

    Mutations in the Caenorhabditis elegans gene unc-89 result in nematodes having disorganized muscle structure in which thick filaments are not organized into A-bands, and there are no M-lines. Beginning with a partial cDNA from the C. elegans sequencing project, we have cloned and sequenced the unc-89 gene. An unc-89 allele, st515, was found to contain an 84-bp deletion and a 10-bp duplication, resulting in an in- frame stop codon within predicted unc-89 coding sequence. Analysis of the complete coding sequence for unc-89 predicts a novel 6,632 amino acid polypeptide consisting of sequence motifs which have been implicated in protein-protein interactions. UNC-89 begins with 67 residues of unique sequences, SH3, dbl/CDC24, and PH domains, 7 immunoglobulins (Ig) domains, a putative KSP-containing multiphosphorylation domain, and ends with 46 Ig domains. A polyclonal antiserum raised to a portion of unc-89 encoded sequence reacts to a twitchin-sized polypeptide from wild type, but truncated polypeptides from st515 and from the amber allele e2338. By immunofluorescent microscopy, this antiserum localizes to the middle of A-bands, consistent with UNC-89 being a structural component of the M-line. Previous studies indicate that myofilament lattice assembly begins with positional cues laid down in the basement membrane and muscle cell membrane. We propose that the intracellular protein UNC-89 responds to these signals, localizes, and then participates in assembling an M-line. PMID:8603916

  3. The nebulin SH3 domain is dispensable for normal skeletal muscle structure but is required for effective active load bearing in mouse.

    PubMed

    Yamamoto, Daniel L; Vitiello, Carmen; Zhang, Jianlin; Gokhin, David S; Castaldi, Alessandra; Coulis, Gerald; Piaser, Fabio; Filomena, Maria Carmela; Eggenhuizen, Peter J; Kunderfranco, Paolo; Camerini, Serena; Takano, Kazunori; Endo, Takeshi; Crescenzi, Marco; Luther, Pradeep K L; Lieber, Richard L; Chen, Ju; Bang, Marie-Louise

    2013-12-01

    Nemaline myopathy (NM) is a congenital myopathy with an estimated incidence of 150,000 live births. It is caused by mutations in thin filament components, including nebulin, which accounts for about 50% of the cases. The identification of NM cases with nonsense mutations resulting in loss of the extreme C-terminal SH3 domain of nebulin suggests an important role of the nebulin SH3 domain, which is further supported by the recent demonstration of its role in IGF-1-induced sarcomeric actin filament formation through targeting of N-WASP to the Z-line. To provide further insights into the functional significance of the nebulin SH3 domain in the Z-disk and to understand the mechanisms by which truncations of nebulin lead to NM, we took two approaches: (1) an affinity-based proteomic screening to identify novel interaction partners of the nebulin SH3 domain; and (2) generation and characterization of a novel knockin mouse model with a premature stop codon in the nebulin gene, eliminating its C-terminal SH3 domain (NebΔSH3 mouse). Surprisingly, detailed analyses of NebΔSH3 mice revealed no structural or histological skeletal muscle abnormalities and no changes in gene expression or localization of interaction partners of the nebulin SH3 domain, including myopalladin, palladin, zyxin and N-WASP. Also, no significant effect on peak isometric stress production, passive tensile stress or Young's modulus was found. However, NebΔSH3 muscle displayed a slightly altered force-frequency relationship and was significantly more susceptible to eccentric contraction-induced injury, suggesting that the nebulin SH3 domain protects against eccentric contraction-induced injury and possibly plays a role in fine-tuning the excitation-contraction coupling mechanism.

  4. The nebulin SH3 domain is dispensable for normal skeletal muscle structure but is required for effective active load bearing in mouse

    PubMed Central

    Yamamoto, Daniel L.; Vitiello, Carmen; Zhang, Jianlin; Gokhin, David S.; Castaldi, Alessandra; Coulis, Gerald; Piaser, Fabio; Filomena, Maria Carmela; Eggenhuizen, Peter J.; Kunderfranco, Paolo; Camerini, Serena; Takano, Kazunori; Endo, Takeshi; Crescenzi, Marco; Luther, Pradeep K. L.; Lieber, Richard L.; Chen, Ju; Bang, Marie-Louise

    2013-01-01

    Summary Nemaline myopathy (NM) is a congenital myopathy with an estimated incidence of 1∶50,000 live births. It is caused by mutations in thin filament components, including nebulin, which accounts for about 50% of the cases. The identification of NM cases with nonsense mutations resulting in loss of the extreme C-terminal SH3 domain of nebulin suggests an important role of the nebulin SH3 domain, which is further supported by the recent demonstration of its role in IGF-1-induced sarcomeric actin filament formation through targeting of N-WASP to the Z-line. To provide further insights into the functional significance of the nebulin SH3 domain in the Z-disk and to understand the mechanisms by which truncations of nebulin lead to NM, we took two approaches: (1) an affinity-based proteomic screening to identify novel interaction partners of the nebulin SH3 domain; and (2) generation and characterization of a novel knockin mouse model with a premature stop codon in the nebulin gene, eliminating its C-terminal SH3 domain (NebΔSH3 mouse). Surprisingly, detailed analyses of NebΔSH3 mice revealed no structural or histological skeletal muscle abnormalities and no changes in gene expression or localization of interaction partners of the nebulin SH3 domain, including myopalladin, palladin, zyxin and N-WASP. Also, no significant effect on peak isometric stress production, passive tensile stress or Young's modulus was found. However, NebΔSH3 muscle displayed a slightly altered force–frequency relationship and was significantly more susceptible to eccentric contraction-induced injury, suggesting that the nebulin SH3 domain protects against eccentric contraction-induced injury and possibly plays a role in fine-tuning the excitation–contraction coupling mechanism. PMID:24046450

  5. Synergistic regulation of vertebrate muscle development by Dach2, Eya2, and Six1, homologs of genes required for Drosophila eye formation

    PubMed Central

    Heanue, Tiffany A.; Reshef, Ram; Davis, Richard J.; Mardon, Graeme; Oliver, Guillermo; Tomarev, Stanislav; Lassar, Andrew B.; Tabin, Clifford J.

    1999-01-01

    We have identified a novel vertebrate homolog of the Drosophila gene dachshund, Dachshund2 (Dach2). Dach2 is expressed in the developing somite prior to any myogenic genes with an expression profile similar to Pax3, a gene previously shown to induce muscle differentiation. Pax3 and Dach2 participate in a positive regulatory feedback loop, analogous to a feedback loop that exists in Drosophila between the Pax gene eyeless (a Pax6 homolog) and the Drosophila dachshund gene. Although Dach2 alone is unable to induce myogenesis, Dach2 can synergize with Eya2 (a vertebrate homolog of the Drosophila gene eyes absent) to regulate myogenic differentiation. Moreover, Eya2 can also synergize with Six1 (a vertebrate homolog of the Drosophila gene sine oculis) to regulate myogenesis. This synergistic regulation of muscle development by Dach2 with Eya2 and Eya2 with Six1 parallels the synergistic regulation of Drosophila eye formation by dachshund with eyes absent and eyes absent with sine oculis. This synergistic regulation is explained by direct physical interactions between Dach2 and Eya2, and Eya2 and Six1 proteins, analogous to interactions observed between the Drosophila proteins. This study reveals a new layer of regulation in the process of myogenic specification in the somites. Moreover, we show that the Pax, Dach, Eya, and Six genetic network has been conserved across species. However, this genetic network has been used in a novel developmental context, myogenesis rather than eye development, and has been expanded to include gene family members that are not directly homologous, for example Pax3 instead of Pax6. PMID:10617572

  6. Angiotensin II Requires Zinc and Downregulation of the Zinc Transporters ZnT3 and ZnT10 to Induce Senescence of Vascular Smooth Muscle Cells

    PubMed Central

    Patrushev, Nikolay; Seidel-Rogol, Bonnie; Salazar, Gloria

    2012-01-01

    Senescence, a hallmark of mammalian aging, is associated with the onset and progression of cardiovascular disease. Angiotensin II (Ang II) signaling and zinc homeostasis dysfunction are increased with age and are linked to cardiovascular disease, but the relationship among these processes has not been investigated. We used a model of cellular senescence induced by Ang II in vascular smooth muscle cells (VSMCs) to explore the role of zinc in vascular dysfunction. We found that Ang II-induced senescence is a zinc-dependent pathway mediated by the downregulation of the zinc transporters ZnT3 and ZnT10, which work to reduce cytosolic zinc. Zinc mimics Ang II by increasing reactive oxygen species (ROS), activating NADPH oxidase activity and Akt, and by downregulating ZnT3 and ZnT10 and inducing senescence. Zinc increases Ang II-induced senescence, while the zinc chelator TPEN, as well as overexpression of ZnT3 or ZnT10, decreases ROS and prevents senescence. Using HEK293 cells, we found that ZnT10 localizes in recycling endosomes and transports zinc into vesicles to prevent zinc toxicity. Zinc and ZnT3/ZnT10 downregulation induces senescence by decreasing the expression of catalase. Consistently, ZnT3 and ZnT10 downregulation by siRNA increases ROS while downregulation of catalase by siRNA induces senescence. Zinc, siZnT3 and siZnT10 downregulate catalase by a post-transcriptional mechanism mediated by decreased phosphorylation of ERK1/2. These data demonstrate that zinc homeostasis dysfunction by decreased expression of ZnT3 or ZnT10 promotes senescence and that Ang II-induced senescence is a zinc and ROS-dependent process. Our studies suggest that zinc might also affect other ROS-dependent processes induced by Ang II, such as hypertrophy and migration of smooth muscle cells. PMID:22427991

  7. CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation

    PubMed Central

    Ravasi, Saula; Citro, Simona; Viviani, Barbara; Capra, Valérie; Rovati, G Enrico

    2006-01-01

    Background Cysteine-containing leukotrienes (cysteinyl-LTs) are pivotal inflammatory mediators that play important roles in the pathophysiology of asthma, allergic rhinitis, and other inflammatory conditions. In particular, cysteinyl-LTs exert a variety of effects with relevance to the aetiology of asthma such as smooth muscle contraction, eosinophil recruitment, increased microvascular permeability, enhanced mucus secretion and decreased mucus transport and, finally, airway smooth muscle cells (ASMC) proliferation. We used human ASMC (HASMC) to identify the signal transduction pathway(s) of the leukotriene D4 (LTD4)-induced DNA synthesis. Methods Proliferation of primary HASMC was measured by [3H]thymidine incorporation. Phosphorylation of EGF receptor (EGF-R) and ERK1/2 was assessed with a polyclonal anti-EGF-R or anti-phosphoERKl/2 monoclonal antibody. A Ras pull-down assay kit was used to evaluate Ras activation. The production of reactive oxygen species (ROS) was estimated by measuring dichlorodihydrofluorescein (DCF) oxidation. Results We demonstrate that in HASMC LTD4-stimulated thymidine incorporation and potentiation of EGF-induced mitogenic signaling mostly depends upon EGF-R transactivation through the stimulation of CysLT1-R. Accordingly, we found that LTD4 stimulation was able to trigger the increase of Ras-GTP and, in turn, to activate ERK1/2. We show here that EGF-R transactivation was sensitive to pertussis toxin (PTX) and phosphoinositide 3-kinase (PI3K) inhibitors and that it occurred independently from Src activity, despite the observation of a strong impairment of LTD4-induced DNA synthesis following Src inhibition. More interestingly, CysLT1-R stimulation increased the production of ROS and N-acetylcysteine (NAC) abolished LTD4-induced EGF-R phosphorylation and thymidine incorporation. Conclusion Collectively, our data demonstrate that in HASMC LTD4 stimulation of a Gi/o coupled CysLT1-R triggers the transactivation of the EGF-R through the

  8. CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation.

    PubMed

    Ravasi, Saula; Citro, Simona; Viviani, Barbara; Capra, Valérie; Rovati, G Enrico

    2006-03-22

    Cysteine-containing leukotrienes (cysteinyl-LTs) are pivotal inflammatory mediators that play important roles in the pathophysiology of asthma, allergic rhinitis, and other inflammatory conditions. In particular, cysteinyl-LTs exert a variety of effects with relevance to the aetiology of asthma such as smooth muscle contraction, eosinophil recruitment, increased microvascular permeability, enhanced mucus secretion and decreased mucus transport and, finally, airway smooth muscle cells (ASMC) proliferation. We used human ASMC (HASMC) to identify the signal transduction pathway(s) of the leukotriene D4 (LTD4)-induced DNA synthesis. Proliferation of primary HASMC was measured by [3H]thymidine incorporation. Phosphorylation of EGF receptor (EGF-R) and ERK1/2 was assessed with a polyclonal anti-EGF-R or anti-phosphoERKl/2 monoclonal antibody. A Ras pull-down assay kit was used to evaluate Ras activation. The production of reactive oxygen species (ROS) was estimated by measuring dichlorodihydrofluorescein (DCF) oxidation. We demonstrate that in HASMC LTD4-stimulated thymidine incorporation and potentiation of EGF-induced mitogenic signaling mostly depends upon EGF-R transactivation through the stimulation of CysLT1-R. Accordingly, we found that LTD4 stimulation was able to trigger the increase of Ras-GTP and, in turn, to activate ERK1/2. We show here that EGF-R transactivation was sensitive to pertussis toxin (PTX) and phosphoinositide 3-kinase (PI3K) inhibitors and that it occurred independently from Src activity, despite the observation of a strong impairment of LTD4-induced DNA synthesis following Src inhibition. More interestingly, CysLT1-R stimulation increased the production of ROS and N-acetylcysteine (NAC) abolished LTD4-induced EGF-R phosphorylation and thymidine incorporation. Collectively, our data demonstrate that in HASMC LTD4 stimulation of a Gi/o coupled CysLT1-R triggers the transactivation of the EGF-R through the intervention of PI3K and ROS. While PI3K

  9. Laughing: a demanding exercise for trunk muscles.

    PubMed

    Wagner, Heiko; Rehmes, Ulrich; Kohle, Daniel; Puta, Christian

    2014-01-01

    Social, psychological, and physiological studies have provided evidence indicating that laughter imposes an increased demand on trunk muscles. It was the aim of this study to quantify the activation of trunk muscles during laughter yoga in comparison with crunch and back lifting exercises regarding the mean trunk muscle activity. Muscular activity during laughter yoga exercises was measured by surface electromyography of 5 trunk muscles. The activation level of internal oblique muscle during laughter yoga is higher compared to the traditional exercises. The multifidus, erector spinae, and rectus abdominis muscles were nearly half activated during laughter yoga, while the activation of the external oblique muscle was comparable with the crunch and back lifting exercises. Our results indicate that laughter yoga has a positive effect on trunk muscle activation. Thus, laughter seems to be a good activator of trunk muscles, but further research is required whether laughter yoga is a good exercise to improve neuromuscular recruitment patterns for spine stability.

  10. Skeletal muscle design to meet functional demands.

    PubMed

    Lieber, Richard L; Ward, Samuel R

    2011-05-27

    Skeletal muscles are length- and velocity-sensitive force producers, constructed of a vast array of sarcomeres. Muscles come in a variety of sizes and shapes to accomplish a wide variety of tasks. How does muscle design match task performance? In this review, we outline muscle's basic properties and strategies that are used to produce movement. Several examples are provided, primarily for human muscles, in which skeletal muscle architecture and moment arms are tailored to a particular performance requirement. In addition, the concept that muscles may have a preferred sarcomere length operating range is also introduced. Taken together, the case is made that muscles can be fine-tuned to perform specific tasks that require actuators with a wide range of properties.

  11. Skeletal muscle design to meet functional demands

    PubMed Central

    Lieber, Richard L.; Ward, Samuel R.

    2011-01-01

    Skeletal muscles are length- and velocity-sensitive force producers, constructed of a vast array of sarcomeres. Muscles come in a variety of sizes and shapes to accomplish a wide variety of tasks. How does muscle design match task performance? In this review, we outline muscle's basic properties and strategies that are used to produce movement. Several examples are provided, primarily for human muscles, in which skeletal muscle architecture and moment arms are tailored to a particular performance requirement. In addition, the concept that muscles may have a preferred sarcomere length operating range is also introduced. Taken together, the case is made that muscles can be fine-tuned to perform specific tasks that require actuators with a wide range of properties. PMID:21502118

  12. Muscle aches

    MedlinePlus

    ... potassium or calcium Fibromyalgia Infections, including the flu, Lyme disease , malaria , muscle abscess , polio , Rocky Mountain spotted ... enzymes (creatine kinase) and possibly a test for Lyme disease or a connective tissue disorder Physical therapy ...

  13. Getting Muscles

    MedlinePlus

    ... muscular as a superhero or your favorite professional athlete? Well, the big muscles you're thinking about ... Superheroes, of course, aren't real, and professional athletes are grownups, whose bodies are different from kids' ...

  14. Transport of the alpha subunit of the voltage gated L-type calcium channel through the sarcoplasmic reticulum occurs prior to localization to triads and requires the beta subunit but not Stac3 in skeletal muscles.

    PubMed

    Linsley, Jeremy W; Hsu, I-Uen; Wang, Wenjia; Kuwada, John Y

    2017-09-01

    Contraction of skeletal muscle is initiated by excitation-contraction (EC) coupling during which membrane voltage is transduced to intracellular Ca(2+) release. EC coupling requires L-type voltage gated Ca2+ channels (the dihydropyridine receptor or DHPR) located at triads, which are junctions between the transverse (T) tubule and sarcoplasmic reticulum (SR) membranes, that sense membrane depolarization in the T tubule membrane. Reduced EC coupling is associated with ageing, and disruptions of EC coupling result in congenital myopathies for which there are few therapies. The precise localization of DHPRs to triads is critical for EC coupling, yet trafficking of the DHPR to triads is not well understood. Using dynamic imaging of zebrafish muscle fibers, we find that DHPR is transported along the longitudinal SR in a microtubule-independent mechanism. Furthermore, transport of DHPR in the SR membrane is differentially affected in null mutants of Stac3 or DHPRβ, two essential components of EC coupling. These findings reveal previously unappreciated features of DHPR motility within the SR prior to assembly at triads. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. The Scaffold Protein Muscle A-Kinase Anchoring Protein β Orchestrates Cardiac Myocyte Hypertrophic Signaling Required for the Development of Heart Failure

    PubMed Central

    Kritzer, Michael D.; Li, Jinliang; Passariello, Catherine L.; Gayanilo, Marjorie; Thakur, Hrishikesh; Dayan, Joseph; Dodge-Kafka, Kimberly; Kapiloff, Michael S.

    2014-01-01

    Background Cardiac myocyte hypertrophy is regulated by an extensive intracellular signal transduction network. In vitro evidence suggests that the scaffold protein muscle A-kinase anchoring protein β (mAKAPβ) serves as a nodal organizer of hypertrophic signaling. However, the relevance of mAKAPβ signalosomes to pathological remodeling and heart failure in vivo remains unknown. Methods and Results Using conditional, cardiac myocyte–specific gene deletion, we now demonstrate that mAKAPβ expression in mice is important for the cardiac hypertrophy induced by pressure overload and catecholamine toxicity. mAKAPβ targeting prevented the development of heart failure associated with long-term transverse aortic constriction, conferring a survival benefit. In contrast to 29% of control mice (n=24), only 6% of mAKAPβ knockout mice (n=31) died in the 16 weeks of pressure overload (P=0.02). Accordingly, mAKAPβ knockout inhibited myocardial apoptosis and the development of interstitial fibrosis, left atrial hypertrophy, and pulmonary edema. This improvement in cardiac status correlated with the attenuated activation of signaling pathways coordinated by the mAKAPβ scaffold, including the decreased phosphorylation of protein kinase D1 and histone deacetylase 4 that we reveal to participate in a new mAKAP signaling module. Furthermore, mAKAPβ knockout inhibited pathological gene expression directed by myocyte-enhancer factor-2 and nuclear factor of activated T-cell transcription factors that associate with the scaffold. Conclusions mAKAPβ orchestrates signaling that regulates pathological cardiac remodeling in mice. Targeting of the underlying physical architecture of signaling networks, including mAKAPβ signalosome formation, may constitute an effective therapeutic strategy for the prevention and treatment of pathological remodeling and heart failure. PMID:24812305

  16. Determining all parameters necessary to build Hill-type muscle models from experiments on single muscles.

    PubMed

    Blümel, Marcus; Hooper, Scott L; Guschlbauerc, Christoph; White, William E; Büschges, Ansgar

    2012-11-01

    Characterizing muscle requires measuring such properties as force-length, force-activation, and force-velocity curves. These characterizations require large numbers of data points because both what type of function (e.g., linear, exponential, hyperbolic) best represents each property, and the values of the parameters in the relevant equations, need to be determined. Only a few properties are therefore generally measured in experiments on any one muscle, and complete characterizations are obtained by averaging data across a large number of muscles. Such averaging approaches can work well for muscles that are similar across individuals. However, considerable evidence indicates that large inter-individual variation exists, at least for some muscles. This variation poses difficulties for across-animal averaging approaches. Methods to fully describe all muscle's characteristics in experiments on individual muscles would therefore be useful. Prior work in stick insect extensor muscle has identified what functions describe each of this muscle's properties and shown that these equations apply across animals. Characterizing these muscles on an individual-by-individual basis therefore requires determining only the values of the parameters in these equations, not equation form. We present here techniques that allow determining all these parameter values in experiments on single muscles. This technique will allow us to compare parameter variation across individuals and to model muscles individually. Similar experiments can likely be performed on single muscles in other systems. This approach may thus provide a widely applicable method for characterizing and modeling muscles from single experiments.

  17. Artificial muscles on heat

    NASA Astrophysics Data System (ADS)

    McKay, Thomas G.; Shin, Dong Ki; Percy, Steven; Knight, Chris; McGarry, Scott; Anderson, Iain A.

    2014-03-01

    Many devices and processes produce low grade waste heat. Some of these include combustion engines, electrical circuits, biological processes and industrial processes. To harvest this heat energy thermoelectric devices, using the Seebeck effect, are commonly used. However, these devices have limitations in efficiency, and usable voltage. This paper investigates the viability of a Stirling engine coupled to an artificial muscle energy harvester to efficiently convert heat energy into electrical energy. The results present the testing of the prototype generator which produced 200 μW when operating at 75°C. Pathways for improved performance are discussed which include optimising the electronic control of the artificial muscle, adjusting the mechanical properties of the artificial muscle to work optimally with the remainder of the system, good sealing, and tuning the resonance of the displacer to minimise the power required to drive it.

  18. Muscle strain (image)

    MedlinePlus

    A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...

  19. Muscle "Building."

    ERIC Educational Resources Information Center

    Schlenker, Richard M.; And Others

    1995-01-01

    Describes the use of constructivism in teaching human anatomy. Provides directions for constructing arm-hand and leg-foot models that include extensor and flexor muscles and that are easily and cheaply constructed. Lists resources that provide ideas for using such models depending upon the curriculum implemented in a school or the course that is…

  20. Muscle conditioning and muscle injuries.

    PubMed

    Stone, M H

    1990-08-01

    Empirical and objective data suggest that muscle and connective tissue can undergo adaptations to physical training resulting in greater tissue mass and increased maximum tensile strength. These adaptations are especially apparent as a result of load bearing and resistive training. Furthermore, information is presented suggesting that pre-conditioning and in-season muscle conditioning, especially strength training, reduce injuries among athletes. Additionally, a theoretical model of training, "periodization", is offered as a method of increasing performance to maximum or optimal values while reducing overtraining and injury potential. Periodization of training can reduce overtraining potential and injury potential while optimizing performance by variation of volume, intensity, and exercise selection during a training program.

  1. Membrane fusion in muscle development and repair

    PubMed Central

    Demonbreun, Alexis R.; Biersmith, Bridget H.

    2015-01-01

    Mature skeletal muscle forms from the fusion of skeletal muscle precursor cells, myoblasts. Myoblasts fuse to other myoblasts to generate multinucleate myotubes during myogenesis, and myoblasts also fuse to other myotubes during muscle growth and repair. Proteins within myoblasts and myotubes regulate complex processes such as elongation, migration, cell adherence, cytoskeletal reorganization, membrane coalescence, and ultimately fusion. Recent studies have identified cell surface proteins, intracellular proteins, and extracellular signaling molecules required for the proper fusion of muscle. Many proteins that actively participate in myoblast fusion also coordinate membrane repair. Here we will review mammalian membrane fusion with specific attention to proteins that mediate myoblast fusion and muscle repair. PMID:26537430

  2. Determining all parameters necessary to build Hill-type muscle models from experiments on single muscles

    PubMed Central

    Blümel, Marcus; Guschlbauer, Christoph; White, William E.; Büschges, Ansgar

    2012-01-01

    Characterizing muscle requires measuring such properties as force–length, force–activation, and force–velocity curves. These characterizations require large numbers of data points because both what type of function (e.g., linear, exponential, hyperbolic) best represents each property, and the values of the parameters in the relevant equations, need to be determined. Only a few properties are therefore generally measured in experiments on any one muscle, and complete characterizations are obtained by averaging data across a large number of muscles. Such averaging approaches can work well for muscles that are similar across individuals. However, considerable evidence indicates that large inter-individual variation exists, at least for some muscles. This variation poses difficulties for across-animal averaging approaches. Methods to fully describe all muscle’s characteristics in experiments on individual muscles would therefore be useful. Prior work in stick insect extensor muscle has identified what functions describe each of this muscle’s properties and shown that these equations apply across animals. Characterizing these muscles on an individual-by-individual basis therefore requires determining only the values of the parameters in these equations, not equation form. We present here techniques that allow determining all these parameter values in experiments on single muscles. This technique will allow us to compare parameter variation across individuals and to model muscles individually. Similar experiments can likely be performed on single muscles in other systems. This approach may thus provide a widely applicable method for characterizing and modeling muscles from single experiments. PMID:23132431

  3. Stress-induced Skeletal Muscle Gadd45a Expression Reprograms Myonuclei and Causes Muscle Atrophy*

    PubMed Central

    Ebert, Scott M.; Dyle, Michael C.; Kunkel, Steven D.; Bullard, Steven A.; Bongers, Kale S.; Fox, Daniel K.; Dierdorff, Jason M.; Foster, Eric D.; Adams, Christopher M.

    2012-01-01

    Diverse stresses including starvation and muscle disuse cause skeletal muscle atrophy. However, the molecular mechanisms of muscle atrophy are complex and not well understood. Here, we demonstrate that growth arrest and DNA damage-inducible 45a protein (Gadd45a) is a critical mediator of muscle atrophy. We identified Gadd45a through an unbiased search for potential downstream mediators of the stress-inducible, pro-atrophy transcription factor ATF4. We show that Gadd45a is required for skeletal muscle atrophy induced by three distinct skeletal muscle stresses: fasting, muscle immobilization, and muscle denervation. Conversely, forced expression of Gadd45a in muscle or cultured myotubes induces atrophy in the absence of upstream stress. We show that muscle-specific ATF4 knock-out mice have a reduced capacity to induce Gadd45a mRNA in response to stress, and as a result, they undergo less atrophy in response to fasting or muscle immobilization. Interestingly, Gadd45a is a myonuclear protein that induces myonuclear remodeling and a comprehensive program for muscle atrophy. Gadd45a represses genes involved in anabolic signaling and energy production, and it induces pro-atrophy genes. As a result, Gadd45a reduces multiple barriers to muscle atrophy (including PGC-1α, Akt activity, and protein synthesis) and stimulates pro-atrophy mechanisms (including autophagy and caspase-mediated proteolysis). These results elucidate a critical stress-induced pathway that reprograms muscle gene expression to cause atrophy. PMID:22692209

  4. Capillary muscle

    PubMed Central

    Cohen, Caroline; Mouterde, Timothée; Quéré, David; Clanet, Christophe

    2015-01-01

    The contraction of a muscle generates a force that decreases when increasing the contraction velocity. This “hyperbolic” force–velocity relationship has been known since the seminal work of A. V. Hill in 1938 [Hill AV (1938) Proc R Soc Lond B Biol Sci 126(843):136–195]. Hill’s heuristic equation is still used, and the sliding-filament theory for the sarcomere [Huxley H, Hanson J (1954) Nature 173(4412):973–976; Huxley AF, Niedergerke R (1954) Nature 173(4412):971–973] suggested how its different parameters can be related to the molecular origin of the force generator [Huxley AF (1957) Prog Biophys Biophys Chem 7:255–318; Deshcherevskiĭ VI (1968) Biofizika 13(5):928–935]. Here, we develop a capillary analog of the sarcomere obeying Hill’s equation and discuss its analogy with muscles. PMID:25944938

  5. Do inflammatory cells influence skeletal muscle hypertrophy?

    PubMed

    Koh, Timothy J; Pizza, Francis X

    2009-06-01

    Most research on muscle hypertrophy has focused on the responses of muscle cells to mechanical loading; however, a number of studies also suggest that inflammatory cells may influence muscle hypertrophy. Neutrophils and macrophages accumulate in skeletal muscle following increased mechanical loading, and we have demonstrated that macrophages are essential for hypertrophy following synergist ablation. Whether neutrophils are required remains to be determined. Non-steroidal anti-inflammatory drugs impair adaptive responses of skeletal muscle in both human and animal experiments suggesting that the routine use of such drugs could impair muscle performance. Much remains to be learned about the role of inflammatory cells in muscle hypertrophy, including the molecular signals involved in calling neutrophils and macrophages to skeletal muscle as well as those that regulate their function in muscle. In addition, although we have demonstrated that macrophages produce growth promoting factors during muscle hypertrophy, the full range of functional activities involved in muscle hypertrophy remains to be determined. Further investigation should provide insight into the intriguing hypothesis that inflammatory cells play integral roles in regulating muscle hypertrophy.

  6. Mechanisms of myoblast fusion during muscle development

    PubMed Central

    Kim, Ji Hoon; Jin, Peng; Duan, Rui; Chen, Elizabeth H.

    2015-01-01

    The development and regeneration of skeletal muscles require the fusion of mononulceated muscle cells to form multinucleated, contractile muscle fibers. Studies using a simple genetic model, Drosophila melanogaster, have discovered many evolutionarily conserved fusion-promoting factors in vivo. Recent work in zebrafish and mouse also identified several vertebrate-specific factors required for myoblast fusion. Here, we integrate progress in multiple in vivo systems and highlight conceptual advance in understanding how muscle cell membranes are brought together for fusion. We focus on the molecular machinery at the fusogenic synapse and present a three-step model to describe the molecular and cellular events leading to fusion pore formation. PMID:25989064

  7. Cleaved Slit directs embryonic muscles

    PubMed Central

    Ordan, Elly; Volk, Talila

    2015-01-01

    The formation of functional musculoskeletal system relies on proper connectivity between muscles and their corresponding tendon cells. In Drosophila, larval muscles are born during early embryonic stages, and elongate toward tendons that are embedded within the ectoderm in later. The Slit/Robo signaling pathway had been implicated in the process of muscle elongation toward tendons. Here we discuss our recent findings regarding the critical contribution of Slit cleavage for immobilization and stabilization of the Slit signal on the tendon cells. Slit cleavage produces 2 polypeptides, the N-terminal Slit-N, which is extremely stable, undergoes oligomerization, and associates with the tendon cell surfaces, and the C-terminal Slit-C, which rapidly degrades. Slit cleavage leads to immobilization of Slit signaling on tendons, leading to a short-range repulsion, which eventually arrest further muscle elongation. Robo2, which is co-expressed with Slit by the tendon cells facilitates Slit cleavage. This activity does not require the cytoplasmic signaling domain of Robo2. We suggest that Robo2-dependent Slit cleavage, and the formation of Slit-N oligomers on the tendon cell surfaces direct muscle elongation, and provide a stop signal for the approaching muscle, through binding to Robo and Robo3 receptors expressed by the muscles. PMID:26554435

  8. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  9. Acute and temporal expression of tumor necrosis factor (TNF)-α-stimulated gene 6 product, TSG6, in mesenchymal stem cells creates microenvironments required for their successful transplantation into muscle tissue.

