Krehl, Claudia; Sharples, Sarah
2012-01-01
The paper investigates the requirements for multimodal interaction on mobile devices in an end-to-end journey context. Traditional interfaces are deemed cumbersome and inefficient for exchanging information with the user. Multimodal interaction provides a different user-centred approach allowing for more natural and intuitive interaction between humans and computers. It is especially suitable for mobile interaction as it can overcome additional constraints including small screens, awkward keypads, and continuously changing settings - an inherent property of mobility. This paper is based on end-to-end journeys where users encounter several contexts during their journeys. Interviews and focus groups explore the requirements for multimodal interaction design for mobile devices by examining journey stages and identifying the users' information needs and sources. Findings suggest that multimodal communication is crucial when users multitask. Choosing suitable modalities depend on user context, characteristics and tasks.
Information for the user in design of intelligent systems
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Schreckenghost, Debra L.
1993-01-01
Recommendations are made for improving intelligent system reliability and usability based on the use of information requirements in system development. Information requirements define the task-relevant messages exchanged between the intelligent system and the user by means of the user interface medium. Thus, these requirements affect the design of both the intelligent system and its user interface. Many difficulties that users have in interacting with intelligent systems are caused by information problems. These information problems result from the following: (1) not providing the right information to support domain tasks; and (2) not recognizing that using an intelligent system introduces new user supervisory tasks that require new types of information. These problems are especially prevalent in intelligent systems used for real-time space operations, where data problems and unexpected situations are common. Information problems can be solved by deriving information requirements from a description of user tasks. Using information requirements embeds human-computer interaction design into intelligent system prototyping, resulting in intelligent systems that are more robust and easier to use.
Wireless device connection problems and design solutions
NASA Astrophysics Data System (ADS)
Song, Ji-Won; Norman, Donald; Nam, Tek-Jin; Qin, Shengfeng
2016-09-01
Users, especially the non-expert users, commonly experience problems when connecting multiple devices with interoperability. While studies on multiple device connections are mostly concentrated on spontaneous device association techniques with a focus on security aspects, the research on user interaction for device connection is still limited. More research into understanding people is needed for designers to devise usable techniques. This research applies the Research-through-Design method and studies the non-expert users' interactions in establishing wireless connections between devices. The "Learning from Examples" concept is adopted to develop a study focus line by learning from the expert users' interaction with devices. This focus line is then used for guiding researchers to explore the non-expert users' difficulties at each stage of the focus line. Finally, the Research-through-Design approach is used to understand the users' difficulties, gain insights to design problems and suggest usable solutions. When connecting a device, the user is required to manage not only the device's functionality but also the interaction between devices. Based on learning from failures, an important insight is found that the existing design approach to improve single-device interaction issues, such as improvements to graphical user interfaces or computer guidance, cannot help users to handle problems between multiple devices. This study finally proposes a desirable user-device interaction in which images of two devices function together with a system image to provide the user with feedback on the status of the connection, which allows them to infer any required actions.
Reduction of User Interaction by Autonomy
NASA Technical Reports Server (NTRS)
Morfopoulos, Arin; McHenry, Michael; Matthies, Larry
2006-01-01
This paper describes experiments that quantify the improvement that autonomous behaviors enable in the amount of user interaction required to navigate a robot in urban environments. Many papers have discussed various ways to measure the absolute level of autonomy of a system; we measured the relative improvement of autonomous behaviors over teleoperation across multiple traverses of the same course. We performed four runs each on an 'easy' course and a 'hard' course, where half the runs were teleoperated and half used more autonomous behaviors. Statistics show 40-70% reductions in the amount of time the user interacts with the control station; however, with the behaviors tested, user attention remained on the control station even when he was not interacting. Reducing the need for attention will require better obstacle detection and avoidance and better absolute position estimation.
TIGER: A graphically interactive grid system for turbomachinery applications
NASA Technical Reports Server (NTRS)
Shih, Ming-Hsin; Soni, Bharat K.
1992-01-01
Numerical grid generation algorithm associated with the flow field about turbomachinery geometries is presented. Graphical user interface is developed with FORMS Library to create an interactive, user-friendly working environment. This customized algorithm reduces the man-hours required to generate a grid associated with turbomachinery geometry, as compared to the use of general-purpose grid generation softwares. Bezier curves are utilized both interactively and automatically to accomplish grid line smoothness and orthogonality. Graphical User Interactions are provided in the algorithm, allowing the user to design and manipulate the grid lines with a mouse.
A framework supporting the development of a Grid portal for analysis based on ROI.
Ichikawa, K; Date, S; Kaishima, T; Shimojo, S
2005-01-01
In our research on brain function analysis, users require two different simultaneous types of processing: interactive processing to a specific part of data and high-performance batch processing to an entire dataset. The difference between these two types of processing is in whether or not the analysis is for data in the region of interest (ROI). In this study, we propose a Grid portal that has a mechanism to freely assign computing resources to the users on a Grid environment according to the users' two different types of processing requirements. We constructed a Grid portal which integrates interactive processing and batch processing by the following two mechanisms. First, a job steering mechanism controls job execution based on user-tagged priority among organizations with heterogeneous computing resources. Interactive jobs are processed in preference to batch jobs by this mechanism. Second, a priority-based result delivery mechanism that administrates a rank of data significance. The portal ensures a turn-around time of interactive processing by the priority-based job controlling mechanism, and provides the users with quality of services (QoS) for interactive processing. The users can access the analysis results of interactive jobs in preference to the analysis results of batch jobs. The Grid portal has also achieved high-performance computation of MEG analysis with batch processing on the Grid environment. The priority-based job controlling mechanism has been realized to freely assign computing resources to the users' requirements. Furthermore the achievement of high-performance computation contributes greatly to the overall progress of brain science. The portal has thus made it possible for the users to flexibly include the large computational power in what they want to analyze.
Natural interaction for unmanned systems
NASA Astrophysics Data System (ADS)
Taylor, Glenn; Purman, Ben; Schermerhorn, Paul; Garcia-Sampedro, Guillermo; Lanting, Matt; Quist, Michael; Kawatsu, Chris
2015-05-01
Military unmanned systems today are typically controlled by two methods: tele-operation or menu-based, search-andclick interfaces. Both approaches require the operator's constant vigilance: tele-operation requires constant input to drive the vehicle inch by inch; a menu-based interface requires eyes on the screen in order to search through alternatives and select the right menu item. In both cases, operators spend most of their time and attention driving and minding the unmanned systems rather than on being a warfighter. With these approaches, the platform and interface become more of a burden than a benefit. The availability of inexpensive sensor systems in products such as Microsoft Kinect™ or Nintendo Wii™ has resulted in new ways of interacting with computing systems, but new sensors alone are not enough. Developing useful and usable human-system interfaces requires understanding users and interaction in context: not just what new sensors afford in terms of interaction, but how users want to interact with these systems, for what purpose, and how sensors might enable those interactions. Additionally, the system needs to reliably make sense of the user's inputs in context, translate that interpretation into commands for the unmanned system, and give feedback to the user. In this paper, we describe an example natural interface for unmanned systems, called the Smart Interaction Device (SID), which enables natural two-way interaction with unmanned systems including the use of speech, sketch, and gestures. We present a few example applications SID to different types of unmanned systems and different kinds of interactions.
Network Control Center User Planning System (NCC UPS)
NASA Astrophysics Data System (ADS)
Dealy, Brian
1991-09-01
NCC UPS is presented in the form of the viewgraphs. The following subject areas are covered: UPS overview; NCC UPS role; major NCC UPS functional requirements; interactive user access levels; UPS interfaces; interactive user subsystem; interface navigation; scheduling screen hierarchy; interactive scheduling input panels; autogenerated schedule request panel; schedule data tabular display panel; schedule data graphic display panel; graphic scheduling aid design; and schedule data graphic display.
Network Control Center User Planning System (NCC UPS)
NASA Technical Reports Server (NTRS)
Dealy, Brian
1991-01-01
NCC UPS is presented in the form of the viewgraphs. The following subject areas are covered: UPS overview; NCC UPS role; major NCC UPS functional requirements; interactive user access levels; UPS interfaces; interactive user subsystem; interface navigation; scheduling screen hierarchy; interactive scheduling input panels; autogenerated schedule request panel; schedule data tabular display panel; schedule data graphic display panel; graphic scheduling aid design; and schedule data graphic display.
ERIC Educational Resources Information Center
Liaupsin, Carl J.; Scott, Terry M.; Nelson, C. Michael
This user's manual and facilitator's guide is intended for use with an accompanying interactive CD-ROM to provide a complete training program in conducting functional behavioral assessments (FBAs) as required under the 1997 reauthorization of the Individuals with Disabilities Education Act. Chapter 1 provides general information for users, such as…
ABSENTEE COMPUTATIONS IN A MULTIPLE-ACCESS COMPUTER SYSTEM.
require user interaction, and the user may therefore want to run these computations ’ absentee ’ (or, user not present). A mechanism is presented which...provides for the handling of absentee computations in a multiple-access computer system. The design is intended to be implementation-independent...Some novel features of the system’s design are: a user can switch computations from interactive to absentee (and vice versa), the system can
Development of regional climate scenarios in the Netherlands - involvement of users
NASA Astrophysics Data System (ADS)
Bessembinder, Janette; Overbeek, Bernadet
2013-04-01
Climate scenarios are consistent and plausible pictures of possible future climates. They are intended for use in studies exploring the impacts of climate change, and to formulate possible adaptation strategies. To ensure that the developed climate scenarios are relevant to the intended users, interaction with the users is needed. As part of the research programmes "Climate changes Spatial Planning" and "Knowledge for Climate" several projects on climate services, tailoring of climate information and communication were conducted. Some of the important lessons learned about user interaction are: *) To be able to deliver relevant climate information in the right format, proper knowledge is required on who will be using the climate information and data, how it will be used and why they use it; *) Users' requirements can be very diverse and requirements may change over time. Therefore, sustained (personal) contact with users is required; *) Organising meetings with climate researchers and users of climate information together, and working together in projects results in mutual understanding on the requirements of users and the limitations to deliver certain types of climate information, which facilitates the communication and results in more widely accepted products; *) Information and communication should be adapted to the type of users (e.g. impact researchers or policy makers) and to the type of problem (unstructured problems require much more contact with the users). In 2001 KNMI developed climate scenarios for the National Commission on Water management in the 21st century (WB21 scenarios). In 2006 these were replaced by a the KNMI'06 scenarios, intended for a broader group of users. The above lessons are now taken into account during the development of the next generation of climate scenarios for the Netherlands, expected at the end of 2013, after the publication of the IPCC WG1 report: *) users' requirements are taken into account explicitly in the whole process of the development of the climate scenarios; *) users are involved already in the early phases of the development of new scenarios, among others in the following way: **) workshops on users' requirements to check whether they have changed and to get more information; **) feedback group of users to get more detailed feedback on the modes of communication; **) newsletter with information on the progress and procedures to be followed and separate workshops for researchers and policy makers with different levels of detail; **) projects together with impact researchers: tailoring of data and in order to be able to present impact information consistent with the climate scenarios much earlier. During the presentation more detailed information will be given on the interaction with users.
ANNIE - INTERACTIVE PROCESSING OF DATA BASES FOR HYDROLOGIC MODELS.
Lumb, Alan M.; Kittle, John L.
1985-01-01
ANNIE is a data storage and retrieval system that was developed to reduce the time and effort required to calibrate, verify, and apply watershed models that continuously simulate water quantity and quality. Watershed models have three categories of input: parameters to describe segments of a drainage area, linkage of the segments, and time-series data. Additional goals for ANNIE include the development of software that is easily implemented on minicomputers and some microcomputers and software that has no special requirements for interactive display terminals. Another goal is for the user interaction to be based on the experience of the user so that ANNIE is helpful to the inexperienced user and yet efficient and brief for the experienced user. Finally, the code should be designed so that additional hydrologic models can easily be added to ANNIE.
Davis, Brian N.; Werpy, Jason; Friesz, Aaron M.; Impecoven, Kevin; Quenzer, Robert; Maiersperger, Tom; Meyer, David J.
2015-01-01
Current methods of searching for and retrieving data from satellite land remote sensing archives do not allow for interactive information extraction. Instead, Earth science data users are required to download files over low-bandwidth networks to local workstations and process data before science questions can be addressed. New methods of extracting information from data archives need to become more interactive to meet user demands for deriving increasingly complex information from rapidly expanding archives. Moving the tools required for processing data to computer systems of data providers, and away from systems of the data consumer, can improve turnaround times for data processing workflows. The implementation of middleware services was used to provide interactive access to archive data. The goal of this middleware services development is to enable Earth science data users to access remote sensing archives for immediate answers to science questions instead of links to large volumes of data to download and process. Exposing data and metadata to web-based services enables machine-driven queries and data interaction. Also, product quality information can be integrated to enable additional filtering and sub-setting. Only the reduced content required to complete an analysis is then transferred to the user.
Human-computer interface including haptically controlled interactions
Anderson, Thomas G.
2005-10-11
The present invention provides a method of human-computer interfacing that provides haptic feedback to control interface interactions such as scrolling or zooming within an application. Haptic feedback in the present method allows the user more intuitive control of the interface interactions, and allows the user's visual focus to remain on the application. The method comprises providing a control domain within which the user can control interactions. For example, a haptic boundary can be provided corresponding to scrollable or scalable portions of the application domain. The user can position a cursor near such a boundary, feeling its presence haptically (reducing the requirement for visual attention for control of scrolling of the display). The user can then apply force relative to the boundary, causing the interface to scroll the domain. The rate of scrolling can be related to the magnitude of applied force, providing the user with additional intuitive, non-visual control of scrolling.
Human-telerobot interactions - Information, control, and mental models
NASA Technical Reports Server (NTRS)
Smith, Randy L.; Gillan, Douglas J.
1987-01-01
A part of the NASA's Space Station will be a teleoperated robot (telerobot) with arms for grasping and manipulation, feet for holding onto objects, and television cameras for visual feedback. The objective of the work described in this paper is to develop the requirements and specifications for the user-telerobot interface and to determine through research and testing that the interface results in efficient system operation. The focus of the development of the user-telerobot interface is on the information required by the user, the user inputs, and the design of the control workstation. Closely related to both the information required by the user and the user's control of the telerobot is the user's mental model of the relationship between the control inputs and the telerobot's actions.
Rivera-Gutierrez, Diego; Ferdig, Rick; Li, Jian; Lok, Benjamin
2014-04-01
We have created You, M.D., an interactive museum exhibit in which users learn about topics in public health literacy while interacting with virtual humans. You, M.D. is equipped with a weight sensor, a height sensor and a Microsoft Kinect that gather basic user information. Conceptually, You, M.D. could use this user information to dynamically select the appearance of the virtual humans in the interaction attempting to improve learning outcomes and user perception for each particular user. For this concept to be possible, a better understanding of how different elements of the visual appearance of a virtual human affects user perceptions is required. In this paper, we present the results of an initial user study with a large sample size (n =333) ran using You, M.D. The study measured users reactions based on the users gender and body-mass index (BMI) when facing virtual humans with BMI either concordant or discordant from the users BMI. The results of the study indicate that concordance between the users BMI and the virtual humans BMI affects male and female users differently. The results also show that female users rate virtual humans as more knowledgeable than male users rate the same virtual humans.
Model-Driven Development of Interactive Multimedia Applications with MML
NASA Astrophysics Data System (ADS)
Pleuss, Andreas; Hussmann, Heinrich
There is an increasing demand for high-quality interactive applications which combine complex application logic with a sophisticated user interface, making use of individual media objects like graphics, animations, 3D graphics, audio or video. Their development is still challenging as it requires the integration of software design, user interface design, and media design.
Implications of the Social Web Environment for User Story Education
ERIC Educational Resources Information Center
Fancott, Terrill; Kamthan, Pankaj; Shahmir, Nazlie
2012-01-01
In recent years, user stories have emerged in academia, as well as industry, as a notable approach for expressing user requirements of interactive software systems that are developed using agile methodologies. There are social aspects inherent to software development, in general, and user stories, in particular. This paper presents directions and…
Cortellessa, Gabriella; Fracasso, Francesca; Sorrentino, Alessandra; Orlandini, Andrea; Bernardi, Giulio; Coraci, Luca; De Benedictis, Riccardo; Cesta, Amedeo
2018-02-01
This article describes an enhanced telepresence robot named ROBIN, part of a telecare system derived from the GIRAFFPLUS project for supporting and monitoring older adults at home. ROBIN is integrated in a sensor-rich environment that aims to continuously monitor physical and psychological wellbeing of older persons living alone. The caregivers (formal/informal) can communicate through it with their assisted persons. Long-term trials in real houses highlighted several user requirements that inspired improvements on the robotic platform. The enhanced telepresence robot was assessed by users to test its suitability to support social interaction and provide motivational feedback on health-related aspects. Twenty-five users (n = 25) assessed the new multimodal interaction capabilities and new communication services. A psychophysiological approach was adopted to investigate aspects like engagement, usability, and affective impact, as well as the possible role of individual differences on the quality of human-robot interaction. ROBIN was overall judged usable, the interaction with/through it resulted pleasant and the required workload was limited, thus supporting the idea of using it as a central component for remote assistance and social participation. Open-minded users tended to have a more positive interaction with it. This work describes an enabling technology for remote assistance and social communication. It highlights the importance of being compliant with users' needs to develop solutions easy to use and able to foster their social connections. The role of personality appeared to be relevant for the interaction, underscoring a clear role of the service personalization.
User Localization During Human-Robot Interaction
Alonso-Martín, F.; Gorostiza, Javi F.; Malfaz, María; Salichs, Miguel A.
2012-01-01
This paper presents a user localization system based on the fusion of visual information and sound source localization, implemented on a social robot called Maggie. One of the main requisites to obtain a natural interaction between human-human and human-robot is an adequate spatial situation between the interlocutors, that is, to be orientated and situated at the right distance during the conversation in order to have a satisfactory communicative process. Our social robot uses a complete multimodal dialog system which manages the user-robot interaction during the communicative process. One of its main components is the presented user localization system. To determine the most suitable allocation of the robot in relation to the user, a proxemic study of the human-robot interaction is required, which is described in this paper. The study has been made with two groups of users: children, aged between 8 and 17, and adults. Finally, at the end of the paper, experimental results with the proposed multimodal dialog system are presented. PMID:23012577
User localization during human-robot interaction.
Alonso-Martín, F; Gorostiza, Javi F; Malfaz, María; Salichs, Miguel A
2012-01-01
This paper presents a user localization system based on the fusion of visual information and sound source localization, implemented on a social robot called Maggie. One of the main requisites to obtain a natural interaction between human-human and human-robot is an adequate spatial situation between the interlocutors, that is, to be orientated and situated at the right distance during the conversation in order to have a satisfactory communicative process. Our social robot uses a complete multimodal dialog system which manages the user-robot interaction during the communicative process. One of its main components is the presented user localization system. To determine the most suitable allocation of the robot in relation to the user, a proxemic study of the human-robot interaction is required, which is described in this paper. The study has been made with two groups of users: children, aged between 8 and 17, and adults. Finally, at the end of the paper, experimental results with the proposed multimodal dialog system are presented.
Paper simulation techniques in user requirements analysis for interactive computer systems
NASA Technical Reports Server (NTRS)
Ramsey, H. R.; Atwood, M. E.; Willoughby, J. K.
1979-01-01
This paper describes the use of a technique called 'paper simulation' in the analysis of user requirements for interactive computer systems. In a paper simulation, the user solves problems with the aid of a 'computer', as in normal man-in-the-loop simulation. In this procedure, though, the computer does not exist, but is simulated by the experimenters. This allows simulated problem solving early in the design effort, and allows the properties and degree of structure of the system and its dialogue to be varied. The technique, and a method of analyzing the results, are illustrated with examples from a recent paper simulation exercise involving a Space Shuttle flight design task
Intelligent user interface concept for space station
NASA Technical Reports Server (NTRS)
Comer, Edward; Donaldson, Cameron; Bailey, Elizabeth; Gilroy, Kathleen
1986-01-01
The space station computing system must interface with a wide variety of users, from highly skilled operations personnel to payload specialists from all over the world. The interface must accommodate a wide variety of operations from the space platform, ground control centers and from remote sites. As a result, there is a need for a robust, highly configurable and portable user interface that can accommodate the various space station missions. The concept of an intelligent user interface executive, written in Ada, that would support a number of advanced human interaction techniques, such as windowing, icons, color graphics, animation, and natural language processing is presented. The user interface would provide intelligent interaction by understanding the various user roles, the operations and mission, the current state of the environment and the current working context of the users. In addition, the intelligent user interface executive must be supported by a set of tools that would allow the executive to be easily configured and to allow rapid prototyping of proposed user dialogs. This capability would allow human engineering specialists acting in the role of dialog authors to define and validate various user scenarios. The set of tools required to support development of this intelligent human interface capability is discussed and the prototyping and validation efforts required for development of the Space Station's user interface are outlined.
User clustering in smartphone applications.
Schaefers, Klaus; Ribeiro, David
2012-01-01
In the context of mobile health applications usability is a crucial factor to achieve user acceptance. The successful user interface (UI) design requires a deep understanding of the needs and requirements of the targeted audience. This paper explores the application of the K-Means algorithm on smartphone usage data in order to offer Human Computer Interaction (HCI) specialists a better insight into their user group. Two different feature space representations are introduced and used to identify persona like stereotypes in a real world data set, which was obtained from a public available smartphone application.
Designing Privacy Notices: Supporting User Understanding and Control
ERIC Educational Resources Information Center
Kelley, Patrick Gage
2013-01-01
Users are increasingly expected to manage complex privacy settings in their normal online interactions. From shopping to social networks, users make decisions about sharing their personal information with corporations and contacts, frequently with little assistance. Current solutions require consumers to read long documents or go out of their way…
Visualisation and interaction design solutions to address specific demands in shared home care.
Scandurra, Isabella; Hägglund, Maria; Koch, Sabine
2006-01-01
When care professionals from different organisations are involved in patient care, their different views on the care process may not be meaningfully integrated. To use visualisation and interaction design solutions addressing the specific demands of shared care in order to support a collaborative work process. Participatory design, comprising interdisciplinary seminar series with real users and iterative prototyping, was applied. A set of interaction and visualisation design solutions to address care professionals' requirements in shared home care is presented, introducing support for identifying origin of information, holistic presentation of information, user group specific visualisation, avoiding cognitive overload, coordination of work and planning, and quick overviews. The design solutions are implemented in an integrated virtual health record system supporting cooperation and coordination in shared home care for the elderly. The described requirements are, however, generalized to comprise all shared care work. The presented design considerations allow healthcare professionals in different organizations to share patient data on mobile devices. Visualization and interaction design facilitates specific work situations and assists in handling specific demands in shared care. The user interface is adapted to different user groups with similar yet distinct needs. Consequently different views supporting cooperative work and presenting shared information in holistic overviews are developed.
CE-SAM: a conversational interface for ISR mission support
NASA Astrophysics Data System (ADS)
Pizzocaro, Diego; Parizas, Christos; Preece, Alun; Braines, Dave; Mott, David; Bakdash, Jonathan Z.
2013-05-01
There is considerable interest in natural language conversational interfaces. These allow for complex user interactions with systems, such as fulfilling information requirements in dynamic environments, without requiring extensive training or a technical background (e.g. in formal query languages or schemas). To leverage the advantages of conversational interactions we propose CE-SAM (Controlled English Sensor Assignment to Missions), a system that guides users through refining and satisfying their information needs in the context of Intelligence, Surveillance, and Reconnaissance (ISR) operations. The rapidly-increasing availability of sensing assets and other information sources poses substantial challenges to effective ISR resource management. In a coalition context, the problem is even more complex, because assets may be "owned" by different partners. We show how CE-SAM allows a user to refine and relate their ISR information needs to pre-existing concepts in an ISR knowledge base, via conversational interaction implemented on a tablet device. The knowledge base is represented using Controlled English (CE) - a form of controlled natural language that is both human-readable and machine processable (i.e. can be used to implement automated reasoning). Users interact with the CE-SAM conversational interface using natural language, which the system converts to CE for feeding-back to the user for confirmation (e.g. to reduce misunderstanding). We show that this process not only allows users to access the assets that can support their mission needs, but also assists them in extending the CE knowledge base with new concepts.
Scientific customer needs - NASA user
NASA Technical Reports Server (NTRS)
Black, David C.
1987-01-01
Some requirements for scientific users of the Space Station are considered. The use of testbeds to evaluate design concepts for information systems, and for interfacing between designers and builders of systems is examined. The need for an information system that provides an effective interaction between ground-based users and their space-based equipment is discussed.
Participatory interaction design in user requirements specification in healthcare.
Martikainen, Susanna; Ikävalko, Pauliina; Korpela, Mikko
2010-01-01
Healthcare information systems are accused of poor usability even in the popular media in Finland. Doctors especially have been very critical and actively expressed their opinions in public. User involvement and user-centered design methods are seen as the key solution to usability problems. In this paper we describe a research case where participatory methods were experimented within healthcare information systems development in medicinal care in a hospital. The study was part of a larger research project on Activity-driven Information Systems Development in healthcare. The study started by finding out about and modeling the present state of medicinal care in the hospital. After that it was important to define and model the goal state. The goal state, facilitated by the would-be software package, was modeled with the help of user interface drawings as one way of prototyping. Traditional usability methods were extended during the study. According to the health professionals' feedback, the use of participatory and user-centered interaction design methods, particularly user interface drawings enabled them to describe their requirements and create common understanding with the system developers.
Interactive personalized newspaper on the WWW
NASA Astrophysics Data System (ADS)
Kamba, Tomonari; Bharat, Krishna
1996-03-01
This paper discusses the personalization of online newspapers based on our experience with the Krakatoa Chronicle, an interactive, personalized, newspaper on the World Wide Web. The personalization of newspapers involves both social and technical issues. In social terms, it is important that users can control the extent of personalization, because newspapers are not only a means to get personally interesting articles but also a way to get information you are not explicitly looking for. In technical terms, the manner in which the user's interest is measured, and the strategy used to personalize the presentation are important. The Krakatoa Chronicle's approach to solving these problems is by sending over an interaction agent (in Java) from the web server side to the web-client, to manage the layout, interactions with the user, and provide feedback about user actions. In our system, the newspaper has a similar appearance to everyday printed ones, with multiple columns. The user has various interaction techniques to read articles, and has easy control over layout parameters including how personal the contents should be. The system can get the user's interest without requiring the user to do anything other than just read articles. The Krakatoa Chronicle will serve as a good testbed to learn how people would like to have their newspapers personalized.
Get Your Requirements Straight: Storyboarding Revisited
NASA Astrophysics Data System (ADS)
Haesen, Mieke; Luyten, Kris; Coninx, Karin
Current user-centred software engineering (UCSE) approaches provide many techniques to combine know-how available in multidisciplinary teams. Although the involvement of various disciplines is beneficial for the user experience of the future application, the transition from a user needs analysis to a structured interaction analysis and UI design is not always straightforward. We propose storyboards, enriched by metadata, to specify functional and non-functional requirements. Accompanying tool support should facilitate the creation and use of storyboards. We used a meta-storyboard for the verification of storyboarding approaches.
NASA Technical Reports Server (NTRS)
Solloway, C. B.; Wakeland, W.
1976-01-01
First-order Markov model developed on digital computer for population with specific characteristics. System is user interactive, self-documenting, and does not require user to have complete understanding of underlying model details. Contains thorough error-checking algorithms on input and default capabilities.
Design for interaction between humans and intelligent systems during real-time fault management
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Schreckenghost, Debra L.; Thronesbery, Carroll G.
1992-01-01
Initial results are reported to provide guidance and assistance for designers of intelligent systems and their human interfaces. The objective is to achieve more effective human-computer interaction (HCI) for real time fault management support systems. Studies of the development of intelligent fault management systems within NASA have resulted in a new perspective of the user. If the user is viewed as one of the subsystems in a heterogeneous, distributed system, system design becomes the design of a flexible architecture for accomplishing system tasks with both human and computer agents. HCI requirements and design should be distinguished from user interface (displays and controls) requirements and design. Effective HCI design for multi-agent systems requires explicit identification of activities and information that support coordination and communication between agents. The effects are characterized of HCI design on overall system design and approaches are identified to addressing HCI requirements in system design. The results include definition of (1) guidance based on information level requirements analysis of HCI, (2) high level requirements for a design methodology that integrates the HCI perspective into system design, and (3) requirements for embedding HCI design tools into intelligent system development environments.
Developing an educational curriculum for EnviroAtlas ...
EnviroAtlas is a web-based tool developed by the EPA and its partners, which provides interactive tools and resources for users to explore the benefits that people receive from nature, often referred to as ecosystem goods and services.Ecosystem goods and services are important to human health and well-being. Using EnviroAtlas, users can access, view, and analyze diverse information to better understand the potential impacts of decisions. EnviroAtlas provides two primary tools, the Interactive Map and the Eco-Health Relationship Browser. EnviroAtlas integrates geospatial data from a variety of sources so that users can visualize the impacts of decision-making on ecosystems. The Interactive Map allows users to investigate various ecosystem elements (i.e. land cover, pollution, and community development) and compare them across localities in the United States. The best part of the Interactive Map is that it does not require specialized software for map application; rather, it requires only a computer and an internet connection. As such, it can be used as a powerful educational tool. The Eco-Health Relationship Browser is also a web-based, highly interactive tool that uses existing scientific literature to visually demonstrate the connections between the environment and human health.As an ASPPH/EPA Fellow with a background in environmental science and secondary science education, I am currently developing an educational curriculum to support the EnviroAtlas to
NASA Technical Reports Server (NTRS)
Granaas, Michael M.; Rhea, Donald C.
1989-01-01
In recent years the needs of ground-based researcher-analysts to access real-time engineering data in the form of processed information has expanded rapidly. Fortunately, the capacity to deliver that information has also expanded. The development of advanced display systems is essential to the success of a research test activity. Those developed at the National Aeronautics and Space Administration (NASA), Western Aeronautical Test Range (WATR), range from simple alphanumerics to interactive mapping and graphics. These unique display systems are designed not only to meet basic information display requirements of the user, but also to take advantage of techniques for optimizing information display. Future ground-based display systems will rely heavily not only on new technologies, but also on interaction with the human user and the associated productivity with that interaction. The psychological abilities and limitations of the user will become even more important in defining the difference between a usable and a useful display system. This paper reviews the requirements for development of real-time displays; the psychological aspects of design such as the layout, color selection, real-time response rate, and interactivity of displays; and an analysis of some existing WATR displays.
Software Prototyping: Designing Systems for Users.
ERIC Educational Resources Information Center
Spies, Phyllis Bova
1983-01-01
Reports on major change in computer software development process--the prototype model, i.e., implementation of skeletal system that is enhanced during interaction with users. Expensive and unreliable software, software design errors, traditional development approach, resources required for prototyping, success stories, and systems designer's role…
Scientific user requirements for a herbarium data portal.
Vissers, Jorick; den Bosch, Frederik Van; Bogaerts, Ann; Cocquyt, Christine; Degreef, Jérôme; Diagre, Denis; de Haan, Myriam; Smedt, Sofie De; Henry Engledow; Ertz, Damien; Fabri, Régine; Godefroid, Sandrine; Nicole Hanquart; Mergen, Patricia; Ronse, Anne; Sosef, Marc; Stévart, Tariq; Stoffelen, Piet; Vanderhoeven, Sonia; Groom, Quentin
2017-01-01
The digitization of herbaria and their online access will greatly facilitate access to plant collections around the world. This will improve the efficiency of taxonomy and help reduce inequalities between scientists. The Botanic Garden Meise, Belgium, is currently digitizing 1.2 million specimens including label data. In this paper we describe the user requirements analysis conducted for a new herbarium web portal. The aim was to identify the required functionality, but also to assist in the prioritization of software development and data acquisition. The Garden conducted the analysis in cooperation with Clockwork, the digital engagement agency of Ordina. Using a series of interactive interviews, potential users were consulted from universities, research institutions, science-policy initiatives and the Botanic Garden Meise. Although digital herbarium data have many potential stakeholders, we focused on the needs of taxonomists, ecologists and historians, who are currently the primary users of the Meise herbarium data portal. The three categories of user have similar needs, all wanted as much specimen data as possible, and for those data, to be interlinked with other digital resources within and outside the Garden. Many users wanted an interactive system that they could comment on, or correct online, particularly if such corrections and annotations could be used to rank the reliability of data. Many requirements depend on the quality of the digitized data associated with each specimen. The essential data fields are the taxonomic name; geographic location; country; collection date; collector name and collection number. Also all researchers valued linkage between biodiversity literature and specimens. Nevertheless, to verify digitized data the researchers still want access to high quality images, even if fully transcribed label information is provided. The only major point of disagreement is the level of access users should have and what they should be allowed to do with the data and images. Not all of the user requirements are feasible given the current technical and regulatory landscape, however, the potential of these suggestions is discussed. Currently, there is no off-the-shelf solution to satisfy all these user requirements, but the intention of this paper is to guide other herbaria who are prioritising their investment in digitization and online web functionality.
Scientific user requirements for a herbarium data portal
Vissers, Jorick; den Bosch, Frederik Van; Bogaerts, Ann; Cocquyt, Christine; Degreef, Jérôme; Diagre, Denis; de Haan, Myriam; Smedt, Sofie De; Henry Engledow; Ertz, Damien; Fabri, Régine; Godefroid, Sandrine; Nicole Hanquart; Mergen, Patricia; Ronse, Anne; Sosef, Marc; Stévart, Tariq; Stoffelen, Piet; Vanderhoeven, Sonia; Groom, Quentin
2017-01-01
Abstract The digitization of herbaria and their online access will greatly facilitate access to plant collections around the world. This will improve the efficiency of taxonomy and help reduce inequalities between scientists. The Botanic Garden Meise, Belgium, is currently digitizing 1.2 million specimens including label data. In this paper we describe the user requirements analysis conducted for a new herbarium web portal. The aim was to identify the required functionality, but also to assist in the prioritization of software development and data acquisition. The Garden conducted the analysis in cooperation with Clockwork, the digital engagement agency of Ordina. Using a series of interactive interviews, potential users were consulted from universities, research institutions, science-policy initiatives and the Botanic Garden Meise. Although digital herbarium data have many potential stakeholders, we focused on the needs of taxonomists, ecologists and historians, who are currently the primary users of the Meise herbarium data portal. The three categories of user have similar needs, all wanted as much specimen data as possible, and for those data, to be interlinked with other digital resources within and outside the Garden. Many users wanted an interactive system that they could comment on, or correct online, particularly if such corrections and annotations could be used to rank the reliability of data. Many requirements depend on the quality of the digitized data associated with each specimen. The essential data fields are the taxonomic name; geographic location; country; collection date; collector name and collection number. Also all researchers valued linkage between biodiversity literature and specimens. Nevertheless, to verify digitized data the researchers still want access to high quality images, even if fully transcribed label information is provided. The only major point of disagreement is the level of access users should have and what they should be allowed to do with the data and images. Not all of the user requirements are feasible given the current technical and regulatory landscape, however, the potential of these suggestions is discussed. Currently, there is no off-the-shelf solution to satisfy all these user requirements, but the intention of this paper is to guide other herbaria who are prioritising their investment in digitization and online web functionality. PMID:28781551
Understanding the Requirements for Open Source Software
2009-06-17
GNOME and K Development Environment ( KDE ) for end-user interfaces, the Eclipse and NetBeans interactive development environments for Java-based Web...17 4.1. Informal Post-hoc Assertion of OSS Requirements vs . Requirements Elicitation...18 4.2. Requirements Reading, Sense-making, and Accountability vs . Requirements Analysis
Semantic technologies in a decision support system
NASA Astrophysics Data System (ADS)
Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Bǎdicǎ, C.; Ivanovic, M.; Lirkov, I.
2015-10-01
The aim of our work is to design a decision support system based on ontological representation of domain(s) and semantic technologies. Specifically, we consider the case when Grid / Cloud user describes his/her requirements regarding a "resource" as a class expression from an ontology, while the instances of (the same) ontology represent available resources. The goal is to help the user to find the best option with respect to his/her requirements, while remembering that user's knowledge may be "limited." In this context, we discuss multiple approaches based on semantic data processing, which involve different "forms" of user interaction with the system. Specifically, we consider: (a) ontological matchmaking based on SPARQL queries and class expression, (b) graph-based semantic closeness of instances representing user requirements (constructed from the class expression) and available resources, and (c) multicriterial analysis based on the AHP method, which utilizes expert domain knowledge (also ontologically represented).
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Escobar, Vanessa M.
2013-01-01
NASA's Soil Moisture Active and Passive (SMAP) mission is planned for launch in October 2014 and will provide global measurements of soil moisture and freeze thaw state. The project is driven by both basic research and applied science goals. Understanding how application driven end-users will apply SMAP data, prior to the satellite's launch, is an important goal of NASA's applied science program and SMAP mission success. Because SMAP data are unique, there are no direct proxy data sets that can be used in research and operational studies to determine how the data will interact with existing processes. The objective of this study is to solicit data requirements, accuracy needs, and current understanding of the SMAP mission from the potential user community. This study showed that the data to be provided by the SMAP mission did substantially meet the user community needs. Although there was a broad distribution of requirements stated, the SMAP mission fit within these requirements.
Li, Guipeng; Li, Ming; Zhang, Yiwei; Wang, Dong; Li, Rong; Guimerà, Roger; Gao, Juntao Tony; Zhang, Michael Q
2014-01-01
Rapidly increasing amounts of (physical and genetic) protein-protein interaction (PPI) data are produced by various high-throughput techniques, and interpretation of these data remains a major challenge. In order to gain insight into the organization and structure of the resultant large complex networks formed by interacting molecules, using simulated annealing, a method based on the node connectivity, we developed ModuleRole, a user-friendly web server tool which finds modules in PPI network and defines the roles for every node, and produces files for visualization in Cytoscape and Pajek. For given proteins, it analyzes the PPI network from BioGRID database, finds and visualizes the modules these proteins form, and then defines the role every node plays in this network, based on two topological parameters Participation Coefficient and Z-score. This is the first program which provides interactive and very friendly interface for biologists to find and visualize modules and roles of proteins in PPI network. It can be tested online at the website http://www.bioinfo.org/modulerole/index.php, which is free and open to all users and there is no login requirement, with demo data provided by "User Guide" in the menu Help. Non-server application of this program is considered for high-throughput data with more than 200 nodes or user's own interaction datasets. Users are able to bookmark the web link to the result page and access at a later time. As an interactive and highly customizable application, ModuleRole requires no expert knowledge in graph theory on the user side and can be used in both Linux and Windows system, thus a very useful tool for biologist to analyze and visualize PPI networks from databases such as BioGRID. ModuleRole is implemented in Java and C, and is freely available at http://www.bioinfo.org/modulerole/index.php. Supplementary information (user guide, demo data) is also available at this website. API for ModuleRole used for this program can be obtained upon request.
AESOP- INTERACTIVE DESIGN OF LINEAR QUADRATIC REGULATORS AND KALMAN FILTERS
NASA Technical Reports Server (NTRS)
Lehtinen, B.
1994-01-01
AESOP was developed to solve a number of problems associated with the design of controls and state estimators for linear time-invariant systems. The systems considered are modeled in state-variable form by a set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are the linear quadratic regulator (LQR) design problem and the steady-state Kalman filter design problem. AESOP is designed to be used in an interactive manner. The user can solve design problems and analyze the solutions in a single interactive session. Both numerical and graphical information are available to the user during the session. The AESOP program is structured around a list of predefined functions. Each function performs a single computation associated with control, estimation, or system response determination. AESOP contains over sixty functions and permits the easy inclusion of user defined functions. The user accesses these functions either by inputting a list of desired functions in the order they are to be performed, or by specifying a single function to be performed. The latter case is used when the choice of function and function order depends on the results of previous functions. The available AESOP functions are divided into several general areas including: 1) program control, 2) matrix input and revision, 3) matrix formation, 4) open-loop system analysis, 5) frequency response, 6) transient response, 7) transient function zeros, 8) LQR and Kalman filter design, 9) eigenvalues and eigenvectors, 10) covariances, and 11) user-defined functions. The most important functions are those that design linear quadratic regulators and Kalman filters. The user interacts with AESOP when using these functions by inputting design weighting parameters and by viewing displays of designed system response. Support functions obtain system transient and frequency responses, transfer functions, and covariance matrices. AESOP can also provide the user with open-loop system information including stability, controllability, and observability. The AESOP program is written in FORTRAN IV for interactive execution and has been implemented on an IBM 3033 computer using TSS 370. As currently configured, AESOP has a central memory requirement of approximately 2 Megs of 8 bit bytes. Memory requirements can be reduced by redimensioning arrays in the AESOP program. Graphical output requires adaptation of the AESOP plot routines to whatever device is available. The AESOP program was developed in 1984.
Intelligent Motion and Interaction Within Virtual Environments
NASA Technical Reports Server (NTRS)
Ellis, Stephen R. (Editor); Slater, Mel (Editor); Alexander, Thomas (Editor)
2007-01-01
What makes virtual actors and objects in virtual environments seem real? How can the illusion of their reality be supported? What sorts of training or user-interface applications benefit from realistic user-environment interactions? These are some of the central questions that designers of virtual environments face. To be sure simulation realism is not necessarily the major, or even a required goal, of a virtual environment intended to communicate specific information. But for some applications in entertainment, marketing, or aspects of vehicle simulation training, realism is essential. The following chapters will examine how a sense of truly interacting with dynamic, intelligent agents may arise in users of virtual environments. These chapters are based on presentations at the London conference on Intelligent Motion and Interaction within a Virtual Environments which was held at University College, London, U.K., 15-17 September 2003.
Use of natural user interfaces in water simulations
NASA Astrophysics Data System (ADS)
Donchyts, G.; Baart, F.; van Dam, A.; Jagers, B.
2013-12-01
Conventional graphical user interfaces, used to edit input and present results of earth science models, have seen little innovation for the past two decades. In most cases model data is presented and edited using 2D projections even when working with 3D data. The emergence of 3D motion sensing technologies, such as Microsoft Kinect and LEAP Motion, opens new possibilities for user interaction by adding more degrees of freedom compared to a classical way using mouse and keyboard. Here we investigate how interaction with hydrodynamic numerical models can be improved using these new technologies. Our research hypothesis (H1) states that properly designed 3D graphical user interface paired with the 3D motion sensor can significantly reduce the time required to setup and use numerical models. In this work we have used a LEAP motion controller combined with a shallow water flow model engine D-Flow Flexible Mesh. Interacting with numerical model using hands
Maguire, Martin C
2013-11-01
The EU EuroClim project developed a system to monitor and record climate change indicator data based on satellite observations of snow cover, sea ice and glaciers in Northern Europe and the Arctic. It also contained projection data for temperature, rainfall and average wind speed for Europe. These were all stored as data sets in a GIS database for users to download. The process of gathering requirements for a user population including scientists, researchers, policy makers, educationalists and the general public is described. Using an iterative design methodology, a user survey was administered to obtain initial feedback on the system concept followed by panel sessions where users were presented with the system concept and a demonstrator to interact with it. The requirements of both specialist and non-specialist users is summarised together with strategies for the effective communication of geographic climate change information. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Interactive lung segmentation in abnormal human and animal chest CT scans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kockelkorn, Thessa T. J. P., E-mail: thessa@isi.uu.nl; Viergever, Max A.; Schaefer-Prokop, Cornelia M.
2014-08-15
Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling resultsmore » can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in challenging chest CT images. Both systems do not require prior knowledge of the scans under consideration and work on a variety of scans.« less
Graphical Requirements for Force Level Planning. Volume 2
1991-09-01
technology review includes graphics algorithms, computer hardware, computer software, and design methodologies. The technology can either exist today or...level graphics language. 7.4 User Interface Design Tools As user interfaces have become more sophisticated, they have become harder to develop. Xl...Setphen M. Pizer, editors. Proceedings 1986 Workshop on Interactive 31) Graphics , October 1986. 18 J. S. Dumas. Designing User Interface Software. Prentice
Viger, Roland J.
2008-01-01
This fact sheet provides a high-level description of the GIS Weasel, a software system designed to aid users in preparing spatial information as input to lumped and distributed parameter environmental simulation models (ESMs). The GIS Weasel provides geographic information system (GIS) tools to help create maps of geographic features relevant to the application of a user?s ESM and to generate parameters from those maps. The operation of the GIS Weasel does not require a user to be a GIS expert, only that a user has an understanding of the spatial information requirements of the model. The GIS Weasel software system provides a GIS-based graphical user interface (GUI), C programming language executables, and general utility scripts. The software will run on any computing platform where ArcInfo Workstation (version 8.1 or later) and the GRID extension are accessible. The user controls the GIS Weasel by interacting with menus, maps, and tables.
García-Soler, Álvaro; Facal, David; Díaz-Orueta, Unai; Pigini, Lucia; Blasi, Lorenzo; Qiu, Renxi
2018-01-01
The implications for the inclusion of robots in the daily lives of frail older adults, especially in relation to these population needs, have not been extensively studied. The "Multi-Role Shadow Robotic System for Independent Living" (SRS) project has developed a remotely-controlled, semi-autonomous robotic system to be used in domestic environments. The objective of this paper is to document the iterative procedure used to identify, select and prioritize user requirements. Seventy-four requirements were identified by means of focus groups, individual interviews and scenario-based interviews. The list of user requirements, ordered according to impact, number and transnational criteria, revealed a high number of requirements related to basic and instrumental activities of daily living, cognitive and social support and monitorization, and also involving privacy, safety and adaptation issues. Analysing and understanding older users' perceptions and needs when interacting with technological devices adds value to assistive technology and ensures that the systems address currently unmet needs. Copyright © 2017 Elsevier B.V. All rights reserved.
Serçinoglu, Onur; Ozbek, Pemra
2018-05-25
Atomistic molecular dynamics (MD) simulations generate a wealth of information related to the dynamics of proteins. If properly analyzed, this information can lead to new insights regarding protein function and assist wet-lab experiments. Aiming to identify interactions between individual amino acid residues and the role played by each in the context of MD simulations, we present a stand-alone software called gRINN (get Residue Interaction eNergies and Networks). gRINN features graphical user interfaces (GUIs) and a command-line interface for generating and analyzing pairwise residue interaction energies and energy correlations from protein MD simulation trajectories. gRINN utilizes the features of NAMD or GROMACS MD simulation packages and automatizes the steps necessary to extract residue-residue interaction energies from user-supplied simulation trajectories, greatly simplifying the analysis for the end-user. A GUI, including an embedded molecular viewer, is provided for visualization of interaction energy time-series, distributions, an interaction energy matrix, interaction energy correlations and a residue correlation matrix. gRINN additionally offers construction and analysis of Protein Energy Networks, providing residue-based metrics such as degrees, betweenness-centralities, closeness centralities as well as shortest path analysis. gRINN is free and open to all users without login requirement at http://grinn.readthedocs.io.
NASA Technical Reports Server (NTRS)
Muss, J. A.; Nguyen, T. V.; Johnson, C. W.
1991-01-01
The user's manual for the rocket combustor interactive design (ROCCID) computer program is presented. The program, written in Fortran 77, provides a standardized methodology using state of the art codes and procedures for the analysis of a liquid rocket engine combustor's steady state combustion performance and combustion stability. The ROCCID is currently capable of analyzing mixed element injector patterns containing impinging like doublet or unlike triplet, showerhead, shear coaxial, and swirl coaxial elements as long as only one element type exists in each injector core, baffle, or barrier zone. Real propellant properties of oxygen, hydrogen, methane, propane, and RP-1 are included in ROCCID. The properties of other propellants can easily be added. The analysis model in ROCCID can account for the influence of acoustic cavities, helmholtz resonators, and radial thrust chamber baffles on combustion stability. ROCCID also contains the logic to interactively create a combustor design which meets input performance and stability goals. A preliminary design results from the application of historical correlations to the input design requirements. The steady state performance and combustion stability of this design is evaluated using the analysis models, and ROCCID guides the user as to the design changes required to satisfy the user's performance and stability goals, including the design of stability aids. Output from ROCCID includes a formatted input file for the standardized JANNAF engine performance prediction procedure.
Scientific Visualization of Radio Astronomy Data using Gesture Interaction
NASA Astrophysics Data System (ADS)
Mulumba, P.; Gain, J.; Marais, P.; Woudt, P.
2015-09-01
MeerKAT in South Africa (Meer = More Karoo Array Telescope) will require software to help visualize, interpret and interact with multidimensional data. While visualization of multi-dimensional data is a well explored topic, little work has been published on the design of intuitive interfaces to such systems. More specifically, the use of non-traditional interfaces (such as motion tracking and multi-touch) has not been widely investigated within the context of visualizing astronomy data. We hypothesize that a natural user interface would allow for easier data exploration which would in turn lead to certain kinds of visualizations (volumetric, multidimensional). To this end, we have developed a multi-platform scientific visualization system for FITS spectral data cubes using VTK (Visualization Toolkit) and a natural user interface to explore the interaction between a gesture input device and multidimensional data space. Our system supports visual transformations (translation, rotation and scaling) as well as sub-volume extraction and arbitrary slicing of 3D volumetric data. These tasks were implemented across three prototypes aimed at exploring different interaction strategies: standard (mouse/keyboard) interaction, volumetric gesture tracking (Leap Motion controller) and multi-touch interaction (multi-touch monitor). A Heuristic Evaluation revealed that the volumetric gesture tracking prototype shows great promise for interfacing with the depth component (z-axis) of 3D volumetric space across multiple transformations. However, this is limited by users needing to remember the required gestures. In comparison, the touch-based gesture navigation is typically more familiar to users as these gestures were engineered from standard multi-touch actions. Future work will address a complete usability test to evaluate and compare the different interaction modalities against the different visualization tasks.
Experimenter's laboratory for visualized interactive science
NASA Technical Reports Server (NTRS)
Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.
1992-01-01
The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.
Experimenter's laboratory for visualized interactive science
NASA Technical Reports Server (NTRS)
Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.
1993-01-01
The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperatable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color-shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.
Pulmonary Testing Laboratory Computer Application
Johnson, Martin E.
1980-01-01
An interactive computer application reporting patient pulmonary function data has been developed by Washington, D.C. VA Medical Center staff. A permanent on-line data base of patient demographics, lung capacity, flows, diffusion, arterial blood gases and physician interpretation is maintained by a minicomputer at the hospital. A user oriented application program resulted from development in concert with the clinical users. Rapid program development resulted from employing a newly developed time saving technique that has found wide application at other VA Medical Centers. Careful attention to user interaction has resulted in an application program requiring little training and which has been satisfactorily used by a number of clinicians.
Optimal design method to minimize users' thinking mapping load in human-machine interactions.
Huang, Yanqun; Li, Xu; Zhang, Jie
2015-01-01
The discrepancy between human cognition and machine requirements/behaviors usually results in serious mental thinking mapping loads or even disasters in product operating. It is important to help people avoid human-machine interaction confusions and difficulties in today's mental work mastered society. Improving the usability of a product and minimizing user's thinking mapping and interpreting load in human-machine interactions. An optimal human-machine interface design method is introduced, which is based on the purpose of minimizing the mental load in thinking mapping process between users' intentions and affordance of product interface states. By analyzing the users' thinking mapping problem, an operating action model is constructed. According to human natural instincts and acquired knowledge, an expected ideal design with minimized thinking loads is uniquely determined at first. Then, creative alternatives, in terms of the way human obtains operational information, are provided as digital interface states datasets. In the last, using the cluster analysis method, an optimum solution is picked out from alternatives, by calculating the distances between two datasets. Considering multiple factors to minimize users' thinking mapping loads, a solution nearest to the ideal value is found in the human-car interaction design case. The clustering results show its effectiveness in finding an optimum solution to the mental load minimizing problems in human-machine interaction design.
Interactive-cut: Real-time feedback segmentation for translational research.
Egger, Jan; Lüddemann, Tobias; Schwarzenberg, Robert; Freisleben, Bernd; Nimsky, Christopher
2014-06-01
In this contribution, a scale-invariant image segmentation algorithm is introduced that "wraps" the algorithm's parameters for the user by its interactive behavior, avoiding the definition of "arbitrary" numbers that the user cannot really understand. Therefore, we designed a specific graph-based segmentation method that only requires a single seed-point inside the target-structure from the user and is thus particularly suitable for immediate processing and interactive, real-time adjustments by the user. In addition, color or gray value information that is needed for the approach can be automatically extracted around the user-defined seed point. Furthermore, the graph is constructed in such a way, so that a polynomial-time mincut computation can provide the segmentation result within a second on an up-to-date computer. The algorithm presented here has been evaluated with fixed seed points on 2D and 3D medical image data, such as brain tumors, cerebral aneurysms and vertebral bodies. Direct comparison of the obtained automatic segmentation results with costlier, manual slice-by-slice segmentations performed by trained physicians, suggest a strong medical relevance of this interactive approach. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Cork, M. J.; Barnett, P. M.; Shaffer, J., Jr.; Doran, B. J.
1979-01-01
Earth escape mission requirements on Solar Electric Propulsion System (SEPS), and the interface definition and planned integration between SEPS, user spacecraft, and other elements of the STS. Emphasis is placed on the Comet rendezvous mission, scheduled to be the first SEPS user. Interactive SEPS interface characteristics with spacecraft and mission, as well as the multiple organizations and inter-related development schedules required to integrate the SEPS with spacecraft and STS, require early attention to definition of interfaces in order to assure a successful path to the first SEPS launch in July 1985
ERIC Educational Resources Information Center
Wylie, Leon W. J.
2010-01-01
Although the potential range of the workforce that may positively interact with substance users is large, and takes in all who may have to deal with substance use issues in some way, the literature mainly focuses on user views of specialist substance use or health and social care staff. With client-centred care a key policy of modern service…
UTOPIA-User-Friendly Tools for Operating Informatics Applications.
Pettifer, S R; Sinnott, J R; Attwood, T K
2004-01-01
Bioinformaticians routinely analyse vast amounts of information held both in large remote databases and in flat data files hosted on local machines. The contemporary toolkit available for this purpose consists of an ad hoc collection of data manipulation tools, scripting languages and visualization systems; these must often be combined in complex and bespoke ways, the result frequently being an unwieldy artefact capable of one specific task, which cannot easily be exploited or extended by other practitioners. Owing to the sizes of current databases and the scale of the analyses necessary, routine bioinformatics tasks are often automated, but many still require the unique experience and intuition of human researchers: this requires tools that support real-time interaction with complex datasets. Many existing tools have poor user interfaces and limited real-time performance when applied to realistically large datasets; much of the user's cognitive capacity is therefore focused on controlling the tool rather than on performing the research. The UTOPIA project is addressing some of these issues by building reusable software components that can be combined to make useful applications in the field of bioinformatics. Expertise in the fields of human computer interaction, high-performance rendering, and distributed systems is being guided by bioinformaticians and end-user biologists to create a toolkit that is both architecturally sound from a computing point of view, and directly addresses end-user and application-developer requirements.
Computer-aided design and computer science technology
NASA Technical Reports Server (NTRS)
Fulton, R. E.; Voigt, S. J.
1976-01-01
A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.
Early prediction of student goals and affect in narrative-centered learning environments
NASA Astrophysics Data System (ADS)
Lee, Sunyoung
Recent years have seen a growing recognition of the role of goal and affect recognition in intelligent tutoring systems. Goal recognition is the task of inferring users' goals from a sequence of observations of their actions. Because of the uncertainty inherent in every facet of human computer interaction, goal recognition is challenging, particularly in contexts in which users can perform many actions in any order, as is the case with intelligent tutoring systems. Affect recognition is the task of identifying the emotional state of a user from a variety of physical cues, which are produced in response to affective changes in the individual. Accurately recognizing student goals and affect states could contribute to more effective and motivating interactions in intelligent tutoring systems. By exploiting knowledge of student goals and affect states, intelligent tutoring systems can dynamically modify their behavior to better support individual students. To create effective interactions in intelligent tutoring systems, goal and affect recognition models should satisfy two key requirements. First, because incorrectly predicted goals and affect states could significantly diminish the effectiveness of interactive systems, goal and affect recognition models should provide accurate predictions of user goals and affect states. When observations of users' activities become available, recognizers should make accurate early" predictions. Second, goal and affect recognition models should be highly efficient so they can operate in real time. To address key issues, we present an inductive approach to recognizing student goals and affect states in intelligent tutoring systems by learning goals and affect recognition models. Our work focuses on goal and affect recognition in an important new class of intelligent tutoring systems, narrative-centered learning environments. We report the results of empirical studies of induced recognition models from observations of students' interactions in narrative-centered learning environments. Experimental results suggest that induced models can make accurate early predictions of student goals and affect states, and they are sufficiently efficient to meet the real-time performance requirements of interactive learning environments.
Use of force feedback to enhance graphical user interfaces
NASA Astrophysics Data System (ADS)
Rosenberg, Louis B.; Brave, Scott
1996-04-01
This project focuses on the use of force feedback sensations to enhance user interaction with standard graphical user interface paradigms. While typical joystick and mouse devices are input-only, force feedback controllers allow physical sensations to be reflected to a user. Tasks that require users to position a cursor on a given target can be enhanced by applying physical forces to the user that aid in targeting. For example, an attractive force field implemented at the location of a graphical icon can greatly facilitate target acquisition and selection of the icon. It has been shown that force feedback can enhance a users ability to perform basic functions within graphical user interfaces.
Improving semi-automated segmentation by integrating learning with active sampling
NASA Astrophysics Data System (ADS)
Huo, Jing; Okada, Kazunori; Brown, Matthew
2012-02-01
Interactive segmentation algorithms such as GrowCut usually require quite a few user interactions to perform well, and have poor repeatability. In this study, we developed a novel technique to boost the performance of the interactive segmentation method GrowCut involving: 1) a novel "focused sampling" approach for supervised learning, as opposed to conventional random sampling; 2) boosting GrowCut using the machine learned results. We applied the proposed technique to the glioblastoma multiforme (GBM) brain tumor segmentation, and evaluated on a dataset of ten cases from a multiple center pharmaceutical drug trial. The results showed that the proposed system has the potential to reduce user interaction while maintaining similar segmentation accuracy.
Shiny-phyloseq: Web application for interactive microbiome analysis with provenance tracking.
McMurdie, Paul J; Holmes, Susan
2015-01-15
We have created a Shiny-based Web application, called Shiny-phyloseq, for dynamic interaction with microbiome data that runs on any modern Web browser and requires no programming, increasing the accessibility and decreasing the entrance requirement to using phyloseq and related R tools. Along with a data- and context-aware dynamic interface for exploring the effects of parameter and method choices, Shiny-phyloseq also records the complete user input and subsequent graphical results of a user's session, allowing the user to archive, share and reproduce the sequence of steps that created their result-without writing any new code themselves. Shiny-phyloseq is implemented entirely in the R language. It can be hosted/launched by any system with R installed, including Windows, Mac OS and most Linux distributions. Information technology administrators can also host Shiny--phyloseq from a remote server, in which case users need only have a Web browser installed. Shiny-phyloseq is provided free of charge under a GPL-3 open-source license through GitHub at http://joey711.github.io/shiny-phyloseq/. © The Author 2014. Published by Oxford University Press.
Affective loop experiences: designing for interactional embodiment.
Höök, Kristina
2009-12-12
Involving our corporeal bodies in interaction can create strong affective experiences. Systems that both can be influenced by and influence users corporeally exhibit a use quality we name an affective loop experience. In an affective loop experience, (i) emotions are seen as processes, constructed in the interaction, starting from everyday bodily, cognitive or social experiences; (ii) the system responds in ways that pull the user into the interaction, touching upon end users' physical experiences; and (iii) throughout the interaction the user is an active, meaning-making individual choosing how to express themselves-the interpretation responsibility does not lie with the system. We have built several systems that attempt to create affective loop experiences with more or less successful results. For example, eMoto lets users send text messages between mobile phones, but in addition to text, the messages also have colourful and animated shapes in the background chosen through emotion-gestures with a sensor-enabled stylus pen. Affective Diary is a digital diary with which users can scribble their notes, but it also allows for bodily memorabilia to be recorded from body sensors mapping to users' movement and arousal and placed along a timeline. Users can see patterns in their bodily reactions and relate them to various events going on in their lives. The experiences of building and deploying these systems gave us insights into design requirements for addressing affective loop experiences, such as how to design for turn-taking between user and system, how to create for 'open' surfaces in the design that can carry users' own meaning-making processes, how to combine modalities to create for a 'unity' of expression, and the importance of mirroring user experience in familiar ways that touch upon their everyday social and corporeal experiences. But a more important lesson gained from deploying the systems is how emotion processes are co-constructed and experienced inseparable from all other aspects of everyday life. Emotion processes are part of our social ways of being in the world; they dye our dreams, hopes and bodily experiences of the world. If we aim to design for affective interaction experiences, we need to place them into this larger picture.
Affective loop experiences: designing for interactional embodiment
Höök, Kristina
2009-01-01
Involving our corporeal bodies in interaction can create strong affective experiences. Systems that both can be influenced by and influence users corporeally exhibit a use quality we name an affective loop experience. In an affective loop experience, (i) emotions are seen as processes, constructed in the interaction, starting from everyday bodily, cognitive or social experiences; (ii) the system responds in ways that pull the user into the interaction, touching upon end users' physical experiences; and (iii) throughout the interaction the user is an active, meaning-making individual choosing how to express themselves—the interpretation responsibility does not lie with the system. We have built several systems that attempt to create affective loop experiences with more or less successful results. For example, eMoto lets users send text messages between mobile phones, but in addition to text, the messages also have colourful and animated shapes in the background chosen through emotion-gestures with a sensor-enabled stylus pen. Affective Diary is a digital diary with which users can scribble their notes, but it also allows for bodily memorabilia to be recorded from body sensors mapping to users' movement and arousal and placed along a timeline. Users can see patterns in their bodily reactions and relate them to various events going on in their lives. The experiences of building and deploying these systems gave us insights into design requirements for addressing affective loop experiences, such as how to design for turn-taking between user and system, how to create for ‘open’ surfaces in the design that can carry users' own meaning-making processes, how to combine modalities to create for a ‘unity’ of expression, and the importance of mirroring user experience in familiar ways that touch upon their everyday social and corporeal experiences. But a more important lesson gained from deploying the systems is how emotion processes are co-constructed and experienced inseparable from all other aspects of everyday life. Emotion processes are part of our social ways of being in the world; they dye our dreams, hopes and bodily experiences of the world. If we aim to design for affective interaction experiences, we need to place them into this larger picture. PMID:19884153
Visualization of usability and functionality of a professional website through web-mining.
Jones, Josette F; Mahoui, Malika; Gopa, Venkata Devi Pragna
2007-10-11
Functional interface design requires understanding of the information system structure and the user. Web logs record user interactions with the interface, and thus provide some insight into user search behavior and efficiency of the search process. The present study uses a data-mining approach with techniques such as association rules, clustering and classification, to visualize the usability and functionality of a digital library through in depth analyses of web logs.
NASA Astrophysics Data System (ADS)
Ratib, Osman; Rosset, Antoine; Dahlbom, Magnus; Czernin, Johannes
2005-04-01
Display and interpretation of multi dimensional data obtained from the combination of 3D data acquired from different modalities (such as PET-CT) require complex software tools allowing the user to navigate and modify the different image parameters. With faster scanners it is now possible to acquire dynamic images of a beating heart or the transit of a contrast agent adding a fifth dimension to the data. We developed a DICOM-compliant software for real time navigation in very large sets of 5 dimensional data based on an intuitive multidimensional jog-wheel widely used by the video-editing industry. The software, provided under open source licensing, allows interactive, single-handed, navigation through 3D images while adjusting blending of image modalities, image contrast and intensity and the rate of cine display of dynamic images. In this study we focused our effort on the user interface and means for interactively navigating in these large data sets while easily and rapidly changing multiple parameters such as image position, contrast, intensity, blending of colors, magnification etc. Conventional mouse-driven user interface requiring the user to manipulate cursors and sliders on the screen are too cumbersome and slow. We evaluated several hardware devices and identified a category of multipurpose jogwheel device that is used in the video-editing industry that is particularly suitable for rapidly navigating in five dimensions while adjusting several display parameters interactively. The application of this tool will be demonstrated in cardiac PET-CT imaging and functional cardiac MRI studies.
Towards a gestural 3D interaction for tangible and three-dimensional GIS visualizations
NASA Astrophysics Data System (ADS)
Partsinevelos, Panagiotis; Agadakos, Ioannis; Pattakos, Nikolas; Maragakis, Michail
2014-05-01
The last decade has been characterized by a significant increase of spatially dependent applications that require storage, visualization, analysis and exploration of geographic information. GIS analysis of spatiotemporal geographic data is operated by highly trained personnel under an abundance of software and tools, lacking interoperability and friendly user interaction. Towards this end, new forms of querying and interaction are emerging, including gestural interfaces. Three-dimensional GIS representations refer to either tangible surfaces or projected representations. Making a 3D tangible geographic representation touch-sensitive may be a convenient solution, but such an approach raises the cost significantly and complicates the hardware and processing required to combine touch-sensitive material (for pinpointing points) with deformable material (for displaying elevations). In this study, a novel interaction scheme upon a three dimensional visualization of GIS data is proposed. While gesture user interfaces are not yet fully acceptable due to inconsistencies and complexity, a non-tangible GIS system where 3D visualizations are projected, calls for interactions that are based on three-dimensional, non-contact and gestural procedures. Towards these objectives, we use the Microsoft Kinect II system which includes a time of flight camera, allowing for a robust and real time depth map generation, along with the capturing and translation of a variety of predefined gestures from different simultaneous users. By incorporating these features into our system architecture, we attempt to create a natural way for users to operate on GIS data. Apart from the conventional pan and zoom features, the key functions addressed for the 3-D user interface is the ability to pinpoint particular points, lines and areas of interest, such as destinations, waypoints, landmarks, closed areas, etc. The first results shown, concern a projected GIS representation where the user selects points and regions of interest while the GIS component responds accordingly by changing the scenario in a natural disaster application. Creating a 3D model representation of geospatial data provides a natural way for users to perceive and interact with space. To the best of our knowledge it is the first attempt to use Kinect II for GIS applications and generally virtual environments using novel Human Computer Interaction methods. Under a robust decision support system, the users are able to interact, combine and computationally analyze information in three dimensions using gestures. This study promotes geographic awareness and education and will prove beneficial for a wide range of geoscience applications including natural disaster and emergency management. Acknowledgements: This work is partially supported under the framework of the "Cooperation 2011" project ATLANTAS (11_SYN_6_1937) funded from the Operational Program "Competitiveness and Entrepreneurship" (co-funded by the European Regional Development Fund (ERDF)) and managed by the Greek General Secretariat for Research and Technology.
Participatory design of a music aural rehabilitation programme.
van Besouw, Rachel M; Oliver, Benjamin R; Hodkinson, Sarah M; Polfreman, Richard; Grasmeder, Mary L
2015-09-01
Many cochlear implant (CI) users wish to enjoy music but are dissatisfied by its quality as perceived through their implant. Although there is evidence to suggest that training can improve CI users' perception and appraisal of music, availability of interactive music-based aural rehabilitation for adults is limited. In response to this need, an 'Interactive Music Awareness Programme' (IMAP) was developed with and for adult CI users. An iterative design and evaluation approach was used. The process began with identification of user needs through consultations, followed by use of mock-up applications in workshops. Feedback from these were used to develop the prototype IMAP; a programme of 24 interactive sessions, enabling users to create and manipulate music. The prototype IMAP was subsequently evaluated in a home trial with 16 adult CI users over a period of 12 weeks. Overall ratings for the prototype IMAP were positive and indicated that it met users' needs. Quantitative and qualitative feedback on the sessions and software in the prototype IMAP were used to identify aspects of the programme that worked well and aspects that required improvement. The IMAP was further developed in response to users' feedback and is freely available online. The participatory design approach used in developing the IMAP was fundamental in ensuring its relevance, and regular feedback from end users in each phase of development proved valuable for early identification of issues. Observations and feedback from end users supported a holistic approach to music aural rehabilitation.
Interaction design challenges and solutions for ALMA operations monitoring and control
NASA Astrophysics Data System (ADS)
Pietriga, Emmanuel; Cubaud, Pierre; Schwarz, Joseph; Primet, Romain; Schilling, Marcus; Barkats, Denis; Barrios, Emilio; Vila Vilaro, Baltasar
2012-09-01
The ALMA radio-telescope, currently under construction in northern Chile, is a very advanced instrument that presents numerous challenges. From a software perspective, one critical issue is the design of graphical user interfaces for operations monitoring and control that scale to the complexity of the system and to the massive amounts of data users are faced with. Early experience operating the telescope with only a few antennas has shown that conventional user interface technologies are not adequate in this context. They consume too much screen real-estate, require many unnecessary interactions to access relevant information, and fail to provide operators and astronomers with a clear mental map of the instrument. They increase extraneous cognitive load, impeding tasks that call for quick diagnosis and action. To address this challenge, the ALMA software division adopted a user-centered design approach. For the last two years, astronomers, operators, software engineers and human-computer interaction researchers have been involved in participatory design workshops, with the aim of designing better user interfaces based on state-of-the-art visualization techniques. This paper describes the process that led to the development of those interface components and to a proposal for the science and operations console setup: brainstorming sessions, rapid prototyping, joint implementation work involving software engineers and human-computer interaction researchers, feedback collection from a broader range of users, further iterations and testing.
NASA Astrophysics Data System (ADS)
Martin, P.; Tseu, A.; Férey, N.; Touraine, D.; Bourdot, P.
2014-02-01
Most advanced immersive devices provide collaborative environment within several users have their distinct head-tracked stereoscopic point of view. Combining with common used interactive features such as voice and gesture recognition, 3D mouse, haptic feedback, and spatialized audio rendering, these environments should faithfully reproduce a real context. However, even if many studies have been carried out on multimodal systems, we are far to definitively solve the issue of multimodal fusion, which consists in merging multimodal events coming from users and devices, into interpretable commands performed by the application. Multimodality and collaboration was often studied separately, despite of the fact that these two aspects share interesting similarities. We discuss how we address this problem, thought the design and implementation of a supervisor that is able to deal with both multimodal fusion and collaborative aspects. The aim of this supervisor is to ensure the merge of user's input from virtual reality devices in order to control immersive multi-user applications. We deal with this problem according to a practical point of view, because the main requirements of this supervisor was defined according to a industrial task proposed by our automotive partner, that as to be performed with multimodal and collaborative interactions in a co-located multi-user environment. In this task, two co-located workers of a virtual assembly chain has to cooperate to insert a seat into the bodywork of a car, using haptic devices to feel collision and to manipulate objects, combining speech recognition and two hands gesture recognition as multimodal instructions. Besides the architectural aspect of this supervisor, we described how we ensure the modularity of our solution that could apply on different virtual reality platforms, interactive contexts and virtual contents. A virtual context observer included in this supervisor in was especially designed to be independent to the content of the virtual scene of targeted application, and is use to report high-level interactive and collaborative events. This context observer allows the supervisor to merge these interactive and collaborative events, but is also used to deal with new issues coming from our observation of two co-located users in an immersive device performing this assembly task. We highlight the fact that when speech recognition features are provided to the two users, it is required to automatically detect according to the interactive context, whether the vocal instructions must be translated into commands that have to be performed by the machine, or whether they take a part of the natural communication necessary for collaboration. Information coming from this context observer that indicates a user is looking at its collaborator, is important to detect if the user is talking to its partner. Moreover, as the users are physically co-localised and head-tracking is used to provide high fidelity stereoscopic rendering, and natural walking navigation in the virtual scene, we have to deals with collision and screen occlusion between the co-located users in the physical work space. Working area and focus of each user, computed and reported by the context observer is necessary to prevent or avoid these situations.
Color separation in forensic image processing using interactive differential evolution.
Mushtaq, Harris; Rahnamayan, Shahryar; Siddiqi, Areeb
2015-01-01
Color separation is an image processing technique that has often been used in forensic applications to differentiate among variant colors and to remove unwanted image interference. This process can reveal important information such as covered text or fingerprints in forensic investigation procedures. However, several limitations prevent users from selecting the appropriate parameters pertaining to the desired and undesired colors. This study proposes the hybridization of an interactive differential evolution (IDE) and a color separation technique that no longer requires users to guess required control parameters. The IDE algorithm optimizes these parameters in an interactive manner by utilizing human visual judgment to uncover desired objects. A comprehensive experimental verification has been conducted on various sample test images, including heavily obscured texts, texts with subtle color variations, and fingerprint smudges. The advantage of IDE is apparent as it effectively optimizes the color separation parameters at a level indiscernible to the naked eyes. © 2014 American Academy of Forensic Sciences.
Draghici, Sorin; Tarca, Adi L; Yu, Longfei; Ethier, Stephen; Romero, Roberto
2008-03-01
The BioArray Software Environment (BASE) is a very popular MIAME-compliant, web-based microarray data repository. However in BASE, like in most other microarray data repositories, the experiment annotation and raw data uploading can be very timeconsuming, especially for large microarray experiments. We developed KUTE (Karmanos Universal daTabase for microarray Experiments), as a plug-in for BASE 2.0 that addresses these issues. KUTE provides an automatic experiment annotation feature and a completely redesigned data work-flow that dramatically reduce the human-computer interaction time. For instance, in BASE 2.0 a typical Affymetrix experiment involving 100 arrays required 4 h 30 min of user interaction time forexperiment annotation, and 45 min for data upload/download. In contrast, for the same experiment, KUTE required only 28 min of user interaction time for experiment annotation, and 3.3 min for data upload/download. http://vortex.cs.wayne.edu/kute/index.html.
A software for managing after-hours activities in research user facilities
Camino, F. E.
2017-05-01
Here, we present an afterhours activity management program for shared facilities, which handles the processes required for afterhours access (request, approval, extension, etc.). It implements the concept of permitted afterhours activities, which consists of a list of well-defined activities that each user can perform afterhours. The program provides an easy and unambiguous way for users to know which activities they are allowed to perform afterhours. In addition, the program can enhance its safety efficacy by interacting with lab and instrument access control systems commonly present in user facilities.
A software for managing after-hours activities in research user facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camino, F. E.
Here, we present an afterhours activity management program for shared facilities, which handles the processes required for afterhours access (request, approval, extension, etc.). It implements the concept of permitted afterhours activities, which consists of a list of well-defined activities that each user can perform afterhours. The program provides an easy and unambiguous way for users to know which activities they are allowed to perform afterhours. In addition, the program can enhance its safety efficacy by interacting with lab and instrument access control systems commonly present in user facilities.
NASA Technical Reports Server (NTRS)
Abolhassani, Jamshid S.; Everton, Eric L.
1990-01-01
An interactive grid adaption method is developed, discussed and applied to the unsteady flow about an oscillating airfoil. The user is allowed to have direct interaction with the adaption of the grid as well as the solution procedure. Grid points are allowed to adapt simultaneously to several variables. In addition to the theory and results, the hardware and software requirements are discussed.
A hybrid symbolic/finite-element algorithm for solving nonlinear optimal control problems
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.
1991-01-01
The general code described is capable of solving difficult nonlinear optimal control problems by using finite elements and a symbolic manipulator. Quick and accurate solutions are obtained with a minimum for user interaction. Since no user programming is required for most problems, there are tremendous savings to be gained in terms of time and money.
A Distributed Data Base Version of INGRES.
ERIC Educational Resources Information Center
Stonebraker, Michael; Neuhold, Eric
Extensions are required to the currently operational INGRES data base system for it to manage a data base distributed over multiple machines in a computer network running the UNIX operating system. Three possible user views include: (1) each relation in a unique machine, (2) a user interaction with the data base which can only span relations at a…
NASA Technical Reports Server (NTRS)
Wakim, Nagi T.; Srivastava, Sadanand; Bousaidi, Mehdi; Goh, Gin-Hua
1995-01-01
Agent-based technologies answer to several challenges posed by additional information processing requirements in today's computing environments. In particular, (1) users desire interaction with computing devices in a mode which is similar to that used between people, (2) the efficiency and successful completion of information processing tasks often require a high-level of expertise in complex and multiple domains, (3) information processing tasks often require handling of large volumes of data and, therefore, continuous and endless processing activities. The concept of an agent is an attempt to address these new challenges by introducing information processing environments in which (1) users can communicate with a system in a natural way, (2) an agent is a specialist and a self-learner and, therefore, it qualifies to be trusted to perform tasks independent of the human user, and (3) an agent is an entity that is continuously active performing tasks that are either delegated to it or self-imposed. The work described in this paper focuses on the development of an interface agent for users of a complex information processing environment (IPE). This activity is part of an on-going effort to build a model for developing agent-based information systems. Such systems will be highly applicable to environments which require a high degree of automation, such as, flight control operations and/or processing of large volumes of data in complex domains, such as the EOSDIS environment and other multidisciplinary, scientific data systems. The concept of an agent as an information processing entity is fully described with emphasis on characteristics of special interest to the User-System Interface Agent (USIA). Issues such as agent 'existence' and 'qualification' are discussed in this paper. Based on a definition of an agent and its main characteristics, we propose an architecture for the development of interface agents for users of an IPE that is agent-oriented and whose resources are likely to be distributed and heterogeneous in nature. The architecture of USIA is outlined in two main components: (1) the user interface which is concerned with issues as user dialog and interaction, user modeling, and adaptation to user profile, and (2) the system interface part which deals with identification of IPE capabilities, task understanding and feasibility assessment, and task delegation and coordination of assistant agents.
Interface Anywhere: Development of a Voice and Gesture System for Spaceflight Operations
NASA Technical Reports Server (NTRS)
Thompson, Shelby; Haddock, Maxwell; Overland, David
2013-01-01
The Interface Anywhere Project was funded through Innovation Charge Account (ICA) at NASA JSC in the Fall of 2012. The project was collaboration between human factors and engineering to explore the possibility of designing an interface to control basic habitat operations through gesture and voice control; (a) Current interfaces require the users to be physically near an input device in order to interact with the system; and (b) By using voice and gesture commands, the user is able to interact with the system anywhere they want within the work environment.
Spacelab data analysis and interactive control study
NASA Technical Reports Server (NTRS)
Tarbell, T. D.; Drake, J. F.
1980-01-01
The study consisted of two main tasks, a series of interviews of Spacelab users and a survey of data processing and display equipment. Findings from the user interviews on questions of interactive control, downlink data formats, and Spacelab computer software development are presented. Equipment for quick look processing and display of scientific data in the Spacelab Payload Operations Control Center (POCC) was surveyed. Results of this survey effort are discussed in detail, along with recommendations for NASA development of several specific display systems which meet common requirements of many Spacelab experiments.
Light-Field Correction for Spatial Calibration of Optical See-Through Head-Mounted Displays.
Itoh, Yuta; Klinker, Gudrun
2015-04-01
A critical requirement for AR applications with Optical See-Through Head-Mounted Displays (OST-HMD) is to project 3D information correctly into the current viewpoint of the user - more particularly, according to the user's eye position. Recently-proposed interaction-free calibration methods [16], [17] automatically estimate this projection by tracking the user's eye position, thereby freeing users from tedious manual calibrations. However, the method is still prone to contain systematic calibration errors. Such errors stem from eye-/HMD-related factors and are not represented in the conventional eye-HMD model used for HMD calibration. This paper investigates one of these factors - the fact that optical elements of OST-HMDs distort incoming world-light rays before they reach the eye, just as corrective glasses do. Any OST-HMD requires an optical element to display a virtual screen. Each such optical element has different distortions. Since users see a distorted world through the element, ignoring this distortion degenerates the projection quality. We propose a light-field correction method, based on a machine learning technique, which compensates the world-scene distortion caused by OST-HMD optics. We demonstrate that our method reduces the systematic error and significantly increases the calibration accuracy of the interaction-free calibration.
An Interactive Web System for Field Data Sharing and Collaboration
NASA Astrophysics Data System (ADS)
Weng, Y.; Sun, F.; Grigsby, J. D.
2010-12-01
A Web 2.0 system is designed and developed to facilitate data collection for the field studies in the Geological Sciences department at Ball State University. The system provides a student-centered learning platform that enables the users to first upload their collected data in various formats, interact and collaborate dynamically online, and ultimately create a shared digital repository of field experiences. The data types considered for the system and their corresponding format and requirements are listed in the table below. The system has six main functionalities as follows. (1) Only the registered users can access the system with confidential identification and password. (2) Each user can upload/revise/delete data in various formats such as image, audio, video, and text files to the system. (3) Interested users are allowed to co-edit the contents and join the collaboration whiteboard for further discussion. (4) The system integrates with Google, Yahoo, or Flickr to search for similar photos with same tags. (5) Users can search the web system according to the specific key words. (6) Photos with recorded GPS readings can be mashed and mapped to Google Maps/Earth for visualization. Application of the system to geology field trips at Ball State University will be demonstrated to assess the usability of the system.Data Requirements
Escobedo, Patricia; Cruz, Tess Boley; Tsai, Kai-Ya; Allem, Jon-Patrick; Soto, Daniel W; Kirkpatrick, Matthew G; Pattarroyo, Monica; Unger, Jennifer B
2017-09-11
Limited information exists about strategies and methods used on brand marketing websites to transmit pro-tobacco messages to tobacco users and potential users. This study compared age verification methods, themes, interactive activities and links to social media across tobacco brand websites. This study examined 12 tobacco brand websites representing four tobacco product categories: cigarettes, cigar/cigarillos, smokeless tobacco, and e-cigarettes. Website content was analyzed by tobacco product category and data from all website visits (n = 699) were analyzed. Adult smokers (n=32) coded websites during a one-year period, indicating whether or not they observed any of 53 marketing themes, seven interactive activities, or five external links to social media sites. Most (58%) websites required online registration before entering, however e-cigarette websites used click-through age verification. Compared to cigarette sites, cigar/cigarillo sites were more likely to feature themes related to "party" lifestyle, and e-cigarette websites were much more likely to feature themes related to harm reduction. Cigarette sites featured greater levels of interactive content compared to other tobacco products. Compared to cigarette sites, cigar/cigarillo sites were more likely to feature activities related to events and music. Compared to cigarette sites, both cigar and e-cigarette sites were more likely to direct visitors to external social media sites. Marketing methods and strategies normalize tobacco use by providing website visitors with positive themes combined with interactive content, and is an area of future research. Moreover, all tobacco products under federal regulatory authority should be required to use more stringent age verification gates. Findings indicate the Food and Drug Administration (FDA) should require brand websites of all tobacco products under its regulatory authority use more stringent age verification gates by requiring all visitors be at least 18 years of age and register online prior to entry. This is important given that marketing strategies may encourage experimentation with tobacco or deter quit attempts among website visitors. Future research should examine the use of interactive activities and social media on a wide variety of tobacco brand websites as interactive content is associated with more active information processing. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Web-based interactive 2D/3D medical image processing and visualization software.
Mahmoudi, Seyyed Ehsan; Akhondi-Asl, Alireza; Rahmani, Roohollah; Faghih-Roohi, Shahrooz; Taimouri, Vahid; Sabouri, Ahmad; Soltanian-Zadeh, Hamid
2010-05-01
There are many medical image processing software tools available for research and diagnosis purposes. However, most of these tools are available only as local applications. This limits the accessibility of the software to a specific machine, and thus the data and processing power of that application are not available to other workstations. Further, there are operating system and processing power limitations which prevent such applications from running on every type of workstation. By developing web-based tools, it is possible for users to access the medical image processing functionalities wherever the internet is available. In this paper, we introduce a pure web-based, interactive, extendable, 2D and 3D medical image processing and visualization application that requires no client installation. Our software uses a four-layered design consisting of an algorithm layer, web-user-interface layer, server communication layer, and wrapper layer. To compete with extendibility of the current local medical image processing software, each layer is highly independent of other layers. A wide range of medical image preprocessing, registration, and segmentation methods are implemented using open source libraries. Desktop-like user interaction is provided by using AJAX technology in the web-user-interface. For the visualization functionality of the software, the VRML standard is used to provide 3D features over the web. Integration of these technologies has allowed implementation of our purely web-based software with high functionality without requiring powerful computational resources in the client side. The user-interface is designed such that the users can select appropriate parameters for practical research and clinical studies. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.
1994-01-01
An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.
Integration of design information
NASA Technical Reports Server (NTRS)
Anderton, G. L.
1980-01-01
The overall concepts of the integrated programs for aerospace-vehicle design (IPAD) from the user's viewpoint are discussed. Also a top-level view of what the user requires from such a system is provided, and the interactions between the system and user are described. The four major components discussed are design process; data storage, management and manipulation; user interface; and project management. Although an outgrowth of aerospace production experience, the basic concepts discussed, and especially their emphasis on integration, are considered applicable to all problem solving. Thus, these concepts may offer a broad base for exploitation by industry in general. This is the first in a set of three papers, the other two being Future Integrated Design Process, by D. D. Mayer, and Requirements for Company-Wide Management of Engineering Information, by J. W. Southall. In addition to tying the three together, how project management can be handled in a computing environment and also the user interface needs are discussed in detail.
Interacting with a security system: The Argus user interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrin, E.; Davis, G.E.
1993-12-31
In the mid-1980s the Lawrence Livermore National Laboratory (LLNL) developed the Argus Security System. Key requirements were to eliminate the telephone as a verification device for opening and closing alarm stations and to allow need-to-know access through local enrollment at alarm stations. Resulting from these requirements was an LLNL-designed user interface called the Remote Access Panel (RAP). The Argus RAP interacts with Argus field processors to allow secure station mode changes and local station enrollment, provides user direction and response, and assists station maintenance personnel. It consists of a tamper-detecting housing containing a badge reader, a keypad with sight screen,more » special-purpose push buttons and a liquid-crystal display. This paper discusses Argus system concepts, RAP design, functional characteristics and its physical configurations. The paper also describes the RAP`s use in access-control booths, it`s integration with biometrics and its operation for multi-person-rule stations and compartmented facilities.« less
Bimanual Interaction with Interscopic Multi-Touch Surfaces
NASA Astrophysics Data System (ADS)
Schöning, Johannes; Steinicke, Frank; Krüger, Antonio; Hinrichs, Klaus; Valkov, Dimitar
Multi-touch interaction has received considerable attention in the last few years, in particular for natural two-dimensional (2D) interaction. However, many application areas deal with three-dimensional (3D) data and require intuitive 3D interaction techniques therefore. Indeed, virtual reality (VR) systems provide sophisticated 3D user interface, but then lack efficient 2D interaction, and are therefore rarely adopted by ordinary users or even by experts. Since multi-touch interfaces represent a good trade-off between intuitive, constrained interaction on a touch surface providing tangible feedback, and unrestricted natural interaction without any instrumentation, they have the potential to form the foundation of the next generation user interface for 2D as well as 3D interaction. In particular, stereoscopic display of 3D data provides an additional depth cue, but until now the challenges and limitations for multi-touch interaction in this context have not been considered. In this paper we present new multi-touch paradigms and interactions that combine both traditional 2D interaction and novel 3D interaction on a touch surface to form a new class of multi-touch systems, which we refer to as interscopic multi-touch surfaces (iMUTS). We discuss iMUTS-based user interfaces that support interaction with 2D content displayed in monoscopic mode and 3D content usually displayed stereoscopically. In order to underline the potential of the proposed iMUTS setup, we have developed and evaluated two example interaction metaphors for different domains. First, we present intuitive navigation techniques for virtual 3D city models, and then we describe a natural metaphor for deforming volumetric datasets in a medical context.
Gesture Interaction Browser-Based 3D Molecular Viewer.
Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela
2016-01-01
The paper presents an open source system that allows the user to interact with a 3D molecular viewer using associated hand gestures for rotating, scaling and panning the rendered model. The novelty of this approach is that the entire application is browser-based and doesn't require installation of third party plug-ins or additional software components in order to visualize the supported chemical file formats. This kind of solution is suitable for instruction of users in less IT oriented environments, like medicine or chemistry. For rendering various molecular geometries our team used GLmol (a molecular viewer written in JavaScript). The interaction with the 3D models is made with Leap Motion controller that allows real-time tracking of the user's hand gestures. The first results confirmed that the resulting application leads to a better way of understanding various types of translational bioinformatics related problems in both biomedical research and education.
Ready Set. . .Authoring Systems to Get You Started on Interactive Video Design.
ERIC Educational Resources Information Center
Rhodes, Dent M.; Azbell, Janet White
1986-01-01
Evaluates four authoring systems used to develop computer aided interactive video: The Instructor, InfoWriter, IDeAS, and ProCAL2. The information provided includes hardware requirements, compatibility with videotape and/or videodisc, instructional options available, user data-management capabilities, procedures for logging tapes, and access for…
Design Requirements for Communication-Intensive Interactive Applications
NASA Astrophysics Data System (ADS)
Bolchini, Davide; Garzotto, Franca; Paolini, Paolo
Online interactive applications call for new requirements paradigms to capture the growing complexity of computer-mediated communication. Crafting successful interactive applications (such as websites and multimedia) involves modeling the requirements for the user experience, including those leading to content design, usable information architecture and interaction, in profound coordination with the communication goals of all stakeholders involved, ranging from persuasion to social engagement, to call for action. To face this grand challenge, we propose a methodology for modeling communication requirements and provide a set of operational conceptual tools to be used in complex projects with multiple stakeholders. Through examples from real-life projects and lessons-learned from direct experience, we draw on the concepts of brand, value, communication goals, information and persuasion requirements to systematically guide analysts to master the multifaceted connections of these elements as drivers to inform successful communication designs.
Assessment of a User Guide for One Semi-Automated Forces (OneSAF) Version 2.0
2009-09-01
OneSAF uses a two-dimensional feature named a Plan View Display ( PVD ) as the primary graphical interface. The PVD replicates a map with a series...primary interface, the PVD is how the user watches the scenario unfold and requires the most interaction with the user. As seen in Table 3, all...participant indicated never using these seven map-related functions. Graphic control measures. Graphic control measures are applied to the PVD map to
Seamless 3D interaction for virtual tables, projection planes, and CAVEs
NASA Astrophysics Data System (ADS)
Encarnacao, L. M.; Bimber, Oliver; Schmalstieg, Dieter; Barton, Robert J., III
2000-08-01
The Virtual Table presents stereoscopic graphics to a user in a workbench-like setting. This device shares with other large- screen display technologies (such as data walls and surround- screen projection systems) the lack of human-centered unencumbered user interfaces and 3D interaction technologies. Such shortcomings present severe limitations to the application of virtual reality (VR) technology to time- critical applications as well as employment scenarios that involve heterogeneous groups of end-users without high levels of computer familiarity and expertise. Traditionally such employment scenarios are common in planning-related application areas such as mission rehearsal and command and control. For these applications, a high grade of flexibility with respect to the system requirements (display and I/O devices) as well as to the ability to seamlessly and intuitively switch between different interaction modalities and interaction are sought. Conventional VR techniques may be insufficient to meet this challenge. This paper presents novel approaches for human-centered interfaces to Virtual Environments focusing on the Virtual Table visual input device. It introduces new paradigms for 3D interaction in virtual environments (VE) for a variety of application areas based on pen-and-clipboard, mirror-in-hand, and magic-lens metaphors, and introduces new concepts for combining VR and augmented reality (AR) techniques. It finally describes approaches toward hybrid and distributed multi-user interaction environments and concludes by hypothesizing on possible use cases for defense applications.
NASA Astrophysics Data System (ADS)
Grandi, C.; Italiano, A.; Salomoni, D.; Calabrese Melcarne, A. K.
2011-12-01
WNoDeS, an acronym for Worker Nodes on Demand Service, is software developed at CNAF-Tier1, the National Computing Centre of the Italian Institute for Nuclear Physics (INFN) located in Bologna. WNoDeS provides on demand, integrated access to both Grid and Cloud resources through virtualization technologies. Besides the traditional use of computing resources in batch mode, users need to have interactive and local access to a number of systems. WNoDeS can dynamically select these computers instantiating Virtual Machines, according to the requirements (computing, storage and network resources) of users through either the Open Cloud Computing Interface API, or through a web console. An interactive use is usually limited to activities in user space, i.e. where the machine configuration is not modified. In some other instances the activity concerns development and testing of services and thus implies the modification of the system configuration (and, therefore, root-access to the resource). The former use case is a simple extension of the WNoDeS approach, where the resource is provided in interactive mode. The latter implies saving the virtual image at the end of each user session so that it can be presented to the user at subsequent requests. This work describes how the LHC experiments at INFN-Bologna are testing and making use of these dynamically created ad-hoc machines via WNoDeS to support flexible, interactive analysis and software development at the INFN Tier-1 Computing Centre.
Detailed requirements document for the integrated structural analysis system, phase B
NASA Technical Reports Server (NTRS)
Rainey, J. A.
1976-01-01
The requirements are defined for a software system entitled integrated Structural Analysis System (ISAS) Phase B which is being developed to provide the user with a tool by which a complete and detailed analysis of a complex structural system can be performed. This software system will allow for automated interface with numerous structural analysis batch programs and for user interaction in the creation, selection, and validation of data. This system will include modifications to the 4 functions developed for ISAS, and the development of 25 new functions. The new functions are described.
JAMI: a Java library for molecular interactions and data interoperability.
Sivade Dumousseau, M; Koch, M; Shrivastava, A; Alonso-López, D; De Las Rivas, J; Del-Toro, N; Combe, C W; Meldal, B H M; Heimbach, J; Rappsilber, J; Sullivan, J; Yehudi, Y; Orchard, S
2018-04-11
A number of different molecular interactions data download formats now exist, designed to allow access to these valuable data by diverse user groups. These formats include the PSI-XML and MITAB standard interchange formats developed by Molecular Interaction workgroup of the HUPO-PSI in addition to other, use-specific downloads produced by other resources. The onus is currently on the user to ensure that a piece of software is capable of read/writing all necessary versions of each format. This problem may increase, as data providers strive to meet ever more sophisticated user demands and data types. A collaboration between EMBL-EBI and the University of Cambridge has produced JAMI, a single library to unify standard molecular interaction data formats such as PSI-MI XML and PSI-MITAB. The JAMI free, open-source library enables the development of molecular interaction computational tools and pipelines without the need to produce different versions of software to read different versions of the data formats. Software and tools developed on top of the JAMI framework are able to integrate and support both PSI-MI XML and PSI-MITAB. The use of JAMI avoids the requirement to chain conversions between formats in order to reach a desired output format and prevents code and unit test duplication as the code becomes more modular. JAMI's model interfaces are abstracted from the underlying format, hiding the complexity and requirements of each data format from developers using JAMI as a library.
Kinect-based posture tracking for correcting positions during exercise.
Guerrero, Cesar; Uribe-Quevedo, Alvaro
2013-01-01
The Kinect sensor has opened the path for developing numerous applications in several different areas. Medical and health applications are benefiting from the Kinect as it allows non-invasive body motion capture that can be used in motor rehabilitation and phobia treatment. A major advantage of the Kinect is that allows developing solutions that can be used at home or even the office thus, expanding the user freedom for interacting with complementary solutions to its physical activities without requiring any traveling. This paper present a Kinect-based posture tracking software for assisting the user in successfully match postures required in some exercises for strengthen body muscles. Unlike several video games available, this tool offers a user interface for customizing posture parameters, so it can be enhanced by healthcare professionals or by their guidance through the user.
NASA Astrophysics Data System (ADS)
Kromp, Florian; Taschner-Mandl, Sabine; Schwarz, Magdalena; Blaha, Johanna; Weiss, Tamara; Ambros, Peter F.; Reiter, Michael
2015-02-01
We propose a user-driven method for the segmentation of neuroblastoma nuclei in microscopic fluorescence images involving the gradient energy tensor. Multispectral fluorescence images contain intensity and spatial information about antigene expression, fluorescence in situ hybridization (FISH) signals and nucleus morphology. The latter serves as basis for the detection of single cells and the calculation of shape features, which are used to validate the segmentation and to reject false detections. Accurate segmentation is difficult due to varying staining intensities and aggregated cells. It requires several (meta-) parameters, which have a strong influence on the segmentation results and have to be selected carefully for each sample (or group of similar samples) by user interactions. Because our method is designed for clinicians and biologists, who may have only limited image processing background, an interactive parameter selection step allows the implicit tuning of parameter values. With this simple but intuitive method, segmentation results with high precision for a large number of cells can be achieved by minimal user interaction. The strategy was validated on handsegmented datasets of three neuroblastoma cell lines.
Alam, Zaid; Peddinti, Gopal
2017-01-01
Abstract The advent of polypharmacology paradigm in drug discovery calls for novel chemoinformatic tools for analyzing compounds’ multi-targeting activities. Such tools should provide an intuitive representation of the chemical space through capturing and visualizing underlying patterns of compound similarities linked to their polypharmacological effects. Most of the existing compound-centric chemoinformatics tools lack interactive options and user interfaces that are critical for the real-time needs of chemical biologists carrying out compound screening experiments. Toward that end, we introduce C-SPADE, an open-source exploratory web-tool for interactive analysis and visualization of drug profiling assays (biochemical, cell-based or cell-free) using compound-centric similarity clustering. C-SPADE allows the users to visually map the chemical diversity of a screening panel, explore investigational compounds in terms of their similarity to the screening panel, perform polypharmacological analyses and guide drug-target interaction predictions. C-SPADE requires only the raw drug profiling data as input, and it automatically retrieves the structural information and constructs the compound clusters in real-time, thereby reducing the time required for manual analysis in drug development or repurposing applications. The web-tool provides a customizable visual workspace that can either be downloaded as figure or Newick tree file or shared as a hyperlink with other users. C-SPADE is freely available at http://cspade.fimm.fi/. PMID:28472495
Dufendach, Kevin R; Koch, Sabine; Unertl, Kim M; Lehmann, Christoph U
2017-10-26
Early involvement of stakeholders in the design of medical software is particularly important due to the need to incorporate complex knowledge and actions associated with clinical work. Standard user-centered design methods include focus groups and participatory design sessions with individual stakeholders, which generally limit user involvement to a small number of individuals due to the significant time investments from designers and end users. The goal of this project was to reduce the effort for end users to participate in co-design of a software user interface by developing an interactive web-based crowdsourcing platform. In a randomized trial, we compared a new web-based crowdsourcing platform to standard participatory design sessions. We developed an interactive, modular platform that allows responsive remote customization and design feedback on a visual user interface based on user preferences. The responsive canvas is a dynamic HTML template that responds in real time to user preference selections. Upon completion, the design team can view the user's interface creations through an administrator portal and download the structured selections through a REDCap interface. We have created a software platform that allows users to customize a user interface and see the results of that customization in real time, receiving immediate feedback on the impact of their design choices. Neonatal clinicians used the new platform to successfully design and customize a neonatal handoff tool. They received no specific instruction and yet were able to use the software easily and reported high usability. VandAID, a new web-based crowdsourcing platform, can involve multiple users in user-centered design simultaneously and provides means of obtaining design feedback remotely. The software can provide design feedback at any stage in the design process, but it will be of greatest utility for specifying user requirements and evaluating iterative designs with multiple options.
Mid-Frequency Sonar Interactions with Beaked Whales
2010-09-30
1 Mid-Frequency Sonar Interactions with Beaked Whales PI Kenneth G. Foote Woods Hole Oceanographic Institution, 98 Water Street, Woods Hole, MA...modeling and visualization system, called the Virtual Beaked Whale, to enable users to predict mid-frequency sonar -induced acoustic fields inside beaked...nature of sonar interactions with beaked whales, and may prove useful in evaluating alternate sonar transmit signals that retain the required
Privacy and Trust Attitudes in the Intent to Volunteer for Data-Tracking Research
ERIC Educational Resources Information Center
Smith, Catherine L.
2016-01-01
Introduction: The analysis of detailed interaction records is fundamental to development of user-centred systems. Researchers seeking such data must recruit volunteers willing to allow tracking of their interactions. This study examines privacy and trust attitudes in the intent to volunteer for research requiring installation of tracking software.…
Live minimal path for interactive segmentation of medical images
NASA Astrophysics Data System (ADS)
Chartrand, Gabriel; Tang, An; Chav, Ramnada; Cresson, Thierry; Chantrel, Steeve; De Guise, Jacques A.
2015-03-01
Medical image segmentation is nowadays required for medical device development and in a growing number of clinical and research applications. Since dedicated automatic segmentation methods are not always available, generic and efficient interactive tools can alleviate the burden of manual segmentation. In this paper we propose an interactive segmentation tool based on image warping and minimal path segmentation that is efficient for a wide variety of segmentation tasks. While the user roughly delineates the desired organs boundary, a narrow band along the cursors path is straightened, providing an ideal subspace for feature aligned filtering and minimal path algorithm. Once the segmentation is performed on the narrow band, the path is warped back onto the original image, precisely delineating the desired structure. This tool was found to have a highly intuitive dynamic behavior. It is especially efficient against misleading edges and required only coarse interaction from the user to achieve good precision. The proposed segmentation method was tested for 10 difficult liver segmentations on CT and MRI images, and the resulting 2D overlap Dice coefficient was 99% on average..
Privacy, Liveliness and Fairness for Reputation
NASA Astrophysics Data System (ADS)
Schiffner, Stefan; Clauß, Sebastian; Steinbrecher, Sandra
In various Internet applications, reputation systems are typical means to collect experiences users make with each other. We present a reputation system that balances the security and privacy requirements of all users involed. Our system provides privacy in the form of information theoretic relationship anonymity w.r.t. users and the reputation provider. Furthermore, it preserves liveliness, i.e., all past ratings can influence the current reputation profile of a user. In addition, mutual ratings are forced to be simultaneous and self rating is prevented, which enforces fairness. What is more, without performing mock interactions - even if all users are colluding - users cannot forge ratings. As far as we know, this is the first protocol proposed that fulfills all these properties simultaneously.
NASA Technical Reports Server (NTRS)
Lucas, S. H.; Davis, R. C.
1992-01-01
A user's manual is presented for MacPASCO, which is an interactive, graphic, preprocessor for panel design. MacPASCO creates input for PASCO, an existing computer code for structural analysis and sizing of longitudinally stiffened composite panels. MacPASCO provides a graphical user interface which simplifies the specification of panel geometry and reduces user input errors. The user draws the initial structural geometry and reduces user input errors. The user draws the initial structural geometry on the computer screen, then uses a combination of graphic and text inputs to: refine the structural geometry; specify information required for analysis such as panel load and boundary conditions; and define design variables and constraints for minimum mass optimization. Only the use of MacPASCO is described, since the use of PASCO has been documented elsewhere.
Measuring the Usability of Augmented Reality e-Learning Systems: A User-Centered Evaluation Approach
NASA Astrophysics Data System (ADS)
Pribeanu, Costin; Balog, Alexandru; Iordache, Dragoş Daniel
The development of Augmented Reality (AR) systems is creating new challenges and opportunities for the designers of e-learning systems. The mix of real and virtual requires appropriate interaction techniques that have to be evaluated with users in order to avoid usability problems. Formative usability aims at finding usability problems as early as possible in the development life cycle and is suitable to support the development of such novel interactive systems. This work presents an approach to the user-centered usability evaluation of an e-learning scenario for Biology developed on an Augmented Reality educational platform. The evaluation has been carried on during and after a summer school held within the ARiSE research project. The basic idea was to perform usability evaluation twice. In this respect, we conducted user testing with a small number of students during the summer school in order to get a fast feedback from users having good knowledge in Biology. Then, we repeated the user testing in different conditions and with a relatively larger number of representative users. In this paper we describe both experiments and compare the usability evaluation results.
Lei, Yang; Yu, Dai; Bin, Zhang; Yang, Yang
2017-01-01
Clustering algorithm as a basis of data analysis is widely used in analysis systems. However, as for the high dimensions of the data, the clustering algorithm may overlook the business relation between these dimensions especially in the medical fields. As a result, usually the clustering result may not meet the business goals of the users. Then, in the clustering process, if it can combine the knowledge of the users, that is, the doctor's knowledge or the analysis intent, the clustering result can be more satisfied. In this paper, we propose an interactive K -means clustering method to improve the user's satisfactions towards the result. The core of this method is to get the user's feedback of the clustering result, to optimize the clustering result. Then, a particle swarm optimization algorithm is used in the method to optimize the parameters, especially the weight settings in the clustering algorithm to make it reflect the user's business preference as possible. After that, based on the parameter optimization and adjustment, the clustering result can be closer to the user's requirement. Finally, we take an example in the breast cancer, to testify our method. The experiments show the better performance of our algorithm.
ERIC Educational Resources Information Center
Ementa, Christiana Ngozi; Ile, Chika Madu
2015-01-01
There are diverse social networking sites which range from those that provide social sharing and interaction to those that provide networks for professionals within same and other fields. Social networking sites require a user to sign up, create a profile and begin sending short messages about what the user is doing or thinking. The study sought…
MyWelch: building an information portal system in a medical library environment.
Zhang, Dongming; Zambrowicz, Caroline; Zhou, Hong; Roderer, Nancy
2003-01-01
MyWelch is a medical library portal system that users can use to create customized web sites that reflect their research needs and personal interests. In the MyWelch environment, faculty and students are empowered to take a greater role in identifying their needs and determining their requirements in the electronic environment. The portal system also facilitates interaction among library users and staff.
CLIPS application user interface for the PC
NASA Technical Reports Server (NTRS)
Jenkins, Jim; Holbrook, Rebecca; Shewhart, Mark; Crouse, Joey; Yarost, Stuart
1991-01-01
The majority of applications that utilize expert system development programs for their knowledge representation and inferencing capability require some form of interface with the end user. This interface is more than likely an interaction through the computer screen. When building an application the user interface can prove to be the most difficult and time consuming aspect to program. Commercial products currently exist which address this issue. To keep pace C Language Integrated Production System (CLIPS) will need to find a solution for their lack of an easy to use Application User Interface (AUI). This paper represents a survey of the DoD CLIPS' user community and provides the backbone of a possible solution.
NASA Technical Reports Server (NTRS)
Muss, J. A.; Nguyen, T. V.; Johnson, C. W.
1991-01-01
The appendices A-K to the user's manual for the rocket combustor interactive design (ROCCID) computer program are presented. This includes installation instructions, flow charts, subroutine model documentation, and sample output files. The ROCCID program, written in Fortran 77, provides a standardized methodology using state of the art codes and procedures for the analysis of a liquid rocket engine combustor's steady state combustion performance and combustion stability. The ROCCID is currently capable of analyzing mixed element injector patterns containing impinging like doublet or unlike triplet, showerhead, shear coaxial and swirl coaxial elements as long as only one element type exists in each injector core, baffle, or barrier zone. Real propellant properties of oxygen, hydrogen, methane, propane, and RP-1 are included in ROCCID. The properties of other propellants can be easily added. The analysis models in ROCCID can account for the influences of acoustic cavities, helmholtz resonators, and radial thrust chamber baffles on combustion stability. ROCCID also contains the logic to interactively create a combustor design which meets input performance and stability goals. A preliminary design results from the application of historical correlations to the input design requirements. The steady state performance and combustion stability of this design is evaluated using the analysis models, and ROCCID guides the user as to the design changes required to satisfy the user's performance and stability goals, including the design of stability aids. Output from ROCCID includes a formatted input file for the standardized JANNAF engine performance prediction procedure.
Van Hoecke, Sofie; Steurbaut, Kristof; Taveirne, Kristof; De Turck, Filip; Dhoedt, Bart
2010-01-01
We designed a broker platform for e-homecare services using web service technology. The broker allows efficient data communication and guarantees quality requirements such as security, availability and cost-efficiency by dynamic selection of services, minimizing user interactions and simplifying authentication through a single user sign-on. A prototype was implemented, with several e-homecare services (alarm, telemonitoring, audio diary and video-chat). It was evaluated by patients with diabetes and multiple sclerosis. The patients found that the start-up time and overhead imposed by the platform was satisfactory. Having all e-homecare services integrated into a single application, which required only one login, resulted in a high quality of experience for the patients.
Kinect the dots: 3D control of optical tweezers
NASA Astrophysics Data System (ADS)
Shaw, Lucy; Preece, Daryl; Rubinsztein-Dunlop, Halina
2013-07-01
Holographically generated optical traps confine micron- and sub-micron sized particles close to the center of focused light beams. They also provide a way of trapping multiple particles and moving them in three dimensions. However, in many systems the user interface is not always advantageous or intuitive especially for collaborative work and when depth information is required. We discuss and evaluate a set of multi-beam optical tweezers that utilize off the shelf gaming technology to facilitate user interaction. We use the Microsoft Kinect sensor bar as a way of getting the user input required to generate arbitrary optical force fields and control optically trapped particles. We demonstrate that the system can also be used for dynamic light control.
MOPET: a context-aware and user-adaptive wearable system for fitness training.
Buttussi, Fabio; Chittaro, Luca
2008-02-01
Cardiovascular disease, obesity, and lack of physical fitness are increasingly common and negatively affect people's health, requiring medical assistance and decreasing people's wellness and productivity. In the last years, researchers as well as companies have been increasingly investigating wearable devices for fitness applications with the aim of improving user's health, in terms of cardiovascular benefits, loss of weight or muscle strength. Dedicated GPS devices, accelerometers, step counters and heart rate monitors are already commercially available, but they are usually very limited in terms of user interaction and artificial intelligence capabilities. This significantly limits the training and motivation support provided by current systems, making them poorly suited for untrained people who are more interested in fitness for health rather than competitive purposes. To better train and motivate users, we propose the mobile personal trainer (MOPET) system. MOPET is a wearable system that supervises a physical fitness activity based on alternating jogging and fitness exercises in outdoor environments. By exploiting real-time data coming from sensors, knowledge elicited from a sport physiologist and a professional trainer, and a user model that is built and periodically updated through a guided autotest, MOPET can provide motivation as well as safety and health advice, adapted to the user and the context. To better interact with the user, MOPET also displays a 3D embodied agent that speaks, suggests stretching or strengthening exercises according to user's current condition, and demonstrates how to correctly perform exercises with interactive 3D animations. By describing MOPET, we show how context-aware and user-adaptive techniques can be applied to the fitness domain. In particular, we describe how such techniques can be exploited to train, motivate, and supervise users in a wearable personal training system for outdoor fitness activity.
GASP- General Aviation Synthesis Program. Volume 6: Performance
NASA Technical Reports Server (NTRS)
Hague, D.
1978-01-01
Aircraft performance modeling requires consideration of propulsion, aerodynamics, and weight characteristics. Eleven subroutines used in modeling aircraft performance are presented and their interactions considered. Manuals for performance model users and programmers are included.
Collaborative voxel-based surgical virtual environments.
Acosta, Eric; Muniz, Gilbert; Armonda, Rocco; Bowyer, Mark; Liu, Alan
2008-01-01
Virtual Reality-based surgical simulators can utilize Collaborative Virtual Environments (C-VEs) to provide team-based training. To support real-time interactions, C-VEs are typically replicated on each user's local computer and a synchronization method helps keep all local copies consistent. This approach does not work well for voxel-based C-VEs since large and frequent volumetric updates make synchronization difficult. This paper describes a method that allows multiple users to interact within a voxel-based C-VE for a craniotomy simulator being developed. Our C-VE method requires smaller update sizes and provides faster synchronization update rates than volumetric-based methods. Additionally, we address network bandwidth/latency issues to simulate networked haptic and bone drilling tool interactions with a voxel-based skull C-VE.
GO, an exec for running the programs: CELL, COLLIDER, MAGIC, PATRICIA, PETROS, TRANSPORT, and TURTLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoaee, H.
1982-05-01
An exec has been written and placed on the PEP group's public disk to facilitate the use of several PEP related computer programs available on VM. The exec's program list currently includes: CELL, COLLIDER, MAGIC, PATRICIA, PETROS, TRANSPORT, and TURTLE. In addition, provisions have been made to allow addition of new programs to this list as they become available. The GO exec is directly callable from inside the Wylbur editor (in fact, currently this is the only way to use the GO exec.). It provides the option of running any of the above programs in either interactive or batch mode.more » In the batch mode, the GO exec sends the data in the Wylbur active file along with the information required to run the job to the batch monitor (BMON, a virtual machine that schedules and controls execution of batch jobs). This enables the user to proceed with other VM activities at his/her terminal while the job executes, thus making it of particular interest to the users with jobs requiring much CPU time to execute and/or those wishing to run multiple jobs independently. In the interactive mode, useful for small jobs requiring less CPU time, the job is executed by the user's own Virtual Machine using the data in the active file as input. At the termination of an interactive job, the GO exec facilitates examination of the output by placing it in the Wylbur active file.« less
GO, an exec for running the programs: CELL, COLLIDER, MAGIC, PATRICIA, PETROS, TRANSPORT and TURTLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoaee, H.
1982-05-01
An exec has been written and placed on the PEP group's public disk (PUBRL 192) to facilitate the use of several PEP related computer programs available on VM. The exec's program list currently includes: CELL, COLLIDER, MAGIC, PATRICIA, PETROS, TRANSPORT, and TURTLE. In addition, provisions have been made to allow addition of new programs to this list as they become available. The GO exec is directly callable from inside the Wylbur editor (in fact, currently this is the only way to use the GO exec.) It provides the option of running any of the above programs in either interactive ormore » batch mode. In the batch mode, the GO exec sends the data in the Wylbur active file along with the information required to run the job to the batch monitor (BMON, a virtual machine that schedules and controls execution of batch jobs). This enables the user to proceed with other VM activities at his/her terminal while the job executes, thus making it of particular interest to the users with jobs requiring much CPU time to execute and/or those wishing to run multiple jobs independently. In the interactive mode, useful for small jobs requiring less CPU time, the job is executed by the user's own Virtual Machine using the data in the active file as input. At the termination of an interactive job, the GO exec facilitates examination of the output by placing it in the Wylbur active file.« less
WILBER and PyWEED: Event-based Seismic Data Request Tools
NASA Astrophysics Data System (ADS)
Falco, N.; Clark, A.; Trabant, C. M.
2017-12-01
WILBER and PyWEED are two user-friendly tools for requesting event-oriented seismic data. Both tools provide interactive maps and other controls for browsing and filtering event and station catalogs, and downloading data for selected event/station combinations, where the data window for each event/station pair may be defined relative to the arrival time of seismic waves from the event to that particular station. Both tools allow data to be previewed visually, and can download data in standard miniSEED, SAC, and other formats, complete with relevant metadata for performing instrument correction. WILBER is a web application requiring only a modern web browser. Once the user has selected an event, WILBER identifies all data available for that time period, and allows the user to select stations based on criteria such as the station's distance and orientation relative to the event. When the user has finalized their request, the data is collected and packaged on the IRIS server, and when it is ready the user is sent a link to download. PyWEED is a downloadable, cross-platform (Macintosh / Windows / Linux) application written in Python. PyWEED allows a user to select multiple events and stations, and will download data for each event/station combination selected. PyWEED is built around the ObsPy seismic toolkit, and allows direct interaction and control of the application through a Python interactive console.
iHand: an interactive bare-hand-based augmented reality interface on commercial mobile phones
NASA Astrophysics Data System (ADS)
Choi, Junyeong; Park, Jungsik; Park, Hanhoon; Park, Jong-Il
2013-02-01
The performance of mobile phones has rapidly improved, and they are emerging as a powerful platform. In many vision-based applications, human hands play a key role in natural interaction. However, relatively little attention has been paid to the interaction between human hands and the mobile phone. Thus, we propose a vision- and hand gesture-based interface in which the user holds a mobile phone in one hand but sees the other hand's palm through a built-in camera. The virtual contents are faithfully rendered on the user's palm through palm pose estimation, and reaction with hand and finger movements is achieved that is recognized by hand shape recognition. Since the proposed interface is based on hand gestures familiar to humans and does not require any additional sensors or markers, the user can freely interact with virtual contents anytime and anywhere without any training. We demonstrate that the proposed interface works at over 15 fps on a commercial mobile phone with a 1.2-GHz dual core processor and 1 GB RAM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholtz, Jean; Burtner, Edwin R.; Cook, Kristin A.
This course will introduce the field of Visual Analytics to HCI researchers and practitioners highlighting the contributions they can make to this field. Topics will include a definition of visual analytics along with examples of current systems, types of tasks and end users, issues in defining user requirements, design of visualizations and interactions, guidelines and heuristics, the current state of user-centered evaluations, and metrics for evaluation. We encourage designers, HCI researchers, and HCI practitioners to attend to learn how their skills can contribute to advancing the state of the art of visual analytics
E-Learning Application of Tarsier with Virtual Reality using Android Platform
NASA Astrophysics Data System (ADS)
Oroh, H. N.; Munir, R.; Paseru, D.
2017-01-01
Spectral Tarsier is a primitive primate that can only be found in the province of North Sulawesi. To study these primates can be used an e-learning application with Augmented Reality technology that uses a marker to confronted the camera computer to interact with three dimensions Tarsier object. But that application only shows tarsier object in three dimensions without habitat and requires a lot of resources because it runs on a Personal Computer. The same technology can be shown three dimensions’ objects is Virtual Reality to excess can make the user like venturing into the virtual world with Android platform that requires fewer resources. So, put on Virtual Reality technology using the Android platform that can make users not only to view and interact with the tarsiers but also the habitat. The results of this research indicate that the user can learn the Tarsier and habitat with good. Thus, the use of Virtual Reality technology in the e-learning application of tarsiers can help people to see, know, and learn about Spectral Tarsier.
Multimodal user interfaces to improve social integration of elderly and mobility impaired.
Dias, Miguel Sales; Pires, Carlos Galinho; Pinto, Fernando Miguel; Teixeira, Vítor Duarte; Freitas, João
2012-01-01
Technologies for Human-Computer Interaction (HCI) and Communication have evolved tremendously over the past decades. However, citizens such as mobility impaired or elderly or others, still face many difficulties interacting with communication services, either due to HCI issues or intrinsic design problems with the services. In this paper we start by presenting the results of two user studies, the first one conducted with a group of mobility impaired users, comprising paraplegic and quadriplegic individuals; and the second one with elderly. The study participants carried out a set of tasks with a multimodal (speech, touch, gesture, keyboard and mouse) and multi-platform (mobile, desktop) system, offering an integrated access to communication and entertainment services, such as email, agenda, conferencing, instant messaging and social media, referred to as LHC - Living Home Center. The system was designed to take into account the requirements captured from these users, with the objective of evaluating if the adoption of multimodal interfaces for audio-visual communication and social media services, could improve the interaction with such services. Our study revealed that a multimodal prototype system, offering natural interaction modalities, especially supporting speech and touch, can in fact improve access to the presented services, contributing to the reduction of social isolation of mobility impaired, as well as elderly, and improving their digital inclusion.
TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (HP9000 SERIES 700/800 VERSION)
NASA Technical Reports Server (NTRS)
TAE SUPPORT OFFICE
1994-01-01
TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.
TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (IBM RS/6000 VERSION)
NASA Technical Reports Server (NTRS)
TAE SUPPORT OFFICE
1994-01-01
TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.
TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (SUN4 VERSION WITH MOTIF)
NASA Technical Reports Server (NTRS)
TAE SUPPORT OFFICE
1994-01-01
TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.
TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (SILICON GRAPHICS VERSION)
NASA Technical Reports Server (NTRS)
TAE SUPPORT OFFICE
1994-01-01
TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.
TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (SUN4 VERSION)
NASA Technical Reports Server (NTRS)
TAE SUPPORT OFFICE
1994-01-01
TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.
TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (DEC RISC ULTRIX VERSION)
NASA Technical Reports Server (NTRS)
TAE SUPPORT OFFICE
1994-01-01
TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.
Wiki use in mental health practice: recognizing potential use of collaborative technology.
Bastida, Richard; McGrath, Ian; Maude, Phil
2010-04-01
Web 2.0, the second-generation of the World Wide Web, differs to earlier versions of Web development and design in that it facilitates more user-friendly, interactive information sharing and mechanisms for greater collaboration between users. Examples of Web 2.0 include Web-based communities, hosted services, social networking sites, video sharing sites, blogs, mashups, and wikis. Users are able to interact with others across the world or to add to or change website content. This paper examines examples of wiki use in the Australian mental health sector. A wiki can be described as an online collaborative and interactive database that can be easily edited by users. They are accessed via a standard Web browser which has an interface similar to traditional Web pages, thus do not require special application or software for the user. Although there is a paucity of literature describing wiki use in mental health, other industries have developed uses, including a repository of knowledge, a platform for collaborative writing, a project management tool, and an alternative to traditional Web pages or Intranets. This paper discusses the application of wikis in other industries and offers suggestions by way of examples of how this technology could be used in the mental health sector.
Section 4. The GIS Weasel User's Manual
Viger, Roland J.; Leavesley, George H.
2007-01-01
INTRODUCTION The GIS Weasel was designed to aid in the preparation of spatial information for input to lumped and distributed parameter hydrologic or other environmental models. The GIS Weasel provides geographic information system (GIS) tools to help create maps of geographic features relevant to a user's model and to generate parameters from those maps. The operation of the GIS Weasel does not require the user to be a GIS expert, only that the user have an understanding of the spatial information requirements of the environmental simulation model being used. The GIS Weasel software system uses a GIS-based graphical user interface (GUI), the C programming language, and external scripting languages. The software will run on any computing platform where ArcInfo Workstation (version 8.0.2 or later) and the GRID extension are accessible. The user controls the processing of the GIS Weasel by interacting with menus, maps, and tables. The purpose of this document is to describe the operation of the software. This document is not intended to describe the usage of this software in support of any particular environmental simulation model. Such guides are published separately.
ERIC Educational Resources Information Center
Dias, Sofia B.; Diniz, José A.; Hadjileontiadis, Leontios J.
2014-01-01
The combination of the process of pedagogical planning within the Blended (b-) learning environment with the users' quality of interaction ("QoI") with the Learning Management System (LMS) is explored here. The required "QoI" (both for professors and students) is estimated by adopting a fuzzy logic-based modeling approach,…
E-Textbooks and Connectivity: Proposing an Analytical Framework
ERIC Educational Resources Information Center
Gueudet, Ghislaine; Pepin, Birgit; Restrepo, Angela; Sabra, Hussein; Trouche, Luc
2018-01-01
This paper is concerned with the development of e-textbooks. We claim that analysis (and design) of e-textbooks requires the development of a specific frame. Digital affordances provide particular opportunities (e.g. in terms of interactions between users) that require specific considerations for their analysis, as teachers and students use them…
Design element alternatives for stress-management intervention websites.
Williams, Reg A; Gatien, Gary; Hagerty, Bonnie
2011-01-01
Typical public and military-sponsored websites on stress and depression tend to be prescriptive. Some require users to complete lengthy questionnaires. Others reproduce printed flyers, papers, or educational materials not adapted for online use. Some websites require users to follow a prescribed path through the material. Stress Gym was developed as a first-level, evidence-based, website intervention to help U.S. military members learn how to manage mild to moderate stress and depressive symptoms using a self-help intervention with progress tracking and 24/7 availablility. It was designed using web-based, health-management intervention design elements that have been proven effective and users reported they prefer. These included interactivity, self-pacing, and pleasing aesthetics. Users learned how to manage stress by accessing modules they choose, and by practicing proven stress management strategies interactively immediately after login. Test results of Stress Gym with Navy members demonstrated that it was effective, with significant decreases in reported perceived stress levels from baseline to follow-up assessment. Stress Gym used design elements that may serve as a model for future websites to emulate and improve upon, and as a template against which to compare and contrast the design and functionality of future online, health-intervention websites. Copyright © 2011 Elsevier Inc. All rights reserved.
ISS Mini AERCam Radio Frequency (RF) Coverage Analysis Using iCAT Development Tool
NASA Technical Reports Server (NTRS)
Bolen, Steve; Vazquez, Luis; Sham, Catherine; Fredrickson, Steven; Fink, Patrick; Cox, Jan; Phan, Chau; Panneton, Robert
2003-01-01
The long-term goals of the National Aeronautics and Space Administration's (NASA's) Human Exploration and Development of Space (HEDS) enterprise may require the development of autonomous free-flier (FF) robotic devices to operate within the vicinity of low-Earth orbiting spacecraft to supplement human extravehicular activities (EVAs) in space. Future missions could require external visual inspection of the spacecraft that would be difficult, or dangerous, for humans to perform. Under some circumstance, it may be necessary to employ an un-tethered communications link between the FF and the users. The interactive coverage analysis tool (ICAT) is a software tool that has been developed to perform critical analysis of the communications link performance for a FF operating in the vicinity of the International Space Station (ISS) external environment. The tool allows users to interactively change multiple parameters of the communications link parameters to efficiently perform systems engineering trades on network performance. These trades can be directly translated into design and requirements specifications. This tool significantly reduces the development time in determining a communications network topology by allowing multiple parameters to be changed, and the results of link coverage to be statistically characterized and plotted interactively.
The New Web-Based Hera Data Processing System at the HEASARC
NASA Technical Reports Server (NTRS)
Pence, W.
2011-01-01
The HEASARC at NASA/GSFC has provide an on-line astronomical data processing system called Hera for several years. Hera provides a complete data processing environment, including installed software packages, local data storage, and the CPU resources needed to process the user's data. The original design of Hera, however, has 2 requirements that has limited it's usefulness for some users, namely, that 1) the user must download and install a small helper program on their own computer before using Hera, and 2) Hera requires that several computer ports/sockets be allowed to communicate through any local firewalls on the users machine. Both of these restrictions can be problematic for some users, therefore we are now migrating Hera into a purely Web based environment which only requires a standard Web browser. The first release of Web Hera is now publicly available at http://heasarc.gsfc.nasa.gov/webheara/. It currently provides a standard graphical interface for running hundreds of different data processing programs that are available in the HEASARC's ftools software package. Over the next year we to add more features to Web Hera, including an interactive command line interface, and more display and line capabilities.
NASA Astrophysics Data System (ADS)
Pembroke, A. D.; Colbert, J. A.