    PubMed

    Torihashi, Shigeko; Ho, Mioko; Kawakubo, Yuji; Komatsu, Kazumi; Nagai, Masataka; Hirayama, Yuri; Kawabata, Yuka; Takenaka-Ninagawa, Nana; Wanachewin, Orawan; Zhuo, Lisheng; Kimata, Koji

    2015-09-11

    Previously, we demonstrated that when mesenchymal stem cells (MSCs) from mouse ES cells were transplanted into skeletal muscle, more than 60% of them differentiated into muscles in the crush-injured tibialis anterior muscle in vivo, although MSCs neither differentiated nor settled in the intact muscle. Microenvironments, including the extracellular matrix between the injured and intact muscle, were quite different. In the injured muscle, hyaluronan (HA), heavy chains of inter-α-inhibitor (IαI), CD44, and TNF-α-stimulated gene 6 product (TSG-6) increased 24-48 h after injury, although basement membrane components of differentiated muscle such as perlecan, laminin, and type IV collagen increased gradually 4 days after the crush. We then investigated the microenvironments crucial for cell transplantation, using the lysate of C2C12 myotubules for mimicking injured circumstances in vivo. MSCs settled in the intact muscle when they were transplanted together with the C2C12 lysate or TSG6. MSCs produced and released TSG6 when they were cultured with C2C12 lysates in vitro. MSCs pretreated with the lysate also settled in the intact muscle. Furthermore, MSCs whose TSG6 was knocked down by shRNA, even if transplanted or pretreated with the lysate, could not settle in the muscle. Immunofluorescent staining showed that HA and IαI always co-localized or were distributed closely, suggesting formation of covalent complexes, i.e. the SHAP-HA complex in the presence of TSG6. Thus, TSG6, HA, and IαI were crucial factors for the settlement and probably the subsequent differentiation of MSCs.

  10. Acute and Temporal Expression of Tumor Necrosis Factor (TNF)-α-stimulated Gene 6 Product, TSG6, in Mesenchymal Stem Cells Creates Microenvironments Required for Their Successful Transplantation into Muscle Tissue*

    PubMed Central

    Torihashi, Shigeko; Ho, Mioko; Kawakubo, Yuji; Komatsu, Kazumi; Nagai, Masataka; Hirayama, Yuri; Kawabata, Yuka; Takenaka-Ninagawa, Nana; Wanachewin, Orawan; Zhuo, Lisheng; Kimata, Koji

    2015-01-01

    Previously, we demonstrated that when mesenchymal stem cells (MSCs) from mouse ES cells were transplanted into skeletal muscle, more than 60% of them differentiated into muscles in the crush-injured tibialis anterior muscle in vivo, although MSCs neither differentiated nor settled in the intact muscle. Microenvironments, including the extracellular matrix between the injured and intact muscle, were quite different. In the injured muscle, hyaluronan (HA), heavy chains of inter-α-inhibitor (IαI), CD44, and TNF-α-stimulated gene 6 product (TSG-6) increased 24–48 h after injury, although basement membrane components of differentiated muscle such as perlecan, laminin, and type IV collagen increased gradually 4 days after the crush. We then investigated the microenvironments crucial for cell transplantation, using the lysate of C2C12 myotubules for mimicking injured circumstances in vivo. MSCs settled in the intact muscle when they were transplanted together with the C2C12 lysate or TSG6. MSCs produced and released TSG6 when they were cultured with C2C12 lysates in vitro. MSCs pretreated with the lysate also settled in the intact muscle. Furthermore, MSCs whose TSG6 was knocked down by shRNA, even if transplanted or pretreated with the lysate, could not settle in the muscle. Immunofluorescent staining showed that HA and IαI always co-localized or were distributed closely, suggesting formation of covalent complexes, i.e. the SHAP-HA complex in the presence of TSG6. Thus, TSG6, HA, and IαI were crucial factors for the settlement and probably the subsequent differentiation of MSCs. PMID:26178374

  11. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  12. Mitochondrial signaling contributes to disuse muscle atrophy

    PubMed Central

    Wiggs, Michael P.; Duarte, Jose A.; Zergeroglu, A. Murat; Demirel, Haydar A.

    2012-01-01

    It is well established that long durations of bed rest, limb immobilization, or reduced activity in respiratory muscles during mechanical ventilation results in skeletal muscle atrophy in humans and other animals. The idea that mitochondrial damage/dysfunction contributes to disuse muscle atrophy originated over 40 years ago. These early studies were largely descriptive and did not provide unequivocal evidence that mitochondria play a primary role in disuse muscle atrophy. However, recent experiments have provided direct evidence connecting mitochondrial dysfunction to muscle atrophy. Numerous studies have described changes in mitochondria shape, number, and function in skeletal muscles exposed to prolonged periods of inactivity. Furthermore, recent evidence indicates that increased mitochondrial ROS production plays a key signaling role in both immobilization-induced limb muscle atrophy and diaphragmatic atrophy occurring during prolonged mechanical ventilation. Moreover, new evidence reveals that, during denervation-induced muscle atrophy, increased mitochondrial fragmentation due to fission is a required signaling event that activates the AMPK-FoxO3 signaling axis, which induces the expression of atrophy genes, protein breakdown, and ultimately muscle atrophy. Collectively, these findings highlight the importance of future research to better understand the mitochondrial signaling mechanisms that contribute to disuse muscle atrophy and to develop novel therapeutic interventions for prevention of inactivity-induced skeletal muscle atrophy. PMID:22395111

  13. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    PubMed

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth.

  14. Muscle strain treatment

    MedlinePlus

    Treatment - muscle strain ... Question: How do you treat a muscle strain ? Answer: Rest the strained muscle and apply ice for the first few days after the injury. Anti-inflammatory medicines or acetaminophen ( ...

  15. Eye muscle repair - discharge

    MedlinePlus

    ... Lazy eye repair - discharge; Strabismus repair - discharge; Extraocular muscle surgery - discharge ... You or your child had eye muscle repair surgery to correct eye muscle ... term for crossed eyes is strabismus. Children most often ...

  16. The calf muscle pump revisited.

    PubMed

    Williams, Katherine J; Ayekoloye, Olufemi; Moore, Hayley M; Davies, Alun H

    2014-07-01

    Chronic venous disease (CVD) defines the spectrum of manifestations of venous disease that originate as a result of ambulatory venous hypertension. Thus far, the role of the calf muscle pump in the development and potentiation of CVD has been overlooked and understated in the clinical setting, with much greater emphasis placed on reflux and obstruction. The aim of this review is to explore the level of significance that calf muscle pump function or dysfunction bears on the development and potentiation of CVD. EMBASE and MEDLINE databases were searched with keywords "calf" AND "muscle" AND "pump" AND "venous" AND "insufficiency" AND ("lower limb*" OR "leg*"), screened for cross-sectional and longitudinal studies relating to chronic venous insufficiency, highlighting the role of the calf muscle pump in CVD and the extent to which the calf muscle pump is impaired in these cases. This resulted in the inclusion of 10 studies. Compared with healthy subjects, patients with CVD have a reduced ejection fraction (15.9%; P < .001) and an increased venous filling index (4.66 mL/s; P < .001), indicating impairment in calf muscle pump ejection ability as well as poor venous competence. Calf muscle pump dysfunction is present in 55% of patients with CVD in the literature, but this did not reach significance on meta-analysis. Isotonic exercise programs in patients with active and healed ulcers have been shown to increase calf muscle pump function but not venous competence. Calf muscle pump failure is a therapeutic target in the treatment of CVD. Evidence suggests that isotonic exercise treatment may be an effective method of increasing the hemodynamic performance of the calf muscle pump. This review emphasizes the requirement for more attention to be placed on the treatment of calf muscle pump failure in cases of CVD by use of exercise treatment programs or other methods, which may be of clinical importance in managing symptomatic disease. To establish this in routine

  17. Relationship between function of masticatory muscle in mouse and properties of muscle fibers.

    PubMed

    Abe, Shinichi; Hiroki, Emi; Iwanuma, Osamu; Sakiyama, Koji; Shirakura, Yoshitaka; Hirose, Daiki; Shimoo, Yoshiaki; Suzuki, Masashi; Ikari, Yasutoyo; Kikuchi, Ryusuke; Ide, Yoshinobu; Yoshinari, Masao

    2008-05-01

    Mammals exhibit marked morphological differences in the muscles surrounding the jaw bone due to differences in eating habits. Furthermore, the myofiber properties of the muscles differ with function. Since the muscles in the oral region have various functions such as eating, swallowing, and speech, it is believed that the functional role of each muscle differs. Therefore, to clarify the functional role of each masticatory muscle, the myofiber properties of the adult mouse masticatory muscles were investigated at the transcriptional level. Expression of MyHC-2b with a fast contraction rate and strong force was frequently noted in the temporal and masseter muscles. This suggests that the temporal and masseter muscles are closely involved in rapid antero-posterior masticatory movement, which is characteristic in mice. Furthermore, expression of MyHC-1 with a low contraction rate and weak continuous force was frequently detected in the lateral pterygoid muscle. This suggests that, in contrast to other masticatory muscles, mouse lateral pterygoid muscle is not involved in fast masticatory movement, but is involved in functions requiring continuous force such as retention of jaw position. This study revealed that muscles with different roles function comprehensively during complicated masticatory movement.

  18. Simultaneous Knee Extensor Muscle Action Induces an Increase in Voluntary Force Generation of Plantar Flexor Muscles.

    PubMed

    Suzuki, Takahito; Shioda, Kohei; Kinugasa, Ryuta; Fukashiro, Senshi

    2017-02-01

    Suzuki, T, Shioda, K, Kinugasa, R, and Fukashiro, S. Simultaneous knee extensor muscle action induces an increase in voluntary force generation of plantar flexor muscles. J Strength Cond Res 31(2): 365-371, 2017-Maximum activation of the plantar flexor muscles is required for various sporting activities that involve simultaneous plantar flexion and knee extension. During a multi-joint movement, activation of the plantar flexor muscles is affected by the activity of the knee extensor muscles. We hypothesized that coactivation of the plantar flexor muscles and knee extensor muscles would result in a higher plantar flexion torque. To test this hypothesis, 8 male volunteers performed maximum voluntary isometric action of the plantar flexor muscles with and without isometric action of the knee extensor muscles. Surface electromyographic data were collected from 8 muscles of the right lower limb. Voluntary activation of the triceps surae muscles, evaluated using the interpolated twitch technique, significantly increased by 6.4 percentage points with intentional knee extensor action (p = 0.0491). This finding is in line with a significant increase in the average rectified value of the electromyographic activity of the vastus lateralis, fibularis longus, and soleus muscles (p = 0.013, 0.010, and 0.045, respectively). The resultant plantar flexion torque also significantly increased by 11.5% of the predetermined maximum (p = 0.031). These results suggest that higher plantar flexor activation coupled with knee extensor activation facilitates force generation during a multi-joint task.

  19. Artificial Muscle Kits for the Classroom

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Commonly referred to as "artificial muscles," electroactive polymer (EAP) materials are lightweight strips of highly flexible plastic that bend or stretch when subjected to electric voltage. EAP materials may prove to be a substitution for conventional actuation components such as motors and gears. Since the materials behave similarly to biological muscles, this emerging technology has the potential to develop improved prosthetics and biologically-inspired robots, and may even one day replace damaged human muscles. The practical application of artificial muscles provides a challenge, however, since the material requires improved effectiveness and durability before it can fulfill its potential.

  20. The number and choice of muscles impact the results of muscle synergy analyses

    PubMed Central

    Steele, Katherine M.; Tresch, Matthew C.; Perreault, Eric J.

    2013-01-01

    One theory for how humans control movement is that muscles are activated in weighted groups or synergies. Studies have shown that electromyography (EMG) from a variety of tasks can be described by a low-dimensional space thought to reflect synergies. These studies use algorithms, such as nonnegative matrix factorization, to identify synergies from EMG. Due to experimental constraints, EMG can rarely be taken from all muscles involved in a task. However, it is unclear if the choice of muscles included in the analysis impacts estimated synergies. The aim of our study was to evaluate the impact of the number and choice of muscles on synergy analyses. We used a musculoskeletal model to calculate muscle activations required to perform an isometric upper-extremity task. Synergies calculated from the activations from the musculoskeletal model were similar to a prior experimental study. To evaluate the impact of the number of muscles included in the analysis, we randomly selected subsets of between 5 and 29 muscles and compared the similarity of the synergies calculated from each subset to a master set of synergies calculated from all muscles. We determined that the structure of synergies is dependent upon the number and choice of muscles included in the analysis. When five muscles were included in the analysis, the similarity of the synergies to the master set was only 0.57 ± 0.54; however, the similarity improved to over 0.8 with more than ten muscles. We identified two methods, selecting dominant muscles from the master set or selecting muscles with the largest maximum isometric force, which significantly improved similarity to the master set and can help guide future experimental design. Analyses that included a small subset of muscles also over-estimated the variance accounted for (VAF) by the synergies compared to an analysis with all muscles. Thus, researchers should use caution using VAF to evaluate synergies when EMG is measured from a small subset of muscles

  1. Muscle energy metabolism: structural and functional features in different types of porcine striated muscles.

    PubMed

    Huber, Korinna; Petzold, Johanna; Rehfeldt, Charlotte; Ender, Klaus; Fiedler, Ilse

    2007-01-01

    Striated muscles exhibit a wide range of metabolic activity levels. Heart and diaphragm are muscles with continuous contractile performance, which requires life-long function. In contrast, skeletal muscles like longissimus muscle can adapt metabolism from resting to different stages of exercise. The aim of this study was to compare the morphological features of these three muscles and the expression of genes that are important for energy metabolism. Therefore, histochemical studies were performed for determination of muscle fibre type composition. Oxidative and glycolytic capacity was assessed by measuring isocitrate dehydrogenase (ICDH) and lactate dehydrogenase (LDH) activities. The mRNA expression of glucose transporter 4 (GLUT 4), growth hormone receptor (GHR) and AMP-activated kinase (AMPK) alpha(1) and alpha(2) subunits was studied by semiquantitative Northern blotting. Heart, and to a slightly lesser extent diaphragm were highly oxidative muscles characterised by high expression of oxidative muscle fibres and ICDH activity. Longissimus muscle exhibited the highest percentage of glycolytic fibres and LDH activity. GLUT 4 mRNA was lowest in heart reflecting the dependency of heart muscle on fatty acids as major energy source. Higher expression of GLUT 4 in diaphragm indicated that glucose is an important energy substrate in this oxidative muscle. Highest GLUT 4 expression in longissimus should be essential for the refilling of glycogen stores after exercise. AMPK subunits, which are important stimulators of GLUT 4 protein insertion into the sarcolemma, are also highest expressed in longissimus muscle indicating the strong capacity to adapt energy metabolism to large changes in energy demand. Interestingly, AMPK alpha(1) subunit expression on protein level is strongly restricted to muscle fibres containing type I myosin in this muscle. GHR mRNA expression was also highest in longissimus muscle indicating that an enhanced effect of growth hormone, which is

  2. [Asymmetric hypertrophy of the masticatory muscles].

    PubMed

    Arzul, L; Corre, P; Khonsari, R H; Mercier, J-M; Piot, B

    2012-06-01

    Hypertrophy of the masticatory muscles most commonly affects the masseter. Less common cases of isolated or associated temporalis hypertrophy are also reported. Parafunctional habits, and more precisely bruxism, can favor the onset of the hypertrophy. This condition is generally idiopathic and can require both medical and/or surgical management. A 29-year-old patient was referred to our department for an asymmetric swelling of the masticatory muscles. Physical examination revealed a bilateral hypertrophy of the masticatory muscles, predominantly affecting the right temporalis and the left masseter. Major bruxism was assessed by premature dental wearing. The additional examinations confirmed the isolated muscle hypertrophy. Benign asymmetric hypertrophy of the masticatory muscles promoted by bruxism was diagnosed. Treatment with injections of type A botulinum toxin was conducted in association with a splint and relaxation. Its effectiveness has been observed at six months. Few cases of unilateral or bilateral temporalis hypertrophy have been reported, added to the more common isolated masseter muscles hypertrophy. The diagnosis requires to rule out secondary hypertrophies and tumors using Magnetic Resonance Imaging. The condition is thought to be favoured by parafunctional habits such as bruxism. The conservative treatment consists in reducing the volume of the masticatory muscles using intramuscular injections of type A botulinum toxin. Other potential conservative treatments are wearing splints and muscle relaxant drugs. Surgical procedures aiming to reduce the muscle volume and/or the bone volume (mandibular gonioplasty) can be proposed. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  3. BMPs and the muscle-bone connection.

    PubMed

    Sartori, Roberta; Sandri, Marco

    2015-11-01

    Muscle and bone are two intimately connected tissues. A coordinated interplay between these tissues at mechanical levels is required for their development, function and ageing. Evidence is emerging that several genes and molecular pathways exert a pleiotropic effect on both muscle and bone. Bone morphogenetic proteins (BMPs) are secreted signal factors belonging to the transforming growth factor β (TGFβ) superfamily. BMPs have an essential role during bone and cartilage formation and maintenance. Recently, we and others have demonstrated that the BMP pathway also has a role in controlling adult skeletal muscle mass. Thus, BMPs become crucial regulators of both bone and muscle formation and homeostasis. In this review we will discuss the signalling downstream BMP and its role in muscle-bone interaction. This article is part of a Special Issue entitled "Muscle Bone Interactions".

  4. Muscle shape consistency and muscle volume prediction of thigh muscles.

    PubMed

    Mersmann, F; Bohm, S; Schroll, A; Boeth, H; Duda, G; Arampatzis, A

    2015-04-01

    The present study investigated the applicability of a muscle volume prediction method using only the muscle length (L(M)), the maximum anatomical cross-sectional area (ACSA(max)), and a muscle-specific shape factor (p) on the quadriceps vastii. L(M), ACSA(max), muscle volume, and p were obtained from magnetic resonance images of the vastus intermedius (VI), lateralis (VL), and medialis (VM) of female (n = 20) and male (n = 17) volleyball athletes. The average p was used to predict muscle volumes (V(p)) using the equation V(p)  = p × ACSA(max)  × L(M). Although there were significant differences in the muscle dimensions between male and female athletes, p was similar and on average 0.582, 0.658, 0.543 for the VI, VL, and VM, respectively. The position of ACSA(max) showed low variability and was at 57%, 60%, and 81% of the thigh length for VI, VL, and VM. Further, there were no significant differences between measured and predicted muscle volumes with root mean square differences of 5-8%. These results suggest that the muscle shape of the quadriceps vastii is independent of muscle dimensions or sex and that the prediction method could be sensitive enough to detect changes in muscle volume related to degeneration, atrophy, or hypertrophy.

  5. Muscle activity characterization by laser Doppler Myography

    NASA Astrophysics Data System (ADS)

    Scalise, Lorenzo; Casaccia, Sara; Marchionni, Paolo; Ercoli, Ilaria; Primo Tomasini, Enrico

    2013-09-01

    Electromiography (EMG) is the gold-standard technique used for the evaluation of muscle activity. This technique is used in biomechanics, sport medicine, neurology and rehabilitation therapy and it provides the electrical activity produced by skeletal muscles. Among the parameters measured with EMG, two very important quantities are: signal amplitude and duration of muscle contraction, muscle fatigue and maximum muscle power. Recently, a new measurement procedure, named Laser Doppler Myography (LDMi), for the non contact assessment of muscle activity has been proposed to measure the vibro-mechanical behaviour of the muscle. The aim of this study is to present the LDMi technique and to evaluate its capacity to measure some characteristic features proper of the muscle. In this paper LDMi is compared with standard superficial EMG (sEMG) requiring the application of sensors on the skin of each patient. sEMG and LDMi signals have been simultaneously acquired and processed to test correlations. Three parameters has been analyzed to compare these techniques: Muscle activation timing, signal amplitude and muscle fatigue. LDMi appears to be a reliable and promising measurement technique allowing the measurements without contact with the patient skin.

  6. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries.

    PubMed

    Dolman, Bronwyn; Verrall, Geoffrey; Reid, Iain

    2014-07-01

    Of the hamstring muscle group the biceps femoris muscle is the most commonly injured muscle in sports requiring interval sprinting. The reason for this observation is unknown. The objective of this study was to calculate the forces of all three hamstring muscles, relative to each other, during a lengthening contraction to assess for any differences that may help explain the biceps femoris predilection for injury during interval sprinting. To calculate the displacement of each individual hamstring muscle previously performed studies on cadaveric anatomical data and hamstring kinematics during sprinting were used. From these displacement calculations for each individual hamstring muscle physical principles were then used to deduce the proportion of force exerted by each individual hamstring muscle during a lengthening muscle contraction. These deductions demonstrate that the biceps femoris muscle is required to exert proportionally more force in a lengthening muscle contraction relative to the semimembranosus and semitendinosus muscles primarily as a consequence of having to lengthen over a greater distance within the same time frame. It is hypothesized that this property maybe a factor in the known observation of the increased susceptibility of the biceps femoris muscle to injury during repeated sprints where recurrent higher force is required.

  7. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries

    PubMed Central

    Dolman, Bronwyn; Verrall, Geoffrey; Reid, Iain

    2014-01-01

    Summary Of the hamstring muscle group the biceps femoris muscle is the most commonly injured muscle in sports requiring interval sprinting. The reason for this observation is unknown. The objective of this study was to calculate the forces of all three hamstring muscles, relative to each other, during a lengthening contraction to assess for any differences that may help explain the biceps femoris predilection for injury during interval sprinting. To calculate the displacement of each individual hamstring muscle previously performed studies on cadaveric anatomical data and hamstring kinematics during sprinting were used. From these displacement calculations for each individual hamstring muscle physical principles were then used to deduce the proportion of force exerted by each individual hamstring muscle during a lengthening muscle contraction. These deductions demonstrate that the biceps femoris muscle is required to exert proportionally more force in a lengthening muscle contraction relative to the semimembranosus and semitendinosus muscles primarily as a consequence of having to lengthen over a greater distance within the same time frame. It is hypothesized that this property maybe a factor in the known observation of the increased susceptibility of the biceps femoris muscle to injury during repeated sprints where recurrent higher force is required. PMID:25506583

  8. Embryonic and postnatal development of masticatory and tongue muscles.

    PubMed

    Yamane, A

    2005-11-01

    This review summarizes findings concerning the unique developmental characteristics of mouse head muscles (mainly the masticatory and tongue muscles) and compares their characteristics with those of other muscles. The developmental origin of the masticatory muscles is the somitomeres, whereas the tongue and other muscles, such as the trunk (deep muscles of the back, body wall muscles) and limb muscles, originate from the somites. The program controlling the early stages of masticatory myogenesis, such as the specification and migration of muscle progenitor cells, is distinctly different from those in trunk and limb myogenesis. Tongue myogenesis follows a similar regulatory program to that for limb myogenesis. Myogenesis and synaptogenesis in the masticatory muscles are delayed in comparison with other muscles and are not complete even at birth, whereas the development of tongue muscles proceeds faster than those of other muscles and ends at around birth. The regulatory programs for masticatory and tongue myogenesis seem to depend on the developmental origins of the muscles, i.e., the origin being either a somite or somitomere, whereas myogenesis and synaptogenesis seem to progress to serve the functional requirements of the masticatory and tongue muscles.

  9. Calcium regulation of muscle contraction.

    PubMed Central

    Szent-Györgyi, A G

    1975-01-01

    Calcium triggers contraction by reaction with regulatory proteins that in the absence of calcium prevent interaction of actin and myosin. Two different regulatory systems are found in different muscles. In actin-linked regulation troponin and tropomyosin regulate actin by blocking sites on actin required for complex formation with myosin; in myosin-linked regulation sites on myosin are blocked in the absence of calcium. The major features of actin control are as follows: there is a requirement for tropomyosin and for a troponin complex having three different subunits with different functions; the actin displays a cooperative behavior; and a movement of tropomyosin occurs controlled by the calcium binding on troponin. Myosin regulation is controlled by a regulatory subunit that can be dissociated in scallop myosin reversibly by removing divalent cations with EDTA. Myosin control can function with pure actin in the absence of tropomyosin. Calcium binding and regulation of molluscan myosins depend on the presence of regulatory light chains. It is proposed that the light chains function by sterically blocking myosin sites in the absence of calcium, and that the "off" state of myosin requires cooperation between the two myosin heads. Both myosin control and actin control are widely distributed in different organisms. Many invertebrates have muscles with both types of regulation. Actin control is absent in the muscles of molluscs and in several minor phyla that lack troponin. Myosin control is not found in striated vertebrate muscles and in the fast muscles of crustacean decapods, although regulatory light chains are present. While in vivo myosin control may not be excluded from vertebrate striated muscles, myosin control may be absent as a result of mutations of the myosin heavy chain. PMID:806311

  10. Muscle Weakness

    PubMed Central

    Al Kaissi, Ali; Ryabykh, Sergey; Ochirova, Polina; Kenis, Vladimir; Hofstätter, Jochen G.; Grill, Franz; Ganger, Rudolf; Kircher, Susanne Gerit

    2017-01-01

    Marked ligamentous hyperlaxity and muscle weakness/wasting associated with awkward gait are the main deficits confused with the diagnosis of myopathy. Seven children (6 boys and 1 girl with an average age of 8 years) were referred to our department because of diverse forms of skeletal abnormalities. No definitive diagnosis was made, and all underwent a series of sophisticated investigations in other institutes in favor of myopathy. We applied our methodology through the clinical and radiographic phenotypes followed by targeted genotypic confirmation. Three children (2 boys and 1 girl) were compatible with the diagnosis of progressive pseudorheumatoid chondrodysplasia. The genetic mutation was correlated with the WISP 3 gene actively expressed by articular chondrocytes and located on chromosome 6. Klinefelter syndrome was the diagnosis in 2 boys. Karyotyping confirmed 47,XXY (aneuploidy of Klinefelter syndrome). And 2 boys were finally diagnosed with Morquio syndrome (MPS type IV A) as both showed missense mutations in the N-acetylgalactosamine-sulfate sulfatase gene. Misdiagnosis can lead to the initiation of a long list of sophisticated investigations. PMID:28210640

  11. Reconditioning aging muscles.

    PubMed

    Kraus, H

    1978-06-01

    Weakness or stiffness of key posture muscles can cause much of the disability seen in elderly patients. Too much tension and too little exercise greatly increase the natural loss of muscular fitness with age. A systematic program of exercise, stressing relaxation and stretching of tight muscles and strenghthening of weak muscles, can improve physical fitness. The program must be tailored to the patient, starting with relaxation and gentle limbering exercises and proceeding ultimately to vigorous muscle-stretching exercises. Muscle aches and pain from tension and muscle imbalance are to be expected. Relaxation relieves tension pain, and strengthening weak muscles and stretching tight muscles will correct muscle imbalance. To prevent acute muscle spasm, the patient should avoid excessive exertion and increase exercise intensity gradually.

  12. Cricothyroid muscle and thyroarytenoid muscle dominance in vocal register control: preliminary results.

    PubMed

    Kochis-Jennings, Karen Ann; Finnegan, Eileen M; Hoffman, Henry T; Jaiswal, Sanyukta; Hull, Darcey

    2014-09-01

    Headmix and head registers use cricothyroid (CT) muscle dominant voicing, whereas chest and chestmix registers use thyroarytenoid (TA) muscle dominant voicing. Cross-sectional study. CT and TA electromyographic data obtained from five untrained singers and two trained singers were analyzed to determine CT and TA muscle dominance as a function of register. Simultaneous recordings of TA and CT muscle activity and audio were obtained during production of pitch glides and a variety of midrange and upper pitches in chest, chestmix, headmix, and head registers. TA dominant phonation was only observed for chest productions and headmix/head register productions below 300 Hz. All phonation above 300 Hz, regardless of register, showed CT:TA muscle activity ratios that were CT dominant or close to 1, indicating nearly equal CT and TA muscle activity. This was true for all subjects on all vocal tasks. For the subjects sampled in this study, pitch level appeared to have a greater effect on TA and CT muscle dominance than vocal register. Preliminary findings regarding CT and TA dominance and register control do not support the assumption that all chest and chestmix production has greater TA muscle activity than CT muscle activity or that all headmix and head production require greater CT muscle activity than TA muscle activity. The data indicate that pitch level may play a greater role in determining TA and CT dominance than register. Copyright © 2014 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  13. Muscle tone abnormalities.

    PubMed

    Habel, M

    1997-01-01

    Rehabilitation nurses frequently encounter clients with neurological disorders that adversely affect muscle tone. By understanding the physiological etiology of abnormal muscle tone, individual practitioners can design nursing interventions for various care settings that appropriately protect clients from injury and that can help clients and caregivers learn effective techniques for managing muscle tone problems. This article explains muscle tone abnormalities in detail and offers insight into how rehabilitation nurses can play a key role in managing clients' alterations in muscle tone.

  14. Rectus muscle plication using an adjustable technique

    PubMed Central

    Velez, Federico G.; Demer, Joseph L.; Pihlblad, Matthew S.; Pineles, Stacy L.

    2013-01-01

    Background Rectus muscle plication is an alternative muscle-strengthening procedure to rectus muscle resection. Possible advantages of rectus muscle plication include a lower risk of “lost” muscles and anterior segment ischemia. Methods This was a retrospective case series describing a surgical procedure for rectus muscle plication using an adjustable suture technique that can be employed on any of the four rectus muscles. Results A total of 5 adult patients underwent adjustable suture plication procedures. Of these, 2 patients required suture adjustment postoperatively. At the final follow-up visit, all of the patients maintained satisfactory ocular alignment within 6Δ of orthotropia for horizontal deviations and 2Δ of orthotropia for vertical deviations. Diplopia was eliminated in all cases with preoperative diplopia. There were no postoperative complications or unexpected shifts in ocular alignment. Conclusions Rectus muscle plication using this adjustable suture technique may serve as an alternative to rectus muscle resection and may be particularly useful in patients who are at risk for anterior segment ischemia or those in whom a shorter anesthesia time is recommended. PMID:24160967

  15. Skeletal muscle disease: patterns of MRI appearances.

    PubMed

    Theodorou, D J; Theodorou, S J; Kakitsubata, Y

    2012-12-01

    Although the presumptive diagnosis of skeletal muscle disease (myopathy) may be made on the basis of clinical-radiological correlation in many cases, muscle biopsy remains the cornerstone of diagnosis. Myopathy is suspected when patients complain that the involved muscle is painful and tender, when they experience difficulty performing tasks that require muscle strength or when they develop various systemic manifestations. Because the cause of musculoskeletal pain may be difficult to determine clinically in many cases, MRI is increasingly utilised to assess the anatomical location, extent and severity of several pathological conditions affecting muscle. Infectious, inflammatory, traumatic, neurological, neoplastic and iatrogenic conditions can cause abnormal signal intensity on MRI. Although diverse, some diseases have similar MRI appearances, whereas others present distinct patterns of signal intensity abnormality. In general, alterations in muscle signal intensity fall into one of three cardinal patterns: muscle oedema, fatty infiltration and mass lesion. Because some of the muscular disorders may require medical or surgical treatment, correct diagnosis is essential. In this regard, MRI features, when correlated with clinical and laboratory findings as well as findings from other methods such as electromyography, may facilitate correct diagnosis. This article will review and illustrate the spectrum of MRI appearances in several primary and systemic disorders affecting muscle, both common and uncommon. The aim of this article is to provide radiologists and clinicians with a collective, yet succinct and useful, guide to a wide array of myopathies.