2015-12-01
The Community Coordinated Modeling Center (CCMC) provides hosting for many of the simulations used by the space weather community of scientists, educators, and forecasters. CCMC users may submit model runs through the Runs on Request system, which produces static visualizations of model output in the browser, while further analysis may be performed off-line via Kameleon, CCMC's cross-language access and interpolation library. Off-line analysis may be suitable for power-users, but storage and coding requirements present a barrier to entry for non-experts. Moreover, a lack of a consistent framework for analysis hinders reproducibility of scientific findings. To that end, we have developed Kameleon Live, a cloud based interactive analysis and visualization platform. Kameleon Live allows users to create scientific studies built around selected runs from the Runs on Request database, perform analysis on those runs, collaborate with other users, and disseminate their findings among the space weather community. In addition to showcasing these novel collaborative analysis features, we invite feedback from CCMC users as we seek to advance and improve on the new platform.
NASA Technical Reports Server (NTRS)
Hammond, Dana P.
1991-01-01
The Technical Requirements Analysis and Control Systems (TRACS) software package is described. TRACS offers supplemental tools for the analysis, control, and interchange of project requirements. This package provides the fundamental capability to analyze and control requirements, serves a focal point for project requirements, and integrates a system that supports efficient and consistent operations. TRACS uses relational data base technology (ORACLE) in a stand alone or in a distributed environment that can be used to coordinate the activities required to support a project through its entire life cycle. TRACS uses a set of keyword and mouse driven screens (HyperCard) which imposes adherence through a controlled user interface. The user interface provides an interactive capability to interrogate the data base and to display or print project requirement information. TRACS has a limited report capability, but can be extended with PostScript conventions.
Telerobot operator control station requirements
NASA Technical Reports Server (NTRS)
Kan, Edwin P.
1988-01-01
The operator control station of a telerobot system has unique functional and human factors requirements. It has to satisfy the needs of a truly interactive and user-friendly complex system, a telerobot system being a hybrid between a teleoperated and an autonomous system. These functional, hardware and software requirements are discussed, with explicit reference to the design objectives and constraints of the JPL/NASA Telerobot Demonstrator System.
An interactive user-friendly approach to surface-fitting three-dimensional geometries
NASA Technical Reports Server (NTRS)
Cheatwood, F. Mcneil; Dejarnette, Fred R.
1988-01-01
A surface-fitting technique has been developed which addresses two problems with existing geometry packages: computer storage requirements and the time required of the user for the initial setup of the geometry model. Coordinates of cross sections are fit using segments of general conic sections. The next step is to blend the cross-sectional curve-fits in the longitudinal direction using general conics to fit specific meridional half-planes. Provisions are made to allow the fitting of fuselages and wings so that entire wing-body combinations may be modeled. This report includes the development of the technique along with a User's Guide for the various menus within the program. Results for the modeling of the Space Shuttle and a proposed Aeroassist Flight Experiment geometry are presented.
NASA Technical Reports Server (NTRS)
2001-01-01
REI Systems, Inc. developed a software solution that uses the Internet to eliminate the paperwork typically required to document and manage complex business processes. The data management solution, called Electronic Handbooks (EHBs), is presently used for the entire SBIR program processes at NASA. The EHB-based system is ideal for programs and projects whose users are geographically distributed and are involved in complex management processes and procedures. EHBs provide flexible access control and increased communications while maintaining security for systems of all sizes. Through Internet Protocol- based access, user authentication and user-based access restrictions, role-based access control, and encryption/decryption, EHBs provide the level of security required for confidential data transfer. EHBs contain electronic forms and menus, which can be used in real time to execute the described processes. EHBs use standard word processors that generate ASCII HTML code to set up electronic forms that are viewed within a web browser. EHBs require no end-user software distribution, significantly reducing operating costs. Each interactive handbook simulates a hard-copy version containing chapters with descriptions of participants' roles in the online process.
Heffernan, Kayla Joanne; Chang, Shanton; Maclean, Skye Tamara; Callegari, Emma Teresa; Garland, Suzanne Marie; Reavley, Nicola Jane; Varigos, George Andrew; Wark, John Dennis
2016-02-09
The now ubiquitous catchphrase, "There's an app for that," rings true owing to the growing number of mobile phone apps. In excess of 97,000 eHealth apps are available in major app stores. Yet the effectiveness of these apps varies greatly. While a minority of apps are developed grounded in theory and in conjunction with health care experts, the vast majority are not. This is concerning given the Hippocratic notion of "do no harm." There is currently no unified formal theory for developing interactive eHealth apps, and development is especially difficult when complex messaging is required, such as in health promotion and prevention. This paper aims to provide insight into the creation of interactive eHealth apps for complex messaging, by leveraging the Safe-D case study, which involved complex messaging required to guide safe but sufficient UV exposure for vitamin D synthesis in users. We aim to create recommendations for developing interactive eHealth apps for complex messages based on the lessons learned during Safe-D app development. For this case study we developed an Apple and Android app, both named Safe-D, to safely improve vitamin D status in young women through encouraging safe ultraviolet radiation exposure. The app was developed through participatory action research involving medical and human computer interaction researchers, subject matter expert clinicians, external developers, and target users. The recommendations for development were created from analysis of the development process. By working with clinicians and implementing disparate design examples from the literature, we developed the Safe-D app. From this development process, recommendations for developing interactive eHealth apps for complex messaging were created: (1) involve a multidisciplinary team in the development process, (2) manage complex messages to engage users, and (3) design for interactivity (tailor recommendations, remove barriers to use, design for simplicity). This research has provided principles for developing interactive eHealth apps for complex messaging as guidelines by aggregating existing design concepts and expanding these concepts and new learnings from our development process. A set of guidelines to develop interactive eHealth apps generally, and specifically those for complex messaging, was previously missing from the literature; this research has contributed these principles. Safe-D delivers complex messaging simply, to aid education, and explicitly, considering user safety.
Heffernan, Kayla Joanne; Maclean, Skye Tamara; Callegari, Emma Teresa; Garland, Suzanne Marie; Reavley, Nicola Jane; Varigos, George Andrew; Wark, John Dennis
2016-01-01
Background The now ubiquitous catchphrase, “There’s an app for that,” rings true owing to the growing number of mobile phone apps. In excess of 97,000 eHealth apps are available in major app stores. Yet the effectiveness of these apps varies greatly. While a minority of apps are developed grounded in theory and in conjunction with health care experts, the vast majority are not. This is concerning given the Hippocratic notion of “do no harm.” There is currently no unified formal theory for developing interactive eHealth apps, and development is especially difficult when complex messaging is required, such as in health promotion and prevention. Objective This paper aims to provide insight into the creation of interactive eHealth apps for complex messaging, by leveraging the Safe-D case study, which involved complex messaging required to guide safe but sufficient UV exposure for vitamin D synthesis in users. We aim to create recommendations for developing interactive eHealth apps for complex messages based on the lessons learned during Safe-D app development. Methods For this case study we developed an Apple and Android app, both named Safe-D, to safely improve vitamin D status in young women through encouraging safe ultraviolet radiation exposure. The app was developed through participatory action research involving medical and human computer interaction researchers, subject matter expert clinicians, external developers, and target users. The recommendations for development were created from analysis of the development process. Results By working with clinicians and implementing disparate design examples from the literature, we developed the Safe-D app. From this development process, recommendations for developing interactive eHealth apps for complex messaging were created: (1) involve a multidisciplinary team in the development process, (2) manage complex messages to engage users, and (3) design for interactivity (tailor recommendations, remove barriers to use, design for simplicity). Conclusions This research has provided principles for developing interactive eHealth apps for complex messaging as guidelines by aggregating existing design concepts and expanding these concepts and new learnings from our development process. A set of guidelines to develop interactive eHealth apps generally, and specifically those for complex messaging, was previously missing from the literature; this research has contributed these principles. Safe-D delivers complex messaging simply, to aid education, and explicitly, considering user safety. PMID:26860623
Generic Business Model Types for Enterprise Mashup Intermediaries
NASA Astrophysics Data System (ADS)
Hoyer, Volker; Stanoevska-Slabeva, Katarina
The huge demand for situational and ad-hoc applications desired by the mass of business end users led to a new kind of Web applications, well-known as Enterprise Mashups. Users with no or limited programming skills are empowered to leverage in a collaborative manner existing Mashup components by combining and reusing company internal and external resources within minutes to new value added applications. Thereby, Enterprise Mashup environments interact as intermediaries to match the supply of providers and demand of consumers. By following the design science approach, we propose an interaction phase model artefact based on market transaction phases to structure required intermediary features. By means of five case studies, we demonstrate the application of the designed model and identify three generic business model types for Enterprise Mashups intermediaries (directory, broker, and marketplace). So far, intermediaries following a real marketplace business model don’t exist in context of Enterprise Mashups and require further research for this emerging paradigm.
Avatars and virtual agents – relationship interfaces for the elderly
2017-01-01
In the Digital Era, the authors witness a change in the relationship between the patient and the care-giver or Health Maintenance Organization's providing the health services. Another fact is the use of various technologies to increase the effectiveness and quality of health services across all primary and secondary users. These technologies range from telemedicine systems, decision making tools, online and self-services applications and virtual agents; all providing information and assistance. The common thread between all these digital implementations, is they all require human machine interfaces. These interfaces must be interactive, user friendly and inviting, to create user involvement and cooperation incentives. The challenge is to design interfaces which will best fit the target users and enable smooth interaction especially, for the elderly users. Avatars and Virtual Agents are one of the interfaces used for both home care monitoring and companionship. They are also inherently multimodal in nature and allow an intimate relation between the elderly users and the Avatar. This study discusses the need and nature of these relationship models, the challenges of designing for the elderly. The study proposes key features for the design and evaluation in the area of assistive applications using Avatar and Virtual agents for the elderly users. PMID:28706725
User engineering: A new look at system engineering
NASA Technical Reports Server (NTRS)
Mclaughlin, Larry L.
1987-01-01
User Engineering is a new System Engineering perspective responsible for defining and maintaining the user view of the system. Its elements are a process to guide the project and customer, a multidisciplinary team including hard and soft sciences, rapid prototyping tools to build user interfaces quickly and modify them frequently at low cost, and a prototyping center for involving users and designers in an iterative way. The main consideration is reducing the risk that the end user will not or cannot effectively use the system. The process begins with user analysis to produce cognitive and work style models, and task analysis to produce user work functions and scenarios. These become major drivers of the human computer interface design which is presented and reviewed as an interactive prototype by users. Feedback is rapid and productive, and user effectiveness can be measured and observed before the system is built and fielded. Requirements are derived via the prototype and baselined early to serve as an input to the architecture and software design.
Nelson, Scott D; Del Fiol, Guilherme; Hanseler, Haley; Crouch, Barbara Insley; Cummins, Mollie R
2016-01-01
Health information exchange (HIE) between Poison Control Centers (PCCs) and Emergency Departments (EDs) could improve care of poisoned patients. However, PCC information systems are not designed to facilitate HIE with EDs; therefore, we are developing specialized software to support HIE within the normal workflow of the PCC using user-centered design and rapid prototyping. To describe the design of an HIE dashboard and the refinement of user requirements through rapid prototyping. Using previously elicited user requirements, we designed low-fidelity sketches of designs on paper with iterative refinement. Next, we designed an interactive high-fidelity prototype and conducted scenario-based usability tests with end users. Users were asked to think aloud while accomplishing tasks related to a case vignette. After testing, the users provided feedback and evaluated the prototype using the System Usability Scale (SUS). Survey results from three users provided useful feedback that was then incorporated into the design. After achieving a stable design, we used the prototype itself as the specification for development of the actual software. Benefits of prototyping included having 1) subject-matter experts heavily involved with the design; 2) flexibility to make rapid changes, 3) the ability to minimize software development efforts early in the design stage; 4) rapid finalization of requirements; 5) early visualization of designs; 6) and a powerful vehicle for communication of the design to the programmers. Challenges included 1) time and effort to develop the prototypes and case scenarios; 2) no simulation of system performance; 3) not having all proposed functionality available in the final product; and 4) missing needed data elements in the PCC information system.
What Is Librarian 2.0--New Competencies or Interactive Relations? A Library Professional Viewpoint
ERIC Educational Resources Information Center
Huvila, Isto; Holmberg, Kim; Kronqvist-Berg, Maria; Nivakoski, Outi; Widén, Gunilla
2013-01-01
Library 2.0 is a change in the way libraries interact with their users. Technological developments on the Web have had a major influence on these changes. The change also places new requirements on librarians' competencies and skills. This research investigates how librarians themselves see this change in terms of their work identity and working…
RIMS: Resource Information Management System
NASA Technical Reports Server (NTRS)
Symes, J.
1983-01-01
An overview is given of the capabilities and functions of the resource management system (RIMS). It is a simple interactive DMS tool which allows users to build, modify, and maintain data management applications. The RIMS minimizes programmer support required to develop/maintain small data base applications. The RIMS also assists in bringing the United Information Services (UIS) budget system work inhouse. Information is also given on the relationship between the RIMS and the user community.
Requirements Modeling with the Aspect-oriented User Requirements Notation (AoURN): A Case Study
NASA Astrophysics Data System (ADS)
Mussbacher, Gunter; Amyot, Daniel; Araújo, João; Moreira, Ana
The User Requirements Notation (URN) is a recent ITU-T standard that supports requirements engineering activities. The Aspect-oriented URN (AoURN) adds aspect-oriented concepts to URN, creating a unified framework that allows for scenario-based, goal-oriented, and aspect-oriented modeling. AoURN is applied to the car crash crisis management system (CCCMS), modeling its functional and non-functional requirements (NFRs). AoURN generally models all use cases, NFRs, and stakeholders as individual concerns and provides general guidelines for concern identification. AoURN handles interactions between concerns, capturing their dependencies and conflicts as well as the resolutions. We present a qualitative comparison of aspect-oriented techniques for scenario-based and goal-oriented requirements engineering. An evaluation carried out based on the metrics adapted from literature and a task-based evaluation suggest that AoURN models are more scalable than URN models and exhibit better modularity, reusability, and maintainability.
Sun, Shanhui; Sonka, Milan; Beichel, Reinhard R.
2013-01-01
Recently, the optimal surface finding (OSF) and layered optimal graph image segmentation of multiple objects and surfaces (LOGISMOS) approaches have been reported with applications to medical image segmentation tasks. While providing high levels of performance, these approaches may locally fail in the presence of pathology or other local challenges. Due to the image data variability, finding a suitable cost function that would be applicable to all image locations may not be feasible. This paper presents a new interactive refinement approach for correcting local segmentation errors in the automated OSF-based segmentation. A hybrid desktop/virtual reality user interface was developed for efficient interaction with the segmentations utilizing state-of-the-art stereoscopic visualization technology and advanced interaction techniques. The user interface allows a natural and interactive manipulation on 3-D surfaces. The approach was evaluated on 30 test cases from 18 CT lung datasets, which showed local segmentation errors after employing an automated OSF-based lung segmentation. The performed experiments exhibited significant increase in performance in terms of mean absolute surface distance errors (2.54 ± 0.75 mm prior to refinement vs. 1.11 ± 0.43 mm post-refinement, p ≪ 0.001). Speed of the interactions is one of the most important aspects leading to the acceptance or rejection of the approach by users expecting real-time interaction experience. The average algorithm computing time per refinement iteration was 150 ms, and the average total user interaction time required for reaching complete operator satisfaction per case was about 2 min. This time was mostly spent on human-controlled manipulation of the object to identify whether additional refinement was necessary and to approve the final segmentation result. The reported principle is generally applicable to segmentation problems beyond lung segmentation in CT scans as long as the underlying segmentation utilizes the OSF framework. The two reported segmentation refinement tools were optimized for lung segmentation and might need some adaptation for other application domains. PMID:23415254
Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.
2009-01-01
VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.
NASA Technical Reports Server (NTRS)
Nguyen, Lac; Kenney, Patrick J.
1993-01-01
Development of interactive virtual environments (VE) has typically consisted of three primary activities: model (object) development, model relationship tree development, and environment behavior definition and coding. The model and relationship tree development activities are accomplished with a variety of well-established graphic library (GL) based programs - most utilizing graphical user interfaces (GUI) with point-and-click interactions. Because of this GUI format, little programming expertise on the part of the developer is necessary to create the 3D graphical models or to establish interrelationships between the models. However, the third VE development activity, environment behavior definition and coding, has generally required the greatest amount of time and programmer expertise. Behaviors, characteristics, and interactions between objects and the user within a VE must be defined via command line C coding prior to rendering the environment scenes. In an effort to simplify this environment behavior definition phase for non-programmers, and to provide easy access to model and tree tools, a graphical interface and development tool has been created. The principal thrust of this research is to effect rapid development and prototyping of virtual environments. This presentation will discuss the 'Visual Interface for Virtual Interaction Development' (VIVID) tool; an X-Windows based system employing drop-down menus for user selection of program access, models, and trees, behavior editing, and code generation. Examples of these selection will be highlighted in this presentation, as will the currently available program interfaces. The functionality of this tool allows non-programming users access to all facets of VE development while providing experienced programmers with a collection of pre-coded behaviors. In conjunction with its existing, interfaces and predefined suite of behaviors, future development plans for VIVID will be described. These include incorporation of dual user virtual environment enhancements, tool expansion, and additional behaviors.
Identifying User Interaction Patterns in E-Textbooks
Saarinen, Santeri; Turunen, Markku; Mikkilä-Erdmann, Mirjamaija; Erdmann, Norbert; Yrjänäinen, Sari; Keskinen, Tuuli
2015-01-01
We introduce a new architecture for e-textbooks which contains two navigational aids: an index and a concept map. We report results from an evaluation in a university setting with 99 students. The interaction sequences of the users were captured during the user study. We found several clusters of user interaction types in our data. Three separate user types were identified based on the interaction sequences: passive user, term clicker, and concept map user. We also discovered that with the concept map interface users started to interact with the application significantly sooner than with the index interface. Overall, our findings suggest that analysis of interaction patterns allows deeper insights into the use of e-textbooks than is afforded by summative evaluation. PMID:26605377
Identifying User Interaction Patterns in E-Textbooks.
Saarinen, Santeri; Heimonen, Tomi; Turunen, Markku; Mikkilä-Erdmann, Mirjamaija; Raisamo, Roope; Erdmann, Norbert; Yrjänäinen, Sari; Keskinen, Tuuli
2015-01-01
We introduce a new architecture for e-textbooks which contains two navigational aids: an index and a concept map. We report results from an evaluation in a university setting with 99 students. The interaction sequences of the users were captured during the user study. We found several clusters of user interaction types in our data. Three separate user types were identified based on the interaction sequences: passive user, term clicker, and concept map user. We also discovered that with the concept map interface users started to interact with the application significantly sooner than with the index interface. Overall, our findings suggest that analysis of interaction patterns allows deeper insights into the use of e-textbooks than is afforded by summative evaluation.
Image segmentation and registration for the analysis of joint motion from 3D MRI
NASA Astrophysics Data System (ADS)
Hu, Yangqiu; Haynor, David R.; Fassbind, Michael; Rohr, Eric; Ledoux, William
2006-03-01
We report an image segmentation and registration method for studying joint morphology and kinematics from in vivo MRI scans and its application to the analysis of ankle joint motion. Using an MR-compatible loading device, a foot was scanned in a single neutral and seven dynamic positions including maximal flexion, rotation and inversion/eversion. A segmentation method combining graph cuts and level sets was developed which allows a user to interactively delineate 14 bones in the neutral position volume in less than 30 minutes total, including less than 10 minutes of user interaction. In the subsequent registration step, a separate rigid body transformation for each bone is obtained by registering the neutral position dataset to each of the dynamic ones, which produces an accurate description of the motion between them. We have processed six datasets, including 3 normal and 3 pathological feet. For validation our results were compared with those obtained from 3DViewnix, a semi-automatic segmentation program, and achieved good agreement in volume overlap ratios (mean: 91.57%, standard deviation: 3.58%) for all bones. Our tool requires only 1/50 and 1/150 of the user interaction time required by 3DViewnix and NIH Image Plus, respectively, an improvement that has the potential to make joint motion analysis from MRI practical in research and clinical applications.
Semiautomated Segmentation of Polycystic Kidneys in T2-Weighted MR Images.
Kline, Timothy L; Edwards, Marie E; Korfiatis, Panagiotis; Akkus, Zeynettin; Torres, Vicente E; Erickson, Bradley J
2016-09-01
The objective of the present study is to develop and validate a fast, accurate, and reproducible method that will increase and improve institutional measurement of total kidney volume and thereby avoid the higher costs, increased operator processing time, and inherent subjectivity associated with manual contour tracing. We developed a semiautomated segmentation approach, known as the minimal interaction rapid organ segmentation (MIROS) method, which results in human interaction during measurement of total kidney volume on MR images being reduced to a few minutes. This software tool automatically steps through slices and requires rough definition of kidney boundaries supplied by the user. The approach was verified on T2-weighted MR images of 40 patients with autosomal dominant polycystic kidney disease of varying degrees of severity. The MIROS approach required less than 5 minutes of user interaction in all cases. When compared with the ground-truth reference standard, MIROS showed no significant bias and had low variability (mean ± 2 SD, 0.19% ± 6.96%). The MIROS method will greatly facilitate future research studies in which accurate and reproducible measurements of cystic organ volumes are needed.
Chen, Xin; Zhang, Ye; Zhang, Jingna; Li, Ying; Mo, Xuemei; Chen, Wei
2017-01-01
This study aimed to propose a pure web-based solution to serve users to access large-scale 3D medical volume anywhere with good user experience and complete details. A novel solution of the Master-Slave interaction mode was proposed, which absorbed advantages of remote volume rendering and surface rendering. On server side, we designed a message-responding mechanism to listen to interactive requests from clients (Slave model) and to guide Master volume rendering. On client side, we used HTML5 to normalize user-interactive behaviors on Slave model and enhance the accuracy of behavior request and user-friendly experience. The results showed that more than four independent tasks (each with a data size of 249.4 MB) could be simultaneously carried out with a 100-KBps client bandwidth (extreme test); the first loading time was <12 s, and the response time of each behavior request for final high quality image remained at approximately 1 s, while the peak value of bandwidth was <50-KBps. Meanwhile, the FPS value for each client was ≥40. This solution could serve the users by rapidly accessing the application via one URL hyperlink without special software and hardware requirement in a diversified network environment and could be easily integrated into other telemedical systems seamlessly. PMID:28638406
Qiao, Liang; Chen, Xin; Zhang, Ye; Zhang, Jingna; Wu, Yi; Li, Ying; Mo, Xuemei; Chen, Wei; Xie, Bing; Qiu, Mingguo
2017-01-01
This study aimed to propose a pure web-based solution to serve users to access large-scale 3D medical volume anywhere with good user experience and complete details. A novel solution of the Master-Slave interaction mode was proposed, which absorbed advantages of remote volume rendering and surface rendering. On server side, we designed a message-responding mechanism to listen to interactive requests from clients ( Slave model) and to guide Master volume rendering. On client side, we used HTML5 to normalize user-interactive behaviors on Slave model and enhance the accuracy of behavior request and user-friendly experience. The results showed that more than four independent tasks (each with a data size of 249.4 MB) could be simultaneously carried out with a 100-KBps client bandwidth (extreme test); the first loading time was <12 s, and the response time of each behavior request for final high quality image remained at approximately 1 s, while the peak value of bandwidth was <50-KBps. Meanwhile, the FPS value for each client was ≥40. This solution could serve the users by rapidly accessing the application via one URL hyperlink without special software and hardware requirement in a diversified network environment and could be easily integrated into other telemedical systems seamlessly.
Automated Flight Dynamics Product Generation for the EOS AM-1 Spacecraft
NASA Technical Reports Server (NTRS)
Matusow, Carla
1999-01-01
As part of NASA's Earth Science Enterprise, the Earth Observing System (EOS) AM-1 spacecraft is designed to monitor long-term, global, environmental changes. Because of the complexity of the AM-1 spacecraft, the mission operations center requires more than 80 distinct flight dynamics products (reports). To create these products, the AM-1 Flight Dynamics Team (FDT) will use a combination of modified commercial software packages (e.g., Analytical Graphic's Satellite ToolKit) and NASA-developed software applications. While providing the most cost-effective solution to meeting the mission requirements, the integration of these software applications raises several operational concerns: (1) Routine product generation requires knowledge of multiple applications executing on variety of hardware platforms. (2) Generating products is a highly interactive process requiring a user to interact with each application multiple times to generate each product. (3) Routine product generation requires several hours to complete. (4) User interaction with each application introduces the potential for errors, since users are required to manually enter filenames and input parameters as well as run applications in the correct sequence. Generating products requires some level of flight dynamics expertise to determine the appropriate inputs and sequencing. To address these issues, the FDT developed an automation software tool called AutoProducts, which runs on a single hardware platform and provides all necessary coordination and communication among the various flight dynamics software applications. AutoProducts, autonomously retrieves necessary files, sequences and executes applications with correct input parameters, and deliver the final flight dynamics products to the appropriate customers. Although AutoProducts will normally generate pre-programmed sets of routine products, its graphical interface allows for easy configuration of customized and one-of-a-kind products. Additionally, AutoProducts has been designed as a mission-independent tool, and can be easily reconfigured to support other missions or incorporate new flight dynamics software packages. After the AM-1 launch, AutoProducts will run automatically at pre-determined time intervals . The AutoProducts tool reduces many of the concerns associated with the flight dynamics product generation. Although AutoProducts required a significant effort to develop because of the complexity of the interfaces involved, its use will provide significant cost savings through reduced operator time and maximum product reliability. In addition, user satisfaction is significantly improved and flight dynamics experts have more time to perform valuable analysis work. This paper will describe the evolution of the AutoProducts tool, highlighting the cost savings and customer satisfaction resulting from its development. It will also provide details about the tool including its graphical interface and operational capabilities.
Challenges for Service Robots-Requirements of Elderly Adults with Cognitive Impairments.
Korchut, Agnieszka; Szklener, Sebastian; Abdelnour, Carla; Tantinya, Natalia; Hernández-Farigola, Joan; Ribes, Joan Carles; Skrobas, Urszula; Grabowska-Aleksandrowicz, Katarzyna; Szczęśniak-Stańczyk, Dorota; Rejdak, Konrad
2017-01-01
We focused on identifying the requirements and needs of people suffering from Alzheimer disease and early dementia stages with relation to robotic assistants. Based on focus groups performed in two centers (Poland and Spain), we created surveys for medical staff, patients, and caregivers, including: functional requirements; human-robot interaction, the design of the robotic assistant and user acceptance aspects. Using Likert scale and analysis made on the basis of the frequency of survey responses, we identified users' needs as high, medium, and low priority. We gathered 264 completed surveys (100 from medical staff, 81 from caregivers, and 83 from potential users). Most of the respondents, almost at the same level in each of the three groups, accept robotic assistants and their support in everyday life. High level priority functional requirements were related to reacting in emergency situations (calling for help, detecting/removing obstacles) and to reminding about medication intake, about boiling water, turning off the gas and lights (almost 60% of answers). With reference to human-robot interaction, high priority was given to voice operated system and the capability of robotic assistants to reply to simple questions. Our results help in achieving better understanding of the needs of patients with cognitive impairments during home tasks in everyday life. This way of conducting the research, with considerations for the interests of three stakeholder groups in two autonomic centers with proven experience regarding the needs of our patient groups, highlights the importance of obtained results.
A Proposed Intelligent Policy-Based Interface for a Mobile eHealth Environment
NASA Astrophysics Data System (ADS)
Tavasoli, Amir; Archer, Norm
Users of mobile eHealth systems are often novices, and the learning process for them may be very time consuming. In order for systems to be attractive to potential adopters, it is important that the interface should be very convenient and easy to learn. However, the community of potential users of a mobile eHealth system may be quite varied in their requirements, so the system must be able to adapt easily to suit user preferences. One way to accomplish this is to have the interface driven by intelligent policies. These policies can be refined gradually, using inputs from potential users, through intelligent agents. This paper develops a framework for policy refinement for eHealth mobile interfaces, based on dynamic learning from user interactions.
Unlocking data: federated identity with LSDMA and dCache
NASA Astrophysics Data System (ADS)
Millar, AP; Behrmann, G.; Bernardt, C.; Fuhrmann, P.; Hardt, M.; Hayrapetyan, A.; Litvintsev, D.; Mkrtchyan, T.; Rossi, A.; Schwank, K.
2015-12-01
X.509, the dominant identity system from grid computing, has proved unpopular for many user communities. More popular alternatives generally assume the user is interacting via their web-browser. Such alternatives allow a user to authenticate with many services with the same credentials (user-name and password). They also allow users from different organisations form collaborations quickly and simply. Scientists generally require that their custom analysis software has direct access to the data. Such direct access is not currently supported by alternatives to X.509, as they require the use of a web-browser. Various approaches to solve this issue are being investigated as part of the Large Scale Data Management and Analysis (LSDMA) project, a German funded national R&D project. These involve dynamic credential translation (creating an X.509 credential) to allow backwards compatibility in addition to direct SAML- and OpenID Connect-based authentication. We present a summary of the current state of art and the current status of the federated identity work funded by the LSDMA project along with the future road map.
Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device.
Grosu, Victor; Grosu, Svetlana; Vanderborght, Bram; Lefeber, Dirk; Rodriguez-Guerrero, Carlos
2017-06-05
Human-robot interaction sensing is a compulsory feature in modern robotic systems where direct contact or close collaboration is desired. Rehabilitation and assistive robotics are fields where interaction forces are required for both safety and increased control performance of the device with a more comfortable experience for the user. In order to provide an efficient interaction feedback between the user and rehabilitation device, high performance sensing units are demanded. This work introduces a novel design of a multi-axis force sensor dedicated for measuring pelvis interaction forces in a rehabilitation exoskeleton device. The sensor is conceived such that it has different sensitivity characteristics for the three axes of interest having also movable parts in order to allow free rotations and limit crosstalk errors. Integrated sensor electronics make it easy to acquire and process data for a real-time distributed system architecture. Two of the developed sensors are integrated and tested in a complex gait rehabilitation device for safe and compliant control.
Evaluation of interaction dynamics of concurrent processes
NASA Astrophysics Data System (ADS)
Sobecki, Piotr; Białasiewicz, Jan T.; Gross, Nicholas
2017-03-01
The purpose of this paper is to present the wavelet tools that enable the detection of temporal interactions of concurrent processes. In particular, the determination of interaction coherence of time-varying signals is achieved using a complex continuous wavelet transform. This paper has used electrocardiogram (ECG) and seismocardiogram (SCG) data set to show multiple continuous wavelet analysis techniques based on Morlet wavelet transform. MATLAB Graphical User Interface (GUI), developed in the reported research to assist in quick and simple data analysis, is presented. These software tools can discover the interaction dynamics of time-varying signals, hence they can reveal their correlation in phase and amplitude, as well as their non-linear interconnections. The user-friendly MATLAB GUI enables effective use of the developed software what enables to load two processes under investigation, make choice of the required processing parameters, and then perform the analysis. The software developed is a useful tool for researchers who have a need for investigation of interaction dynamics of concurrent processes.
A new reference implementation of the PSICQUIC web service.
del-Toro, Noemi; Dumousseau, Marine; Orchard, Sandra; Jimenez, Rafael C; Galeota, Eugenia; Launay, Guillaume; Goll, Johannes; Breuer, Karin; Ono, Keiichiro; Salwinski, Lukasz; Hermjakob, Henning
2013-07-01
The Proteomics Standard Initiative Common QUery InterfaCe (PSICQUIC) specification was created by the Human Proteome Organization Proteomics Standards Initiative (HUPO-PSI) to enable computational access to molecular-interaction data resources by means of a standard Web Service and query language. Currently providing >150 million binary interaction evidences from 28 servers globally, the PSICQUIC interface allows the concurrent search of multiple molecular-interaction information resources using a single query. Here, we present an extension of the PSICQUIC specification (version 1.3), which has been released to be compliant with the enhanced standards in molecular interactions. The new release also includes a new reference implementation of the PSICQUIC server available to the data providers. It offers augmented web service capabilities and improves the user experience. PSICQUIC has been running for almost 5 years, with a user base growing from only 4 data providers to 28 (April 2013) allowing access to 151 310 109 binary interactions. The power of this web service is shown in PSICQUIC View web application, an example of how to simultaneously query, browse and download results from the different PSICQUIC servers. This application is free and open to all users with no login requirement (http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml).
Brinkel, J; Dako-Gyeke, P; Krämer, A; May, J; Fobil, J N
2017-03-01
In implementing mobile health interventions, user requirements and willingness to use are among the most crucial concerns for success of the investigation and have only rarely been examined in sub-Saharan Africa. This study aimed to specify the requirements of caregivers of children in order to use a symptom-based interactive voice response (IVR) system for seeking healthcare. This included (i) the investigation of attitudes towards mobile phone use and user experiences and (ii) the assessment of facilitators and challenges to use the IVR system. This is a population-based cross-sectional study. Four qualitative focus group discussions were conducted in peri-urban and rural towns in Shai Osudoku and Ga West district, as well as in Tema- and Accra Metropolitan Assembly. Participants included male and female caregivers of at least one child between 0 and 10 years of age. A qualitative content analysis was conducted for data analysis. Participants showed a positive attitude towards the use of mobile phones for seeking healthcare. While no previous experience in using IVR for health information was reported, the majority of participants stated that it offers a huge advantage for improvement in health performance. Barriers to IVR use included concerns about costs, lack of familiarly with the technology, social barriers such as lack of human interaction and infrastructural challenges. The establishment of a toll-free number as well as training prior to IVR system was discussed for recommendation. This study suggests that caregivers in the socio-economic environment of Ghana are interested and willing to use mobile phone-based IVR to receive health information for child healthcare. Important identified users' needs should be considered by health programme implementers and policy makers to help facilitate the development and implementation of IVR systems in the field of seeking healthcare. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
KONFIG and REKONFIG: Two interactive preprocessing to the Navy/NASA Engine Program (NNEP)
NASA Technical Reports Server (NTRS)
Fishbach, L. H.
1981-01-01
The NNEP is a computer program that is currently being used to simulate the thermodynamic cycle performance of almost all types of turbine engines by many government, industry, and university personnel. The NNEP uses arrays of input data to set up the engine simulation and component matching method as well as to describe the characteristics of the components. A preprocessing program (KONFIG) is described in which the user at a terminal on a time shared computer can interactively prepare the arrays of data required. It is intended to make it easier for the occasional or new user to operate NNEP. Another preprocessing program (REKONFIG) in which the user can modify the component specifications of a previously configured NNEP dataset is also described. It is intended to aid in preparing data for parametric studies and/or studies of similar engines such a mixed flow turbofans, turboshafts, etc.
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Schreckenghost, Debra L.; Woods, David D.; Potter, Scott S.; Johannesen, Leila; Holloway, Matthew; Forbus, Kenneth D.
1991-01-01
Initial results are reported from a multi-year, interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. The objective is to achieve more effective human-computer interaction (HCI) for systems with real time fault management capabilities. Intelligent fault management systems within the NASA were evaluated for insight into the design of systems with complex HCI. Preliminary results include: (1) a description of real time fault management in aerospace domains; (2) recommendations and examples for improving intelligent systems design and user interface design; (3) identification of issues requiring further research; and (4) recommendations for a development methodology integrating HCI design into intelligent system design.
Transformations of software design and code may lead to reduced errors
NASA Technical Reports Server (NTRS)
Connelly, E. M.
1983-01-01
The capability of programmers and non-programmers to specify problem solutions by developing example-solutions and also for the programmers by writing computer programs was investigated; each method of specification was accomplished at various levels of problem complexity. The level of difficulty of each problem was reflected by the number of steps needed by the user to develop a solution. Machine processing of the user inputs permitted inferences to be developed about the algorithms required to solve a particular problem. The interactive feedback of processing results led users to a more precise definition of the desired solution. Two participant groups (programmers and bookkeepers/accountants) working with three levels of problem complexity and three levels of processor complexity were used. The experimental task employed required specification of a logic for solution of a Navy task force problem.
Chipster: user-friendly analysis software for microarray and other high-throughput data.
Kallio, M Aleksi; Tuimala, Jarno T; Hupponen, Taavi; Klemelä, Petri; Gentile, Massimiliano; Scheinin, Ilari; Koski, Mikko; Käki, Janne; Korpelainen, Eija I
2011-10-14
The growth of high-throughput technologies such as microarrays and next generation sequencing has been accompanied by active research in data analysis methodology, producing new analysis methods at a rapid pace. While most of the newly developed methods are freely available, their use requires substantial computational skills. In order to enable non-programming biologists to benefit from the method development in a timely manner, we have created the Chipster software. Chipster (http://chipster.csc.fi/) brings a powerful collection of data analysis methods within the reach of bioscientists via its intuitive graphical user interface. Users can analyze and integrate different data types such as gene expression, miRNA and aCGH. The analysis functionality is complemented with rich interactive visualizations, allowing users to select datapoints and create new gene lists based on these selections. Importantly, users can save the performed analysis steps as reusable, automatic workflows, which can also be shared with other users. Being a versatile and easily extendable platform, Chipster can be used for microarray, proteomics and sequencing data. In this article we describe its comprehensive collection of analysis and visualization tools for microarray data using three case studies. Chipster is a user-friendly analysis software for high-throughput data. Its intuitive graphical user interface enables biologists to access a powerful collection of data analysis and integration tools, and to visualize data interactively. Users can collaborate by sharing analysis sessions and workflows. Chipster is open source, and the server installation package is freely available.
Chipster: user-friendly analysis software for microarray and other high-throughput data
2011-01-01
Background The growth of high-throughput technologies such as microarrays and next generation sequencing has been accompanied by active research in data analysis methodology, producing new analysis methods at a rapid pace. While most of the newly developed methods are freely available, their use requires substantial computational skills. In order to enable non-programming biologists to benefit from the method development in a timely manner, we have created the Chipster software. Results Chipster (http://chipster.csc.fi/) brings a powerful collection of data analysis methods within the reach of bioscientists via its intuitive graphical user interface. Users can analyze and integrate different data types such as gene expression, miRNA and aCGH. The analysis functionality is complemented with rich interactive visualizations, allowing users to select datapoints and create new gene lists based on these selections. Importantly, users can save the performed analysis steps as reusable, automatic workflows, which can also be shared with other users. Being a versatile and easily extendable platform, Chipster can be used for microarray, proteomics and sequencing data. In this article we describe its comprehensive collection of analysis and visualization tools for microarray data using three case studies. Conclusions Chipster is a user-friendly analysis software for high-throughput data. Its intuitive graphical user interface enables biologists to access a powerful collection of data analysis and integration tools, and to visualize data interactively. Users can collaborate by sharing analysis sessions and workflows. Chipster is open source, and the server installation package is freely available. PMID:21999641
User Driven Development of Software Tools for Open Data Discovery and Exploration
NASA Astrophysics Data System (ADS)
Schlobinski, Sascha; Keppel, Frank; Dihe, Pascal; Boot, Gerben; Falkenroth, Esa
2016-04-01
The use of open data in research faces challenges not restricted to inherent properties such as data quality, resolution of open data sets. Often Open data is catalogued insufficiently or fragmented. Software tools that support the effective discovery including the assessment of the data's appropriateness for research have shortcomings such as the lack of essential functionalities like support for data provenance. We believe that one of the reasons is the neglect of real end users requirements in the development process of aforementioned software tools. In the context of the FP7 Switch-On project we have pro-actively engaged the relevant user user community to collaboratively develop a means to publish, find and bind open data relevant for hydrologic research. Implementing key concepts of data discovery and exploration we have used state of the art web technologies to provide an interactive software tool that is easy to use yet powerful enough to satisfy the data discovery and access requirements of the hydrological research community.
Introduction to TAFI - A Matlab® toolbox for analysis of flexural isostasy
NASA Astrophysics Data System (ADS)
Jha, S.; Harry, D. L.; Schutt, D.
2016-12-01
The isostatic response of vertical tectonic loads emplaced on thin elastic plates overlying inviscid substrate and the corresponding gravity anomalies are commonly modeled using well established theories and methodologies of flexural analysis. However, such analysis requires some mathematical and coding expertise on part of users. With that in mind, we designed a new interactive Matlab® toolbox called Toolbox for Analysis of Flexural Isostasy (TAFI). TAFI allows users to create forward models (2-D and 3-D) of flexural deformation of the lithosphere and resulting gravity anomaly. TAFI computes Green's Functions for flexure of the elastic plate subjected to point or line loads, and analytical solution for harmonic loads. Flexure due to non-impulsive, distributed 2-D or 3-D loads are computed by convolving the appropriate Green's function with a user-supplied spatially discretized load function. The gravity anomaly associated with each density interface is calculated by using the Fourier Transform of flexural deflection of these interfaces and estimating the gravity in the wavenumber domain. All models created in TAFI are based on Matlab's intrinsic functions and do not require any specialized toolbox, function or library except those distributed with TAFI. Modeling functions within TAFI can be called from Matlab workspace, from within user written programs or from the TAFI's graphical user interface (GUI). The GUI enables the user to model the flexural deflection of lithosphere interactively, enabling real time comparison of model fit with observed data constraining the flexural deformation and gravity, facilitating rapid search for best fitting flexural model. TAFI is a very useful teaching and research tool and have been tested rigorously in graduate level teaching and basic research environment.
Interface Metaphors for Interactive Machine Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasper, Robert J.; Blaha, Leslie M.
To promote more interactive and dynamic machine learn- ing, we revisit the notion of user-interface metaphors. User-interface metaphors provide intuitive constructs for supporting user needs through interface design elements. A user-interface metaphor provides a visual or action pattern that leverages a user’s knowledge of another domain. Metaphors suggest both the visual representations that should be used in a display as well as the interactions that should be afforded to the user. We argue that user-interface metaphors can also offer a method of extracting interaction-based user feedback for use in machine learning. Metaphors offer indirect, context-based information that can be usedmore » in addition to explicit user inputs, such as user-provided labels. Implicit information from user interactions with metaphors can augment explicit user input for active learning paradigms. Or it might be leveraged in systems where explicit user inputs are more challenging to obtain. Each interaction with the metaphor provides an opportunity to gather data and learn. We argue this approach is especially important in streaming applications, where we desire machine learning systems that can adapt to dynamic, changing data.« less
Sankaranarayanan, Ganesh; Halic, Tansel; Arikatla, Venkata Sreekanth; Lu, Zhonghua; De, Suvranu
2010-01-01
Purpose Surgical simulations require haptic interactions and collaboration in a shared virtual environment. A software framework for decoupled surgical simulation based on a multi-controller and multi-viewer model-view-controller (MVC) pattern was developed and tested. Methods A software framework for multimodal virtual environments was designed, supporting both visual interactions and haptic feedback while providing developers with an integration tool for heterogeneous architectures maintaining high performance, simplicity of implementation, and straightforward extension. The framework uses decoupled simulation with updates of over 1,000 Hz for haptics and accommodates networked simulation with delays of over 1,000 ms without performance penalty. Results The simulation software framework was implemented and was used to support the design of virtual reality-based surgery simulation systems. The framework supports the high level of complexity of such applications and the fast response required for interaction with haptics. The efficacy of the framework was tested by implementation of a minimally invasive surgery simulator. Conclusion A decoupled simulation approach can be implemented as a framework to handle simultaneous processes of the system at the various frame rates each process requires. The framework was successfully used to develop collaborative virtual environments (VEs) involving geographically distributed users connected through a network, with the results comparable to VEs for local users. PMID:20714933
Maciel, Anderson; Sankaranarayanan, Ganesh; Halic, Tansel; Arikatla, Venkata Sreekanth; Lu, Zhonghua; De, Suvranu
2011-07-01
Surgical simulations require haptic interactions and collaboration in a shared virtual environment. A software framework for decoupled surgical simulation based on a multi-controller and multi-viewer model-view-controller (MVC) pattern was developed and tested. A software framework for multimodal virtual environments was designed, supporting both visual interactions and haptic feedback while providing developers with an integration tool for heterogeneous architectures maintaining high performance, simplicity of implementation, and straightforward extension. The framework uses decoupled simulation with updates of over 1,000 Hz for haptics and accommodates networked simulation with delays of over 1,000 ms without performance penalty. The simulation software framework was implemented and was used to support the design of virtual reality-based surgery simulation systems. The framework supports the high level of complexity of such applications and the fast response required for interaction with haptics. The efficacy of the framework was tested by implementation of a minimally invasive surgery simulator. A decoupled simulation approach can be implemented as a framework to handle simultaneous processes of the system at the various frame rates each process requires. The framework was successfully used to develop collaborative virtual environments (VEs) involving geographically distributed users connected through a network, with the results comparable to VEs for local users.
Automation and decision support in interactive consumer products.
Sauer, J; Rüttinger, B
2007-06-01
This article presents two empirical studies (n = 30, n = 48) that are concerned with different forms of automation in interactive consumer products. The goal of the studies was to evaluate the effectiveness of two types of automation: perceptual augmentation (i.e. supporting users' information acquisition and analysis); and control integration (i.e. supporting users' action selection and implementation). Furthermore, the effectiveness of on-product information (i.e. labels attached to product) in supporting automation design was evaluated. The findings suggested greater benefits for automation in control integration than in perceptual augmentation alone, which may be partly due to the specific requirements of consumer product usage. If employed appropriately, on-product information can be a helpful means of information conveyance. The article discusses the implications of automation design in interactive consumer products while drawing on automation models from the work environment.
Manipulation of volumetric patient data in a distributed virtual reality environment.
Dech, F; Ai, Z; Silverstein, J C
2001-01-01
Due to increases in network speed and bandwidth, distributed exploration of medical data in immersive Virtual Reality (VR) environments is becoming increasingly feasible. The volumetric display of radiological data in such environments presents a unique set of challenges. The shear size and complexity of the datasets involved not only make them difficult to transmit to remote sites, but these datasets also require extensive user interaction in order to make them understandable to the investigator and manageable to the rendering hardware. A sophisticated VR user interface is required in order for the clinician to focus on the aspects of the data that will provide educational and/or diagnostic insight. We will describe a software system of data acquisition, data display, Tele-Immersion, and data manipulation that supports interactive, collaborative investigation of large radiological datasets. The hardware required in this strategy is still at the high-end of the graphics workstation market. Future software ports to Linux and NT, along with the rapid development of PC graphics cards, open the possibility for later work with Linux or NT PCs and PC clusters.
Lightweight Adaptation of Classifiers to Users and Contexts: Trends of the Emerging Domain
Vildjiounaite, Elena; Gimel'farb, Georgy; Kyllönen, Vesa; Peltola, Johannes
2015-01-01
Intelligent computer applications need to adapt their behaviour to contexts and users, but conventional classifier adaptation methods require long data collection and/or training times. Therefore classifier adaptation is often performed as follows: at design time application developers define typical usage contexts and provide reasoning models for each of these contexts, and then at runtime an appropriate model is selected from available ones. Typically, definition of usage contexts and reasoning models heavily relies on domain knowledge. However, in practice many applications are used in so diverse situations that no developer can predict them all and collect for each situation adequate training and test databases. Such applications have to adapt to a new user or unknown context at runtime just from interaction with the user, preferably in fairly lightweight ways, that is, requiring limited user effort to collect training data and limited time of performing the adaptation. This paper analyses adaptation trends in several emerging domains and outlines promising ideas, proposed for making multimodal classifiers user-specific and context-specific without significant user efforts, detailed domain knowledge, and/or complete retraining of the classifiers. Based on this analysis, this paper identifies important application characteristics and presents guidelines to consider these characteristics in adaptation design. PMID:26473165
MUNDUS project: MUltimodal neuroprosthesis for daily upper limb support.
Pedrocchi, Alessandra; Ferrante, Simona; Ambrosini, Emilia; Gandolla, Marta; Casellato, Claudia; Schauer, Thomas; Klauer, Christian; Pascual, Javier; Vidaurre, Carmen; Gföhler, Margit; Reichenfelser, Werner; Karner, Jakob; Micera, Silvestro; Crema, Andrea; Molteni, Franco; Rossini, Mauro; Palumbo, Giovanna; Guanziroli, Eleonora; Jedlitschka, Andreas; Hack, Marco; Bulgheroni, Maria; d'Amico, Enrico; Schenk, Peter; Zwicker, Sven; Duschau-Wicke, Alexander; Miseikis, Justinas; Graber, Lina; Ferrigno, Giancarlo
2013-07-03
MUNDUS is an assistive framework for recovering direct interaction capability of severely motor impaired people based on arm reaching and hand functions. It aims at achieving personalization, modularity and maximization of the user's direct involvement in assistive systems. To this, MUNDUS exploits any residual control of the end-user and can be adapted to the level of severity or to the progression of the disease allowing the user to voluntarily interact with the environment. MUNDUS target pathologies are high-level spinal cord injury (SCI) and neurodegenerative and genetic neuromuscular diseases, such as amyotrophic lateral sclerosis, Friedreich ataxia, and multiple sclerosis (MS). The system can be alternatively driven by residual voluntary muscular activation, head/eye motion, and brain signals. MUNDUS modularly combines an antigravity lightweight and non-cumbersome exoskeleton, closed-loop controlled Neuromuscular Electrical Stimulation for arm and hand motion, and potentially a motorized hand orthosis, for grasping interactive objects. The definition of the requirements and of the interaction tasks were designed by a focus group with experts and a questionnaire with 36 potential end-users. The functionality of all modules has been successfully demonstrated. User's intention was detected with a 100% success. Averaging all subjects and tasks, the minimum evaluation score obtained was 1.13 ± 0.99 for the release of the handle during the drinking task, whilst all the other sub-actions achieved a mean value above 1.6. All users, but one, subjectively perceived the usefulness of the assistance and could easily control the system. Donning time ranged from 6 to 65 minutes, scaled on the configuration complexity. The MUNDUS platform provides functional assistance to daily life activities; the modules integration depends on the user's need, the functionality of the system have been demonstrated for all the possible configurations, and preliminary assessment of usability and acceptance is promising.
TAE+ 5.1 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.1 (HP9000 SERIES 300/400 VERSION)
NASA Technical Reports Server (NTRS)
TAE SUPPORT OFFICE
1994-01-01
TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System, Version 11 Release 4, and the Open Software Foundation's Motif. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is expected to be available on media suitable for seven different machine platforms: 1) DEC VAX computers running VMS (TK50 cartridge in VAX BACKUP format), 2) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), 3) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), 4) HP9000 Series 300/400 computers running HP-UX (.25 inch HP-preformatted tape cartridge in UNIX tar format), 5) HP9000 Series 700 computers running HP-UX (HP 4mm DDS DAT tape cartridge in UNIX tar format), 6) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and 7) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2.
TAE+ 5.1 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.1 (VAX VMS VERSION)
NASA Technical Reports Server (NTRS)
TAE SUPPORT OFFICE
1994-01-01
TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System, Version 11 Release 4, and the Open Software Foundation's Motif. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is expected to be available on media suitable for seven different machine platforms: 1) DEC VAX computers running VMS (TK50 cartridge in VAX BACKUP format), 2) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), 3) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), 4) HP9000 Series 300/400 computers running HP-UX (.25 inch HP-preformatted tape cartridge in UNIX tar format), 5) HP9000 Series 700 computers running HP-UX (HP 4mm DDS DAT tape cartridge in UNIX tar format), 6) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and 7) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2.
ActiviTree: interactive visual exploration of sequences in event-based data using graph similarity.
Vrotsou, Katerina; Johansson, Jimmy; Cooper, Matthew
2009-01-01
The identification of significant sequences in large and complex event-based temporal data is a challenging problem with applications in many areas of today's information intensive society. Pure visual representations can be used for the analysis, but are constrained to small data sets. Algorithmic search mechanisms used for larger data sets become expensive as the data size increases and typically focus on frequency of occurrence to reduce the computational complexity, often overlooking important infrequent sequences and outliers. In this paper we introduce an interactive visual data mining approach based on an adaptation of techniques developed for web searching, combined with an intuitive visual interface, to facilitate user-centred exploration of the data and identification of sequences significant to that user. The search algorithm used in the exploration executes in negligible time, even for large data, and so no pre-processing of the selected data is required, making this a completely interactive experience for the user. Our particular application area is social science diary data but the technique is applicable across many other disciplines.
Intelligent control of a smart walker and its performance evaluation.
Grondin, Simon L; Li, Qingguo
2013-06-01
Recent technological advances have allowed the development of force-dependent, intelligently controlled smart walkers that are able to provide users with enhanced mobility, support and gait assistance. The purpose of this study was to develop an intelligent rule-based controller for a smart walker to achieve a smooth interaction between the user and the walker. This study developed a rule-based mapping between the interaction force, measured by a load cell attached to the walker handle, and the acceleration of the walker. Ten young, healthy subjects were used to evaluate the performance of the proposed controller compared to a well-known admittance-based control system. There were no significant differences between the two control systems concerning their user experience, velocity profiles or average cost of transportation. However, the admittance-based control system required a 1.2N lower average interaction force to maintain the 1m/s target speed (p = 0.002). Metabolic data also indicated that smart walker-assisted gait could considerably reduce the metabolic demand of walking with a four-legged walker.
Interactive Marine Spatial Planning: Siting Tidal Energy Arrays around the Mull of Kintyre
Alexander, Karen A.; Janssen, Ron; Arciniegas, Gustavo; O'Higgins, Timothy G.; Eikelboom, Tessa; Wilding, Thomas A.
2012-01-01
The rapid development of the offshore renewable energy sector has led to an increased requirement for Marine Spatial Planning (MSP) and, increasingly, this is carried out in the context of the ‘ecosystem approach’ (EA) to management. We demonstrate a novel method to facilitate implementation of the EA. Using a real-time interactive mapping device (touch-table) and stakeholder workshops we gathered data and facilitated negotiation of spatial trade-offs at a potential site for tidal renewable energy off the Mull of Kintyre (Scotland). Conflicts between the interests of tidal energy developers and commercial and recreational users of the area were identified, and use preferences and concerns of stakeholders were highlighted. Social, cultural and spatial issues associated with conversion of common pool to private resource were also revealed. The method identified important gaps in existing spatial data and helped to fill these through interactive user inputs. The workshops developed a degree of consensus between conflicting users on the best areas for potential development suggesting that this approach should be adopted during MSP. PMID:22253865
Distributed user interfaces for clinical ubiquitous computing applications.
Bång, Magnus; Larsson, Anders; Berglund, Erik; Eriksson, Henrik
2005-08-01
Ubiquitous computing with multiple interaction devices requires new interface models that support user-specific modifications to applications and facilitate the fast development of active workspaces. We have developed NOSTOS, a computer-augmented work environment for clinical personnel to explore new user interface paradigms for ubiquitous computing. NOSTOS uses several devices such as digital pens, an active desk, and walk-up displays that allow the system to track documents and activities in the workplace. We present the distributed user interface (DUI) model that allows standalone applications to distribute their user interface components to several devices dynamically at run-time. This mechanism permit clinicians to develop their own user interfaces and forms to clinical information systems to match their specific needs. We discuss the underlying technical concepts of DUIs and show how service discovery, component distribution, events and layout management are dealt with in the NOSTOS system. Our results suggest that DUIs--and similar network-based user interfaces--will be a prerequisite of future mobile user interfaces and essential to develop clinical multi-device environments.
Deep Interactive Learning with Sharkzor
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Sharkzor is a web application for machine-learning assisted image sort and summary. Deep learning algorithms are leveraged to infer, augment, and automate the user’s mental model. Initially, images uploaded by the user are spread out on a canvas. The user then interacts with the images to impute their mental model into the applications algorithmic underpinnings. Methods of interaction within Sharkzor’s user interface and user experience support three primary user tasks: triage, organize and automate. The user triages the large pile of overlapping images by moving images of interest into proximity. The user then organizes said images into meaningful groups. Aftermore » interacting with the images and groups, deep learning helps to automate the user’s interactions. The loop of interaction, automation, and response by the user allows the system to quickly make sense of large amounts of data.« less
Comparative study on collaborative interaction in non-immersive and immersive systems
NASA Astrophysics Data System (ADS)
Shahab, Qonita M.; Kwon, Yong-Moo; Ko, Heedong; Mayangsari, Maria N.; Yamasaki, Shoko; Nishino, Hiroaki
2007-09-01
This research studies the Virtual Reality simulation for collaborative interaction so that different people from different places can interact with one object concurrently. Our focus is the real-time handling of inputs from multiple users, where object's behavior is determined by the combination of the multiple inputs. Issues addressed in this research are: 1) The effects of using haptics on a collaborative interaction, 2) The possibilities of collaboration between users from different environments. We conducted user tests on our system in several cases: 1) Comparison between non-haptics and haptics collaborative interaction over LAN, 2) Comparison between non-haptics and haptics collaborative interaction over Internet, and 3) Analysis of collaborative interaction between non-immersive and immersive display environments. The case studies are the interaction of users in two cases: collaborative authoring of a 3D model by two users, and collaborative haptic interaction by multiple users. In Virtual Dollhouse, users can observe physics law while constructing a dollhouse using existing building blocks, under gravity effects. In Virtual Stretcher, multiple users can collaborate on moving a stretcher together while feeling each other's haptic motions.
Space station pressurized laboratory safety guidelines
NASA Technical Reports Server (NTRS)
Mcgonigal, Les
1990-01-01
Before technical safety guidelines and requirements are established, a common understanding of their origin and importance must be shared between Space Station Program Management, the User Community, and the Safety organizations involved. Safety guidelines and requirements are driven by the nature of the experiments, and the degree of crew interaction. Hazard identification; development of technical safety requirements; operating procedures and constraints; provision of training and education; conduct of reviews and evaluations; and emergency preplanning are briefly discussed.
Range and mission scheduling automation using combined AI and operations research techniques
NASA Technical Reports Server (NTRS)
Arbabi, Mansur; Pfeifer, Michael
1987-01-01
Ground-based systems for Satellite Command, Control, and Communications (C3) operations require a method for planning, scheduling and assigning the range resources such as: antenna systems scattered around the world, communications systems, and personnel. The method must accommodate user priorities, last minute changes, maintenance requirements, and exceptions from nominal requirements. Described are computer programs which solve 24 hour scheduling problems, using heuristic algorithms and a real time interactive scheduling process.
Interactive real time flow simulations
NASA Technical Reports Server (NTRS)
Sadrehaghighi, I.; Tiwari, S. N.
1990-01-01
An interactive real time flow simulation technique is developed for an unsteady channel flow. A finite-volume algorithm in conjunction with a Runge-Kutta time stepping scheme was developed for two-dimensional Euler equations. A global time step was used to accelerate convergence of steady-state calculations. A raster image generation routine was developed for high speed image transmission which allows the user to have direct interaction with the solution development. In addition to theory and results, the hardware and software requirements are discussed.
Making grandma's data secure: a security architecture for home telemedicine.
Starren, J.; Sengupta, S.; Hripcsak, G.; Ring, G.; Klerer, R.; Shea, S.
2001-01-01
Home telemedicine presents special challenges for data security and privacy. Experience in the Informatics for Diabetes Education And Telemedicine (IDEATel) project has demonstrated that data security is not a one-size-fits-all problem. The IDEATel users include elderly patients in their homes, nurse case managers, physicians, and researchers. The project supports multiple computer systems that require a variety of user interactions, including: data entry, data review, patient education, videoconferencing, and electronic monitoring. To meet these various needs, a number of different of security solutions were utilized, including: UserID/Password, PKI certificates, time-based tokens, IP filtering, VPNs, symmetric and asymmetric encryption schemes, firewalls and dedicated connections. These were combined in different ways to meet the needs of each user groups. PMID:11825267
Towards a next generation of climate services scientists : The EUPORIAS Masterclass experience
NASA Astrophysics Data System (ADS)
Dell'Aquila, Alessandro; Buontempo, Carlo; Liggins, Felicity; Soares, Marta Bruno; De Felice, Matteo
2017-04-01
Climate service development require a new framework for the interaction between users and provider of climate information subverting the standard top down approach from academia to application. In the framework of EUPORIAS project two summer schools have been organized with the ambition to be a first step in the direction of co-production where new prototypes could be developed but, more importantly , where new protocol for interactions could be explain and presented in a hands-on fashion In this perspective, in May 2015 and May 2016 two climate service masterclass of EUPORIAS took place at EURAC's headquarters in Bolzano, Italy. The schools , aimed at professional and early career climate scientists, hosted students from 15 different countries. This first masterclass of the project focused on three key sectors: agriculture, tourism and energy, while the second one focused on health, water and food security. Alongside lectures delivered by speakers on disciplines as diverse as climate modelling, data visualisation and psychology from across Europe, Africa and Australia, the students were tasked with creating prototype climate services, in answer to real-life end-user requirements. The teams worked on case-studies from real end-users who were also at the school. It was tough going for some of the groups but we feel there is nothing more instructive than real end-user interactions to fully understand the complexity of climate service development. The quality of the students and by the insightful questions they asked has been really impressive. Whilst some mirrored discussions already active within the climate service community others were novel and revealed an interesting junior perspective to the field. Such a hands-on a formula worked well and suggests some possible new methodologies potentially transportable to other similar events.
Toward interactive scheduling systems for managing medical resources.
Oddi, A; Cesta, A
2000-10-01
Managers of medico-hospital facilities are facing two general problems when allocating resources to activities: (1) to find an agreement between several and contrasting requirements; (2) to manage dynamic and uncertain situations when constraints suddenly change over time due to medical needs. This paper describes the results of a research aimed at applying constraint-based scheduling techniques to the management of medical resources. A mixed-initiative problem solving approach is adopted in which a user and a decision support system interact to incrementally achieve a satisfactory solution to the problem. A running prototype is described called Interactive Scheduler which offers a set of functionalities for a mixed-initiative interaction to cope with the medical resource management. Interactive Scheduler is endowed with a representation schema used for describing the medical environment, a set of algorithms that address the specific problems of the domain, and an innovative interaction module that offers functionalities for the dialogue between the support system and its user. A particular contribution of this work is the explicit representation of constraint violations, and the definition of scheduling algorithms that aim at minimizing the amount of constraint violations in a solution.
NASA Technical Reports Server (NTRS)
Garrocq, C. A.; Hurley, M. J.
1973-01-01
System requirements, software elements, and hardware equipment required for an IPAD system are defined. An IPAD conceptual design was evolved, a potential user survey was conducted, and work loads for various types of interactive terminals were projected. Various features of major host computing systems were compared, and target systems were selected in order to identify the various elements of software required.
Chemuturi, Radhika; Amirabdollahian, Farshid; Dautenhahn, Kerstin
2013-09-28
Rehabilitation robotics is progressing towards developing robots that can be used as advanced tools to augment the role of a therapist. These robots are capable of not only offering more frequent and more accessible therapies but also providing new insights into treatment effectiveness based on their ability to measure interaction parameters. A requirement for having more advanced therapies is to identify how robots can 'adapt' to each individual's needs at different stages of recovery. Hence, our research focused on developing an adaptive interface for the GENTLE/A rehabilitation system. The interface was based on a lead-lag performance model utilising the interaction between the human and the robot. The goal of the present study was to test the adaptability of the GENTLE/A system to the performance of the user. Point-to-point movements were executed using the HapticMaster (HM) robotic arm, the main component of the GENTLE/A rehabilitation system. The points were displayed as balls on the screen and some of the points also had a real object, providing a test-bed for the human-robot interaction (HRI) experiment. The HM was operated in various modes to test the adaptability of the GENTLE/A system based on the leading/lagging performance of the user. Thirty-two healthy participants took part in the experiment comprising of a training phase followed by the actual-performance phase. The leading or lagging role of the participant could be used successfully to adjust the duration required by that participant to execute point-to-point movements, in various modes of robot operation and under various conditions. The adaptability of the GENTLE/A system was clearly evident from the durations recorded. The regression results showed that the participants required lower execution times with the help from a real object when compared to just a virtual object. The 'reaching away' movements were longer to execute when compared to the 'returning towards' movements irrespective of the influence of the gravity on the direction of the movement. The GENTLE/A system was able to adapt so that the duration required to execute point-to-point movement was according to the leading or lagging performance of the user with respect to the robot. This adaptability could be useful in the clinical settings when stroke subjects interact with the system and could also serve as an assessment parameter across various interaction sessions. As the system adapts to user input, and as the task becomes easier through practice, the robot would auto-tune for more demanding and challenging interactions. The improvement in performance of the participants in an embedded environment when compared to a virtual environment also shows promise for clinical applicability, to be tested in due time. Studying the physiology of upper arm to understand the muscle groups involved, and their influence on various movements executed during this study forms a key part of our future work.
ORNL Direct Purchase Information System (DPIS) user's manual. [For PDP-10
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grubb, J.W.; Lovin, J.K.; Smith, M.B.
1980-08-01
The ORNL Management Information System (MIS) Direct Purchase Information System (DPIS) is an on-line interactive system of computer programs. The system can provide a manager with commitment and delivery schedule information on current direct purchase requisitions. The commitment data accounts for the orders that have been placed and those requisitions yet to be placed with a vendor. Information can be summarized at many different levels, and individuals can quickly determine the status of their requisitions. DPIS contains data only on active outside direct purchases, but has the capability to access historical data. It provides sufficient flexibility to be used tomore » answer many questions pertinent to the status of these direct purchases and their obligating costs. Even an inexperienced computer user should have little difficulty in learning to use DPIS. The User Module prompts the user on what type of response it is expecting. If the user has doubts as to the response, or if the meaning of the response is not clear, the module will give a detailed list of the options available at that level. The user has control of what data are to be considered, how they are to be grouped, and what format the output will take. As the user selects the options available at a given level, the module proceeds to the next lower level until sufficient input has been supplied to provide the requested information. A major benefit of this interactive, user-oriented system is that the manager can specify the information requirements and does not have to spend time going through a great deal of other data to locate what is needed. Because it is interactive, a search can begin at a summary level and then resort to a more detailed level if needed. DPIS allows the user direct control for selecting the type of commitment data, output, funds, and direct purchase.« less
Three-Dimensional Online Visualization and Engagement Tools for the Geosciences
NASA Astrophysics Data System (ADS)
Cockett, R.; Moran, T.; Pidlisecky, A.
2013-12-01
Educational tools often sacrifice interactivity in favour of scalability so they can reach more users. This compromise leads to tools that may be viewed as second tier when compared to more engaging activities performed in a laboratory; however, the resources required to deliver laboratory exercises that are scalable is often impractical. Geoscience education is well situated to benefit from interactive online learning tools that allow users to work in a 3D environment. Visible Geology (http://3ptscience.com/visiblegeology) is an innovative web-based application designed to enable visualization of geologic structures and processes through the use of interactive 3D models. The platform allows users to conceptualize difficult, yet important geologic principles in a scientifically accurate manner by developing unique geologic models. The environment allows students to interactively practice their visualization and interpretation skills by creating and interacting with their own models and terrains. Visible Geology has been designed from a user centric perspective resulting in a simple and intuitive interface. The platform directs students to build there own geologic models by adding beds and creating geologic events such as tilting, folding, or faulting. The level of ownership and interactivity encourages engagement, leading learners to discover geologic relationships on their own, in the context of guided assignments. In January 2013, an interactive geologic history assignment was developed for a 700-student introductory geology class at The University of British Columbia. The assignment required students to distinguish the relative age of geologic events to construct a geologic history. Traditionally this type of exercise has been taught through the use of simple geologic cross-sections showing crosscutting relationships; from these cross-sections students infer the relative age of geologic events. In contrast, the Visible Geology assignment offers students a unique experience where they first create their own geologic events allowing them to directly see how the timing of a geologic event manifests in the model and resulting cross-sections. By creating each geologic event in the model themselves, the students gain a deeper understanding of the processes and relative order of events. The resulting models can be shared amongst students, and provide instructors with a basis for guiding inquiry to address misconceptions. The ease of use of the assignment, including automatic assessment, made this tool practical for deployment in this 700 person class. The outcome of this type of large scale deployment is that students, who would normally not experience a lab exercise, gain exposure to interactive 3D thinking. Engaging tools and software that puts the user in control of their learning experiences is critical for moving to scalable, yet engaging, online learning environments.
AZTEC. Parallel Iterative method Software for Solving Linear Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, S.; Shadid, J.; Tuminaro, R.
1995-07-01
AZTEC is an interactive library that greatly simplifies the parrallelization process when solving the linear systems of equations Ax=b where A is a user supplied n X n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. AZTEC is intended as a software tool for users who want to avoid cumbersome parallel programming details but who have large sparse linear systems which require an efficiently utilized parallel processing system. A collection of data transformation tools are provided that allow for easy creation of distributed sparse unstructured matricesmore » for parallel solutions.« less
THREAT ENSEMBLE VULNERABILITY ASSESSMENT ...
software and manual TEVA-SPOT is used by water utilities to optimize the number and location of contamination detection sensors so that economic and/or public health consequences are minimized. TEVA-SPOT is interactive, allowing a user to specify the minimization objective (e.g., the number of people exposed, the time to detection, or the extent of pipe length contaminated). It also allows a user to specify constraints. For example, a TEVA-SPOT user can employ expert knowledge during the design process by identifying either existing or unfeasible sensor locations. Installation and maintenance costs for sensor placement can also be factored into the analysis. Python and Java are required to run TEVA-SPOT
NASA Technical Reports Server (NTRS)
Murphree, H. I.
1979-01-01
A user's manual is provided for program PARACH, a FORTRAN digital computer program operational on the Univac 1108. A description of the program and operating instructions for it are included. Program PARACH is used to study the interaction dynamics of a parachute and its payload during terminal descent. Operating instructions, required input data, program options and limitations, and output data are described. Subroutines used in this program are also listed and explained.
Maintaining Engagement in Long-term Interventions with Relational Agents
Bickmore, Timothy; Schulman, Daniel; Yin, Langxuan
2011-01-01
We discuss issues in designing virtual humans for applications which require long-term voluntary use, and the problem of maintaining engagement with users over time. Concepts and theories related to engagement from a variety of disciplines are reviewed. We describe a platform for conducting studies into long-term interactions between humans and virtual agents, and present the results of two longitudinal randomized controlled experiments in which the effect of manipulations of agent behavior on user engagement was assessed. PMID:21318052
Implementing Model-Check for Employee and Management Satisfaction
NASA Technical Reports Server (NTRS)
Jones, Corey; LaPha, Steven
2013-01-01
This presentation will discuss methods to which ModelCheck can be implemented to not only improve model quality, but also satisfy both employees and management through different sets of quality checks. This approach allows a standard set of modeling practices to be upheld throughout a company, with minimal interaction required by the end user. The presenter will demonstrate how to create multiple ModelCheck standards, preventing users from evading the system, and how it can improve the quality of drawings and models.
Graphic analysis of resources by numerical evaluation techniques (Garnet)
Olson, A.C.
1977-01-01
An interactive computer program for graphical analysis has been developed by the U.S. Geological Survey. The program embodies five goals, (1) economical use of computer resources, (2) simplicity for user applications, (3) interactive on-line use, (4) minimal core requirements, and (5) portability. It is designed to aid (1) the rapid analysis of point-located data, (2) structural mapping, and (3) estimation of area resources. ?? 1977.
NASA Astrophysics Data System (ADS)
Stefanut, T.; Gorgan, D.; Giuliani, G.; Cau, P.
2012-04-01
Creating e-Learning materials in the Earth Observation domain is a difficult task especially for non-technical specialists who have to deal with distributed repositories, large amounts of information and intensive processing requirements. Furthermore, due to the lack of specialized applications for developing teaching resources, technical knowledge is required also for defining data presentation structures or in the development and customization of user interaction techniques for better teaching results. As a response to these issues during the GiSHEO FP7 project [1] and later in the EnviroGRIDS FP7 [2] project, we have developed the eGLE e-Learning Platform [3], a tool based application that provides dedicated functionalities to the Earth Observation specialists for developing teaching materials. The proposed architecture is built around a client-server design that provides the core functionalities (e.g. user management, tools integration, teaching materials settings, etc.) and has been extended with a distributed component implemented through the tools that are integrated into the platform, as described further. Our approach in dealing with multiple transfer protocol types, heterogeneous data formats or various user interaction techniques involve the development and integration of very specialized elements (tools) that can be customized by the trainers in a visual manner through simple user interfaces. In our concept each tool is dedicated to a specific data type, implementing optimized mechanisms for searching, retrieving, visualizing and interacting with it. At the same time, in each learning resource can be integrated any number of tools, through drag-and-drop interaction, allowing the teacher to retrieve pieces of data of various types (e.g. images, charts, tables, text, videos etc.) from different sources (e.g. OGC web services, charts created through Bashyt application, etc.) through different protocols (ex. WMS, BASHYT API, FTP, HTTP etc.) and to display them all together in a unitary manner using the same visual structure [4]. Addressing the High Power Computation requirements that are met while processing environmental data, our platform can be easily extended through tools that connect to GRID infrastructures, WCS web services, Bashyt API (for creating specialized hydrological reports) or any other specialized services (ex. graphics cluster visualization) that can be reached over the Internet. At run time, on the trainee's computer each tool is launched in an asynchronous running mode and connects to the data source that has been established by the teacher, retrieving and displaying the information to the user. The data transfer is accomplished directly between the trainee's computer and the corresponding services (e.g. OGC, Bashyt API, etc.) without passing through the core server platform. In this manner, the eGLE application can provide better and more responsive connections to a large number of users.
Operating system for a real-time multiprocessor propulsion system simulator. User's manual
NASA Technical Reports Server (NTRS)
Cole, G. L.
1985-01-01
The NASA Lewis Research Center is developing and evaluating experimental hardware and software systems to help meet future needs for real-time, high-fidelity simulations of air-breathing propulsion systems. Specifically, the real-time multiprocessor simulator project focuses on the use of multiple microprocessors to achieve the required computing speed and accuracy at relatively low cost. Operating systems for such hardware configurations are generally not available. A real time multiprocessor operating system (RTMPOS) that supports a variety of multiprocessor configurations was developed at Lewis. With some modification, RTMPOS can also support various microprocessors. RTMPOS, by means of menus and prompts, provides the user with a versatile, user-friendly environment for interactively loading, running, and obtaining results from a multiprocessor-based simulator. The menu functions are described and an example simulation session is included to demonstrate the steps required to go from the simulation loading phase to the execution phase.
PINTA: a web server for network-based gene prioritization from expression data
Nitsch, Daniela; Tranchevent, Léon-Charles; Gonçalves, Joana P.; Vogt, Josef Korbinian; Madeira, Sara C.; Moreau, Yves
2011-01-01
PINTA (available at http://www.esat.kuleuven.be/pinta/; this web site is free and open to all users and there is no login requirement) is a web resource for the prioritization of candidate genes based on the differential expression of their neighborhood in a genome-wide protein–protein interaction network. Our strategy is meant for biological and medical researchers aiming at identifying novel disease genes using disease specific expression data. PINTA supports both candidate gene prioritization (starting from a user defined set of candidate genes) as well as genome-wide gene prioritization and is available for five species (human, mouse, rat, worm and yeast). As input data, PINTA only requires disease specific expression data, whereas various platforms (e.g. Affymetrix) are supported. As a result, PINTA computes a gene ranking and presents the results as a table that can easily be browsed and downloaded by the user. PMID:21602267
Research of CO2 concentration in naturally ventilated lecture room
NASA Astrophysics Data System (ADS)
Laska, Marta; Dudkiewicz, Edyta
2017-11-01
Naturally ventilated buildings especially dedicated for educational purposes need to be design to achieve required level of thermal comfort and indoor air quality. It is crucial in terms of both: health and productivity of the room users. Higher requirements of indoor environment are important due to the level of students concentration, their ability to acquire new knowledge and willingness to interact with the lecturer. The article presents the results of experimental study and surveys undertaken in naturally ventilated lecture room. The data is analysed in terms of CO2 concentration and its possible influence on users. Furthermore the outcome of the research is compared with the CO2 concentration models available in the literature.
Becoming a medical marijuana user.
Lankenau, Stephen E; Kioumarsi, Avat; Reed, Megan; McNeeley, Miles; Iverson, Ellen; Wong, Carolyn F
2018-02-01
Since marijuana became legal for medical use in California in 1996, reasons for medical use among medical marijuana patients (MMP) have become increasingly well described in qualitative studies. However, few studies have detailed how the use of marijuana for medical purposes fits into the broader career trajectories of either becoming a marijuana user or becoming a MMP, including the social influences on medical use. Young adult MMP (N=40) aged 18 to 26 years old were recruited in Los Angeles, CA in 2014-15 and administered a semi-structured interview that included questions focusing on marijuana use practices before and after becoming MMP. MMP were categorized into three trajectory groups: primarily medical users (n=30); primarily non-medical users (n=3); and medical users who transitioned to non-medical users (n=7). Most medical users discovered medicinal effects from marijuana in the context of non-medical use as adolescents prior to becoming MMP. Becoming a mature MMP followed interactions with dispensary staff or further self-exploration of medical uses and often involved a social process that helped confirm the legitimacy of medical use and identity as a medical user. In some cases, MMP transitioned back to non-medical users as health conditions improved or remained primarily non-medical users even after becoming MMP for reasons unrelated to health, e.g., protection against arrest. Becoming a medical marijuana user was an important career trajectory that was influenced by early discoveries of effective medicinal use, interaction with proponents of medical use at dispensaries, experiences with new kinds of medical use, and the demands of particular health condition requiring more or less treatment with marijuana. Copyright © 2017 Elsevier B.V. All rights reserved.
Defense Logistics Standard Systems Functional Requirements.
1987-03-01
Artificial Intelligence - the development of a machine capability to perform functions normally concerned with human intelligence, such as learning , adapting...Basic Data Base Machine Configurations .... ......... D- 18 xx ~ ?f~~~vX PART I: MODELS - DEFENSE LOGISTICS STANDARD SYSTEMS FUNCTIONAL REQUIREMENTS...On-line, Interactive Access. Integrating user input and machine output in a dynamic, real-time, give-and- take process is considered the optimum mode
Interactive Inverse Groundwater Modeling - Addressing User Fatigue
NASA Astrophysics Data System (ADS)
Singh, A.; Minsker, B. S.
2006-12-01
This paper builds on ongoing research on developing an interactive and multi-objective framework to solve the groundwater inverse problem. In this work we solve the classic groundwater inverse problem of estimating a spatially continuous conductivity field, given field measurements of hydraulic heads. The proposed framework is based on an interactive multi-objective genetic algorithm (IMOGA) that not only considers quantitative measures such as calibration error and degree of regularization, but also takes into account expert knowledge about the structure of the underlying conductivity field expressed as subjective rankings of potential conductivity fields by the expert. The IMOGA converges to the optimal Pareto front representing the best trade- off among the qualitative as well as quantitative objectives. However, since the IMOGA is a population-based iterative search it requires the user to evaluate hundreds of solutions. This leads to the problem of 'user fatigue'. We propose a two step methodology to combat user fatigue in such interactive systems. The first step is choosing only a few highly representative solutions to be shown to the expert for ranking. Spatial clustering is used to group the search space based on the similarity of the conductivity fields. Sampling is then carried out from different clusters to improve the diversity of solutions shown to the user. Once the expert has ranked representative solutions from each cluster a machine learning model is used to 'learn user preference' and extrapolate these for the solutions not ranked by the expert. We investigate different machine learning models such as Decision Trees, Bayesian learning model, and instance based weighting to model user preference. In addition, we also investigate ways to improve the performance of these models by providing information about the spatial structure of the conductivity fields (which is what the expert bases his or her rank on). Results are shown for each of these machine learning models and the advantages and disadvantages for each approach are discussed. These results indicate that using the proposed two-step methodology leads to significant reduction in user-fatigue without deteriorating the solution quality of the IMOGA.
Del Fiol, Guilherme; Hanseler, Haley; Crouch, Barbara Insley; Cummins, Mollie R.
2016-01-01
Summary Background Health information exchange (HIE) between Poison Control Centers (PCCs) and Emergency Departments (EDs) could improve care of poisoned patients. However, PCC information systems are not designed to facilitate HIE with EDs; therefore, we are developing specialized software to support HIE within the normal workflow of the PCC using user-centered design and rapid prototyping. Objective To describe the design of an HIE dashboard and the refinement of user requirements through rapid prototyping. Methods Using previously elicited user requirements, we designed low-fidelity sketches of designs on paper with iterative refinement. Next, we designed an interactive high-fidelity prototype and conducted scenario-based usability tests with end users. Users were asked to think aloud while accomplishing tasks related to a case vignette. After testing, the users provided feedback and evaluated the prototype using the System Usability Scale (SUS). Results Survey results from three users provided useful feedback that was then incorporated into the design. After achieving a stable design, we used the prototype itself as the specification for development of the actual software. Benefits of prototyping included having 1) subject-matter experts heavily involved with the design; 2) flexibility to make rapid changes, 3) the ability to minimize software development efforts early in the design stage; 4) rapid finalization of requirements; 5) early visualization of designs; 6) and a powerful vehicle for communication of the design to the programmers. Challenges included 1) time and effort to develop the prototypes and case scenarios; 2) no simulation of system performance; 3) not having all proposed functionality available in the final product; and 4) missing needed data elements in the PCC information system. PMID:27081404
Montague, Enid; JieXu
2011-01-01
The aim of this study was to understand how passive users perceive the trustworthiness of active users and technologies under varying technological conditions. An experimental study was designed to vary the functioning of technologies that active users interacted with, while passive users observed these interactions. Active and passive user ratings of technology and partner were collected. Exploratory data analysis suggests that passive users developed perceptions of technologies based on the functioning of the technology and how the active user interacted with the technologies. Findings from this research have implications for the design of technologies in environments where active and passive users interact with technologies in different ways. Future work in this area should explore interventions that lead to enhanced affective engagement and trust calibration. PMID:22192788
NASA Astrophysics Data System (ADS)
van Lew, Baldur; Botha, Charl P.; Milles, Julien R.; Vrooman, Henri A.; van de Giessen, Martijn; Lelieveldt, Boudewijn P. F.
2015-03-01
The cohort size required in epidemiological imaging genetics studies often mandates the pooling of data from multiple hospitals. Patient data, however, is subject to strict privacy protection regimes, and physical data storage may be legally restricted to a hospital network. To enable biomarker discovery, fast data access and interactive data exploration must be combined with high-performance computing resources, while respecting privacy regulations. We present a system using fast and inherently secure light-paths to access distributed data, thereby obviating the need for a central data repository. A secure private cloud computing framework facilitates interactive, computationally intensive exploration of this geographically distributed, privacy sensitive data. As a proof of concept, MRI brain imaging data hosted at two remote sites were processed in response to a user command at a third site. The system was able to automatically start virtual machines, run a selected processing pipeline and write results to a user accessible database, while keeping data locally stored in the hospitals. Individual tasks took approximately 50% longer compared to a locally hosted blade server but the cloud infrastructure reduced the total elapsed time by a factor of 40 using 70 virtual machines in the cloud. We demonstrated that the combination light-path and private cloud is a viable means of building an analysis infrastructure for secure data analysis. The system requires further work in the areas of error handling, load balancing and secure support of multiple users.
NASA Technical Reports Server (NTRS)
Campbell, W. J.; Goldberg, M.
1982-01-01
NASA's Eastern Regional Remote Sensing Applications Center (ERRSAC) has recognized the need to accommodate spatial analysis techniques in its remote sensing technology transfer program. A computerized Geographic Information System to incorporate remotely sensed data, specifically Landsat, with other relevant data was considered a realistic approach to address a given resource problem. Questions arose concerning the selection of a suitable available software system to demonstrate, train, and undertake demonstration projects with ERRSAC's user community. The very specific requirements for such a system are discussed. The solution found involved the addition of geographic information processing functions to the Interactive Digital Image Manipulation System (IDIMS). Details regarding the functions of the new integrated system are examined along with the characteristics of the software.
Brain blood vessel segmentation using line-shaped profiles
NASA Astrophysics Data System (ADS)
Babin, Danilo; Pižurica, Aleksandra; De Vylder, Jonas; Vansteenkiste, Ewout; Philips, Wilfried
2013-11-01
Segmentation of cerebral blood vessels is of great importance in diagnostic and clinical applications, especially for embolization of cerebral aneurysms and arteriovenous malformations (AVMs). In order to perform embolization of the AVM, the structural and geometric information of blood vessels from 3D images is of utmost importance. For this reason, the in-depth segmentation of cerebral blood vessels is usually done as a fusion of different segmentation techniques, often requiring extensive user interaction. In this paper we introduce the idea of line-shaped profiling with an application to brain blood vessel and AVM segmentation, efficient both in terms of resolving details and in terms of computation time. Our method takes into account both local proximate and wider neighbourhood of the processed pixel, which makes it efficient for segmenting large blood vessel tree structures, as well as fine structures of the AVMs. Another advantage of our method is that it requires selection of only one parameter to perform segmentation, yielding very little user interaction.
A User-Centered Approach to Adaptive Hypertext Based on an Information Relevance Model
NASA Technical Reports Server (NTRS)
Mathe, Nathalie; Chen, James
1994-01-01
Rapid and effective to information in large electronic documentation systems can be facilitated if information relevant in an individual user's content can be automatically supplied to this user. However most of this knowledge on contextual relevance is not found within the contents of documents, it is rather established incrementally by users during information access. We propose a new model for interactively learning contextual relevance during information retrieval, and incrementally adapting retrieved information to individual user profiles. The model, called a relevance network, records the relevance of references based on user feedback for specific queries and user profiles. It also generalizes such knowledge to later derive relevant references for similar queries and profiles. The relevance network lets users filter information by context of relevance. Compared to other approaches, it does not require any prior knowledge nor training. More importantly, our approach to adaptivity is user-centered. It facilitates acceptance and understanding by users by giving them shared control over the adaptation without disturbing their primary task. Users easily control when to adapt and when to use the adapted system. Lastly, the model is independent of the particular application used to access information, and supports sharing of adaptations among users.
ECCE Toolkit: Prototyping Sensor-Based Interaction.
Bellucci, Andrea; Aedo, Ignacio; Díaz, Paloma
2017-02-23
Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators). Prototyping physical interaction is hindered by the challenges of: (1) programming interactions among physical sensors/actuators and digital interfaces; (2) implementing functionality for different platforms in different programming languages; and (3) building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems), a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit.
NASA Astrophysics Data System (ADS)
Schmitt, Mathias
2014-12-01
The aim of this paper is to give a preliminary insight regarding the current work in the field of mobile interaction in industrial environments by using established interaction technologies and metaphors from the consumer goods industry. The major objective is the development and implementation of a holistic app-framework, which enables dynamic feature deployment and extension by using mobile apps on industrial field devices. As a result, field device functionalities can be updated and adapted effectively in accordance with well-known appconcepts from consumer electronics to comply with the urgent requirements of more flexible and changeable factory systems of the future. In addition, a much more user-friendly and utilizable interaction with field devices can be realized. Proprietary software solutions and device-stationary user interfaces can be overcome and replaced by uniform, cross-vendor solutions
ECCE Toolkit: Prototyping Sensor-Based Interaction
Bellucci, Andrea; Aedo, Ignacio; Díaz, Paloma
2017-01-01
Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators). Prototyping physical interaction is hindered by the challenges of: (1) programming interactions among physical sensors/actuators and digital interfaces; (2) implementing functionality for different platforms in different programming languages; and (3) building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems), a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit. PMID:28241502
Concurrent access to a virtual microscope using a web service oriented architecture
NASA Astrophysics Data System (ADS)
Corredor, Germán.; Iregui, Marcela; Arias, Viviana; Romero, Eduardo
2013-11-01
Virtual microscopy (VM) facilitates visualization and deployment of histopathological virtual slides (VS), a useful tool for education, research and diagnosis. In recent years, it has become popular, yet its use is still limited basically because of the very large sizes of VS, typically of the order of gigabytes. Such volume of data requires efficacious and efficient strategies to access the VS content. In an educative or research scenario, several users may require to access and interact with VS at the same time, so, due to large data size, a very expensive and powerful infrastructure is usually required. This article introduces a novel JPEG2000-based service oriented architecture for streaming and visualizing very large images under scalable strategies, which in addition need not require very specialized infrastructure. Results suggest that the proposed architecture enables transmission and simultaneous visualization of large images, while it is efficient using resources and offering users proper response times.
Designing interactivity on consumer health websites: PARAFORUM for spinal cord injury.
Rubinelli, Sara; Collm, Alexandra; Glässel, Andrea; Diesner, Fabian; Kinast, Johannes; Stucki, Gerold; Brach, Mirjam
2013-12-01
This paper addresses the issue of interactivity on health consumer websites powered by health organizations, by presenting the design of PARAFORUM, an interactive website in the field of spinal cord injury (SCI). The design of PARAFORUM is based on different streams of research in online health communication, web-based communities, open innovation communities and formative evaluation with stakeholders. PARAFORUM implements a model of diversified interactivity based on individuals with SCI and their families, health professionals, and researchers sharing their expertise in SCI. In addition to traditional health professional/researcher-to-consumer and peer-to-peer interactions, through PARAFORUM consumers, health professionals and researchers can co-design ideas for the enhancement of practice and research on SCI. There is the need to reflect on the conceptualization and operationalization of interactivity on consumer health websites. Interactions between different users can make these websites important platforms for promoting self-management of chronic conditions, organizational innovation, and participatory research. Interactivity on consumer health websites is a main resource for health communication. Health organizations are invited to build interactive websites, by considering, however, that the exploitation of interactivity require users' collaboration, processes and standards for managing content, creating and translating knowledge, and conducting internet-based studies. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Users' Interaction with World Wide Web Resources: An Exploratory Study Using a Holistic Approach.
ERIC Educational Resources Information Center
Wang, Peiling; Hawk, William B.; Tenopir, Carol
2000-01-01
Presents results of a study that explores factors of user-Web interaction in finding factual information, develops a conceptual framework for studying user-Web interaction, and applies a process-tracing method for conducting holistic user-Web studies. Describes measurement techniques and proposes a model consisting of the user, interface, and the…
A Human Reliability Based Usability Evaluation Method for Safety-Critical Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillippe Palanque; Regina Bernhaupt; Ronald Boring
2006-04-01
Recent years have seen an increasing use of sophisticated interaction techniques including in the field of safety critical interactive software [8]. The use of such techniques has been required in order to increase the bandwidth between the users and systems and thus to help them deal efficiently with increasingly complex systems. These techniques come from research and innovation done in the field of humancomputer interaction (HCI). A significant effort is currently being undertaken by the HCI community in order to apply and extend current usability evaluation techniques to these new kinds of interaction techniques. However, very little has been donemore » to improve the reliability of software offering these kinds of interaction techniques. Even testing basic graphical user interfaces remains a challenge that has rarely been addressed in the field of software engineering [9]. However, the non reliability of interactive software can jeopardize usability evaluation by showing unexpected or undesired behaviors. The aim of this SIG is to provide a forum for both researchers and practitioners interested in testing interactive software. Our goal is to define a roadmap of activities to cross fertilize usability and reliability testing of these kinds of systems to minimize duplicate efforts in both communities.« less
Interaction Junk: User Interaction-Based Evaluation of Visual Analytic Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; North, Chris
2012-10-14
With the growing need for visualization to aid users in understanding large, complex datasets, the ability for users to interact and explore these datasets is critical. As visual analytic systems have advanced to leverage powerful computational models and data analytics capabilities, the modes by which users engage and interact with the information are limited. Often, users are taxed with directly manipulating parameters of these models through traditional GUIs (e.g., using sliders to directly manipulate the value of a parameter). However, the purpose of user interaction in visual analytic systems is to enable visual data exploration – where users can focusmore » on their task, as opposed to the tool or system. As a result, users can engage freely in data exploration and decision-making, for the purpose of gaining insight. In this position paper, we discuss how evaluating visual analytic systems can be approached through user interaction analysis, where the goal is to minimize the cognitive translation between the visual metaphor and the mode of interaction (i.e., reducing the “Interactionjunk”). We motivate this concept through a discussion of traditional GUIs used in visual analytics for direct manipulation of model parameters, and the importance of designing interactions the support visual data exploration.« less
Tîrnăucă, Cristina; Duque, Rafael; Montaña, José L.
2017-01-01
A relevant goal in human–computer interaction is to produce applications that are easy to use and well-adjusted to their users’ needs. To address this problem it is important to know how users interact with the system. This work constitutes a methodological contribution capable of identifying the context of use in which users perform interactions with a groupware application (synchronous or asynchronous) and provides, using machine learning techniques, generative models of how users behave. Additionally, these models are transformed into a text that describes in natural language the main characteristics of the interaction of the users with the system. PMID:28726762
Sun, Shanhui; Sonka, Milan; Beichel, Reinhard R
2013-01-01
Recently, the optimal surface finding (OSF) and layered optimal graph image segmentation of multiple objects and surfaces (LOGISMOS) approaches have been reported with applications to medical image segmentation tasks. While providing high levels of performance, these approaches may locally fail in the presence of pathology or other local challenges. Due to the image data variability, finding a suitable cost function that would be applicable to all image locations may not be feasible. This paper presents a new interactive refinement approach for correcting local segmentation errors in the automated OSF-based segmentation. A hybrid desktop/virtual reality user interface was developed for efficient interaction with the segmentations utilizing state-of-the-art stereoscopic visualization technology and advanced interaction techniques. The user interface allows a natural and interactive manipulation of 3-D surfaces. The approach was evaluated on 30 test cases from 18 CT lung datasets, which showed local segmentation errors after employing an automated OSF-based lung segmentation. The performed experiments exhibited significant increase in performance in terms of mean absolute surface distance errors (2.54±0.75 mm prior to refinement vs. 1.11±0.43 mm post-refinement, p≪0.001). Speed of the interactions is one of the most important aspects leading to the acceptance or rejection of the approach by users expecting real-time interaction experience. The average algorithm computing time per refinement iteration was 150 ms, and the average total user interaction time required for reaching complete operator satisfaction was about 2 min per case. This time was mostly spent on human-controlled manipulation of the object to identify whether additional refinement was necessary and to approve the final segmentation result. The reported principle is generally applicable to segmentation problems beyond lung segmentation in CT scans as long as the underlying segmentation utilizes the OSF framework. The two reported segmentation refinement tools were optimized for lung segmentation and might need some adaptation for other application domains. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Russell, R. M.; Johnson, R. M.; Gardiner, E. S.; Bergman, J. J.; Genyuk, J.; Henderson, S.
2004-12-01
Interactive visualizations can be powerful tools for helping students, teachers, and the general public comprehend significant features in rich datasets and complex systems. Successful use of such visualizations requires viewers to have, or to acquire, adequate expertise in use of the relevant visualization tools. In many cases, the learning curve associated with competent use of such tools is too steep for casual users, such as members of the lay public browsing science outreach web sites or K-12 students and teachers trying to integrate such tools into their learning about geosciences. "Windows to the Universe" (http://www.windows.ucar.edu) is a large (roughly 6,000 web pages), well-established (first posted online in 1995), and popular (over 5 million visitor sessions and 40 million pages viewed per year) science education web site that covers a very broad range of Earth science and space science topics. The primary audience of the site consists of K-12 students and teachers and the general public. We have developed several interactive visualizations for use on the site in conjunction with text and still image reference materials. One major emphasis in the design of these interactives has been to ensure that casual users can quickly learn how to use the interactive features without becoming frustrated and departing before they were able to appreciate the visualizations displayed. We will demonstrate several of these "user-friendly" interactive visualizations and comment on the design philosophy we have employed in developing them.
StarView: The object oriented design of the ST DADS user interface
NASA Technical Reports Server (NTRS)
Williams, J. D.; Pollizzi, J. A.
1992-01-01
StarView is the user interface being developed for the Hubble Space Telescope Data Archive and Distribution Service (ST DADS). ST DADS is the data archive for HST observations and a relational database catalog describing the archived data. Users will use StarView to query the catalog and select appropriate datasets for study. StarView sends requests for archived datasets to ST DADS which processes the requests and returns the database to the user. StarView is designed to be a powerful and extensible user interface. Unique features include an internal relational database to navigate query results, a form definition language that will work with both CRT and X interfaces, a data definition language that will allow StarView to work with any relational database, and the ability to generate adhoc queries without requiring the user to understand the structure of the ST DADS catalog. Ultimately, StarView will allow the user to refine queries in the local database for improved performance and merge in data from external sources for correlation with other query results. The user will be able to create a query from single or multiple forms, merging the selected attributes into a single query. Arbitrary selection of attributes for querying is supported. The user will be able to select how query results are viewed. A standard form or table-row format may be used. Navigation capabilities are provided to aid the user in viewing query results. Object oriented analysis and design techniques were used in the design of StarView to support the mechanisms and concepts required to implement these features. One such mechanism is the Model-View-Controller (MVC) paradigm. The MVC allows the user to have multiple views of the underlying database, while providing a consistent mechanism for interaction regardless of the view. This approach supports both CRT and X interfaces while providing a common mode of user interaction. Another powerful abstraction is the concept of a Query Model. This concept allows a single query to be built form a single or multiple forms before it is submitted to ST DADS. Supporting this concept is the adhoc query generator which allows the user to select and qualify an indeterminate number attributes from the database. The user does not need any knowledge of how the joins across various tables are to be resolved. The adhoc generator calculates the joins automatically and generates the correct SQL query.
Incentive-Rewarding Mechanism for User-position Control in Mobile Services
NASA Astrophysics Data System (ADS)
Yoshino, Makoto; Sato, Kenichiro; Shinkuma, Ryoichi; Takahashi, Tatsuro
When the number of users in a service area increases in mobile multimedia services, no individual user can obtain satisfactory radio resources such as bandwidth and signal power because the resources are limited and shared. A solution for such a problem is user-position control. In the user-position control, the operator informs users of better communication areas (or spots) and navigates them to these positions. However, because of subjective costs caused by subjects moving from their original to a new position, they do not always attempt to move. To motivate users to contribute their resources in network services that require resource contributions for users, incentive-rewarding mechanisms have been proposed. However, there are no mechanisms that distribute rewards appropriately according to various subjective factors involving users. Furthermore, since the conventional mechanisms limit how rewards are paid, they are applicable only for the network service they targeted. In this paper, we propose a novel incentive-rewarding mechanism to solve these problems, using an external evaluator and interactive learning agents. We also investigated ways of appropriately controlling rewards based on user contributions and system service quality. We applied the proposed mechanism and reward control to the user-position control, and demonstrated its validity.
Carr, Eloise Cj; Babione, Julie N; Marshall, Deborah
2017-08-01
To identify the needs and requirements of the end users, to inform the development of a user-interface to translate an existing evidence-based decision support tool into a practical and usable interface for health service planning for osteoarthritis (OA) care. We used a user-centered design (UCD) approach that emphasized the role of the end-users and is well-suited to knowledge translation (KT). The first phase used a needs assessment focus group (n=8) and interviews (n=5) with target users (health care planners) within a provincial health care organization. The second phase used a participatory design approach, with two small group sessions (n=6) to explore workflow, thought processes, and needs of intended users. The needs assessment identified five design recommendations: ensuring the user-interface supports the target user group, allowing for user-directed data explorations, input parameter flexibility, clear presentation, and provision of relevant definitions. The second phase identified workflow insights from a proposed scenario. Graphs, the need for a visual overview of the data, and interactivity were key considerations to aid in meaningful use of the model and knowledge translation. A UCD approach is well suited to identify health care planners' requirements when using a decision support tool to improve health service planning and management of OA. We believe this is one of the first applications to be used in planning for health service delivery. We identified specific design recommendations that will increase user acceptability and uptake of the user-interface and underlying decision support tool in practice. Our approach demonstrated how UCD can be used to enable knowledge translation. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Cautin, Harvey; Regan, Edward
Requirements are discussed for an information retrieval language that enables users to employ natural language sentences in interaction with computer-stored files. Anticipated modes of operation of the system are outlined. These are: the search mode, the dictionary mode, the tables mode, and the statistical mode. Analysis of sample sentences…
COM-GEOM Interactive Display Debugger (CIDD)
1984-08-01
necessery and Identify by block nlum.ber) Target Description GIFT interactive Computer Graphics SolIi d Geone t ry Combintatorial Gecometry * COM-GLOM 120...program was written to speed up the process of formulating the Com-Geom data used by the Geometric Information for Targets ( GIFT ) 1,2 computer code...Polyhedron Lawrence W. Bain, Mathew J. Reisinger, "The GIFT Code User Manual; Volume I, Introduction and Input Requirements (u)," BRL Report No. 1802
Engineering computer graphics in gas turbine engine design, analysis and manufacture
NASA Technical Reports Server (NTRS)
Lopatka, R. S.
1975-01-01
A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.
Reinventing Image Detective: An Evidence-Based Approach to Citizen Science Online
NASA Astrophysics Data System (ADS)
Romano, C.; Graff, P. V.; Runco, S.
2017-12-01
Usability studies demonstrate that web users are notoriously impatient, spending as little as 15 seconds on a home page. How do you get users to stay long enough to understand a citizen science project? How do you get users to complete complex citizen science tasks online?Image Detective, a citizen science project originally developed by scientists and science engagement specialists at the NASA Johnson Space center to engage the public in the analysis of images taken from space by astronauts to help enhance NASA's online database of astronaut imagery, partnered with the CosmoQuest citizen science platform to modernize, offering new and improved options for participation in Image Detective. The challenge: to create a web interface that builds users' skills and knowledge, creating engagement while learning complex concepts essential to the accurate completion of tasks. The project team turned to usability testing for an objective understanding of how users perceived Image Detective and the steps required to complete required tasks. A group of six users was recruited online for unmoderated and initial testing. The users followed a think-aloud protocol while attempting tasks, and were recorded on video and audio. The usability test examined users' perception of four broad areas: the purpose of and context for Image Detective; the steps required to successfully complete the analysis (differentiating images of Earth's surface from those showing outer space and identifying common surface features); locating the image center point on a map of Earth; and finally, naming geographic locations or natural events seen in the image.Usability test findings demonstrated that the following best practices can increase participation in Image Detective and can be applied to the successful implementation of any citizen science project:• Concise explanation of the project, its context, and its purpose;• Including a mention of the funding agency (in this case, NASA);• A preview of the specific tasks required of participants;• A dedicated user interface for the actual citizen science interaction.In addition, testing revealed that users may require additional context when a task is complex, difficult, or unusual (locating a specific image and its center point on a map of Earth). Video evidence will be made available with this presentation.
Reinventing Image Detective: An Evidence-Based Approach to Citizen Science Online
NASA Technical Reports Server (NTRS)
Romano, Cia; Graff, Paige V.; Runco, Susan
2017-01-01
Usability studies demonstrate that web users are notoriously impatient, spending as little as 15 seconds on a home page. How do you get users to stay long enough to understand a citizen science project? How do you get users to complete complex citizen science tasks online? Image Detective, a citizen science project originally developed by scientists and science engagement specialists at the NASA Johnson Space center to engage the public in the analysis of images taken from space by astronauts to help enhance NASA's online database of astronaut imagery, partnered with the CosmoQuest citizen science platform to modernize, offering new and improved options for participation in Image Detective. The challenge: to create a web interface that builds users' skills and knowledge, creating engagement while learning complex concepts essential to the accurate completion of tasks. The project team turned to usability testing for an objective understanding of how users perceived Image Detective and the steps required to complete required tasks. A group of six users was recruited online for unmoderated and initial testing. The users followed a think-aloud protocol while attempting tasks, and were recorded on video and audio. The usability test examined users' perception of four broad areas: the purpose of and context for Image Detective; the steps required to successfully complete the analysis (differentiating images of Earth's surface from those showing outer space and identifying common surface features); locating the image center point on a map of Earth; and finally, naming geographic locations or natural events seen in the image. Usability test findings demonstrated that the following best practices can increase participation in Image Detective and can be applied to the successful implementation of any citizen science project: (1) Concise explanation of the project, its context, and its purpose; (2) Including a mention of the funding agency (in this case, NASA); (3) A preview of the specific tasks required of participants; (4) A dedicated user interface for the actual citizen science interaction. In addition, testing revealed that users may require additional context when a task is complex, difficult, or unusual (locating a specific image and its center point on a map of Earth). Video evidence will be made available with this presentation.
Field Guide for Designing Human Interaction with Intelligent Systems
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Thronesbery, Carroll G.
1998-01-01
The characteristics of this Field Guide approach address the problems of designing innovative software to support user tasks. The requirements for novel software are difficult to specify a priori, because there is not sufficient understanding of how the users' tasks should be supported, and there are not obvious pre-existing design solutions. When the design team is in unfamiliar territory, care must be taken to avoid rushing into detailed design, requirements specification, or implementation of the wrong product. The challenge is to get the right design and requirements in an efficient, cost-effective manner. This document's purpose is to describe the methods we are using to design human interactions with intelligent systems which support Space Shuttle flight controllers in the Mission Control Center at NASA/Johnson Space Center. Although these software systems usually have some intelligent features, the design challenges arise primarily from the innovation needed in the software design. While these methods are tailored to our specific context, they should be extensible, and helpful to designers of human interaction with other types of automated systems. We review the unique features of this context so that you can determine how to apply these methods to your project Throughout this Field Guide, goals of the design methods are discussed. This should help designers understand how a specific method might need to be adapted to the project at hand.
WIFIP: a web-based user interface for automated synchrotron beamlines.
Sallaz-Damaz, Yoann; Ferrer, Jean Luc
2017-09-01
The beamline control software, through the associated graphical user interface (GUI), is the user access point to the experiment, interacting with synchrotron beamline components and providing automated routines. FIP, the French beamline for the Investigation of Proteins, is a highly automatized macromolecular crystallography (MX) beamline at the European Synchrotron Radiation Facility. On such a beamline, a significant number of users choose to control their experiment remotely. This is often performed with a limited bandwidth and from a large choice of computers and operating systems. Furthermore, this has to be possible in a rapidly evolving experimental environment, where new developments have to be easily integrated. To face these challenges, a light, platform-independent, control software and associated GUI are required. Here, WIFIP, a web-based user interface developed at FIP, is described. Further than being the present FIP control interface, WIFIP is also a proof of concept for future MX control software.
Two Mechanisms to Avoid Control Conflicts Resulting from Uncoordinated Intent
NASA Technical Reports Server (NTRS)
Mishkin, Andrew H.; Dvorak, Daniel L.; Wagner, David A.; Bennett, Matthew B.
2013-01-01
This software implements a real-time access control protocol that is intended to make all connected users aware of the presence of other connected users, and which of them is currently in control of the system. Here, "in control" means that a single user is authorized and enabled to issue instructions to the system. The software The software also implements a goal scheduling mechanism that can detect situations where plans for the operation of a target system proposed by different users overlap and interact in conflicting ways. In such situations, the system can either simply report the conflict (rejecting one goal or the entire plan), or reschedule the goals in a way that does not conflict. The access control mechanism (and associated control protocol) is unique. Other access control mechanisms are generally intended to authenticate users, or exclude unauthorized access. This software does neither, and would likely depend on having some other mechanism to support those requirements.
Exploring interaction with 3D volumetric displays
NASA Astrophysics Data System (ADS)
Grossman, Tovi; Wigdor, Daniel; Balakrishnan, Ravin
2005-03-01
Volumetric displays generate true volumetric 3D images by actually illuminating points in 3D space. As a result, viewing their contents is similar to viewing physical objects in the real world. These displays provide a 360 degree field of view, and do not require the user to wear hardware such as shutter glasses or head-trackers. These properties make them a promising alternative to traditional display systems for viewing imagery in 3D. Because these displays have only recently been made available commercially (e.g., www.actuality-systems.com), their current use tends to be limited to non-interactive output-only display devices. To take full advantage of the unique features of these displays, however, it would be desirable if the 3D data being displayed could be directly interacted with and manipulated. We investigate interaction techniques for volumetric display interfaces, through the development of an interactive 3D geometric model building application. While this application area itself presents many interesting challenges, our focus is on the interaction techniques that are likely generalizable to interactive applications for other domains. We explore a very direct style of interaction where the user interacts with the virtual data using direct finger manipulations on and around the enclosure surrounding the displayed 3D volumetric image.
Passive sensor technology interface to assess elder activity in independent living.
Alexander, Gregory L; Wakefield, Bonnie J; Rantz, Marilyn; Skubic, Marjorie; Aud, Myra A; Erdelez, Sanda; Ghenaimi, Said Al
2011-01-01
The effectiveness of clinical information systems to improve nursing and patient outcomes depends on human factors, including system usability, organizational workflow, and user satisfaction. The aim of this study was to examine to what extent residents, family members, and clinicians find a sensor data interface used to monitor elder activity levels usable and useful in an independent living setting. Three independent expert reviewers conducted an initial heuristic evaluation. Subsequently, 20 end users (5 residents, 5 family members, 5 registered nurses, and 5 physicians) participated in the evaluation. During the evaluation, each participant was asked to complete three scenarios taken from three residents. Morae recorder software was used to capture data during the user interactions. The heuristic evaluation resulted in 26 recommendations for interface improvement; these were classified under the headings content, aesthetic appeal, navigation, and architecture, which were derived from heuristic results. Total time for elderly residents to complete scenarios was much greater than for other users. Family members spent more time than clinicians but less time than residents did to complete scenarios. Elder residents and family members had difficulty interpreting clinical data and graphs, experienced information overload, and did not understand terminology. All users found the sensor data interface useful for identifying changing resident activities. Older adult users have special needs that should be addressed when designing clinical interfaces for them, especially information as important as health information. Evaluating human factors during user interactions with clinical information systems should be a requirement before implementation.
User-oriented evaluation of a medical image retrieval system for radiologists.
Markonis, Dimitrios; Holzer, Markus; Baroz, Frederic; De Castaneda, Rafael Luis Ruiz; Boyer, Célia; Langs, Georg; Müller, Henning
2015-10-01
This article reports the user-oriented evaluation of a text- and content-based medical image retrieval system. User tests with radiologists using a search system for images in the medical literature are presented. The goal of the tests is to assess the usability of the system, identify system and interface aspects that need improvement and useful additions. Another objective is to investigate the system's added value to radiology information retrieval. The study provides an insight into required specifications and potential shortcomings of medical image retrieval systems through a concrete methodology for conducting user tests. User tests with a working image retrieval system of images from the biomedical literature were performed in an iterative manner, where each iteration had the participants perform radiology information seeking tasks and then refining the system as well as the user study design itself. During these tasks the interaction of the users with the system was monitored, usability aspects were measured, retrieval success rates recorded and feedback was collected through survey forms. In total, 16 radiologists participated in the user tests. The success rates in finding relevant information were on average 87% and 78% for image and case retrieval tasks, respectively. The average time for a successful search was below 3 min in both cases. Users felt quickly comfortable with the novel techniques and tools (after 5 to 15 min), such as content-based image retrieval and relevance feedback. User satisfaction measures show a very positive attitude toward the system's functionalities while the user feedback helped identifying the system's weak points. The participants proposed several potentially useful new functionalities, such as filtering by imaging modality and search for articles using image examples. The iterative character of the evaluation helped to obtain diverse and detailed feedback on all system aspects. Radiologists are quickly familiar with the functionalities but have several comments on desired functionalities. The analysis of the results can potentially assist system refinement for future medical information retrieval systems. Moreover, the methodology presented as well as the discussion on the limitations and challenges of such studies can be useful for user-oriented medical image retrieval evaluation, as user-oriented evaluation of interactive system is still only rarely performed. Such interactive evaluations can be limited in effort if done iteratively and can give many insights for developing better systems. Copyright © 2015. Published by Elsevier Ireland Ltd.
An interactive tool for gamut masking
NASA Astrophysics Data System (ADS)
Song, Ying; Lau, Cheryl; Süsstrunk, Sabine
2014-02-01
Artists often want to change the colors of an image to achieve a particular aesthetic goal. For example, they might limit colors to a warm or cool color scheme to create an image with a certain mood or feeling. Gamut masking is a technique that artists use to limit the set of colors they can paint with. They draw a mask over a color wheel and only use the hues within the mask. However, creating the color palette from the mask and applying the colors to the image requires skill. We propose an interactive tool for gamut masking that allows amateur artists to create an image with a desired mood or feeling. Our system extracts a 3D color gamut from the 2D user-drawn mask and maps the image to this gamut. The user can draw a different gamut mask or locally refine the image colors. Our voxel grid gamut representation allows us to represent gamuts of any shape, and our cluster-based image representation allows the user to change colors locally.
Stair negotiation made easier using novel interactive energy-recycling assistive stairs.
Song, Yun Seong; Ha, Sehoon; Hsu, Hsiang; Ting, Lena H; Liu, C Karen
2017-01-01
Here we show that novel, energy-recycling stairs reduce the amount of work required for humans to both ascend and descend stairs. Our low-power, interactive, and modular steps can be placed on existing staircases, storing energy during stair descent and returning that energy to the user during stair ascent. Energy is recycled through event-triggered latching and unlatching of passive springs without the use of powered actuators. When ascending the energy-recycling stairs, naive users generated 17.4 ± 6.9% less positive work with their leading legs compared to conventional stairs, with the knee joint positive work reduced by 37.7 ± 10.5%. Users also generated 21.9 ± 17.8% less negative work with their trailing legs during stair descent, with ankle joint negative work reduced by 26.0 ± 15.9%. Our low-power energy-recycling stairs have the potential to assist people with mobility impairments during stair negotiation on existing staircases.
Stair negotiation made easier using novel interactive energy-recycling assistive stairs
Song, Yun Seong; Ha, Sehoon; Hsu, Hsiang; Ting, Lena H.
2017-01-01
Here we show that novel, energy-recycling stairs reduce the amount of work required for humans to both ascend and descend stairs. Our low-power, interactive, and modular steps can be placed on existing staircases, storing energy during stair descent and returning that energy to the user during stair ascent. Energy is recycled through event-triggered latching and unlatching of passive springs without the use of powered actuators. When ascending the energy-recycling stairs, naive users generated 17.4 ± 6.9% less positive work with their leading legs compared to conventional stairs, with the knee joint positive work reduced by 37.7 ± 10.5%. Users also generated 21.9 ± 17.8% less negative work with their trailing legs during stair descent, with ankle joint negative work reduced by 26.0 ± 15.9%. Our low-power energy-recycling stairs have the potential to assist people with mobility impairments during stair negotiation on existing staircases. PMID:28700719
Interactive entity resolution in relational data: a visual analytic tool and its evaluation.
Kang, Hyunmo; Getoor, Lise; Shneiderman, Ben; Bilgic, Mustafa; Licamele, Louis
2008-01-01
Databases often contain uncertain and imprecise references to real-world entities. Entity resolution, the process of reconciling multiple references to underlying real-world entities, is an important data cleaning process required before accurate visualization or analysis of the data is possible. In many cases, in addition to noisy data describing entities, there is data describing the relationships among the entities. This relational data is important during the entity resolution process; it is useful both for the algorithms which determine likely database references to be resolved and for visual analytic tools which support the entity resolution process. In this paper, we introduce a novel user interface, D-Dupe, for interactive entity resolution in relational data. D-Dupe effectively combines relational entity resolution algorithms with a novel network visualization that enables users to make use of an entity's relational context for making resolution decisions. Since resolution decisions often are interdependent, D-Dupe facilitates understanding this complex process through animations which highlight combined inferences and a history mechanism which allows users to inspect chains of resolution decisions. An empirical study with 12 users confirmed the benefits of the relational context visualization on the performance of entity resolution tasks in relational data in terms of time as well as users' confidence and satisfaction.
Visuo-Haptic Mixed Reality with Unobstructed Tool-Hand Integration.
Cosco, Francesco; Garre, Carlos; Bruno, Fabio; Muzzupappa, Maurizio; Otaduy, Miguel A
2013-01-01
Visuo-haptic mixed reality consists of adding to a real scene the ability to see and touch virtual objects. It requires the use of see-through display technology for visually mixing real and virtual objects, and haptic devices for adding haptic interaction with the virtual objects. Unfortunately, the use of commodity haptic devices poses obstruction and misalignment issues that complicate the correct integration of a virtual tool and the user's real hand in the mixed reality scene. In this work, we propose a novel mixed reality paradigm where it is possible to touch and see virtual objects in combination with a real scene, using commodity haptic devices, and with a visually consistent integration of the user's hand and the virtual tool. We discuss the visual obstruction and misalignment issues introduced by commodity haptic devices, and then propose a solution that relies on four simple technical steps: color-based segmentation of the hand, tracking-based segmentation of the haptic device, background repainting using image-based models, and misalignment-free compositing of the user's hand. We have developed a successful proof-of-concept implementation, where a user can touch virtual objects and interact with them in the context of a real scene, and we have evaluated the impact on user performance of obstruction and misalignment correction.
Communication and knowledge sharing in human-robot interaction and learning from demonstration.
Koenig, Nathan; Takayama, Leila; Matarić, Maja
2010-01-01
Inexpensive personal robots will soon become available to a large portion of the population. Currently, most consumer robots are relatively simple single-purpose machines or toys. In order to be cost effective and thus widely accepted, robots will need to be able to accomplish a wide range of tasks in diverse conditions. Learning these tasks from demonstrations offers a convenient mechanism to customize and train a robot by transferring task related knowledge from a user to a robot. This avoids the time-consuming and complex process of manual programming. The way in which the user interacts with a robot during a demonstration plays a vital role in terms of how effectively and accurately the user is able to provide a demonstration. Teaching through demonstrations is a social activity, one that requires bidirectional communication between a teacher and a student. The work described in this paper studies how the user's visual observation of the robot and the robot's auditory cues affect the user's ability to teach the robot in a social setting. Results show that auditory cues provide important knowledge about the robot's internal state, while visual observation of a robot can hinder an instructor due to incorrect mental models of the robot and distractions from the robot's movements. Copyright © 2010. Published by Elsevier Ltd.
Communication Styles of Interactive Tools for Self-Improvement.
Niess, Jasmin; Diefenbach, Sarah
Interactive products for self-improvement (e.g., online trainings to reduce stress, fitness gadgets) have become increasingly popular among consumers and healthcare providers. In line with the idea of positive computing, these tools aim to support their users on their way to improved well-being and human flourishing. As an interdisciplinary domain, the design of self-improvement technologies requires psychological, technological, and design expertise. One needs to know how to support people in behavior change, and one needs to find ways to do this through technology design. However, as recent reviews show, the interlocking relationship between these disciplines is still improvable. Many existing technologies for self-improvement neglect psychological theory on behavior change, especially motivational factors are not sufficiently considered. To counteract this, we suggest a focus on the dialog and emerging communication between product and user, considering the self-improvement tool as an interactive coach and advisor. The present qualitative interview study (N = 18) explored the user experience of self-improvement technologies. A special focus was on the perceived dialog between tool and user, which we analyzed in terms of models from communication psychology. Our findings show that users are sensible to the way the product "speaks to them" and consider this as essential for their experience and successful change. Analysis revealed different communication styles of self-improvement tools (e.g., helpful-cooperative, rational-distanced, critical-aggressive), each linked to specific emotional consequences. These findings form one starting point for a more psychologically founded design of self-improvement technology. On a more general level, our approach aims to contribute to a better integration of psychological and technological knowledge, and in consequence, supporting users on their way to enhanced well-being.
Multipurpose Interactive NASA Information Systems (MINIS)
NASA Technical Reports Server (NTRS)
1977-01-01
The Multipurpose Interactive NASA Information System was developed to provide remote, interactive information retrieval capability for various types of data bases to be processed on different types of small and medium size computers. Use of the system for three different data bases is decribed: (1) LANDSAT photo look-up, (2) land use, and (3) census/socioeconomic. Each of the data base elements is shown together with other detailed information that a user would require to contact the system remotely, to transmit inquiries on commands, and to receive the results of the queries or commands.
BigDebug: Debugging Primitives for Interactive Big Data Processing in Spark.
Gulzar, Muhammad Ali; Interlandi, Matteo; Yoo, Seunghyun; Tetali, Sai Deep; Condie, Tyson; Millstein, Todd; Kim, Miryung
2016-05-01
Developers use cloud computing platforms to process a large quantity of data in parallel when developing big data analytics. Debugging the massive parallel computations that run in today's data-centers is time consuming and error-prone. To address this challenge, we design a set of interactive, real-time debugging primitives for big data processing in Apache Spark, the next generation data-intensive scalable cloud computing platform. This requires re-thinking the notion of step-through debugging in a traditional debugger such as gdb, because pausing the entire computation across distributed worker nodes causes significant delay and naively inspecting millions of records using a watchpoint is too time consuming for an end user. First, BIGDEBUG's simulated breakpoints and on-demand watchpoints allow users to selectively examine distributed, intermediate data on the cloud with little overhead. Second, a user can also pinpoint a crash-inducing record and selectively resume relevant sub-computations after a quick fix. Third, a user can determine the root causes of errors (or delays) at the level of individual records through a fine-grained data provenance capability. Our evaluation shows that BIGDEBUG scales to terabytes and its record-level tracing incurs less than 25% overhead on average. It determines crash culprits orders of magnitude more accurately and provides up to 100% time saving compared to the baseline replay debugger. The results show that BIGDEBUG supports debugging at interactive speeds with minimal performance impact.
FaceTOON: a unified platform for feature-based cartoon expression generation
NASA Astrophysics Data System (ADS)
Zaharia, Titus; Marre, Olivier; Prêteux, Françoise; Monjaux, Perrine
2008-02-01
This paper presents the FaceTOON system, a semi-automatic platform dedicated to the creation of verbal and emotional facial expressions, within the applicative framework of 2D cartoon production. The proposed FaceTOON platform makes it possible to rapidly create 3D facial animations with a minimum amount of user interaction. In contrast with existing commercial 3D modeling softwares, which usually require from the users advanced 3D graphics skills and competences, the FaceTOON system is based exclusively on 2D interaction mechanisms, the 3D modeling stage being completely transparent for the user. The system takes as input a neutral 3D face model, free of any facial feature, and a set of 2D drawings, representing the desired facial features. A 2D/3D virtual mapping procedure makes it possible to obtain a ready-for-animation model which can be directly manipulated and deformed for generating expressions. The platform includes a complete set of dedicated tools for 2D/3D interactive deformation, pose management, key-frame interpolation and MPEG-4 compliant animation and rendering. The proposed FaceTOON system is currently considered for industrial evaluation and commercialization by the Quadraxis company.
Automated Test Case Generation for an Autopilot Requirement Prototype
NASA Technical Reports Server (NTRS)
Giannakopoulou, Dimitra; Rungta, Neha; Feary, Michael
2011-01-01
Designing safety-critical automation with robust human interaction is a difficult task that is susceptible to a number of known Human-Automation Interaction (HAI) vulnerabilities. It is therefore essential to develop automated tools that provide support both in the design and rapid evaluation of such automation. The Automation Design and Evaluation Prototyping Toolset (ADEPT) enables the rapid development of an executable specification for automation behavior and user interaction. ADEPT supports a number of analysis capabilities, thus enabling the detection of HAI vulnerabilities early in the design process, when modifications are less costly. In this paper, we advocate the introduction of a new capability to model-based prototyping tools such as ADEPT. The new capability is based on symbolic execution that allows us to automatically generate quality test suites based on the system design. Symbolic execution is used to generate both user input and test oracles user input drives the testing of the system implementation, and test oracles ensure that the system behaves as designed. We present early results in the context of a component in the Autopilot system modeled in ADEPT, and discuss the challenges of test case generation in the HAI domain.
Vega-Barbas, Mario; Pau, Iván; Martín-Ruiz, María Luisa; Seoane, Fernando
2015-03-25
Smart spaces foster the development of natural and appropriate forms of human-computer interaction by taking advantage of home customization. The interaction potential of the Smart Home, which is a special type of smart space, is of particular interest in fields in which the acceptance of new technologies is limited and restrictive. The integration of smart home design patterns with sensitive solutions can increase user acceptance. In this paper, we present the main challenges that have been identified in the literature for the successful deployment of sensitive services (e.g., telemedicine and assistive services) in smart spaces and a software architecture that models the functionalities of a Smart Home platform that are required to maintain and support such sensitive services. This architecture emphasizes user interaction as a key concept to facilitate the acceptance of sensitive services by end-users and utilizes activity theory to support its innovative design. The application of activity theory to the architecture eases the handling of novel concepts, such as understanding of the system by patients at home or the affordability of assistive services. Finally, we provide a proof-of-concept implementation of the architecture and compare the results with other architectures from the literature.
Application Reuse Library for Software, Requirements, and Guidelines
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Thronesbery, Carroll
1994-01-01
Better designs are needed for expert systems and other operations automation software, for more reliable, usable and effective human support. A prototype computer-aided Application Reuse Library shows feasibility of supporting concurrent development and improvement of advanced software by users, analysts, software developers, and human-computer interaction experts. Such a library expedites development of quality software, by providing working, documented examples, which support understanding, modification and reuse of requirements as well as code. It explicitly documents and implicitly embodies design guidelines, standards and conventions. The Application Reuse Library provides application modules with Demo-and-Tester elements. Developers and users can evaluate applicability of a library module and test modifications, by running it interactively. Sub-modules provide application code and displays and controls. The library supports software modification and reuse, by providing alternative versions of application and display functionality. Information about human support and display requirements is provided, so that modifications will conform to guidelines. The library supports entry of new application modules from developers throughout an organization. Example library modules include a timer, some buttons and special fonts, and a real-time data interface program. The library prototype is implemented in the object-oriented G2 environment for developing real-time expert systems.
Transformation of an uncertain video search pipeline to a sketch-based visual analytics loop.
Legg, Philip A; Chung, David H S; Parry, Matthew L; Bown, Rhodri; Jones, Mark W; Griffiths, Iwan W; Chen, Min
2013-12-01
Traditional sketch-based image or video search systems rely on machine learning concepts as their core technology. However, in many applications, machine learning alone is impractical since videos may not be semantically annotated sufficiently, there may be a lack of suitable training data, and the search requirements of the user may frequently change for different tasks. In this work, we develop a visual analytics systems that overcomes the shortcomings of the traditional approach. We make use of a sketch-based interface to enable users to specify search requirement in a flexible manner without depending on semantic annotation. We employ active machine learning to train different analytical models for different types of search requirements. We use visualization to facilitate knowledge discovery at the different stages of visual analytics. This includes visualizing the parameter space of the trained model, visualizing the search space to support interactive browsing, visualizing candidature search results to support rapid interaction for active learning while minimizing watching videos, and visualizing aggregated information of the search results. We demonstrate the system for searching spatiotemporal attributes from sports video to identify key instances of the team and player performance.