  16. Asymmetric deformation of contracting human gastrocnemius muscle.

    PubMed

    Kinugasa, Ryuta; Hodgson, John A; Edgerton, V Reggie; Sinha, Shantanu

    2012-02-01

    Muscle fiber deformation is related to its cellular structure, as well as its architectural arrangement within the musculoskeletal system. While playing an important role in aponeurosis displacement, and efficiency of force transmission to the tendon, such deformation also provides important clues about the underlying mechanical structure of the muscle. We hypothesized that muscle fiber cross section would deform asymmetrically to satisfy the observed constant volume of muscle during a contraction. Velocity-encoded, phase-contrast, and morphological magnetic resonance imaging techniques were used to measure changes in fascicle length, pinnation angle, and aponeurosis separation of the human gastrocnemius muscle during passive and active eccentric ankle joint movements. These parameters were then used to subsequently calculate the in-plane muscle area subtended by the two aponeuroses and fascicles and to calculate the in-plane (dividing area by fascicle length), and through-plane (dividing muscle volume by area) thicknesses. Constant-volume considerations of the whole-muscle geometry require that, as fascicle length increases, the muscle fiber cross-sectional area must decrease in proportion to the length change. Our empirical findings confirm the definition of a constant-volume rule that dictates that changes in the dimension perpendicular to the plane, i.e., through-plane thickness, (-6.0% for passive, -3.3% for eccentric) equate to the reciprocal of the changes in area (6.8% for passive, 3.7% for eccentric) for both exercise paradigms. The asymmetry in fascicle cross-section deformation for both passive and active muscle fibers is established in this study with a ∼22% in-plane and ∼6% through-plane fascicle thickness change. These fiber deformations have functional relevance, not only because they affect the force production of the muscle itself, but also because they affect the characteristics of adjacent muscles by deflecting their line of pull.

  17. Muscle activity of leg muscles during unipedal stance on therapy devices with different stability properties.

    PubMed

    Wolburg, Thomas; Rapp, Walter; Rieger, Jochen; Horstmann, Thomas

    2016-01-01

    To test the hypotheses that less stable therapy devices require greater muscle activity and that lower leg muscles will have greater increases in muscle activity with less stable therapy devices than upper leg muscles. Cross-sectional laboratory study. Laboratory setting. Twenty-five healthy subjects. Electromyographic activity of four lower (gastrocnemius medialis, soleus, tibialis anterior, peroneus longus) and four upper leg muscles (vastus medialis and lateralis, biceps femoris, semitendinosus) during unipedal quiet barefoot stance on the dominant leg on a flat rigid surface and on five therapy devices with varying stability properties. Muscle activity during unipedal stance differed significantly between therapy devices (P < 0.001). The order from lowest to highest relative muscle activity matched the order from most to least stable therapy device. There was no significant interaction between muscle location (lower versus upper leg) and therapy device (P = 0.985). Magnitudes of additional relative muscle activity for the respective therapy devices differed substantially among lower extremity muscles. The therapy devices offer a progressive increase in training intensity, and thus may be useful for incremental training programs in physiotherapeutic practice and sports training programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Human Muscle Fiber

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The stimulus of gravity affects RNA production, which helps maintain the strength of human muscles on Earth (top), as seen in this section of muscle fiber taken from an astronaut before spaceflight. Astronauts in orbit and patients on Earth fighting muscle-wasting diseases need countermeasures to prevent muscle atrophy, indicated here with white lipid droplets (bottom) in the muscle sample taken from the same astronaut after spaceflight. Kerneth Baldwin of the University of California, Irvine, is conducting research on how reducing the stimulus of gravity affects production of the RNA that the body uses as a blueprint for making muscle proteins. Muscle proteins are what give muscles their strength, so when the RNA blueprints aren't available for producing new proteins to replace old ones -- a situation that occurs in microgravity -- the muscles atrophy. When the skeletal muscle system is exposed to microgravity during spaceflight, the muscles undergo a reduced mass that translates to a reduction in strength. When this happens, muscle endurance decreases and the muscles are more prone to injury, so individuals could have problems in performing extravehicular activity [space walks] or emergency egress because their bodies are functionally compromised.

  19. Human Muscle Fiber

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The stimulus of gravity affects RNA production, which helps maintain the strength of human muscles on Earth (top), as seen in this section of muscle fiber taken from an astronaut before spaceflight. Astronauts in orbit and patients on Earth fighting muscle-wasting diseases need countermeasures to prevent muscle atrophy, indicated here with white lipid droplets (bottom) in the muscle sample taken from the same astronaut after spaceflight. Kerneth Baldwin of the University of California, Irvine, is conducting research on how reducing the stimulus of gravity affects production of the RNA that the body uses as a blueprint for making muscle proteins. Muscle proteins are what give muscles their strength, so when the RNA blueprints aren't available for producing new proteins to replace old ones -- a situation that occurs in microgravity -- the muscles atrophy. When the skeletal muscle system is exposed to microgravity during spaceflight, the muscles undergo a reduced mass that translates to a reduction in strength. When this happens, muscle endurance decreases and the muscles are more prone to injury, so individuals could have problems in performing extravehicular activity [space walks] or emergency egress because their bodies are functionally compromised.

  20. Muscle strain injuries.

    PubMed

    Garrett, W E

    1996-01-01

    One of the most common injuries seen in the office of the practicing physician is the muscle strain. Until recently, little data were available on the basic science and clinical application of this basic science for the treatment and prevention of muscle strains. Studies in the last 10 years represent action taken on the direction of investigation into muscle strain injuries from the laboratory and clinical fronts. Findings from the laboratory indicate that certain muscles are susceptible to strain injury (muscles that cross multiple joints or have complex architecture). These muscles have a strain threshold for both passive and active injury. Strain injury is not the result of muscle contraction alone, rather, strains are the result of excessive stretch or stretch while the muscle is being activated. When the muscle tears, the damage is localized very near the muscle-tendon junction. After injury, the muscle is weaker and at risk for further injury. The force output of the muscle returns over the following days as the muscle undertakes a predictable progression toward tissue healing. Current imaging studies have been used clinically to document the site of injury to the muscle-tendon junction. The commonly injured muscles have been described and include the hamstring, the rectus femoris, gastrocnemius, and adductor longus muscles. Injuries inconsistent with involvement of a single muscle-tendon junction proved to be at tendinous origins rather than within the muscle belly. Important information has also been provided regarding injuries with poor prognosis, which are potentially repairable surgically, including injuries to the rectus femoris muscle, the hamstring origin, and the abdominal wall. Data important to the management of common muscle injuries have been published. The risks of reinjury have been documented. The early efficacy and potential for long-term risks of nonsteroidal antiinflammatory agents have been shown. New data can also be applied to the field

  1. Healthy Muscles Matter

    MedlinePlus

    ... keep my muscles more healthy? Definitions What can go wrong? Injuries Almost everyone has had sore muscles ... If you have been inactive, “start low and go slow” by gradually increasing how often and how ...

  2. Eye muscle repair - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100062.htm Eye muscle repair - series—Normal anatomy To use the sharing ... the eyeball to the eye socket. The external muscles of the eye are found behind the conjunctiva. ...

  3. Respiratory muscle plasticity.

    PubMed

    Rowley, Katharine L; Mantilla, Carlos B; Sieck, Gary C

    2005-07-28

    Plasticity of respiratory muscles must be considered in the context of their unique physiological demands. The continuous rhythmic activation of respiratory muscles makes them among the most active in the body. Respiratory muscles, especially the diaphragm, are non-weight-bearing, and thus, in contrast to limb muscles, are not exposed to gravitational effects. Perturbations in normal activation and load known to induce plasticity in limb muscles may not cause similar adaptations in respiratory muscles. In this review, we explore the structural and functional properties of the diaphragm muscle and their response to alterations in load and activity. Overall, relatively modest changes in diaphragm structural and functional properties occur in response to perturbations in load or activity. However, disruptions in the normal influence of phrenic innervation by frank denervation, tetrodotoxin nerve block and spinal hemisection, induce profound changes in the diaphragm, indicating the substantial trophic influence of phrenic motoneurons on diaphragm muscle.

  4. Impaired muscle regeneration and myoblast differentiation in mice with a muscle-specific KO of IGF-IR.

    PubMed

    Heron-Milhavet, Lisa; Mamaeva, Daria; LeRoith, Derek; Lamb, Ned J; Fernandez, Anne

    2010-10-01

    IGF-I and its receptor IGF-IR are seen as critical effectors of muscle hypertrophy, a notion recently questioned. Using MKR transgenic mice that express a dominant negative IGF-IR only in skeletal muscle, we have examined the role of the IGF-IR signaling in differentiation and repair of muscle fibers after damage-induced muscle regeneration. This process is impaired in MKR muscle, with incomplete regeneration, persistence of infiltrating cells and sustained expression of differentiation markers. Analysis of MKR and WT muscle-derived progenitor stem cells and myoblasts showed twice as many such cells in MKR muscle and an incomplete in vitro differentiation, that is, despite similar levels of myogenin expression, the level of fusion of MKR myoblasts was significantly reduced in comparison to WT myoblasts. These data show IGF-IR signaling is not only required at early hyperplasia stages of muscle differentiation, but also for late stages of myofiber maturation and hypertrophy.

  5. Muscle Function and Coordination of Stair Ascent.

    PubMed

    Harper, Nicole; Wilken, Jason; Neptune, Richard

    2017-08-31

    Stair ascent is an activity of daily living and necessary for maintaining independence in community environments. One challenge to improving an individual's ability to ascend stairs is a limited understanding of how lower-limb muscles work in synergy to perform stair ascent. Through dynamic coupling muscles may perform multiple functions and require contributions from other muscles to perform a task successfully. The purpose of this study was to identify the functional roles of individual muscles during stair ascent and the mechanisms by which muscles work together to perform specific subtasks. A three-dimensional muscle-actuated simulation of stair ascent was generated to identify individual muscle contributions to the biomechanical subtasks of vertical propulsion, anteroposterior propulsion (forward propulsion and braking), mediolateral control and leg swing. The vasti and plantarflexors were the primary contributors to vertical propulsion during the first and second halves of stance, respectively, while gluteus maximus and hamstrings were the primary contributors to forward propulsion during the first and second halves of stance, respectively. The anterior and posterior components of gluteus medius were the primary contributors to medial control while vasti and hamstrings were the primary contributors to lateral control during the first and second halves of stance, respectively. To control leg swing, antagonistic muscles spanning the hip, knee and ankle joints distributed power from the leg to the remaining body segments. These results compliment previous studies analyzing stair ascent and provide further rationale for developing targeted rehabilitation strategies to address patient-specific deficits in stair ascent.

  6. Muscle Session Summary

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth; Feeback, Daniel

    1999-01-01

    Presentations from the assembled group of investigators involved in specific research projeects related to skeletal muscle in space flight can categorized in thematic subtopics: regulation of contractile protein phenotypes, muscle growth and atrophy, muscle structure: injury, recovery,and regeneration, metabolism and fatigue, and motor control and loading factors.

  7. Muscle Session Summary

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth; Feeback, Daniel

    1999-01-01

    Presentations from the assembled group of investigators involved in specific research projeects related to skeletal muscle in space flight can categorized in thematic subtopics: regulation of contractile protein phenotypes, muscle growth and atrophy, muscle structure: injury, recovery,and regeneration, metabolism and fatigue, and motor control and loading factors.

  8. Regulation of Nucleocytoplasmic Transport in Skeletal Muscle

    PubMed Central

    Hall, Monica N.; Corbett, Anita H.; Pavlath, Grace K.

    2015-01-01

    Proper skeletal muscle function is dependent on spatial and temporal control of gene expression in multinucleated myofibers. In addition, satellite cells, which are tissue-specific stem cells that contribute critically to repair and maintenance of skeletal muscle, are also required for normal muscle physiology. Gene expression in both myofibers and satellite cells is dependent upon nuclear proteins that require facilitated nuclear transport. A unique challenge for myofibers is controlling the transcriptional activity of hundreds of nuclei in a common cytoplasm yet achieving nuclear selectivity in transcription at specific locations such as neuromuscular synapses and myotendinous junctions. Nucleocytoplasmic transport of macromolecular cargoes is regulated by a complex interplay among various components of the nuclear transport machinery, namely nuclear pore complexes, nuclear envelope proteins, and various soluble transport receptors. The focus of this review is to highlight what is known about the nuclear transport machinery and its regulation in skeletal muscle and to consider the unique challenges that multinucleated muscle cells as well as satellite cells encounter in regulating nucleocytoplasmic transport during cell differentiation and tissue adaptation. Understanding how regulated nucleocytoplasmic transport controls gene expression in skeletal muscle may lead to further insights into the mechanisms contributing to muscle growth and maintenance throughout the lifespan of an individual. PMID:21621074

  9. Oxidative Metabolism in Muscle

    NASA Astrophysics Data System (ADS)

    Ferrari, M.; Binzoni, T.; Quaresima, V.

    1997-06-01

    Oxidative metabolism is the dominant source of energy for skeletal muscle. Near-infrared spectroscopy allows the non-invasive measurement of local oxygenation, blood flow and oxygen consumption. Although several muscle studies have been made using various near-infrared optical techniques, it is still difficult to interpret the local muscle metabolism properly. The main findings of near-infrared spectroscopy muscle studies in human physiology and clinical medicine are summarized. The advantages and problems of near-infrared spectroscopy measurements, in resting and exercising skeletal muscles studies, are discussed through some representative examples.

  10. Optical characterization of muscle

    NASA Astrophysics Data System (ADS)

    Oliveira, Luís; Lage, Armindo; Pais Clemente, Manuel; Tuchin, Valery V.

    2011-10-01

    Optical characterization and internal structure of biological tissues is highly important for biomedical optics. In particular for optical clearing processes, such information is of vital importance to understand the mechanisms involved through the variation of the refractive indices of tissue components. The skeletal muscle presents a fibrous structure with an internal arrangement of muscle fiber cords surrounded by interstitial fluid that is responsible for strong light scattering. To determine the refractive index of muscle components we have used a simple method of measuring tissue mass and refractive index during dehydration. After performing measurements for natural and ten dehydration states of the muscle samples, we have determined the dependence between the refractive index of the muscle and its water content. Also, we have joined our measurements with some values reported in literature to perform some calculations that have permitted to determine the refractive index of the dried muscle fibers and their corresponding volume percentage inside the natural muscle.

  11. Optical characterization of muscle

    NASA Astrophysics Data System (ADS)

    Oliveira, Luís; Lage, Armindo; Pais Clemente, Manuel; Tuchin, Valery V.

    2012-03-01

    Optical characterization and internal structure of biological tissues is highly important for biomedical optics. In particular for optical clearing processes, such information is of vital importance to understand the mechanisms involved through the variation of the refractive indices of tissue components. The skeletal muscle presents a fibrous structure with an internal arrangement of muscle fiber cords surrounded by interstitial fluid that is responsible for strong light scattering. To determine the refractive index of muscle components we have used a simple method of measuring tissue mass and refractive index during dehydration. After performing measurements for natural and ten dehydration states of the muscle samples, we have determined the dependence between the refractive index of the muscle and its water content. Also, we have joined our measurements with some values reported in literature to perform some calculations that have permitted to determine the refractive index of the dried muscle fibers and their corresponding volume percentage inside the natural muscle.

  12. A model of muscle atrophy based on live microscopy of muscle remodelling in Drosophila metamorphosis

    PubMed Central

    Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin

    2016-01-01

    Genes controlling muscle size and survival play important roles in muscle wasting diseases. In Drosophila melanogaster metamorphosis, larval abdominal muscles undergo two developmental fates. While a doomed population is eliminated by cell death, another persistent group is remodelled and survives into adulthood. To identify and characterize genes involved in the development of remodelled muscles, we devised a workflow consisting of in vivo imaging, targeted gene perturbation and quantitative image analysis. We show that inhibition of TOR signalling and activation of autophagy promote developmental muscle atrophy in early, while TOR and yorkie activation are required for muscle growth in late pupation. We discovered changes in the localization of myonuclei during remodelling that involve anti-polar migration leading to central clustering followed by polar migration resulting in localization along the midline. We demonstrate that the Cathepsin L orthologue Cp1 is required for myonuclear clustering in mid, while autophagy contributes to central positioning of nuclei in late metamorphosis. In conclusion, studying muscle remodelling in metamorphosis can provide new insights into the cell biology of muscle wasting. PMID:26998322

  13. Tissue Triage and Freezing for Models of Skeletal Muscle Disease

    PubMed Central

    Meng, Hui; Janssen, Paul M.L.; Grange, Robert W.; Yang, Lin; Beggs, Alan H.; Swanson, Lindsay C.; Cossette, Stacy A.; Frase, Alison; Childers, Martin K.; Granzier, Henk; Gussoni, Emanuela; Lawlor, Michael W.

    2014-01-01

    Skeletal muscle is a unique tissue because of its structure and function, which requires specific protocols for tissue collection to obtain optimal results from functional, cellular, molecular, and pathological evaluations. Due to the subtlety of some pathological abnormalities seen in congenital muscle disorders and the potential for fixation to interfere with the recognition of these features, pathological evaluation of frozen muscle is preferable to fixed muscle when evaluating skeletal muscle for congenital muscle disease. Additionally, the potential to produce severe freezing artifacts in muscle requires specific precautions when freezing skeletal muscle for histological examination that are not commonly used when freezing other tissues. This manuscript describes a protocol for rapid freezing of skeletal muscle using isopentane (2-methylbutane) cooled with liquid nitrogen to preserve optimal skeletal muscle morphology. This procedure is also effective for freezing tissue intended for genetic or protein expression studies. Furthermore, we have integrated our freezing protocol into a broader procedure that also describes preferred methods for the short term triage of tissue for (1) single fiber functional studies and (2) myoblast cell culture, with a focus on the minimum effort necessary to collect tissue and transport it to specialized research or reference labs to complete these studies. Overall, this manuscript provides an outline of how fresh tissue can be effectively distributed for a variety of phenotypic studies and thereby provides standard operating procedures (SOPs) for pathological studies related to congenital muscle disease. PMID:25078247

  14. Intermuscular coherence contributions in synergistic muscles during pedaling.

    PubMed

    De Marchis, Cristiano; Severini, Giacomo; Castronovo, Anna Margherita; Schmid, Maurizio; Conforto, Silvia

    2015-06-01

    The execution of rhythmical motor tasks requires the control of multiple skeletal muscles by the Central Nervous System (CNS), and the neural mechanisms according to which the CNS manages their coordination are not completely clear yet. In this study, we analyze the distribution of the neural drive shared across muscles that work synergistically during the execution of a free pedaling task. Electromyographic (EMG) activity was recorded from eight lower limb muscles of eleven healthy untrained participants during an unconstrained pedaling exercise. The coordinated activity of the lower limb muscles was described within the framework of muscle synergies, extracted through the application of nonnegative matrix factorization. Intermuscular synchronization was assessed by calculating intermuscular coherence between pairs of EMG signals from co-active, both synergistic and non-synergistic muscles within their periods of co-activation. The spatiotemporal structure of muscle coordination during pedaling was well represented by four muscle synergies for all the subjects. Significant coherence values within the gamma band (30-60 Hz) were identified only for one out of the four extracted muscle synergies. This synergy is mainly composed of the activity of knee extensor muscles, and its function is related to the power production and crank propelling during the pedaling cycle. In addition, a significant coherence peak was found in the lower frequencies for the GAM/SOL muscle pair, possibly related to the ankle stabilizing function of these two muscles during the pedaling task. No synchronization was found either for the other extracted muscle synergies or for pairs of co-active but non-synergistic muscles. The obtained results seem to suggest the presence of intermuscular synchronization only when a functional force production is required, with the observed gamma band contribution possibly reflecting a cortical drive to synergistic muscles during pedaling.

  15. Resolving Shifting Patterns of Muscle Energy Use in Swimming Fish

    PubMed Central

    Gerry, Shannon P.; Ellerby, David J.

    2014-01-01

    Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes. PMID:25165858

  16. Muscle interleukin-6 and fasting-induced PDH regulation in mouse skeletal muscle.

    PubMed

    Gudiksen, Anders; Bertholdt, Laerke; Vingborg, Mikkel Birkkjaer; Hansen, Henriette Watson; Ringholm, Stine; Pilegaard, Henriette

    2017-03-01

    Fasting prompts a metabolic shift in substrate utilization from carbohydrate to predominant fat oxidation in skeletal muscle, and pyruvate dehydrogenase (PDH) is seen as a controlling link between the competitive oxidation of carbohydrate and fat during metabolic challenges like fasting. Interleukin (IL)-6 has been proposed to be released from muscle with concomitant effects on both glucose and fat utilization. The aim was to test the hypothesis that muscle IL-6 has a regulatory impact on fasting-induced suppression of skeletal muscle PDH. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) were either fed or fasted for 6 or 18 h. Lack of muscle IL-6 elevated the respiratory exchange ratio in the fed and early fasting state, but not with prolonged fasting. Activity of PDH in the active form (PDHa) was higher in fed and fasted IL-6 MKO than in control mice at 18 h, but not at 6 h, whereas lack of muscle IL-6 did not prevent downregulation of PDHa activity in skeletal muscle or changes in plasma and muscle substrate levels in response to 18 h of fasting. Phosphorylation of three of four sites on PDH-E1α increased with 18 h of fasting, but was lower in IL-6 MKO mice than in control. In addition, both PDK4 mRNA and protein increased with 6 and 18 h of fasting in both genotypes, but PDK4 protein was lower in IL-6 MKO than in control. In conclusion, skeletal muscle IL-6 seems to regulate whole body substrate utilization in the fed, but not fasted, state and influence skeletal muscle PDHa activity in a circadian manner. However, skeletal muscle IL-6 is not required for maintaining metabolic flexibility in response to fasting. Copyright © 2017 the American Physiological Society.

  17. Muscle side population cells from dystrophic or injured muscle adopt a fibro-adipogenic fate.

    PubMed

    Penton, Christopher M; Thomas-Ahner, Jennifer M; Johnson, Eric K; McAllister, Cynthia; Montanaro, Federica

    2013-01-01

    Muscle side population (SP) cells are rare multipotent stem cells that can participate in myogenesis and muscle regeneration upon transplantation. While they have been primarily studied for the development of cell-based therapies for Duchenne muscular dystrophy, little is known regarding their non-muscle lineage choices or whether the dystrophic muscle environment affects their ability to repair muscle. Unfortunately, the study of muscle SP cells has been challenged by their low abundance and the absence of specific SP cell markers. To address these issues, we developed culture conditions for the propagation and spontaneous multi-lineage differentiation of muscle SP cells. Using this approach, we show that SP cells from wild type muscle robustly differentiate into satellite cells and form myotubes without requiring co-culture with myogenic cells. Furthermore, this myogenic activity is associated with SP cells negative for immune (CD45) and vascular (CD31) markers but positive for Pax7, Sca1, and the mesenchymal progenitor marker PDGFRα. Additionally, our studies revealed that SP cells isolated from dystrophic or cardiotoxin-injured muscle fail to undergo myogenesis. Instead, these SP cells rapidly expand giving rise to fibroblast and adipocyte progenitors (FAPs) and to their differentiated progeny, fibroblasts and adipocytes. Our findings indicate that muscle damage affects the lineage choices of muscle SP cells, promoting their differentiation along fibro-adipogenic lineages while inhibiting myogenesis. These results have implications for a possible role of muscle SP cells in fibrosis and fat deposition in muscular dystrophy. In addition, our studies provide a useful in vitro system to analyze SP cell biology in both normal and pathological conditions.

  18. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    SciTech Connect

    Chatterjee, Somik; Yin, Hongshan; Nam, Deokhwa; Li, Yong; Ma, Ke

    2015-02-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.

  19. Effects of microgravity on rat muscle

    NASA Technical Reports Server (NTRS)

    Riley, D. A.

    1990-01-01

    It is well known that humans exposed to long term spaceflight experience undesirable progressive muscle weakness and increased fatigability. This problem has prompted the implementation of inflight exercise programs because most investigators believe that the major cause of diminished muscle performance is a combination of disuse and decreased workload. Inflight exercise has improved muscle health, but deficits have persisted, indicating that either the regimens utilized were suboptimal or there existed additional debilitating factors which were not remedied by exercise. Clarification of this question requires an improved understanding of the cellular and molecular basis of spaceflight-induced muscle deterioration. To this end, multiple investigations have been performed on the muscles from rats orbited 5 to 22 days in Cosmos biosatellites and Spacelab-3 (2,4,5,8,10 to 14,16,18,19,21 to 23,25,27,28). The eight Cosmos 1887 investigations examined the structural and biochemical changes in skeletal and cardiac muscles of rats exposed to microgravity for 12.5 days and returned to terrestrial gravity 2.3 days before tissues were collected. Even though interpretation of these results was complicated by the combination of inflight and postflight induced alterations, the consensus is that there is marked heterogeneity in both degree and type of responses from the whole muscle level down to the molecular level. Collectively, the muscle investigations of Cosmos 1887 clearly illustrate the wide diversity of muscle tissue responses to spaceflight. Judging from the summary report of this mission, heterogeneity of responses is not unique to muscle tissue. Elucidating the mechanism underlying this heterogeneity holds the key to explaining adaptation of the organism to prolonged spaceflight.

  20. Skeletal muscle degeneration and regeneration in mice and flies.

    PubMed

    Rai, Mamta; Nongthomba, Upendra; Grounds, Miranda D

    2014-01-01

    Many aspects of skeletal muscle biology are remarkably similar between mammals and tiny insects, and experimental models of mice and flies (Drosophila) provide powerful tools to understand factors controlling the growth, maintenance, degeneration (atrophy and necrosis), and regeneration of normal and diseased muscles, with potential applications to the human condition. This review compares the limb muscles of mice and the indirect flight muscles of flies, with respect to the mechanisms of adult myofiber formation, homeostasis, atrophy, hypertrophy, and the response to muscle degeneration, with some comment on myogenic precursor cells and common gene regulatory pathways. There is a striking similarity between the species for events related to muscle atrophy and hypertrophy, without contribution of any myoblast fusion. Since the flight muscles of adult flies lack a population of reserve myogenic cells (equivalent to satellite cells), this indicates that such cells are not required for maintenance of normal muscle function. However, since satellite cells are essential in postnatal mammals for myogenesis and regeneration in response to myofiber necrosis, the extent to which such regeneration might be possible in flight muscles of adult flies remains unclear. Common cellular and molecular pathways for both species are outlined related to neuromuscular disorders and to age-related loss of skeletal muscle mass and function (sarcopenia). The commonality of events related to skeletal muscles in these disparate species (with vast differences in size, growth duration, longevity, and muscle activities) emphasizes the combined value and power of these experimental animal models.

  1. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    PubMed Central

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  2. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups.

    PubMed

    Randolph, Matthew E; Pavlath, Grace K

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease.

  3. Increased Excitability of Acidified Skeletal Muscle

    PubMed Central

    Pedersen, Thomas H.; de Paoli, Frank; Nielsen, Ole B.

    2005-01-01

    Generation of the action potentials (AP) necessary to activate skeletal muscle fibers requires that inward membrane currents exceed outward currents and thereby depolarize the fibers to the voltage threshold for AP generation. Excitability therefore depends on both excitatory Na+ currents and inhibitory K+ and Cl− currents. During intensive exercise, active muscle loses K+ and extracellular K+ ([K+]o) increases. Since high [K+]o leads to depolarization and ensuing inactivation of voltage-gated Na+ channels and loss of excitability in isolated muscles, exercise-induced loss of K+ is likely to reduce muscle excitability and thereby contribute to muscle fatigue in vivo. Intensive exercise, however, also leads to muscle acidification, which recently was shown to recover excitability in isolated K+-depressed muscles of the rat. Here we show that in rat soleus muscles at 11 mM K+, the almost complete recovery of compound action potentials and force with muscle acidification (CO2 changed from 5 to 24%) was associated with reduced chloride conductance (1731 ± 151 to 938 ± 64 μS/cm2, P < 0.01) but not with changes in potassium conductance (405 ± 20 to 455 ± 30 μS/cm2, P < 0.16). Furthermore, acidification reduced the rheobase current by 26% at 4 mM K+ and increased the number of excitable fibers at elevated [K+]o. At 11 mM K+ and normal pH, a recovery of excitability and force similar to the observations with muscle acidification could be induced by reducing extracellular Cl− or by blocking the major muscle Cl− channel, ClC-1, with 30 μM 9-AC. It is concluded that recovery of excitability in K+-depressed muscles induced by muscle acidification is related to reduction in the inhibitory Cl− currents, possibly through inhibition of ClC-1 channels, and acidosis thereby reduces the Na+ current needed to generate and propagate an AP. Thus short term regulation of Cl− channels is important for maintenance of excitability in working muscle. PMID:15684096

  4. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  5. Exercise-induced muscle cramp. Proposed mechanisms and management.

    PubMed

    Bentley, S

    1996-06-01

    avoiding provocative drugs may be beneficial. Other strategies such as incorporating plyometrics or eccentric muscle strengthening into training programmes, maintaining adequate carbohydrate reserves during competition or treating myofascial trigger points are speculative and require investigation.

  6. Orai1 and Ca2+-independent phospholipase A2 are required for store-operated Icat-SOC current, Ca2+ entry, and proliferation of primary vascular smooth muscle cells.

    PubMed

    Yang, Bo; Gwozdz, Tomasz; Dutko-Gwozdz, Joanna; Bolotina, Victoria M

    2012-03-01

    Store-operated Ca(2+) entry (SOCE) is important for multiple functions of vascular smooth muscle cells (SMC), which, depending of their phenotype, can resemble excitable and nonexcitable cells. Similar to nonexcitable cells, Orai1 was found to mediate Ca(2+)-selective (CRAC-like) current and SOCE in dedifferentiated cultured SMC and smooth muscle-derived cell lines. However, the role of Orai1 in cation-selective store-operated channels (cat-SOC), which are responsible for SOCE in primary SMC, remains unclear. Here we focus on primary SMC, and assess the role of Orai1 and Ca(2+)-independent phospholipase A(2) (iPLA(2)β, or PLA2G6) in activation of cat-SOC current (I(cat-SOC)), SOCE, and SMC proliferation. Using molecular, electrophysiological, imaging, and functional approaches, we demonstrate that molecular knockdown of either Orai1 or iPLA(2)β leads to similar inhibition of the whole cell cat-SOC current and SOCE in primary aortic SMC and results in significant reduction in DNA synthesis and impairment of SMC proliferation. This is the first demonstration that Orai1 and iPLA(2)β are equally important for cat-SOC, SOCE, and proliferation of primary aortic SMC.