NASA Technical Reports Server (NTRS)
Rea, F. G.; Pittenger, J. L.; Conlon, R. J.; Allen, J. D.
1975-01-01
Techniques developed for identifying launch vehicle system requirements for NASA automated space missions are discussed. Emphasis is placed on development of computer programs and investigation of astrionics for OSS missions and Scout. The Earth Orbit Mission Program - 1 which performs linear error analysis of launch vehicle dispersions for both vehicle and navigation system factors is described along with the Interactive Graphic Orbit Selection program which allows the user to select orbits which satisfy mission requirements and to evaluate the necessary injection accuracy.
NASA Astrophysics Data System (ADS)
Hussain, Azham; Mkpojiogu, Emmanuel O. C.; Yusof, Muhammad Mat
2016-08-01
This study examines the user perception of usefulness, ease of use and enjoyment as drivers for the users' complex interaction with map on mobile devices. TAM model was used to evaluate users' intention to use and their acceptance of interactive mobile map using the above three beliefs as antecedents. Quantitative research (survey) methodology was employed and the analysis and findings showed that all the three explanatory variables used in this study, explain the variability in the user acceptance of interactive mobile map technology. Perceived usefulness, perceived ease of use, and perceived enjoyment each have significant positive influence on user acceptance of interactive mobile maps. This study further validates the TAM model.
ERIC Educational Resources Information Center
Lynch, Clifford A.
1991-01-01
Describes several aspects of the problem of supporting information retrieval system query requirements in the relational database management system (RDBMS) environment and proposes an extension to query processing called nonmaterialized relations. User interactions with information retrieval systems are discussed, and nonmaterialized relations are…
Tools to Support Expository Video Capture and Access
ERIC Educational Resources Information Center
Carter, Scott; Cooper, Matthew; Adcock, John; Branham, Stacy
2014-01-01
Video tends to be imbalanced as a medium. Typically, content creators invest enormous effort creating work that is then watched passively. However, learning tasks require that users not only consume video but also engage, interact with, and repurpose content. Furthermore, to promote learning across domains where content creators are not…
77 FR 75255 - Reports, Forms, and Record Keeping Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-19
... messages Interactive infographic blueprint YouTube driving video game user experience brief Fuel economy...: You may submit comments, identified by the docket number in the heading of this document, by any of.... Eastern Time, Monday through Friday, except Federal holidays. Fax: 202-493-2251. Regardless of how you...
Workshop AccessibleTV "Accessible User Interfaces for Future TV Applications"
NASA Astrophysics Data System (ADS)
Hahn, Volker; Hamisu, Pascal; Jung, Christopher; Heinrich, Gregor; Duarte, Carlos; Langdon, Pat
Approximately half of the elderly people over 55 suffer from some type of typically mild visual, auditory, motor or cognitive impairment. For them interaction, especially with PCs and other complex devices is sometimes challenging, although accessible ICT applications could make much of a difference for their living quality. Basically they have the potential to enable or simplify participation and inclusion in their surrounding private and professional communities. However, the availability of accessible user interfaces being capable to adapt to the specific needs and requirements of users with individual impairments is very limited. Although there are a number of APIs [1, 2, 3, 4] available for various platforms that allow developers to provide accessibility features within their applications, today none of them provides features for the automatic adaptation of multimodal interfaces being capable to automatically fit the individual requirements of users with different kinds of impairments. Moreover, the provision of accessible user interfaces is still expensive and risky for application developers, as they need special experience and effort for user tests. Today many implementations simply neglect the needs of elderly people, thus locking out a large portion of their potential users. The workshop is organized as part of the dissemination activity for the European-funded project GUIDE "Gentle user interfaces for elderly people", which aims to address this situation with a comprehensive approach for the realization of multimodal user interfaces being capable to adapt to the needs of users with different kinds of mild impairments. As application platform, GUIDE will mainly target TVs and Set-Top Boxes, such as the emerging Connected-TV or WebTV platforms, as they have the potential to address the needs of the elderly users with applications such as for home automation, communication or continuing education.
Dabek, Filip; Caban, Jesus J
2017-01-01
Despite the recent popularity of visual analytics focusing on big data, little is known about how to support users that use visualization techniques to explore multi-dimensional datasets and accomplish specific tasks. Our lack of models that can assist end-users during the data exploration process has made it challenging to learn from the user's interactive and analytical process. The ability to model how a user interacts with a specific visualization technique and what difficulties they face are paramount in supporting individuals with discovering new patterns within their complex datasets. This paper introduces the notion of visualization systems understanding and modeling user interactions with the intent of guiding a user through a task thereby enhancing visual data exploration. The challenges faced and the necessary future steps to take are discussed; and to provide a working example, a grammar-based model is presented that can learn from user interactions, determine the common patterns among a number of subjects using a K-Reversible algorithm, build a set of rules, and apply those rules in the form of suggestions to new users with the goal of guiding them along their visual analytic process. A formal evaluation study with 300 subjects was performed showing that our grammar-based model is effective at capturing the interactive process followed by users and that further research in this area has the potential to positively impact how users interact with a visualization system.
A User’s Guide to ISRP: The Interactive Survey Reduction Program.
1984-11-01
the field notes to Y-Z data pairs. b. Hand transfer of the data from the fieldbook to a keypunch form. c. Keypunching of the coding form...9. Since ISRP queries the user for required information, actual execu- tion of the program is fairly easy. Some knowledge of the basic...34-’’•- ••."•’• •*-’•••’ (• PART III: TWO-DIMENSIONAL DATA ENTRY, OUTPUT, AND FILE MANAGEMENT 18. This is probably the most important part of the
Development of Sensors for Aerospace Applications
NASA Technical Reports Server (NTRS)
Medelius, Pedro
2005-01-01
Advances in technology have led to the availability of smaller and more accurate sensors. Computer power to process large amounts of data is no longer the prevailing issue; thus multiple and redundant sensors can be used to obtain more accurate and comprehensive measurements in a space vehicle. The successful integration and commercialization of micro- and nanotechnology for aerospace applications require that a close and interactive relationship be developed between the technology provider and the end user early in the project. Close coordination between the developers and the end users is critical since qualification for flight is time-consuming and expensive. The successful integration of micro- and nanotechnology into space vehicles requires a coordinated effort throughout the design, development, installation, and integration processes
CP-ABE Based Privacy-Preserving User Profile Matching in Mobile Social Networks
Cui, Weirong; Du, Chenglie; Chen, Jinchao
2016-01-01
Privacy-preserving profile matching, a challenging task in mobile social networks, is getting more attention in recent years. In this paper, we propose a novel scheme that is based on ciphertext-policy attribute-based encryption to tackle this problem. In our scheme, a user can submit a preference-profile and search for users with matching-profile in decentralized mobile social networks. In this process, no participant’s profile and the submitted preference-profile is exposed. Meanwhile, a secure communication channel can be established between the pair of successfully matched users. In contrast to existing related schemes which are mainly based on the secure multi-party computation, our scheme can provide verifiability (both the initiator and any unmatched user cannot cheat each other to pretend to be matched), and requires few interactions among users. We provide thorough security analysis and performance evaluation on our scheme, and show its advantages in terms of security, efficiency and usability over state-of-the-art schemes. PMID:27337001
CP-ABE Based Privacy-Preserving User Profile Matching in Mobile Social Networks.
Cui, Weirong; Du, Chenglie; Chen, Jinchao
2016-01-01
Privacy-preserving profile matching, a challenging task in mobile social networks, is getting more attention in recent years. In this paper, we propose a novel scheme that is based on ciphertext-policy attribute-based encryption to tackle this problem. In our scheme, a user can submit a preference-profile and search for users with matching-profile in decentralized mobile social networks. In this process, no participant's profile and the submitted preference-profile is exposed. Meanwhile, a secure communication channel can be established between the pair of successfully matched users. In contrast to existing related schemes which are mainly based on the secure multi-party computation, our scheme can provide verifiability (both the initiator and any unmatched user cannot cheat each other to pretend to be matched), and requires few interactions among users. We provide thorough security analysis and performance evaluation on our scheme, and show its advantages in terms of security, efficiency and usability over state-of-the-art schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sang Hyun; Gao, Yaozong, E-mail: yzgao@cs.unc.edu; Shi, Yinghuan, E-mail: syh@nju.edu.cn
Purpose: Accurate prostate segmentation is necessary for maximizing the effectiveness of radiation therapy of prostate cancer. However, manual segmentation from 3D CT images is very time-consuming and often causes large intra- and interobserver variations across clinicians. Many segmentation methods have been proposed to automate this labor-intensive process, but tedious manual editing is still required due to the limited performance. In this paper, the authors propose a new interactive segmentation method that can (1) flexibly generate the editing result with a few scribbles or dots provided by a clinician, (2) fast deliver intermediate results to the clinician, and (3) sequentially correctmore » the segmentations from any type of automatic or interactive segmentation methods. Methods: The authors formulate the editing problem as a semisupervised learning problem which can utilize a priori knowledge of training data and also the valuable information from user interactions. Specifically, from a region of interest near the given user interactions, the appropriate training labels, which are well matched with the user interactions, can be locally searched from a training set. With voting from the selected training labels, both confident prostate and background voxels, as well as unconfident voxels can be estimated. To reflect informative relationship between voxels, location-adaptive features are selected from the confident voxels by using regression forest and Fisher separation criterion. Then, the manifold configuration computed in the derived feature space is enforced into the semisupervised learning algorithm. The labels of unconfident voxels are then predicted by regularizing semisupervised learning algorithm. Results: The proposed interactive segmentation method was applied to correct automatic segmentation results of 30 challenging CT images. The correction was conducted three times with different user interactions performed at different time periods, in order to evaluate both the efficiency and the robustness. The automatic segmentation results with the original average Dice similarity coefficient of 0.78 were improved to 0.865–0.872 after conducting 55–59 interactions by using the proposed method, where each editing procedure took less than 3 s. In addition, the proposed method obtained the most consistent editing results with respect to different user interactions, compared to other methods. Conclusions: The proposed method obtains robust editing results with few interactions for various wrong segmentation cases, by selecting the location-adaptive features and further imposing the manifold regularization. The authors expect the proposed method to largely reduce the laborious burdens of manual editing, as well as both the intra- and interobserver variability across clinicians.« less
Biana: a software framework for compiling biological interactions and analyzing networks
2010-01-01
Background The analysis and usage of biological data is hindered by the spread of information across multiple repositories and the difficulties posed by different nomenclature systems and storage formats. In particular, there is an important need for data unification in the study and use of protein-protein interactions. Without good integration strategies, it is difficult to analyze the whole set of available data and its properties. Results We introduce BIANA (Biologic Interactions and Network Analysis), a tool for biological information integration and network management. BIANA is a Python framework designed to achieve two major goals: i) the integration of multiple sources of biological information, including biological entities and their relationships, and ii) the management of biological information as a network where entities are nodes and relationships are edges. Moreover, BIANA uses properties of proteins and genes to infer latent biomolecular relationships by transferring edges to entities sharing similar properties. BIANA is also provided as a plugin for Cytoscape, which allows users to visualize and interactively manage the data. A web interface to BIANA providing basic functionalities is also available. The software can be downloaded under GNU GPL license from http://sbi.imim.es/web/BIANA.php. Conclusions BIANA's approach to data unification solves many of the nomenclature issues common to systems dealing with biological data. BIANA can easily be extended to handle new specific data repositories and new specific data types. The unification protocol allows BIANA to be a flexible tool suitable for different user requirements: non-expert users can use a suggested unification protocol while expert users can define their own specific unification rules. PMID:20105306
Biana: a software framework for compiling biological interactions and analyzing networks.
Garcia-Garcia, Javier; Guney, Emre; Aragues, Ramon; Planas-Iglesias, Joan; Oliva, Baldo
2010-01-27
The analysis and usage of biological data is hindered by the spread of information across multiple repositories and the difficulties posed by different nomenclature systems and storage formats. In particular, there is an important need for data unification in the study and use of protein-protein interactions. Without good integration strategies, it is difficult to analyze the whole set of available data and its properties. We introduce BIANA (Biologic Interactions and Network Analysis), a tool for biological information integration and network management. BIANA is a Python framework designed to achieve two major goals: i) the integration of multiple sources of biological information, including biological entities and their relationships, and ii) the management of biological information as a network where entities are nodes and relationships are edges. Moreover, BIANA uses properties of proteins and genes to infer latent biomolecular relationships by transferring edges to entities sharing similar properties. BIANA is also provided as a plugin for Cytoscape, which allows users to visualize and interactively manage the data. A web interface to BIANA providing basic functionalities is also available. The software can be downloaded under GNU GPL license from http://sbi.imim.es/web/BIANA.php. BIANA's approach to data unification solves many of the nomenclature issues common to systems dealing with biological data. BIANA can easily be extended to handle new specific data repositories and new specific data types. The unification protocol allows BIANA to be a flexible tool suitable for different user requirements: non-expert users can use a suggested unification protocol while expert users can define their own specific unification rules.
Semantic Interaction for Sensemaking: Inferring Analytical Reasoning for Model Steering.
Endert, A; Fiaux, P; North, C
2012-12-01
Visual analytic tools aim to support the cognitively demanding task of sensemaking. Their success often depends on the ability to leverage capabilities of mathematical models, visualization, and human intuition through flexible, usable, and expressive interactions. Spatially clustering data is one effective metaphor for users to explore similarity and relationships between information, adjusting the weighting of dimensions or characteristics of the dataset to observe the change in the spatial layout. Semantic interaction is an approach to user interaction in such spatializations that couples these parametric modifications of the clustering model with users' analytic operations on the data (e.g., direct document movement in the spatialization, highlighting text, search, etc.). In this paper, we present results of a user study exploring the ability of semantic interaction in a visual analytic prototype, ForceSPIRE, to support sensemaking. We found that semantic interaction captures the analytical reasoning of the user through keyword weighting, and aids the user in co-creating a spatialization based on the user's reasoning and intuition.
Overcoming the Law of the Hidden in Cyberinfrastructures.
Bucksch, Alexander; Das, Abhiram; Schneider, Hannah; Merchant, Nirav; Weitz, Joshua S
2017-02-01
Cyberinfrastructure projects (CIPs) are complex, integrated systems that require interaction and organization amongst user, developer, hardware, technical infrastructure, and funding resources. Nevertheless, CIP usability, functionality, and growth do not scale with the sum of these resources. Instead, growth and efficient usage of CIPs require access to 'hidden' resources. These include technical resources within CIPs as well as social and functional interactions among stakeholders. We identify approaches to overcome resource limitations following the conceptual basis of Liebig's Law of the Minimum. In so doing, we recommend practical steps towards efficient and scaleable resource use, taking the iPlant/CyVerse CIP as an example. Copyright © 2016 Elsevier Ltd. All rights reserved.
ODISEES: Ontology-Driven Interactive Search Environment for Earth Sciences
NASA Technical Reports Server (NTRS)
Rutherford, Matthew T.; Huffer, Elisabeth B.; Kusterer, John M.; Quam, Brandi M.
2015-01-01
This paper discusses the Ontology-driven Interactive Search Environment for Earth Sciences (ODISEES) project currently being developed to aid researchers attempting to find usable data among an overabundance of closely related data. ODISEES' ontological structure relies on a modular, adaptable concept modeling approach, which allows the domain to be modeled more or less as it is without worrying about terminology or external requirements. In the model, variables are individually assigned semantic content based on the characteristics of the measurements they represent, allowing intuitive discovery and comparison of data without requiring the user to sift through large numbers of data sets and variables to find the desired information.
Bridging the gap between observational oceanography and users
NASA Astrophysics Data System (ADS)
Eschenbach, Christiane A.
2017-02-01
In order to ensure relevance and societal impact of research and to meet the various requirements of different target groups, the Coastal Observing System for Northern and Arctic Seas (COSYNA) developed and pursued a broad range of activities for knowledge transfer and stakeholder interaction. Potential user groups of data and data products include (but are not limited to) science, administration, renewable energies, engineering, tourism, and nature conservation. COSYNA data and data products are publicly accessible and available free of charge via the Internet (data portal; www.cosyna.de). The stakeholder interaction is integrated into the COSYNA product life cycle outlined here and the steps undertaken are exemplified for the product Surface Current Fields in the German Bight
. Initial surveys revealed COSYNA's potential relevance in the national and international context. After the technological and mathematical realization of high-quality parameter fields, external experts evaluated the scientific value, informational value, innovative leap, cost/benefit aspects, operability, etc., of the data products. In order to improve products and their usability and to pave the way for future co-operation, interviews and workshops with potential users from the offshore wind energy industry were conducted. The stakeholder interaction process was successful, revealing relevant insights into user demands and usability of (possible) products. Analysis of data download provided some evidence for impact beyond academia. Other criteria for the increasingly demanded evaluation of the impact of coastal research are discussed. By sharing first-hand experiences, this study contributes to the emerging knowledge on integration of science and end users.
User Experience Evaluation Methods in Product Development (UXEM'09)
NASA Astrophysics Data System (ADS)
Roto, Virpi; Väänänen-Vainio-Mattila, Kaisa; Law, Effie; Vermeeren, Arnold
High quality user experience (UX) has become a central competitive factor of product development in mature consumer markets [1]. Although the term UX originated from industry and is a widely used term also in academia, the tools for managing UX in product development are still inadequate. A prerequisite for designing delightful UX in an industrial setting is to understand both the requirements tied to the pragmatic level of functionality and interaction and the requirements pertaining to the hedonic level of personal human needs, which motivate product use [2]. Understanding these requirements helps managers set UX targets for product development. The next phase in a good user-centered design process is to iteratively design and evaluate prototypes [3]. Evaluation is critical for systematically improving UX. In many approaches to UX, evaluation basically needs to be postponed until the product is fully or at least almost fully functional. However, in an industrial setting, it is very expensive to find the UX failures only at this phase of product development. Thus, product development managers and developers have a strong need to conduct UX evaluation as early as possible, well before all the parts affecting the holistic experience are available. Different types of products require evaluation on different granularity and maturity levels of a prototype. For example, due to its multi-user characteristic, a community service or an enterprise resource planning system requires a broader scope of UX evaluation than a microwave oven or a word processor that is meant for a single user at a time. Before systematic UX evaluation can be taken into practice, practical, lightweight UX evaluation methods suitable for different types of products and different phases of product readiness are needed. A considerable amount of UX research is still about the conceptual frameworks and models for user experience [4]. Besides, applying existing usability evaluation methods (UEMs) without adaptation to evaluate UX may lead to some scoping issues. Consequently, there is a strong need to put UX evaluation from research into practice.
Ubiquitous Accessibility for People with Visual Impairments: Are We There Yet?
Billah, Syed Masum; Ashok, Vikas; Porter, Donald E.; Ramakrishnan, IV
2017-01-01
Ubiquitous access is an increasingly common vision of computing, wherein users can interact with any computing device or service from anywhere, at any time. In the era of personal computing, users with visual impairments required special-purpose, assistive technologies, such as screen readers, to interact with computers. This paper investigates whether technologies like screen readers have kept pace with, or have created a barrier to, the trend toward ubiquitous access, with a specific focus on desktop computing as this is still the primary way computers are used in education and employment. Towards that, the paper presents a user study with 21 visually-impaired participants, specifically involving the switching of screen readers within and across different computing platforms, and the use of screen readers in remote access scenarios. Among the findings, the study shows that, even for remote desktop access—an early forerunner of true ubiquitous access—screen readers are too limited, if not unusable. The study also identifies several accessibility needs, such as uniformity of navigational experience across devices, and recommends potential solutions. In summary, assistive technologies have not made the jump into the era of ubiquitous access, and multiple, inconsistent screen readers create new practical problems for users with visual impairments. PMID:28782061
Ubiquitous Accessibility for People with Visual Impairments: Are We There Yet?
Billah, Syed Masum; Ashok, Vikas; Porter, Donald E; Ramakrishnan, I V
2017-05-01
Ubiquitous access is an increasingly common vision of computing, wherein users can interact with any computing device or service from anywhere, at any time. In the era of personal computing, users with visual impairments required special-purpose, assistive technologies, such as screen readers, to interact with computers. This paper investigates whether technologies like screen readers have kept pace with, or have created a barrier to, the trend toward ubiquitous access, with a specific focus on desktop computing as this is still the primary way computers are used in education and employment. Towards that, the paper presents a user study with 21 visually-impaired participants, specifically involving the switching of screen readers within and across different computing platforms, and the use of screen readers in remote access scenarios. Among the findings, the study shows that, even for remote desktop access-an early forerunner of true ubiquitous access-screen readers are too limited, if not unusable. The study also identifies several accessibility needs, such as uniformity of navigational experience across devices, and recommends potential solutions. In summary, assistive technologies have not made the jump into the era of ubiquitous access, and multiple, inconsistent screen readers create new practical problems for users with visual impairments.
The BCI competition. III: Validating alternative approaches to actual BCI problems.
Blankertz, Benjamin; Müller, Klaus-Robert; Krusienski, Dean J; Schalk, Gerwin; Wolpaw, Jonathan R; Schlögl, Alois; Pfurtscheller, Gert; Millán, José del R; Schröder, Michael; Birbaumer, Niels
2006-06-01
A brain-computer interface (BCI) is a system that allows its users to control external devices with brain activity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major challenge. Success requires the effective interaction of two adaptive controllers: the user's brain, which produces brain activity that encodes intent, and the BCI system, which translates that activity into device control commands. In order to facilitate this interaction, many laboratories are exploring a variety of signal analysis techniques to improve the adaptation of the BCI system to the user. In the literature, many machine learning and pattern classification algorithms have been reported to give impressive results when applied to BCI data in offline analyses. However, it is more difficult to evaluate their relative value for actual online use. BCI data competitions have been organized to provide objective formal evaluations of alternative methods. Prompted by the great interest in the first two BCI Competitions, we organized the third BCI Competition to address several of the most difficult and important analysis problems in BCI research. The paper describes the data sets that were provided to the competitors and gives an overview of the results.
The IMUTUS interactive music tuition system
NASA Astrophysics Data System (ADS)
Tambouratzis, George; Bakamidis, Stelios; Dologlou, Ioannis; Carayannis, George; Dendrinos, Markos
2002-05-01
This presentation focuses on the IMUTUS project, which concerns the creation of an innovative method for training users on traditional musical instruments with no MIDI (Musical Instrument Digital Interface) output. The entities collaborating in IMUTUS are ILSP (coordinator), EXODUS, SYSTEMA, DSI, SMF, GRAME, and KTH. The IMUTUS effectiveness is enhanced via an advanced user interface incorporating multimedia techniques. Internet plays a pivotal role during training, the student receiving guidance over the net from a specially created teacher group. Interactiveness is emphasized via automatic-scoring tools, which provide fast yet accurate feedback to the user, while virtual reality methods assist the student in perfecting his technique. IMUTUS incorporates specialized recognition technology for the transformation of acoustic signals and music scores to MIDI format and incorporation in the training process. This process is enhanced by periodically enriching the score database, while customization to each user's requirements is supported. This work is partially supported by European Community under the Information Society Technology (IST) RTD programme. The authors are solely responsible for the content of this communication. It does not represent the opinion of the European Community, and the European Community is not responsible for any use that might be made of data appearing therein.
Human factors approach to evaluate the user interface of physiologic monitoring.
Fidler, Richard; Bond, Raymond; Finlay, Dewar; Guldenring, Daniel; Gallagher, Anthony; Pelter, Michele; Drew, Barbara; Hu, Xiao
2015-01-01
As technology infiltrates more of our personal and professional lives, user expectations for intuitive design have driven many consumer products, while medical equipment continues to have high training requirements. Not much is known about the usability and user experience associated with hospital monitoring equipment. This pilot project aimed to better understand and describe the user interface interaction and user experience with physiologic monitoring technology. This was a prospective, descriptive, mixed-methods quality improvement project to analyze perceptions and task analyses of physiologic monitors. Following a survey of practice patterns and perceived abilities to accomplish key tasks, 10 voluntary experienced physician and nurse subjects were asked to perform a series of tasks in 7 domains of monitor operations on GE Monitoring equipment in a single institution. For each task analysis, data were collected on time to complete the task, the number of button pushes or clicks required to accomplish the task, economy of motion, and observed errors. Although 60% of the participants reported incorporating monitoring data into patient care, 80% of participants preferred to receive monitoring data at the point of care (bedside). Average perceived central station usability is 5.3 out of 10 (ten is easiest). High variability exists in monitoring station interaction performance among those participating in this project. Alarms were almost universally silenced without cognitive recognition of the alarm state. Education related to monitoring operations appeared largely absent in this sample. Most users perceived the interface to not be intuitive, complaining of multiple layers and steps for data retrieval. These clinicians report real-time monitoring helpful for abrupt changes in condition like arrhythmias; however, reviewing alarms is not prioritized as valuable due to frequent false alarms. Participants requested exporting monitoring data to electronic medical records. Much research is needed to develop best practices for display of real-time information, organization and filtering of meaningful data, and simplified ways to find information. Published by Elsevier Inc.
Tangible Landscape: Cognitively Grasping the Flow of Water
NASA Astrophysics Data System (ADS)
Harmon, B. A.; Petrasova, A.; Petras, V.; Mitasova, H.; Meentemeyer, R. K.
2016-06-01
Complex spatial forms like topography can be challenging to understand, much less intentionally shape, given the heavy cognitive load of visualizing and manipulating 3D form. Spatiotemporal processes like the flow of water over a landscape are even more challenging to understand and intentionally direct as they are dependent upon their context and require the simulation of forces like gravity and momentum. This cognitive work can be offloaded onto computers through 3D geospatial modeling, analysis, and simulation. Interacting with computers, however, can also be challenging, often requiring training and highly abstract thinking. Tangible computing - an emerging paradigm of human-computer interaction in which data is physically manifested so that users can feel it and directly manipulate it - aims to offload this added cognitive work onto the body. We have designed Tangible Landscape, a tangible interface powered by an open source geographic information system (GRASS GIS), so that users can naturally shape topography and interact with simulated processes with their hands in order to make observations, generate and test hypotheses, and make inferences about scientific phenomena in a rapid, iterative process. Conceptually Tangible Landscape couples a malleable physical model with a digital model of a landscape through a continuous cycle of 3D scanning, geospatial modeling, and projection. We ran a flow modeling experiment to test whether tangible interfaces like this can effectively enhance spatial performance by offloading cognitive processes onto computers and our bodies. We used hydrological simulations and statistics to quantitatively assess spatial performance. We found that Tangible Landscape enhanced 3D spatial performance and helped users understand water flow.
Designing Tools for Supporting User Decision-Making in e-Commerce
NASA Astrophysics Data System (ADS)
Sutcliffe, Alistair; Al-Qaed, Faisal
The paper describes a set of tools designed to support a variety of user decision-making strategies. The tools are complemented by an online advisor so they can be adapted to different domains and users can be guided to adopt appropriate tools for different choices in e-commerce, e.g. purchasing high-value products, exploring product fit to users’ needs, or selecting products which satisfy requirements. The tools range from simple recommenders to decision support by interactive querying and comparison matrices. They were evaluated in a scenario-based experiment which varied the users’ task and motivation, with and without an advisor agent. The results show the tools and advisor were effective in supporting users and agreed with the predictions of ADM (adaptive decision making) theory, on which the design of the tools was based.
Tan, Amanda W Y; Hemelrijk, Charlotte K; Malaivijitnond, Suchinda; Gumert, Michael D
2018-05-12
Examining how animals direct social learning during skill acquisition under natural conditions, generates data for examining hypotheses regarding how transmission biases influence cultural change in animal populations. We studied a population of macaques on Koram Island, Thailand, and examined model-based biases during interactions by unskilled individuals with tool-using group members. We first compared the prevalence of interactions (watching, obtaining food, object exploration) and proximity to tool users during interactions, in developing individuals (infants, juveniles) versus mature non-learners (adolescents, adults), to provide evidence that developing individuals are actively seeking information about tool use from social partners. All infants and juveniles, but only 49% of mature individuals carried out interacted with tool users. Macaques predominantly obtained food by scrounging or stealing, suggesting maximizing scrounging opportunities motivates interactions with tool users. However, while interactions by adults was limited to obtaining food, young macaques and particularly infants also watched tool users and explored objects, indicating additional interest in tool use itself. We then ran matrix correlations to identify interaction biases, and what attributes of tool users influenced these. Biases correlated with social affiliation, but macaques also preferentially targeted tool users that potentially increase scrounging and learning opportunities. Results suggest that social structure may constrain social learning, but the motivation to bias interactions towards tool users to maximize feeding opportunities may also socially modulate learning by facilitating close proximity to better tool users, and further interest in tool-use actions and materials, especially during development.
Jules Verne Voyager, Jr: An Interactive Map Tool for Teaching Plate Tectonics
NASA Astrophysics Data System (ADS)
Hamburger, M. W.; Meertens, C. M.
2010-12-01
We present an interactive, web-based map utility that can make new geological and geophysical results accessible to a large number and variety of users. The tool provides a user-friendly interface that allows users to access a variety of maps, satellite images, and geophysical data at a range of spatial scales. The map tool, dubbed 'Jules Verne Voyager, Jr.', allows users to interactively create maps of a variety of study areas around the world. The utility was developed in collaboration with the UNAVCO Consortium for study of global-scale tectonic processes. Users can choose from a variety of base maps (including "Face of the Earth" and "Earth at Night" satellite imagery mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others), add a number of geographic and geophysical overlays (coastlines, political boundaries, rivers and lakes, earthquake and volcano locations, stress axes, etc.), and then superimpose both observed and model velocity vectors representing a compilation of 2933 GPS geodetic measurements from around the world. A remarkable characteristic of the geodetic compilation is that users can select from some 21 plates' frames of reference, allowing a visual representation of both 'absolute' plate motion (in a no-net rotation reference frame) and relative motion along all of the world's plate boundaries. The tool allows users to zoom among at least three map scales. The map tool can be viewed at http://jules.unavco.org/VoyagerJr/Earth. A more detailed version of the map utility, developed in conjunction with the EarthScope initiative, focuses on North America geodynamics, and provides more detailed geophysical and geographic information for the United States, Canada, and Mexico. The ‘EarthScope Voyager’ can be accessed at http://jules.unavco.org/VoyagerJr/EarthScope. Because the system uses pre-constructed gif images and overlays, the system can rapidly create and display maps to a large number of users simultaneously and does not require any special software installation on users' systems. In addition, a javascript-based educational interface, dubbed "Exploring our Dynamic Planet", incorporates the map tool, explanatory material, background scientific material, and curricular activities that encourage users to explore Earth processes using the Jules Verne Voyager, Jr. tool. Exploring our Dynamic Planet can be viewed at http://www.dpc.ucar.edu/VoyagerJr/. Because of its flexibility, the map utilities can be used for hands-on exercises exploring plate interaction in a range of academic settings, from high school science classes to entry-level undergraduate to graduate-level tectonics courses.
NASA Astrophysics Data System (ADS)
Burow, Christoph; Kreutzer, Sebastian; Dietze, Michael; Fuchs, Margret C.; Schmidt, Christoph; Fischer, Manfred; Brückner, Helmut
2017-04-01
Since the release of the R package 'Luminescence' (Kreutzer et al., 2012) the functionality of the package has been greatly enhanced by implementing further functions for measurement data processing, statistical analysis and graphical output. Despite its capabilities for complex and non-standard analysis of luminescence data, working with the command-line interface (CLI) of R can be tedious at best and overwhelming at worst, especially for users without experience in programming languages. Even though much work is put into simplifying the usage of the package to continuously lower the entry threshold, at least basic knowledge of R will always be required. Thus, the potential user base of the package cannot be exhausted, at least as long as the CLI is the only means of utilising the 'Luminescence' package. But even experienced users may find it tedious to iteratively run a function until a satisfying results is produced. For example, plotting data is also at least partly subject to personal aesthetic tastes in accordance with the information it is supposed to convey and iterating through all the possible options in the R CLI can be a time-consuming task. An alternative approach to the CLI is the graphical user interface (GUI), which allows direct, interactive manipulation and interaction with the underlying software. For users with little or no experience with command-lines a GUI offers intuitive access that counteracts the perceived steep learning curve of a CLI. Even though R lacks native support for GUI functions, its capabilities of linking it to other programming languages allows to utilise external frameworks to build graphical user interfaces. A recent attempt to provide a GUI toolkit for R was the introduction of the 'shiny' package (Chang et al., 2016), which allows automatic construction of HTML, CSS and JavaScript based user interfaces straight from R. Here, we give (1) a brief introduction to the 'shiny' framework for R, before we (2) present a GUI for the R package 'Luminescence' in the form of interactive web applications. These applications can be accessed online so that a user is not even required to have a local installation of R and which provide access to most of the plotting functions of the R package 'Luminescence'. These functionalities will be demonstrated live during the PICO session. References Chang, W., Cheng, J., Allaire, JJ., Xie, Y., McPherson, J., 2016. shiny: Web Application Framework for R. R package version 0.13.2. https://CRAN.R-project.org/package=shiny Kreutzer, S., Schmidt, C., Fuchs, M.C., Dietze, M., Fischer, M., Fuchs, M., 2012. Introducing an R package for luminescence dating analysis. Ancient TL, 30: 1-8, 2012.
Personas in online health communities.
Huh, Jina; Kwon, Bum Chul; Kim, Sung-Hee; Lee, Sukwon; Choo, Jaegul; Kim, Jihoon; Choi, Min-Je; Yi, Ji Soo
2016-10-01
Many researchers and practitioners use online health communities (OHCs) to influence health behavior and provide patients with social support. One of the biggest challenges in this approach, however, is the rate of attrition. OHCs face similar problems as other social media platforms where user migration happens unless tailored content and appropriate socialization is supported. To provide tailored support for each OHC user, we developed personas in OHCs illustrating users' needs and requirements in OHC use. To develop OHC personas, we first interviewed 16 OHC users and administrators to qualitatively understand varying user needs in OHC. Based on their responses, we developed an online survey to systematically investigate OHC personas. We received 184 survey responses from OHC users, which informed their values and their OHC use patterns. We performed open coding analysis with the interview data and cluster analysis with the survey data and consolidated the analyses of the two datasets. Four personas emerged-Caretakers, Opportunists, Scientists, and Adventurers. The results inform users' interaction behavior and attitude patterns with OHCs. We discuss implications for how these personas inform OHCs in delivering personalized informational and emotional support. Copyright © 2016 Elsevier Inc. All rights reserved.
Web-based interactive visualization in a Grid-enabled neuroimaging application using HTML5.
Siewert, René; Specovius, Svenja; Wu, Jie; Krefting, Dagmar
2012-01-01
Interactive visualization and correction of intermediate results are required in many medical image analysis pipelines. To allow certain interaction in the remote execution of compute- and data-intensive applications, new features of HTML5 are used. They allow for transparent integration of user interaction into Grid- or Cloud-enabled scientific workflows. Both 2D and 3D visualization and data manipulation can be performed through a scientific gateway without the need to install specific software or web browser plugins. The possibilities of web-based visualization are presented along the FreeSurfer-pipeline, a popular compute- and data-intensive software tool for quantitative neuroimaging.
NASA Astrophysics Data System (ADS)
Nandigam, V.; Crosby, C. J.; Baru, C.
2009-04-01
LiDAR (Light Distance And Ranging) topography data offer earth scientists the opportunity to study the earth's surface at very high resolutions. As a result, the popularity of these data is growing dramatically. However, the management, distribution, and analysis of community LiDAR data sets is a challenge due to their massive size (multi-billion point, mutli-terabyte). We have also found that many earth science users of these data sets lack the computing resources and expertise required to process these data. We have developed the OpenTopography Portal to democratize access to these large and computationally challenging data sets. The OpenTopography Portal uses cyberinfrastructure technology developed by the GEON project to provide access to LiDAR data in a variety of formats. LiDAR data products available range from simple Google Earth visualizations of LiDAR-derived hillshades to 1 km2 tiles of standard digital elevation model (DEM) products as well as LiDAR point cloud data and user generated custom-DEMs. We have found that the wide spectrum of LiDAR users have variable scientific applications, computing resources and technical experience and thus require a data system with multiple distribution mechanisms and platforms to serve a broader range of user communities. Because the volume of LiDAR topography data available is rapidly expanding, and data analysis techniques are evolving, there is a need for the user community to be able to communicate and interact to share knowledge and experiences. To address this need, the OpenTopography Portal enables social networking capabilities through a variety of collaboration tools, web 2.0 technologies and customized usage pattern tracking. Fundamentally, these tools offer users the ability to communicate, to access and share documents, participate in discussions, and to keep up to date on upcoming events and emerging technologies. The OpenTopography portal achieves the social networking capabilities by integrating various software technologies and platforms. These include the Expression Engine Content Management System (CMS) that comes with pre-packaged collaboration tools like blogs and wikis, the Gridsphere portal framework that contains the primary GEON LiDAR System portlet with user job monitoring capabilities and a java web based discussion forum (Jforums) application all seamlessly integrated under one portal. The OpenTopography Portal also provides integrated authentication mechanism between the various CMS collaboration tools and the core gridsphere based portlets. The integration of these various technologies allows for enhanced user interaction capabilities within the portal. By integrating popular collaboration tools like discussion forums and blogs we can promote conversation and openness among users. The ability to ask question and share expertise in forum discussions allows users to easily find information and interact with users facing similar challenges. The OpenTopography Blog enables our domain experts to post ideas, news items, commentary, and other resources in order to foster discussion and information sharing. The content management capabilities of the portal allow for easy updates to information in the form of publications, documents, and news articles. Access to the most current information fosters better decision-making. As has become the standard for web 2.0 technologies, the OpenTopography Portal is fully RSS enabled to allow users of the portal to keep track of news items, forum discussions, blog updates, and system outages. We are currently exploring how the information captured by user and job monitoring components of the Gridsphere based GEON LiDAR System can be harnessed to provide a recommender system that will help users to identify appropriate processing parameters and to locate related documents and data. By seamlessly integrating the various platforms and technologies under one single portal, we can take advantage of popular online collaboration tools that are either stand alone or software platform restricted. The availability of these collaboration tools along with the data will foster more community interaction and increase the strength and vibrancy of the LiDAR topography user community.
Network Penetration Testing and Research
NASA Technical Reports Server (NTRS)
Murphy, Brandon F.
2013-01-01
This paper will focus the on research and testing done on penetrating a network for security purposes. This research will provide the IT security office new methods of attacks across and against a company's network as well as introduce them to new platforms and software that can be used to better assist with protecting against such attacks. Throughout this paper testing and research has been done on two different Linux based operating systems, for attacking and compromising a Windows based host computer. Backtrack 5 and BlackBuntu (Linux based penetration testing operating systems) are two different "attacker'' computers that will attempt to plant viruses and or NASA USRP - Internship Final Report exploits on a host Windows 7 operating system, as well as try to retrieve information from the host. On each Linux OS (Backtrack 5 and BlackBuntu) there is penetration testing software which provides the necessary tools to create exploits that can compromise a windows system as well as other operating systems. This paper will focus on two main methods of deploying exploits 1 onto a host computer in order to retrieve information from a compromised system. One method of deployment for an exploit that was tested is known as a "social engineering" exploit. This type of method requires interaction from unsuspecting user. With this user interaction, a deployed exploit may allow a malicious user to gain access to the unsuspecting user's computer as well as the network that such computer is connected to. Due to more advance security setting and antivirus protection and detection, this method is easily identified and defended against. The second method of exploit deployment is the method mainly focused upon within this paper. This method required extensive research on the best way to compromise a security enabled protected network. Once a network has been compromised, then any and all devices connected to such network has the potential to be compromised as well. With a compromised network, computers and devices can be penetrated through deployed exploits. This paper will illustrate the research done to test ability to penetrate a network without user interaction, in order to retrieve personal information from a targeted host.
Mourning and Grief on Facebook: An Examination of Motivations for Interacting With the Deceased.
Willis, Erin; Ferrucci, Patrick
2017-12-01
Facebook not only changed the way we communicate but also the way we mourn and express grief. The social networking site allows users to interact with deceased users' walls after death. This study utilized textual analysis to categorize Facebook posts ( N = 122) on 30 deceased users' walls according to uses and gratifications theory. Most posts were found to be motivated by entertainment, followed by integration and social interaction. Facebook users posted memories, condolences, and interacted with friends and family members in the deceased user's network. Implications and potential future research are discussed.
Style grammars for interactive visualization of architecture.
Aliaga, Daniel G; Rosen, Paul A; Bekins, Daniel R
2007-01-01
Interactive visualization of architecture provides a way to quickly visualize existing or novel buildings and structures. Such applications require both fast rendering and an effortless input regimen for creating and changing architecture using high-level editing operations that automatically fill in the necessary details. Procedural modeling and synthesis is a powerful paradigm that yields high data amplification and can be coupled with fast-rendering techniques to quickly generate plausible details of a scene without much or any user interaction. Previously, forward generating procedural methods have been proposed where a procedure is explicitly created to generate particular content. In this paper, we present our work in inverse procedural modeling of buildings and describe how to use an extracted repertoire of building grammars to facilitate the visualization and quick modification of architectural structures and buildings. We demonstrate an interactive application where the user draws simple building blocks and, using our system, can automatically complete the building "in the style of" other buildings using view-dependent texture mapping or nonphotorealistic rendering techniques. Our system supports an arbitrary number of building grammars created from user subdivided building models and captured photographs. Using only edit, copy, and paste metaphors, the entire building styles can be altered and transferred from one building to another in a few operations, enhancing the ability to modify an existing architectural structure or to visualize a novel building in the style of the others.
MyDas, an Extensible Java DAS Server
Jimenez, Rafael C.; Quinn, Antony F.; Jenkinson, Andrew M.; Mulder, Nicola; Martin, Maria; Hunter, Sarah; Hermjakob, Henning
2012-01-01
A large number of diverse, complex, and distributed data resources are currently available in the Bioinformatics domain. The pace of discovery and the diversity of information means that centralised reference databases like UniProt and Ensembl cannot integrate all potentially relevant information sources. From a user perspective however, centralised access to all relevant information concerning a specific query is essential. The Distributed Annotation System (DAS) defines a communication protocol to exchange annotations on genomic and protein sequences; this standardisation enables clients to retrieve data from a myriad of sources, thus offering centralised access to end-users. We introduce MyDas, a web server that facilitates the publishing of biological annotations according to the DAS specification. It deals with the common functionality requirements of making data available, while also providing an extension mechanism in order to implement the specifics of data store interaction. MyDas allows the user to define where the required information is located along with its structure, and is then responsible for the communication protocol details. PMID:23028496
MyDas, an extensible Java DAS server.
Salazar, Gustavo A; García, Leyla J; Jones, Philip; Jimenez, Rafael C; Quinn, Antony F; Jenkinson, Andrew M; Mulder, Nicola; Martin, Maria; Hunter, Sarah; Hermjakob, Henning
2012-01-01
A large number of diverse, complex, and distributed data resources are currently available in the Bioinformatics domain. The pace of discovery and the diversity of information means that centralised reference databases like UniProt and Ensembl cannot integrate all potentially relevant information sources. From a user perspective however, centralised access to all relevant information concerning a specific query is essential. The Distributed Annotation System (DAS) defines a communication protocol to exchange annotations on genomic and protein sequences; this standardisation enables clients to retrieve data from a myriad of sources, thus offering centralised access to end-users.We introduce MyDas, a web server that facilitates the publishing of biological annotations according to the DAS specification. It deals with the common functionality requirements of making data available, while also providing an extension mechanism in order to implement the specifics of data store interaction. MyDas allows the user to define where the required information is located along with its structure, and is then responsible for the communication protocol details.
Finding Waldo: Learning about Users from their Interactions.
Brown, Eli T; Ottley, Alvitta; Zhao, Helen; Quan Lin; Souvenir, Richard; Endert, Alex; Chang, Remco
2014-12-01
Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems, the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that a user's interactions with a system reflect a large amount of the user's reasoning process, there has been limited advancement in developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can accurately predict a user's task performance and infer some user personality traits by using machine learning techniques to analyze interaction data. Specifically, we conduct an experiment in which participants perform a visual search task, and apply well-known machine learning algorithms to three encodings of the users' interaction data. We achieve, depending on algorithm and encoding, between 62% and 83% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting performance, we demonstrate that using the same techniques, we can infer aspects of the user's personality factors, including locus of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time: in one case 95% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed-initiative visual analytics systems.
User-Centric Secure Cross-Site Interaction Framework for Online Social Networking Services
ERIC Educational Resources Information Center
Ko, Moo Nam
2011-01-01
Social networking service is one of major technological phenomena on Web 2.0. Hundreds of millions of users are posting message, photos, and videos on their profiles and interacting with other users, but the sharing and interaction are limited within the same social networking site. Although users can share some content on a social networking site…
Validation of semi-automatic segmentation of the left atrium
NASA Astrophysics Data System (ADS)
Rettmann, M. E.; Holmes, D. R., III; Camp, J. J.; Packer, D. L.; Robb, R. A.
2008-03-01
Catheter ablation therapy has become increasingly popular for the treatment of left atrial fibrillation. The effect of this treatment on left atrial morphology, however, has not yet been completely quantified. Initial studies have indicated a decrease in left atrial size with a concomitant decrease in pulmonary vein diameter. In order to effectively study if catheter based therapies affect left atrial geometry, robust segmentations with minimal user interaction are required. In this work, we validate a method to semi-automatically segment the left atrium from computed-tomography scans. The first step of the technique utilizes seeded region growing to extract the entire blood pool including the four chambers of the heart, the pulmonary veins, aorta, superior vena cava, inferior vena cava, and other surrounding structures. Next, the left atrium and pulmonary veins are separated from the rest of the blood pool using an algorithm that searches for thin connections between user defined points in the volumetric data or on a surface rendering. Finally, pulmonary veins are separated from the left atrium using a three dimensional tracing tool. A single user segmented three datasets three times using both the semi-automatic technique as well as manual tracing. The user interaction time for the semi-automatic technique was approximately forty-five minutes per dataset and the manual tracing required between four and eight hours per dataset depending on the number of slices. A truth model was generated using a simple voting scheme on the repeated manual segmentations. A second user segmented each of the nine datasets using the semi-automatic technique only. Several metrics were computed to assess the agreement between the semi-automatic technique and the truth model including percent differences in left atrial volume, DICE overlap, and mean distance between the boundaries of the segmented left atria. Overall, the semi-automatic approach was demonstrated to be repeatable within and between raters, and accurate when compared to the truth model. Finally, we generated a visualization to assess the spatial variability in the segmentation errors between the semi-automatic approach and the truth model. The visualization demonstrates the highest errors occur at the boundaries between the left atium and pulmonary veins as well as the left atrium and left atrial appendage. In conclusion, we describe a semi-automatic approach for left atrial segmentation that demonstrates repeatability and accuracy, with the advantage of significant time reduction in user interaction time.
a Low-Cost and Lightweight 3d Interactive Real Estate-Purposed Indoor Virtual Reality Application
NASA Astrophysics Data System (ADS)
Ozacar, K.; Ortakci, Y.; Kahraman, I.; Durgut, R.; Karas, I. R.
2017-11-01
Interactive 3D architectural indoor design have been more popular after it benefited from Virtual Reality (VR) technologies. VR brings computer-generated 3D content to real life scale and enable users to observe immersive indoor environments so that users can directly modify it. This opportunity enables buyers to purchase a property off-the-plan cheaper through virtual models. Instead of showing property through 2D plan or renders, this visualized interior architecture of an on-sale unbuilt property is demonstrated beforehand so that the investors have an impression as if they were in the physical building. However, current applications either use highly resource consuming software, or are non-interactive, or requires specialist to create such environments. In this study, we have created a real-estate purposed low-cost high quality fully interactive VR application that provides a realistic interior architecture of the property by using free and lightweight software: Sweet Home 3D and Unity. A preliminary study showed that participants generally liked proposed real estate-purposed VR application, and it satisfied the expectation of the property buyers.
Interactive-rate Motion Planning for Concentric Tube Robots.
Torres, Luis G; Baykal, Cenk; Alterovitz, Ron
2014-05-01
Concentric tube robots may enable new, safer minimally invasive surgical procedures by moving along curved paths to reach difficult-to-reach sites in a patient's anatomy. Operating these devices is challenging due to their complex, unintuitive kinematics and the need to avoid sensitive structures in the anatomy. In this paper, we present a motion planning method that computes collision-free motion plans for concentric tube robots at interactive rates. Our method's high speed enables a user to continuously and freely move the robot's tip while the motion planner ensures that the robot's shaft does not collide with any anatomical obstacles. Our approach uses a highly accurate mechanical model of tube interactions, which is important since small movements of the tip position may require large changes in the shape of the device's shaft. Our motion planner achieves its high speed and accuracy by combining offline precomputation of a collision-free roadmap with online position control. We demonstrate our interactive planner in a simulated neurosurgical scenario where a user guides the robot's tip through the environment while the robot automatically avoids collisions with the anatomical obstacles.
Beyond image quality: designing engaging interactions with digital products
NASA Astrophysics Data System (ADS)
de Ridder, Huib; Rozendaal, Marco C.
2008-02-01
Ubiquitous computing (or Ambient Intelligence) promises a world in which information is available anytime anywhere and with which humans can interact in a natural, multimodal way. In such world, perceptual image quality remains an important criterion since most information will be displayed visually, but other criteria such as enjoyment, fun, engagement and hedonic quality are emerging. This paper deals with engagement, the intrinsically enjoyable readiness to put more effort into exploring and/or using a product than strictly required, thus attracting and keeping user's attention for a longer period of time. The impact of the experienced richness of an interface, both visually and degree of possible manipulations, was investigated in a series of experiments employing game-like user interfaces. This resulted in the extension of an existing conceptual framework relating engagement to richness by means of two intermediating variables, namely experienced challenge and sense of control. Predictions from this revised framework are evaluated against results of an earlier experiment assessing the ergonomic and hedonic qualities of interactive media. Test material consisted of interactive CD-ROM's containing presentations of three companies for future customers.
ERIC Educational Resources Information Center
de Freitas, Sara; Neumann, Tim
2009-01-01
Synchronous audiographic conferencing (SAC) refers to a combination of technologies for real-time communication and interaction using multiple media and modes. With an increasing institutional uptake of SAC, users require an understanding of the complex interrelations of multiple media in learning scenarios in order to support pedagogic-driven…
User Oriented Techniques to Support Interaction and Decision Making with Large Educational Databases
ERIC Educational Resources Information Center
Hartley, Roger; Almuhaidib, Saud M. Y.
2007-01-01
Information Technology is developing rapidly and providing policy/decision makers with large amounts of information that require processing and analysis. Decision support systems (DSS) aim to provide tools that not only help such analyses, but enable the decision maker to experiment and simulate the effects of different policies and selection…
ARTutor--An Augmented Reality Platform for Interactive Distance Learning
ERIC Educational Resources Information Center
Lytridis, Chris; Tsinakos, Avgoustos; Kazanidis, Ioannis
2018-01-01
Augmented Reality (AR) has been used in various contexts in recent years in order to enhance user experiences in mobile and wearable devices. Various studies have shown the utility of AR, especially in the field of education, where it has been observed that learning results are improved. However, such applications require specialized teams of…
Evaluating a Web-Based Video Corpus through an Analysis of User Interactions
ERIC Educational Resources Information Center
Caws, Catherine G.
2013-01-01
As shown by several studies, successful integration of technology in language learning requires a holistic approach in order to scientifically understand what learners do when working with web-based technology (cf. Raby, 2007). Additionally, a growing body of research in computer assisted language learning (CALL) evaluation, design and…
Affective Experiences of International and Home Students during the Information Search Process
ERIC Educational Resources Information Center
Haley, Adele Nicole; Clough, Paul
2017-01-01
An increasing number of students are studying abroad requiring that they interact with information in languages other than their mother tongue. The UK in particular has seen a large growth in international students within Higher Education. These nonnative English speaking students present a distinct user group for university information services,…
Mental rotation of tactile stimuli: using directional haptic cues in mobile devices.
Gleeson, Brian T; Provancher, William R
2013-01-01
Haptic interfaces have the potential to enrich users' interactions with mobile devices and convey information without burdening the user's visual or auditory attention. Haptic stimuli with directional content, for example, navigational cues, may be difficult to use in handheld applications; the user's hand, where the cues are delivered, may not be aligned with the world, where the cues are to be interpreted. In such a case, the user would be required to mentally transform the stimuli between different reference frames. We examine the mental rotation of directional haptic stimuli in three experiments, investigating: 1) users' intuitive interpretation of rotated stimuli, 2) mental rotation of haptic stimuli about a single axis, and 3) rotation about multiple axes and the effects of specific hand poses and joint rotations. We conclude that directional haptic stimuli are suitable for use in mobile applications, although users do not naturally interpret rotated stimuli in any one universal way. We find evidence of cognitive processes involving the rotation of analog, spatial representations and discuss how our results fit into the larger body of mental rotation research. For small angles (e.g., less than 40 degree), these mental rotations come at little cost, but rotations with larger misalignment angles impact user performance. When considering the design of a handheld haptic device, our results indicate that hand pose must be carefully considered, as certain poses increase the difficulty of stimulus interpretation. Generally, all tested joint rotations impact task difficulty, but finger flexion and wrist rotation interact to greatly increase the cost of stimulus interpretation; such hand poses should be avoided when designing a haptic interface.
iCanPlot: Visual Exploration of High-Throughput Omics Data Using Interactive Canvas Plotting
Sinha, Amit U.; Armstrong, Scott A.
2012-01-01
Increasing use of high throughput genomic scale assays requires effective visualization and analysis techniques to facilitate data interpretation. Moreover, existing tools often require programming skills, which discourages bench scientists from examining their own data. We have created iCanPlot, a compelling platform for visual data exploration based on the latest technologies. Using the recently adopted HTML5 Canvas element, we have developed a highly interactive tool to visualize tabular data and identify interesting patterns in an intuitive fashion without the need of any specialized computing skills. A module for geneset overlap analysis has been implemented on the Google App Engine platform: when the user selects a region of interest in the plot, the genes in the region are analyzed on the fly. The visualization and analysis are amalgamated for a seamless experience. Further, users can easily upload their data for analysis—which also makes it simple to share the analysis with collaborators. We illustrate the power of iCanPlot by showing an example of how it can be used to interpret histone modifications in the context of gene expression. PMID:22393367
Air Markets Program Data (AMPD)
The Air Markets Program Data tool allows users to search EPA data to answer scientific, general, policy, and regulatory questions about industry emissions. Air Markets Program Data (AMPD) is a web-based application that allows users easy access to both current and historical data collected as part of EPA's emissions trading programs. This site allows you to create and view reports and to download emissions data for further analysis. AMPD provides a query tool so users can create custom queries of industry source emissions data, allowance data, compliance data, and facility attributes. In addition, AMPD provides interactive maps, charts, reports, and pre-packaged datasets. AMPD does not require any additional software, plug-ins, or security controls and can be accessed using a standard web browser.
Automatic programming of simulation models
NASA Technical Reports Server (NTRS)
Schroer, Bernard J.; Tseng, Fan T.; Zhang, Shou X.; Dwan, Wen S.
1990-01-01
The concepts of software engineering were used to improve the simulation modeling environment. Emphasis was placed on the application of an element of rapid prototyping, or automatic programming, to assist the modeler define the problem specification. Then, once the problem specification has been defined, an automatic code generator is used to write the simulation code. The following two domains were selected for evaluating the concepts of software engineering for discrete event simulation: manufacturing domain and a spacecraft countdown network sequence. The specific tasks were to: (1) define the software requirements for a graphical user interface to the Automatic Manufacturing Programming System (AMPS) system; (2) develop a graphical user interface for AMPS; and (3) compare the AMPS graphical interface with the AMPS interactive user interface.
NASA Technical Reports Server (NTRS)
1975-01-01
Image data processing system (IDAPS) developed to satisfy the image processing requirements of the Skylab S-056 experiment is described. The S-056 experiment was designed to obtain high-resolution photographs of the sun in the far ultraviolet, or soft X-ray, portion of the electromagnetic spectrum. Thirty-five thousand photographs were obtained by the three flights of the program; and, faced with such a massive volume of imagery, the designers of the experiment decided to develop a computer-based system which would reduce the image processing workload. The purpose of the IDAPS User Manual is to give the IDAPS user the necessary information and instructions to effectively utilize the system.
Energy Efficiency in Public Buildings through Context-Aware Social Computing.
García, Óscar; Alonso, Ricardo S; Prieto, Javier; Corchado, Juan M
2017-04-11
The challenge of promoting behavioral changes in users that leads to energy savings in public buildings has become a complex task requiring the involvement of multiple technologies. Wireless sensor networks have a great potential for the development of tools, such as serious games, that encourage acquiring good energy and healthy habits among users in the workplace. This paper presents the development of a serious game using CAFCLA, a framework that allows for integrating multiple technologies, which provide both context-awareness and social computing. Game development has shown that the data provided by sensor networks encourage users to reduce energy consumption in their workplace and that social interactions and competitiveness allow for accelerating the achievement of good results and behavioral changes that favor energy savings.
Studying the co-evolution of protein families with the Mirrortree web server.
Ochoa, David; Pazos, Florencio
2010-05-15
The Mirrortree server allows to graphically and interactively study the co-evolution of two protein families, and investigate their possible interactions and functional relationships in a taxonomic context. The server includes the possibility of starting from single sequences and hence it can be used by non-expert users. The web server is freely available at http://csbg.cnb.csic.es/mtserver. It was tested in the main web browsers. Adobe Flash Player is required at the client side to perform the interactive assessment of co-evolution. pazos@cnb.csic.es Supplementary data are available at Bioinformatics online.
Interactive target tracking for persistent wide-area surveillance
NASA Astrophysics Data System (ADS)
Ersoy, Ilker; Palaniappan, Kannappan; Seetharaman, Guna S.; Rao, Raghuveer M.
2012-06-01
Persistent aerial surveillance is an emerging technology that can provide continuous, wide-area coverage from an aircraft-based multiple-camera system. Tracking targets in these data sets is challenging for vision algorithms due to large data (several terabytes), very low frame rate, changing viewpoint, strong parallax and other imperfections due to registration and projection. Providing an interactive system for automated target tracking also has additional challenges that require online algorithms that are seamlessly integrated with interactive visualization tools to assist the user. We developed an algorithm that overcomes these challenges and demonstrated it on data obtained from a wide-area imaging platform.
Interactive real-time media streaming with reliable communication
NASA Astrophysics Data System (ADS)
Pan, Xunyu; Free, Kevin M.
2014-02-01
Streaming media is a recent technique for delivering multimedia information from a source provider to an end- user over the Internet. The major advantage of this technique is that the media player can start playing a multimedia file even before the entire file is transmitted. Most streaming media applications are currently implemented based on the client-server architecture, where a server system hosts the media file and a client system connects to this server system to download the file. Although the client-server architecture is successful in many situations, it may not be ideal to rely on such a system to provide the streaming service as users may be required to register an account using personal information in order to use the service. This is troublesome if a user wishes to watch a movie simultaneously while interacting with a friend in another part of the world over the Internet. In this paper, we describe a new real-time media streaming application implemented on a peer-to-peer (P2P) architecture in order to overcome these challenges within a mobile environment. When using the peer-to-peer architecture, streaming media is shared directly between end-users, called peers, with minimal or no reliance on a dedicated server. Based on the proposed software pɛvμa (pronounced [revma]), named for the Greek word meaning stream, we can host a media file on any computer and directly stream it to a connected partner. To accomplish this, pɛvμa utilizes the Microsoft .NET Framework and Windows Presentation Framework, which are widely available on various types of windows-compatible personal computers and mobile devices. With specially designed multi-threaded algorithms, the application can stream HD video at speeds upwards of 20 Mbps using the User Datagram Protocol (UDP). Streaming and playback are handled using synchronized threads that communicate with one another once a connection is established. Alteration of playback, such as pausing playback or tracking to a different spot in the media file, will be reflected in all media streams. These techniques are designed to allow users at different locations to simultaneously view a full length HD video and interactively control the media streaming session. To create a sustainable media stream with high quality, our system supports UDP packet loss recovery at high transmission speed using custom File- Buffers. Traditional real-time streaming protocols such as Real-time Transport Protocol/RTP Control Protocol (RTP/RTCP) provide no such error recovery mechanism. Finally, the system also features an Instant Messenger that allows users to perform social interactions with one another while they enjoy a media file. The ultimate goal of the application is to offer users a hassle free way to watch a media file over long distances without having to upload any personal information into a third party database. Moreover, the users can communicate with each other and stream media directly from one mobile device to another while maintaining an independence from traditional sign up required by most streaming services.
Web Mapping for Promoting Interaction and Collaboration in Community Land Planning
NASA Astrophysics Data System (ADS)
Veenendaal, B.; Dhliwayo, M.
2013-10-01
There is an inherent advantage of geographic information Systems (GIS) and mapping in facilitating dialogue between experts and non-experts during land use plan development. Combining visual mapping information and effective user interaction can result in considerable benefits for developing countries like Botswana. Although the adoption of information and communication technologies has lagged behind that for developed countries, initiatives by the Botswana government in providing suitable information infrastructures, including internet and web based communications, are enabling multiple users to interact and collaborate in community land planning. A web mapping application was developed for the Maun Development Plan (MDP) in the Okavango Delta region in Botswana. It was designed according to requirements of land planners and managers and implemented using ArcGIS Viewer for Flex. Land planners and managers from two organisations in Maun involved in the development of the MDP were asked to evaluate the web mapping tools. This paper describes the results of implementation and some preliminary results of the web mapping evaluation.
Mirel, Barbara; Eichinger, Felix; Keller, Benjamin J; Kretzler, Matthias
2011-03-21
Bioinformatics visualization tools are often not robust enough to support biomedical specialists’ complex exploratory analyses. Tools need to accommodate the workflows that scientists actually perform for specific translational research questions. To understand and model one of these workflows, we conducted a case-based, cognitive task analysis of a biomedical specialist’s exploratory workflow for the question: What functional interactions among gene products of high throughput expression data suggest previously unknown mechanisms of a disease? From our cognitive task analysis four complementary representations of the targeted workflow were developed. They include: usage scenarios, flow diagrams, a cognitive task taxonomy, and a mapping between cognitive tasks and user-centered visualization requirements. The representations capture the flows of cognitive tasks that led a biomedical specialist to inferences critical to hypothesizing. We created representations at levels of detail that could strategically guide visualization development, and we confirmed this by making a trial prototype based on user requirements for a small portion of the workflow. Our results imply that visualizations should make available to scientific users “bundles of features†consonant with the compositional cognitive tasks purposefully enacted at specific points in the workflow. We also highlight certain aspects of visualizations that: (a) need more built-in flexibility; (b) are critical for negotiating meaning; and (c) are necessary for essential metacognitive support.
Guidelines for developing distributed virtual environment applications
NASA Astrophysics Data System (ADS)
Stytz, Martin R.; Banks, Sheila B.
1998-08-01
We have conducted a variety of projects that served to investigate the limits of virtual environments and distributed virtual environment (DVE) technology for the military and medical professions. The projects include an application that allows the user to interactively explore a high-fidelity, dynamic scale model of the Solar System and a high-fidelity, photorealistic, rapidly reconfigurable aircraft simulator. Additional projects are a project for observing, analyzing, and understanding the activity in a military distributed virtual environment, a project to develop a distributed threat simulator for training Air Force pilots, a virtual spaceplane to determine user interface requirements for a planned military spaceplane system, and an automated wingman for use in supplementing or replacing human-controlled systems in a DVE. The last two projects are a virtual environment user interface framework; and a project for training hospital emergency department personnel. In the process of designing and assembling the DVE applications in support of these projects, we have developed rules of thumb and insights into assembling DVE applications and the environment itself. In this paper, we open with a brief review of the applications that were the source for our insights and then present the lessons learned as a result of these projects. The lessons we have learned fall primarily into five areas. These areas are requirements development, software architecture, human-computer interaction, graphical database modeling, and construction of computer-generated forces.
User Interactive Software for Analysis of Human Physiological Data
NASA Technical Reports Server (NTRS)
Cowings, Patricia S.; Toscano, William; Taylor, Bruce C.; Acharya, Soumydipta
2006-01-01
Ambulatory physiological monitoring has been used to study human health and performance in space and in a variety of Earth-based environments (e.g., military aircraft, armored vehicles, small groups in isolation, and patients). Large, multi-channel data files are typically recorded in these environments, and these files often require the removal of contaminated data prior to processing and analyses. Physiological data processing can now be performed with user-friendly, interactive software developed by the Ames Psychophysiology Research Laboratory. This software, which runs on a Windows platform, contains various signal-processing routines for both time- and frequency- domain data analyses (e.g., peak detection, differentiation and integration, digital filtering, adaptive thresholds, Fast Fourier Transform power spectrum, auto-correlation, etc.). Data acquired with any ambulatory monitoring system that provides text or binary file format are easily imported to the processing software. The application provides a graphical user interface where one can manually select and correct data artifacts utilizing linear and zero interpolation and adding trigger points for missed peaks. Block and moving average routines are also provided for data reduction. Processed data in numeric and graphic format can be exported to Excel. This software, PostProc (for post-processing) requires the Dadisp engineering spreadsheet (DSP Development Corp), or equivalent, for implementation. Specific processing routines were written for electrocardiography, electroencephalography, electromyography, blood pressure, skin conductance level, impedance cardiography (cardiac output, stroke volume, thoracic fluid volume), temperature, and respiration
How to Develop a User Interface That Your Real Users Will Love
ERIC Educational Resources Information Center
Phillips, Donald
2012-01-01
A "user interface" is the part of an interactive system that bridges the user and the underlying functionality of the system. But people sometimes forget that the best interfaces will provide a platform to optimize the users' interactions so that they support and extend the users' activities in effective, useful, and usable ways. To look at it…
Fonseca, Luciana Mara Monti; Dias, Danielle Monteiro Vilela; Góes, Fernanda Dos Santos Nogueira; Seixas, Carlos Alberto; Scochi, Carmen Gracinda Silvan; Martins, José Carlos Amado; Rodrigues, Manuel Alves
2014-09-01
The present study aimed to describe the development process of a serious game that enables users to evaluate the respiratory process in a preterm infant based on an emotional design model. The e-Baby serious game was built to feature the simulated environment of an incubator, in which the user performs a clinical evaluation of the respiratory process in a virtual preterm infant. The user learns about the preterm baby's history, chooses the tools for the clinical evaluation, evaluates the baby, and determines whether his/her evaluation is appropriate. The e-Baby game presents phases that contain respiratory process impairments of higher or lower complexity in the virtual preterm baby. Included links give the user the option of recording the entire evaluation procedure and sharing his/her performance on a social network. e-Baby integrates a Clinical Evaluation of the Preterm Baby course in the Moodle virtual environment. This game, which evaluates the respiratory process in preterm infants, could support a more flexible, attractive, and interactive teaching and learning process that includes simulations with features very similar to neonatal unit realities, thus allowing more appropriate training for clinical oxygenation evaluations in at-risk preterm infants. e-Baby allows advanced user-technology-educational interactions because it requires active participation in the process and is emotionally integrated.
BigDebug: Debugging Primitives for Interactive Big Data Processing in Spark
Gulzar, Muhammad Ali; Interlandi, Matteo; Yoo, Seunghyun; Tetali, Sai Deep; Condie, Tyson; Millstein, Todd; Kim, Miryung
2016-01-01
Developers use cloud computing platforms to process a large quantity of data in parallel when developing big data analytics. Debugging the massive parallel computations that run in today’s data-centers is time consuming and error-prone. To address this challenge, we design a set of interactive, real-time debugging primitives for big data processing in Apache Spark, the next generation data-intensive scalable cloud computing platform. This requires re-thinking the notion of step-through debugging in a traditional debugger such as gdb, because pausing the entire computation across distributed worker nodes causes significant delay and naively inspecting millions of records using a watchpoint is too time consuming for an end user. First, BIGDEBUG’s simulated breakpoints and on-demand watchpoints allow users to selectively examine distributed, intermediate data on the cloud with little overhead. Second, a user can also pinpoint a crash-inducing record and selectively resume relevant sub-computations after a quick fix. Third, a user can determine the root causes of errors (or delays) at the level of individual records through a fine-grained data provenance capability. Our evaluation shows that BIGDEBUG scales to terabytes and its record-level tracing incurs less than 25% overhead on average. It determines crash culprits orders of magnitude more accurately and provides up to 100% time saving compared to the baseline replay debugger. The results show that BIGDEBUG supports debugging at interactive speeds with minimal performance impact. PMID:27390389
A Digital Repository and Execution Platform for Interactive Scholarly Publications in Neuroscience.
Hodge, Victoria; Jessop, Mark; Fletcher, Martyn; Weeks, Michael; Turner, Aaron; Jackson, Tom; Ingram, Colin; Smith, Leslie; Austin, Jim
2016-01-01
The CARMEN Virtual Laboratory (VL) is a cloud-based platform which allows neuroscientists to store, share, develop, execute, reproduce and publicise their work. This paper describes new functionality in the CARMEN VL: an interactive publications repository. This new facility allows users to link data and software to publications. This enables other users to examine data and software associated with the publication and execute the associated software within the VL using the same data as the authors used in the publication. The cloud-based architecture and SaaS (Software as a Service) framework allows vast data sets to be uploaded and analysed using software services. Thus, this new interactive publications facility allows others to build on research results through reuse. This aligns with recent developments by funding agencies, institutions, and publishers with a move to open access research. Open access provides reproducibility and verification of research resources and results. Publications and their associated data and software will be assured of long-term preservation and curation in the repository. Further, analysing research data and the evaluations described in publications frequently requires a number of execution stages many of which are iterative. The VL provides a scientific workflow environment to combine software services into a processing tree. These workflows can also be associated with publications and executed by users. The VL also provides a secure environment where users can decide the access rights for each resource to ensure copyright and privacy restrictions are met.
Analyzing microtomography data with Python and the scikit-image library.
Gouillart, Emmanuelle; Nunez-Iglesias, Juan; van der Walt, Stéfan
2017-01-01
The exploration and processing of images is a vital aspect of the scientific workflows of many X-ray imaging modalities. Users require tools that combine interactivity, versatility, and performance. scikit-image is an open-source image processing toolkit for the Python language that supports a large variety of file formats and is compatible with 2D and 3D images. The toolkit exposes a simple programming interface, with thematic modules grouping functions according to their purpose, such as image restoration, segmentation, and measurements. scikit-image users benefit from a rich scientific Python ecosystem that contains many powerful libraries for tasks such as visualization or machine learning. scikit-image combines a gentle learning curve, versatile image processing capabilities, and the scalable performance required for the high-throughput analysis of X-ray imaging data.
Tabletop computed lighting for practical digital photography.
Mohan, Ankit; Bailey, Reynold; Waite, Jonathan; Tumblin, Jack; Grimm, Cindy; Bodenheimer, Bobby
2007-01-01
We apply simplified image-based lighting methods to reduce the equipment, cost, time, and specialized skills required for high-quality photographic lighting of desktop-sized static objects such as museum artifacts. We place the object and a computer-steered moving-head spotlight inside a simple foam-core enclosure and use a camera to record photos as the light scans the box interior. Optimization, guided by interactive user sketching, selects a small set of these photos whose weighted sum best matches the user-defined target sketch. Unlike previous image-based relighting efforts, our method requires only a single area light source, yet it can achieve high-resolution light positioning to avoid multiple sharp shadows. A reduced version uses only a handheld light and may be suitable for battery-powered field photography equipment that fits into a backpack.
On the utility of 3D hand cursors to explore medical volume datasets with a touchless interface.
Lopes, Daniel Simões; Parreira, Pedro Duarte de Figueiredo; Paulo, Soraia Figueiredo; Nunes, Vitor; Rego, Paulo Amaral; Neves, Manuel Cassiano; Rodrigues, Pedro Silva; Jorge, Joaquim Armando
2017-08-01
Analyzing medical volume datasets requires interactive visualization so that users can extract anatomo-physiological information in real-time. Conventional volume rendering systems rely on 2D input devices, such as mice and keyboards, which are known to hamper 3D analysis as users often struggle to obtain the desired orientation that is only achieved after several attempts. In this paper, we address which 3D analysis tools are better performed with 3D hand cursors operating on a touchless interface comparatively to a 2D input devices running on a conventional WIMP interface. The main goals of this paper are to explore the capabilities of (simple) hand gestures to facilitate sterile manipulation of 3D medical data on a touchless interface, without resorting on wearables, and to evaluate the surgical feasibility of the proposed interface next to senior surgeons (N=5) and interns (N=2). To this end, we developed a touchless interface controlled via hand gestures and body postures to rapidly rotate and position medical volume images in three-dimensions, where each hand acts as an interactive 3D cursor. User studies were conducted with laypeople, while informal evaluation sessions were carried with senior surgeons, radiologists and professional biomedical engineers. Results demonstrate its usability as the proposed touchless interface improves spatial awareness and a more fluent interaction with the 3D volume than with traditional 2D input devices, as it requires lesser number of attempts to achieve the desired orientation by avoiding the composition of several cumulative rotations, which is typically necessary in WIMP interfaces. However, tasks requiring precision such as clipping plane visualization and tagging are best performed with mouse-based systems due to noise, incorrect gestures detection and problems in skeleton tracking that need to be addressed before tests in real medical environments might be performed. Copyright © 2017 Elsevier Inc. All rights reserved.
Enhancement/upgrade of Engine Structures Technology Best Estimator (EST/BEST) Software System
NASA Technical Reports Server (NTRS)
Shah, Ashwin
2003-01-01
This report describes the work performed during the contract period and the capabilities included in the EST/BEST software system. The developed EST/BEST software system includes the integrated NESSUS, IPACS, COBSTRAN, and ALCCA computer codes required to perform the engine cycle mission and component structural analysis. Also, the interactive input generator for NESSUS, IPACS, and COBSTRAN computer codes have been developed and integrated with the EST/BEST software system. The input generator allows the user to create input from scratch as well as edit existing input files interactively. Since it has been integrated with the EST/BEST software system, it enables the user to modify EST/BEST generated files and perform the analysis to evaluate the benefits. Appendix A gives details of how to use the newly added features in the EST/BEST software system.
MemAxes: Visualization and Analytics for Characterizing Complex Memory Performance Behaviors.
Gimenez, Alfredo; Gamblin, Todd; Jusufi, Ilir; Bhatele, Abhinav; Schulz, Martin; Bremer, Peer-Timo; Hamann, Bernd
2018-07-01
Memory performance is often a major bottleneck for high-performance computing (HPC) applications. Deepening memory hierarchies, complex memory management, and non-uniform access times have made memory performance behavior difficult to characterize, and users require novel, sophisticated tools to analyze and optimize this aspect of their codes. Existing tools target only specific factors of memory performance, such as hardware layout, allocations, or access instructions. However, today's tools do not suffice to characterize the complex relationships between these factors. Further, they require advanced expertise to be used effectively. We present MemAxes, a tool based on a novel approach for analytic-driven visualization of memory performance data. MemAxes uniquely allows users to analyze the different aspects related to memory performance by providing multiple visual contexts for a centralized dataset. We define mappings of sampled memory access data to new and existing visual metaphors, each of which enabling a user to perform different analysis tasks. We present methods to guide user interaction by scoring subsets of the data based on known performance problems. This scoring is used to provide visual cues and automatically extract clusters of interest. We designed MemAxes in collaboration with experts in HPC and demonstrate its effectiveness in case studies.
Mishra, Dheerendra; Mukhopadhyay, Sourav; Kumari, Saru; Khan, Muhammad Khurram; Chaturvedi, Ankita
2014-05-01
Telecare medicine information systems (TMIS) present the platform to deliver clinical service door to door. The technological advances in mobile computing are enhancing the quality of healthcare and a user can access these services using its mobile device. However, user and Telecare system communicate via public channels in these online services which increase the security risk. Therefore, it is required to ensure that only authorized user is accessing the system and user is interacting with the correct system. The mutual authentication provides the way to achieve this. Although existing schemes are either vulnerable to attacks or they have higher computational cost while an scalable authentication scheme for mobile devices should be secure and efficient. Recently, Awasthi and Srivastava presented a biometric based authentication scheme for TMIS with nonce. Their scheme only requires the computation of the hash and XOR functions.pagebreak Thus, this scheme fits for TMIS. However, we observe that Awasthi and Srivastava's scheme does not achieve efficient password change phase. Moreover, their scheme does not resist off-line password guessing attack. Further, we propose an improvement of Awasthi and Srivastava's scheme with the aim to remove the drawbacks of their scheme.
Accessing Earth science data from the EOS data and information system
NASA Technical Reports Server (NTRS)
Mcdonald, Kenneth R.; Calvo, Sherri
1993-01-01
An overview of the Earth Observing System Data and Information System (EOSDIS) is presented, concentrating on the users' interactions with the system and highlighting those features that are driven by the unique requirements of the Global Change Research Program and the supported science community. However, a basic premise of the EOSDIS is that the system must evolve to meet changes in user needs and to incorporate advances in data system technology. Therefore, the development process which is being used to accommodate these changes and some of the potential areas of change are also addressed.
A study of Minnesota land and water resources using remote sensing, volume 13
NASA Technical Reports Server (NTRS)
1980-01-01
Progress in the use of LANDSAT data to classify wetlands in the Upper Mississippi River Valley and efforts to evaluate stress in corn and soybean crops are described. Satellite remote sensing data was used to measure particle concentrations in Lake Superior and several different kinds of remote sensing data were synergistically combined in order to identify near surface bedrock in Minnesota. Data analysis techniques which separate those activities requiring extensive computing form those involving a great deal of user interaction were developed to allow the latter to be done in the user's office or in the field.
Design and evaluation of nonverbal sound-based input for those with motor handicapped.
Punyabukkana, Proadpran; Chanjaradwichai, Supadaech; Suchato, Atiwong
2013-03-01
Most personal computing interfaces rely on the users' ability to use their hand and arm movements to interact with on-screen graphical widgets via mainstream devices, including keyboards and mice. Without proper assistive devices, this style of input poses difficulties for motor-handicapped users. We propose a sound-based input scheme enabling users to operate Windows' Graphical User Interface by producing hums and fricatives through regular microphones. Hierarchically arranged menus are utilized so that only minimal numbers of different actions are required at a time. The proposed scheme was found to be accurate and capable of responding promptly compared to other sound-based schemes. Being able to select from multiple item-selecting modes helps reducing the average time duration needed for completing tasks in the test scenarios almost by half the time needed when the tasks were performed solely through cursor movements. Still, improvements on facilitating users to select the most appropriate modes for desired tasks should improve the overall usability of the proposed scheme.
Vega-Barbas, Mario; Pau, Iván; Martín-Ruiz, María Luisa; Seoane, Fernando
2015-01-01
Smart spaces foster the development of natural and appropriate forms of human-computer interaction by taking advantage of home customization. The interaction potential of the Smart Home, which is a special type of smart space, is of particular interest in fields in which the acceptance of new technologies is limited and restrictive. The integration of smart home design patterns with sensitive solutions can increase user acceptance. In this paper, we present the main challenges that have been identified in the literature for the successful deployment of sensitive services (e.g., telemedicine and assistive services) in smart spaces and a software architecture that models the functionalities of a Smart Home platform that are required to maintain and support such sensitive services. This architecture emphasizes user interaction as a key concept to facilitate the acceptance of sensitive services by end-users and utilizes activity theory to support its innovative design. The application of activity theory to the architecture eases the handling of novel concepts, such as understanding of the system by patients at home or the affordability of assistive services. Finally, we provide a proof-of-concept implementation of the architecture and compare the results with other architectures from the literature. PMID:25815449
Ma, Meng; Fallavollita, Pascal; Habert, Séverine; Weidert, Simon; Navab, Nassir
2016-06-01
In the modern day operating room, the surgeon performs surgeries with the support of different medical systems that showcase patient information, physiological data, and medical images. It is generally accepted that numerous interactions must be performed by the surgical team to control the corresponding medical system to retrieve the desired information. Joysticks and physical keys are still present in the operating room due to the disadvantages of mouses, and surgeons often communicate instructions to the surgical team when requiring information from a specific medical system. In this paper, a novel user interface is developed that allows the surgeon to personally perform touchless interaction with the various medical systems, switch effortlessly among them, all of this without modifying the systems' software and hardware. To achieve this, a wearable RGB-D sensor is mounted on the surgeon's head for inside-out tracking of his/her finger with any of the medical systems' displays. Android devices with a special application are connected to the computers on which the medical systems are running, simulating a normal USB mouse and keyboard. When the surgeon performs interaction using pointing gestures, the desired cursor position in the targeted medical system display, and gestures, are transformed into general events and then sent to the corresponding Android device. Finally, the application running on the Android devices generates the corresponding mouse or keyboard events according to the targeted medical system. To simulate an operating room setting, our unique user interface was tested by seven medical participants who performed several interactions with the visualization of CT, MRI, and fluoroscopy images at varying distances from them. Results from the system usability scale and NASA-TLX workload index indicated a strong acceptance of our proposed user interface.
NASA Astrophysics Data System (ADS)
Stephens, S. H.; DeLorme, D.
2017-12-01
To make scientific information useful and usable to audiences, communicators must understand audience needs, expectations, and future applications. This presentation synthesizes benefits, challenges, and best practices resulting from a qualitative social science interview study of nine professionals on their experiences developing interactive visualization tools for communicating about coastal environmental risks. Online interactive risk visualization tools, such as flooding maps, are used to provide scientific information about the impacts of coastal hazards. These tools have a wide range of audiences and purposes, including time-sensitive emergency communication, infrastructure and natural resource planning, and simply starting a community conversation about risks. Thus, the science, purposes, and audiences of these tools require a multifaceted communication strategy. In order to make these tools useable and accepted by their audiences, many professional development teams solicit target end-user input or incorporate formal user-centered design into the development process. This presentation will share results of seven interviews with developers of U.S. interactive coastal risk communication tools, ranging from state-level to international in scope. Specific techniques and procedures for audience input that were used in these projects will be discussed, including ad-hoc conversations with users, iterative usability testing with project stakeholder groups, and other participatory mechanisms. The presentation will then focus on benefits, challenges, and recommendations for best practice that the interviewees disclosed about including audiences in their development projects. Presentation attendees will gain an understanding of different procedures and techniques that professionals employ to involve end-users in risk tool development projects, as well as important considerations and recommendations for effectively involving audiences in science communication design.
Software design for analysis of multichannel intracardial and body surface electrocardiograms.
Potse, Mark; Linnenbank, André C; Grimbergen, Cornelis A
2002-11-01
Analysis of multichannel ECG recordings (body surface maps (BSMs) and intracardial maps) requires special software. We created a software package and a user interface on top of a commercial data analysis package (MATLAB) by a combination of high-level and low-level programming. Our software was created to satisfy the needs of a diverse group of researchers. It can handle a large variety of recording configurations. It allows for interactive usage through a fast and robust user interface, and batch processing for the analysis of large amounts of data. The package is user-extensible, includes routines for both common and experimental data processing tasks, and works on several computer platforms. The source code is made intelligible using software for structured documentation and is available to the users. The package is currently used by more than ten research groups analysing ECG data worldwide.
ROCOPT: A user friendly interactive code to optimize rocket structural components
NASA Technical Reports Server (NTRS)
Rule, William K.
1989-01-01
ROCOPT is a user-friendly, graphically-interfaced, microcomputer-based computer program (IBM compatible) that optimizes rocket components by minimizing the structural weight. The rocket components considered are ring stiffened truncated cones and cylinders. The applied loading is static, and can consist of any combination of internal or external pressure, axial force, bending moment, and torque. Stress margins are calculated by means of simple closed form strength of material type equations. Stability margins are determined by approximate, orthotropic-shell, closed-form equations. A modified form of Powell's method, in conjunction with a modified form of the external penalty method, is used to determine the minimum weight of the structure subject to stress and stability margin constraints, as well as user input constraints on the structural dimensions. The graphical interface guides the user through the required data prompts, explains program options and graphically displays results for easy interpretation.
TADS: A CFD-based turbomachinery and analysis design system with GUI. Volume 2: User's manual
NASA Technical Reports Server (NTRS)
Myers, R. A.; Topp, D. A.; Delaney, R. A.
1995-01-01
The primary objective of this study was the development of a computational fluid dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a graphical user interface (GUI). The computer codes resulting from this effort are referred to as the Turbomachinery Analysis and Design System (TADS). This document is intended to serve as a user's manual for the computer programs which comprise the TADS system. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of various programs was done in a way that alternative solvers or grid generators could be easily incorporated into the TADS framework.
Interfacing HTCondor-CE with OpenStack
NASA Astrophysics Data System (ADS)
Bockelman, B.; Caballero Bejar, J.; Hover, J.
2017-10-01
Over the past few years, Grid Computing technologies have reached a high level of maturity. One key aspect of this success has been the development and adoption of newer Compute Elements to interface the external Grid users with local batch systems. These new Compute Elements allow for better handling of jobs requirements and a more precise management of diverse local resources. However, despite this level of maturity, the Grid Computing world is lacking diversity in local execution platforms. As Grid Computing technologies have historically been driven by the needs of the High Energy Physics community, most resource providers run the platform (operating system version and architecture) that best suits the needs of their particular users. In parallel, the development of virtualization and cloud technologies has accelerated recently, making available a variety of solutions, both commercial and academic, proprietary and open source. Virtualization facilitates performing computational tasks on platforms not available at most computing sites. This work attempts to join the technologies, allowing users to interact with computing sites through one of the standard Computing Elements, HTCondor-CE, but running their jobs within VMs on a local cloud platform, OpenStack, when needed. The system will re-route, in a transparent way, end user jobs into dynamically-launched VM worker nodes when they have requirements that cannot be satisfied by the static local batch system nodes. Also, once the automated mechanisms are in place, it becomes straightforward to allow an end user to invoke a custom Virtual Machine at the site. This will allow cloud resources to be used without requiring the user to establish a separate account. Both scenarios are described in this work.
Multimodal audio guide for museums and exhibitions
NASA Astrophysics Data System (ADS)
Gebbensleben, Sandra; Dittmann, Jana; Vielhauer, Claus
2006-02-01
In our paper we introduce a new Audio Guide concept for exploring buildings, realms and exhibitions. Actual proposed solutions work in most cases with pre-defined devices, which users have to buy or borrow. These systems often go along with complex technical installations and require a great degree of user training for device handling. Furthermore, the activation of audio commentary related to the exhibition objects is typically based on additional components like infrared, radio frequency or GPS technology. Beside the necessity of installation of specific devices for user location, these approaches often only support automatic activation with no or limited user interaction. Therefore, elaboration of alternative concepts appears worthwhile. Motivated by these aspects, we introduce a new concept based on usage of the visitor's own mobile smart phone. The advantages in our approach are twofold: firstly the Audio Guide can be used in various places without any purchase and extensive installation of additional components in or around the exhibition object. Secondly, the visitors can experience the exhibition on individual tours only by uploading the Audio Guide at a single point of entry, the Audio Guide Service Counter, and keeping it on her or his personal device. Furthermore, since the user usually is quite familiar with the interface of her or his phone and can thus interact with the application device easily. Our technical concept makes use of two general ideas for location detection and activation. Firstly, we suggest an enhanced interactive number based activation by exploiting the visual capabilities of modern smart phones and secondly we outline an active digital audio watermarking approach, where information about objects are transmitted via an analog audio channel.
Wu, Dongrui; Lance, Brent J; Parsons, Thomas D
2013-01-01
Brain-computer interaction (BCI) and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL), active class selection (ACS), and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both k nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing.
Embedded Web Technology: Internet Technology Applied to Real-Time System Control
NASA Technical Reports Server (NTRS)
Daniele, Carl J.
1998-01-01
The NASA Lewis Research Center is developing software tools to bridge the gap between the traditionally non-real-time Internet technology and the real-time, embedded-controls environment for space applications. Internet technology has been expanding at a phenomenal rate. The simple World Wide Web browsers (such as earlier versions of Netscape, Mosaic, and Internet Explorer) that resided on personal computers just a few years ago only enabled users to log into and view a remote computer site. With current browsers, users not only view but also interact with remote sites. In addition, the technology now supports numerous computer platforms (PC's, MAC's, and Unix platforms), thereby providing platform independence.In contrast, the development of software to interact with a microprocessor (embedded controller) that is used to monitor and control a space experiment has generally been a unique development effort. For each experiment, a specific graphical user interface (GUI) has been developed. This procedure works well for a single-user environment. However, the interface for the International Space Station (ISS) Fluids and Combustion Facility will have to enable scientists throughout the world and astronauts onboard the ISS, using different computer platforms, to interact with their experiments in the Fluids and Combustion Facility. Developing a specific GUI for all these users would be cost prohibitive. An innovative solution to this requirement, developed at Lewis, is to use Internet technology, where the general problem of platform independence has already been partially solved, and to leverage this expanding technology as new products are developed. This approach led to the development of the Embedded Web Technology (EWT) program at Lewis, which has the potential to significantly reduce software development costs for both flight and ground software.
Volk, Martin; Lautenbach, Sven; van Delden, Hedwig; Newham, Lachlan T H; Seppelt, Ralf
2010-12-01
This article analyses the benefits and shortcomings of the recently developed decision support systems (DSS) FLUMAGIS, Elbe-DSS, CatchMODS, and MedAction. The analysis elaborates on the following aspects: (i) application area/decision problem, (ii) stakeholder interaction/users involved, (iii) structure of DSS/model structure, (iv) usage of the DSS, and finally (v) most important shortcomings. On the basis of this analysis, we formulate four criteria that we consider essential for the successful use of DSS in landscape and river basin management. The criteria relate to (i) system quality, (ii) user support and user training, (iii) perceived usefulness and (iv) user satisfaction. We can show that the availability of tools and technologies for DSS in landscape and river basin management is good to excellent. However, our investigations indicate that several problems have to be tackled. First of all, data availability and homogenisation, uncertainty analysis and uncertainty propagation and problems with model integration require further attention. Furthermore, the appropriate and methodological stakeholder interaction and the definition of 'what end-users really need and want' have been documented as general shortcomings of all four examples of DSS. Thus, we propose an iterative development process that enables social learning of the different groups involved in the development process, because it is easier to design a DSS for a group of stakeholders who actively participate in an iterative process. We also identify two important lines of further development in DSS: the use of interactive visualization tools and the methodology of optimization to inform scenario elaboration and evaluate trade-offs among environmental measures and management alternatives.
NASA Astrophysics Data System (ADS)
Volk, Martin; Lautenbach, Sven; van Delden, Hedwig; Newham, Lachlan T. H.; Seppelt, Ralf
2010-12-01
This article analyses the benefits and shortcomings of the recently developed decision support systems (DSS) FLUMAGIS, Elbe-DSS, CatchMODS, and MedAction. The analysis elaborates on the following aspects: (i) application area/decision problem, (ii) stakeholder interaction/users involved, (iii) structure of DSS/model structure, (iv) usage of the DSS, and finally (v) most important shortcomings. On the basis of this analysis, we formulate four criteria that we consider essential for the successful use of DSS in landscape and river basin management. The criteria relate to (i) system quality, (ii) user support and user training, (iii) perceived usefulness and (iv) user satisfaction. We can show that the availability of tools and technologies for DSS in landscape and river basin management is good to excellent. However, our investigations indicate that several problems have to be tackled. First of all, data availability and homogenisation, uncertainty analysis and uncertainty propagation and problems with model integration require further attention. Furthermore, the appropriate and methodological stakeholder interaction and the definition of `what end-users really need and want' have been documented as general shortcomings of all four examples of DSS. Thus, we propose an iterative development process that enables social learning of the different groups involved in the development process, because it is easier to design a DSS for a group of stakeholders who actively participate in an iterative process. We also identify two important lines of further development in DSS: the use of interactive visualization tools and the methodology of optimization to inform scenario elaboration and evaluate trade-offs among environmental measures and management alternatives.
Wu, Dongrui; Lance, Brent J.; Parsons, Thomas D.
2013-01-01
Brain-computer interaction (BCI) and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL), active class selection (ACS), and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing. PMID:23437188
Costa, Nuno; Domingues, Patricio; Fdez-Riverola, Florentino; Pereira, António
2014-01-01
Ambient Intelligence promises to transform current spaces into electronic environments that are responsive, assistive and sensitive to human presence. Those electronic environments will be fully populated with dozens, hundreds or even thousands of connected devices that share information and thus become intelligent. That massive wave of electronic devices will also invade everyday objects, turning them into smart entities, keeping their native features and characteristics while seamlessly promoting them to a new class of thinking and reasoning everyday objects. Although there are strong expectations that most of the users' needs can be fulfilled without their intervention, there are still situations where interaction is required. This paper presents work being done in the field of human-computer interaction, focusing on smart home environments, while being a part of a larger project called Aging Inside a Smart Home. This initiative arose as a way to deal with a large scourge of our country, where lots of elderly persons live alone in their homes, often with limited or no physical mobility. The project relies on the mobile agent computing paradigm in order to create a Virtual Butler that provides the interface between the elderly and the smart home infrastructure. The Virtual Butler is receptive to user questions, answering them according to the context and knowledge of the AISH. It is also capable of interacting with the user whenever it senses that something has gone wrong, notifying next of kin and/or medical services, etc. The Virtual Butler is aware of the user location and moves to the computing device which is closest to the user, in order to be always present. Its avatar can also run in handheld devices keeping its main functionality in order to track user when s/he goes out. According to the evaluation carried out, the Virtual Butler is assessed as a very interesting and loved digital friend, filling the gap between the user and the smart home. The evaluation also showed that the Virtual Butler concept can be easily ported to other types of possible smart and assistive environments like airports, hospitals, shopping malls, offices, etc. PMID:25102342
Costa, Nuno; Domingues, Patricio; Fdez-Riverola, Florentino; Pereira, António
2014-08-06
Ambient Intelligence promises to transform current spaces into electronic environments that are responsive, assistive and sensitive to human presence. Those electronic environments will be fully populated with dozens, hundreds or even thousands of connected devices that share information and thus become intelligent. That massive wave of electronic devices will also invade everyday objects, turning them into smart entities, keeping their native features and characteristics while seamlessly promoting them to a new class of thinking and reasoning everyday objects. Although there are strong expectations that most of the users' needs can be fulfilled without their intervention, there are still situations where interaction is required. This paper presents work being done in the field of human-computer interaction, focusing on smart home environments, while being a part of a larger project called Aging Inside a Smart Home. This initiative arose as a way to deal with a large scourge of our country, where lots of elderly persons live alone in their homes, often with limited or no physical mobility. The project relies on the mobile agent computing paradigm in order to create a Virtual Butler that provides the interface between the elderly and the smart home infrastructure. The Virtual Butler is receptive to user questions, answering them according to the context and knowledge of the AISH. It is also capable of interacting with the user whenever it senses that something has gone wrong, notifying next of kin and/or medical services, etc. The Virtual Butler is aware of the user location and moves to the computing device which is closest to the user, in order to be always present. Its avatar can also run in handheld devices keeping its main functionality in order to track user when s/he goes out. According to the evaluation carried out, the Virtual Butler is assessed as a very interesting and loved digital friend, filling the gap between the user and the smart home. The evaluation also showed that the Virtual Butler concept can be easily ported to other types of possible smart and assistive environments like airports, hospitals, shopping malls, offices, etc.
Development of Web Interfaces for Analysis Codes
NASA Astrophysics Data System (ADS)
Emoto, M.; Watanabe, T.; Funaba, H.; Murakami, S.; Nagayama, Y.; Kawahata, K.
Several codes have been developed to analyze plasma physics. However, most of them are developed to run on supercomputers. Therefore, users who typically use personal computers (PCs) find it difficult to use these codes. In order to facilitate the widespread use of these codes, a user-friendly interface is required. The authors propose Web interfaces for these codes. To demonstrate the usefulness of this approach, the authors developed Web interfaces for two analysis codes. One of them is for FIT developed by Murakami. This code is used to analyze the NBI heat deposition, etc. Because it requires electron density profiles, electron temperatures, and ion temperatures as polynomial expressions, those unfamiliar with the experiments find it difficult to use this code, especially visitors from other institutes. The second one is for visualizing the lines of force in the LHD (large helical device) developed by Watanabe. This code is used to analyze the interference caused by the lines of force resulting from the various structures installed in the vacuum vessel of the LHD. This code runs on PCs; however, it requires that the necessary parameters be edited manually. Using these Web interfaces, users can execute these codes interactively.
Ribu, Kirsten; Patel, Tulpesh
2016-01-01
People with development disorders, for instance autism, need structured plans to help create predictability in their daily lives. Digital plans can facilitate enhanced independency, learning, and quality of life, but existing apps are largely general purpose and lack the flexibility required by this specific but heterogeneous user group. Universal design is both a goal and a process and should be based on a holistic approach and user-centered design, interacting with the users in all stages of the development process. At Oslo and Akershus University College (HiOA) we conducted a research-based teaching project in co-operation with the Department of Neuro-habilitation at Oslo University Hospital (OUS) with two employees acting as project managers and students as developers. Three groups of Computer Science bachelor students developed digital prototypes for a planning tool for young adults with pervasive development disorders, who live either with their families or in supervised residences, and do not receive extensive public services. The students conducted the initial planning phase of the software development process, focusing on prototyping the system requirements, whilst a professional software company programmed the end solution. The goal of the project was to develop flexible and adaptive user-oriented and user-specific app solutions for tablets that can aid this diverse user group in structuring daily life, whereby, for example, photos of objects and places known to the individual user replace general pictures or drawings, and checklists can be elaborate or sparse as necessary. The three student groups worked independently of each other and created interactive working prototypes based on tests, observations and short interviews with end users (both administrators and residents) and regular user feedback from the project managers. Three very different solutions were developed that were of high enough quality that an external software company were able to continue the work and create a beta version of the app. The first phase in software development process is always challenging and time consuming. Using a research-based teaching approach allowed us to not only save time and expense in the development phase, but, importantly, allowed us to thoroughly investigate a variety of aspects of the problem to create an accessible solution, whilst leveraging our students' knowledge, competencies and creativity. The next stage will be to evaluate the beta version of the app and study its impact on the user's quality of life. Although the end solution is designed for a specific user group, the built-in flexibility of its structure and function means there is the inherent potential to open it up to all users. The universal benefit lies in the flexibility of the solution.
Optimization Model for Web Based Multimodal Interactive Simulations.
Halic, Tansel; Ahn, Woojin; De, Suvranu
2015-07-15
This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update . In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Song
CFD (Computational Fluid Dynamics) is a widely used technique in engineering design field. It uses mathematical methods to simulate and predict flow characteristics in a certain physical space. Since the numerical result of CFD computation is very hard to understand, VR (virtual reality) and data visualization techniques are introduced into CFD post-processing to improve the understandability and functionality of CFD computation. In many cases CFD datasets are very large (multi-gigabytes), and more and more interactions between user and the datasets are required. For the traditional VR application, the limitation of computing power is a major factor to prevent visualizing largemore » dataset effectively. This thesis presents a new system designing to speed up the traditional VR application by using parallel computing and distributed computing, and the idea of using hand held device to enhance the interaction between a user and VR CFD application as well. Techniques in different research areas including scientific visualization, parallel computing, distributed computing and graphical user interface designing are used in the development of the final system. As the result, the new system can flexibly be built on heterogeneous computing environment, dramatically shorten the computation time.« less
Priority scheme planning for the robust SSM/PMAD testbed
NASA Technical Reports Server (NTRS)
Elges, Michael R.; Ashworth, Barry R.
1991-01-01
Whenever mixing priorities of manually controlled resources with those of autonomously controlled resources, the space station module power management and distribution (SSM/PMAD) environment requires cooperating expert system interaction between the planning function and the priority manager. The elements and interactions of the SSM/PMAD planning and priority management functions are presented. Their adherence to cooperating for common achievement are described. In the SSM/PMAD testbed these actions are guided by having a system planning function, KANT, which has insight to the executing system and its automated database. First, the user must be given access to all information which may have an effect on the desired outcome. Second, the fault manager element, FRAMES, must be informed as to the change so that correct diagnoses and operations take place if and when faults occur. Third, some element must engage as mediator for selection of resources and actions to be added or removed at the user's request. This is performed by the priority manager, LPLMS. Lastly, the scheduling mechanism, MAESTRO, must provide future schedules adhering to the user modified resource base.
Optimization Model for Web Based Multimodal Interactive Simulations
Halic, Tansel; Ahn, Woojin; De, Suvranu
2015-01-01
This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update. In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach. PMID:26085713
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chain, Patrick; Lo, Chien-Chi; Li, Po-E
EDGE bioinformatics was developed to help biologists process Next Generation Sequencing data (in the form of raw FASTQ files), even if they have little to no bioinformatics expertise. EDGE is a highly integrated and interactive web-based platform that is capable of running many of the standard analyses that biologists require for viral, bacterial/archaeal, and metagenomic samples. EDGE provides the following analytical workflows: quality trimming and host removal, assembly and annotation, comparisons against known references, taxonomy classification of reads and contigs, whole genome SNP-based phylogenetic analysis, and PCR analysis. EDGE provides an intuitive web-based interface for user input, allows users tomore » visualize and interact with selected results (e.g. JBrowse genome browser), and generates a final detailed PDF report. Results in the form of tables, text files, graphic files, and PDFs can be downloaded. A user management system allows tracking of an individual’s EDGE runs, along with the ability to share, post publicly, delete, or archive their results.« less
PRIMO: An Interactive Homology Modeling Pipeline.
Hatherley, Rowan; Brown, David K; Glenister, Michael; Tastan Bishop, Özlem
2016-01-01
The development of automated servers to predict the three-dimensional structure of proteins has seen much progress over the years. These servers make calculations simpler, but largely exclude users from the process. In this study, we present the PRotein Interactive MOdeling (PRIMO) pipeline for homology modeling of protein monomers. The pipeline eases the multi-step modeling process, and reduces the workload required by the user, while still allowing engagement from the user during every step. Default parameters are given for each step, which can either be modified or supplemented with additional external input. PRIMO has been designed for users of varying levels of experience with homology modeling. The pipeline incorporates a user-friendly interface that makes it easy to alter parameters used during modeling. During each stage of the modeling process, the site provides suggestions for novice users to improve the quality of their models. PRIMO provides functionality that allows users to also model ligands and ions in complex with their protein targets. Herein, we assess the accuracy of the fully automated capabilities of the server, including a comparative analysis of the available alignment programs, as well as of the refinement levels used during modeling. The tests presented here demonstrate the reliability of the PRIMO server when producing a large number of protein models. While PRIMO does focus on user involvement in the homology modeling process, the results indicate that in the presence of suitable templates, good quality models can be produced even without user intervention. This gives an idea of the base level accuracy of PRIMO, which users can improve upon by adjusting parameters in their modeling runs. The accuracy of PRIMO's automated scripts is being continuously evaluated by the CAMEO (Continuous Automated Model EvaluatiOn) project. The PRIMO site is free for non-commercial use and can be accessed at https://primo.rubi.ru.ac.za/.
PRIMO: An Interactive Homology Modeling Pipeline
Glenister, Michael
2016-01-01
The development of automated servers to predict the three-dimensional structure of proteins has seen much progress over the years. These servers make calculations simpler, but largely exclude users from the process. In this study, we present the PRotein Interactive MOdeling (PRIMO) pipeline for homology modeling of protein monomers. The pipeline eases the multi-step modeling process, and reduces the workload required by the user, while still allowing engagement from the user during every step. Default parameters are given for each step, which can either be modified or supplemented with additional external input. PRIMO has been designed for users of varying levels of experience with homology modeling. The pipeline incorporates a user-friendly interface that makes it easy to alter parameters used during modeling. During each stage of the modeling process, the site provides suggestions for novice users to improve the quality of their models. PRIMO provides functionality that allows users to also model ligands and ions in complex with their protein targets. Herein, we assess the accuracy of the fully automated capabilities of the server, including a comparative analysis of the available alignment programs, as well as of the refinement levels used during modeling. The tests presented here demonstrate the reliability of the PRIMO server when producing a large number of protein models. While PRIMO does focus on user involvement in the homology modeling process, the results indicate that in the presence of suitable templates, good quality models can be produced even without user intervention. This gives an idea of the base level accuracy of PRIMO, which users can improve upon by adjusting parameters in their modeling runs. The accuracy of PRIMO’s automated scripts is being continuously evaluated by the CAMEO (Continuous Automated Model EvaluatiOn) project. The PRIMO site is free for non-commercial use and can be accessed at https://primo.rubi.ru.ac.za/. PMID:27855192
Towards the application of interaction design to digital TV content development.
Fialho, Francisco A P; Santos, Paloma Maria; Braga, Marcus de Melo; Thaler, Anelise
2012-01-01
Television can be considered one of the main means of mass entertainment. It occupies an important place in people's lives, influencing behavior and creating and/or enforcing consumer's habits and needs. With the advent of Digital Television, a series of new features tend to further impact upon society in many different ways. The main agent of this change is interactivity, which is the leverage that will transform the traditional viewer's role. Interactivity turns the viewer into a user, a partner who receives the content, but also produces, participates and collaborates during the viewing process. This paper aims to discuss the importance of applying interaction design in the development of projects related to digital television. The main factors that may contribute to improve the interaction design in applications for digital TV were identified drawing on a descriptive and qualitative method of investigation. The results showed that the interface design for this new media should not only be aesthetically appealing, but should also focus on usability (i.e. user's wishes and needs). Additionally, the creation of these interfaces requires the investigation of some characteristics and limitations of device interaction, considering the choice of colors, saturation levels and brightness, avoiding graphic symbols and prioritizing the navigation through the numerical buttons of the remote control.
A Multimodal Deep Log-Based User Experience (UX) Platform for UX Evaluation.
Hussain, Jamil; Khan, Wajahat Ali; Hur, Taeho; Bilal, Hafiz Syed Muhammad; Bang, Jaehun; Hassan, Anees Ul; Afzal, Muhammad; Lee, Sungyoung
2018-05-18
The user experience (UX) is an emerging field in user research and design, and the development of UX evaluation methods presents a challenge for both researchers and practitioners. Different UX evaluation methods have been developed to extract accurate UX data. Among UX evaluation methods, the mixed-method approach of triangulation has gained importance. It provides more accurate and precise information about the user while interacting with the product. However, this approach requires skilled UX researchers and developers to integrate multiple devices, synchronize them, analyze the data, and ultimately produce an informed decision. In this paper, a method and system for measuring the overall UX over time using a triangulation method are proposed. The proposed platform incorporates observational and physiological measurements in addition to traditional ones. The platform reduces the subjective bias and validates the user's perceptions, which are measured by different sensors through objectification of the subjective nature of the user in the UX assessment. The platform additionally offers plug-and-play support for different devices and powerful analytics for obtaining insight on the UX in terms of multiple participants.
Mental health crisis and respite services: service user and carer aspirations.
Lyons, C; Hopley, P; Burton, C R; Horrocks, J
2009-06-01
There is emerging evidence that crisis resolution services can provide alternatives to hospital admission, reducing demand on inpatient beds. Following a public consultation exercise in Lancashire (England), a team of nurses undertook a study, using interactive research methodology, to gain an understanding of how users and carers define a crisis and what range of crisis services, resources and interventions service users and carers thought would help avoid unnecessary hospital admission. Data collection comprised postal questionnaires and 24 group meetings with service users and carers, which were held during 2006. Data were analysed, and seven themes were identified: (1) definitions of a crisis; (2) access to services; (3) interventions; (4) range of services required (before, during and after crisis); (5) place of treatment; (6) recovery and rehabilitation; and (7) community support. We conclude that expressed preferences of service users and carers for pre-emptive services that are delivered flexibly will present a challenge for service commissioners and providers, particularly where stringent access criteria are used. Home-based pre-emptive services that reduce the need for unnecessary hospital treatment may avoid progression to social exclusion of service users.
NASA Technical Reports Server (NTRS)
Grantham, C.
1979-01-01
The Interactive Software Invocation (ISIS), an interactive data management system, was developed to act as a buffer between the user and host computer system. The user is provided by ISIS with a powerful system for developing software or systems in the interactive environment. The user is protected from the idiosyncracies of the host computer system by providing such a complete range of capabilities that the user should have no need for direct access to the host computer. These capabilities are divided into four areas: desk top calculator, data editor, file manager, and tool invoker.
GATOR: Requirements capturing of telephony features
NASA Technical Reports Server (NTRS)
Dankel, Douglas D., II; Walker, Wayne; Schmalz, Mark
1992-01-01
We are developing a natural language-based, requirements gathering system called GATOR (for the GATherer Of Requirements). GATOR assists in the development of more accurate and complete specifications of new telephony features. GATOR interacts with a feature designer who describes a new feature, set of features, or capability to be implemented. The system aids this individual in the specification process by asking for clarifications when potential ambiguities are present, by identifying potential conflicts with other existing features, and by presenting its understanding of the feature to the designer. Through user interaction with a model of the existing telephony feature set, GATOR constructs a formal representation of the new, 'to be implemented' feature. Ultimately GATOR will produce a requirements document and will maintain an internal representation of this feature to aid in future design and specification. This paper consists of three sections that describe (1) the structure of GATOR, (2) POND, GATOR's internal knowledge representation language, and (3) current research issues.
3D Slicer as a tool for interactive brain tumor segmentation.
Kikinis, Ron; Pieper, Steve
2011-01-01
User interaction is required for reliable segmentation of brain tumors in clinical practice and in clinical research. By incorporating current research tools, 3D Slicer provides a set of interactive, easy to use tools that can be efficiently used for this purpose. One of the modules of 3D Slicer is an interactive editor tool, which contains a variety of interactive segmentation effects. Use of these effects for fast and reproducible segmentation of a single glioblastoma from magnetic resonance imaging data is demonstrated. The innovation in this work lies not in the algorithm, but in the accessibility of the algorithm because of its integration into a software platform that is practical for research in a clinical setting.
New capacities and modifications for NASTRAN level 17.5 at DTNSRDC
NASA Technical Reports Server (NTRS)
Hurwitz, M. M.
1980-01-01
Since 1970 DTNSRDC has been modifying NASTRAN to suite various Navy requirements. These modifications include capabilities as well as user conveniences and error corrections. The new features added to NASTRAN Level 17.5 are described. The subject areas of the additions include magnetostatics, piezoelectricity, fluid structure interactions, isoparametric finite elements, and shock design for shipboard equipment.
ERIC Educational Resources Information Center
Avouris, N.; Fiotakis, G.; Kahrimanis, G.; Margaritis, M.; Komis, V.
2007-01-01
In this article, we discuss key requirements for collecting behavioural data concerning technology-supported collaborative learning activities. It is argued that the common practice of analysis of computer generated log files of user interactions with software tools is not enough for building a thorough view of the activity. Instead, more…
ERIC Educational Resources Information Center
Elhindi, Mohamed A.
2010-01-01
Historically, managing access to information systems (ISs) required direct interaction with a limited number of users. Increasingly, managing access involves handling an increased numbers of internal and external students, faculty, and staff as well as partners such as workforce development centers, the U.S. Department of Education, and the…
1976-06-01
the imformation needed to perform the design funct ions, but will also provide the user with the details required to interact with other individuals...several calls of basic drafting (DRA) macros. The deck heights are constant andincluded in the coding. Al - identifies the specific frame to be retrived
Functional changes of the reward system underlie blunted response to social gaze in cocaine users
Preller, Katrin H.; Herdener, Marcus; Schilbach, Leonhard; Stämpfli, Philipp; Hulka, Lea M.; Vonmoos, Matthias; Ingold, Nina; Vogeley, Kai; Tobler, Philippe N.; Seifritz, Erich; Quednow, Boris B.
2014-01-01
Social interaction deficits in drug users likely impede treatment, increase the burden of the affected families, and consequently contribute to the high costs for society associated with addiction. Despite its significance, the neural basis of altered social interaction in drug users is currently unknown. Therefore, we investigated basal social gaze behavior in cocaine users by applying behavioral, psychophysiological, and functional brain-imaging methods. In study I, 80 regular cocaine users and 63 healthy controls completed an interactive paradigm in which the participants’ gaze was recorded by an eye-tracking device that controlled the gaze of an anthropomorphic virtual character. Valence ratings of different eye-contact conditions revealed that cocaine users show diminished emotional engagement in social interaction, which was also supported by reduced pupil responses. Study II investigated the neural underpinnings of changes in social reward processing observed in study I. Sixteen cocaine users and 16 controls completed a similar interaction paradigm as used in study I while undergoing functional magnetic resonance imaging. In response to social interaction, cocaine users displayed decreased activation of the medial orbitofrontal cortex, a key region of reward processing. Moreover, blunted activation of the medial orbitofrontal cortex was significantly correlated with a decreased social network size, reflecting problems in real-life social behavior because of reduced social reward. In conclusion, basic social interaction deficits in cocaine users as observed here may arise from altered social reward processing. Consequently, these results point to the importance of reinstatement of social reward in the treatment of stimulant addiction. PMID:24449854
Automated DICOM metadata and volumetric anatomical information extraction for radiation dosimetry
NASA Astrophysics Data System (ADS)
Papamichail, D.; Ploussi, A.; Kordolaimi, S.; Karavasilis, E.; Papadimitroulas, P.; Syrgiamiotis, V.; Efstathopoulos, E.
2015-09-01
Patient-specific dosimetry calculations based on simulation techniques have as a prerequisite the modeling of the modality system and the creation of voxelized phantoms. This procedure requires the knowledge of scanning parameters and patients’ information included in a DICOM file as well as image segmentation. However, the extraction of this information is complicated and time-consuming. The objective of this study was to develop a simple graphical user interface (GUI) to (i) automatically extract metadata from every slice image of a DICOM file in a single query and (ii) interactively specify the regions of interest (ROI) without explicit access to the radiology information system. The user-friendly application developed in Matlab environment. The user can select a series of DICOM files and manage their text and graphical data. The metadata are automatically formatted and presented to the user as a Microsoft Excel file. The volumetric maps are formed by interactively specifying the ROIs and by assigning a specific value in every ROI. The result is stored in DICOM format, for data and trend analysis. The developed GUI is easy, fast and and constitutes a very useful tool for individualized dosimetry. One of the future goals is to incorporate a remote access to a PACS server functionality.
SOURCE EXPLORER: Towards Web Browser Based Tools for Astronomical Source Visualization and Analysis
NASA Astrophysics Data System (ADS)
Young, M. D.; Hayashi, S.; Gopu, A.
2014-05-01
As a new generation of large format, high-resolution imagers come online (ODI, DECAM, LSST, etc.) we are faced with the daunting prospect of astronomical images containing upwards of hundreds of thousands of identifiable sources. Visualizing and interacting with such large datasets using traditional astronomical tools appears to be unfeasible, and a new approach is required. We present here a method for the display and analysis of arbitrarily large source datasets using dynamically scaling levels of detail, enabling scientists to rapidly move from large-scale spatial overviews down to the level of individual sources and everything in-between. Based on the recognized standards of HTML5+JavaScript, we enable observers and archival users to interact with their images and sources from any modern computer without having to install specialized software. We demonstrate the ability to produce large-scale source lists from the images themselves, as well as overlaying data from publicly available source ( 2MASS, GALEX, SDSS, etc.) or user provided source lists. A high-availability cluster of computational nodes allows us to produce these source maps on demand and customized based on user input. User-generated source lists and maps are persistent across sessions and are available for further plotting, analysis, refinement, and culling.
Liu, Ying-Chieh; Chen, Chien-Hung; Lee, Chien-Wei; Lin, Yu-Sheng; Chen, Hsin-Yun; Yeh, Jou-Yin; Chiu, Sherry Yueh-Hsia
2016-12-01
We designed and developed two interactive apps interfaces for dietary food measurements on mobile devices. The user-centered designs of both the IPI (interactive photo interface) and the SBI (sketching-based interface) were evaluated. Four types of outcomes were assessed to evaluate the usability of mobile devices for dietary measurements, including accuracy, absolute weight differences, and the response time to determine the efficacy of food measurements. The IPI presented users with images of pre-determined portion sizes of a specific food and allowed users to scan and then select the most representative image matching the food that they were measuring. The SBI required users to relate the food shape to a readily available comparator (e.g., credit card) and scribble to shade in the appropriate area. A randomized controlled trial was conducted to evaluate their usability. A total of 108 participants were randomly assigned into the following three groups: the IPI (n=36) and SBI (n=38) experimental groups and the traditional life-size photo (TLP) group as the control. A total of 18 types of food items with 3-4 different weights were randomly selected for assessment by each type. The independent Chi-square test and t-test were performed for the dichotomous and continuous variable analyses, respectively. The total accuracy rates were 66.98%, 44.15%, and 72.06% for the IPI, SBI, and TLP, respectively. No significant difference was observed between the IPI and TLP, regardless of the accuracy proportion or weight differences. The SBI accuracy rates were significantly lower than the IPI and TLP accuracy rates, especially for several spooned, square cube, and sliced pie food items. The time needed to complete the operation assessment by the user was significantly lower for the IPI than for the SBI. Our study corroborates that the user-centered visual-based design of the IPI on a mobile device is comparable the TLP in terms of the usability for dietary food measurements. However, improvements are needed because both the IPI and TLP accuracies associated with some food shapes were lower than 60%. The SBI is not yet a viable aid. This innovative alternative required further improvements to the user interface. Copyright © 2016 Elsevier Inc. All rights reserved.
Integrated Idl Tool For 3d Modeling And Imaging Data Analysis
NASA Astrophysics Data System (ADS)
Nita, Gelu M.; Fleishman, G. D.; Gary, D. E.; Kuznetsov, A. A.; Kontar, E. P.
2012-05-01
Addressing many key problems in solar physics requires detailed analysis of non-simultaneous imaging data obtained in various wavelength domains with different spatial resolution and their comparison with each other supplied by advanced 3D physical models. To facilitate achieving this goal, we have undertaken a major enhancement and improvements of IDL-based simulation tools developed earlier for modeling microwave and X-ray emission. The greatly enhanced object-based architecture provides interactive graphic user interface that allows the user i) to import photospheric magnetic field maps and perform magnetic field extrapolations to almost instantly generate 3D magnetic field models, ii) to investigate the magnetic topology of these models by interactively creating magnetic field lines and associated magnetic field tubes, iii) to populate them with user-defined nonuniform thermal plasma and anisotropic nonuniform nonthermal electron distributions; and iv) to calculate the spatial and spectral properties of radio and X-ray emission. The application integrates DLL and Shared Libraries containing fast gyrosynchrotron emission codes developed in FORTRAN and C++, soft and hard X-ray codes developed in IDL, and a potential field extrapolation DLL produced based on original FORTRAN code developed by V. Abramenko and V. Yurchishin. The interactive interface allows users to add any user-defined IDL or external callable radiation code, as well as user-defined magnetic field extrapolation routines. To illustrate the tool capabilities, we present a step-by-step live computation of microwave and X-ray images from realistic magnetic structures obtained from a magnetic field extrapolation preceding a real event, and compare them with the actual imaging data produced by NORH and RHESSI instruments. This work was supported in part by NSF grants AGS-0961867, AST-0908344, AGS-0969761, and NASA grants NNX10AF27G and NNX11AB49G to New Jersey Institute of Technology, by a UK STFC rolling grant, the Leverhulme Trust, UK, and by the European Commission through the Radiosun and HESPE Networks.
NASA Technical Reports Server (NTRS)
1975-01-01
The results of the third and final phase of a study undertaken to define means of optimizing the Spacelab experiment data system by interactively manipulating the flow of data were presented. A number of payload applicable interactive techniques and an integrated interaction system for each of two possible payloads are described. These interaction systems have been functionally defined and are accompanied with block diagrams, hardware specifications, software sizing and speed requirements, operational procedures and cost/benefits analysis data for both onboard and ground based system elements. It is shown that accrued benefits are attributable to a reduction in data processing costs obtained by, generally, a considerable reduction in the quantity of data that might otherwise be generated without interaction. One other additional anticipated benefit includes the increased scientific value obtained by the quicker return of all useful data.
Energy Efficiency in Public Buildings through Context-Aware Social Computing
García, Óscar; Alonso, Ricardo S.; Prieto, Javier; Corchado, Juan M.
2017-01-01
The challenge of promoting behavioral changes in users that leads to energy savings in public buildings has become a complex task requiring the involvement of multiple technologies. Wireless sensor networks have a great potential for the development of tools, such as serious games, that encourage acquiring good energy and healthy habits among users in the workplace. This paper presents the development of a serious game using CAFCLA, a framework that allows for integrating multiple technologies, which provide both context-awareness and social computing. Game development has shown that the data provided by sensor networks encourage users to reduce energy consumption in their workplace and that social interactions and competitiveness allow for accelerating the achievement of good results and behavioral changes that favor energy savings. PMID:28398237
Laboratory x-ray micro-computed tomography: a user guideline for biological samples
2017-01-01
Abstract Laboratory x-ray micro–computed tomography (micro-CT) is a fast-growing method in scientific research applications that allows for non-destructive imaging of morphological structures. This paper provides an easily operated “how to” guide for new potential users and describes the various steps required for successful planning of research projects that involve micro-CT. Background information on micro-CT is provided, followed by relevant setup, scanning, reconstructing, and visualization methods and considerations. Throughout the guide, a Jackson's chameleon specimen, which was scanned at different settings, is used as an interactive example. The ultimate aim of this paper is make new users familiar with the concepts and applications of micro-CT in an attempt to promote its use in future scientific studies. PMID:28419369
Fraccaro, Paolo; Vigo, Markel; Balatsoukas, Panagiotis; Buchan, Iain E; Peek, Niels; van der Veer, Sabine N
2018-03-01
Patient portals are considered valuable conduits for supporting patients' self-management. However, it is unknown why they often fail to impact on health care processes and outcomes. This may be due to a scarcity of robust studies focusing on the steps that are required to induce improvement: users need to effectively interact with the portal (step 1) in order to receive information (step 2), which might influence their decision-making (step 3). We aimed to explore this potential knowledge gap by investigating to what extent each step has been investigated for patient portals, and explore the methodological approaches used. We performed a systematic literature review using Coiera's information value chain as a guiding theoretical framework. We searched MEDLINE and Scopus by combining terms related to patient portals and evaluation methodologies. Two reviewers selected relevant papers through duplicate screening, and one extracted data from the included papers. We included 115 articles. The large majority (n = 104) evaluated aspects related to interaction with patient portals (step 1). Usage was most often assessed (n = 61), mainly by analysing system interaction data (n = 50), with most authors considering participants as active users if they logged in at least once. Overall usability (n = 57) was commonly assessed through non-validated questionnaires (n = 44). Step 2 (information received) was investigated in 58 studies, primarily by analysing interaction data to evaluate usage of specific system functionalities (n = 34). Eleven studies explicitly assessed the influence of patient portals on patients' and clinicians' decisions (step 3). Whereas interaction with patient portals has been extensively studied, their influence on users' decision-making remains under-investigated. Methodological approaches to evaluating usage and usability of portals showed room for improvement. To unlock the potential of patient portals, more (robust) research should focus on better understanding the complex process of how portals lead to improved health and care. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
How Information Visualization Systems Change Users' Understandings of Complex Data
ERIC Educational Resources Information Center
Allendoerfer, Kenneth Robert
2009-01-01
User-centered evaluations of information systems often focus on the usability of the system rather its usefulness. This study examined how a using an interactive knowledge-domain visualization (KDV) system affected users' understanding of a domain. Interactive KDVs allow users to create graphical representations of domains that depict important…
NASA Astrophysics Data System (ADS)
Wozniak, Peter; Vauderwange, Oliver; Mandal, Avikarsha; Javahiraly, Nicolas; Curticapean, Dan
2016-09-01
Practical exercises are a crucial part of many curricula. Even simple exercises can improve the understanding of the underlying subject. Most experimental setups require special hardware. To carry out e. g. a lens experiments the students need access to an optical bench, various lenses, light sources, apertures and a screen. In our previous publication we demonstrated the use of augmented reality visualization techniques in order to let the students prepare with a simulated experimental setup. Within the context of our intended blended learning concept we want to utilize augmented or virtual reality techniques for stationary laboratory exercises. Unlike applications running on mobile devices, stationary setups can be extended more easily with additional interfaces and thus allow for more complex interactions and simulations in virtual reality (VR) and augmented reality (AR). The most significant difference is the possibility to allow interactions beyond touching a screen. The LEAP Motion controller is a small inexpensive device that allows for the tracking of the user's hands and fingers in three dimensions. It is conceivable to allow the user to interact with the simulation's virtual elements by the user's very hand position, movement and gesture. In this paper we evaluate possible applications of the LEAP Motion controller for simulated experiments in augmented and virtual reality. We pay particular attention to the devices strengths and weaknesses and want to point out useful and less useful application scenarios.
Usability engineering for augmented reality: employing user-based studies to inform design.
Gabbard, Joseph L; Swan, J Edward
2008-01-01
A major challenge, and thus opportunity, in the field of human-computer interaction and specifically usability engineering is designing effective user interfaces for emerging technologies that have no established design guidelines or interaction metaphors or introduce completely new ways for users to perceive and interact with technology and the world around them. Clearly, augmented reality is one such emerging technology. We propose a usability engineering approach that employs user-based studies to inform design, by iteratively inserting a series of user-based studies into a traditional usability engineering lifecycle to better inform initial user interface designs. We present an exemplar user-based study conducted to gain insight into how users perceive text in outdoor augmented reality settings and to derive implications for design in outdoor augmented reality. We also describe lessons learned from our experiences conducting user-based studies as part of the design process.
GMES and Down-stream Services Following User Requirements: Examples on Regional And Coastal Scale
NASA Astrophysics Data System (ADS)
Noehren, I.; Breitbach, G.; Schroeder, F.
2012-04-01
MyOcean as part of the Global Monitoring for Environment and Security (GMES) services provides information on the state of the oceans on a regular basis. The products are delivered on a global as well as on a regional scale like EU, covering the physical state of the ocean and primary ecosystem parameters. For local or coastal scales these Core Services very often do not meet the requirements of the potential end-user who needs information on e. g. marine safety, oil spills, marine resources and coastal management. For these local information needs Downstream Services derived from GMES Core Services, e.g. MyOcean products, but also directly from observation infrastructure are necessary. With Cosyna (Coastal Observation System for Northern and Arctic Seas) a national project between MyOcean and downstream services is established. The core of the project is an integrated pre-operational observation system which combines in-situ observations and remote sensing procedures with numerical models to obtain synoptic data sets of the southern North Sea and make basic infrastructure and continuous data available to the scientific community. The network provides intermediate products in terms of quality-assured time series and maps with high temporal and spatial resolution; end-users might produce their own end products. Integrated products cover processed information based on a combination of different observations and models, accompanied by instructions of use and optionally by interpretations. To enhance operational services in coastal areas improved forecasts with coupled models and data assimilation are developed in the EC funded FIELD_AC project (Fluxes, Interactions and Environment at the Land-Ocean Boundary. Downscaling, Assimilation and Coupling). The application area of the German partner is the German Bight. By means of a strong interaction with the Cosyna observational network main emphasis is laid on the user needs (e.g. of national agencies, coastal and harbour authorities, maritime service providers, marine consulting companies, etc) which are and will be addressed in different project user workshops.
Direct manipulation of virtual objects
NASA Astrophysics Data System (ADS)
Nguyen, Long K.
Interacting with a Virtual Environment (VE) generally requires the user to correctly perceive the relative position and orientation of virtual objects. For applications requiring interaction in personal space, the user may also need to accurately judge the position of the virtual object relative to that of a real object, for example, a virtual button and the user's real hand. This is difficult since VEs generally only provide a subset of the cues experienced in the real world. Complicating matters further, VEs presented by currently available visual displays may be inaccurate or distorted due to technological limitations. Fundamental physiological and psychological aspects of vision as they pertain to the task of object manipulation were thoroughly reviewed. Other sensory modalities -- proprioception, haptics, and audition -- and their cross-interactions with each other and with vision are briefly discussed. Visual display technologies, the primary component of any VE, were canvassed and compared. Current applications and research were gathered and categorized by different VE types and object interaction techniques. While object interaction research abounds in the literature, pockets of research gaps remain. Direct, dexterous, manual interaction with virtual objects in Mixed Reality (MR), where the real, seen hand accurately and effectively interacts with virtual objects, has not yet been fully quantified. An experimental test bed was designed to provide the highest accuracy attainable for salient visual cues in personal space. Optical alignment and user calibration were carefully performed. The test bed accommodated the full continuum of VE types and sensory modalities for comprehensive comparison studies. Experimental designs included two sets, each measuring depth perception and object interaction. The first set addressed the extreme end points of the Reality-Virtuality (R-V) continuum -- Immersive Virtual Environment (IVE) and Reality Environment (RE). This validated, linked, and extended several previous research findings, using one common test bed and participant pool. The results provided a proven method and solid reference points for further research. The second set of experiments leveraged the first to explore the full R-V spectrum and included additional, relevant sensory modalities. It consisted of two full-factorial experiments providing for rich data and key insights into the effect of each type of environment and each modality on accuracy and timeliness of virtual object interaction. The empirical results clearly showed that mean depth perception error in personal space was less than four millimeters whether the stimuli presented were real, virtual, or mixed. Likewise, mean error for the simple task of pushing a button was less than four millimeters whether the button was real or virtual. Mean task completion time was less than one second. Key to the high accuracy and quick task performance time observed was the correct presentation of the visual cues, including occlusion, stereoscopy, accommodation, and convergence. With performance results already near optimal level with accurate visual cues presented, adding proprioception, audio, and haptic cues did not significantly improve performance. Recommendations for future research include enhancement of the visual display and further experiments with more complex tasks and additional control variables.
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Farooq, Mohammad U.
1986-01-01
The definition of proposed research addressing the development and validation of a methodology for the design and evaluation of user interfaces for interactive information systems is given. The major objectives of this research are: the development of a comprehensive, objective, and generalizable methodology for the design and evaluation of user interfaces for information systems; the development of equations and/or analytical models to characterize user behavior and the performance of a designed interface; the design of a prototype system for the development and administration of user interfaces; and the design and use of controlled experiments to support the research and test/validate the proposed methodology. The proposed design methodology views the user interface as a virtual machine composed of three layers: an interactive layer, a dialogue manager layer, and an application interface layer. A command language model of user system interactions is presented because of its inherent simplicity and structured approach based on interaction events. All interaction events have a common structure based on common generic elements necessary for a successful dialogue. It is shown that, using this model, various types of interfaces could be designed and implemented to accommodate various categories of users. The implementation methodology is discussed in terms of how to store and organize the information.
NASA Technical Reports Server (NTRS)
Johnston, William E.; Gannon, Dennis; Nitzberg, Bill
2000-01-01
We use the term "Grid" to refer to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. This infrastructure includes: (1) Tools for constructing collaborative, application oriented Problem Solving Environments / Frameworks (the primary user interfaces for Grids); (2) Programming environments, tools, and services providing various approaches for building applications that use aggregated computing and storage resources, and federated data sources; (3) Comprehensive and consistent set of location independent tools and services for accessing and managing dynamic collections of widely distributed resources: heterogeneous computing systems, storage systems, real-time data sources and instruments, human collaborators, and communications systems; (4) Operational infrastructure including management tools for distributed systems and distributed resources, user services, accounting and auditing, strong and location independent user authentication and authorization, and overall system security services The vision for NASA's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks. Such Grids will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. Examples of these problems include: (1) Coupled, multidisciplinary simulations too large for single systems (e.g., multi-component NPSS turbomachine simulation); (2) Use of widely distributed, federated data archives (e.g., simultaneous access to metrological, topological, aircraft performance, and flight path scheduling databases supporting a National Air Space Simulation systems}; (3) Coupling large-scale computing and data systems to scientific and engineering instruments (e.g., realtime interaction with experiments through real-time data analysis and interpretation presented to the experimentalist in ways that allow direct interaction with the experiment (instead of just with instrument control); (5) Highly interactive, augmented reality and virtual reality remote collaborations (e.g., Ames / Boeing Remote Help Desk providing field maintenance use of coupled video and NDI to a remote, on-line airframe structures expert who uses this data to index into detailed design databases, and returns 3D internal aircraft geometry to the field); (5) Single computational problems too large for any single system (e.g. the rotocraft reference calculation). Grids also have the potential to provide pools of resources that could be called on in extraordinary / rapid response situations (such as disaster response) because they can provide common interfaces and access mechanisms, standardized management, and uniform user authentication and authorization, for large collections of distributed resources (whether or not they normally function in concert). IPG development and deployment is addressing requirements obtained by analyzing a number of different application areas, in particular from the NASA Aero-Space Technology Enterprise. This analysis has focussed primarily on two types of users: the scientist / design engineer whose primary interest is problem solving (e.g. determining wing aerodynamic characteristics in many different operating environments), and whose primary interface to IPG will be through various sorts of problem solving frameworks. The second type of user is the tool designer: the computational scientists who convert physics and mathematics into code that can simulate the physical world. These are the two primary users of IPG, and they have rather different requirements. The results of the analysis of the needs of these two types of users provides a broad set of requirements that gives rise to a general set of required capabilities. The IPG project is intended to address all of these requirements. In some cases the required computing technology exists, and in some cases it must be researched and developed. The project is using available technology to provide a prototype set of capabilities in a persistent distributed computing testbed. Beyond this, there are required capabilities that are not immediately available, and whose development spans the range from near-term engineering development (one to two years) to much longer term R&D (three to six years). Additional information is contained in the original.
Hsu, Chiung-Wen Julia; Wang, Ching-Chan; Tai, Yi-Ting
2011-01-01
This study argues for the necessity of applying offline contexts to social networking site research and the importance of distinguishing the relationship types of users' counterparts when studying Facebook users' behaviors. In an attempt to examine the relationship among users' behaviors, their counterparts' relationship types, and the users' perceived acquaintanceships after using Facebook, this study first investigated users' frequently used tools when interacting with different types of friends. Users tended to use less time- and effort-consuming and less privacy-concerned tools with newly acquired friends. This study further examined users' behaviors in terms of their closeness and intimacy and their perceived acquaintanceships toward four different types of friends. The study found that users gained more perceived acquaintanceships from less close friends with whom users have more frequent interaction but less intimate behaviors. As for closer friends, users tended to use more intimate activities to interact with them. However, these activities did not necessarily occur more frequently than the activities they employed with their less close friends. It was found that perceived acquaintanceships with closer friends were significantly lower than those with less close friends. This implies that Facebook is a mechanism for new friends, rather than close friends, to become more acquainted.
Java Mission Evaluation Workstation System
NASA Technical Reports Server (NTRS)
Pettinger, Ross; Watlington, Tim; Ryley, Richard; Harbour, Jeff
2006-01-01
The Java Mission Evaluation Workstation System (JMEWS) is a collection of applications designed to retrieve, display, and analyze both real-time and recorded telemetry data. This software is currently being used by both the Space Shuttle Program (SSP) and the International Space Station (ISS) program. JMEWS was written in the Java programming language to satisfy the requirement of platform independence. An object-oriented design was used to satisfy additional requirements and to make the software easily extendable. By virtue of its platform independence, JMEWS can be used on the UNIX workstations in the Mission Control Center (MCC) and on office computers. JMEWS includes an interactive editor that allows users to easily develop displays that meet their specific needs. The displays can be developed and modified while viewing data. By simply selecting a data source, the user can view real-time, recorded, or test data.
An interactive web-based system using cloud for large-scale visual analytics
NASA Astrophysics Data System (ADS)
Kaseb, Ahmed S.; Berry, Everett; Rozolis, Erik; McNulty, Kyle; Bontrager, Seth; Koh, Youngsol; Lu, Yung-Hsiang; Delp, Edward J.
2015-03-01
Network cameras have been growing rapidly in recent years. Thousands of public network cameras provide tremendous amount of visual information about the environment. There is a need to analyze this valuable information for a better understanding of the world around us. This paper presents an interactive web-based system that enables users to execute image analysis and computer vision techniques on a large scale to analyze the data from more than 65,000 worldwide cameras. This paper focuses on how to use both the system's website and Application Programming Interface (API). Given a computer program that analyzes a single frame, the user needs to make only slight changes to the existing program and choose the cameras to analyze. The system handles the heterogeneity of the geographically distributed cameras, e.g. different brands, resolutions. The system allocates and manages Amazon EC2 and Windows Azure cloud resources to meet the analysis requirements.
On-demand hypermedia/multimedia service over broadband networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouras, C.; Kapoulas, V.; Spirakis, P.
1996-12-31
In this paper we present a unified approach for delivering hypermedia/multimedia objects over broadband networks. Documents are stored in various multimedia servers, while the inline data may reside in their own media servers, attached to the multimedia servers. The described service consists of several multimedia servers and a set of functions that intend to present to the end user interactive information in real-time. Users interact with the service requesting multimedia documents on demand. Various media streams are transmitted over different parallel connections according lo their transmission requirements. The hypermedia documents are structured using a hypermedia markup language that keeps informationmore » of the spatiotemporal relationships among document`s media components. In order to deal with the variant network behavior, buffering manipulation mechanisms and grading of the transmitted media quality techniques are proposed to smooth presentation and synchronization anomalies.« less
Wolters, Maria Klara; Kelly, Fiona; Kilgour, Jonathan
2016-12-01
Intelligent cognitive assistants support people who need help performing everyday tasks by detecting when problems occur and providing tailored and context-sensitive assistance. Spoken dialogue interfaces allow users to interact with intelligent cognitive assistants while focusing on the task at hand. In order to establish requirements for voice interfaces to intelligent cognitive assistants, we conducted three focus groups with people with dementia, carers, and older people without a diagnosis of dementia. Analysis of the focus group data showed that voice and interaction style should be chosen based on the preferences of the user, not those of the carer. For people with dementia, the intelligent cognitive assistant should act like a patient, encouraging guide, while for older people without dementia, assistance should be to the point and not patronising. The intelligent cognitive assistant should be able to adapt to cognitive decline. © The Author(s) 2015.
The Extensibility of an Interpreted Language Using Plugin Libraries
NASA Astrophysics Data System (ADS)
Herceg, Dorde; Radaković, Davorka
2011-09-01
Dynamic geometry software (DGS) are computer programs that allow one to create and manipulate geometrical drawings. They are mostly used in teaching and studying geometry. However, DGS can also be used to develop interactive drawings not directly related to geometry. Examples include teaching materials for numerical mathematics at secondary school and university levels, or interactive mathematical games for elementary school children. Such applications often surpass the intended purposes of the DGS and may require complicated programming on behalf of the user. In this paper we present a simple plug-in model which enables easy development and deployment of interactive GUI components for "Geometrijica", a DGS we are developing on Silverlight.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.; Gordon, M. F.; Mclaughlin, R. H.; Marshall, R. E.
1975-01-01
The MIDAS (Multivariate Interactive Digital Analysis System) processor is a high-speed processor designed to process multispectral scanner data (from Landsat, EOS, aircraft, etc.) quickly and cost-effectively to meet the requirements of users of remote sensor data, especially from very large areas. MIDAS consists of a fast multipipeline preprocessor and classifier, an interactive color display and color printer, and a medium scale computer system for analysis and control. The system is designed to process data having as many as 16 spectral bands per picture element at rates of 200,000 picture elements per second into as many as 17 classes using a maximum likelihood decision rule.
Technology for the Next-Generation-Mobile User Experience
NASA Astrophysics Data System (ADS)
Delagi, Greg
The current mobile-handset market is a vital and growing one, being driven by technology advances, including increased bandwidth and processing performance, as well as reduced power consumption and improved screen technologies. The 3G/4G handsets of today are multimedia internet devices with increased screen size, HD video and gaming, interactive touch screens, HD camera and camcorders, as well as incredible social, entertainment, and productivity applications. While mobile-technology advancements to date have made us more social in many ways, new advancements over the next decade will bring us to the next level, allowing mobile users to experience new types of "virtual" social interactions with all the senses. The mobile handsets of the future will be smart autonomous-lifestyle devices with a multitude of incorporated sensors, applications and display options, all designed to make your life easier and more productive! With future display media, including 3D imaging, virtual interaction and conferencing will be possible, making every call feel like you are in the same room, providing an experience far beyond today's video conferencing technology. 3D touch-screen with integrated image-projection technologies will work in conjunction with gesturing to bring a new era of intuitive mobile device applications, interaction, and information sharing. Looking to the future, there are many challenges to be faced in delivering a smart mobile companion device that will meet the user demands. One demand will be for the availability of new and compelling services, and features on the "mobile companion". These mobile companions will be more than just Internet devices, and will function as on-the-go workstations, allowing users to function as if they were sitting in front of their computer in the office or at home. The massive amounts of data that will be transmitted through, to and from these mobile companions will require immense improvements in system performance, including specialized circuits, highly parallel architectures, and new packaging design. Another concern of the smart-mobile-companion user will be that their device is able to deliver an always-on, always-aware environment in a way that is completely seamless and transparent. These handsets will automatically determine the best and most appropriate modem link from the multiple choices on the device, including WiFi, LTE, 5G, and mmWave, based on which link will optimize performance, battery life, and network charges to deliver the best possible user experience. In the future, adaptive connectivity will require many different solutions, including the standard modem technologies of today, as well as new machine-machine interfaces and body-area-networks. All of the new and exciting applications and features of these mobile-companion devices are going to require additional energy due to added computational requirements. However, a gap in energy efficiency is quickly developing between the energy that can be delivered by today's battery technologies, and the energy needed to deliver all-day operation or 2-day always-on standby without a recharge. New innovations ranging from low-voltage digital and analog circuits, non-volatile memory, and adaptive power management, to energy harvesting, will be needed to further improve the battery life of these mobile companion devices. Increased bandwidth combined with decreased latency, higher power efficiency, energy harvesting, massive multimedia processing, and new interconnect technologies will all work together to revolutionize how we interact with our smart-companion devices. The implementation challenges in bringing these technologies to market may seem daunting and numerous at first, but with the strong collaboration in research and development from universities, government agencies, and corporations, the smart-mobile-companion devices of the future will likely become reality within 5 years!
ERIC Educational Resources Information Center
Choi, Jung-Min
2010-01-01
The primary concern in current interaction design is focused on how to help users solve problems and achieve goals more easily and efficiently. While users' sufficient knowledge acquisition of operating a product or system is considered important, their acquisition of problem-solving knowledge in the task domain has largely been disregarded. As a…
1999-03-01
mates) and base their behaviors on this interactive information. This alone defines the nature of a complex adaptive system and it is based on this...world policy initiatives. 2.3.4. User Interaction Building the model with extensive user interaction gives the entire system a more appealing feel...complex behavior that hopefully mimics trends observed in reality . User interaction also allows for easier justification of assumptions used within
Effective Levels of Adaptation to Different Types of Users in Interactive Museum Systems.
ERIC Educational Resources Information Center
Paterno, F.; Mancini, C.
2000-01-01
Discusses user interaction with museum application interfaces and emphasizes the importance of adaptable and adaptive interfaces to meet differing user needs. Considers levels of support that can be given to different users during navigation of museum hypermedia information, using examples from the Web site for the Marble Museum (Italy).…
EPOS Seismology services and their users
NASA Astrophysics Data System (ADS)
Haslinger, Florian; Dupont, Aurelien; Michelini, Alberto; Rietbrock, Andreas; Sleeman, Reinoud; Wiemer, Stefan; Basili, Roberto; Bossu, Rémy; Cakti, Eser; Cotton, Fabrice; Crawford, Wayne; Crowley, Helen; Danciu, Laurentiu; Diaz, Jordi; Garth, Tom; Locati, Mario; Luzi, Lucia; Pitilakis, Kyriazis; Roumelioti, Zafeiria; Strollo, Angelo
2017-04-01
The construction of seismological community services for the European Plate Observing System Research Infrastructure (EPOS) is by now well under way. A significant number of services are already operational, largely based on those existing at established institutions or collaborations like ORFEUS, EMSC, AHEAD and EFEHR, and more are being added to be ready for internal validation by late 2017. In this presentation we focus on a number of issues related to the interaction of the community of users with the services provided by the seismological part of the EPOS research infrastructure. How users interact with a service (and how satisfied they are with this interaction) is viewed as one important component of the validation of a service within EPOS, and certainly is key to the uptake of a service and from that also it's attributed value. Within EPOS Seismology, the following aspects of user interaction have already surfaced: - user identification (and potential tracking) versus ease-of-access and openness Requesting users to identify themselves when accessing a service provides various advantages to providers and users (e.g. quantifying & qualifying the service use, customization of services and interfaces, handling access rights and quotas), but may impact the ease of access and also shy away users who don't wish to be identified for whatever reason. - service availability versus cost There is a clear and prominent connection between the availability of a service, both regarding uptime and capacity, and its operational cost (IT systems and personnel), and it is often not clear where to draw the line (and based on which considerations). In connection to that, how to best utilize third-party IT infrastructures (either commercial or public), and what the long-term cost implications of that might be, is equally open. - licensing and attribution The issue of intellectual property and associated licensing policies for data, products and services is only recently gaining more attention in the community. Whether at all, and if yes then how to license, is still diversely discussed, while on national level more and more legislative requirements create boundary conditions that need to be respected. Attribution (of service use and of data/product origin) is only one related aspect, but of high importance the scientific world. In EPOS Seismology we attempt to find common approaches to address the above issues, also closely coordinated to the developments across the other EPOS domains. In this presentation we discuss the current strategies, potential solutions identified, and remaining open questions.
Leap Frog Digital Sensors and Definition, Integration & Testing FY 2003 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meitzler, Wayne D.; Ouderkirk, Steven J.; Shoemaker, Steven V.
2003-12-31
The objective of Leap Frog is to develop a comprehensive security tool that is transparent to the user community and more effective than current methods for preventing and detecting security compromises of critical physical and digital assets. Current security tools intrude on the people that interact with these critical assets by requiring them to perform additional functions or having additional visible sensors. Leap Frog takes security to the next level by being more effective and reducing the adverse impact on the people interacting with protected assets.
Merritt, Stephanie M; Ilgen, Daniel R
2008-04-01
We provide an empirical demonstration of the importance of attending to human user individual differences in examinations of trust and automation use. Past research has generally supported the notions that machine reliability predicts trust in automation, and trust in turn predicts automation use. However, links between user personality and perceptions of the machine with trust in automation have not been empirically established. On our X-ray screening task, 255 students rated trust and made automation use decisions while visually searching for weapons in X-ray images of luggage. We demonstrate that individual differences affect perceptions of machine characteristics when actual machine characteristics are constant, that perceptions account for 52% of trust variance above the effects of actual characteristics, and that perceptions mediate the effects of actual characteristics on trust. Importantly, we also demonstrate that when administered at different times, the same six trust items reflect two types of trust (dispositional trust and history-based trust) and that these two trust constructs are differentially related to other variables. Interactions were found among user characteristics, machine characteristics, and automation use. Our results suggest that increased specificity in the conceptualization and measurement of trust is required, future researchers should assess user perceptions of machine characteristics in addition to actual machine characteristics, and incorporation of user extraversion and propensity to trust machines can increase prediction of automation use decisions. Potential applications include the design of flexible automation training programs tailored to individuals who differ in systematic ways.
NASA Technical Reports Server (NTRS)
Lebron, Ramon C.
1992-01-01
The NASA LeRC in Cleveland, Ohio, is responsible for the design, development, and assembly of the Space Station Freedom (SSF) Electrical Power System (EPS). In order to identify and understand system level issues during the SSF Program design and development phases, a system Power Management and Distribution (PMAD) DC test bed was assembled. Some of the objectives of this test bed facility are the evaluation of, system efficiency, power quality, system stability, and system protection and reconfiguration schemes. In order to provide a realistic operating scenario, dc Load Converter Units are used in the PMAD dc test bed to characterize the user interface with the power system. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. This final regulation is required on the actual space station because the majority of user loads will require voltage levels different from the secondary bus voltage. This paper describes the testing of load converters in an end to end system environment (from solar array to loads) where their interactions and compatibility with other system components are considered. Some of the system effects of interest that are presented include load converters transient behavior interactions with protective current limiting switchgear, load converters ripple effects, and the effects of load converter constant power behavior with protective features such as foldback.
NASA Technical Reports Server (NTRS)
Lebron, Ramon C.
1992-01-01
The NASA LeRC in Cleveland, Ohio, is responsible for the design, development, and assembly of the Space Station Freedom (SSF) Electrical Power System (EPS). In order to identify and understand system level issues during the SSF program design and development phases, a system Power Management and Distribution (PMAD) dc test bed was assembled. Some of the objectives of this test bed facility are the evaluation of, system efficiency, power quality, system stability, and system protection and reconfiguration schemes. In order to provide a realistic operating scenario, dc Load Converter Units are used in the PMAD dc test bed to characterize the user interface with the power system. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. This final regulation is required on the actual space station because the majority of user loads will require voltage levels different from the secondary bus voltage. This paper describes the testing of load converters in an end to end system environment (from solar array to loads) where their interactions and compatibility with other system components are considered. Some of the system effects of interest that are presented include load converters transient behavior interactions with protective current limiting switchgear, load converters ripple effects, and the effects of load converter constant power behavior with protective features such as foldback.
Federici, Stefano; Stefano, Federici; Borsci, Simone; Stamerra, Gianluca
2010-08-01
A verbal protocol technique, adopted for a web usability evaluation, requires that the users are able to perform a double task: surfing and talking. Nevertheless, when blind users surf by using a screen reader and talk about the way they interact with the computer, the evaluation is influenced by a structural interference: users are forced to think aloud and listen to the screen reader at the same time. The aim of this study is to build up a verbal protocol technique for samples of visual impaired users in order to overcome the limits of concurrent and retrospective protocols. The technique we improved, called partial concurrent thinking aloud (PCTA), integrates a modified set of concurrent verbalization and retrospective analysis. One group of 6 blind users and another group of 6 sighted users evaluated the usability of a website using PCTA. By estimating the number of necessary users by the means of an asymptotic test, it was found out that the two groups had an equivalent ability of identifying usability problems, both over 80%. The result suggests that PCTA, while respecting the properties of classic verbal protocols, also allows to overcome the structural interference and the limits of concurrent and retrospective protocols when used with screen reader users. In this way, PCTA reduces the efficiency difference of usability evaluation between blind and sighted users.
Research on dynamic performance design of mobile phone application based on context awareness
NASA Astrophysics Data System (ADS)
Bo, Zhang
2018-05-01
It aims to explore the dynamic performance of different mobile phone applications and the user's cognitive differences, reduce the cognitive burden, and enhance the sense of experience. By analyzing the dynamic design performance in four different interactive contexts, and constructing the framework of information service process in the interactive context perception and the two perception principles of the cognitive consensus between designer and user, and the two kinds of knowledge in accordance with the perception principles. The analysis of the context will help users sense the dynamic performance more intuitively, so that the details of interaction will be performed more vividly and smoothly, thus enhance user's experience in the interactive process. The common perception experience enables designers and users to produce emotional resonance in different interactive contexts, and help them achieve rapid understanding of interactive content and perceive the logic and hierarchy of the content and the structure, therefore the effectiveness of mobile applications will be improved.
COMPARE/Radiology, an interactive Web-based radiology teaching program evaluation of user response.
Wagner, Matthias; Heckemann, Rolf A; Nömayr, Anton; Greess, Holger; Bautz, Werner A; Grunewald, Markus
2005-06-01
The aim of this study is to assess user benefits of COMPARE/Radiology, a highly interactive World Wide Web-based training program for radiology, as perceived by its users. COMPARE/Radiology (http://www.idr.med.uni-erlangen.de/compare.htm), an interactive training program based on 244 teaching cases, was created by the authors and made publicly available on the Internet. An anonymous survey was conducted among users to investigate the composition of the program's user base and assess the acceptance of the training program. In parallel, Web access data were collected and analyzed using descriptive statistics. The group of responding users (n = 1370) consisted of 201 preclinical medical students (14.7%), 314 clinical medical students (22.9%), 359 residents in radiology (26.2%), and 205 users of other professions (14.9%). A majority of respondents (1230; 89%) rated the interactivity of COMPARE/Radiology as good or excellent. Many respondents use COMPARE/Radiology for self-study (971; 70%) and for teaching others (600; 43%). Web access statistics show an increase in number of site visits from 1248 in December 2002 to 4651 in April 2004. Users appreciate the benefits of COMPARE/Radiology. The interactive instructional design was rated positively by responding users. The popularity of the site is growing, evidenced by the number of network accesses during the observation period.
Interactive-rate Motion Planning for Concentric Tube Robots
Torres, Luis G.; Baykal, Cenk; Alterovitz, Ron
2014-01-01
Concentric tube robots may enable new, safer minimally invasive surgical procedures by moving along curved paths to reach difficult-to-reach sites in a patient’s anatomy. Operating these devices is challenging due to their complex, unintuitive kinematics and the need to avoid sensitive structures in the anatomy. In this paper, we present a motion planning method that computes collision-free motion plans for concentric tube robots at interactive rates. Our method’s high speed enables a user to continuously and freely move the robot’s tip while the motion planner ensures that the robot’s shaft does not collide with any anatomical obstacles. Our approach uses a highly accurate mechanical model of tube interactions, which is important since small movements of the tip position may require large changes in the shape of the device’s shaft. Our motion planner achieves its high speed and accuracy by combining offline precomputation of a collision-free roadmap with online position control. We demonstrate our interactive planner in a simulated neurosurgical scenario where a user guides the robot’s tip through the environment while the robot automatically avoids collisions with the anatomical obstacles. PMID:25436176
Assessing empathy and managing emotions through interactions with an affective avatar.
Johnson, Esperanza; Hervás, Ramón; Gutiérrez López de la Franca, Carlos; Mondéjar, Tania; Ochoa, Sergio F; Favela, Jesús
2018-06-01
Assistive technologies can improve the quality of life of people diagnosed with different forms of social communication disorders. We report on the design and evaluation of an affective avatar aimed at engaging the user in a social interaction with the purpose of assisting in communication therapies. A human-avatar taxonomy is proposed to assist the design of affective avatars aimed at addressing social communication disorder. The avatar was evaluated with 30 subjects to assess how effectively it conveys the desired emotion and elicits empathy from the user. Results provide evidence that users become used to the avatar after a number of interactions, and they perceive the defined behavior as being logical. The users' interactions with the avatar entail affective reactions, including the mimic emotions that users felt, and establish a preliminary ground truth about prototypic empathic interactions with avatars that is being used to train learning algorithms to support social communication disorder evaluation.
Comparing two anesthesia information management system user interfaces: a usability evaluation.
Wanderer, Jonathan P; Rao, Anoop V; Rothwell, Sarah H; Ehrenfeld, Jesse M
2012-11-01
Anesthesia information management systems (AIMS) have been developed by multiple vendors and are deployed in thousands of operating rooms around the world, yet not much is known about measuring and improving AIMS usability. We developed a methodology for evaluating AIMS usability in a low-fidelity simulated clinical environment and used it to compare an existing user interface with a revised version. We hypothesized that the revised user interface would be more useable. In a low-fidelity simulated clinical environment, twenty anesthesia providers documented essential anesthetic information for the start of the case using both an existing and a revised user interface. Participants had not used the revised user interface previously and completed a brief training exercise prior to the study task. All participants completed a workload assessment and a satisfaction survey. All sessions were recorded. Multiple usability metrics were measured. The primary outcome was documentation accuracy. Secondary outcomes were perceived workload, number of documentation steps, number of user interactions, and documentation time. The interfaces were compared and design problems were identified by analyzing recorded sessions and survey results. Use of the revised user interface was shown to improve documentation accuracy from 85.1% to 92.4%, a difference of 7.3% (95% confidence interval [CI] for the difference 1.8 to 12.7). The revised user interface decreased the number of user interactions by 6.5 for intravenous documentation (95% CI 2.9 to 10.1) and by 16.1 for airway documentation (95% CI 11.1 to 21.1). The revised user interface required 3.8 fewer documentation steps (95% CI 2.3 to 5.4). Airway documentation time was reduced by 30.5 seconds with the revised workflow (95% CI 8.5 to 52.4). There were no significant time differences noted in intravenous documentation or in total task time. No difference in perceived workload was found between the user interfaces. Two user interface design problems were identified in the revised user interface. The usability of anesthesia information management systems can be evaluated using a low-fidelity simulated clinical environment. User testing of the revised user interface showed improvement in some usability metrics and highlighted areas for further revision. Vendors of AIMS and those who use them should consider adopting methods to evaluate and improve AIMS usability.
Monitoring and detection platform to prevent anomalous situations in home care.
Villarrubia, Gabriel; Bajo, Javier; De Paz, Juan F; Corchado, Juan M
2014-06-05
Monitoring and tracking people at home usually requires high cost hardware installations, which implies they are not affordable in many situations. This study/paper proposes a monitoring and tracking system for people with medical problems. A virtual organization of agents based on the PANGEA platform, which allows the easy integration of different devices, was created for this study. In this case, a virtual organization was implemented to track and monitor patients carrying a Holter monitor. The system includes the hardware and software required to perform: ECG measurements, monitoring through accelerometers and WiFi networks. Furthermore, the use of interactive television can moderate interactivity with the user. The system makes it possible to merge the information and facilitates patient tracking efficiently with low cost.
Novel Virtual User Models of Mild Cognitive Impairment for Simulating Dementia
Segkouli, Sofia; Tzovaras, Dimitrios; Tsakiris, Thanos; Tsolaki, Magda; Karagiannidis, Charalampos
2015-01-01
Virtual user modeling research has attempted to address critical issues of human-computer interaction (HCI) such as usability and utility through a large number of analytic, usability-oriented approaches as cognitive models in order to provide users with experiences fitting to their specific needs. However, there is demand for more specific modules embodied in cognitive architecture that will detect abnormal cognitive decline across new synthetic task environments. Also, accessibility evaluation of graphical user interfaces (GUIs) requires considerable effort for enhancing ICT products accessibility for older adults. The main aim of this study is to develop and test virtual user models (VUM) simulating mild cognitive impairment (MCI) through novel specific modules, embodied at cognitive models and defined by estimations of cognitive parameters. Well-established MCI detection tests assessed users' cognition, elaborated their ability to perform multitasks, and monitored the performance of infotainment related tasks to provide more accurate simulation results on existing conceptual frameworks and enhanced predictive validity in interfaces' design supported by increased tasks' complexity to capture a more detailed profile of users' capabilities and limitations. The final outcome is a more robust cognitive prediction model, accurately fitted to human data to be used for more reliable interfaces' evaluation through simulation on the basis of virtual models of MCI users. PMID:26339282
User evaluation of a GUI for controlling an autonomous persistent surveillance team
NASA Astrophysics Data System (ADS)
Scerri, Paul; Owens, Sean; Sycara, Katia; Lewis, Michael
2010-04-01
In future military missions, there will be many sensor assets collecting much important information about the environment. User control over surveillance assets is important to ensure that the specific data collected is appropriate for the current mission. Unfortunately, previous work has shown that individual users cannot effectively control more than about four assets, even if the assets have significant autonomy. In the ACCAST project, we hypothesized that by including autonomous teamwork between the assets and allowing users to interact by describing what the team as a whole and specific sub-teams should do, we could dramatically scale up the number of assets an individual user could effectively control. In this paper, we present the results of an experiment where users controlled up to 30 autonomous assets performing a complex mission. The assets autonomously worked together using sophisticated teamwork and the user could tell sub-teams to execute team oriented plans which described the steps required to achieve a team objective without describing exactly which asset performed which role and without having to specify how the team should handle routine information sharing, communications and failure circumstances. The users, soldiers from Fort Benning, were surprisingly good at managing the assets and were all able to complete the complex mission with extremely low friendly and civilian casualties.
Liang, Yuhua Jake; Lee, Seungcheol Austin
2016-09-01
Human-robot interaction (HRI) will soon transform and shift the communication landscape such that people exchange messages with robots. However, successful HRI requires people to trust robots, and, in turn, the trust affects the interaction. Although prior research has examined the determinants of human-robot trust (HRT) during HRI, no research has examined the messages that people received before interacting with robots and their effect on HRT. We conceptualize these messages as SMART (Strategic Messages Affecting Robot Trust). Moreover, we posit that SMART can ultimately affect actual HRI outcomes (i.e., robot evaluations, robot credibility, participant mood) by affording the persuasive influences from user-generated content (UGC) on participatory Web sites. In Study 1, participants were assigned to one of two conditions (UGC/control) in an original experiment of HRT. Compared with the control (descriptive information only), results showed that UGC moderated the correlation between HRT and interaction outcomes in a positive direction (average Δr = +0.39) for robots as media and robots as tools. In Study 2, we explored the effect of robot-generated content but did not find similar moderation effects. These findings point to an important empirical potential to employ SMART in future robot deployment.
NASA Technical Reports Server (NTRS)
Maresca, P. A.; Lefler, R. M.
1978-01-01
The requirements of potential users were considered in the design of an integrated data base management system, developed to be independent of any specific computer or operating system, and to be used to support investigations in weather and climate. Ultimately, the system would expand to include data from the agriculture, hydrology, and related Earth resources disciplines. An overview of the system and its capabilities is presented. Aspects discussed cover the proposed interactive command language; the application program command language; storage and tabular data maintained by the regional data base management system; the handling of data files and the use of system standard formats; various control structures required to support the internal architecture of the system; and the actual system architecture with the various modules needed to implement the system. The concepts on which the relational data model is based; data integrity, consistency, and quality; and provisions for supporting concurrent access to data within the system are covered in the appendices.
ERIC Educational Resources Information Center
Vizer, Lisa Michele
2013-01-01
Systems that can detect cognitive decline or harmful levels of stress could assist users in managing their stress and health. However, current assessments are often obtrusive or require specialized equipment, and not suited to continuous monitoring of cognitive status. This research leverages attributes of everyday keyboard interactions to…
Data Management Applications for the Service Preparation Subsystem
NASA Technical Reports Server (NTRS)
Luong, Ivy P.; Chang, George W.; Bui, Tung; Allen, Christopher; Malhotra, Shantanu; Chen, Fannie C.; Bui, Bach X.; Gutheinz, Sandy C.; Kim, Rachel Y.; Zendejas, Silvino C.;
2009-01-01
These software applications provide intuitive User Interfaces (UIs) with a consistent look and feel for interaction with, and control of, the Service Preparation Subsystem (SPS). The elements of the UIs described here are the File Manager, Mission Manager, and Log Monitor applications. All UIs provide access to add/delete/update data entities in a complex database schema without requiring technical expertise on the part of the end users. These applications allow for safe, validated, catalogued input of data. Also, the software has been designed in multiple, coherent layers to promote ease of code maintenance and reuse in addition to reducing testing and accelerating maturity.
Intelligent Context-Aware and Adaptive Interface for Mobile LBS
Liu, Yanhong
2015-01-01
Context-aware user interface plays an important role in many human-computer Interaction tasks of location based services. Although spatial models for context-aware systems have been studied extensively, how to locate specific spatial information for users is still not well resolved, which is important in the mobile environment where location based services users are impeded by device limitations. Better context-aware human-computer interaction models of mobile location based services are needed not just to predict performance outcomes, such as whether people will be able to find the information needed to complete a human-computer interaction task, but to understand human processes that interact in spatial query, which will in turn inform the detailed design of better user interfaces in mobile location based services. In this study, a context-aware adaptive model for mobile location based services interface is proposed, which contains three major sections: purpose, adjustment, and adaptation. Based on this model we try to describe the process of user operation and interface adaptation clearly through the dynamic interaction between users and the interface. Then we show how the model applies users' demands in a complicated environment and suggested the feasibility by the experimental results. PMID:26457077
Healey, Benjamin; Hoek, Janet; Edwards, Richard
2014-01-01
Online Cessation Support Networks (OCSNs) are associated with increased quit success rates, but few studies have examined their use over time. We identified usage patterns in New Zealand's largest OCSN over two years and explored implications for OCSN intervention design and evaluation. We analysed metadata relating to 133,096 OCSN interactions during 2011 and 2012. Metrics covered aggregate network activity, user posting activity and longevity, and between-user commenting. Binary logistic regression models were estimated to investigate the feasibility of predicting low user engagement using early interaction data. Repeating periodic peaks and troughs in aggregate activity related not only to seasonality (e.g., New Year), but also to day of the week. Out of 2,062 unique users, 69 Highly Engaged Users (180+ interactions each) contributed 69% of all OCSN interactions in 2012 compared to 1.3% contributed by 864 Minimally Engaged Users (< = 2 items each). The proportion of Highly Engaged Users increased with network growth between 2011 and 2012 (with marginal significance), but the proportion of Minimally Engaged Users did not decline substantively. First week interaction data enabled identification of Minimally Engaged Users with high specificity and sensitivity (AUROC= 0.94). Results suggest future research should develop and test interventions that promote activity, and hence cessation support, amongst specific user groups or at key time points. For example, early usage information could help identify Minimally Engaged Users for tests of targeted messaging designed to improve their integration into, or re-engagement with, the OCSN. Furthermore, although we observed strong growth over time on varied metrics including posts and comments, this change did not coincide with large gains in first-time user persistence. Researchers assessing intervention effects should therefore examine multiple measures when evaluating changes in network dynamics over time.
Smaradottir, Berglind; Håland, Jarle; Martinez, Santiago
2017-01-01
A mobile device's touchscreen allows users to use a choreography of hand gestures to interact with the user interface. A screen reader on a mobile device is designed to support the interaction of visually disabled users while using gestures. This paper presents an evaluation of VoiceOver, a screen reader in Apple Inc. products. The evaluation was a part of the research project "Visually impaired users touching the screen - a user evaluation of assistive technology".
Semantics of directly manipulating spatializations.
Hu, Xinran; Bradel, Lauren; Maiti, Dipayan; House, Leanna; North, Chris; Leman, Scotland
2013-12-01
When high-dimensional data is visualized in a 2D plane by using parametric projection algorithms, users may wish to manipulate the layout of the data points to better reflect their domain knowledge or to explore alternative structures. However, few users are well-versed in the algorithms behind the visualizations, making parameter tweaking more of a guessing game than a series of decisive interactions. Translating user interactions into algorithmic input is a key component of Visual to Parametric Interaction (V2PI) [13]. Instead of adjusting parameters, users directly move data points on the screen, which then updates the underlying statistical model. However, we have found that some data points that are not moved by the user are just as important in the interactions as the data points that are moved. Users frequently move some data points with respect to some other 'unmoved' data points that they consider as spatially contextual. However, in current V2PI interactions, these points are not explicitly identified when directly manipulating the moved points. We design a richer set of interactions that makes this context more explicit, and a new algorithm and sophisticated weighting scheme that incorporates the importance of these unmoved data points into V2PI.
Interactive Web Graphs with Fewer Restrictions
NASA Technical Reports Server (NTRS)
Fiedler, James
2012-01-01
There is growing popularity for interactive, statistical web graphs and programs to generate them. However, it seems that these programs tend to be somewhat restricted in which web browsers and statistical software are supported. For example, the software might use SVG (e.g., Protovis, gridSVG) or HTML canvas, both of which exclude most versions of Internet Explorer, or the software might be made specifically for R (gridSVG, CRanvas), thus excluding users of other stats software. There are more general tools (d3, Rapha lJS) which are compatible with most browsers, but using one of these to make statistical graphs requires more coding than is probably desired, and requires learning a new tool. This talk will present a method for making interactive web graphs, which, by design, attempts to support as many browsers and as many statistical programs as possible, while also aiming to be relatively easy to use and relatively easy to extend.
System and method for controlling power consumption in a computer system based on user satisfaction
Yang, Lei; Dick, Robert P; Chen, Xi; Memik, Gokhan; Dinda, Peter A; Shy, Alex; Ozisikyilmaz, Berkin; Mallik, Arindam; Choudhary, Alok
2014-04-22
Systems and methods for controlling power consumption in a computer system. For each of a plurality of interactive applications, the method changes a frequency at which a processor of the computer system runs, receives an indication of user satisfaction, determines a relationship between the changed frequency and the user satisfaction of the interactive application, and stores the determined relationship information. The determined relationship can distinguish between different users and different interactive applications. A frequency may be selected from the discrete frequencies at which the processor of the computer system runs based on the determined relationship information for a particular user and a particular interactive application running on the processor of the computer system. The processor may be adapted to run at the selected frequency.
An Exploratory Study of User Searching of the World Wide Web: A Holistic Approach.
ERIC Educational Resources Information Center
Wang, Peiling; Tenopir, Carol; Laymman, Elizabeth; Penniman, David; Collins, Shawn
1998-01-01
Examines Web users' behaviors and needs and tests a methodology for studying users' interaction with the Web. A process-tracing technique, together with tests of cognitive style, anxiety levels, and self-report computer experience, provided data on how users interact with the Web in the process of finding factual information. (Author/AEF)
Overview Electrotactile Feedback for Enhancing Human Computer Interface
NASA Astrophysics Data System (ADS)
Pamungkas, Daniel S.; Caesarendra, Wahyu
2018-04-01
To achieve effective interaction between a human and a computing device or machine, adequate feedback from the computing device or machine is required. Recently, haptic feedback is increasingly being utilised to improve the interactivity of the Human Computer Interface (HCI). Most existing haptic feedback enhancements aim at producing forces or vibrations to enrich the user’s interactive experience. However, these force and/or vibration actuated haptic feedback systems can be bulky and uncomfortable to wear and only capable of delivering a limited amount of information to the user which can limit both their effectiveness and the applications they can be applied to. To address this deficiency, electrotactile feedback is used. This involves delivering haptic sensations to the user by electrically stimulating nerves in the skin via electrodes placed on the surface of the skin. This paper presents a review and explores the capability of electrotactile feedback for HCI applications. In addition, a description of the sensory receptors within the skin for sensing tactile stimulus and electric currents alsoseveral factors which influenced electric signal to transmit to the brain via human skinare explained.
Li, Qiyu; Ran, Xu; Zhang, Shaoxiang; Tan, Liwen; Qiu, Mingguo
2014-01-01
As we know, the human brain is one of the most complicated organs in the human body, which is the key and difficult point in neuroanatomy and sectional anatomy teaching. With the rapid development and extensive application of imaging technology in clinical diagnosis, doctors are facing higher and higher requirement on their anatomy knowledge. Thus, to cultivate medical students to meet the needs of medical development today and to improve their ability to read and understand radiographic images have become urgent challenges for the medical teachers. In this context, we developed a digital interactive human brain atlas based on the Chinese visible human datasets for anatomy teaching (available for free download from http://www.chinesevisiblehuman.com/down/DHBA.rar). The atlas simultaneously provides views in all 3 primary planes of section. The main structures of the human brain have been anatomically labeled in all 3 views. It is potentially useful for anatomy browsing, user self-testing, and automatic student assessment. In a word, it is interactive, 3D, user friendly, and free of charge, which can provide a new, intuitive means for anatomy teaching.
Discriminative Multi-View Interactive Image Re-Ranking.
Li, Jun; Xu, Chang; Yang, Wankou; Sun, Changyin; Tao, Dacheng
2017-07-01
Given an unreliable visual patterns and insufficient query information, content-based image retrieval is often suboptimal and requires image re-ranking using auxiliary information. In this paper, we propose a discriminative multi-view interactive image re-ranking (DMINTIR), which integrates user relevance feedback capturing users' intentions and multiple features that sufficiently describe the images. In DMINTIR, heterogeneous property features are incorporated in the multi-view learning scheme to exploit their complementarities. In addition, a discriminatively learned weight vector is obtained to reassign updated scores and target images for re-ranking. Compared with other multi-view learning techniques, our scheme not only generates a compact representation in the latent space from the redundant multi-view features but also maximally preserves the discriminative information in feature encoding by the large-margin principle. Furthermore, the generalization error bound of the proposed algorithm is theoretically analyzed and shown to be improved by the interactions between the latent space and discriminant function learning. Experimental results on two benchmark data sets demonstrate that our approach boosts baseline retrieval quality and is competitive with the other state-of-the-art re-ranking strategies.
Operation of the HP2250 with the HP9000 series 200 using PASCAL 3.0
NASA Technical Reports Server (NTRS)
Perry, John; Stroud, C. W.
1986-01-01
A computer program has been written to provide an interface between the HP Series 200 desktop computers, operating under HP Standard Pascal 3.0, and the HP2250 Data Acquisition and Control System. Pascal 3.0 for the HP9000 desktop computer gives a number of procedures for handling bus communication at various levels. It is necessary, however, to reach the lowest possible level in Pascal to handle the bus protocols required by the HP2250. This makes programming extremely complex since these protocols are not documented. The program described solves those problems and allows the user to immediately program, simply and efficiently, any measurement and control language (MCL/50) application with a few procedure calls. The complete set of procedures is available on a 5 1/4 inch diskette from Cosmic. Included in this group of procedures is an Exerciser which allows the user to exercise his HP2250 interactively. The exerciser operates in a fashion similar to the Series 200 operating system programs, but is adapted to the requirements of the HP2250. The programs on the diskette and the user's manual assume the user is acquainted with both the MCL/50 programming language and HP Standard Pascal 3.0 for the HP series 200 desktop computers.
Exploiting the User: Adapting Personas for Use in Security Visualization Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoll, Jennifer C.; McColgin, David W.; Gregory, Michelle L.
It has long been noted that visual representations of complex information can facilitate rapid understanding of data {citation], even with respect to ComSec applications {citation]. Recognizing that visualizations can increase usability in ComSec applications, [Zurko, Sasse] have argued that there is a need to create more usable security visualizations. (VisSec) However, usability of applications generally fall into the domain of Human Computer Interaction (HCI), which generally relies on heavy-weight user-centered design (UCD) processes. For example, the UCD process can involve many prototype iterations, or an ethnographic field study that can take months to complete. The problem is that VisSec projectsmore » generally do not have the resources to perform ethnographic field studies, or to employ complex UCD methods. They often are running on tight deadlines and budgets that can not afford standard UCD methods. In order to help resolve the conflict of needing more usable designs in ComSec, but not having the resources to employ complex UCD methods, in this paper we offer a stripped-down lighter weight version of a UCD process which can help with capturing user requirements. The approach we use is personas which a user requirements capturing method arising out of the Participatory Design philosophy [Grudin02].« less
Web application for detailed real-time database transaction monitoring for CMS condition data
NASA Astrophysics Data System (ADS)
de Gruttola, Michele; Di Guida, Salvatore; Innocente, Vincenzo; Pierro, Antonio
2012-12-01
In the upcoming LHC era, database have become an essential part for the experiments collecting data from LHC, in order to safely store, and consistently retrieve, a wide amount of data, which are produced by different sources. In the CMS experiment at CERN, all this information is stored in ORACLE databases, allocated in several servers, both inside and outside the CERN network. In this scenario, the task of monitoring different databases is a crucial database administration issue, since different information may be required depending on different users' tasks such as data transfer, inspection, planning and security issues. We present here a web application based on Python web framework and Python modules for data mining purposes. To customize the GUI we record traces of user interactions that are used to build use case models. In addition the application detects errors in database transactions (for example identify any mistake made by user, application failure, unexpected network shutdown or Structured Query Language (SQL) statement error) and provides warning messages from the different users' perspectives. Finally, in order to fullfill the requirements of the CMS experiment community, and to meet the new development in many Web client tools, our application was further developed, and new features were deployed.
MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.
Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik
2016-01-01
Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.
Automatic ultrasound image enhancement for 2D semi-automatic breast-lesion segmentation
NASA Astrophysics Data System (ADS)
Lu, Kongkuo; Hall, Christopher S.
2014-03-01
Breast cancer is the fastest growing cancer, accounting for 29%, of new cases in 2012, and second leading cause of cancer death among women in the United States and worldwide. Ultrasound (US) has been used as an indispensable tool for breast cancer detection/diagnosis and treatment. In computer-aided assistance, lesion segmentation is a preliminary but vital step, but the task is quite challenging in US images, due to imaging artifacts that complicate detection and measurement of the suspect lesions. The lesions usually present with poor boundary features and vary significantly in size, shape, and intensity distribution between cases. Automatic methods are highly application dependent while manual tracing methods are extremely time consuming and have a great deal of intra- and inter- observer variability. Semi-automatic approaches are designed to counterbalance the advantage and drawbacks of the automatic and manual methods. However, considerable user interaction might be necessary to ensure reasonable segmentation for a wide range of lesions. This work proposes an automatic enhancement approach to improve the boundary searching ability of the live wire method to reduce necessary user interaction while keeping the segmentation performance. Based on the results of segmentation of 50 2D breast lesions in US images, less user interaction is required to achieve desired accuracy, i.e. < 80%, when auto-enhancement is applied for live-wire segmentation.
Adding Pluggable and Personalized Natural Control Capabilities to Existing Applications
Lamberti, Fabrizio; Sanna, Andrea; Carlevaris, Gilles; Demartini, Claudio
2015-01-01
Advancements in input device and sensor technologies led to the evolution of the traditional human-machine interaction paradigm based on the mouse and keyboard. Touch-, gesture- and voice-based interfaces are integrated today in a variety of applications running on consumer devices (e.g., gaming consoles and smartphones). However, to allow existing applications running on desktop computers to utilize natural interaction, significant re-design and re-coding efforts may be required. In this paper, a framework designed to transparently add multi-modal interaction capabilities to applications to which users are accustomed is presented. Experimental observations confirmed the effectiveness of the proposed framework and led to a classification of those applications that could benefit more from the availability of natural interaction modalities. PMID:25635410
Adding pluggable and personalized natural control capabilities to existing applications.
Lamberti, Fabrizio; Sanna, Andrea; Carlevaris, Gilles; Demartini, Claudio
2015-01-28
Advancements in input device and sensor technologies led to the evolution of the traditional human-machine interaction paradigm based on the mouse and keyboard. Touch-, gesture- and voice-based interfaces are integrated today in a variety of applications running on consumer devices (e.g., gaming consoles and smartphones). However, to allow existing applications running on desktop computers to utilize natural interaction, significant re-design and re-coding efforts may be required. In this paper, a framework designed to transparently add multi-modal interaction capabilities to applications to which users are accustomed is presented. Experimental observations confirmed the effectiveness of the proposed framework and led to a classification of those applications that could benefit more from the availability of natural interaction modalities.
Debunking in a world of tribes
Bessi, Alessandro; Del Vicario, Michela; Scala, Antonio; Caldarelli, Guido; Shekhtman, Louis; Havlin, Shlomo; Quattrociocchi, Walter
2017-01-01
Social media aggregate people around common interests eliciting collective framing of narratives and worldviews. However, in such a disintermediated environment misinformation is pervasive and attempts to debunk are often undertaken to contrast this trend. In this work, we examine the effectiveness of debunking on Facebook through a quantitative analysis of 54 million users over a time span of five years (Jan 2010, Dec 2014). In particular, we compare how users usually consuming proven (scientific) and unsubstantiated (conspiracy-like) information on Facebook US interact with specific debunking posts. Our findings confirm the existence of echo chambers where users interact primarily with either conspiracy-like or scientific pages. However, both groups interact similarly with the information within their echo chamber. Then, we measure how users from both echo chambers interacted with 50,220 debunking posts accounting for both users consumption patterns and the sentiment expressed in their comments. Sentiment analysis reveals a dominant negativity in the comments to debunking posts. Furthermore, such posts remain mainly confined to the scientific echo chamber. Only few conspiracy users engage with corrections and their liking and commenting rates on conspiracy posts increases after the interaction. PMID:28742163
NASA Astrophysics Data System (ADS)
Setscheny, Stephan
The interaction between human beings and technology builds a central aspect in human life. The most common form of this human-technology interface is the graphical user interface which is controlled through the mouse and the keyboard. In consequence of continuous miniaturization and the increasing performance of microcontrollers and sensors for the detection of human interactions, developers receive new possibilities for realising innovative interfaces. As far as this movement is concerned, the relevance of computers in the common sense and graphical user interfaces is decreasing. Especially in the area of ubiquitous computing and the interaction through tangible user interfaces a highly impact of this technical evolution can be seen. Apart from this, tangible and experience able interaction offers users the possibility of an interactive and intuitive method for controlling technical objects. The implementation of microcontrollers for control functions and sensors enables the realisation of these experience able interfaces. Besides the theories about tangible user interfaces, the consideration about sensors and the Arduino platform builds a main aspect of this work.
Interactive multimedia for prenatal ultrasound training.
Lee, W; Ault, H; Kirk, J S; Comstock, C H
1995-01-01
This demonstration project examines the utility of interactive multimedia for prenatal ultrasound training. A laser-disc library was linked to a three-dimensional (3-D) heart model and other computer-based training materials through interactive multimedia. A testing module presented ultrasound anomalies and related questions to house-staff physicians through the image library. Users were asked to evaluate these training materials on the basis of perceived instructional value, question content, subjects covered, graphics interface, and ease of use; users were also asked for their comments. House-staff physicians indicated that they consider interactive multimedia to be a helpful adjunct to their core fetal imaging rotation. During a 9-month period, 16 house-staff physicians correctly diagnosed 78 +/- 4% of unknown cases presented through the testing module. The 3-D heart model was also perceived to be a useful teaching aid for spatial orientation skills. Our findings suggest that interactive multimedia and volume visualization models can be used to supplement traditional prenatal ultrasound training. The system provides a broad exposure to ultrasound anomalies, increases opportunities for postnatal correlation, emphasizes motion video for ultrasound training, encourages development of independent diagnostic ability, and helps physicians understand anatomic orientation. We hypothesize that interactive multimedia-based tutorials provide a better overall training experience for house-staff physicians. However, these supplementary methods will require formal evaluation of effectiveness to better understand their potential educational impact.
The Value of Metrics for Science Data Center Management
NASA Astrophysics Data System (ADS)
Moses, J.; Behnke, J.; Watts, T. H.; Lu, Y.
2005-12-01
The Earth Observing System Data and Information System (EOSDIS) has been collecting and analyzing records of science data archive, processing and product distribution for more than 10 years. The types of information collected and the analysis performed has matured and progressed to become an integral and necessary part of the system management and planning functions. Science data center managers are realizing the importance that metrics can play in influencing and validating their business model. New efforts focus on better understanding of users and their methods. Examples include tracking user web site interactions and conducting user surveys such as the government authorized American Customer Satisfaction Index survey. This paper discusses the metrics methodology, processes and applications that are growing in EOSDIS, the driving requirements and compelling events, and the future envisioned for metrics as an integral part of earth science data systems.
End-User Evaluations of Semantic Web Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCool, Rob; Cowell, Andrew J.; Thurman, David A.
Stanford University's Knowledge Systems Laboratory (KSL) is working in partnership with Battelle Memorial Institute and IBM Watson Research Center to develop a suite of technologies for information extraction, knowledge representation & reasoning, and human-information interaction, in unison entitled 'Knowledge Associates for Novel Intelligence' (KANI). We have developed an integrated analytic environment composed of a collection of analyst associates, software components that aid the user at different stages of the information analysis process. An important part of our participatory design process has been to ensure our technologies and designs are tightly integrate with the needs and requirements of our end users,more » To this end, we perform a sequence of evaluations towards the end of the development process that ensure the technologies are both functional and usable. This paper reports on that process.« less
Fels, Deborah I; Richards, Jan; Hardman, Jim; Lee, Daniel G
2006-01-01
The WORLD WIDE WEB has changed the way people interact. It has also become an important equalizer of information access for many social sectors. However, for many people, including some sign language users, Web accessing can be difficult. For some, it not only presents another barrier to overcome but has left them without cultural equality. The present article describes a system that allows sign language-only Web pages to be created and linked through a video-based technique called sign-linking. In two studies, 14 Deaf participants examined two iterations of signlinked Web pages to gauge the usability and learnability of a signing Web page interface. The first study indicated that signing Web pages were usable by sign language users but that some interface features required improvement. The second study showed increased usability for those features; users consequently couldnavigate sign language information with ease and pleasure.
The computer integrated documentation project: A merge of hypermedia and AI techniques
NASA Technical Reports Server (NTRS)
Mathe, Nathalie; Boy, Guy
1993-01-01
To generate intelligent indexing that allows context-sensitive information retrieval, a system must be able to acquire knowledge directly through interaction with users. In this paper, we present the architecture for CID (Computer Integrated Documentation). CID is a system that enables integration of various technical documents in a hypertext framework and includes an intelligent browsing system that incorporates indexing in context. CID's knowledge-based indexing mechanism allows case based knowledge acquisition by experimentation. It utilizes on-line user information requirements and suggestions either to reinforce current indexing in case of success or to generate new knowledge in case of failure. This allows CID's intelligent interface system to provide helpful responses, based on previous experience (user feedback). We describe CID's current capabilities and provide an overview of our plans for extending the system.
A Multimodal Deep Log-Based User Experience (UX) Platform for UX Evaluation
Ali Khan, Wajahat; Hur, Taeho; Muhammad Bilal, Hafiz Syed; Ul Hassan, Anees; Lee, Sungyoung
2018-01-01
The user experience (UX) is an emerging field in user research and design, and the development of UX evaluation methods presents a challenge for both researchers and practitioners. Different UX evaluation methods have been developed to extract accurate UX data. Among UX evaluation methods, the mixed-method approach of triangulation has gained importance. It provides more accurate and precise information about the user while interacting with the product. However, this approach requires skilled UX researchers and developers to integrate multiple devices, synchronize them, analyze the data, and ultimately produce an informed decision. In this paper, a method and system for measuring the overall UX over time using a triangulation method are proposed. The proposed platform incorporates observational and physiological measurements in addition to traditional ones. The platform reduces the subjective bias and validates the user’s perceptions, which are measured by different sensors through objectification of the subjective nature of the user in the UX assessment. The platform additionally offers plug-and-play support for different devices and powerful analytics for obtaining insight on the UX in terms of multiple participants. PMID:29783712
Introduction of knowledge bases in patient's data management system: role of the user interface.
Chambrin, M C; Ravaux, P; Jaborska, A; Beugnet, C; Lestavel, P; Chopin, C; Boniface, M
1995-02-01
As the number of signals and data to be handled grows in intensive care unit, it is necessary to design more powerful computing systems that integrate and summarize all this information. The manual input of data as e.g. clinical signs and drug prescription and the synthetic representation of these data requires an ever more sophisticated user interface. The introduction of knowledge bases in the data management allows to conceive contextual interfaces. The objective of this paper is to show the importance of the design of the user interface, in the daily use of clinical information system. Then we describe a methodology that uses the man-machine interaction to capture the clinician knowledge during the clinical practice. The different steps are the audit of the user's actions, the elaboration of statistic models allowing the definition of new knowledge, and the validation that is performed before complete integration. A part of this knowledge can be used to improve the user interface. Finally, we describe the implementation of these concepts on a UNIX platform using OSF/MOTIF graphical interface.
A review of existing and potential computer user interfaces for modern radiology.
Iannessi, Antoine; Marcy, Pierre-Yves; Clatz, Olivier; Bertrand, Anne-Sophie; Sugimoto, Maki
2018-05-16
The digitalization of modern imaging has led radiologists to become very familiar with computers and their user interfaces (UI). New options for display and command offer expanded possibilities, but the mouse and keyboard remain the most commonly utilized, for usability reasons. In this work, we review and discuss different UI and their possible application in radiology. We consider two-dimensional and three-dimensional imaging displays in the context of interventional radiology, and discuss interest in touchscreens, kinetic sensors, eye detection, and augmented or virtual reality. We show that UI design specifically for radiologists is key for future use and adoption of such new interfaces. Next-generation UI must fulfil professional needs, while considering contextual constraints. • The mouse and keyboard remain the most utilized user interfaces for radiologists. • Touchscreen, holographic, kinetic sensors and eye tracking offer new possibilities for interaction. • 3D and 2D imaging require specific user interfaces. • Holographic display and augmented reality provide a third dimension to volume imaging. • Good usability is essential for adoption of new user interfaces by radiologists.
A Key Establishment Protocol for RFID User in IPTV Environment
NASA Astrophysics Data System (ADS)
Jeong, Yoon-Su; Kim, Yong-Tae; Sohn, Jae-Min; Park, Gil-Cheol; Lee, Sang-Ho
In recent years, the usage of IPTV (Internet Protocol Television) has been increased. The reason is a technological convergence of broadcasting and telecommunication delivering interactive applications and multimedia content through high speed Internet connections. The main critical point of IPTV security requirements is subscriber authentication. That is, IPTV service should have the capability to identify the subscribers to prohibit illegal access. Currently, IPTV service does not provide a sound authentication mechanism to verify the identity of its wireless users (or devices). This paper focuses on a lightweight authentication and key establishment protocol based on the use of hash functions. The proposed approach provides effective authentication for a mobile user with a RFID tag whose authentication information is communicated back and forth with the IPTV authentication server via IPTV set-top box (STB). That is, the proposed protocol generates user's authentication information that is a bundle of two public keys derived from hashing user's private keys and RFID tag's session identifier, and adds 1bit to this bundled information for subscriber's information confidentiality before passing it to the authentication server.
SpecDB: The AAVSO’s Public Repository for Spectra of Variable Stars
NASA Astrophysics Data System (ADS)
Kafka, Stella; Weaver, John; Silvis, George; Beck, Sara
2018-01-01
SpecDB is the American Association of Variable Star Observers (AAVSO) spectral database. Accessible to any astronomer with the capability to perform spectroscopy, SpecDB provides an unprecedented scientific opportunity for amateur and professional astronomers around the globe. Backed by the Variable Star Index, one of the most utilized variable star catalogs, SpecDB is expected to become one of the world leading databases of its kind. Once verified by a team of expert spectroscopists, an observer can upload spectra of variable stars target easily and efficiently. Uploaded spectra can then be searched for, previewed, and downloaded for inclusion in publications. Close community development and involvement will ensure a user-friendly and versatile database, compatible with the needs of 21st century astrophysics. Observations of 1D spectra are submitted as FITS files. All spectra are required to be preprocessed for wavelength calibration and dark subtraction; Bias and flat are strongly recommended. First time observers are required to submit a spectrum of a standard (non-variable) star to be checked for errors in technique or equipment. Regardless of user validation, FITS headers must include several value cards detailing the observation, as well as information regarding the observer, equipment, and observing site in accordance with existing AAVSO records. This enforces consistency and provides necessary details for follow up analysis. Requirements are provided to users in a comprehensive guidebook and accompanying technical manual. Upon submission, FITS headers are automatically checked for errors and any anomalies are immediately fed back to the user. Successful candidates can then submit at will, including multiple simultaneous submissions. All published observations can be searched and interactively previewed. Community involvement will be enhanced by an associated forum where users can discuss observation techniques and suggest improvements to the database.
Adaptive interface for personalizing information seeking.
Narayanan, S; Koppaka, Lavanya; Edala, Narasimha; Loritz, Don; Daley, Raymond
2004-12-01
An adaptive interface autonomously adjusts its display and available actions to current goals and abilities of the user by assessing user status, system task, and the context. Knowledge content adaptability is needed for knowledge acquisition and refinement tasks. In the case of knowledge content adaptability, the requirements of interface design focus on the elicitation of information from the user and the refinement of information based on patterns of interaction. In such cases, the emphasis on adaptability is on facilitating information search and knowledge discovery. In this article, we present research on adaptive interfaces that facilitates personalized information seeking from a large data warehouse. The resulting proof-of-concept system, called source recommendation system (SRS), assists users in locating and navigating data sources in the repository. Based on the initial user query and an analysis of the content of the search results, the SRS system generates a profile of the user tailored to the individual's context during information seeking. The user profiles are refined successively and are used in progressively guiding the user to the appropriate set of sources within the knowledge base. The SRS system is implemented as an Internet browser plug-in to provide a seamless and unobtrusive, personalized experience to the users during the information search process. The rationale behind our approach, system design, empirical evaluation, and implications for research on adaptive interfaces are described in this paper.
ERIC Educational Resources Information Center
Lewis, Elise C.
2011-01-01
This study was designed to explore the relationships between users and interactive images. Three factors were identified and provided different perspectives on how users interact with images: image utility, information-need, and images with varying levels of interactivity. The study used a mixed methodology to gain a more comprehensive…
General Tool for Evaluating High-Contrast Coronagraphic Telescope Performance Error Budgets
NASA Technical Reports Server (NTRS)
Marchen, Luis F.
2011-01-01
The Coronagraph Performance Error Budget (CPEB) tool automates many of the key steps required to evaluate the scattered starlight contrast in the dark hole of a space-based coronagraph. The tool uses a Code V prescription of the optical train, and uses MATLAB programs to call ray-trace code that generates linear beam-walk and aberration sensitivity matrices for motions of the optical elements and line-of-sight pointing, with and without controlled fine-steering mirrors (FSMs). The sensitivity matrices are imported by macros into Excel 2007, where the error budget is evaluated. The user specifies the particular optics of interest, and chooses the quality of each optic from a predefined set of PSDs. The spreadsheet creates a nominal set of thermal and jitter motions, and combines that with the sensitivity matrices to generate an error budget for the system. CPEB also contains a combination of form and ActiveX controls with Visual Basic for Applications code to allow for user interaction in which the user can perform trade studies such as changing engineering requirements, and identifying and isolating stringent requirements. It contains summary tables and graphics that can be instantly used for reporting results in view graphs. The entire process to obtain a coronagraphic telescope performance error budget has been automated into three stages: conversion of optical prescription from Zemax or Code V to MACOS (in-house optical modeling and analysis tool), a linear models process, and an error budget tool process. The first process was improved by developing a MATLAB package based on the Class Constructor Method with a number of user-defined functions that allow the user to modify the MACOS optical prescription. The second process was modified by creating a MATLAB package that contains user-defined functions that automate the process. The user interfaces with the process by utilizing an initialization file where the user defines the parameters of the linear model computations. Other than this, the process is fully automated. The third process was developed based on the Terrestrial Planet Finder coronagraph Error Budget Tool, but was fully automated by using VBA code, form, and ActiveX controls.
TargetVue: Visual Analysis of Anomalous User Behaviors in Online Communication Systems.
Cao, Nan; Shi, Conglei; Lin, Sabrina; Lu, Jie; Lin, Yu-Ru; Lin, Ching-Yung
2016-01-01
Users with anomalous behaviors in online communication systems (e.g. email and social medial platforms) are potential threats to society. Automated anomaly detection based on advanced machine learning techniques has been developed to combat this issue; challenges remain, though, due to the difficulty of obtaining proper ground truth for model training and evaluation. Therefore, substantial human judgment on the automated analysis results is often required to better adjust the performance of anomaly detection. Unfortunately, techniques that allow users to understand the analysis results more efficiently, to make a confident judgment about anomalies, and to explore data in their context, are still lacking. In this paper, we propose a novel visual analysis system, TargetVue, which detects anomalous users via an unsupervised learning model and visualizes the behaviors of suspicious users in behavior-rich context through novel visualization designs and multiple coordinated contextual views. Particularly, TargetVue incorporates three new ego-centric glyphs to visually summarize a user's behaviors which effectively present the user's communication activities, features, and social interactions. An efficient layout method is proposed to place these glyphs on a triangle grid, which captures similarities among users and facilitates comparisons of behaviors of different users. We demonstrate the power of TargetVue through its application in a social bot detection challenge using Twitter data, a case study based on email records, and an interview with expert users. Our evaluation shows that TargetVue is beneficial to the detection of users with anomalous communication behaviors.
1988-03-01
structure of the interface is a mapping from the physical world [for example, the use of icons, which S have inherent meaning to users but represent...design alternatives. Mechanisms for linking the user to the computer include physical devices (keyboards), actions taken with the devices (keystrokes...VALUATION AIDES TEMLATEI IITCOM1I LATOR IACTICAL KNOWLEDGE ACGIUISITION MICNnII t 1 Fig. 9. INTACVAL. * OtJiCTs ARE PHYSICAL ENTITIES OR CONCEPTUAL EN
Anderson, Jeffrey R; Barrett, Steven F
2009-01-01
Image segmentation is the process of isolating distinct objects within an image. Computer algorithms have been developed to aid in the process of object segmentation, but a completely autonomous segmentation algorithm has yet to be developed [1]. This is because computers do not have the capability to understand images and recognize complex objects within the image. However, computer segmentation methods [2], requiring user input, have been developed to quickly segment objects in serial sectioned images, such as magnetic resonance images (MRI) and confocal laser scanning microscope (CLSM) images. In these cases, the segmentation process becomes a powerful tool in visualizing the 3D nature of an object. The user input is an important part of improving the performance of many segmentation methods. A double threshold segmentation method has been investigated [3] to separate objects in gray scaled images, where the gray level of the object is among the gray levels of the background. In order to best determine the threshold values for this segmentation method the image must be manipulated for optimal contrast. The same is true of other segmentation and edge detection methods as well. Typically, the better the image contrast, the better the segmentation results. This paper describes a graphical user interface (GUI) that allows the user to easily change image contrast parameters that will optimize the performance of subsequent object segmentation. This approach makes use of the fact that the human brain is extremely effective in object recognition and understanding. The GUI provides the user with the ability to define the gray scale range of the object of interest. These lower and upper bounds of this range are used in a histogram stretching process to improve image contrast. Also, the user can interactively modify the gamma correction factor that provides a non-linear distribution of gray scale values, while observing the corresponding changes to the image. This interactive approach gives the user the power to make optimal choices in the contrast enhancement parameters.
A Climate Information Platform for Copernicus (CLIPC): managing the data flood
NASA Astrophysics Data System (ADS)
Juckes, Martin; Swart, Rob; Bärring, Lars; Groot, Annemarie; Thysse, Peter; Som de Cerff, Wim; Costa, Luis; Lückenkötter, Johannes; Callaghan, Sarah; Bennett, Victoria
2016-04-01
The FP7 project "Climate Information Platform for Copernicus" (CLIPC) is developing a demonstration portal for the Copernicus Climate Change Service (C3S). The project confronts many problems associated with the huge diversity of underlying data, complex multi-layered uncertainties and extremely complex and evolving user requirements. The infrastructure is founded on a comprehensive approach to managing data and documentation, using global domain independent standards where possible. An extensive thesaurus of terms provides both a robust and flexible foundation for data discovery services and accessible definitions to support users. It is, of course, essential to provide information to users through an interface which reflects their expectations rather than the intricacies of abstract data models. CLIPC has reviewed user engagement activities from other collaborative European projects, conducted user polls, interviews and meetings and is now entering an evaluation phase in which users discuss new features and options in the portal design. The CLIPC portal will provide access to raw climate science data and climate impact indicators derived from that data. The portal needs the flexibility to support access to extremely large datasets as well as providing means to manipulate data and explore complex products interactively.
Informing the Design of Direct-to-Consumer Interactive Personal Genomics Reports.
Shaer, Orit; Nov, Oded; Okerlund, Johanna; Balestra, Martina; Stowell, Elizabeth; Ascher, Laura; Bi, Joanna; Schlenker, Claire; Ball, Madeleine
2015-06-12
In recent years, people who sought direct-to-consumer genetic testing services have been increasingly confronted with an unprecedented amount of personal genomic information, which influences their decisions, emotional state, and well-being. However, these users of direct-to-consumer genetic services, who vary in their education and interests, frequently have little relevant experience or tools for understanding, reasoning about, and interacting with their personal genomic data. Online interactive techniques can play a central role in making personal genomic data useful for these users. We sought to (1) identify the needs of diverse users as they make sense of their personal genomic data, (2) consequently develop effective interactive visualizations of genomic trait data to address these users' needs, and (3) evaluate the effectiveness of the developed visualizations in facilitating comprehension. The first two user studies, conducted with 63 volunteers in the Personal Genome Project and with 36 personal genomic users who participated in a design workshop, respectively, employed surveys and interviews to identify the needs and expectations of diverse users. Building on the two initial studies, the third study was conducted with 730 Amazon Mechanical Turk users and employed a controlled experimental design to examine the effectiveness of different design interventions on user comprehension. The first two studies identified searching, comparing, sharing, and organizing data as fundamental to users' understanding of personal genomic data. The third study demonstrated that interactive and visual design interventions could improve the understandability of personal genomic reports for consumers. In particular, results showed that a new interactive bubble chart visualization designed for the study resulted in the highest comprehension scores, as well as the highest perceived comprehension scores. These scores were significantly higher than scores received using the industry standard tabular reports currently used for communicating personal genomic information. Drawing on multiple research methods and populations, the findings of the studies reported in this paper offer deep understanding of users' needs and practices, and demonstrate that interactive online design interventions can improve the understandability of personal genomic reports for consumers. We discuss implications for designers and researchers.
Broadening the horizon – level 2.5 of the HUPO-PSI format for molecular interactions
Kerrien, Samuel; Orchard, Sandra; Montecchi-Palazzi, Luisa; Aranda, Bruno; Quinn, Antony F; Vinod, Nisha; Bader, Gary D; Xenarios, Ioannis; Wojcik, Jérôme; Sherman, David; Tyers, Mike; Salama, John J; Moore, Susan; Ceol, Arnaud; Chatr-aryamontri, Andrew; Oesterheld, Matthias; Stümpflen, Volker; Salwinski, Lukasz; Nerothin, Jason; Cerami, Ethan; Cusick, Michael E; Vidal, Marc; Gilson, Michael; Armstrong, John; Woollard, Peter; Hogue, Christopher; Eisenberg, David; Cesareni, Gianni; Apweiler, Rolf; Hermjakob, Henning
2007-01-01
Background Molecular interaction Information is a key resource in modern biomedical research. Publicly available data have previously been provided in a broad array of diverse formats, making access to this very difficult. The publication and wide implementation of the Human Proteome Organisation Proteomics Standards Initiative Molecular Interactions (HUPO PSI-MI) format in 2004 was a major step towards the establishment of a single, unified format by which molecular interactions should be presented, but focused purely on protein-protein interactions. Results The HUPO-PSI has further developed the PSI-MI XML schema to enable the description of interactions between a wider range of molecular types, for example nucleic acids, chemical entities, and molecular complexes. Extensive details about each supported molecular interaction can now be captured, including the biological role of each molecule within that interaction, detailed description of interacting domains, and the kinetic parameters of the interaction. The format is supported by data management and analysis tools and has been adopted by major interaction data providers. Additionally, a simpler, tab-delimited format MITAB2.5 has been developed for the benefit of users who require only minimal information in an easy to access configuration. Conclusion The PSI-MI XML2.5 and MITAB2.5 formats have been jointly developed by interaction data producers and providers from both the academic and commercial sector, and are already widely implemented and well supported by an active development community. PSI-MI XML2.5 enables the description of highly detailed molecular interaction data and facilitates data exchange between databases and users without loss of information. MITAB2.5 is a simpler format appropriate for fast Perl parsing or loading into Microsoft Excel. PMID:17925023
The Role of Trust and Interaction in Global Positioning System Related Accidents
NASA Technical Reports Server (NTRS)
Johnson, Chris W.; Shea, Christine; Holloway, C. Michael
2008-01-01
The Global Positioning System (GPS) uses a network of satellites to calculate the position of a receiver over time. This technology has revolutionized a wide range of safety-critical industries and leisure applications. These systems provide diverse benefits; supplementing the users existing navigation skills and reducing the uncertainty that often characterizes many route planning tasks. GPS applications can also help to reduce workload by automating tasks that would otherwise require finite cognitive and perceptual resources. However, the operation of these systems has been identified as a contributory factor in a range of recent accidents. Users often come to rely on GPS applications and, therefore, fail to notice when they develop faults or when errors occur in the other systems that use the data from these systems. Further accidents can stem from the over confidence that arises when users assume automated warnings will be issued when they stray from an intended route. Unless greater attention is paid to the role of trust and interaction in GPS applications then there is a danger that we will see an increasing number of these failures as positioning technologies become integral in the functioning of increasing numbers of applications.
PLACNETw: a web-based tool for plasmid reconstruction from bacterial genomes.
Vielva, Luis; de Toro, María; Lanza, Val F; de la Cruz, Fernando
2017-12-01
PLACNET is a graph-based tool for reconstruction of plasmids from next generation sequence pair-end datasets. PLACNET graphs contain two types of nodes (assembled contigs and reference genomes) and two types of edges (scaffold links and homology to references). Manual pruning of the graphs is a necessary requirement in PLACNET, but this is difficult for users without solid bioinformatic background. PLACNETw, a webtool based on PLACNET, provides an interactive graphic interface, automates BLAST searches, and extracts the relevant information for decision making. It allows a user with domain expertise to visualize the scaffold graphs and related information of contigs as well as reference sequences, so that the pruning operations can be done interactively from a personal computer without the need for additional tools. After successful pruning, each plasmid becomes a separate connected component subgraph. The resulting data are automatically downloaded by the user. PLACNETw is freely available at https://castillo.dicom.unican.es/upload/. delacruz@unican.es. A tutorial video and several solved examples are available at https://castillo.dicom.unican.es/placnetw_video/ and https://castillo.dicom.unican.es/examples/. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
NASA Technical Reports Server (NTRS)
Moe, Karen L.; Perkins, Dorothy C.; Szczur, Martha R.
1987-01-01
The user support environment (USE) which is a set of software tools for a flexible standard interactive user interface to the Space Station systems, platforms, and payloads is described in detail. Included in the USE concept are a user interface language, a run time environment and user interface management system, support tools, and standards for human interaction methods. The goals and challenges of the USE are discussed as well as a methodology based on prototype demonstrations for involving users in the process of validating the USE concepts. By prototyping the key concepts and salient features of the proposed user interface standards, the user's ability to respond is greatly enhanced.
Scandurra, Isabella; Hägglund, Maria
2009-01-01
Introduction Integrated care involves different professionals, belonging to different care provider organizations and requires immediate and ubiquitous access to patient-oriented information, supporting an integrated view on the care process [1]. Purpose To present a method for development of usable and work process-oriented information and communication technology (ICT) systems for integrated care. Theory and method Based on Human-computer Interaction Science and in particular Participatory Design [2], we present a new collaborative design method in the context of health information systems (HIS) development [3]. This method implies a thorough analysis of the entire interdisciplinary cooperative work and a transformation of the results into technical specifications, via user validated scenarios, prototypes and use cases, ultimately leading to the development of appropriate ICT for the variety of occurring work situations for different user groups, or professions, in integrated care. Results and conclusions Application of the method in homecare of the elderly resulted in an HIS that was well adapted to the intended user groups. Conducted in multi-disciplinary seminars, the method captured and validated user needs and system requirements for different professionals, work situations, and environments not only for current work; it also aimed to improve collaboration in future (ICT supported) work processes. A holistic view of the entire care process was obtained and supported through different views of the HIS for different user groups, resulting in improved work in the entire care process as well as for each collaborating profession [4].
An Empirical Study of User Experience on Touch Mice
ERIC Educational Resources Information Center
Chou, Jyh Rong
2016-01-01
The touch mouse is a new type of computer mouse that provides users with a new way of touch-based environment to interact with computers. For more than a decade, user experience (UX) has grown into a core concept of human-computer interaction (HCI), describing a user's perceptions and responses that result from the use of a product in a particular…
MaROS Strategic Relay Planning and Coordination Interfaces
NASA Technical Reports Server (NTRS)
Allard, Daniel A.
2010-01-01
The Mars Relay Operations Service (MaROS) is designed to provide planning and analysis tools in support of ongoing Mars Network relay operations. Strategic relay planning requires coordination between lander and orbiter mission ground data system (GDS) teams to schedule and execute relay communications passes. MaROS centralizes this process, correlating all data relevant to relay coordination to provide a cohesive picture of the relay state. Service users interact with the system through thin-layer command line and web user interface client applications. Users provide and utilize data such as lander view periods of orbiters, Deep Space Network (DSN) antenna tracks, and reports of relay pass performance. Users upload and download relevant relay data via formally defined and documented file structures including some described in Extensible Markup Language (XML). Clients interface with the system via an http-based Representational State Transfer (ReST) pattern using Javascript Object Notation (JSON) formats. This paper will provide a general overview of the service architecture and detail the software interfaces and considerations for interface design.
Automated Tracking of Cell Migration with Rapid Data Analysis.
DuChez, Brian J
2017-09-01
Cell migration is essential for many biological processes including development, wound healing, and metastasis. However, studying cell migration often requires the time-consuming and labor-intensive task of manually tracking cells. To accelerate the task of obtaining coordinate positions of migrating cells, we have developed a graphical user interface (GUI) capable of automating the tracking of fluorescently labeled nuclei. This GUI provides an intuitive user interface that makes automated tracking accessible to researchers with no image-processing experience or familiarity with particle-tracking approaches. Using this GUI, users can interactively determine a minimum of four parameters to identify fluorescently labeled cells and automate acquisition of cell trajectories. Additional features allow for batch processing of numerous time-lapse images, curation of unwanted tracks, and subsequent statistical analysis of tracked cells. Statistical outputs allow users to evaluate migratory phenotypes, including cell speed, distance, displacement, and persistence, as well as measures of directional movement, such as forward migration index (FMI) and angular displacement. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Perceived Ownership of Avatars Influences Visual Perspective Taking
Böffel, Christian; Müsseler, Jochen
2018-01-01
Modern computer-based applications often require the user to interact with avatars. Depending on the task at hand, spatial dissociation between the orientations of the user and the avatars might arise. As a consequence, the user has to adopt the avatar’s perspective and identify herself/himself with the avatar, possibly changing the user’s self-representation in the process. The present study aims to identify the conditions that benefit this change of perspective with objective performance measures and subjective self-estimations by integrating the idea of avatar-ownership into the cognitive phenomenon of spatial compatibility. Two different instructions were used to manipulate a user’s perceived ownership of an avatar in otherwise identical situations. Users with the high-ownership instruction reported higher levels of perceived ownership of the avatar and showed larger spatial compatibility effects from the avatar’s point of view in comparison to the low ownership instruction. This supports the hypothesis that perceived ownership benefits perspective taking. PMID:29887816
Embedded systems for supporting computer accessibility.
Mulfari, Davide; Celesti, Antonio; Fazio, Maria; Villari, Massimo; Puliafito, Antonio
2015-01-01
Nowadays, customized AT software solutions allow their users to interact with various kinds of computer systems. Such tools are generally available on personal devices (e.g., smartphones, laptops and so on) commonly used by a person with a disability. In this paper, we investigate a way of using the aforementioned AT equipments in order to access many different devices without assistive preferences. The solution takes advantage of open source hardware and its core component consists of an affordable Linux embedded system: it grabs data coming from the assistive software, which runs on the user's personal device, then, after processing, it generates native keyboard and mouse HID commands for the target computing device controlled by the end user. This process supports any operating system available on the target machine and it requires no specialized software installation; therefore the user with a disability can rely on a single assistive tool to control a wide range of computing platforms, including conventional computers and many kinds of mobile devices, which receive input commands through the USB HID protocol.
Web-based hydrodynamics computing
NASA Astrophysics Data System (ADS)
Shimoide, Alan; Lin, Luping; Hong, Tracie-Lynne; Yoon, Ilmi; Aragon, Sergio R.
2005-01-01
Proteins are long chains of amino acids that have a definite 3-d conformation and the shape of each protein is vital to its function. Since proteins are normally in solution, hydrodynamics (describes the movement of solvent around a protein as a function of shape and size of the molecule) can be used to probe the size and shape of proteins compared to those derived from X-ray crystallography. The computation chain needed for these hydrodynamics calculations consists of several separate programs by different authors on various platforms and often requires 3D visualizations of intermediate results. Due to the complexity, tools developed by a particular research group are not readily available for use by other groups, nor even by the non-experts within the same research group. To alleviate this situation, and to foment the easy and wide distribution of computational tools worldwide, we developed a web based interactive computational environment (WICE) including interactive 3D visualization that can be used with any web browser. Java based technologies were used to provide a platform neutral, user-friendly solution. Java Server Pages (JSP), Java Servlets, Java Beans, JOGL (Java bindings for OpenGL), and Java Web Start were used to create a solution that simplifies the computing chain for the user allowing the user to focus on their scientific research. WICE hides complexity from the user and provides robust and sophisticated visualization through a web browser.
Web-based hydrodynamics computing
NASA Astrophysics Data System (ADS)
Shimoide, Alan; Lin, Luping; Hong, Tracie-Lynne; Yoon, Ilmi; Aragon, Sergio R.
2004-12-01
Proteins are long chains of amino acids that have a definite 3-d conformation and the shape of each protein is vital to its function. Since proteins are normally in solution, hydrodynamics (describes the movement of solvent around a protein as a function of shape and size of the molecule) can be used to probe the size and shape of proteins compared to those derived from X-ray crystallography. The computation chain needed for these hydrodynamics calculations consists of several separate programs by different authors on various platforms and often requires 3D visualizations of intermediate results. Due to the complexity, tools developed by a particular research group are not readily available for use by other groups, nor even by the non-experts within the same research group. To alleviate this situation, and to foment the easy and wide distribution of computational tools worldwide, we developed a web based interactive computational environment (WICE) including interactive 3D visualization that can be used with any web browser. Java based technologies were used to provide a platform neutral, user-friendly solution. Java Server Pages (JSP), Java Servlets, Java Beans, JOGL (Java bindings for OpenGL), and Java Web Start were used to create a solution that simplifies the computing chain for the user allowing the user to focus on their scientific research. WICE hides complexity from the user and provides robust and sophisticated visualization through a web browser.
Closed-loop for type 1 diabetes - an introduction and appraisal for the generalist.
Bally, Lia; Thabit, Hood; Hovorka, Roman
2017-01-23
Rapid progress over the past decade has been made with the development of the 'Artificial Pancreas', also known as the closed-loop system, which emulates the feedback glucose-responsive functionality of the pancreatic beta cell. The recent FDA approval of the first hybrid closed-loop system makes the Artificial Pancreas a realistic therapeutic option for people with type 1 diabetes. In anticipation of its advent into clinical care, we provide a primer and appraisal of this novel therapeutic approach in type 1 diabetes for healthcare professionals and non-specialists in the field. Randomised clinical studies in outpatient and home settings have shown improved glycaemic outcomes, reduced risk of hypoglycaemia and positive user attitudes. User input and interaction with existing closed-loop systems, however, are still required. Therefore, management of user expectations, as well as training and support by healthcare providers are key to ensure optimal uptake, satisfaction and acceptance of the technology. An overview of closed-loop technology and its clinical implications are discussed, complemented by our extensive hands-on experience with closed-loop system use during free daily living. The introduction of the artificial pancreas into clinical practice represents a milestone towards the goal of improving the care of people with type 1 diabetes. There remains a need to understand the impact of user interaction with the technology, and its implication on current diabetes management and care.
Virtual goods recommendations in virtual worlds.
Chen, Kuan-Yu; Liao, Hsiu-Yu; Chen, Jyun-Hung; Liu, Duen-Ren
2015-01-01
Virtual worlds (VWs) are computer-simulated environments which allow users to create their own virtual character as an avatar. With the rapidly growing user volume in VWs, platform providers launch virtual goods in haste and stampede users to increase sales revenue. However, the rapidity of development incurs virtual unrelated items which will be difficult to remarket. It not only wastes virtual global companies' intelligence resources, but also makes it difficult for users to find suitable virtual goods fit for their virtual home in daily virtual life. In the VWs, users decorate their houses, visit others' homes, create families, host parties, and so forth. Users establish their social life circles through these activities. This research proposes a novel virtual goods recommendation method based on these social interactions. The contact strength and contact influence result from interactions with social neighbors and influence users' buying intention. Our research highlights the importance of social interactions in virtual goods recommendation. The experiment's data were retrieved from an online VW platform, and the results show that the proposed method, considering social interactions and social life circle, has better performance than existing recommendation methods.
Designing the user interface: strategies for effective human-computer interaction
NASA Astrophysics Data System (ADS)
Shneiderman, B.
1998-03-01
In revising this popular book, Ben Shneiderman again provides a complete, current and authoritative introduction to user-interface design. The user interface is the part of every computer system that determines how people control and operate that system. When the interface is well designed, it is comprehensible, predictable, and controllable; users feel competent, satisfied, and responsible for their actions. Shneiderman discusses the principles and practices needed to design such effective interaction. Based on 20 years experience, Shneiderman offers readers practical techniques and guidelines for interface design. He also takes great care to discuss underlying issues and to support conclusions with empirical results. Interface designers, software engineers, and product managers will all find this book an invaluable resource for creating systems that facilitate rapid learning and performance, yield low error rates, and generate high user satisfaction. Coverage includes the human factors of interactive software (with a new discussion of diverse user communities), tested methods to develop and assess interfaces, interaction styles such as direct manipulation for graphical user interfaces, and design considerations such as effective messages, consistent screen design, and appropriate color.
Virtual Goods Recommendations in Virtual Worlds
Chen, Kuan-Yu; Liao, Hsiu-Yu; Chen, Jyun-Hung; Liu, Duen-Ren
2015-01-01
Virtual worlds (VWs) are computer-simulated environments which allow users to create their own virtual character as an avatar. With the rapidly growing user volume in VWs, platform providers launch virtual goods in haste and stampede users to increase sales revenue. However, the rapidity of development incurs virtual unrelated items which will be difficult to remarket. It not only wastes virtual global companies' intelligence resources, but also makes it difficult for users to find suitable virtual goods fit for their virtual home in daily virtual life. In the VWs, users decorate their houses, visit others' homes, create families, host parties, and so forth. Users establish their social life circles through these activities. This research proposes a novel virtual goods recommendation method based on these social interactions. The contact strength and contact influence result from interactions with social neighbors and influence users' buying intention. Our research highlights the importance of social interactions in virtual goods recommendation. The experiment's data were retrieved from an online VW platform, and the results show that the proposed method, considering social interactions and social life circle, has better performance than existing recommendation methods. PMID:25834837
A haptic interface for virtual simulation of endoscopic surgery.
Rosenberg, L B; Stredney, D
1996-01-01
Virtual reality can be described as a convincingly realistic and naturally interactive simulation in which the user is given a first person illusion of being immersed within a computer generated environment While virtual reality systems offer great potential to reduce the cost and increase the quality of medical training, many technical challenges must be overcome before such simulation platforms offer effective alternatives to more traditional training means. A primary challenge in developing effective virtual reality systems is designing the human interface hardware which allows rich sensory information to be presented to users in natural ways. When simulating a given manual procedure, task specific human interface requirements dictate task specific human interface hardware. The following paper explores the design of human interface hardware that satisfies the task specific requirements of virtual reality simulation of Endoscopic surgical procedures. Design parameters were derived through direct cadaver studies and interviews with surgeons. Final hardware design is presented.
On Using Home Networks and Cloud Computing for a Future Internet of Things
NASA Astrophysics Data System (ADS)
Niedermayer, Heiko; Holz, Ralph; Pahl, Marc-Oliver; Carle, Georg
In this position paper we state four requirements for a Future Internet and sketch our initial concept. The requirements: (1) more comfort, (2) integration of home networks, (3) resources like service clouds in the network, and (4) access anywhere on any machine. Future Internet needs future quality and future comfort. There need to be new possiblities for everyone. Our focus is on higher layers and related to the many overlay proposals. We consider them to run on top of a basic Future Internet core. A new user experience means to include all user devices. Home networks and services should be a fundamental part of the Future Internet. Home networks extend access and allow interaction with the environment. Cloud Computing can provide reliable resources beyond local boundaries. For access anywhere, we also need secure storage for data and profiles in the network, in particular for access with non-personal devices (Internet terminal, ticket machine, ...).
Psychological Issues in Online Adaptive Task Allocation
NASA Technical Reports Server (NTRS)
Morris, N. M.; Rouse, W. B.; Ward, S. L.; Frey, P. R.
1984-01-01
Adaptive aiding is an idea that offers potential for improvement over many current approaches to aiding in human-computer systems. The expected return of tailoring the system to fit the user could be in the form of improved system performance and/or increased user satisfaction. Issues such as the manner in which information is shared between human and computer, the appropriate division of labor between them, and the level of autonomy of the aid are explored. A simulated visual search task was developed. Subjects are required to identify targets in a moving display while performing a compensatory sub-critical tracking task. By manipulating characteristics of the situation such as imposed task-related workload and effort required to communicate with the computer, it is possible to create conditions in which interaction with the computer would be more or less desirable. The results of preliminary research using this experimental scenario are presented, and future directions for this research effort are discussed.
Multigraph: Interactive Data Graphs on the Web
NASA Astrophysics Data System (ADS)
Phillips, M. B.
2010-12-01
Many aspects of geophysical science involve time dependent data that is often presented in the form of a graph. Considering that the web has become a primary means of communication, there are surprisingly few good tools and techniques available for presenting time-series data on the web. The most common solution is to use a desktop tool such as Excel or Matlab to create a graph which is saved as an image and then included in a web page like any other image. This technique is straightforward, but it limits the user to one particular view of the data, and disconnects the graph from the data in a way that makes updating a graph with new data an often cumbersome manual process. This situation is somewhat analogous to the state of mapping before the advent of GIS. Maps existed only in printed form, and creating a map was a laborious process. In the last several years, however, the world of mapping has experienced a revolution in the form of web-based and other interactive computer technologies, so that it is now commonplace for anyone to easily browse through gigabytes of geographic data. Multigraph seeks to bring a similar ease of access to time series data. Multigraph is a program for displaying interactive time-series data graphs in web pages that includes a simple way of configuring the appearance of the graph and the data to be included. It allows multiple data sources to be combined into a single graph, and allows the user to explore the data interactively. Multigraph lets users explore and visualize "data space" in the same way that interactive mapping applications such as Google Maps facilitate exploring and visualizing geography. Viewing a Multigraph graph is extremely simple and intuitive, and requires no instructions. Creating a new graph for inclusion in a web page involves writing a simple XML configuration file and requires no programming. Multigraph can read data in a variety of formats, and can display data from a web service, allowing users to "surf" through large data sets, downloading only those the parts of the data that are needed for display. Multigraph is currently in use on several web sites including the US Drought Portal (www.drought.gov), the NOAA Climate Services Portal (www.climate.gov), the Climate Reference Network (www.ncdc.noaa.gov/crn), NCDC's State of the Climate Report (www.ncdc.noaa.gov/sotc), and the US Forest Service's Forest Change Assessment Viewer (ews.forestthreats.org/NPDE/NPDE.html). More information about Multigraph is available from the web site www.multigraph.org. Interactive Graph of Global Temperature Anomalies from ClimateWatch Magazine (http://www.climatewatch.noaa.gov/2009/articles/climate-change-global-temperature)
Optimizing the User Experience: Identifying Opportunities to Improve Use of an Inpatient Portal.
Walker, Daniel M; Menser, Terri; Yen, Po-Yin; McAlearney, Ann Scheck
2018-01-01
Patient portals specifically designed for the inpatient setting have significant potential to improve patient care. However, little is known about how the users of this technology, the patients, may interact with the inpatient portals. As a result, hospitals have limited ability to design approaches that support patient use of the portal. This study aims to evaluate the user experience associated with an inpatient portal. We used a Think-Aloud protocol to study user interactions with a commercially available inpatient portal-MyChart Bedside (MCB). Study participants included 19 English-speaking adults over the age of 18 years. In one-on-one sessions, participants narrated their experience using the MCB application and completing eight specific tasks. Recordings were transcribed and coded into three dimensions of the user experience: physical, cognitive, and sociobehavioral. Our analysis of the physical experience highlighted the navigational errors and technical challenges associated with the use of MCB. We also found that issues associated with the cognitive experience included comprehension problems that spurred anxiety and uncertainty. Analysis of the sociobehavioral experience suggested that users have different learning styles and preferences for learning including self-guided, handouts, and in-person training. Inpatient portals may be an effective tool to improve the patient experience in the hospital. Moreover, making this technology available to inpatients may help to foster ongoing use of technology across the care continuum. However, deriving the benefits from the technology requires appropriate support. We identified multiple opportunities for hospital management to intervene. In particular, teaching patients to use the application by making a variety of instructional materials available could help to reduce several identified barriers to use. Additionally, hospitals should be prepared to manage patient anxiety and increased questioning arising from the availability of information in the inpatient portal application. Schattauer GmbH Stuttgart.
Pérez-Pérez, Martín; Glez-Peña, Daniel; Fdez-Riverola, Florentino; Lourenço, Anália
2015-02-01
Document annotation is a key task in the development of Text Mining methods and applications. High quality annotated corpora are invaluable, but their preparation requires a considerable amount of resources and time. Although the existing annotation tools offer good user interaction interfaces to domain experts, project management and quality control abilities are still limited. Therefore, the current work introduces Marky, a new Web-based document annotation tool equipped to manage multi-user and iterative projects, and to evaluate annotation quality throughout the project life cycle. At the core, Marky is a Web application based on the open source CakePHP framework. User interface relies on HTML5 and CSS3 technologies. Rangy library assists in browser-independent implementation of common DOM range and selection tasks, and Ajax and JQuery technologies are used to enhance user-system interaction. Marky grants solid management of inter- and intra-annotator work. Most notably, its annotation tracking system supports systematic and on-demand agreement analysis and annotation amendment. Each annotator may work over documents as usual, but all the annotations made are saved by the tracking system and may be further compared. So, the project administrator is able to evaluate annotation consistency among annotators and across rounds of annotation, while annotators are able to reject or amend subsets of annotations made in previous rounds. As a side effect, the tracking system minimises resource and time consumption. Marky is a novel environment for managing multi-user and iterative document annotation projects. Compared to other tools, Marky offers a similar visually intuitive annotation experience while providing unique means to minimise annotation effort and enforce annotation quality, and therefore corpus consistency. Marky is freely available for non-commercial use at http://sing.ei.uvigo.es/marky. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Does the Type of Event Influence How User Interactions Evolve on Twitter?
del Val, Elena; Rebollo, Miguel; Botti, Vicente
2015-01-01
The number of people using on-line social networks as a new way of communication is continually increasing. The messages that a user writes in these networks and his/her interactions with other users leave a digital trace that is recorded. Thanks to this fact and the use of network theory, the analysis of messages, user interactions, and the complex structures that emerge is greatly facilitated. In addition, information generated in on-line social networks is labeled temporarily, which makes it possible to go a step further analyzing the dynamics of the interaction patterns. In this article, we present an analysis of the evolution of user interactions that take place in television, socio-political, conference, and keynote events on Twitter. Interactions have been modeled as networks that are annotated with the time markers. We study changes in the structural properties at both the network level and the node level. As a result of this analysis, we have detected patterns of network evolution and common structural features as well as differences among the events. PMID:25961305
Kim, Taemin; Kim, Okhyun
2016-05-01
This study investigated the roles of self- and social motivation in interacting with a brand on Facebook. An online survey was conducted using 11 familiar global brands randomly selected from Interbrand's 100 Best Global Brands. The result demonstrated that congruence between actual/ideal self and personality of a brand (i.e., self-motivation) positively influenced users' interaction with a brand on Facebook. In this relationship, self-expressive motivation and brand engagement emerged as moderators. Additionally, social identity as a social motivation positively affected users' interaction with a brand. Although not all components of social motivation influenced users' interaction with a brand, this study showed that two exclusive motivations, self and social, positively influenced users' interaction with a brand on Facebook. Managerial and practical implications were also proposed for marketing a brand on Facebook.
SmartHome: a domotic framework based on smart sensing and actuator network to reduce energy wastes
NASA Astrophysics Data System (ADS)
Santamaria, Amilcare Francesco; De Rango, Floriano; Falbo, Domenico; Barletta, Domenico
2014-05-01
Domestic environment and human interaction with services supplied by domotic devices is going to be a very interesting application field. With a domotic system is possible to achieve great interaction between human beings, environments and smart devices. The enhancing of these interactions is the main goal of this work whose intent is to improve the classic concept of domotics. The framework we developed can be used for several application fields such as lighting, heating, conditioning or water management and energy consumption. In particular, the proposed system can optimize energy consumptions by rising awareness to users that have full control of their house and the possibility to save money and reduce the impact of the energetic consumes to the earth, matching the new "green" motto requirements. In this way, the overall system wants to match the central concept of Internet Of Things (IoT) as well. From this point of view a complex automation system with smart devices make possible a more efficient way to produce, follow and manage domotic policies. Following the spread of IoT, for this work we designed and implemented new plug-and-play and ready-to-use smart devices that are part of a complex automation system that offers a user-friendly web application and allows users to control and interact with different plans of their house in order to make life more comfortable and be aware of their energy consumptions. Control and awareness arc the two key points that led us to develop the proposed system.
Towards Gesture-Based Multi-User Interactions in Collaborative Virtual Environments
NASA Astrophysics Data System (ADS)
Pretto, N.; Poiesi, F.
2017-11-01
We present a virtual reality (VR) setup that enables multiple users to participate in collaborative virtual environments and interact via gestures. A collaborative VR session is established through a network of users that is composed of a server and a set of clients. The server manages the communication amongst clients and is created by one of the users. Each user's VR setup consists of a Head Mounted Display (HMD) for immersive visualisation, a hand tracking system to interact with virtual objects and a single-hand joypad to move in the virtual environment. We use Google Cardboard as a HMD for the VR experience and a Leap Motion for hand tracking, thus making our solution low cost. We evaluate our VR setup though a forensics use case, where real-world objects pertaining to a simulated crime scene are included in a VR environment, acquired using a smartphone-based 3D reconstruction pipeline. Users can interact using virtual gesture-based tools such as pointers and rulers.
Researcher's guide to the NASA Ames Flight Simulator for Advanced Aircraft (FSAA)
NASA Technical Reports Server (NTRS)
Sinacori, J. B.; Stapleford, R. L.; Jewell, W. F.; Lehman, J. M.
1977-01-01
Performance, limitations, supporting software, and current checkout and operating procedures are presented for the flight simulator, in terms useful to the researcher who intends to use it. Suggestions to help the researcher prepare the experimental plan are also given. The FSAA's central computer, cockpit, and visual and motion systems are addressed individually but their interaction is considered as well. Data required, available options, user responsibilities, and occupancy procedures are given in a form that facilitates the initial communication required with the NASA operations' group.
Novel 3D Approach to Flare Modeling via Interactive IDL Widget Tools
NASA Astrophysics Data System (ADS)
Nita, G. M.; Fleishman, G. D.; Gary, D. E.; Kuznetsov, A.; Kontar, E. P.
2011-12-01
Currently, and soon-to-be, available sophisticated 3D models of particle acceleration and transport in solar flares require a new level of user-friendly visualization and analysis tools allowing quick and easy adjustment of the model parameters and computation of realistic radiation patterns (images, spectra, polarization, etc). We report the current state of the art of these tools in development, already proved to be highly efficient for the direct flare modeling. We present an interactive IDL widget application intended to provide a flexible tool that allows the user to generate spatially resolved radio and X-ray spectra. The object-based architecture of this application provides full interaction with imported 3D magnetic field models (e.g., from an extrapolation) that may be embedded in a global coronal model. Various tools provided allow users to explore the magnetic connectivity of the model by generating magnetic field lines originating in user-specified volume positions. Such lines may serve as reference lines for creating magnetic flux tubes, which are further populated with user-defined analytical thermal/non thermal particle distribution models. By default, the application integrates IDL callable DLL and Shared libraries containing fast GS emission codes developed in FORTRAN and C++ and soft and hard X-ray codes developed in IDL. However, the interactive interface allows interchanging these default libraries with any user-defined IDL or external callable codes designed to solve the radiation transfer equation in the same or other wavelength ranges of interest. To illustrate the tool capacity and generality, we present a step-by-step real-time computation of microwave and X-ray images from realistic magnetic structures obtained from a magnetic field extrapolation preceding a real event, and compare them with the actual imaging data obtained by NORH and RHESSI instruments. We discuss further anticipated developments of the tools needed to accommodate temporal evolution of the magnetic field structure and/or fast electron population implied by the electron acceleration and transport. This work was supported in part by NSF grants AGS-0961867, AST-0908344, and NASA grants NNX10AF27G and NNX11AB49G to New Jersey Institute of Technology, by a UK STFC rolling grant, STFC/PPARC Advanced Fellowship, and the Leverhulme Trust, UK. Financial support by the European Commission through the SOLAIRE and HESPE Networks is gratefully acknowledged.
Usability evaluation of in-housed developed ERP system
NASA Astrophysics Data System (ADS)
Faisal, Chaudhry Muhammad Nadeem; Shakeel Faridi, Muhammad; Javed, Zahid
2011-10-01
Enterprise Resource Planning systems are the combination of different business IS (Information System) applications that are designed according to the organization requirements. Generally ERP systems are suffering from complex user interface issues. Recent research shows that there is a need for improvement concerning, the user interface from their perspectives. In order to design the software applications that are easy to use, memorize and apply to new problems, we must know the users philosophy and something about learning, reminiscence and problems solving. The Usability engineering is the only way to study the deeds of users while interacting with ERP (Enterprise Resource & Planning). This paper will focus on the users' experiences view of financial module in ERP system. The HCI research method, explicitly survey questionnaire method was adopted to gather users understanding in order to evaluate the selected modules for in-housed ERP system. The study involved group of users from two industries, the results can not be generalized as a whole. The study was first time successfully applied Usability evaluation on in-housed ERP in local industry (Masood Textile Mills, Interloop Ltd) in Pakistan. The results may hopefully opened-up an area of research and methodology that could provide considerable further benefits to Industry in developments of Industrial information systems.
Vollmer, Anna-Lisa; Mühlig, Manuel; Steil, Jochen J; Pitsch, Karola; Fritsch, Jannik; Rohlfing, Katharina J; Wrede, Britta
2014-01-01
Robot learning by imitation requires the detection of a tutor's action demonstration and its relevant parts. Current approaches implicitly assume a unidirectional transfer of knowledge from tutor to learner. The presented work challenges this predominant assumption based on an extensive user study with an autonomously interacting robot. We show that by providing feedback, a robot learner influences the human tutor's movement demonstrations in the process of action learning. We argue that the robot's feedback strongly shapes how tutors signal what is relevant to an action and thus advocate a paradigm shift in robot action learning research toward truly interactive systems learning in and benefiting from interaction.
Vollmer, Anna-Lisa; Mühlig, Manuel; Steil, Jochen J.; Pitsch, Karola; Fritsch, Jannik; Rohlfing, Katharina J.; Wrede, Britta
2014-01-01
Robot learning by imitation requires the detection of a tutor's action demonstration and its relevant parts. Current approaches implicitly assume a unidirectional transfer of knowledge from tutor to learner. The presented work challenges this predominant assumption based on an extensive user study with an autonomously interacting robot. We show that by providing feedback, a robot learner influences the human tutor's movement demonstrations in the process of action learning. We argue that the robot's feedback strongly shapes how tutors signal what is relevant to an action and thus advocate a paradigm shift in robot action learning research toward truly interactive systems learning in and benefiting from interaction. PMID:24646510
Interactive Television: The Influence of User Control and Interactive Structure.
ERIC Educational Resources Information Center
Gagnon, Diana; And Others
A series of studies underway at the Audience Research Facility at MIT (the Massachusetts Institute of Technology) are examining the influence of interactive video on learning and entertainment television viewing. The first study compared the learning of spatial content from interactive (user controlled video games) versus observational…
ERIC Educational Resources Information Center
Price, Kathleen J.
2011-01-01
The use of information technology is a vital part of everyday life, but for a person with functional impairments, technology interaction may be difficult at best. Information technology is commonly designed to meet the needs of a theoretical "normal" user. However, there is no such thing as a "normal" user. A user's capabilities will vary over…
Usability study of clinical exome analysis software: top lessons learned and recommendations.
Shyr, Casper; Kushniruk, Andre; Wasserman, Wyeth W
2014-10-01
New DNA sequencing technologies have revolutionized the search for genetic disruptions. Targeted sequencing of all protein coding regions of the genome, called exome analysis, is actively used in research-oriented genetics clinics, with the transition to exomes as a standard procedure underway. This transition is challenging; identification of potentially causal mutation(s) amongst ∼10(6) variants requires specialized computation in combination with expert assessment. This study analyzes the usability of user interfaces for clinical exome analysis software. There are two study objectives: (1) To ascertain the key features of successful user interfaces for clinical exome analysis software based on the perspective of expert clinical geneticists, (2) To assess user-system interactions in order to reveal strengths and weaknesses of existing software, inform future design, and accelerate the clinical uptake of exome analysis. Surveys, interviews, and cognitive task analysis were performed for the assessment of two next-generation exome sequence analysis software packages. The subjects included ten clinical geneticists who interacted with the software packages using the "think aloud" method. Subjects' interactions with the software were recorded in their clinical office within an urban research and teaching hospital. All major user interface events (from the user interactions with the packages) were time-stamped and annotated with coding categories to identify usability issues in order to characterize desired features and deficiencies in the user experience. We detected 193 usability issues, the majority of which concern interface layout and navigation, and the resolution of reports. Our study highlights gaps in specific software features typical within exome analysis. The clinicians perform best when the flow of the system is structured into well-defined yet customizable layers for incorporation within the clinical workflow. The results highlight opportunities to dramatically accelerate clinician analysis and interpretation of patient genomic data. We present the first application of usability methods to evaluate software interfaces in the context of exome analysis. Our results highlight how the study of user responses can lead to identification of usability issues and challenges and reveal software reengineering opportunities for improving clinical next-generation sequencing analysis. While the evaluation focused on two distinctive software tools, the results are general and should inform active and future software development for genome analysis software. As large-scale genome analysis becomes increasingly common in healthcare, it is critical that efficient and effective software interfaces are provided to accelerate clinical adoption of the technology. Implications for improved design of such applications are discussed. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Visual Analytics for Heterogeneous Geoscience Data
NASA Astrophysics Data System (ADS)
Pan, Y.; Yu, L.; Zhu, F.; Rilee, M. L.; Kuo, K. S.; Jiang, H.; Yu, H.
2017-12-01
Geoscience data obtained from diverse sources have been routinely leveraged by scientists to study various phenomena. The principal data sources include observations and model simulation outputs. These data are characterized by spatiotemporal heterogeneity originated from different instrument design specifications and/or computational model requirements used in data generation processes. Such inherent heterogeneity poses several challenges in exploring and analyzing geoscience data. First, scientists often wish to identify features or patterns co-located among multiple data sources to derive and validate certain hypotheses. Heterogeneous data make it a tedious task to search such features in dissimilar datasets. Second, features of geoscience data are typically multivariate. It is challenging to tackle the high dimensionality of geoscience data and explore the relations among multiple variables in a scalable fashion. Third, there is a lack of transparency in traditional automated approaches, such as feature detection or clustering, in that scientists cannot intuitively interact with their analysis processes and interpret results. To address these issues, we present a new scalable approach that can assist scientists in analyzing voluminous and diverse geoscience data. We expose a high-level query interface that allows users to easily express their customized queries to search features of interest across multiple heterogeneous datasets. For identified features, we develop a visualization interface that enables interactive exploration and analytics in a linked-view manner. Specific visualization techniques such as scatter plots to parallel coordinates are employed in each view to allow users to explore various aspects of features. Different views are linked and refreshed according to user interactions in any individual view. In such a manner, a user can interactively and iteratively gain understanding into the data through a variety of visual analytics operations. We demonstrate with use cases how scientists can combine the query and visualization interfaces to enable a customized workflow facilitating studies using heterogeneous geoscience datasets.
Grass Roots Design for the Ocean Science of Tomorrow
NASA Astrophysics Data System (ADS)
Jul, S.; Peach, C. L.; Kilb, D. L.; Schofield, O.; Fisher, C.; Quintana, C.; Keen, C. S.
2010-12-01
Current technologies offer the opportunity for ocean science to expand its traditional expeditionary base by embracing e-science methods of continuous interactive real-time research. The Ocean Observatories Initiative Cyberinfrastructure (OOI CI) is an NSF-funded effort to develop a national cyberinfrastructure that will allow researchers, educators and others to share in this new type of oceanography. The OOI is an environmental observatory spanning coastal waters to the deep ocean, enabled by the CI to offer scientists continuous interactive access to instruments in the ocean, and allow them to search, subscribe to and access real-time or archival data streams. It will also supply interactive analysis and visualization tools, and a virtual social environment for discovering and realizing collaborative opportunities. Most importantly, it provides an extensible open-access cyberinfrastructure that supports integration of new technologies and observatories, and which will allow adoption of its tools elsewhere, such as by the Integrated Ocean Observing System (IOOS). The eventual success of such a large and flexible system requires the input of a large number of people, and user-centered design has been a driving philosophy of the OOI CI from its beginning. Support for users’ real needs cannot be designed as an add-on or casual afterthought, but must be deeply embedded in all aspects of a project, from inception through architecture, implementation, and deployment. The OOI CI strategy is to employ the skills and knowledge of a small number of user experience professionals to channel and guide a very large collective effort to deliver tools, interfaces and interactions that are intellectually stimulating, scientifically productive, and conducive to innovation. Participation from all parts of the user community early in the design process is vital to meeting these goals. The OOI user experience team will be on hand to meet members of the Earth and ocean sciences community, and invites them to become partners in the design of the Ocean Observatory by offering their thoughts, ideas and observations.
Monitoring and Detection Platform to Prevent Anomalous Situations in Home Care
Villarrubia, Gabriel; Bajo, Javier; De Paz, Juan F.; Corchado, Juan M.
2014-01-01
Monitoring and tracking people at home usually requires high cost hardware installations, which implies they are not affordable in many situations. This study/paper proposes a monitoring and tracking system for people with medical problems. A virtual organization of agents based on the PANGEA platform, which allows the easy integration of different devices, was created for this study. In this case, a virtual organization was implemented to track and monitor patients carrying a Holter monitor. The system includes the hardware and software required to perform: ECG measurements, monitoring through accelerometers and WiFi networks. Furthermore, the use of interactive television can moderate interactivity with the user. The system makes it possible to merge the information and facilitates patient tracking efficiently with low cost. PMID:24905853
Multivariate spatiotemporal visualizations for mobile devices in Flyover Country
NASA Astrophysics Data System (ADS)
Loeffler, S.; Thorn, R.; Myrbo, A.; Roth, R.; Goring, S. J.; Williams, J.
2017-12-01
Visualizing and interacting with complex multivariate and spatiotemporal datasets on mobile devices is challenging due to their smaller screens, reduced processing power, and limited data connectivity. Pollen data require visualizing pollen assemblages spatially, temporally, and across multiple taxa to understand plant community dynamics through time. Drawing from cartography, information visualization, and paleoecology, we have created new mobile-first visualization techniques that represent multiple taxa across many sites and enable user interaction. Using pollen datasets from the Neotoma Paleoecology Database as a case study, the visualization techniques allow ecological patterns and trends to be quickly understood on a mobile device compared to traditional pollen diagrams and maps. This flexible visualization system can be used for datasets beyond pollen, with the only requirements being point-based localities and multiple variables changing through time or depth.
Affective SSVEP BCI to effectively control 3D objects by using a prism array-based display
NASA Astrophysics Data System (ADS)
Mun, Sungchul; Park, Min-Chul
2014-06-01
3D objects with depth information can provide many benefits to users in education, surgery, and interactions. In particular, many studies have been done to enhance sense of reality in 3D interaction. Viewing and controlling stereoscopic 3D objects with crossed or uncrossed disparities, however, can cause visual fatigue due to the vergenceaccommodation conflict generally accepted in 3D research fields. In order to avoid the vergence-accommodation mismatch and provide a strong sense of presence to users, we apply a prism array-based display to presenting 3D objects. Emotional pictures were used as visual stimuli in control panels to increase information transfer rate and reduce false positives in controlling 3D objects. Involuntarily motivated selective attention by affective mechanism can enhance steady-state visually evoked potential (SSVEP) amplitude and lead to increased interaction efficiency. More attentional resources are allocated to affective pictures with high valence and arousal levels than to normal visual stimuli such as white-and-black oscillating squares and checkerboards. Among representative BCI control components (i.e., eventrelated potentials (ERP), event-related (de)synchronization (ERD/ERS), and SSVEP), SSVEP-based BCI was chosen in the following reasons. It shows high information transfer rates and takes a few minutes for users to control BCI system while few electrodes are required for obtaining reliable brainwave signals enough to capture users' intention. The proposed BCI methods are expected to enhance sense of reality in 3D space without causing critical visual fatigue to occur. In addition, people who are very susceptible to (auto) stereoscopic 3D may be able to use the affective BCI.
Building Format-Agnostic Metadata Repositories
NASA Astrophysics Data System (ADS)
Cechini, M.; Pilone, D.
2010-12-01
This presentation will discuss the problems that surround persisting and discovering metadata in multiple formats; a set of tenets that must be addressed in a solution; and NASA’s Earth Observing System (EOS) ClearingHOuse’s (ECHO) proposed approach. In order to facilitate cross-discipline data analysis, Earth Scientists will potentially interact with more than one data source. The most common data discovery paradigm relies on services and/or applications facilitating the discovery and presentation of metadata. What may not be common are the formats in which the metadata are formatted. As the number of sources and datasets utilized for research increases, it becomes more likely that a researcher will encounter conflicting metadata formats. Metadata repositories, such as the EOS ClearingHOuse (ECHO), along with data centers, must identify ways to address this issue. In order to define the solution to this problem, the following tenets are identified: - There exists a set of ‘core’ metadata fields recommended for data discovery. - There exists a set of users who will require the entire metadata record for advanced analysis. - There exists a set of users who will require a ‘core’ set of metadata fields for discovery only. - There will never be a cessation of new formats or a total retirement of all old formats. - Users should be presented metadata in a consistent format. ECHO has undertaken an effort to transform its metadata ingest and discovery services in order to support the growing set of metadata formats. In order to address the previously listed items, ECHO’s new metadata processing paradigm utilizes the following approach: - Identify a cross-format set of ‘core’ metadata fields necessary for discovery. - Implement format-specific indexers to extract the ‘core’ metadata fields into an optimized query capability. - Archive the original metadata in its entirety for presentation to users requiring the full record. - Provide on-demand translation of ‘core’ metadata to any supported result format. With this identified approach, the Earth Scientist is provided with a consistent data representation as they interact with a variety of datasets that utilize multiple metadata formats. They are then able to focus their efforts on the more critical research activities which they are undertaking.
Collective iteration behavior for online social networks
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Li, Ren-De; Guo, Qiang; Zhang, Yi-Cheng
2018-06-01
Understanding the patterns of collective behavior in online social network (OSNs) is critical to expanding the knowledge of human behavior and tie relationship. In this paper, we investigate a specific pattern called social signature in Facebook and Wiki users' online communication behaviors, capturing the distribution of frequency of interactions between different alters over time in the ego network. The empirical results show that there are robust social signatures of interactions no matter how friends change over time, which indicates that a stable commutation pattern exists in online communication. By comparing a random null model, we find the that commutation pattern is heterogeneous between ego and alters. Furthermore, in order to regenerate the pattern of the social signature, we present a preferential interaction model, which assumes that new users intend to look for the old users with strong ties while old users have tendency to interact with new friends. The experimental results show that the presented model can reproduce the heterogeneity of social signature by adjusting 2 parameters, the number of communicating targets m and the max number of interactions n, for Facebook users, m = n = 5, for Wiki users, m = 2 and n = 8. This work helps in deeply understanding the regularity of social signature.
Lima, Flavia; Araújo, Lilian Kely
2012-01-01
This text presents a discussion on the process of developing interactive products focused on infant behavior, which result was an interactive game for encouraging infant feeding. For that, it describes the use of cognitive psychology concepts added to interaction design methodology. Through this project, this article sustains how the cooperative use of these concepts provides adherent solutions to users' needs, whichever they are. Besides that, it verifies the closeness of those methodologies to boundary areas of knowledge, such as design focused on user and ergonomics.
Healey, Benjamin; Hoek, Janet; Edwards, Richard
2014-01-01
Objectives Online Cessation Support Networks (OCSNs) are associated with increased quit success rates, but few studies have examined their use over time. We identified usage patterns in New Zealand's largest OCSN over two years and explored implications for OCSN intervention design and evaluation. Methods We analysed metadata relating to 133,096 OCSN interactions during 2011 and 2012. Metrics covered aggregate network activity, user posting activity and longevity, and between-user commenting. Binary logistic regression models were estimated to investigate the feasibility of predicting low user engagement using early interaction data. Results Repeating periodic peaks and troughs in aggregate activity related not only to seasonality (e.g., New Year), but also to day of the week. Out of 2,062 unique users, 69 Highly Engaged Users (180+ interactions each) contributed 69% of all OCSN interactions in 2012 compared to 1.3% contributed by 864 Minimally Engaged Users (< = 2 items each). The proportion of Highly Engaged Users increased with network growth between 2011 and 2012 (with marginal significance), but the proportion of Minimally Engaged Users did not decline substantively. First week interaction data enabled identification of Minimally Engaged Users with high specificity and sensitivity (AUROC = 0.94). Implications Results suggest future research should develop and test interventions that promote activity, and hence cessation support, amongst specific user groups or at key time points. For example, early usage information could help identify Minimally Engaged Users for tests of targeted messaging designed to improve their integration into, or re-engagement with, the OCSN. Furthermore, although we observed strong growth over time on varied metrics including posts and comments, this change did not coincide with large gains in first-time user persistence. Researchers assessing intervention effects should therefore examine multiple measures when evaluating changes in network dynamics over time. PMID:25192174
An interactive program to display user-generated or file-based maps on a personal computer monitor
Langer, W.H.; Stephens, R.W.
1987-01-01
PC MAP-MAKER is an ADVANCED BASIC program written to provide users of IBM XT, IBM AT, and compatible computers with a straight-forward, flexible method to display geographical data on a color or monochrome PC (personal computer) monitor. Data can be political boundaries such as State and county boundaries; natural curvilinear features such as rivers, drainage areas, and geological contacts; and points such as well locations and mineral localities. Essentially any point defined by a latitude and longitude and any line defined by a series of latitude and longitude values can be displayed using the program. PC MAP MAKER allows users to view tabular data from U.S. Geological Survey files such as WATSTORE (National Water Data Storage and Retrieval System) in a map format in a time much shorter than required by sending the data to a line plotter. The screen image can be saved to disk for recall at a later date, and hard copies can be printed with a dot matrix printer. The program is user-friendly, using menus or prompts to guide user input. It is fully documented and structured to allow the user to tailor the program to the user 's specific needs. The documentation includes a tutorial designed to introduce users to the capabilities of the program using the State of Colorado as a demonstration map area. (Author 's abstract)
User Interface Models for Multidisciplinary Bibliographic Information Dissemination Centers.
ERIC Educational Resources Information Center
Zipperer, W. C.
Two information dissemination centers at University of California at Los Angeles and University of Georgia studied the interactions between computer based search facilities and their users. The study, largely descriptive in nature, investigated the interaction processes between data base users and profile analysis or information specialists in…
Enabling Accessibility Through Model-Based User Interface Development.
Ziegler, Daniel; Peissner, Matthias
2017-01-01
Adaptive user interfaces (AUIs) can increase the accessibility of interactive systems. They provide personalized display and interaction modes to fit individual user needs. Most AUI approaches rely on model-based development, which is considered relatively demanding. This paper explores strategies to make model-based development more attractive for mainstream developers.
Aesthetics, Usefulness and Performance in User--Search-Engine Interaction
ERIC Educational Resources Information Center
Katz, Adi
2010-01-01
Issues of visual appeal have become an integral part of designing interactive systems. Interface aesthetics may form users' attitudes towards computer applications and information technology. Aesthetics can affect user satisfaction, and influence their willingness to buy or adopt a system. This study follows previous studies that found that users…
NASA Astrophysics Data System (ADS)
Roth, Christian; Vorderer, Peter; Klimmt, Christoph
A conceptual account to the quality of the user experience that interactive storytelling intends to facilitate is introduced. Building on socialscientific research from 'old' entertainment media, the experiential qualities of curiosity, suspense, aesthetic pleasantness, self-enhancement, and optimal task engagement ("flow") are proposed as key elements of a theory of user experience in interactive storytelling. Perspectives for the evolution of the model, research and application are briefly discussed.