  7. Gravitational and Dynamic Components of Muscle Torque Underlie Tonic and Phasic Muscle Activity during Goal-Directed Reaching.

    PubMed

    Olesh, Erienne V; Pollard, Bradley S; Gritsenko, Valeriya

    2017-01-01

    Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques.

  8. Gravitational and Dynamic Components of Muscle Torque Underlie Tonic and Phasic Muscle Activity during Goal-Directed Reaching

    PubMed Central

    Olesh, Erienne V.; Pollard, Bradley S.; Gritsenko, Valeriya

    2017-01-01

    Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques. PMID:29018339

  9. Architectural properties of distal forelimb muscles in horses, Equus caballus.

    PubMed

    Brown, Nicholas A T; Kawcak, Christopher E; McIlwraith, C Wayne; Pandy, Marcus G

    2003-10-01

    Articular injuries in athletic horses are associated with large forces from ground impact and from muscular contraction. To accurately and noninvasively predict muscle and joint contact forces, a detailed model of musculoskeletal geometry and muscle architecture is required. Moreover, muscle architectural data can increase our understanding of the relationship between muscle structure and function in the equine distal forelimb. Muscle architectural data were collected from seven limbs obtained from five thoroughbred and thoroughbred-cross horses. Muscle belly rest length, tendon rest length, muscle volume, muscle fiber length, and pennation angle were measured for nine distal forelimb muscles. Physiological cross-sectional area (PCSA) was determined from muscle volume and muscle fiber length. The superficial and deep digital flexor muscles displayed markedly different muscle volumes (227 and 656 cm3, respectively), but their PCSAs were very similar due to a significant difference in muscle fiber length (i.e., the superficial digital flexor muscle had very short fibers, while those of the deep digital flexor muscle were relatively long). The ulnaris lateralis and flexor carpi ulnaris muscles had short fibers (17.4 and 18.3 mm, respectively). These actuators were strong (peak isometric force, Fmax=5,814 and 4,017 N, respectively) and stiff (tendon rest length to muscle fiber length, LT:LMF=5.3 and 2.1, respectively), and are probably well adapted to stabilizing the carpus during the stance phase of gait. In contrast, the flexor carpi radialis muscle displayed long fibers (89.7 mm), low peak isometric force (Fmax=555 N), and high stiffness (LT:LMF=1.6). Due to its long fibers and low Fmax, flexor carpi radialis appears to be better adapted to flexion and extension of the limb during the swing phase of gait than to stabilization of the carpus during stance. Including muscle architectural parameters in a musculoskeletal model of the equine distal forelimb may lead to

  10. Muscle injuries: optimising recovery.

    PubMed

    Järvinen, Tero A H; Järvinen, Teppo L N; Kääriäinen, Minna; Aärimaa, Ville; Vaittinen, Samuli; Kalimo, Hannu; Järvinen, Markku

    2007-04-01

    Muscle injuries are one of the most common traumas occurring in sports. Despite their clinical importance, there are only a few clinical studies on the treatment of muscle injuries. Lack of clinical studies is most probably attributable to the fact that there is not only a high heterogeneity in the severity of injuries, but also the injuries take place in different muscles, making it very demanding to carry out clinical trials. Accordingly, the current treatment principles of muscle injuries have either been derived from experimental studies or been tested empirically only. Clinically, first aid for muscle injuries follows the RICE (Rest, Ice, Compression and Elevation) principle. The objective of RICE is to stop the injury-induced bleeding into the muscle tissue and thereby minimise the extent of the injury. Clinical examination should be carried out immediately after the injury and 5-7 days after the initial trauma, at which point the severity of the injury can be assessed more reliably. At that time, a more detailed characterisation of the injury can be made using imaging diagnostic modalities (ultrasound or MRI) if desired. The treatment of injured skeletal muscle should be carried out by immediate immobilisation of the injured muscle (clinically, relative immobility/avoidance of muscle contractions). However, the duration of immobilisation should be limited to a period sufficient to produce a scar of sufficient strength to bear the forces induced by remobilisation without re-rupture and the return to activity (mobilisation) should then be started gradually within the limits of pain. Early return to activity is needed to optimise the regeneration of healing muscle and recovery of the flexibility and strength of the injured skeletal muscle to pre-injury levels. The rehabilitation programme should be built around progressive agility and trunk stabilisation exercises, as these exercises seem to yield better outcome for injured skeletal muscle than programmes based

  11. Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review.

    PubMed

    Abe, Takashi; Loenneke, Jeremy P; Fahs, Christopher A; Rossow, Lindy M; Thiebaud, Robert S; Bemben, Michael G

    2012-07-01

    Although evidence for high-intensity resistance training-induced muscle hypertrophy has accumulated over the last several decades, the basic concept of the training can be traced back to ancient Greece: Milo of Croton lifted a bull-calf daily until it was fully grown, which would be known today as progressive overload. Now, in the 21st century, different types of training are being tested and studied, such as low-intensity exercise combined with arterial as well as venous blood flow restriction (BFR) to/from the working muscles. Because BFR training requires the use of a cuff that is placed at the proximal ends of the arms and/or legs, the BFR is only applicable to limb muscles. Consequently, most previous BFR training studies have focused on the physiological adaptations of BFR limb muscles. Muscle adaptations in non-BFR muscles of the hip and trunk are lesser known. Recent studies that have reported both limb and trunk muscle adaptations following BFR exercise training suggest that low-intensity (20-30% of 1RM) resistance training combined with BFR elicits muscle hypertrophy in both BFR limb and non-BFR muscles. However, the combination of leg muscle BFR with walk training elicits muscle hypertrophy only in the BFR leg muscles. In contrast to resistance exercise with BFR, the exercise intensity may be too low during BFR walk training to cause muscle hypertrophy in the non-BFR gluteus maximus and other trunk muscles. Other mechanisms including hypoxia, local and systemic growth factors and muscle cell swelling may also potentially affect the hypertrophic response of non-BFR muscles to BFR resistance exercise.

  12. [Autologous grafting of extraocular muscles: experimental study in rabbits].

    PubMed

    Meireles-Teixeira, Jorge; Bicas, Harley E A

    2005-01-01

    To evaluate the feasibility of autologous extraocular muscle grafting as a type of muscle expansion surgery. The left superior rectus muscle of twenty-nine rabbits was resected and this fragment was attached to the endpoint of the respective right superior rectus (test group). Thereafter, the superior rectus of the left eye was reattached to the sclera (control group). Both groups were examined during different postoperative periods in order to assess their outcomes. The presence of hyperemia was slightly more frequent in the grafted group. Secretion and muscle atrophy were negligible in both groups. Fibrosis was greater in grafted animals. These muscles were weaker than the control muscles, although the force required to split muscular parts was always greater than the physiological one. This surgical technique was reliable and useful if one intends to achieve muscle expansion without the intrinsic risks of dealing with heterologous/artificial materials.

  13. Muscle stem cells contribute to myofibers in sedentary adult mice

    PubMed Central

    Keefe, Alexandra C.; Lawson, Jennifer A.; Flygare, Steven D.; Fox, Zachary D.; Colasanto, Mary P.; Mathew, Sam J.; Yandell, Mark; Kardon, Gabrielle

    2015-01-01

    Skeletal muscle is essential for mobility, stability, and whole body metabolism, and muscle loss, for instance during sarcopenia, has profound consequences. Satellite cells (muscle stem cells) have been hypothesized, but not yet demonstrated, to contribute to muscle homeostasis and a decline in their contribution to myofiber homeostasis to play a part in sarcopenia. To test their role in muscle maintenance, we genetically labeled and ablated satellite cells in adult sedentary mice. We demonstrate via genetic lineage experiments that even in the absence of injury, satellite cells contribute to myofibers in all adult muscles, although the extent and timing differs. However, genetic ablation experiments showed that satellite cells are not globally required to maintain myofiber cross-sectional area of uninjured adult muscle. PMID:25971691

  14. Electrochemically Powered, Energy-Conserving Carbon Nanotube Artificial Muscles.

    PubMed

    Lee, Jae Ah; Li, Na; Haines, Carter S; Kim, Keon Jung; Lepró, Xavier; Ovalle-Robles, Raquel; Kim, Seon Jeong; Baughman, Ray H

    2017-08-01

    While artificial muscle yarns and fibers are potentially important for many applications, the combination of large strokes, high gravimetric work capacities, short cycle times, and high efficiencies are not realized for these fibers. This paper demonstrates here electrochemically powered carbon nanotube yarn muscles that provide tensile contraction as high as 16.5%, which is 12.7 times higher than previously obtained. These electrochemical muscles can deliver a contractile energy conversion efficiency of 5.4%, which is 4.1 times higher than reported for any organic-material-based artificial muscle. All-solid-state parallel muscles and braided muscles, which do not require a liquid electrolyte, provide tensile contractions of 11.6% and 5%, respectively. These artificial muscles might eventually be deployed for a host of applications, from robotics to perhaps even implantable medical devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. COX-2 inhibitor reduces skeletal muscle hypertrophy in mice.

    PubMed

    Novak, Margaret L; Billich, William; Smith, Sierra M; Sukhija, Kunal B; McLoughlin, Thomas J; Hornberger, Troy A; Koh, Timothy J

    2009-04-01

    Anti-inflammatory strategies are often used to reduce muscle pain and soreness that can result from high-intensity muscular activity. However, studies indicate that components of the acute inflammatory response may be required for muscle repair and growth. The hypothesis of this study was that cyclooxygenase (COX)-2 activity is required for compensatory hypertrophy of skeletal muscle. We used the synergist ablation model of skeletal muscle hypertrophy, along with the specific COX-2 inhibitor NS-398, to investigate the role of COX-2 in overload-induced muscle growth in mice. COX-2 was expressed in plantaris muscles during compensatory hypertrophy and was localized mainly in or near muscle cell nuclei. Treatment with NS-398 blunted the increases in mass and protein content in overloaded muscles compared with vehicle-treated controls. Additionally, the COX-2 inhibitor decreased activity of the urokinase type plasminogen activator, macrophage accumulation, and cell proliferation, all of which are required for hypertrophy after synergist ablation. Expression of insulin-like growth factor-1 and phosphorylation of Akt, mammalian target of rapamycin, and p70S6K were increased following synergist ablation, but were not affected by NS-398. Additionally, expression of atrogin-1 was reduced during hypertrophy, but was also not affected by NS-398. These results demonstrate that COX-2 activity is required for skeletal muscle hypertrophy, possibly through facilitation of extracellular protease activity, macrophage accumulation, and cell proliferation.

  16. Skeletal muscle tensile strain dependence: hyperviscoelastic nonlinearity

    PubMed Central

    Wheatley, Benjamin B; Morrow, Duane A; Odegard, Gregory M; Kaufman, Kenton R; Donahue, Tammy L Haut

    2015-01-01

    Introduction Computational modeling of skeletal muscle requires characterization at the tissue level. While most skeletal muscle studies focus on hyperelasticity, the goal of this study was to examine and model the nonlinear behavior of both time-independent and time-dependent properties of skeletal muscle as a function of strain. Materials and Methods Nine tibialis anterior muscles from New Zealand White rabbits were subject to five consecutive stress relaxation cycles of roughly 3% strain. Individual relaxation steps were fit with a three-term linear Prony series. Prony series coefficients and relaxation ratio were assessed for strain dependence using a general linear statistical model. A fully nonlinear constitutive model was employed to capture the strain dependence of both the viscoelastic and instantaneous components. Results Instantaneous modulus (p<0.0005) and mid-range relaxation (p<0.0005) increased significantly with strain level, while relaxation at longer time periods decreased with strain (p<0.0005). Time constants and overall relaxation ratio did not change with strain level (p>0.1). Additionally, the fully nonlinear hyperviscoelastic constitutive model provided an excellent fit to experimental data, while other models which included linear components failed to capture muscle function as accurately. Conclusions Material properties of skeletal muscle are strain-dependent at the tissue level. This strain dependence can be included in computational models of skeletal muscle performance with a fully nonlinear hyperviscoelastic model. PMID:26409235

  17. Functional recovery of completely denervated muscle: implications for innervation of tissue-engineered muscle.

    PubMed

    Kang, Sung-Bum; Olson, Jennifer L; Atala, Anthony; Yoo, James J

    2012-09-01

    Tissue-engineered muscle has been proposed as a solution to repair volumetric muscle defects and to restore muscle function. To achieve functional recovery, engineered muscle tissue requires integration of the host nerve. In this study, we investigated whether denervated muscle, which is analogous to tissue-engineered muscle tissue, can be reinnervated and can recover muscle function using an in vivo model of denervation followed by neurotization. The outcomes of this investigation may provide insights on the ability of tissue-engineered muscle to integrate with the host nerve and acquire normal muscle function. Eighty Lewis rats were classified into three groups: a normal control group (n=16); a denervated group in which sciatic innervations to the gastrocnemius muscle were disrupted (n=32); and a transplantation group in which the denervated gastrocnemius was repaired with a common peroneal nerve graft into the muscle (n=32). Neurofunctional behavior, including extensor postural thrust (EPT), withdrawal reflex latency (WRL), and compound muscle action potential (CMAP), as well as histological evaluations using alpha-bungarotoxin and anti-NF-200 were performed at 2, 4, 8, and 12 weeks (n=8) after surgery. We found that EPT was improved by transplantation of the nerve grafts, but the EPT values in the transplanted animals at 12 weeks postsurgery were still significantly lower than those measured for the normal control group at 4 weeks (EPT, 155.0±38.9 vs. 26.3±13.8 g, p<0.001; WRL, 2.7±2.30 vs. 8.3±5.5 s, p=0.027). In addition, CMAP latency and amplitude significantly improved with time after surgery in the transplantation group (p<0.001, one-way analysis of variance), and at 12 weeks postsurgery, CMAP latency and amplitude were not statistically different from normal control values (latency, 0.9±0.0 vs. 1.3±0.7 ms, p=0.164; amplitude, 30.2±7.0 vs. 46.4±26.9 mV, p=0.184). Histologically, regeneration of neuromuscular junctions was seen in the

  18. The effect of DFD classification and internal cooking temperature on certain pork muscle characteristics.

    PubMed

    Lewis, P K; Yakes, L Y; Noland, P R; Brown, C J

    1987-01-01

    The data incorporated in this experiment were gathered from 14 littermate pairs of swine of the same sex differing in weight by <4·5 kg with one animal in each pair subjected to standardized stress. Samples of the Longissimus dorsi (LD) and the Psoas major (PM) muscles were cooked to internal temperatures of 64, 70 and 76°C. The samples of the Quadriceps femoris (QF) muscle were cooked to internal temperatures of 70 and 76°C. DFD classification of the raw muscle was determined by the 48 h pH. Stress produced DFD meat in the PM and QF muscles but not in the LD muscle. DFD muscle required shorter time to reach any of the cooked internal temperatures studied when compared to normal muscle. Slightly-DFD PM muscle more closely resembled the normal muscle in all variables except the panel tenderness score. Cooking DFD PM muscle to an internal temperature 6°C higher than normal muscle caused a reverse in the direction of cooking loss, fiber diameter, tenderness and expressible water when compared to normal and DFD muscle cooked to the same internal temperature. Cooking DFD PM muscle to an internal temperature 12°C higher than normal muscle produced changes associated with increasing the internal temperature of normal muscle. Similar trends, as described for the PM muscle, were observed in the QF muscle. Copyright © 1987. Published by Elsevier Ltd.

  19. Gum chewing and jaw muscle fatigue and pains.

    PubMed

    Christensen, L V; Tran, K T; Mohamed, S E

    1996-06-01

    To study possible associations between gum chewing and fatigue and pains in the jaw muscles, eight healthy adults performed prolonged idling, prolonged unilateral chewing of gum, and brief vigorous clenching of the teeth (MVC). Through surface electromyography (EMG), the authors monitored the cumulative (microV.s) as well as the average rates (microV.s-1) of contractile activities in the right and left masseter muscles. During 10 min of idling there was an absence of muscle fatigue and muscle pains when the EMG rates of the right and left masseter muscles were 2% and 3%, respectively, of those required to elicit isometric muscle pains through MVC. During 10 min of right-sided gum chewing at a rate of 1.2 Hz, the majority of subjects (75%) experienced weak jaw muscle fatigue-not jaw muscle pains-when the EMG rates of the right and left masseter muscles were 38% and 19%, respectively, of those required to elicit isometric pains through MVC. In comparison with 10 min of idling, the weak muscle fatigue of 10 min of unilateral gum chewing appeared when the total contractile activities of the right and left masseter muscles were increased by 1664% and 519%, respectively. It seemed as if prolonged unilateral gum chewing and previous pain-releasing MVC caused some sensitization of muscle nociceptors which, in turn, aggravated subsequent isometric jaw muscle pains elicited through MVC. Even though the right masseter muscle was the most frequent site of clinical fatigue and pains, the authors found no evidence supporting the theoretical foundation of the myofascial pain/dysfunction syndrome.

  20. Muscle development and obesity

    PubMed Central

    2008-01-01

    The formation of skeletal muscle from the epithelial somites involves a series of events triggered by temporally and spatially discrete signals resulting in the generation of muscle fibers which vary in their contractile and metabolic nature. The fiber type composition of muscles varies between individuals and it has now been found that there are differences in fiber type proportions between lean and obese animals and humans. Amongst the possible causes of obesity, it has been suggested that inappropriate prenatal environments may ‘program’ the fetus and may lead to increased risks for disease in adult life. The characteristics of muscle are both heritable and plastic, giving the tissue some ability to adapt to signals and stimuli both pre and postnatally. Given that muscle is a site of fatty acid oxidation and carbohydrate metabolism and that its development can be changed by prenatal events, it is interesting to examine the possible relationship between muscle development and the risk of obesity. PMID:19279728

  1. Muscle Changes in Aging

    PubMed Central

    Siparsky, Patrick N.; Kirkendall, Donald T.; Garrett, William E.

    2014-01-01

    Muscle physiology in the aging athlete is complex. Sarcopenia, the age-related decrease in lean muscle mass, can alter activity level and affect quality of life. This review addresses the microscopic and macroscopic changes in muscle with age, recognizes contributing factors including nutrition and changes in hormone levels, and identifies potential pharmacologic agents in clinical trial that may aid in the battle of this complex, costly, and disabling problem. Level of Evidence: Level 5. PMID:24427440

  2. The hamstring muscle complex.

    PubMed

    van der Made, A D; Wieldraaijer, T; Kerkhoffs, G M; Kleipool, R P; Engebretsen, L; van Dijk, C N; Golanó, P

    2015-07-01

    The anatomical appearance of the hamstring muscle complex was studied to provide hypotheses for the hamstring injury pattern and to provide reference values of origin dimensions, muscle length, tendon length, musculotendinous junction (MTJ) length as well as width and length of a tendinous inscription in the semitendinosus muscle known as the raphe. Fifty-six hamstring muscle groups were dissected in prone position from 29 human cadaveric specimens with a median age of 71.5 (range 45-98). Data pertaining to origin dimensions, muscle length, tendon length, MTJ length and length as well as width of the raphe were collected. Besides these data, we also encountered interesting findings that might lead to a better understanding of the hamstring injury pattern. These include overlapping proximal and distal tendons of both the long head of the biceps femoris muscle and the semimembranosus muscle (SM), a twist in the proximal SM tendon and a tendinous inscription (raphe) in the semitendinosus muscle present in 96 % of specimens. No obvious hypothesis can be provided purely based on either muscle length, tendon length or MTJ length. However, it is possible that overlapping proximal and distal tendons as well as muscle architecture leading to a resultant force not in line with the tendon predispose to muscle injury, whereas the presence of a raphe might plays a role in protecting the muscle against gross injury. Apart from these architectural characteristics that may contribute to a better understanding of the hamstring injury pattern, the provided reference values complement current knowledge on surgically relevant hamstring anatomy. IV.

  3. Palmdelphin promotes myoblast differentiation and muscle regeneration

    PubMed Central

    Nie, Yaping; Chen, Hu; Guo, Cilin; Yuan, Zhuning; Zhou, Xingyu; Zhang, Ying; Zhang, Xumeng; Mo, Delin; Chen, Yaosheng

    2017-01-01

    Differentiation of myoblasts is essential in the development and regeneration of skeletal muscles to form multinucleated, contractile muscle fibers. However, the process of myoblast differentiation in mammals is complicated and requires to be further investigated. In this study, we found Palmdelphin (Palmd), a cytosolic protein, promotes myoblast differentiation. Palmd is predominantly expressed in the cytosol of myoblasts and is gradually up-regulated after differentiation. Knockdown of Palmd by small interfering RNA (siRNA) in C2C12 markedly inhibits myogenic differentiation, suggesting a specific role of Palmd in the morphological changes of myoblast differentiation program. Overexpression of Palmd in C2C12 enhances myogenic differentiation. Remarkably, inhibition of Palmd results in impaired myotube formation during muscle regeneration after injury. These findings reveal a new cytosolic protein that promotes mammalian myoblast differentiation and provide new insights into the molecular regulation of muscle formation. PMID:28148961

  4. MUSCLE INJURIES IN ATHLETES

    PubMed Central

    Barroso, Guilherme Campos; Thiele, Edilson Schwansee

    2015-01-01

    This article had the aim of demonstrating the physiology, diagnosis and treatment of muscle injuries, focusing on athletes and their demands and expectations. Muscle injuries are among the most common complaints in orthopedic practice, occurring both among athletes and among non-athletes. These injuries present a challenge for specialists, due to the slow recovery, during which time athletes are unable to take part in training and competitions, and due to frequent sequelae and recurrences of the injuries. Most muscle injuries (between 10% and 55% of all injuries) occur during sports activities. The muscles most commonly affected are the ischiotibial, quadriceps and gastrocnemius. These muscles go across two joints and are more subject to acceleration and deceleration forces. The treatment for muscle injuries varies from conservative treatment to surgery. New procedures are being used, like the hyperbaric chamber and the use of growth factors. However, there is still a high rate of injury recurrence. Muscle injury continues to be a topic of much controversy. New treatments are being researched and developed, but prevention through muscle strengthening, stretching exercises and muscle balance continues to be the best “treatment”. PMID:27027021

  5. MUSCLE INJURIES IN ATHLETES.

    PubMed

    Barroso, Guilherme Campos; Thiele, Edilson Schwansee

    2011-01-01

    This article had the aim of demonstrating the physiology, diagnosis and treatment of muscle injuries, focusing on athletes and their demands and expectations. Muscle injuries are among the most common complaints in orthopedic practice, occurring both among athletes and among non-athletes. These injuries present a challenge for specialists, due to the slow recovery, during which time athletes are unable to take part in training and competitions, and due to frequent sequelae and recurrences of the injuries. Most muscle injuries (between 10% and 55% of all injuries) occur during sports activities. The muscles most commonly affected are the ischiotibial, quadriceps and gastrocnemius. These muscles go across two joints and are more subject to acceleration and deceleration forces. The treatment for muscle injuries varies from conservative treatment to surgery. New procedures are being used, like the hyperbaric chamber and the use of growth factors. However, there is still a high rate of injury recurrence. Muscle injury continues to be a topic of much controversy. New treatments are being researched and developed, but prevention through muscle strengthening, stretching exercises and muscle balance continues to be the best "treatment".

  6. Sorafenib: muscle wasting.

    PubMed

    2011-12-01

    Sorafenib inhibits multiple kinases involved in angiogenesis and tumour growth. It is used for second-line treatment of advanced kidney cancer and some forms of liver cancer. A placebo-controlled trial in 80 patients with metastatic kidney cancer showed a statistically significant increase in muscle loss during sorafenib therapy. Skeletal muscle mass fell by about 5% after 6 months of treatment and by 8% after one year. In practice, patients treated with sorafenib should be assessed for muscle wasting. The clinical consequences of muscle wasting--loss of autonomy and walking difficulties--should be considered when weighing the benefits and harms of sorafenib therapy.

  7. Assessment of isokinetic muscle function in Korea male volleyball athletes

    PubMed Central

    Kim, Chang-Gyun; Jeoung, Bog Ja

    2016-01-01

    Volleyball players performed numerous repetitions of spike actions, which uses and requires strong and explosive force, and control of the muscles of the shoulder, lower back, and legs. Muscle imbalance is one of the main causes of sport injuries. The purpose of this study was to assess isokinetic muscle functions in male volleyball players. We thus aim to accurately evaluate their muscle functions, and identify the best training strategy to achieve optimal muscle strength balance in future training programs. The participants in this study consisted of 14 male volleyball players. Muscle strength was measured using the isokinetic dynamometer. Muscle strength was evaluated in terms of peak torque and average power, calculated from five repeated measurements at an angular speed of 60°/sec. Three players who were left attackers showed shoulder imbalance, four players showed trunk joint imbalance, nine players had knee joint of extension/flexion imbalance and four players showed left/right imbalance. The results showed that the number of volleyball players with differences between the strength of the bilateral knee muscles, and between the strength of the hamstrings and quadriceps muscles was higher than the number of players with differences between the strength of the shoulder internal and external rotation muscles, and higher than the number of players with differences between the strength of the lower back extension and flexion muscles. PMID:27807521

  8. Contraction stimulates muscle glucose uptake independent of atypical PKC.

    PubMed

    Yu, Haiyan; Fujii, Nobuharu L; Toyoda, Taro; An, Ding; Farese, Robert V; Leitges, Michael; Hirshman, Michael F; Mul, Joram D; Goodyear, Laurie J

    2015-11-01

    Exercise increases skeletal muscle glucose uptake, but the underlying mechanisms are only partially understood. The atypical protein kinase C (PKC) isoforms λ and ζ (PKC-λ/ζ) have been shown to be necessary for insulin-, AICAR-, and metformin-stimulated glucose uptake in skeletal muscle, but not for treadmill exercise-stimulated muscle glucose uptake. To investigate if PKC-λ/ζ activity is required for contraction-stimulated muscle glucose uptake, we used mice with tibialis anterior muscle-specific overexpression of an empty vector (WT), wild-type PKC-ζ (PKC-ζ(WT)), or an enzymatically inactive T410A-PKC-ζ mutant (PKC-ζ(T410A)). We also studied skeletal muscle-specific PKC-λ knockout (MλKO) mice. Basal glucose uptake was similar between WT, PKC-ζ(WT), and PKC-ζ(T410A) tibialis anterior muscles. In contrast, in situ contraction-stimulated glucose uptake was increased in PKC-ζ(T410A) tibialis anterior muscles compared to WT or PKC-ζ(WT) tibialis anterior muscles. Furthermore, in vitro contraction-stimulated glucose uptake was greater in soleus muscles of MλKO mice than WT controls. Thus, loss of PKC-λ/ζ activity increases contraction-stimulated muscle glucose uptake. These data clearly demonstrate that PKC-λζ activity is not necessary for contraction-stimulated glucose uptake.

  9. Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins.

    PubMed

    Langlois, Stéphanie; Cowan, Kyle N

    2017-01-01

    Pannexins are newly discovered channels that are now recognized as mediators of adenosine triphosphate release from several cell types allowing communication with the extracellular environment. Pannexins have been associated with various physiological and pathological processes including apoptosis, inflammation, and cancer. However, it is only recently that our work has unveiled a role for Pannexin 1 and Pannexin 3 as novel regulators of skeletal muscle myoblast proliferation and differentiation. Myoblast differentiation is an ordered multistep process that includes withdrawal from the cell cycle and the expression of key myogenic factors leading to myoblast differentiation and fusion into multinucleated myotubes. Eventually, myotubes will give rise to the diverse muscle fiber types that build the complex skeletal muscle architecture essential for body movement, postural behavior, and breathing. Skeletal muscle cell proliferation and differentiation are crucial processes required for proper skeletal muscle development during embryogenesis, as well as for the postnatal skeletal muscle regeneration that is necessary for muscle repair after injury or exercise. However, defects in skeletal muscle cell differentiation and/or deregulation of cell proliferation are involved in various skeletal muscle pathologies. In this review, we will discuss the expression of pannexins and their post-translational modifications in skeletal muscle, their known functions in various steps of myogenesis, including myoblast proliferation and differentiation, as well as their possible roles in skeletal muscle development, regeneration, and diseases such as Duchenne muscular dystrophy.

  10. Grafting of a Single Donor Myofibre Promotes Hypertrophy in Dystrophic Mouse Muscle

    PubMed Central

    Boldrin, Luisa; Morgan, Jennifer E.

    2013-01-01

    Skeletal muscle has a remarkable capability of regeneration following injury. Satellite cells, the principal muscle stem cells, are responsible for this process. However, this regenerative capacity is reduced in muscular dystrophies or in old age: in both these situations, there is a net loss of muscle fibres. Promoting skeletal muscle muscle hypertrophy could therefore have potential applications for treating muscular dystrophies or sarcopenia. Here, we observed that muscles of dystrophic mdx nude host mice that had been acutely injured by myotoxin and grafted with a single myofibre derived from a normal donor mouse exhibited increased muscle area. Transplantation experiments revealed that the hypertrophic effect is mediated by the grafted fibre and does not require either an imposed injury to the host muscle, or the contribution of donor cells to the host muscle. These results suggest the presence of a crucial cross-talk between the donor fibre and the host muscle environment. PMID:23349935

  11. Multifunctional and Context-Dependent Control of Vocal Acoustics by Individual Muscles

    PubMed Central

    Srivastava, Kyle H.; Elemans, Coen P.H.

    2015-01-01

    The relationship between muscle activity and behavioral output determines how the brain controls and modifies complex skills. In vocal control, ensembles of muscles are used to precisely tune single acoustic parameters such as fundamental frequency and sound amplitude. If individual vocal muscles were dedicated to the control of single parameters, then the brain could control each parameter independently by modulating the appropriate muscle or muscles. Alternatively, if each muscle influenced multiple parameters, a more complex control strategy would be required to selectively modulate a single parameter. Additionally, it is unknown whether the function of single muscles is fixed or varies across different vocal gestures. A fixed relationship would allow the brain to use the same changes in muscle activation to, for example, increase the fundamental frequency of different vocal gestures, whereas a context-dependent scheme would require the brain to calculate different motor modifications in each case. We tested the hypothesis that single muscles control multiple acoustic parameters and that the function of single muscles varies across gestures using three complementary approaches. First, we recorded electromyographic data from vocal muscles in singing Bengalese finches. Second, we electrically perturbed the activity of single muscles during song. Third, we developed an ex vivo technique to analyze the biomechanical and acoustic consequences of single-muscle perturbations. We found that single muscles drive changes in multiple parameters and that the function of single muscles differs across vocal gestures, suggesting that the brain uses a complex, gesture-dependent control scheme to regulate vocal output. PMID:26490859

  12. Multifunctional and Context-Dependent Control of Vocal Acoustics by Individual Muscles.

    PubMed

    Srivastava, Kyle H; Elemans, Coen P H; Sober, Samuel J

    2015-10-21

    The relationship between muscle activity and behavioral output determines how the brain controls and modifies complex skills. In vocal control, ensembles of muscles are used to precisely tune single acoustic parameters such as fundamental frequency and sound amplitude. If individual vocal muscles were dedicated to the control of single parameters, then the brain could control each parameter independently by modulating the appropriate muscle or muscles. Alternatively, if each muscle influenced multiple parameters, a more complex control strategy would be required to selectively modulate a single parameter. Additionally, it is unknown whether the function of single muscles is fixed or varies across different vocal gestures. A fixed relationship would allow the brain to use the same changes in muscle activation to, for example, increase the fundamental frequency of different vocal gestures, whereas a context-dependent scheme would require the brain to calculate different motor modifications in each case. We tested the hypothesis that single muscles control multiple acoustic parameters and that the function of single muscles varies across gestures using three complementary approaches. First, we recorded electromyographic data from vocal muscles in singing Bengalese finches. Second, we electrically perturbed the activity of single muscles during song. Third, we developed an ex vivo technique to analyze the biomechanical and acoustic consequences of single-muscle perturbations. We found that single muscles drive changes in multiple parameters and that the function of single muscles differs across vocal gestures, suggesting that the brain uses a complex, gesture-dependent control scheme to regulate vocal output.

  13. Ischemia causes muscle fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D. M.

    2001-01-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P < 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P < 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue.

  14. Ischemia causes muscle fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D. M.

    2001-01-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P < 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P < 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue.

  15. Research opportunities in muscle atrophy

    NASA Technical Reports Server (NTRS)

    Herbison, G. J.; Talbot, J. M.

    1984-01-01

    A trophy of skeletal muscle; muscle a trophy associated with manned space flight; the nature, causes, and mechanisms of muscle atrophy associated with space flight, selected physiological factors, biochemical aspects, and countermeasures are addressed.

  16. Types of muscle tissue (image)

    MedlinePlus

    The 3 types of muscle tissue are cardiac, smooth, and skeletal. Cardiac muscle cells are located in ... heart, appear striated, and are under involuntary control. Smooth muscle fibers are located in walls of hollow ...

  17. Respiratory muscle plasticity.

    PubMed

    Gransee, Heather M; Mantilla, Carlos B; Sieck, Gary C

    2012-04-01

    Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle's plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles.

  18. Masticatory muscle myositis.

    PubMed

    Anderson, J G; Harvey, C E

    1993-03-01

    This report examines a case of masticatory muscle myositis in a dog. Inflammatory disorders can affect the muscles of mastication. Two types of inflammatory myopathies have been described. The histopathology and immunochemical features of this case suggest an immune mediated basis for this disorder. The diagnosis and treatment are described for this immune mediated inflammatory myositis.

  19. Isolated Total Rupture of Extraocular Muscles

    PubMed Central

    Chen, Jingchang; Kang, Ying; Deng, Daming; Shen, Tao; Yan, Jianhua

    2015-01-01

    Abstract Total rupture of extraocular muscles is an infrequent clinical finding. Here we conducted this retrospective study to evaluate their causes of injury, clinical features, imaging, surgical management, and final outcomes in cases of isolated extraocular muscle rupture at a tertiary center in China. Thirty-six patients were identified (24 men and 12 women). Mean age was 34 years (range 2–60). The right eye was involved in 21 patients and the left 1 in 15. A sharp object or metal hook was the cause of this lesion in 16 patients, sinus surgery in 14 patients, traffic accident in 3 patients, orbital surgery in 2 patients, and conjunctive tumor surgery in 1 patient. The most commonly involved muscles were medial (18 patients) and inferior rectus muscles (13 patients). The function of the ruptured muscles revealed a scale of −3 to −4 defect of ocular motility and the amount of deviation in primary position varied from 10 to 140 PD (prism diopter). Computerized tomography (CT) confirmed the presence of ruptured muscles. An end-to-end muscle anastomosis was performed and 3 to 5 mm of muscle was resected in 23 patients. When the posterior border of the injured muscle could not be identified (13 patients), a partial tendon transposition was performed, together with recession of the antagonist in most patients, whereas a recession of the antagonist muscle plus a resection of the involved muscle with or without nasal periosteal fixation was performed in the remaining patients. After an average of 16.42 months of follow-up an excellent result was achieved in 23 patients and results of 13 patients were considered as a failure. In most patients, the posterior border of the ruptured muscle can be identified and an early surgery can be performed to restore function. Alternatively, a partial tendon transposition should be performed. When muscular rupture is suspected, an early orbital CT is required to confirm this possibility, which can then verify the necessity for

  20. Onion artificial muscles

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Chun; Shih, Wen-Pin; Chang, Pei-Zen; Lai, Hsi-Mei; Chang, Shing-Yun; Huang, Pin-Chun; Jeng, Huai-An

    2015-05-01

    Artificial muscles are soft actuators with the capability of either bending or contraction/elongation subjected to external stimulation. However, there are currently no artificial muscles that can accomplish these actions simultaneously. We found that the single layered, latticed microstructure of onion epidermal cells after acid treatment became elastic and could simultaneously stretch and bend when an electric field was applied. By modulating the magnitude of the voltage, the artificial muscle made of onion epidermal cells would deflect in opposing directions while either contracting or elongating. At voltages of 0-50 V, the artificial muscle elongated and had a maximum deflection of -30 μm; at voltages of 50-1000 V, the artificial muscle contracted and deflected 1.0 mm. The maximum force response is 20 μN at 1000 V.

  1. Muscle hypertrophy and pseudohypertrophy.

    PubMed

    Walters, Jon

    2017-10-01

    The physical examination always begins with a thorough inspection and patients with potential neuromuscular weakness are no exception. One question neurologists routinely address during this early part of the assessment is whether or not there is muscle enlargement. This finding may reflect true muscle hypertrophy-myofibres enlarged from repetitive activity, for example, in myotonia congenita or neuromyotonia-or muscles enlarged by the infiltration of fat or other tissue termed pseudohypertrophy or false enlargement. Pseudohypertrophic muscles are frequently paradoxically weak. Recognising such a clinical clue at the bed side can facilitate a diagnosis or at least can narrow down the list of potential suspects. This paper outlines the conditions, both myopathic and neurogenic, that cause muscle enlargement. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Neurogenic muscle hypertrophy.

    PubMed

    Charlot-Lambrecht, Isabelle; Brochot, Pascal; Noblet, Hervé; Varoquier, Coralie; Eschard, Jean-Paul

    2009-07-01

    We report the case of a 48-year-old man who presented with left calf hypertrophy 6 years after an episode of left S1 sciatica related to a herniated disk. Magnetic resonance imaging disclosed muscle hypertrophy. Electromyography showed left S1 radiculopathy with abnormal spontaneous muscle activity. Neurogenic muscle hypertrophy is a rare phenomenon that is chiefly seen when denervation occurs slowly and gradually. The typical patient is a middle-aged man who has a history of S1 radiculopathy. The soleus muscle is the main site of involvement. The pathophysiology is unclear but may involve type I fiber hypertrophy in response to the complex repetitive discharges recorded by electromyography. The natural history of neurogenic muscle hypertrophy is incompletely understood.

  3. NADPH Oxidase 4 is required for interleukin-1β-mediated activation of protein kinase Cδ and downstream activation of c-Jun N-terminal kinase signaling in smooth muscle

    PubMed Central

    Ginnan, Roman; Jourd’heuil, Frances L.; Guikema, Benjamin; Simons, Malorie; Singer, Harold A.; Jourd’heuil, David

    2012-01-01

    Reactive oxygen species (ROS) are generated in the vascular wall upon stimulation by pro-inflammatory cytokines and are important mediators of diverse cellular responses that occur as a result of vascular injury. Member of the NADPH oxidase (NOX) family of proteins have been identified in vascular smooth muscle cells (VSM) as important sources of ROS. In this study, we tested the hypothesis that NOX4 is a proximal mediator of IL-1β-dependent activation of PKCδ and increases IL-1β stimulated c-Jun kinase (JNK) signaling in primary rat aortic VSM cells. We found that stimulation of VSM cells with IL-1β increased PKCδ activity and intracellular ROS generation. SiRNA silencing of NOX4 but not NOX1 ablated the IL-1β-dependent increase in ROS production. Pharmacological inhibition of PKCδ activity as well as siRNA depletion of PKCδ or NOX4 blocked the IL-1β-dependent activation of JNK. Further studies showed that the IL-1β-dependent upregulation of iNOS expression was inhibited through JNK inhibition and NOX4 silencing. Taken together, these results indicate that IL-1β-dependent activation of PKCδ is modulated by NOX4-derived ROS. Our study positions PKCδ as an important redox sensitive mediator of IL-1β-dependent signaling and downstream activation of inflammatory mediators in VSM cells. PMID:23022406

  4. Leucine does not affect mechanistic target of rapamycin complex 1 assembly but is required for maximal ribosomal protein s6 kinase 1 activity in human skeletal muscle following resistance exercise.

    PubMed

    Apró, William; Moberg, Marcus; Hamilton, D Lee; Ekblom, Björn; Rooyackers, Olav; Holmberg, Hans-Christer; Blomstrand, Eva

    2015-10-01

    We examined how the stimulatory effect of leucine on the mechanistic target of rapamycin complex 1 (mTORC1) pathway is affected by the presence of the remaining essential amino acids (EAAs). Nine male subjects performed resistance exercise on 4 occasions and were randomly supplied EAAs with leucine, EAAs without leucine (EAA-Leu), leucine alone, or flavored water (placebo; control). Muscle biopsies were taken from the vastus lateralis before and 60 and 90 min after exercise. Biopsies were analyzed for protein phosphorylation, kinase activity, protein-protein interactions, amino acid concentrations, and tracer incorporation. Leucine alone stimulated ribosomal protein s6 kinase 1 (S6K1) phosphorylation ∼280% more than placebo and EAA-Leu after exercise. Moreover, this response was enhanced by 60-75% after intake of EAAs compared with that of leucine alone (P < 0.05). Kinase activity of S6K1 reflected that of S6K1 phosphorylation; 60 min after exercise, the activity was elevated 3.3- and 4.2-fold with intake of leucine alone and with EAAs, respectively (P < 0.05). The interaction between mammalian target of rapamycin and regulatory-associated protein of mammalian target of rapamycin was unaltered in response to both resistance exercise and amino acid provision. Leucine alone stimulates mTORC1 signaling, although this response is enhanced by other EAAs and does not appear to be caused by alterations in mTORC1 assembly.

  5. Characterisation of human soft palate muscles with respect to fibre types, myosins and capillary supply

    PubMed Central

    STÅL, PER S.; LINDMAN, ROLF

    2000-01-01

    Four human soft palate muscles, and palatopharyngeus, the uvula, the levator and tensor veli palatini were examined using enzyme-histochemical, immunohistochemical and biochemical methods and compared with human limb and facial muscles. Our results showed that each palate muscle had a distinct morphological identity and that they generally shared more similarities with facial than limb muscles. The palatopharyngeus and uvula muscles contained 2 of the highest proportions of type II fibres ever reported for human muscles. In contrast, the levator and tensor veli palatini muscles contained predominantly type I fibres. A fetal myosin heavy chain isoform (MyHC), not usually found in normal adult limb muscles, was present in a small number of fibres in all palate muscles. The mean muscle fibre diameter was smaller than in limb muscles and the individual and intramuscular variability in diameter and shape was considerable. All palate muscles had a high capillary density and an unusually high mitochondrial enzyme activity in the type II fibres, in comparison with limb muscles. No ordinary muscle spindles were observed. The fibre type and MyHC composition indicate that the palatopharyngeus and uvula muscles are functionally involved in quick movements whereas the levator and tensor veli palatini muscles perform slower and more continuous contractions. The high aerobic capacity and the rich capillarisation suggest that the palate muscles are relatively fatigue resistant. Absence of ordinary muscle spindles indicates a special proprioceptive control system. The special morphology of the palate muscles may be partly related to the unique anatomy with only one skeletal insertion, a feature consistent with muscle work at low load and tension and which may influence the cytoarchitecture of these muscles. Other important factors determining the special morphological characteristics might be specific functional requirements, distinct embryological origin and phylogenetic factors

  6. Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles.

    PubMed

    Hokari, Fumi; Kawasaki, Emi; Sakai, Atsushi; Koshinaka, Keiichi; Sakuma, Kunihiro; Kawanaka, Kentaro

    2010-08-01

    Sirt3, a member of the sirtuin family, is known to control cellular mitochondrial function. Furthermore, because sirtuins require NAD for their deacetylase activity, nicotinamide phosphoribosyltransferase (Nampt), which is a rate-limiting enzyme in the intracellular NAD biosynthetic pathway, influences their activity. We examined the effects of exercise training and normal postural contractile activity on Sirt3 and Nampt protein expression in rat skeletal muscles. Male rats were trained by treadmill running at 20 m/min, 60 min/day, 7 days/wk for 4 wk. This treadmill training program increased the Sirt3 protein expression in the soleus and plantaris muscles by 49% and 41%, respectively (P < 0.05). Moreover, a 4-wk voluntary wheel-running program also induced 66% and 95% increases in Sirt3 protein in the plantaris and triceps muscles of rats, respectively (P < 0.05). Treadmill-running and voluntary running training induced no significant changes in Nampt protein expression in skeletal muscles. In resting rats, the soleus muscle, which is recruited during normal postural activity, possessed the greatest expression levels of the Sirt3 and Nampt proteins, followed by the plantaris and triceps muscles. Furthermore, the Sirt3, but not Nampt, protein level was reduced in the soleus muscles from immobilized hindlimbs compared with that shown in the contralateral control muscle. These results demonstrated that 1) Sirt3 protein expression is upregulated by exercise training in skeletal muscles and 2) local postural contractile activity plays an important role in maintaining a high level of Sirt3 protein expression in postural muscle.

  7. Laminin mimetic peptide nanofibers regenerate acute muscle defect.

    PubMed

    Eren Cimenci, Cagla; Uzunalli, Gozde; Uysal, Ozge; Yergoz, Fatih; Karaca Umay, Ebru; Guler, Mustafa O; Tekinay, Ayse B

    2017-09-15

    Skeletal muscle cells are terminally differentiated and require the activation of muscle progenitor (satellite) cells for their regeneration. There is a clinical need for faster and more efficient treatment methods for acute muscle injuries, and the stimulation of satellite cell proliferation is promising in this context. In this study, we designed and synthesized a laminin-mimetic bioactive peptide (LM/E-PA) system that is capable of accelerating satellite cell activation by emulating the structure and function of laminin, a major protein of the basal membrane of the skeletal muscle. The LM/E-PA nanofibers enhance myogenic differentiation in vitro and the clinical relevance of the laminin-mimetic bioactive scaffold system was demonstrated further by assessing its effect on the regeneration of acute muscle injury in a rat model. Laminin mimetic peptide nanofibers significantly promoted satellite cell activation in skeletal muscle and accelerated myofibrillar regeneration following acute muscle injury. In addition, the LM/E-PA scaffold treatment significantly reduced the time required for the structural and functional repair of skeletal muscle. This study represents one of the first examples of molecular- and tissue-level regeneration of skeletal muscle facilitated by bioactive peptide nanofibers following acute muscle injury. Sports, heavy lifting and other strength-intensive tasks are ubiquitous in modern life and likely to cause acute skeletal muscle injury. Speeding up regeneration of skeletal muscle injuries would not only shorten the duration of recovery for the patient, but also support the general health and functionality of the repaired muscle tissue. In this work, we designed and synthesized a laminin-mimetic nanosystem to enhance muscle regeneration. We tested its activity in a rat tibialis anterior muscle by injecting the bioactive nanosystem. The evaluation of the regeneration and differentiation capacity of skeletal muscle suggested that the laminin

  8. Looking beyond structure: membrane phospholipids of skeletal muscle mitochondria

    PubMed Central

    Heden, Timothy D.; Neufer, P. Darrell; Funai, Katsuhiko

    2016-01-01

    Skeletal muscle mitochondria are highly dynamic and capable of tremendous expansion to meet cellular energetic demands. Such proliferation in mitochondrial mass requires a synchronized supply of enzymes and structural phospholipids. While transcriptional regulation of mitochondrial enzymes has been extensively studied, there is limited information on how mitochondrial membrane lipids are generated in skeletal muscle. Herein we describe how each class of phospholipids that constitute mitochondrial membranes are synthesized and/or imported, and summarize genetic evidence indicating that membrane phospholipid composition represents a significant modulator of skeletal muscle mitochondrial respiratory function. We also discuss how skeletal muscle mitochondrial phospholipids may mediate the effect of diet and exercise on oxidative metabolism. PMID:27370525

  9. REACTIVE OXYGEN SPECIES: IMPACT ON SKELETAL MUSCLE

    PubMed Central

    Powers, Scott K.; Ji, Li Li; Kavazis, Andreas N.; Jackson, Malcolm J.

    2014-01-01

    It is well established that contracting muscles produce both reactive oxygen and nitrogen species. Although the sources of oxidant production during exercise continue to be debated, growing evidence suggests that mitochondria are not the dominant source. Regardless of the sources of oxidants in contracting muscles, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Further, oxidants regulate numerous cell signaling pathways and modulate the expression of many genes. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species result in contractile dysfunction and fatigue. Ongoing research continues to explore the redox-sensitive targets in muscle that are responsible for both redox-regulation of muscle adaptation and oxidant-mediated muscle fatigue. PMID:23737208

  10. Imaging of the muscle-bone relationship.

    PubMed

    Ireland, Alex; Ferretti, José Luis; Rittweger, Jörn

    2014-12-01

    Muscle can be assessed by imaging techniques according to its size (as thickness, area, volume, or alternatively, as a mass) and architecture (fiber length and pennation angle), with values used as an anthropometric measure or a surrogate for force production. Similarly, the size of the bone (as area or volume) can be imaged using MRI or pQCT, although typically bone mineral mass is reported. Bone imaging measures of mineral density, size, and geometry can also be combined to calculate bone's structural strength-measures being highly predictive of bone's failure load ex vivo. Imaging of muscle-bone relationships can, hence, be accomplished through a number of approaches by adoption and comparison of these different muscle and bone parameters, dependent on the research question under investigation. These approaches have revealed evidence of direct, mechanical muscle-bone interactions independent of allometric associations. They have led to important information on bone mechanoadaptation and the influence of muscular action on bone, in addition to influences of age, gender, exercise, and disuse on muscle-bone relationships. Such analyses have also produced promising diagnostic tools for clinical use, such as identification of primary, disuse-induced, and secondary osteoporosis and estimation of bone safety factors. Standardization of muscle-bone imaging methods is required to permit more reliable comparisons between studies and differing imaging modes, and in particular to aid adoption of these methods into widespread clinical practice.

  11. Muscle spindle and fusimotor activity in locomotion.

    PubMed

    Ellaway, Peter H; Taylor, Anthony; Durbaba, Rade

    2015-08-01

    Mammals may exhibit different forms of locomotion even within a species. A particular form of locomotion (e.g. walk, run, bound) appears to be selected by supraspinal commands, but the precise pattern, i.e. phasing of limbs and muscles, is generated within the spinal cord by so-called central pattern generators. Peripheral sense organs, particularly the muscle spindle, play a crucial role in modulating the central pattern generator output. In turn, the feedback from muscle spindles is itself modulated by static and dynamic fusimotor (gamma) neurons. The activity of muscle spindle afferents and fusimotor neurons during locomotion in the cat is reviewed here. There is evidence for some alpha-gamma co-activation during locomotion involving static gamma motoneurons. However, both static and dynamic gamma motoneurons show patterns of modulation that are distinct from alpha motoneuron activity. It has been proposed that static gamma activity may drive muscle spindle secondary endings to signal the intended movement to the central nervous system. Dynamic gamma motoneuron drive appears to prime muscle spindle primary endings to signal transitions in phase of the locomotor cycle. These findings come largely from reduced animal preparations (decerebrate) and require confirmation in freely moving intact animals.

  12. Pedicled Latissimus Dorsi Muscle Flap

    PubMed Central

    Abolhoda, Amir; Bui, Trung D.; Milliken, Jeffrey C.; Wirth, Garrett A.

    2009-01-01

    Bronchopleural fistula and empyema are serious complications after thoracic surgical procedures, and their prevention is paramount. Herein, we review our experience with routine prophylactic use of the pedicled ipsilateral latissimus dorsi muscle flap. From January 2004 through February 2006, 10 surgically high-risk patients underwent intrathoracic transposition of this muscle flap for reinforcement of bronchial-stump closure or obliteration of empyema cavities. Seven of the patients were chronically immunosuppressed, 5 were severely malnourished (median preoperative serum albumin level, 2.4 g/dL), and 5 had severe underlying obstructive pulmonary disease (median forced expiratory volume in 1 second, 44% of predicted level). Three upper lobectomies and 1 completion pneumonectomy were performed in order to treat massive hemoptysis that was secondary to complex aspergilloma. One patient underwent left pneumonectomy due to ruptured-cavitary primary lung lymphoma. One upper lobectomy was performed because of necrotizing, localized Mycobacterium avium-intracellulare infection. One patient underwent right upper lobectomy and main-stem bronchoplasty for carcinoma after chemoradiation therapy. In 3 patients, the pedicled latissimus dorsi muscle was used to obliterate chronic empyema cavities and to buttress the closure of underlying bronchopleural fistulas. No operative deaths or recurrent empyemas resulted. Two patients retained peri-flap air that required no surgical intervention. We conclude that the use of transposed pedicled latissimus dorsi muscle flap effectively and reliably prevents clinically overt bronchopleural fistula and recurrent empyema. We advocate its routine use in first-time and selected reoperative thoracotomies in patients who are undergoing high-risk lung resection or reparative procedures. PMID:19693302

  13. Acute femoral neuropathy secondary to an iliacus muscle hematoma.

    PubMed

    Seijo-Martínez, M; Castro del Río, M; Fontoira, E; Fontoira, M

    2003-05-15

    We present a patient with a spontaneous iliacus muscle hematoma, appearing immediately after a minor physical maneuver, presenting with pain and femoral neuropathy initially evidenced by massive quadriceps muscle fasciculations. A magnetic resonance imaging (MRI) study of the pelvic area confirmed the diagnosis, showing a hematoma secondary to a partial muscle tear. The patient was managed conservatively, and the continuous muscle activity ceased in 3 days, with progressive improvement of the pain and weakness. The recovery was complete. Femoral neuropathy is uncommon and usually due to compression from psoas muscle mass lesions of diverse nature, including hematomas. Usually subacute, femoral neuropathy may present acutely in cases of large or strategically placed compressive femoral nerve lesions, and may require surgical evacuation. The case presented herein is remarkable since the muscle hematoma appeared after a nonviolent maneuver, fasciculations were present at onset, and conservative management was sufficient for a full recovery.

  14. Relative efficiency of abdominal muscles in spine stability.

    PubMed

    Arjmand, N; Shirazi-Adl, A; Parnianpour, M

    2008-06-01

    Using an iterative kinematics-driven nonlinear finite element model, relative efficiency of individual abdominal muscles in spinal stability in upright standing posture was investigated. Effect of load height on stability and muscle activities was also computed under different coactivity levels in abdominal muscles. The internal oblique was the most efficient muscle (compared with the external oblique and rectus abdominus) in providing stability while generating smaller spinal loads with lower fatigue rate of muscles. As the weight was held higher, stability deteriorated requiring additional flexor-extensor activities. The stabilising efficacy of abdominal muscles diminished at higher activities. The difference in critical loads in frontal and sagittal planes computed in the absence of abdominal coactivity disappeared under prescribed coactivities suggesting an optimal system in stability. The central nervous system may settle for a less stable spine in favour of lowering the risk of injury. Findings could help introduce stability criterion in optimisation models.

  15. The role of satellite cells in muscle hypertrophy.

    PubMed

    Blaauw, Bert; Reggiani, Carlo

    2014-02-01

    The role of satellite cells in muscle hypertrophy has long been a debated issue. In the late 1980s it was shown that proteins remain close to the myonucleus responsible for its synthesis, giving rise to the idea of a nuclear domain. This, together with the observation that during various models of muscle hypertrophy there is an activation of the muscle stem cells, i.e. satellite cells, lead to the idea that satellite cell activation is required for muscle hypertrophy. Thus, satellite cells are not only responsible for muscle repair and regeneration, but also for hypertrophic growth. Further support for this line of thinking was obtained after studies showing that irradiation of skeletal muscle, and therefore elimination of all satellite cells, completely prevented overload-induced hypertrophy. Recently however, using different transgenic approaches, it has become clear that muscle hypertrophy can occur without a contribution of satellite cells, even though in most situations of muscle hypertrophy satellite cells are activated. In this review we will discuss the contribution of satellite cells, and other muscle-resident stem cells, to muscle hypertrophy both in mice as well as in humans.

  16. Steroid control of muscle remodeling during metamorphosis in Manduca sexta.

    PubMed

    Hegstrom, C D; Truman, J W

    1996-04-01

    During metamorphosis in the tobacco hornworm, Manduca sexta, the abdominal body-wall muscle DEO1 is remodeled to form the adult muscle DE5. The degeneration of muscle DEO1 involves the dismantling of its contractile apparatus followed by the degeneration of muscle nuclei. As some nuclei are degenerating, others begin to incorporate 5-bromodeoxyuridine (BrdU), indicating the onset of nuclear proliferation. This proliferation is initially most evident at the site where the motoneuron contacts the muscle remnant. The developmental events involved in muscle remodeling are under the control of the steroid hormones, the ecdysteroids. The loss of the contractile elements of the larval muscle requires the rise and fall of the prepupal peak of ecdysteroids, whereas the subsequent loss of muscle nuclei is influenced by the slight rise in ecdysteroids seen after pupal ecdysis. Incorporation of BrdU by muscle nuclei depends on both the adult peak of the ecdysteroids and contact with the motoneuron. Unilateral axotomy blocks proliferation within the rudiment, but it does not block its subsequent differentiation into a very thin muscle in the adult.

  17. Overweight in elderly people induces impaired autophagy in skeletal muscle.

    PubMed

    Potes, Yaiza; de Luxán-Delgado, Beatriz; Rodriguez-González, Susana; Guimarães, Marcela Rodrigues Moreira; Solano, Juan J; Fernández-Fernández, María; Bermúdez, Manuel; Boga, Jose A; Vega-Naredo, Ignacio; Coto-Montes, Ana

    2017-09-01

    Sarcopenia is the gradual loss of skeletal muscle mass, strength and quality associated with aging. Changes in body composition, especially in skeletal muscle and fat mass are crucial steps in the development of chronic diseases. We studied the effect of overweight on skeletal muscle tissue in elderly people without reaching obesity to prevent this extreme situation. Overweight induces a progressive protein breakdown reflected as a progressive withdrawal of anabolism against the promoted catabolic state leading to muscle wasting. Protein turnover is regulated by a network of signaling pathways. Muscle damage derived from overweight displayed by oxidative and endoplasmic reticulum (ER) stress induces inflammation and insulin resistance and forces the muscle to increase requirements from autophagy mechanisms. Our findings showed that failure of autophagy in the elderly deprives it to deal with the cell damage caused by overweight. This insufficiently efficient autophagy leads to an accumulation of p62 and NBR1, which are robust markers of protein aggregations. This impaired autophagy affects myogenesis activity. Depletion of myogenic regulatory factors (MRFs) without links to variations in myostatin levels in overweight patients suggest a possible reduction of satellite cells in muscle tissue, which contributes to declined muscle quality. This discovery has important implications that improve the understanding of aged-related atrophy caused by overweight and demonstrates how impaired autophagy is one of the main responsible mechanisms that aggravate muscle wasting. Therefore, autophagy could be an interesting target for therapeutic interventions in humans against muscle impairment diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Respiratory Muscle Plasticity

    PubMed Central

    Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.

    2014-01-01

    Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306

  19. Non-muscle Mlck is required for β-catenin- and FoxO1-dependent downregulation of Cldn5 in IL-1β-mediated barrier dysfunction in brain endothelial cells.

    PubMed

    Beard, Richard S; Haines, Ricci J; Wu, Kevin Y; Reynolds, Jason J; Davis, Stephanie M; Elliott, John E; Malinin, Nikolay L; Chatterjee, Victor; Cha, Byeong J; Wu, Mack H; Yuan, Sarah Y

    2014-04-15

    Aberrant elevation in the levels of the pro-inflammatory cytokine interleukin-1β (IL-1β) contributes to neuroinflammatory diseases. Blood-brain barrier (BBB) dysfunction is a hallmark phenotype of neuroinflammation. It is known that IL-1β directly induces BBB hyperpermeability but the mechanisms remain unclear. Claudin-5 (Cldn5) is a tight junction protein found at endothelial cell-cell contacts that are crucial for maintaining brain microvascular endothelial cell (BMVEC) integrity. Transcriptional regulation of Cldn5 has been attributed to the transcription factors β-catenin and forkhead box protein O1 (FoxO1), and the signaling molecules regulating their nuclear translocation. Non-muscle myosin light chain kinase (nmMlck, encoded by the Mylk gene) is a key regulator involved in endothelial hyperpermeability, and IL-1β has been shown to mediate nmMlck-dependent barrier dysfunction in epithelia. Considering these factors, we tested the hypothesis that nmMlck modulates IL-1β-mediated downregulation of Cldn5 in BMVECs in a manner that depends on transcriptional repression mediated by β-catenin and FoxO1. We found that treating BMVECs with IL-1β induced barrier dysfunction concomitantly with the nuclear translocation of β-catenin and FoxO1 and the repression of Cldn5. Most importantly, using primary BMVECs isolated from mice null for nmMlck, we identified that Cldn5 repression caused by β-catenin and FoxO1 in IL-1β-mediated barrier dysfunction was dependent on nmMlck.

  20. Both N-terminal myosin-binding and C-terminal actin-binding sites on smooth muscle caldesmon are required for caldesmon-mediated inhibition of actin filament velocity.

    PubMed

    Wang, Z; Jiang, H; Yang, Z Q; Chacko, S

    1997-10-28

    It has been suggested that the tethering caused by binding of the N-terminal region of smooth muscle caldesmon (CaD) to myosin and its C-terminal region to actin contributes to the inhibition of actin-filament movement over myosin heads in an in vitro motility assay. However, direct evidence for this assumption has been lacking. In this study, analysis of baculovirus-generated N-terminal and C-terminal deletion mutants of chicken-gizzard CaD revealed that the major myosin-binding site on the CaD molecule resides in a 30-amino acid stretch between residues 24 and 53, based on the very low level of binding of CaDDelta24-53 lacking the residues 24-53 to myosin compared with the level of binding of CaDDelta54-85 missing the adjacent residues 54-85 or of the full-length CaD. As expected, deletion of the region between residues 24 and 53 or between residues 54 and 85 had no effect on either actin-binding or inhibition of actomyosin ATPase activity. Deletion of residues 24-53 nearly abolished the ability of CaD to inhibit actin filament velocity in the in vitro motility experiments, whereas CaDDelta54-85 strongly inhibited actin filament velocity in a manner similar to that of full-length CaD. Moreover, CaD1-597, which lacks the major actin-binding site(s), did not inhibit actin-filament velocity despite the presence of the major myosin-binding site. These data provide direct evidence for the inhibition of actin filament velocity in the in vitro motility assay caused by the tethering of myosin to actin through binding of both the CaD N-terminal region to myosin and the C-terminal region to actin.

  1. Load Bearing Equipment for Bone and Muscle

    NASA Technical Reports Server (NTRS)

    Shackelford, Linda; Griffith, Bryan

    2015-01-01

    Resistance exercise on ISS has proven effective in maintaining bone mineral density and muscle mass. Exploration missions require exercise with similar high loads using equipment with less mass and volume and greater safety and reliability than resistance exercise equipment used on ISS (iRED, ARED, FWED). Load Bearing Equipment (LBE) uses each exercising person to create and control the load to the partner.

  2. Strategies to maintain skeletal muscle mass in the injured athlete: nutritional considerations and exercise mimetics.

    PubMed

    Wall, Benjamin T; Morton, James P; van Loon, Luc J C

    2015-01-01

    The recovery from many injuries sustained in athletic training or competition often requires an extensive period of limb immobilisation (muscle disuse). Such periods induce skeletal muscle loss and consequent declines in metabolic health and functional capacity, particularly during the early stages (1-2 weeks) of muscle disuse. The extent of muscle loss during injury strongly influences the level and duration of rehabilitation required. Currently, however, efforts to intervene and attenuate muscle loss during the initial two weeks of injury are minimal. Mechanistically, muscle disuse atrophy is primarily attributed to a decline in basal muscle protein synthesis rate and the development of anabolic resistance to food intake. Dietary protein consumption is of critical importance for stimulating muscle protein synthesis rates throughout the day. Given that the injured athlete greatly reduces physical activity levels, maintaining muscle mass whilst simultaneously avoiding gains in fat mass can become challenging. Nevertheless, evidence suggests that maintaining or increasing daily protein intake by focusing upon the amount, type and timing of dietary protein ingestion throughout the day can restrict the loss of muscle mass and strength during recovery from injury. Moreover, neuromuscular electrical stimulation may be applied to evoke involuntary muscle contractions and support muscle mass maintenance in the injured athlete. Although more applied work is required to translate laboratory findings directly to the injured athlete, current recommendations for practitioners aiming to limit the loss of muscle mass and/or strength following injury in their athletes are outlined herein.

  3. Variable gearing in pennate muscles.

    PubMed

    Azizi, Emanuel; Brainerd, Elizabeth L; Roberts, Thomas J

    2008-02-05

    Muscle fiber architecture, i.e., the physical arrangement of fibers within a muscle, is an important determinant of a muscle's mechanical function. In pennate muscles, fibers are oriented at an angle to the muscle's line of action and rotate as they shorten, becoming more oblique such that the fraction of force directed along the muscle's line of action decreases throughout a contraction. Fiber rotation decreases a muscle's output force but increases output velocity by allowing the muscle to function at a higher gear ratio (muscle velocity/fiber velocity). The magnitude of fiber rotation, and therefore gear ratio, depends on how the muscle changes shape in the dimensions orthogonal to the muscle's line of action. Here, we show that gear ratio is not fixed for a given muscle but decreases significantly with the force of contraction (P < 0.0001). We find that dynamic muscle-shape changes promote fiber rotation at low forces and resist fiber rotation at high forces. As a result, gearing varies automatically with the load, to favor velocity output during low-load contractions and force output for contractions against high loads. Therefore, muscle-shape changes act as an automatic transmission system allowing a pennate muscle to shift from a high gear during rapid contractions to low gear during forceful contractions. These results suggest that variable gearing in pennate muscles provides a mechanism to modulate muscle performance during mechanically diverse functions.

  4. Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology

    ERIC Educational Resources Information Center

    Sandage, Mary J.; Smith, Audrey G.

    2017-01-01

    Purpose: Intrinsic laryngeal skeletal muscle bioenergetics, the means by which muscles produce fuel for muscle metabolism, is an understudied aspect of laryngeal physiology with direct implications for voice habilitation and rehabilitation. The purpose of this review is to describe bioenergetic pathways identified in limb skeletal muscle and…

  5. A method for studying jaw muscle activity during standardized jaw movements under experimental jaw muscle pain.

    PubMed

    Sae-Lee, Daraporn; Wanigaratne, Kamal; Whittle, Terry; Peck, Christopher C; Murray, Greg M

    2006-10-30

    This paper describes a method for studying superficial and deep jaw muscle activity during standardized jaw movements under experimental jaw muscle pain. In 22 healthy adults, pain was elicited in the right masseter muscle via tonic infusion of 4.5% hypertonic saline and which resulted in scores of 30-60 mm on a 100-mm visual analogue scale. Subjects performed tasks in five sessions in a repeated measures design, i.e., control 1, test 1 (during hypertonic or isotonic saline infusion), control 2 (without infusion), test 2 (during isotonic or hypertonic saline infusion), control 3 (without infusion). During each session, subjects performed maximal clenching and standardized jaw tasks, i.e., protrusion, lateral excursion, open/close, chewing. Mandibular movement was recorded with a 6-degree-of-freedom tracking system simultaneously with electromyographic (EMG) activity from the inferior head of the lateral pterygoid muscle with fine-wire electrodes (verified by computer tomography), and from posterior temporalis, the submandibular muscle group and bilateral masseter muscles with surface electrodes. EMG root mean square values were calculated at each 0.5 mm increment of mandibular incisor movement for all tasks under each experimental session. This establishes an experimental model for testing the effects of pain on jaw muscle activity where the jaw motor system is required to perform goal-directed tasks, and therefore should extend our understanding of the effects of pain on the jaw motor system.

  6. Muscle repair and regeneration: stem cells, scaffolds, and the contributions of skeletal muscle to amphibian limb regeneration.

    PubMed

    Milner, Derek J; Cameron, Jo Ann

    2013-01-01

    Skeletal muscle possesses a robust innate capability for repair of tissue damage. Natural repair of muscle damage is a stepwise process that requires the coordinated activity of a number of cell types, including infiltrating macrophages, resident myogenic and non-myogenic stem cells, and connective tissue fibroblasts. Despite the proficiency of this intrinsic repair capability, severe injuries that result in significant loss of muscle tissue overwhelm the innate repair process and require intervention if muscle function is to be restored. Recent advances in stem cell biology, regenerative medicine, and materials science have led to attempts at developing tissue engineering-based methods for repairing severe muscle defects. Muscle tissue also plays a role in the ability of tailed amphibians to regenerate amputated limbs through epimorphic regeneration. Muscle contributes adult stem cells to the amphibian regeneration blastema, but it can also contribute blastemal cells through the dedifferentiation of multinucleate myofibers into mononuclear precursors. This fascinating plasticity and its contributions to limb regeneration have prompted researchers to investigate the potential for mammalian muscle to undergo dedifferentiation. Several works have shown that mammalian myotubes can be fragmented into mononuclear cells and induced to re-enter the cell cycle, but mature myofibers are resistant to fragmentation. However, recent works suggest that there may be a path to inducing fragmentation of mature myofibers into proliferative multipotent cells with the potential for use in muscle tissue engineering and regenerative therapies.

  7. Swimming muscles power suction feeding in largemouth bass.

    PubMed

    Camp, Ariel L; Roberts, Thomas J; Brainerd, Elizabeth L

    2015-07-14

    Most aquatic vertebrates use suction to capture food, relying on rapid expansion of the mouth cavity to accelerate water and food into the mouth. In ray-finned fishes, mouth expansion is both fast and forceful, and therefore requires considerable power. However, the cranial muscles of these fishes are relatively small and may not be able to produce enough power for suction expansion. The axial swimming muscles of these fishes also attach to the feeding apparatus and have the potential to generate mouth expansion. Because of their large size, these axial muscles could contribute substantial power to suction feeding. To determine whether suction feeding is powered primarily by axial muscles, we measured the power required for suction expansion in largemouth bass and compared it to the power capacities of the axial and cranial muscles. Using X-ray reconstruction of moving morphology (XROMM), we generated 3D animations of the mouth skeleton and created a dynamic digital endocast to measure the rate of mouth volume expansion. This time-resolved expansion rate was combined with intraoral pressure recordings to calculate the instantaneous power required for suction feeding. Peak expansion powers for all but the weakest strikes far exceeded the maximum power capacity of the cranial muscles. The axial muscles did not merely contribute but were the primary source of suction expansion power and generated up to 95% of peak expansion power. The recruitment of axial muscle power may have been crucial for the evolution of high-power suction feeding in ray-finned fishes.

  8. Loss of niche-satellite cell interactions in syndecan-3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration.

    PubMed

    Pisconti, Addolorata; Banks, Glen B; Babaeijandaghi, Farshad; Betta, Nicole Dalla; Rossi, Fabio M V; Chamberlain, Jeffrey S; Olwin, Bradley B

    2016-01-01

    The skeletal muscle stem cell niche provides an environment that maintains quiescent satellite cells, required for skeletal muscle homeostasis and regeneration. Syndecan-3, a transmembrane proteoglycan expressed in satellite cells, supports communication with the niche, providing cell interactions and signals to maintain quiescent satellite cells. Syndecan-3 ablation unexpectedly improves regeneration in repeatedly injured muscle and in dystrophic mice, accompanied by the persistence of sublaminar and interstitial, proliferating myoblasts. Additionally, muscle aging is improved in syndecan-3 null mice. Since syndecan-3 null myofiber-associated satellite cells downregulate Pax7 and migrate away from the niche more readily than wild type cells, syxndecan-3 appears to regulate satellite cell homeostasis and satellite cell homing to the niche. Manipulating syndecan-3 provides a promising target for development of therapies to enhance muscle regeneration in muscular dystrophies and in aged muscle.

  9. Painful unilateral temporalis muscle enlargement: reactive masticatory muscle hypertrophy.

    PubMed

    Katsetos, Christos D; Bianchi, Michael A; Jaffery, Fizza; Koutzaki, Sirma; Zarella, Mark; Slater, Robert

    2014-06-01

    An instance of isolated unilateral temporalis muscle hypertrophy (reactive masticatory muscle hypertrophy with fiber type 1 predominance) confirmed by muscle biopsy with histochemical fiber typing and image analysis in a 62 year-old man is reported. The patient presented with bruxism and a painful swelling of the temple. Absence of asymmetry or other abnormalities of the craniofacial skeleton was confirmed by magnetic resonance imaging and cephalometric analyses. The patient achieved symptomatic improvement only after undergoing botulinum toxin injections. Muscle biopsy is key in the diagnosis of reactive masticatory muscle hypertrophy and its distinction from masticatory muscle myopathy (hypertrophic branchial myopathy) and other non-reactive causes of painful asymmetric temporalis muscle enlargement.

  10. Development of a nitric oxide-releasing analogue of the muscle relaxant guaifenesin for skeletal muscle satellite cell myogenesis.

    PubMed

    Wang, Guqi; Burczynski, Frank J; Hasinoff, Brian B; Zhang, Kaidong; Lu, Qilong; Anderson, Judy E

    2009-01-01

    Nitric oxide (NO) mediates activation of satellite precursor cells to enter the cell cycle. This provides new precursor cells for skeletal muscle growth and muscle repair from injury or disease. Targeting a new drug that specifically delivers NO to muscle has the potential to promote normal function and treat neuromuscular disease, and would also help to avoid side effects of NO from other treatment modalities. In this research, we examined the effectiveness of the NO donor, iosorbide dinitrate (ISDN), and a muscle relaxant, methocarbamol, in promoting satellite cell activation assayed by muscle cell DNA synthesis in normal adult mice. The work led to the development of guaifenesin dinitrate (GDN) as a new NO donor for delivering nitric oxide to muscle. The results revealed that there was a strong increase in muscle satellite cell activation and proliferation, demonstrated by a significant 38% rise in DNA synthesis after a single transdermal treatment with the new compound for 24 h. Western blot and immunohistochemistry analyses showed that the markers of satellite cell myogenesis, expression of myf5, myogenin, and follistatin, were increased after 24 h oral administration of the compound in adult mice. This research extends our understanding of the outcomes of NO-based treatments aimed at promoting muscle regeneration in normal tissue. The potential use of such treatment for conditions such as muscle atrophy in disuse and aging, and for the promotion of muscle tissue repair as required after injury or in neuromuscular diseases such as muscular dystrophy, is highlighted.

  11. Effects of muscle potential depression and muscle stimulation caused by different insulation coating configurations on cardiac pacemakers.

    PubMed

    Yajima, Toshimi; Yamada, Kenichi; Okubo, Naoko; Nitta, Takashi; Ochi, Masami; Shimizu, Kazuo

    2005-01-01

    Insulation coating was added to the external pacemaker surface to prevent unnecessary electric current leakage to the periphery because the pulse generator body is used as an anode in unipolar pacing. However, a model without insulation coating has recently been used, so we studied the effects on muscle potential inhibition and muscle stimulation of pacemakers in unipolar pacing with different parts of the pacemaker body coated with insulation. Case comparisons were made for the following models: insulated except for the center of one side (33, group C), insulated except for the peripheral zone (10, group E), and noncoated models (11, group N). The muscle detection threshold voltage, muscle detection threshold pulse duration, muscle potential sensing threshold (MP), and lead resistance were measured. A comparison was made of the amount of energy (En) needed to reach the muscle stimulation threshold. For MP values, there was no significant statistical difference between group C and E, whereas a significant difference was present between group C and N and between group E and N. For En values, there was a significant difference between group C and E and between group C and N, but there was no significant difference between group E and N. The muscle potential sensing threshold dose not have a change in group E and much muscle stimulation energy is needed. The muscle potential sensing threshold was low in group N, requiring much muscle stimulation energy. Based on these results, it is usually not necessary to coat the pacemaker with insulation for unipolar pacing.

  12. Time to Maximal Voluntary Isometric Contraction (MVC) for Five Different Muscle Groups in College Adults.

    ERIC Educational Resources Information Center

    Morris, A. F.; And Others

    1983-01-01

    College men and women were studied to ascertain the force-time components of a rapid voluntary muscle contraction for five muscle groups. Researchers found that the time required for full contraction differs: (1) in men and women; and (2) among the five muscle groups. (Authors/PP)

  13. Increased risk of muscle tears below physiological temperature ranges

    PubMed Central

    Scott, E. E. F.; Hamilton, D. F.; Wallace, R. J.; Muir, A. Y.

    2016-01-01

    Objectives Temperature is known to influence muscle physiology, with the velocity of shortening, relaxation and propagation all increasing with temperature. Scant data are available, however, regarding thermal influences on energy required to induce muscle damage. Methods Gastrocnemius and soleus muscles were harvested from 36 male rat limbs and exposed to increasing impact energy in a mechanical test rig. Muscle temperature was varied in 5°C increments, from 17°C to 42°C (to encompass the in vivo range). The energy causing non-recoverable deformation was recorded for each temperature. A measure of tissue elasticity was determined via accelerometer data, smoothed by low-pass fifth order Butterworth filter (10 kHz). Data were analysed using one-way analysis of variance (ANOVA) and significance was accepted at p = 0.05. Results The energy required to induce muscle failure was significantly lower at muscle temperatures of 17°C to 32°C compared with muscle at core temperature, i.e., 37°C (p < 0.01). During low-energy impacts there were no differences in muscle elasticity between cold and warm muscles (p = 0.18). Differences in elasticity were, however, seen at higher impact energies (p < 0.02). Conclusion Our findings are of particular clinical relevance, as when muscle temperature drops below 32°C, less energy is required to cause muscle tears. Muscle temperatures of 32°C are reported in ambient conditions, suggesting that it would be beneficial, particularly in colder environments, to ensure that peripheral muscle temperature is raised close to core levels prior to high-velocity exercise. Thus, this work stresses the importance of not only ensuring that the muscle groups are well stretched, but also that all muscle groups are warmed to core temperature in pre-exercise routines. Cite this article: Professor A. H. R. W. Simpson. Increased risk of muscle tears below physiological temperature ranges. Bone Joint Res 2016;5:61–65. DOI: 10

  14. Skeletal muscle-smooth muscle interaction: an unusual myoelastic system.

    PubMed

    Hikida, R S; Peterson, W J

    1983-09-01

    The serratus superficialis metapatagialis (SSM) of pigeons is a skeletal muscle with unusual properties. It lies between the ribs and the trailing edge of the wing, where it is attached to the skin by a system of smooth muscles having elastic tendons. Wing movements during flight induce marked changes in this muscle's length. The SSM inserts onto the deep fascia, and at its termination the skeletal muscle contains large numbers of microtubules. Many myofibrils attach to leptomeric organelles, which then attach to the terminal end of the skeletal muscle fiber. The deep fascia next connects to the dermis of the skin by bundles of smooth muscles that have elastic tendons at both ends. This system allows large movements of the muscle while preventing its fibers from overstretching. The movements and presumed forces acting at this muscle make the presence of sensory receptors such as muscle spindles unlikely. Spindles are absent in this muscle.

  15. Differential roles for the thyroarytenoid and lateral cricoarytenoid muscles in phonation.

    PubMed

    Chhetri, Dinesh K; Neubauer, Juergen

    2015-12-01

    Laryngeal adductor muscle dysfunction is a common cause of voice disorders. Reconstitution of adductor muscle function is often the target of therapy, but the effects of these muscles on voice production remain to be fully understood. This study investigated the differential roles of thyroarytenoid (TA) and lateral cricoarytenoid (LCA) muscles on voice production. Basic science study using an in vivo canine model of phonation. The TA and LCA muscle nerve branches were stimulated to obtain seven graded levels of muscle activation, from threshold to maximal contraction. The effects of LCA muscle activation alone, TA muscle activation alone, and combined TA and LCA muscle activation on phonation onset parameters were investigated. Phonatory posture, phonation onset type, fundamental frequency (F0), phonation onset pressure, and airflow were evaluated. LCA muscle activation closed the posterior glottis, but the midmembranous gap remained. TA muscle activation closed the membranous glottis, but the posterior gap remained. Complete glottal closure was obtained only with combined TA and LCA muscle activation. Phonation onset with the LCA muscle alone was characterized by multiple modes (soft, aperiodic, periodic), whereas with the TA muscle alone it was abrupt and periodic but had significant baseline noise. Combined muscle activation led to elimination of baseline noise with stable abrupt periodic onset of phonation. Combined muscle activation was also necessary for F0 variation. The LCA muscle assisted the TA muscle in increasing subglottal pressure while concurrently reducing phonation onset airflow. The TA muscle is necessary for F0 variation, stable onset phonation, and increased subglottal pressure, but needs the LCA muscle for optimal effectiveness and to reduce airflow requirements with increased activation. NA. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Muscle function in avian flight: achieving power and control

    PubMed Central

    Biewener, Andrew A.

    2011-01-01

    Flapping flight places strenuous requirements on the physiological performance of an animal. Bird flight muscles, particularly at smaller body sizes, generally contract at high frequencies and do substantial work in order to produce the aerodynamic power needed to support the animal's weight in the air and to overcome drag. This is in contrast to terrestrial locomotion, which offers mechanisms for minimizing energy losses associated with body movement combined with elastic energy savings to reduce the skeletal muscles' work requirements. Muscles also produce substantial power during swimming, but this is mainly to overcome body drag rather than to support the animal's weight. Here, I review the function and architecture of key flight muscles related to how these muscles contribute to producing the power required for flapping flight, how the muscles are recruited to control wing motion and how they are used in manoeuvring. An emergent property of the primary flight muscles, consistent with their need to produce considerable work by moving the wings through large excursions during each wing stroke, is that the pectoralis and supracoracoideus muscles shorten over a large fraction of their resting fibre length (33–42%). Both muscles are activated while being lengthened or undergoing nearly isometric force development, enhancing the work they perform during subsequent shortening. Two smaller muscles, the triceps and biceps, operate over a smaller range of contractile strains (12–23%), reflecting their role in controlling wing shape through elbow flexion and extension. Remarkably, pigeons adjust their wing stroke plane mainly via changes in whole-body pitch during take-off and landing, relative to level flight, allowing their wing muscles to operate with little change in activation timing, strain magnitude and pattern. PMID:21502121

  17. Adaptations of mouse skeletal muscle to low intensity vibration training

    PubMed Central

    McKeehen, James N.; Novotny, Susan A.; Baltgalvis, Kristen A.; Call, Jarrod A.; Nuckley, David J.; Lowe, Dawn A.

    2013-01-01

    Purpose We tested the hypothesis that low intensity vibration training in mice improves contractile function of hindlimb skeletal muscles and promotes exercise-related cellular adaptations. Methods We subjected C57BL/6J mice to 6 wk, 5 d·wk−1, 15 min·d−1 of sham or low intensity vibration (45 Hz, 1.0 g) while housed in traditional cages (Sham-Active, n=8; Vibrated-Active, n=10) or in small cages to restrict physical activity (Sham-Restricted, n=8; Vibrated-Restricted, n=8). Contractile function and resistance to fatigue were tested in vivo (anterior and posterior crural muscles) and ex vivo on the soleus muscle. Tibialis anterior and soleus muscles were evaluated histologically for alterations in oxidative metabolism, capillarity, and fiber types. Epididymal fat pad and hindlimb muscle masses were measured. Two-way ANOVAs were used to determine effects of vibration and physical inactivity. Results Vibration training resulted in a 10% increase in maximal isometric torque (P=0.038) and 16% faster maximal rate of relaxation (P=0.030) of the anterior crural muscles. Posterior crural muscles were unaffected by vibration, with the exception of greater rates of contraction in Vibrated-Restricted mice compared to Vibrated-Active and Sham-Restricted mice (P=0.022). Soleus muscle maximal isometric tetanic force tended to be greater (P=0.057) and maximal relaxation was 20% faster (P=0.005) in Vibrated compared to Sham mice. Restriction of physical activity induced muscle weakness but was not required for vibration to be effective in improving strength or relaxation. Vibration training did not impact muscle fatigability or any indicator of cellular adaptation investigated (P≥0.431). Fat pad but not hindlimb muscle masses were affected by vibration training. Conclusion Vibration training in mice improved muscle contractility, specifically strength and relaxation rates, with no indication of adverse effects to muscle function or cellular adaptations. PMID:23274599

  18. The adaptive response of jaw muscles to varying functional demands.

    PubMed

    Grünheid, Thorsten; Langenbach, Geerling E J; Korfage, Joannes A M; Zentner, Andrej; van Eijden, Theo M G J

    2009-12-01

    Jaw muscles are versatile entities that are able to adapt their anatomical characteristics, such as size, cross-sectional area, and fibre properties, to altered functional demands. The dynamic nature of muscle fibres allows them to change their phenotype to optimize the required contractile function while minimizing energy use. Changes in these anatomical parameters are associated with changes in neuromuscular activity as the pattern of muscle activation by the central nervous system plays an important role in the modulation of muscle properties. This review summarizes the adaptive response of jaw muscles to various stimuli or perturbations in the orofacial system and addresses general changes in muscles as they adapt, specific adaptive changes in jaw muscles under various physiologic and pathologic conditions, and their adaptive response to non-surgical and surgical therapeutic interventions. Although the jaw muscles are used concertedly in the masticatory system, their adaptive changes are not always uniform and vary with the nature, intensity, and duration of the stimulus. In general, stretch, increases neuromuscular activity, and resistance training result in hypertrophy, elicits increases in mitochondrial content and cross-sectional area of the fibres, and may change the fibre-type composition of the muscle towards a larger percentage of slow-type fibres. In contrast, changes in the opposite direction occur when neuromuscular activity is reduced, the muscle is immobilized in a shortened position, or paralysed. The broad range of stimuli that affect the properties of jaw muscles might help explain the large variability in the anatomical and physiological characteristics found among individuals, muscles, and muscle portions.

  19. Effects Of treadmill training on hindlimb muscles of spinal cord–injured mice

    PubMed Central

    Battistuzzo, Camila R.; Rank, Michelle M.; Flynn, Jamie R.; Morgan, David L.; Callister, Robin; Callister, Robert J.

    2016-01-01

    ABSTRACT Introduction: Treadmill training is known to prevent muscle atrophy after spinal cord injury (SCI), but the training duration required to optimize recovery has not been investigated. Methods: Hemisected mice were randomized to 3, 6, or 9 weeks of training or no training. Muscle fiber type composition and fiber cross‐sectional area (CSA) of medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) were assessed using ATPase histochemistry. Results: Muscle fiber type composition of SCI animals did not change with training. However, 9 weeks of training increased the CSA of type IIB and IIX fibers in TA and MG muscles. Conclusions: Nine weeks of training after incomplete SCI was effective in preventing atrophy of fast‐twitch muscles, but there were limited effects on slow‐twitch muscles and muscle fiber type composition. These data provide important evidence of the benefits of exercising paralyzed limbs after SCI. Muscle Nerve, 2016 Muscle Nerve 55: 232–242, 2017 PMID:27273462

  20. Muscle Fiber Types and Training.

    ERIC Educational Resources Information Center

    Karp, Jason R.

    2001-01-01

    The specific types of fibers that make up individual muscles greatly influence how people will adapt to their training programs. This paper explains the complexities of skeletal muscles, focusing on types of muscle fibers (slow-twitch and fast-twitch), recruitment of muscle fibers to perform a motor task, and determining fiber type. Implications…

  1. Research opportunities in muscle atrophy

    NASA Technical Reports Server (NTRS)

    Herbison, G. J. (Editor); Talbot, J. M. (Editor)

    1984-01-01

    Muscle atrophy in a weightless environment is studied. Topics of investigation include physiological factors of muscle atrophy in space flight, biochemistry, countermeasures, modelling of atrophied muscle tissue, and various methods of measurement of muscle strength and endurance. A review of the current literature and suggestions for future research are included.

  2. Muscle Fiber Types and Training.

    ERIC Educational Resources Information Center

    Karp, Jason R.

    2001-01-01

    The specific types of fibers that make up individual muscles greatly influence how people will adapt to their training programs. This paper explains the complexities of skeletal muscles, focusing on types of muscle fibers (slow-twitch and fast-twitch), recruitment of muscle fibers to perform a motor task, and determining fiber type. Implications…

  3. Eye muscle test (image)

    MedlinePlus

    ... the extraocular muscles which results in uncontrolled eye movements. The test involves moving the eyes in six different directions in space to evaluate the proper functioning of the extraocular ...

  4. Neurogenic muscle cramps.

    PubMed

    Katzberg, Hans D

    2015-08-01

    Muscle cramps are sustained, painful contractions of muscle and are prevalent in patients with and without medical conditions. The objective of this review is to present updates on the mechanism, investigation and treatment of neurogenic muscle cramps. PubMed and Embase databases were queried between January 1980 and July 2014 for English-language human studies. The American Academy of Neurology classification of studies (classes I-IV) was used to assess levels of evidence. Mechanical disruption, ephaptic transmission, disruption of sensory afferents and persistent inward currents have been implicated in the pathogenesis of neurogenic cramps. Investigations are directed toward identifying physiological triggers or medical conditions predisposing to cramps. Although cramps can be self-limiting, disabling or sustained muscle cramps should prompt investigation for underlying medical conditions. Lifestyle modifications, treatment of underlying conditions, stretching, B-complex vitamins, diltiezam, mexiletine, carbamazepine, tetrahydrocannabinoid, leveteracitam and quinine sulfate have shown evidence for treatment.

  5. Muscle biopsy (image)

    MedlinePlus

    A muscle biopsy involves removal of a plug of tissue usually by a needle to be later used for examination. Sometimes ... there is a patchy condition expected an open biopsy may be used. Open biopsy involves a small ...

  6. Muscle function loss

    MedlinePlus

    ... Paralytic shellfish poisoning Periodic paralysis Focal nerve injury Polio Spinal cord injury Stroke Home Care Sudden loss ... Barré syndrome Muscle cramps Poisoning - fish and shellfish Polio Stroke Review Date 2/27/2016 Updated by: ...

  7. Buccinator muscle repositioning

    PubMed Central

    Baghele, Om N.

    2012-01-01

    Anatomical aberrations and abnormalities are frequently associated with functional, psychosocial, and emotional problems. One such aberration is crestal attachment of frenum or muscle on the alveolar processes of the jaws. Crestal attachment of buccinator muscle is a rare phenomenon, which may pose various problems in routine oral exercises/functions or restoring the edentulous area. A case of abnormal buccinator muscle attachment is presented here, which was relocated apically by surgical means using an acrylic stent. The healing was uneventful and significant apical repositioning was observed. A fixed bridge was fabricated and the long-term results of the restorative therapy were assured because the patient could maintain the oral hygiene well after the muscle repositioning operation. PMID:23162347

  8. An invertebrate smooth muscle with striated muscle myosin filaments.

    PubMed

    Sulbarán, Guidenn; Alamo, Lorenzo; Pinto, Antonio; Márquez, Gustavo; Méndez, Franklin; Padrón, Raúl; Craig, Roger

    2015-10-20

    Muscle tissues are classically divided into two major types, depending on the presence or absence of striations. In striated muscles, the actin filaments are anchored at Z-lines and the myosin and actin filaments are in register, whereas in smooth muscles, the actin filaments are attached to dense bodies and the myosin and actin filaments are out of register. The structure of the filaments in smooth muscles is also different from that in striated muscles. Here we have studied the structure of myosin filaments from the smooth muscles of the human parasite Schistosoma mansoni. We find, surprisingly, that they are indistinguishable from those in an arthropod striated muscle. This structural similarity is supported by sequence comparison between the schistosome myosin II heavy chain and known striated muscle myosins. In contrast, the actin filaments of schistosomes are similar to those of smooth muscles, lacking troponin-dependent regulation. We conclude that schistosome muscles are hybrids, containing striated muscle-like myosin filaments and smooth muscle-like actin filaments in a smooth muscle architecture. This surprising finding has broad significance for understanding how muscles are built and how they evolved, and challenges the paradigm that smooth and striated muscles always have distinctly different components.

  9. An invertebrate smooth muscle with striated muscle myosin filaments

    PubMed Central

    Sulbarán, Guidenn; Alamo, Lorenzo; Pinto, Antonio; Márquez, Gustavo; Méndez, Franklin; Padrón, Raúl; Craig, Roger

    2015-01-01

    Muscle tissues are classically divided into two major types, depending on the presence or absence of striations. In striated muscles, the actin filaments are anchored at Z-lines and the myosin and actin filaments are in register, whereas in smooth muscles, the actin filaments are attached to dense bodies and the myosin and actin filaments are out of register. The structure of the filaments in smooth muscles is also different from that in striated muscles. Here we have studied the structure of myosin filaments from the smooth muscles of the human parasite Schistosoma mansoni. We find, surprisingly, that they are indistinguishable from those in an arthropod striated muscle. This structural similarity is supported by sequence comparison between the schistosome myosin II heavy chain and known striated muscle myosins. In contrast, the actin filaments of schistosomes are similar to those of smooth muscles, lacking troponin-dependent regulation. We conclude that schistosome muscles are hybrids, containing striated muscle-like myosin filaments and smooth muscle-like actin filaments in a smooth muscle architecture. This surprising finding has broad significance for understanding how muscles are built and how they evolved, and challenges the paradigm that smooth and striated muscles always have distinctly different components. PMID:26443857

  10. Artificial muscle actuators in biorobotic fish fins.

    PubMed

    Phelan, Christopher T; Macdonald, Robert J; Tangorra, James L

    2009-01-01

    Artificial muscle technologies offer the possibility of designing robotic systems that take full advantage of biological architectures. Of current artificial muscle technologies, nickel titanium (Ni-Ti) shape memory alloys are among a few that are readily usable by engineering labs without specialized skills in material science and/or chemistry. Ni-Ti actuators are now being used to replace servomotors in biorobotic fins. This has significantly reduced the volume that is required for actuators, and will enable several fins to be integrated into a multi finned, flexible bodied, biorobotic fish.

  11. Egr3-Dependent Muscle Spindle Stretch Receptor Intrafusal Muscle Fiber Differentiation and Fusimotor Innervation Homeostasis

    PubMed Central

    Oliveira Fernandes, Michelle

    2015-01-01

    Muscle stretch proprioceptors (muscle spindles) are required for stretch reflexes and locomotor control. Proprioception abnormalities are observed in many human neuropathies, but the mechanisms involved in establishing and maintaining muscle spindle innervation and function are still poorly understood. During skeletal muscle development, sensory (Ia-afferent) innervation induces contacted myotubes to transform into intrafusal muscle fibers that form the stretch receptor core. The transcriptional regulator Egr3 is induced in Ia-afferent contacted myotubes by Neuregulin1 (Nrg1)/ErbB receptor signaling and it has an essential role in spindle morphogenesis and function. Because Egr3 is widely expressed during development and has a pleiotropic function, whether Egr3 functions primarily in skeletal muscle, Ia-afferent neurons, or in Schwann cells that myelinate Ia-afferent axons remains unresolved. In the present studies, cell-specific ablation of Egr3 in mice showed that it has a skeletal muscle autonomous function in stretch receptor development. Moreover, using genetic tracing, we found that Ia-afferent contacted Egr3-deficient myotubes were induced in normal numbers, but their development was blocked to generate one to two shortened fibers that failed to express some characteristic myosin heavy chain (MyHC) proteins. These “spindle remnants” persisted into adulthood, remained innervated by Ia-afferents, and expressed neurotrophin3 (NT3), which is required for Ia-afferent neuron survival. However, they were not innervated by fusimotor axons and they did not express glial derived neurotrophic factor (GDNF), which is essential for fusimotor neuron survival. These results demonstrate that Egr3 has an essential role in regulating gene expression that promotes normal intrafusal muscle fiber differentiation and fusimotor innervation homeostasis. PMID:25855173

  12. Egr3-dependent muscle spindle stretch receptor intrafusal muscle fiber differentiation and fusimotor innervation homeostasis.

    PubMed

    Oliveira Fernandes, Michelle; Tourtellotte, Warren G

    2015-04-08

    Muscle stretch proprioceptors (muscle spindles) are required for stretch reflexes and locomotor control. Proprioception abnormalities are observed in many human neuropathies, but the mechanisms involved in establishing and maintaining muscle spindle innervation and function are still poorly understood. During skeletal muscle development, sensory (Ia-afferent) innervation induces contacted myotubes to transform into intrafusal muscle fibers that form the stretch receptor core. The transcriptional regulator Egr3 is induced in Ia-afferent contacted myotubes by Neuregulin1 (Nrg1)/ErbB receptor signaling and it has an essential role in spindle morphogenesis and function. Because Egr3 is widely expressed during development and has a pleiotropic function, whether Egr3 functions primarily in skeletal muscle, Ia-afferent neurons, or in Schwann cells that myelinate Ia-afferent axons remains unresolved. In the present studies, cell-specific ablation of Egr3 in mice showed that it has a skeletal muscle autonomous function in stretch receptor development. Moreover, using genetic tracing, we found that Ia-afferent contacted Egr3-deficient myotubes were induced in normal numbers, but their development was blocked to generate one to two shortened fibers that failed to express some characteristic myosin heavy chain (MyHC) proteins. These "spindle remnants" persisted into adulthood, remained innervated by Ia-afferents, and expressed neurotrophin3 (NT3), which is required for Ia-afferent neuron survival. However, they were not innervated by fusimotor axons and they did not express glial derived neurotrophic factor (GDNF), which is essential for fusimotor neuron survival. These results demonstrate that Egr3 has an essential role in regulating gene expression that promotes normal intrafusal muscle fiber differentiation and fusimotor innervation homeostasis.

  13. Head muscle development.

    PubMed

    Tzahor, Eldad

    2015-01-01

    The developmental paths that lead to the formation of skeletal muscles in the head are distinct from those operating in the trunk. Craniofacial muscles are associated with head and neck structures. In the embryo, these structures derive from distinct mesoderm populations. Distinct genetic programs regulate different groups of muscles within the head to generate diverse muscle specifications. Developmental and lineage studies in vertebrates and invertebrates demonstrated an overlap in progenitor populations derived from the pharyngeal mesoderm that contribute to certain head muscles and the heart. These studies reveal that the genetic program controlling pharyngeal muscles overlaps with that of the heart. Indeed cardiac and craniofacial birth defects are often linked. Recent studies suggest that early chordates, the last common ancestor of tunicates and vertebrates, had an ancestral pharyngeal mesoderm lineage that later during evolution gave rise to both heart and craniofacial structures. This chapter summarizes studies related to the origins, signaling, genetics, and evolution of the head musculature, highlighting its heterogeneous characteristics in all these aspects.

  14. Changes in T2-weighted MRI of supinator muscle, pronator teres muscle, and extensor indicis muscle with manual muscle testing

    PubMed Central

    Yoshida, Kazuya; Akiyama, Sumikazu; Takamori, Masayoshi; Otsuka, D. Eng, Hiroshi; Seo, Yoshiteru

    2017-01-01

    [Purpose] In order to detect muscle activity with manual muscle testing, T2-weighted magnetic resonance (T2w-MR) images were detected by a 0.2 T compact MRI system. [Subjects and Methods] The subjects were 3 adult males. Transverse T2-weighted multi-slice spin-echo images of the left forearm were measured by a 39 ms echo-time with a 2,000 ms repetition time, a 9.5 mm slice thickness, 1 accumulation and a total image acquisition time of 4 min 16 s. First, T2w-MR images in the resting condition were measured. Then, manipulative isometric contraction exercise (5 sec duration) to the supinator muscle, the pronator teres muscle or the extensor indicis muscle was performed using Borg’s rating of perceived exertion (RPE) scale of 15–17. The T2w-MR images were measured immediately after the exercise. [Results] T2w-MR image intensities increased significantly in the supinator muscle, the pronator teres muscle and the extensor indicis muscle after the exercise. However, the image intensities in the rest of the muscle did not change. [Conclusion] Using T2w-MR images, we could detect muscle activity in a deep muscle, the supinator muscle, and a small muscle, the extensor indicis muscle. These results also support the reliability of the manual muscle testing method. PMID:28356621

  15. Muscle hardness characteristics of the masseter muscle after repetitive muscle activation: comparison to the biceps brachii muscle.

    PubMed

    Kashima, Koji; Higashinaka, Shuichi; Watanabe, Naoshi; Maeda, Sho; Shiba, Ryosuke

    2004-10-01

    The purpose of this study was to compare hardness characteristics of the masseter muscle to those of the biceps brachii muscle during repetitive muscle movements. Seventeen asymptomatic female subjects participated in this study. Each subject, on separate days, undertook a 5-minute unilateral chewing gum task on the right side and a 5-minute flexion-extension exercise on the right hand with a 2kg dumbbell. Using a handheld hardness meter, muscle hardness was measured in the right masseter and in the biceps brachii muscle at eight time points (before the task, immediately after the task, and at 1, 3, 5, 10, 30, and 60 minutes after the task), and the data obtained before and after the task on each muscle were compared. Comparisons of the normalized data were also performed between the two muscles at each time point. As a result, a significant increase in muscle hardness was seen at 1 minute after the task in the biceps brachii muscle (p=0.0093). In contrast, the masseter muscle showed a tendency to lower hardness, with the lowest point of hardness occurring at 10 minutes after the task (p = 0.0160). Between the two muscles, there was a difference in the normalized data immediately after the task, and at 1, 5, and 10 minutes after the task (0.01 muscle hardness characteristics of the masseter muscle completely differed from those of the biceps brachii muscle after repetitive muscle activation.

  16. Skeletal muscle responses to unweighting in humans

    NASA Technical Reports Server (NTRS)

    Dudley, Gary A.

    1991-01-01

    An overview of earth-based studies is presented emphasizing the data on muscular strength and size derived from experiments under simulated microgravity. The studies involve the elimination of weight-bearing responsibility of lower-limb human musculature to simulate the unweighting effects of space travel in the absence of exercise. Reference is given to bedrest and unilateral lower-limb suspension, both of which provide data that demonstrate the decreased strength of the knee extensors of 20-25 percent. The response is related to the decrease in cross-sectional area of the knee extensors which is a direct indication of muscle-fiber atrophy. Most of the effects of unweighting are associated with extensor muscles in the lower limbs and not with postural muscles. Unweighting is concluded to cause significant adaptations in the human neuromuscular system that require further investigation.

  17. Skeletal muscle responses to unweighting in humans

    NASA Technical Reports Server (NTRS)

    Dudley, Gary A.

    1991-01-01

    An overview of earth-based studies is presented emphasizing the data on muscular strength and size derived from experiments under simulated microgravity. The studies involve the elimination of weight-bearing responsibility of lower-limb human musculature to simulate the unweighting effects of space travel in the absence of exercise. Reference is given to bedrest and unilateral lower-limb suspension, both of which provide data that demonstrate the decreased strength of the knee extensors of 20-25 percent. The response is related to the decrease in cross-sectional area of the knee extensors which is a direct indication of muscle-fiber atrophy. Most of the effects of unweighting are associated with extensor muscles in the lower limbs and not with postural muscles. Unweighting is concluded to cause significant adaptations in the human neuromuscular system that require further investigation.

  18. Heart muscle performance after experimental viral myocarditis.

    PubMed Central

    Adesanya, C O; Goldberg, A H; Phear, W P; Thorp, K A; Young, N A; Abelmann, W H

    1976-01-01

    As part of an inquiry into possible antecedents of idiopathic cardiomyopathy, acute experimental coxsackie virus myocarditis was studied for late structural and functional sequelae. Myocarditis was induced in 12- and 22-day-old hamsters by inoculation with coxsackie virus B3. Early viremia occurred, followed by virus replication in heart muscle. Maximum peak developed tension (Tpd) of isometrically contracting isolated heart muscle was depressed 17 and 43% in the animals inoculated at 12 days, and studied 18 and 90 days later, respectively, as compared to their uninoculated controls. In both infected groups, less muscle stretch was required to reach the length at which Tpd was produced. Animals studied 180 days after inoculation did not differ from controls. The muscles from animals inoculated at 22 days of age and studied 18 days later showed a 15% depression of Tpd compared to their controls. Glycerinated muscles from this infected group developed 50% less tension than their controls. The muscles of hamsters inoculated with virus at 22 days and studied 90 and 180 days later showed no change in Tpd. The data suggest that contractility and compliance of heart muscle are decreased 18 days after inoculation, but recover by 90 days if the animals are inoculated at age 22 days. However, if the animals are inoculated at a younger age (12 days), depression of myocardial performance persists for at least an additional 90 days. It is concluded that the inflammatory stage of experimental acute coxsackie virus B3 myocarditis in the Syrian golden hamster may be followed by residual alterations in contractile proteins and myocardial function. PMID:1249200

  19. Effects of hydrogen sulphide in smooth muscle.

    PubMed

    Dunn, William R; Alexander, Stephen P H; Ralevic, Vera; Roberts, Richard E

    2016-02-01

    In recent years, it has become apparent that the gaseous pollutant, hydrogen sulphide (H2S) can be synthesised in the body and has a multitude of biological actions. This review summarizes some of the actions of this 'gasotransmitter' in influencing the smooth muscle that is responsible for controlling muscular activity of hollow organs. In the vasculature, while H2S can cause vasoconstriction by complex interactions with other biologically important gases, such as nitric oxide, the prevailing response is vasorelaxation. While most vasorelaxation responses occur by a direct action of H2S on smooth muscle cells, it has recently been proposed to be an endothelium-derived hyperpolarizing factor. H2S also promotes relaxation in other smooth muscle preparations including bronchioles, the bladder, gastrointestinal tract and myometrium, opening up the opportunity of exploiting the pharmacology of H2S in the treatment of conditions where smooth muscle tone is excessive. The original concept, that H2S caused smooth muscle relaxation by activating ATP-sensitive K(+) channels, has been supplemented with observations that H2S can also modify the activity of other potassium channels, intracellular pH, phosphodiesterase activity and transient receptor potential channels on sensory nerves. While the enzymes responsible for generating endogenous H2S are widely expressed in smooth muscle preparations, it is much less clear what the physiological role of H2S is in determining smooth muscle contractility. Clarification of this requires the development of potent and selective inhibitors of H2S-generating enzymes. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Microanatomy of adult zebrafish extraocular muscles.

    PubMed

    Kasprick, Daniel S; Kish, Phillip E; Junttila, Tyler L; Ward, Lindsay A; Bohnsack, Brenda L; Kahana, Alon

    2011-01-01

    Binocular vision requires intricate control of eye movement to align overlapping visual fields for fusion in the visual cortex, and each eye is controlled by 6 extraocular muscles (EOMs). Disorders of EOMs are an important cause of symptomatic vision loss. Importantly, EOMs represent specialized skeletal muscles with distinct gene expression profile and susceptibility to neuromuscular disorders. We aim to investigate and describe the anatomy of adult zebrafish extraocular muscles (EOMs) to enable comparison with human EOM anatomy and facilitate the use of zebrafish as a model for EOM research. Using differential interference contrast (DIC), epifluorescence microscopy, and precise sectioning techniques, we evaluate the anatomy of zebrafish EOM origin, muscle course, and insertion on the eye. Immunofluorescence is used to identify components of tendons, basement membrane and neuromuscular junctions (NMJs), and to analyze myofiber characteristics. We find that adult zebrafish EOM insertions on the globe parallel the organization of human EOMs, including the close proximity of specific EOM insertions to one another. However, analysis of EOM origins reveals important differences between human and zebrafish, such as the common rostral origin of both oblique muscles and the caudal origin of the lateral rectus muscles. Thrombospondin 4 marks the EOM tendons in regions that are highly innervated, and laminin marks the basement membrane, enabling evaluation of myofiber size and distribution. The NMJs appear to include both en plaque and en grappe synapses, while NMJ density is much higher in EOMs than in somatic muscles. In conclusion, zebrafish and human EOM anatomy are generally homologous, supporting the use of zebrafish for studying EOM biology. However, anatomic differences exist, revealing divergent evolutionary pressures.

  1. Corticospinal Excitability of Trunk Muscles during Different Postural Tasks

    PubMed Central

    Chiou, Shin-Yi; Gottardi, Sam E. A.; Hodges, Paul W.; Strutton, Paul H.

    2016-01-01

    Evidence suggests that the primary motor cortex (M1) is involved in both voluntary, goal-directed movements and in postural control. Trunk muscles are involved in both tasks, however, the extent to which M1 controls these muscles in trunk flexion/extension (voluntary movement) and in rapid shoulder flexion (postural control) remains unclear. The purpose of this study was to investigate this question by examining excitability of corticospinal inputs to trunk muscles during voluntary and postural tasks. Twenty healthy adults participated. Transcranial magnetic stimulation was delivered to the M1 to examine motor evoked potentials (MEPs) in the trunk muscles (erector spinae (ES) and rectus abdominis (RA)) during dynamic shoulder flexion (DSF), static shoulder flexion (SSF), and static trunk extension (STE). The level of background muscle activity in the ES muscles was matched across tasks. MEP amplitudes in ES were significantly larger in DSF than in SSF or in STE; however, this was not observed for RA. Further, there were no differences in levels of muscle activity in RA between tasks. Our findings reveal that corticospinal excitability of the ES muscles appears greater during dynamic anticipatory posture-related adjustments than during static tasks requiring postural (SSF) and goal-directed voluntary (STE) activity. These results suggest that task-oriented rehabilitation of trunk muscles should be considered for optimal transfer of therapeutic effect to function. PMID:26807583

  2. Corticospinal Excitability of Trunk Muscles during Different Postural Tasks.

    PubMed

    Chiou, Shin-Yi; Gottardi, Sam E A; Hodges, Paul W; Strutton, Paul H

    2016-01-01

    Evidence suggests that the primary motor cortex (M1) is involved in both voluntary, goal-directed movements and in postural control. Trunk muscles are involved in both tasks, however, the extent to which M1 controls these muscles in trunk flexion/extension (voluntary movement) and in rapid shoulder flexion (postural control) remains unclear. The purpose of this study was to investigate this question by examining excitability of corticospinal inputs to trunk muscles during voluntary and postural tasks. Twenty healthy adults participated. Transcranial magnetic stimulation was delivered to the M1 to examine motor evoked potentials (MEPs) in the trunk muscles (erector spinae (ES) and rectus abdominis (RA)) during dynamic shoulder flexion (DSF), static shoulder flexion (SSF), and static trunk extension (STE). The level of background muscle activity in the ES muscles was matched across tasks. MEP amplitudes in ES were significantly larger in DSF than in SSF or in STE; however, this was not observed for RA. Further, there were no differences in levels of muscle activity in RA between tasks. Our findings reveal that corticospinal excitability of the ES muscles appears greater during dynamic anticipatory posture-related adjustments than during static tasks requiring postural (SSF) and goal-directed voluntary (STE) activity. These results suggest that task-oriented rehabilitation of trunk muscles should be considered for optimal transfer of therapeutic effect to function.

  3. Protein carbonylation and muscle function in COPD and other conditions.

    PubMed

    Barreiro, Esther

    2014-01-01

    Skeletal muscle, the most abundant tissue in mammals, is essential for any activity in life. Muscle dysfunction is a common systemic manifestation in highly prevalent conditions such as chronic obstructive pulmonary disease (COPD), cancer cachexia, and sepsis. It has a significant impact on exercise tolerance, thus worsening the patients' quality of life and survival. Among several factors, oxidative stress is a major player in the etiology of skeletal muscle dysfunction associated with those conditions. Whereas low levels of oxidants are absolutely required for normal cell adaptation, high levels of reactive oxygen species (ROS) alter the function and structure of molecules such as proteins, DNA, and lipids. Specifically, protein carbonylation, a common variety of protein oxidation, was shown to alter the function of key enzymes and structural proteins involved in muscle contractile performance. Moreover, increased levels of ROS may also activate proteolytic systems, thus leading to enhanced protein breakdown in several models. In the current review, the specific modifications induced by carbonylation in protein structure and function in muscles have been described. Furthermore, the potential role of ROS in the activation of proteolytic systems in skeletal muscles is also discussed. The review summarizes the effects of protein carbonylation on muscles in several models and conditions such as COPD, disuse muscle atrophy, cancer cachexia, sepsis, and aging. Future research should focus on the elucidation of the specific protein sites modified by ROS in these muscles using redox proteomics analyses and on the assessment of the consequent alterations in protein function and stability.

  4. Nutritional influences on age-related skeletal muscle loss.

    PubMed

    Welch, Ailsa A

    2014-02-01

    Age-related muscle loss impacts on whole-body metabolism and leads to frailty and sarcopenia, which are risk factors for fractures and mortality. Although nutrients are integral to muscle metabolism the relationship between nutrition and muscle loss has only been extensively investigated for protein and amino acids. The objective of the present paper is to describe other aspects of nutrition and their association with skeletal muscle mass. Mechanisms for muscle loss relate to imbalance in protein turnover with a number of anabolic pathways of which the mechanistic TOR pathway and the IGF-1-Akt-FoxO pathways are the most characterised. In terms of catabolism the ubiquitin proteasome system, apoptosis, autophagy, inflammation, oxidation and insulin resistance are among the major mechanisms proposed. The limited research associating vitamin D, alcohol, dietary acid-base load, dietary fat and anti-oxidant nutrients with age-related muscle loss is described. Vitamin D may be protective for muscle loss; a more alkalinogenic diet and diets higher in the anti-oxidant nutrients vitamin C and vitamin E may also prevent muscle loss. Although present recommendations for prevention of sarcopenia focus on protein, and to some extent on vitamin D, other aspects of the diet including fruits and vegetables should be considered. Clearly, more research into other aspects of nutrition and their role in prevention of muscle loss is required.

  5. Geared up to stretch: pennate muscle behavior during active lengthening.

    PubMed

    Azizi, Emanuel; Roberts, Thomas J

    2014-02-01

    Many locomotor activities require muscles to actively lengthen, dissipate energy and decelerate the body. These eccentric contractions can disrupt cytoskeletal structures within myofibrils and reduce force output. We examined how architectural features of pennate muscles can provide a protective mechanism against eccentric muscle damage by limiting fascicle lengthening. It has been previously shown that the angled fibers of pennate muscles change orientation when shortening. This change in fiber orientation can amplify fascicle shortening, resulting in a velocity advantage at the level of the muscle-tendon unit (MTU) that is characterized by a gear ratio (MTU velocity/fascicle velocity). A muscle's architectural gear ratio (AGR) has been shown to vary as a function of force during shortening, while AGR during lengthening remains largely unknown. We independently measured fascicle length and MTU length in vitro in the bullfrog plantaris. We characterized the muscle's force-velocity curve and AGR during both shortening and lengthening across a broad range of forces (10-190% peak isometric force). AGR was measured during the isotonic portion of each contraction, to eliminate possible contributions of series elasticity to MTU length changes. We found that gear ratio varies with force during both shortening and lengthening contractions. The highest AGR was observed during lengthening contractions, indicating that lengthening of the MTU can occur with relatively little stretch of the fascicle. As fascicle strain is considered an important determinant of muscle damage, a high gear ratio may afford pennate muscles protection against the damaging effects of active lengthening.

  6. A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for different muscle fiber arrangements

    PubMed Central

    Heidlauf, Thomas; Röhrle, Oliver

    2014-01-01

    The presented chemo-electro-mechanical skeletal muscle model relies on a continuum-mechanical formulation describing the muscle's deformation and force generation on the macroscopic muscle level. Unlike other three-dimensional models, the description of the activation-induced behavior of the mechanical model is entirely based on chemo-electro-mechanical principles on the microscopic sarcomere level. Yet, the multiscale model reproduces key characteristics of skeletal muscles such as experimental force-length and force-velocity data on the macroscopic whole muscle level. The paper presents the methodological approaches required to obtain such a multiscale model, and demonstrates the feasibility of using such a model to analyze differences in the mechanical behavior of parallel-fibered muscles, in which the muscle fibers either span the entire length of the fascicles or terminate intrafascicularly. The presented results reveal that muscles, in which the fibers span the entire length of the fascicles, show lower peak forces, more dispersed twitches and fusion of twitches at lower stimulation frequencies. In detail, the model predicted twitch rise times of 38.2 and 17.2 ms for a 12 cm long muscle, in which the fibers span the entire length of the fascicles and with twelve fiber compartments in series, respectively. Further, the twelve-compartment model predicted peak twitch forces that were 19% higher than in the single-compartment model. The analysis of sarcomere lengths during fixed-end single twitch contractions at optimal length predicts rather small sarcomere length changes. The observed lengths range from 75 to 111% of the optimal sarcomere length, which corresponds to a region with maximum filament overlap. This result suggests that stability issues resulting from activation-induced stretches of non-activated sarcomeres are unlikely in muscles with passive forces appearing at short muscle length. PMID:25566094

  7. Live imaging of muscle histolysis in Drosophila metamorphosis.

    PubMed

    Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin

    2016-05-04

    The contribution of programmed cell death (PCD) to muscle wasting disorders remains a matter of debate. Drosophila melanogaster metamorphosis offers the opportunity to study muscle cell death in the context of development. Using live cell imaging of the abdomen, two groups of larval muscles can be observed, doomed muscles that undergo histolysis and persistent muscles that are remodelled and survive into adulthood. To identify and characterize genes that control the decision between survival and cell death of muscles, we developed a method comprising in vivo imaging, targeted gene perturbation and time-lapse image analysis. Our approach enabled us to study the cytological and temporal aspects of abnormal cell death phenotypes. In a previous genetic screen for genes controlling muscle size and cell death in metamorphosis, we identified gene perturbations that induced cell death of persistent or inhibit histolysis of doomed larval muscles. RNA interference (RNAi) of the genes encoding the helicase Rm62 and the lysosomal Cathepsin-L homolog Cysteine proteinase 1 (Cp1) caused premature cell death of persistent muscle in early and mid-pupation, respectively. Silencing of the transcriptional co-repressor Atrophin inhibited histolysis of doomed muscles. Overexpression of dominant-negative Target of Rapamycin (TOR) delayed the histolysis of a subset of doomed and induced ablation of all persistent muscles. RNAi of AMPKα, which encodes a subunit of the AMPK protein complex that senses AMP and promotes ATP formation, led to loss of attachment and a spherical morphology. None of the perturbations affected the survival of newly formed adult muscles, suggesting that the method is useful to find genes that are crucial for the survival of metabolically challenged muscles, like those undergoing atrophy. The ablation of persistent muscles did not affect eclosion of adult flies. Live imaging is a versatile approach to uncover gene functions that are required for the survival of

  8. Muscle cells provide instructions for planarian regeneration.

    PubMed

    Witchley, Jessica N; Mayer, Mirjam; Wagner, Daniel E; Owen, Jared H; Reddien, Peter W

    2013-08-29

    Regeneration requires both potential and instructions for tissue replacement. In planarians, pluripotent stem cells have the potential to produce all new tissue. The identities of the cells that provide regeneration instructions are unknown. Here, we report that position control genes (PCGs) that control regeneration and tissue turnover are expressed in a subepidermal layer of nonneoblast cells. These subepidermal cells coexpress many PCGs. We propose that these subepidermal cells provide a system of body coordinates and positional information for regeneration, and identify them to be muscle cells of the planarian body wall. Almost all planarian muscle cells express PCGs, suggesting a dual function: contraction and control of patterning. PCG expression is dynamic in muscle cells after injury, even in the absence of neoblasts, suggesting that muscle is instructive for regeneration. We conclude that planarian regeneration involves two highly flexible systems: pluripotent neoblasts that can generate any new cell type and muscle cells that provide positional instructions for the regeneration of any body region. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Nutritional supplements to increase muscle mass.

    PubMed

    Clarkson, P M; Rawson, E S

    1999-07-01

    Although nutritional supplements purported to increase muscle mass are widely available at health food stores, gyms, by mail order, and over the Internet, many of these supplements have little or no data to support their claims. This article reviews the theory and research behind popular nutritional supplements commonly marketed as muscle mass builders. Included are the minerals chromium, vanadyl sulfate, and boron, the steroid hormone dehydroepiandrosterone (DHEA), beta-methyl-hydroxy-beta-methylbutyrate (HMB), creatine, protein supplements, and amino acids. Research has shown that chromium vanadyl sulfate, and boron do not appear to be effective in increasing lean body mass. The few studies examining DHEA have not supported the claim of increased muscle gain. Preliminary work on HMB supports an anticatabolic effect, but only one human study is currently available. Many studies reported increased body mass and several have reported increased lean body mass following creatine ingestion. This weight gain is most likely water retention in muscle but could also be due to some new muscle protein. Although athletes have a greater protein requirement than sedentary individuals, this is easily obtained through the diet, negating the use of protein supplements. Studies on amino acids have not supported their claim to increase growth hormone or insulin secretion. Nutritional supplements can be marketed without FDA approval of safety or effectiveness. Athletes who choose to ingest these supplements should be concerned with unsubstantiated claims, questionable quality control, and safety of long-term use.

  10. Mechanotransduction pathways in skeletal muscle hypertrophy.

    PubMed

    Yamada, André Katayama; Verlengia, Rozangela; Bueno Junior, Carlos Roberto

    2012-02-01

    In the last decade, molecular biology has contributed to define some of the cellular events that trigger skeletal muscle hypertrophy. Recent evidence shows that insulin like growth factor 1/phosphatidyl inositol 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling is not the main pathway towards load-induced skeletal muscle hypertrophy. During load-induced skeletal muscle hypertrophy process, activation of mTORC1 does not require classical growth factor signaling. One potential mechanism that would activate mTORC1 is increased synthesis of phosphatidic acid (PA). Despite the huge progress in this field, it is still early to affirm which molecular event induces hypertrophy in response to mechanical overload. Until now, it seems that mTORC1 is the key regulator of load-induced skeletal muscle hypertrophy. On the other hand, how mTORC1 is activated by PA is unclear, and therefore these mechanisms have to be determined in the following years. The understanding of these molecular events may result in promising therapies for the treatment of muscle-wasting diseases. For now, the best approach is a good regime of resistance exercise training. The objective of this point-of-view paper is to highlight mechanotransduction events, with focus on the mechanisms of mTORC1 and PA activation, and the role of IGF-1 on hypertrophy process.

  11. Photothermal imaging of skeletal muscle mitochondria

    PubMed Central

    Tomimatsu, Toru; Miyazaki, Jun; Kano, Yutaka; Kobayashi, Takayoshi

    2017-01-01

    The morphology and topology of mitochondria provide useful information about the physiological function of skeletal muscle. Previous studies of skeletal muscle mitochondria are based on observation with transmission, scanning electron microscopy or fluorescence microscopy. In contrast, photothermal (PT) microscopy has advantages over the above commonly used microscopic techniques because of no requirement for complex sample preparation by fixation or fluorescent-dye staining. Here, we employed the PT technique using a simple diode laser to visualize skeletal muscle mitochondria in unstained and stained tissues. The fine mitochondrial network structures in muscle fibers could be imaged with the PT imaging system, even in unstained tissues. PT imaging of tissues stained with toluidine blue revealed the structures of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria and the swelling behavior of mitochondria in damaged muscle fibers with sufficient image quality. PT image analyses based on fast Fourier transform (FFT) and Grey-level co-occurrence matrix (GLCM) were performed to derive the characteristic size of mitochondria and to discriminate the image patterns of normal and damaged fibers. PMID:28663919

  12. Regulators of Autophagosome Formation in Drosophila Muscles

    PubMed Central

    Zirin, Jonathan; Nieuwenhuis, Joppe; Samsonova, Anastasia; Tao, Rong; Perrimon, Norbert

    2015-01-01

    Given the diversity of autophagy targets and regulation, it is important to characterize autophagy in various cell types and conditions. We used a primary myocyte cell culture system to assay the role of putative autophagy regulators in the specific context of skeletal muscle. By treating the cultures with rapamycin (Rap) and chloroquine (CQ) we induced an autophagic response, fully suppressible by knockdown of core ATG genes. We screened D. melanogaster orthologs of a previously reported mammalian autophagy protein-protein interaction network, identifying several proteins required for autophagosome formation in muscle cells, including orthologs of the Rab regulators RabGap1 and Rab3Gap1. The screen also highlighted the critical roles of the proteasome and glycogen metabolism in regulating autophagy. Specifically, sustained proteasome inhibition inhibited autophagosome formation both in primary culture and larval skeletal muscle, even though autophagy normally acts to suppress ubiquitin aggregate formation in these tissues. In addition, analyses of glycogen metabolic genes in both primary cultured and larval muscles indicated that glycogen storage enhances the autophagic response to starvation, an important insight given the link between glycogen storage disorders, autophagy, and muscle function. PMID:25692684

  13. Respiratory muscle fibres: specialisation and plasticity

    PubMed Central

    Polla, B; D'Antona, G; Bottinelli, R; Reggiani, C

    2004-01-01

    Skeletal muscles are composed of fibres of different types, each type being identified by the isoform of myosin heavy chain which is expressed as slow 1, fast 2A, fast 2X, and fast 2B. Slow fibres are resistant to fatigue due to their highly oxidative metabolism whereas 2X and 2B fibres are easily fatiguable and fast 2A fibres exhibit intermediate fatigue resistance. Slow fibres and fast fibres are present in equal proportions in the adult human diaphragm while intercostal muscles contain a higher proportion of fast fibres. A small fibre size, abundance of capillaries, and a high aerobic oxidative enzyme activity are typical features of diaphragm fibres and give them the resistance to fatigue required by their continuous activity. Because of their fibre composition, intercostal muscles are less resistant to fatigue. The structural and functional characteristics of respiratory muscle fibres are not fixed, however, and can be modified in response to several physiological and pathological conditions such as training (adaptation to changes in respiratory load), adaptation to hypoxia, age related changes, and changes associated with respiratory diseases. The properties of respiratory muscle fibres can also be modified by pharmacological agents such as ß2 agonists and corticosteroids used for the treatment of respiratory diseases. PMID:15333861

  14. An Ongoing Role for Structural Sarcomeric Components in Maintaining Drosophila melanogaster Muscle Function and Structure

    PubMed Central

    Perkins, Alexander D.; Tanentzapf, Guy

    2014-01-01

    Animal muscles must maintain their function while bearing substantial mechanical loads. How muscles withstand persistent mechanical strain is presently not well understood. The basic unit of muscle is the sarcomere, which is primarily composed of cytoskeletal proteins. We hypothesized that cytoskeletal protein turnover is required to maintain muscle function. Using the flight muscles of Drosophila melanogaster, we confirmed that the sarcomeric cytoskeleton undergoes turnover throughout adult life. To uncover which cytoskeletal components are required to maintain adult muscle function, we performed an RNAi-mediated knockdown screen targeting the entire fly cytoskeleton and associated proteins. Gene knockdown was restricted to adult flies and muscle function was analyzed with behavioural assays. Here we analyze the results of that screen and characterize the specific muscle maintenance role for several hits. The screen identified 46 genes required for muscle maintenance: 40 of which had no previously known role in this process. Bioinformatic analysis highlighted the structural sarcomeric proteins as a candidate group for further analysis. Detailed confocal and electron microscopic analysis showed that while muscle architecture was maintained after candidate gene knockdown, sarcomere length was disrupted. Specifically, we found that ongoing synthesis and turnover of the key sarcomere structural components Projectin, Myosin and Actin are required to maintain correct sarcomere length and thin filament length. Our results provide in vivo evidence of adult muscle protein turnover and uncover specific functional defects associated with reduced expression of a subset of cytoskeletal proteins in the adult animal. PMID:24915196

  15. Anchoring skeletal muscle development and disease: the role of ankyrin repeat domain containing proteins in muscle physiology

    PubMed Central

    Tee, Jin-Ming; Peppelenbosch, Maikel P.

    2010-01-01

    The ankyrin repeat is a protein module with high affinity for other ankyrin repeats based on strong Van der Waals forces. The resulting dimerization is unusually resistant to both mechanical forces and alkanization, making this module exceedingly useful for meeting the extraordinary demands of muscle physiology. Many aspects of muscle function are controlled by the superfamily ankyrin repeat domain containing proteins, including structural fixation of the contractile apparatus to the muscle membrane by ankyrins, the archetypical member of the family. Additionally, other ankyrin repeat domain containing proteins critically control the various differentiation steps during muscle development, with Notch and developmental stage-specific expression of the members of the Ankyrin repeat and SOCS box (ASB) containing family of proteins controlling compartment size and guiding the various steps of muscle specification. Also, adaptive responses in fully formed muscle require ankyrin repeat containing proteins, with Myotrophin/V-1 ankyrin repeat containing proteins controlling the induction of hypertrophic responses following excessive mechanical load, and muscle ankyrin repeat proteins (MARPs) acting as protective mechanisms of last resort following extreme demands on muscle tissue. Knowledge on mechanisms governing the ordered expression of the various members of superfamily of ankyrin repeat domain containing proteins may prove exceedingly useful for developing novel rational therapy for cardiac disease and muscle dystrophies. PMID:20515317

  16. Positronium Formation in Muscle

    PubMed Central

    Gustafson, D. R.

    1970-01-01

    Positronium formation in muscle at +4°C and -4°C was examined by the measurement of the angular correlation of positron annihilation radiation. Since the positronium formation rate in ice is considerably higher than it is in water, there should be a comparable increase in the positronium formation rate in muscle tissue if recent speculation that cellular water is ordered in a semicrystalline icelike state is correct. Comparison of the angular correlation from muscle at +4°C with that from water at +4°C shows no enhancement of the positronium formation rate. Frozen muscle at -4°C shows an enhancement of the positronium formation rate of approximately half that found in ice at -4°C, indicating that most cellular water undergoes a normal water-ice transition when frozen. It is concluded therefore that cell water in muscle is not ordered in a hexagonal icelike structure. While the results are consistent with the hypothesis that cell water is in the liquid state, the hypothesis that cell water is ordered in an undetermined close packed structure which transforms to the hexagonal ice structure at or near 0°C cannot be ruled out. PMID:5436881

  17. Muscle wasting in cancer.

    PubMed

    Johns, N; Stephens, N A; Fearon, K C H

    2013-10-01

    Skeletal muscle loss appears to be the most significant clinical event in cancer cachexia and is associated with a poor outcome. With regard to such muscle loss, despite extensive study in a range of models, there is ongoing debate as to whether a reduction in protein synthesis, an increase in degradation or a combination of both is the more relevant. Each model differs in terms of key mediators and the pathways activated in skeletal muscle. Certain models do suggest that decreased synthesis accompanied by enhanced protein degradation via the ubiquitin proteasome pathway (UPP) is important. Murine models tend to involve rapid development of cachexia and may represent more acute muscle atrophy rather than the chronic wasting observed in humans. There is a paucity of human data both at a basic descriptive level and at a molecular/mechanism level. Progress in treating the human form of cancer cachexia can only move forwards through carefully designed large randomised controlled clinical trials of specific therapies with validated biomarkers of relevance to underlying mechanisms. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.

  18. A Beetle Flight Muscle Displays Leg Muscle Microstructure.

    PubMed

    Shimomura, Toshiki; Iwamoto, Hiroyuki; Vo Doan, Tat Thang; Ishiwata, Shin'ichi; Sato, Hirotaka; Suzuki, Madoka

    2016-09-20

    In contrast to major flight muscles in the Mecynorrhina torquata beetle, the third axillary (3Ax) muscle is a minor flight muscle that uniquely displays a powerful mechanical function despite its considerably small volume, ∼1/50 that of a major flight muscle. The 3Ax muscle contracts relatively slowly, and in flight strongly pulls the beating wing to attenuate the stroke amplitude. This attenuation leads to left-right turning in flight or wing folding to cease flying. What enables this small muscle to be so powerful? To explore this question, we examined the microstructure of the 3Ax muscle using synchrotron x-ray diffraction, optical microscopy, and immunoblotting analysis. We found that the 3Ax muscle has long (∼5 μm) myofilaments and that the ratio of thick (myosin) filaments to thin (actin) filaments is 1:5 or 1:6. These characteristics are not observed in the major flight muscles, which have shorter myofilaments (∼3.5 μm) with a smaller ratio (1:3), and instead are more typical of a leg muscle. Furthermore, the flight-muscle-specific troponin isoform, TnH, is not expressed in the 3Ax muscle. Since such a microstructure is suitable for generating large tension, the 3Ax muscle is appropriately designed to pull the wing strongly despite its small volume. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles.

    PubMed

    Arnold, W David; Sheth, Kajri A; Wier, Christopher G; Kissel, John T; Burghes, Arthur H; Kolb, Stephen J

    2015-09-25

    Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons.

  20. An Autologous Muscle Tissue Expansion Approach for the Treatment of Volumetric Muscle Loss

    PubMed Central

    Ward, Catherine L.; Ji, Lisa; Corona, Benjamin T.

    2015-01-01

    Abstract Volumetric muscle loss (VML) is a hallmark of orthopedic trauma with no current standard of care. As a potential therapy for some VML indications, autologous minced muscle grafts (1 mm3 pieces of muscle) are effective in promoting remarkable de novo fiber regeneration. But they require ample donor muscle tissue and therefore may be limited in their application for large clinical VML. Here, we tested the hypothesis that autologous minced grafts may be volume expanded in a collagen hydrogel, allowing for the use of lesser autologous muscle while maintaining regenerative and functional efficacy. The results of the study indicate that 50% (but not 75%) less minced graft tissue suspended in a collagen hydrogel promoted a functional improvement similar to that of a 100% minced graft repair. However, approximately half of the number of fibers regenerated de novo with 50% graft repair. Moreover, the fibers that regenerated had a smaller cross-sectional area. These findings support the concept of using autologous minced grafts for the regeneration of muscle tissue after VML, but indicate the need to identify optimal carrier materials for expansion. PMID:26309796

  1. Canine muscle fiber types and susceptibility of masticatory muscles to myositis.

    PubMed

    Orvis, J S; Cardinet, G H

    1981-01-01

    The myofiber type composition was studied in 42 different muscles of the dog to determine if there are unique features that might explain the preferential involvement of the muscles of mastication by inflammatory myopathies. The principal myofiber types for most muscles studied were type 1 and type 2A and, to a lesser extent, type 2C, whereas the dorsal group of muscles innervated by the mandibular nerve (Mm. temporalis, and tensor veli palatini) was composed only of type 2C myofibers and a variant of the type 1 myofiber whose staining intensity was not fully reversed after preincubation in acid media. The distribution of this myofiber type composition was associated with the innervation and embryologic development of the dorsal muscles innervated by the mandibular nerve. This unique myofiber type composition could provide the basis for the preferential susceptibility of these muscles to agents (e.g., immune and/or infectious) that produce myositis; however, further studies are required to assess that possibility.

  2. Developmental and functional considerations of masseter muscle partitioning.

    PubMed

    Widmer, C G; English, A W; Morris-Wiman, J

    2007-04-01

    The masseter muscle participates in a wide variety of activities including mastication, swallowing and speech. The functional demands for accurate mandibular positioning and generation of forces during incising or a power stroke require a diverse set of forces that are determined by the innate muscle form. The complex internal tendon architecture subdivides the masseter into multiple partitions that can be further subdivided into neuromuscular compartments representing small motor unit territories. Individual masseter compartments have unique biomechanical properties that, when activated individually or in groups, can generate a wide range of sagittal and off-sagittal torques about the temporomandibular joint. The myosin heavy chain (MyHC) fibre-type distribution in the adult masseter is sexually dimorphic and is influenced by hormones such as testosterone. These testosterone-dependent changes cause a phenotype switch from slower to faster fibre-types in the male. The development of the complex organization of the masseter muscle, the MyHC fibre-type message and protein expression, and the formation of endplates appear to be pre-programmed and not under control of the muscle nerve. However, secondary myotube generation and endplate maturation are nerve dependent. The delayed development of the masseter muscle compared with the facial, tongue and jaw-opening muscles may be related to the delayed functional requirements for chewing. In summary, masseter muscle form is pre-programmed prior to birth while muscle fibre contractile characteristics are refined postnatally in response to functional requirements. The motor control mechanisms that are required to coordinate the activation of discrete functional elements of this muscle remain to be determined.

  3. Hydraulically actuated artificial muscles

    NASA Astrophysics Data System (ADS)

    Meller, M. A.; Tiwari, R.; Wajcs, K. B.; Moses, C.; Reveles, I.; Garcia, E.

    2012-04-01

    Hydraulic Artificial Muscles (HAMs) consisting of a polymer tube constrained by a nylon mesh are presented in this paper. Despite the actuation mechanism being similar to its popular counterpart, which are pneumatically actuated (PAM), HAMs have not been studied in depth. HAMs offer the advantage of compliance, large force to weight ratio, low maintenance, and low cost over traditional hydraulic cylinders. Muscle characterization for isometric and isobaric tests are discussed and compared to PAMs. A model incorporating the effect of mesh angle and friction have also been developed. In addition, differential swelling of the muscle on actuation has also been included in the model. An application of lab fabricated HAMs for a meso-scale robotic system is also presented.

  4. Hysteresis in Muscle

    NASA Astrophysics Data System (ADS)

    Ramos, Jorgelina; Lynch, Stephen; Jones, David; Degens, Hans

    This paper presents examples of hysteresis from a broad range of scientific disciplines and demonstrates a variety of forms including clockwise, counterclockwise, butterfly, pinched and kiss-and-go, respectively. These examples include mechanical systems made up of springs and dampers which have been the main components of muscle models for nearly one hundred years. For the first time, as far as the authors are aware, hysteresis is demonstrated in single fibre muscle when subjected to both lengthening and shortening periodic contractions. The hysteresis observed in the experiments is of two forms. Without any relaxation at the end of lengthening or shortening, the hysteresis loop is a convex clockwise loop, whereas a concave clockwise hysteresis loop (labeled as kiss-and-go) is formed when the muscle is relaxed at the end of lengthening and shortening. This paper also presents a mathematical model which reproduces the hysteresis curves in the same form as the experimental data.

  5. Dielectric elastomer switches for smart artificial muscles

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; Calius, Emilio P.; Inamura, Tokushu; Xie, Sheng Q.; Anderson, Iain A.

    2010-08-01

    Some of the most exciting possibilities for dielectric elastomer artificial muscles consist of biologically inspired networks of smart actuators working towards common goals. However, the creation of these networks will only be realised once intelligence and feedback can be fully distributed throughout an artificial muscle device. Here we show that dielectric elastomer artificial muscles can be built with intrinsic sensor, control, and driver circuitry, bringing them closer in capability to their natural analogues. This was achieved by exploiting the piezoresistive behaviour of the actuator's highly compliant electrodes using what we have called the dielectric elastomer switch. We developed suitable switching material using carbon loaded silicone grease and experimentally demonstrated the primitives required for self-sensing actuators and digital computation, namely compliant electromechanical NAND gates and oscillator circuits. We anticipate that dielectric elastomer switches will reduce the need for bulky and rigid external circuitry as well as provide the simple distributed intelligence required for soft, biologically inspired networks of actuators. Examples include many-degree-of-freedom robotic hearts, intestines, and manipulators; wearable assistive devices; smart sensor skins and fabrics; and ultimately new types of artificial muscle embedded, electromechanical computers.

  6. Imaging of skeletal muscle.

    PubMed

    Goodwin, Douglas W

    2011-05-01

    Various diagnostic imaging techniques such as sonography, computed tomography, scintigraphy, radiography, and magnetic resonance imaging (MRI) have made possible the noninvasive evaluation of skeletal muscle injury and disease. Although these different modalities have roles to play, MRI is especially sensitive in the diagnosis of muscle disorders and injury and has proved to be useful in determining the extent of disease, in directing interventions, and in monitoring the response to therapies. This article describes how magnetic resonance images are formed and how the signal intensities in T1- and T2-weighted images may be used for diagnosis of the above-mentioned conditions and injuries. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Neural control of muscle

    NASA Technical Reports Server (NTRS)

    Max, S. R.; Markelonis, G. J.

    1983-01-01

    Cholinergic innervation regulates the physiological and biochemical properties of skeletal muscle. The mechanisms that appear to be involved in this regulation include soluble, neurally-derived polypeptides, transmitter-evoked muscle activity and the neurotransmitter, acetylcholine, itself. Despite extensive research, the interacting neural mechanisms that control such macromolecules as acetylcholinesterase, the acetylcholine receptor and glucose 6-phosphate dehydrogenase remain unclear. It may be that more simplified in vitro model systems coupled with recent dramatic advances in the molecular biology of neurally-regulated proteins will begin to allow researchers to unravel the mechanisms controlling the expression and maintenance of these macromolecules.

  8. Restoration of pinch in intrinsic muscles of the hand.

    PubMed

    Lee, Steve K; Wisser, Jamie R

    2012-02-01

    The primary intrinsic muscles responsible for key and tip pinch are the adductor pollicis, first dorsal interosseous and flexor pollicis brevis muscles. Numerous conditions can lead to their dysfunction. Non-operative treatment consists of exercises of the compensating extensor pollicis longus and flexor pollicis longus muscles and use of adaptive devices, such as larger grips. Operative treatments include tendon transfers and joint fusions. The most common tendon transfer procedures include transfering of the extensor carpi radialis brevis to the adductor pollicis muscle or transfering of the abductor pollicis longus to the first dorsal interosseous muscle. Both require use of extension tendon grafts. In cases of joint instability or arthrosis, arthrodesis of the thumb and index finger MP or IP joints, alone or in combination, may be indicated. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Metabolic Catastrophe in Mice Lacking Transferrin Receptor in Muscle

    PubMed Central

    Barrientos, Tomasa; Laothamatas, Indira; Koves, Timothy R.; Soderblom, Erik J.; Bryan, Miles; Moseley, M. Arthur; Muoio, Deborah M.; Andrews, Nancy C.

    2015-01-01

    Transferrin receptor (Tfr1) is ubiquitously expressed, but its roles in non-hematopoietic cells are incompletely understood. We used a tissue-specific conditional knockout strategy to ask whether skeletal muscle required Tfr1 for iron uptake. We found that iron assimilation via Tfr1 was critical for skeletal muscle metabolism, and that iron deficiency in muscle led to dramatic changes, not only in muscle, but also in adipose tissue and liver. Inactivation of Tfr1 incapacitated normal energy production in muscle, leading to growth arrest and a muted attempt to switch to fatty acid β oxidation, using up fat stores. Starvation signals stimulated gluconeogenesis in the liver, but amino acid substrates became limiting and hypoglycemia ensued. Surprisingly, the liver was also iron deficient, and production of the iron regulatory hormone hepcidin was depressed. Our observations reveal a complex interaction between iron homeostasis and metabolism that has implications for metabolic and iron disorders. PMID:26870796

  10. Improved mechanism for capturing muscle power for circulatory support.

    PubMed

    Trumble, Dennis R; Melvin, David B; Byrne, Mark T; Magovern, James A

    2005-09-01

    Although it is now understood that trained skeletal muscle can generate enough steady-state power to provide significant circulatory support, there are currently no means by which to tap this endogenous energy source to aid the failing heart. To that end, an implantable muscle energy converter (MEC) has been constructed and its function has been improved to optimize durability, anatomic fit, and mechanical efficiency. Bench tests show that MEC transmission losses average less than 10% of total work input and that about 85% of this muscle power is successfully transferred to the working fluid of the pump. Results from canine implant trials confirm excellent biocompatibility and demonstrate that contractile work of the latissimus dorsi muscle-measured to 290 mJ/stroke in one dog-can be transmitted within the body at levels consistent with cardiac assist requirements. These findings suggest that muscle-powered cardiac assist devices are feasible and that efforts to further develop this technology are warranted.

  11. Effects of practice on variability of muscle force.

    PubMed

    Chung-Hoon, Kaiwi; Tracy, Brian L; Marcus, Robin; Dibble, Lee; Burgess, Paul; Lastayo, Paul C

    2015-04-01

    The motor skill required to decrease the variability in muscle force steadiness can be challenging. The purposes of this study were to determine whether muscle force steadiness improved following repeated trials and whether the number of trials varied for healthy younger adults, healthy older adults, and older adults who have fallen to obtain stable muscle force steadiness measures. Sixty participants performed 30 concentric and eccentric contractions of the knee extensors on an isokinetic dynamometer. Each group had significant improvements in muscle force steadiness and obtained stable measures within six to nine trials. Healthy younger and older adults, and older adults who have fallen, can improve muscle force steadiness. These findings provide a framework for methodological approaches when testing steadiness in varying populations.

  12. SIRT1 Protein, by Blocking the Activities of Transcription Factors FoxO1 and FoxO3, Inhibits Muscle Atrophy and Promotes Muscle Growth*

    PubMed Central

    Lee, Donghoon; Goldberg, Alfred L.

    2013-01-01

    In several cell types, the protein deacetylase SIRT1 regulates the activities of FoxO transcription factors whose activation is critical in muscle atrophy. However, the possible effects of SIRT1 on the activity of FoxOs in skeletal muscle and on the regulation of muscle size have not been investigated. Here, we show that after food deprivation, SIRT1 levels fall dramatically in type II skeletal muscles (tibialis anterior), which show marked atrophy, unlike in the liver (where SIRT1 rises) or heart or the soleus, a type I muscle (where SIRT1 is unchanged). Maintenance of high SIRT1 levels by electroporation in mouse muscle inhibits markedly the muscle wasting induced by fasting as well as by denervation, and these protective effects require its deacetylase activity. SIRT1 overexpression reduces muscle wasting by blocking the activation of FoxO1 and 3. It thus prevents the induction of key atrogenes, including the muscle-specific ubiquitin ligases, atrogin1 and MuRF1, and multiple autophagy (Atg) genes and the increase in overall proteolysis. In normal muscle, SIRT1 overexpression by electroporation causes rapid fiber hypertrophy without, surprisingly, activation of the PI3K-AKT signaling pathway. Thus, SIRT1 activation favors postnatal muscle growth, and its fall appears to be critical for atrophy during fasting. Consequently, SIRT1 activation represents an attractive possible pharmacological approach to prevent muscle wasting and cachexia. PMID:24003218

  13. Caveolin-3 is aberrantly expressed in skeletal muscle cells in myasthenia gravis.

    PubMed

    Iwasa, Kazuo; Furukawa, Yutaka; Yoshikawa, Hiroaki; Yamada, Masahito

    2016-12-15

    Caveolin-3 is a muscle-specific membrane protein that localizes to the sarcolemma and T-tubule system. Caveolin-3 is needed for muscle repair and skeletal muscle development. The objective of this study was to compare caveolin-3 expression in myasthenia gravis (MG) and control muscles. Caveolin-3 was abnormally expressed in the MG muscle membrane, with partial loss of expression and overexpression in 5/15 and 10/15 patients, respectively. Caveolin-3 mRNA and protein levels were higher in MG than in control muscles, suggesting that partial deficiency of caveolin-3 is occasionally detected in MG muscle and that caveolin-3 overexpression may be required after MG muscle damage. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Role of IGF-I in follistatin-induced skeletal muscle hypertrophy

    PubMed Central

    Kalista, Stéphanie; Loumaye, Audrey; Ritvos, Olli; Lause, Pascale; Ferracin, Benjamin; Thissen, Jean-Paul

    2015-01-01

    Follistatin, a physiological inhibitor of myostatin, induces a dramatic increase in skeletal muscle mass, requiring the type 1 IGF-I receptor/Akt/mTOR pathway. The aim of the present study was to investigate the role of IGF-I and insulin, two ligands of the IGF-I receptor, in the follistatin hypertrophic action on skeletal muscle. In a first step, we showed that follistatin increases muscle mass while being associated with a downregulation of muscle IGF-I expression. In addition, follistatin retained its full hypertrophic effect toward muscle in hypophysectomized animals despite very low concentrations of circulating and muscle IGF-I. Furthermore, follistatin did not increase muscle sensitivity to IGF-I in stimulating phosphorylation of Akt but, surprisingly, decreased it once hypertrophy was present. Taken together, these observations indicate that increased muscle IGF-I production or sensitivity does not contribute to the muscle hypertrophy caused by follistatin. Unlike low IGF-I, low insulin, as obtained by streptozotocin injection, attenuated the hypertrophic action of follistatin on skeletal muscle. Moreover, the full anabolic response to follistatin was restored in this condition by insulin but also by IGF-I infusion. Therefore, follistatin-induced muscle hypertrophy requires the activation of the insulin/IGF-I pathway by either insulin or IGF-I. When insulin or IGF-I alone is missing, follistatin retains its full anabolic effect, but when both are deficient, as in streptozotocin-treated animals, follistatin fails to stimulate muscle growth. PMID:26219865

  15. Mandibular arch muscle identity is regulated by a conserved molecular process during vertebrate development.

    PubMed

    Knight, Robert D; Mebus, Katharina; Roehl, Henry H

    2008-06-15

    Vertebrate head muscles exhibit a highly conserved pattern of innervation and skeletal connectivity and yet it is unclear whether the molecular basis of their development is likewise conserved. Using the highly conserved expression of Engrailed 2 (En2) as a marker of identity in the dorsal mandibular muscles of zebrafish, we have investigated the molecular signals and tissues required for patterning these muscles. We show that muscle En2 expression is not dependent on signals from the adjacent neural tube, pharyngeal endoderm or axial mesoderm and that early identity of head muscles does not require bone morphogenetic pathway, Notch or Hedgehog (Hh) signalling. However, constrictor dorsalis En2 expression is completely lost after a loss of fibroblast growth factor (Fgf) signalling and we show that is true throughout head muscle development. These results suggest that head muscle identity is dependent on Fgf signalling. Data from experiments performed in chick suggest a similar regulation of En2 genes by Fgf signalling revealing a conserved mechanism for specifying head muscle identity. We present evidence that another key gene important in the development of mouse head muscles, Tbx1, is also critical for specification of mandibular arch muscle identity and that this is independent of Fgf signalling. These data imply that dorsal mandibular arch muscle identity in fish, chick and mouse is specified by a highly conserved molecular process despite differing functions of these muscles in different lineages.

  16. Function of longitudinal vs circular muscle fibers in esophageal peristalsis, deduced with mathematical modeling

    PubMed Central

    Brasseur, James G; Nicosia, Mark A; Pal, Anupam; Miller, Larry S

    2007-01-01

    We summarize from previous works the functions of circular vs. longitudinal muscle in esophageal peristaltic bolus transport using a mix of experimental data, the conservation laws of mechanics and mathematical modeling. Whereas circular muscle tone generates radial closure pressure to create a local peristaltic closure wave, longitudinal muscle tone has two functions, one physiological with mechanical implications, and one purely mechanical. Each of these functions independently reduces the tension of individual circular muscle fibers to maintain closure as a consequence of shortening of longitudinal muscle locally coordinated with increasing circular muscle tone. The physiological function is deduced by combining basic laws of mechanics with concurrent measurements of intraluminal pressure from manometry, and changes in cross sectional muscle area from endoluminal ultrasound from which local longitudinal shortening (LLS) can be accurately obtained. The purely mechanical function of LLS was discovered from mathematical modeling of peristaltic esophageal transport with the axial wall motion generated by LLS. Physiologically, LLS concentrates circular muscle fibers where closure pressure is highest. However, the mechanical function of LLS is to reduce the level of pressure required to maintain closure. The combined physiological and mechanical consequences of LLS are to reduce circular muscle fiber tension and power by as much as 1/10 what would be required for peristalsis without the longitudinal muscle layer, a tremendous benefit that may explain the existence of longitudinal muscle fiber in the gut. We also review what is understood of the role of longitudinal muscle in esophageal emptying, reflux and pathology. PMID:17457963

  17. Cellular mechanism of eccentric-induced muscle injury and its relationship with sarcomere heterogeneity

    PubMed Central

    Choi, Seung Jun

    2014-01-01

    Activity-induced muscle injury and dysfunction have been identified as key components of musculoskeletal injuries. These injuries often occur following eccentric contractions, when the muscle is under tension and stretched by a force that is greater than the force generated by the muscle. Many daily activities require muscles to perform eccentric contractions, including walking (or running) downhill or down stairs, lowering heavy objects, and landing from a jump. Injuries often occur when these activities are performed at high intensity or for prolonged periods of time. General features of eccentric-induced muscle injury are well documented and include disruption of intracellular muscle structure, prolonged muscle weakness and dysfunction, a delayed-onset muscle soreness, and inflammation. Several weeks are required for the affected tissue to fully regenerate and recover from eccentric-induced muscle injury. Possible mechanisms responsible for eccentric-induced muscle injury are activation impairment and structural disruption of the sarcomere. These two factors seem to be the main sources of eccentric-induced muscle injury. Rather than being separate mechanisms they may be complimentary and interact with each other. Therefore, in this review we will focus on the two main cellular mechanism of muscle cell injury following accustomed eccentric contraction. PMID:25210693

  18. A method for comparing manual muscle strength measurements with joint moments during walking.

    PubMed

    Fosang, Adrienne; Baker, Richard

    2006-12-01

    This paper describes a protocol for dynamometer assisted manual muscle testing of the major muscle groups of the lower extremity and its application to 11 able-bodied children who also had conventional gait analysis to obtain joint kinetics. Data from the manual muscle testing was processed in such a way that the results for maximum muscle strength (grade 5) and resistance against gravity alone (grade 3) were presented in Nm/kg allowing direct comparison with conventional joint kinetics. The strength measurements of the hip muscles and the knee extensors were between two and three times the moments exerted during normal walking. Those of the knee flexors and dorsiflexors were about five times the joint moments. Measured plantarflexor strength was only just greater than the moment exerted during walking. These results, particularly those for the plantarflexors, question how valid it is to use measures of isometric muscle strength as indicators of muscle function during activity. The study also compares grade 3 muscle strength with both grade 5 strength and the maximum joint moments. For all muscle groups tested grade 3 muscle strength was less than the maximum moment exerted during normal walking. For the plantarflexors it was less than 1% of that moment. The study demonstrates that reliable isometric muscle testing is possible in able-bodied children but requires considerable care and is time consuming. More work is required to understand how measurements made in this way relate to how muscles function during activity.

  19. Cellular mechanism of eccentric-induced muscle injury and its relationship with sarcomere heterogeneity.

    PubMed

    Choi, Seung Jun

    2014-08-01

    Activity-induced muscle injury and dysfunction have been identified as key components of musculoskeletal injuries. These injuries often occur following eccentric contractions, when the muscle is under tension and stretched by a force that is greater than the force generated by the muscle. Many daily activities require muscles to perform eccentric contractions, including walking (or running) downhill or down stairs, lowering heavy objects, and landing from a jump. Injuries often occur when these activities are performed at high intensity or for prolonged periods of time. General features of eccentric-induced muscle injury are well documented and include disruption of intracellular muscle structure, prolonged muscle weakness and dysfunction, a delayed-onset muscle soreness, and inflammation. Several weeks are required for the affected tissue to fully regenerate and recover from eccentric-induced muscle injury. Possible mechanisms responsible for eccentric-induced muscle injury are activation impairment and structural disruption of the sarcomere. These two factors seem to be the main sources of eccentric-induced muscle injury. Rather than being separate mechanisms they may be complimentary and interact with each other. Therefore, in this review we will focus on the two main cellular mechanism of muscle cell injury following accustomed eccentric contraction.

  20. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    PubMed

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff