Sample records for required process equipment

  1. Space processing applications payload equipment study. Volume 2A: Experiment requirements

    NASA Technical Reports Server (NTRS)

    Smith, A. G.; Anderson, W. T., Jr.

    1974-01-01

    An analysis of the space processing applications payload equipment was conducted. The primary objective was to perform a review and an update of the space processing activity research equipment requirements and specifications that were derived in the first study. The analysis is based on the six major experimental classes of: (1) biological applications, (2) chemical processes in fluids, (3) crystal growth, (4) glass technology, (5) metallurgical processes, and (6) physical processes in fluids. Tables of data are prepared to show the functional requirements for the areas of investigation.

  2. 40 CFR 63.342 - Standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to the requirements of this subpart, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for..., infrequent, and unavoidable failure of air pollution control equipment, process equipment, or a process to...

  3. 40 CFR 63.342 - Standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to the requirements of this subpart, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for..., infrequent, and unavoidable failure of air pollution control equipment, process equipment, or a process to...

  4. Food processors requirements met by radiation processing

    NASA Astrophysics Data System (ADS)

    Durante, Raymond W.

    2002-03-01

    Processing food using irradiation provides significant advantages to food producers by destroying harmful pathogens and extending shelf life without any detectable physical or chemical changes. It is expected that through increased public education, food irradiation will emerge as a viable commercial industry. Food production in most countries involves state of the art manufacturing, packaging, labeling, and shipping techniques that provides maximum efficiency and profit. In the United States, food sales are extremely competitive and profit margins small. Most food producers have heavily invested in equipment and are hesitant to modify their equipment. Meat and poultry producers in particular utilize sophisticated production machinery that processes enormous volumes of product on a continuous basis. It is incumbent on the food irradiation equipment suppliers to develop equipment that can easily merge with existing processes without requiring major changes to either the final food product or the process utilized to produce that product. Before a food producer can include irradiation as part of their food production process, they must be certain the available equipment meets their needs. This paper will examine several major requirements of food processors that will most likely have to be provided by the supplier of the irradiation equipment.

  5. Crew interface specifications preparation for in-flight maintenance and stowage functions

    NASA Technical Reports Server (NTRS)

    Parker, F. W.; Carlton, B. E.

    1972-01-01

    The findings and data products developed during the Phase 2 crew interface specification study are presented. Five new NASA general specifications were prepared: operations location coding system for crew interfaces; loose equipment and stowage management requirements; loose equipment and stowage data base information requirements; spacecraft loose equipment stowage drawing requirements; and inflight stowage management data requirements. Additional data was developed defining inflight maintenance processes and related data concepts for inflight troubleshooting, remove/repair/replace and scheduled maintenance activities. The process of maintenance task and equipment definition during spacecraft design and development was also defined and related data concepts were identified for futher development into formal NASA specifications during future follow-on study phases of the contract.

  6. Space processing applications payload equipment study. Volume 2E: Commercial equipment utility

    NASA Technical Reports Server (NTRS)

    Smith, A. G. (Editor)

    1974-01-01

    Examination of commercial equipment technologies revealed that the functional performance requirements of space processing equipment could generally be met by state-of-the-art design practices. Thus, an apparatus could be evolved from a standard item or derived by custom design using present technologies. About 15 percent of the equipment needed has no analogous commercial base of derivation and requires special development. This equipment is involved primarily with contactless heating and position control. The derivation of payloads using commercial equipment sources provides a broad and potentially cost-effective base upon which to draw. The derivation of payload equipment from commercial technologies poses other issues beyond that of the identifiable functional performance, but preliminary results on testing of selected equipment testing appear quite favorable. During this phase of the SPA study, several aspects of commercial equipment utility were assessed and considered. These included safety, packaging and structural, power conditioning (electrical/electronic), thermal and materials of construction.

  7. [Development of Hospital Equipment Maintenance Information System].

    PubMed

    Zhou, Zhixin

    2015-11-01

    Hospital equipment maintenance information system plays an important role in improving medical treatment quality and efficiency. By requirement analysis of hospital equipment maintenance, the system function diagram is drawed. According to analysis of input and output data, tables and reports in connection with equipment maintenance process, relationships between entity and attribute is found out, and E-R diagram is drawed and relational database table is established. Software development should meet actual process requirement of maintenance and have a friendly user interface and flexible operation. The software can analyze failure cause by statistical analysis.

  8. NASA-STD-(I)-6016, Standard Materials and Processes Requirements for Spacecraft

    NASA Technical Reports Server (NTRS)

    Pedley, Michael; Griffin, Dennis

    2006-01-01

    This document is directed toward Materials and Processes (M&P) used in the design, fabrication, and testing of flight components for all NASA manned, unmanned, robotic, launch vehicle, lander, in-space and surface systems, and spacecraft program/project hardware elements. All flight hardware is covered by the M&P requirements of this document, including vendor designed, off-the-shelf, and vendor furnished items. Materials and processes used in interfacing ground support equipment (GSE); test equipment; hardware processing equipment; hardware packaging; and hardware shipment shall be controlled to prevent damage to or contamination of flight hardware.

  9. 40 CFR 63.11395 - What are the standards and compliance requirements for existing sources?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... routine and long-term maintenance) and continuous monitoring system. (4) A list of operating parameters... polymerization process equipment and monomer recovery process equipment and convey the collected gas stream.... (2) 0.05 lb/hr of AN from the control device for monomer recovery process equipment. (3) If you do...

  10. 40 CFR 63.11395 - What are the standards and compliance requirements for existing sources?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... routine and long-term maintenance) and continuous monitoring system. (4) A list of operating parameters... polymerization process equipment and monomer recovery process equipment and convey the collected gas stream.... (2) 0.05 lb/hr of AN from the control device for monomer recovery process equipment. (3) If you do...

  11. 40 CFR 63.11395 - What are the standards and compliance requirements for existing sources?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... routine and long-term maintenance) and continuous monitoring system. (4) A list of operating parameters... polymerization process equipment and monomer recovery process equipment and convey the collected gas stream.... (2) 0.05 lb/hr of AN from the control device for monomer recovery process equipment. (3) If you do...

  12. 40 CFR 60.276 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; (4) Flow diagram of process and emission capture equipment including other equipment or process(es... values exceeding ±15 percent of the value established under § 60.274(c) or operation at flow rates lower...

  13. 40 CFR 60.276 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; (4) Flow diagram of process and emission capture equipment including other equipment or process(es... values exceeding ±15 percent of the value established under § 60.274(c) or operation at flow rates lower...

  14. 40 CFR 60.276 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; (4) Flow diagram of process and emission capture equipment including other equipment or process(es... values exceeding ±15 percent of the value established under § 60.274(c) or operation at flow rates lower...

  15. 40 CFR 60.276 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; (4) Flow diagram of process and emission capture equipment including other equipment or process(es... values exceeding ±15 percent of the value established under § 60.274(c) or operation at flow rates lower...

  16. 40 CFR 60.276 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; (4) Flow diagram of process and emission capture equipment including other equipment or process(es... values exceeding ±15 percent of the value established under § 60.274(c) or operation at flow rates lower...

  17. Free-world microelectronic manufacturing equipment

    NASA Astrophysics Data System (ADS)

    Kilby, J. S.; Arnold, W. H.; Booth, W. T.; Cunningham, J. A.; Hutcheson, J. D.; Owen, R. W.; Runyan, W. R.; McKenney, Barbara L.; McGrain, Moira; Taub, Renee G.

    1988-12-01

    Equipment is examined and evaluated for the manufacture of microelectronic integrated circuit devices and sources for that equipment within the Free World. Equipment suitable for the following are examined: single-crystal silicon slice manufacturing and processing; required lithographic processes; wafer processing; device packaging; and test of digital integrated circuits. Availability of the equipment is also discussed, now and in the near future. Very adequate equipment for most stages of the integrated circuit manufacturing process is available from several sources, in different countries, although the best and most widely used versions of most manufacturing equipment are made in the United States or Japan. There is also an active market in used equipment, suitable for manufacture of capable integrated circuits with performance somewhat short of the present state of the art.

  18. Technology assessment and requirements analysis: a process to facilitate decision making in picture archiving and communications system implementation.

    PubMed

    Radvany, M G; Chacko, A K; Richardson, R R; Grazdan, G W

    1999-05-01

    In a time of decreasing resources, managers need a tool to manage their resources effectively, support clinical requirements, and replace aging equipment in order to ensure adequate clinical care. To do this successfully, one must be able to perform technology assessment and capital equipment asset management. The lack of a commercial system that adequately performed technology needs assessment and addressed the unique needs of the military led to the development of an in-house Technology Assessment and Requirements Analysis (TARA) program. The TARA is a tool that provides an unbiased review of clinical operations and the resulting capital equipment requirements for military hospitals. The TARA report allows for the development of acquisition strategies for new equipment, enhances personnel management, and improves and streamlines clinical operations and processes.

  19. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Chemical engineering analyses involving the preliminary process design of a plant (1,000 metric tons/year capacity) to produce silicon via the technology under consideration were accomplished. Major activities in the chemical engineering analyses included base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provided detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process.

  20. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 3: Combustors, furnaces and low-BTU gasifiers. [used in coal gasification and coal liquefaction (equipment specifications)

    NASA Technical Reports Server (NTRS)

    Hamm, J. R.

    1976-01-01

    Information is presented on the design, performance, operating characteristics, cost, and development status of coal preparation equipment, combustion equipment, furnaces, low-Btu gasification processes, low-temperature carbonization processes, desulfurization processes, and pollution particulate removal equipment. The information was compiled for use by the various cycle concept leaders in determining the performance, capital costs, energy costs, and natural resource requirements of each of their system configurations.

  1. Automatic hot wire GTA welding of pipe offers speed and increased deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sykes, I.; Digiacomo, J.

    1995-07-01

    Heavy-wall pipe welding for the power and petrochemical industry must meet code requirements. Contractors strive to meet these requirements in the most productive way possible. The challenge put to orbital welding equipment manufacturers is to produce pipe welding equipment that cost-effectively produces code-quality welds. Orbital welding equipment using the GTA process has long produced outstanding quality results but has lacked the deposition rate to compete cost effectively with other manual and semiautomatic processes such as SMAW, FCAW and GMAW. In recent years, significant progress has been made with the use of narrow-groove weld joint designs to reduce weld joint volumemore » and improve welding times. Astro Arc Polysoude, an orbital welding equipment manufacturer based in Sun Valley, Calif., and Nantes, France, has combined the hot wire GTAW process with orbital welding equipment using a narrow-groove weld joint design. Field test results show this process and procedure is a good alternative for many heavy-wall-pipe welding applications.« less

  2. Accommodation requirements for microgravity science and applications research on space station

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Holland, L. R.; Wear, W. O.

    1985-01-01

    Scientific research conducted in the microgravity environment of space represents a unique opportunity to explore and exploit the benefits of materials processing in the virtual abscence of gravity induced forces. NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. A study is performed to define from the researchers' perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. The accommodation requirements focus on the microgravity science disciplines including combustion science, electronic materials, metals and alloys, fluids and transport phenomena, glasses and ceramics, and polymer science. User requirements have been identified in eleven research classes, each of which contain an envelope of functional requirements for related experiments having similar characteristics, objectives, and equipment needs. Based on these functional requirements seventeen items of experiment apparatus and twenty items of core supporting equipment have been defined which represent currently identified equipment requirements for a pressurized laboratory module at the initial operating capability of the NASA space station.

  3. 50 CFR 260.102 - Equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Equipment. 260.102 Section 260.102... Products for Human Consumption Requirements for Plants Operating Under Continuous Inspection on A Contract Basis 1 § 260.102 Equipment. All equipment used for receiving, washing, segregating, picking, processing...

  4. Automotive Manufacturing Processes. Volume V - Manufacturing Processes and Equipment for the Mass Production and Assembly of Motor Vehicles

    DOT National Transportation Integrated Search

    1981-02-01

    Extensive material substitution and resizing of the domestic automotive fleet, as well as the introduction of new technologies, will require major changes in the techniques and equipment used in the various manufacturing processes employed in the pro...

  5. INTELLIGENT PROCESSING EQUIPMENT WITHIN THE ENVIRONMENTAL PROTECTION AGENCY

    EPA Science Inventory

    Protection of the environment and environmental remediation requires the cooperation -at all levels- of government and industry. ntelligent processing equipment, in addition to other artificial intelligence based tools, has been used by the Environmental Protection Agency to prov...

  6. Feasibility of mining lunar resources for earth use: Circa 2000 AD. Volume 2: Technical discussion

    NASA Technical Reports Server (NTRS)

    Nishioka, K.; Arno, R. D.; Alexander, A. D.; Slye, R. E.

    1973-01-01

    The technologies and systems required to establish the mining base, mine, refine, and return lunar resources to earth are discussed. Gross equipment requirements, their weights and costs are estimated and documented. The operational requirements are analyzed and tabulated. Diagrams of equipment and processing facilities are provided.

  7. Navy Health Care Strategic Planning Process: A Draft Functional Description

    DTIC Science & Technology

    1993-09-01

    56 a. Equipment Environment ................................................... 56...b. Support Software Environment .............................................. 56 c. Communications Requirements... Environment .................................................................. 73 a. AIS Equipment Environment

  8. 75 FR 51419 - Requirements for Intermodal Equipment Providers and for Motor Carriers and Drivers Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... inspection, repair, and maintenance of intermodal equipment (IME), specifically with respect to the..., by the Ocean Carrier Equipment Management Association (OCEMA) and the Institute of International... equipment providers (IEPs) to have in place inspection, repair and maintenance programs, and a process for...

  9. 75 FR 53457 - Lifesaving Equipment: Production Testing and Harmonization With International Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... approval process for all lifesaving equipment required under the various vessel and facility regulations in... buoyant apparatuses. If the proposed rule is made final, all equipment approved after the effective date... Equipment: Production Testing and Harmonization With International Standards; Proposed Rule #0;#0;Federal...

  10. 21 CFR 111.117 - What quality control operations are required for equipment, instruments, and controls?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What quality control operations are required for equipment, instruments, and controls? 111.117 Section 111.117 Food and Drugs FOOD AND DRUG ADMINISTRATION... and Process Control System: Requirements for Quality Control § 111.117 What quality control operations...

  11. Adding Another Dimension With Holography.

    ERIC Educational Resources Information Center

    McNair, Rita H.; Rice, Dale R.

    1984-01-01

    Provides instructions for preparing, processing, and viewing single-beam reflection holograms in science classrooms. Indicates that the process is simple to demonstrate and moderate in cost. A description of the required equipment (optics table, laser, mirrors, lens, filmholder/plateholder, recording materials, and darkroom chemicals/equipment) is…

  12. Diagnosis of the Computer-Controlled Milling Machine, Definition of the Working Errors and Input Corrections on the Basis of Mathematical Model

    NASA Astrophysics Data System (ADS)

    Starikov, A. I.; Nekrasov, R. Yu; Teploukhov, O. J.; Soloviev, I. V.; Narikov, K. A.

    2016-10-01

    Manufactures, machinery and equipment improve of constructively as science advances and technology, and requirements are improving of quality and longevity. That is, the requirements for surface quality and precision manufacturing, oil and gas equipment parts are constantly increasing. Production of oil and gas engineering products on modern machine tools with computer numerical control - is a complex synthesis of technical and electrical equipment parts, as well as the processing procedure. Technical machine part wears during operation and in the electrical part are accumulated mathematical errors. Thus, the above-mentioned disadvantages of any of the following parts of metalworking equipment affect the manufacturing process of products in general, and as a result lead to the flaw.

  13. KSC-08pd0089

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  14. KSC-08pd0092

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  15. KSC-08pd0087

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  16. KSC-08pd0090

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician (right) adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  17. KSC-08pd0088

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  18. KSC-08pd0085

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician monitors equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  19. KSC-08pd0091

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  20. Spacelab Level 4 Programmatic Implementation Assessment Study. Volume 2: Ground Processing requirements

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Alternate ground processing options are summarized, including installation and test requirements for payloads, space processing, combined astronomy, and life sciences. The level 4 integration resource requirements are also reviewed for: personnel, temporary relocation, transportation, ground support equipment, and Spacelab flight hardware.

  1. 48 CFR 245.608-72 - Screening excess automatic data processing equipment (ADPE).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... data processing equipment (ADPE). 245.608-72 Section 245.608-72 Federal Acquisition Regulations System... Reporting, Redistribution, and Disposal of Contractor Inventory 245.608-72 Screening excess automatic data... Agency, Defense Automation Resources Management Program Division (DARMP). DARMP does all required...

  2. Development of replicated optics for AXAF-1 XDA testing

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell; Wilson, Michele; Martin, Greg

    1995-01-01

    Advanced optical systems for applications such as grazing incidence Wolter I x-ray mirror assemblies require extraordinary mirror surfaces in terms of fine finish and surface figure. The impeccable mirror surface is on the inside of the rotational mirror form. One practical method of producing devices with these requirements is to first fabricate an exterior surface for the optical device then replicate that surface to have the inverse component with lightweight characteristics. The replicated optic is not better than the master or mandrel from which it is made. This task identifies methods and materials for forming these extremely low roughness optical components. The objectives of this contract were to (1) prepare replication samples of electroless nickel coated aluminum, and determine process requirements for plating XDA test optic; (2) prepare and assemble plating equipment required to process a demonstration optic; (3) characterize mandrels, replicas and test samples for residual stress, surface contamination and surface roughness and figure using equipment at MSFC and; (4) provide technical expertise in establishing the processes, procedures, supplies and equipment needed to process the XDA test optics.

  3. Design analysis of levitation facility for space processing applications. [Skylab program, space shuttles

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Kornrumpf, W. P.; Napaluch, L. J.; Harden, J. D., Jr.; Walden, J. P.; Stockhoff, E. H.; Wouch, G.; Walker, L. H.

    1974-01-01

    Containerless processing facilities for the space laboratory and space shuttle are defined. Materials process examples representative of the most severe requirements for the facility in terms of electrical power, radio frequency equipment, and the use of an auxiliary electron beam heater were used to discuss matters having the greatest effect upon the space shuttle pallet payload interfaces and envelopes. Improved weight, volume, and efficiency estimates for the RF generating equipment were derived. Results are particularly significant because of the reduced requirements for heat rejection from electrical equipment, one of the principal envelope problems for shuttle pallet payloads. It is shown that although experiments on containerless melting of high temperature refractory materials make it desirable to consider the highest peak powers which can be made available on the pallet, total energy requirements are kept relatively low by the very fast processing times typical of containerless experiments and allows consideration of heat rejection capabilities lower than peak power demand if energy storage in system heat capacitances is considered. Batteries are considered to avoid a requirement for fuel cells capable of furnishing this brief peak power demand.

  4. Orbital construction support equipment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Approximately 200 separate construction steps were defined for the three solar power satellite (SPS) concepts. Detailed construction scenarios were developed which describe the specific tasks to be accomplished, and identify general equipment requirements. The scenarios were used to perform a functional analysis, which resulted in the definition of 100 distinct SPS elements. These elements are the components, parts, subsystems, or assemblies upon which construction activities take place. The major SPS elements for each configuration are shown. For those elements, 300 functional requirements were identified in seven generic processes. Cumulatively, these processes encompass all functions required during SPS construction/assembly. Individually each process is defined such that it includes a specific type of activity. Each SPS element may involve activities relating to any or all of the generic processes. The processes are listed, and examples of the requirements defined for a typical element are given.

  5. 40 CFR 60.480 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart. (c) Addition or replacement of equipment for the purpose of process improvement which is... all equipment (defined in § 60.481) within a process unit is an affected facility. (b) Any affected... the definition of “process unit” in § 60.481 and the requirements in § 60.482-1(g) of this subpart...

  6. Apollo experience report: Crew station integration. Volume 4: Stowage and the support team concept

    NASA Technical Reports Server (NTRS)

    Hix, M. W.

    1973-01-01

    Crew equipment stowage and stowage arrangement in spacecraft are discussed. Configuration control in order to maximize crew equipment operational performance, stowage density, and available stowage volume are analyzed. The NASA crew equipment stowage control process requires a support team concept to coordinate the integration of crew equipment into the spacecraft.

  7. 40 CFR 61.247 - Reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the fluid at the equipment. (iv) Process fluid state at the equipment (gas/vapor or liquid). (v... with dual mechanical seals”). (b) A report shall be submitted to the Administrator semiannually...

  8. 77 FR 45495 - 2-Methyl-1,3-propanediol; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... component of food contact sanitizing solutions applied to all food contact surfaces in public eating places, dairy-processing equipment, and food-processing equipment and utensils. Lyondell Chemical Company submitted a petition to EPA under the Federal Food, Drug, and Cosmetic Act (FFDCA), requesting establishment...

  9. 40 CFR 57.103 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... specifically indicated, means the State or local air pollution control agency to which a smelter's owner has... unavoidable failure of air pollution control equipment or process equipment or of a process to operate in a... pursuant to that section, may not be used to reduce the degree of emission limitation otherwise required in...

  10. 40 CFR 57.103 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... specifically indicated, means the State or local air pollution control agency to which a smelter's owner has... unavoidable failure of air pollution control equipment or process equipment or of a process to operate in a... pursuant to that section, may not be used to reduce the degree of emission limitation otherwise required in...

  11. 40 CFR 57.103 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... specifically indicated, means the State or local air pollution control agency to which a smelter's owner has... unavoidable failure of air pollution control equipment or process equipment or of a process to operate in a... pursuant to that section, may not be used to reduce the degree of emission limitation otherwise required in...

  12. 40 CFR 57.103 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... specifically indicated, means the State or local air pollution control agency to which a smelter's owner has... unavoidable failure of air pollution control equipment or process equipment or of a process to operate in a... pursuant to that section, may not be used to reduce the degree of emission limitation otherwise required in...

  13. 40 CFR 57.103 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... specifically indicated, means the State or local air pollution control agency to which a smelter's owner has... unavoidable failure of air pollution control equipment or process equipment or of a process to operate in a... pursuant to that section, may not be used to reduce the degree of emission limitation otherwise required in...

  14. 40 CFR 63.1013 - Sampling connection systems standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) National Emission Standards for Equipment Leaks-Control Level 1 § 63.1013 Sampling connection... container are not required to be collected or captured. (c) Equipment design and operation. Each closed... process fluid to a process; or (3) Be designed and operated to capture and transport all the purged...

  15. 40 CFR 265.401 - General operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment, the process or equipment must be equipped with a means to stop this inflow (e.g., a waste feed....401 Section 265.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  16. 78 FR 67038 - FD&C Green No. 3; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... antimicrobial formulations, for use on food contact surfaces in public eating places, dairy processing equipment, and food processing equipment and utensils. The firm Exponent, on behalf of Ecolab submitted a petition to EPA under the Federal Food, Drug, and Cosmetic Act (FFDCA), requesting establishment of an...

  17. 40 CFR Appendix B to Subpart B of... - Standard for Recover Equipment

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... process it to ARI (Air-Conditioning and Refrigeration Institute) standard 700-93 as a minimum. It is not... equipment capability is required which shall process contaminated refrigerant samples at specific... flare male thread connection as identified in SAE J639 CFC-12 High Pressure Charging Valve Figure 2. 6.3...

  18. 40 CFR Appendix B to Subpart B of... - Standard for Recover Equipment

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... process it to ARI (Air-Conditioning and Refrigeration Institute) standard 700-93 as a minimum. It is not... equipment capability is required which shall process contaminated refrigerant samples at specific... flare male thread connection as identified in SAE J639 CFC-12 High Pressure Charging Valve Figure 2. 6.3...

  19. 40 CFR Appendix B to Subpart B of... - Standard for Recover Equipment

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process it to ARI (Air-Conditioning and Refrigeration Institute) standard 700-93 as a minimum. It is not... equipment capability is required which shall process contaminated refrigerant samples at specific... flare male thread connection as identified in SAE J639 CFC-12 High Pressure Charging Valve Figure 2. 6.3...

  20. 40 CFR Appendix B to Subpart B of... - Standard for Recover Equipment

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process it to ARI (Air-Conditioning and Refrigeration Institute) standard 700-93 as a minimum. It is not... equipment capability is required which shall process contaminated refrigerant samples at specific... flare male thread connection as identified in SAE J639 CFC-12 High Pressure Charging Valve Figure 2. 6.3...

  1. 40 CFR Appendix B to Subpart B of... - Standard for Recover Equipment

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... process it to ARI (Air-Conditioning and Refrigeration Institute) standard 700-93 as a minimum. It is not... equipment capability is required which shall process contaminated refrigerant samples at specific... flare male thread connection as identified in SAE J639 CFC-12 High Pressure Charging Valve Figure 2. 6.3...

  2. 40 CFR 62.14470 - When must I comply with this subpart if I plan to continue operation of my HMIWI?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FOR DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Hospital/Medical/Infectious... air pollution control equipment or process changes such that the HMIWI is brought on line, and ensuring that all necessary process changes and air pollution control equipment are operating properly. (3...

  3. 40 CFR 62.14470 - When must I comply with this subpart if I plan to continue operation of my HMIWI?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FOR DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Hospital/Medical/Infectious... air pollution control equipment or process changes such that the HMIWI is brought on line, and ensuring that all necessary process changes and air pollution control equipment are operating properly. (3...

  4. 40 CFR Table 5 of Subpart Bbbbbbb... - Reporting Requirements

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vent streams from equipment in target HAP service to a PM control device with a PM percent reduction efficiency of 95 percent (98 percent for new sources) or an outlet concentration of 0.03 gr/dscf or less a... requirement to route all process vent streams from equipment in target HAP service to a PM control device that...

  5. 40 CFR Table 5 of Subpart Bbbbbbb... - Reporting Requirements

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vent streams from equipment in target HAP service to a PM control device with a PM percent reduction efficiency of 95 percent (98 percent for new sources) or an outlet concentration of 0.03 gr/dscf or less a... requirement to route all process vent streams from equipment in target HAP service to a PM control device that...

  6. 40 CFR Table 5 of Subpart Bbbbbbb... - Reporting Requirements

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vent streams from equipment in target HAP service to a PM control device with a PM percent reduction efficiency of 95 percent (98 percent for new sources) or an outlet concentration of 0.03 gr/dscf or less a... requirement to route all process vent streams from equipment in target HAP service to a PM control device that...

  7. 40 CFR Table 5 of Subpart Bbbbbbb... - Reporting Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vent streams from equipment in target HAP service to a PM control device with a PM percent reduction efficiency of 95 percent (98 percent for new sources) or an outlet concentration of 0.03 gr/dscf or less a... requirement to route all process vent streams from equipment in target HAP service to a PM control device that...

  8. 40 CFR Table 5 of Subpart Bbbbbbb... - Reporting Requirements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vent streams from equipment in target HAP service to a PM control device with a PM percent reduction efficiency of 95 percent (98 percent for new sources) or an outlet concentration of 0.03 gr/dscf or less a... requirement to route all process vent streams from equipment in target HAP service to a PM control device that...

  9. Application of statistical process control and process capability analysis procedures in orbiter processing activities at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Safford, Robert R.; Jackson, Andrew E.; Swart, William W.; Barth, Timothy S.

    1994-01-01

    Successful ground processing at KSC requires that flight hardware and ground support equipment conform to specifications at tens of thousands of checkpoints. Knowledge of conformance is an essential requirement for launch. That knowledge of conformance at every requisite point does not, however, enable identification of past problems with equipment, or potential problem areas. This paper describes how the introduction of Statistical Process Control and Process Capability Analysis identification procedures into existing shuttle processing procedures can enable identification of potential problem areas and candidates for improvements to increase processing performance measures. Results of a case study describing application of the analysis procedures to Thermal Protection System processing are used to illustrate the benefits of the approaches described in the paper.

  10. 40 CFR 60.276a - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... device, and continuous monitoring equipment; (4) Flow diagram of process and emission capture equipment... at values exceeding ±15 percent of the value established under § 60.274a(c) or operation at flow...

  11. 40 CFR 60.276a - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... device, and continuous monitoring equipment; (4) Flow diagram of process and emission capture equipment... at values exceeding ±15 percent of the value established under § 60.274a(c) or operation at flow...

  12. 40 CFR 60.276a - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... device, and continuous monitoring equipment; (4) Flow diagram of process and emission capture equipment... at values exceeding ±15 percent of the value established under § 60.274a(c) or operation at flow...

  13. 40 CFR 60.276a - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... device, and continuous monitoring equipment; (4) Flow diagram of process and emission capture equipment... at values exceeding ±15 percent of the value established under § 60.274a(c) or operation at flow...

  14. 40 CFR 60.276a - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... device, and continuous monitoring equipment; (4) Flow diagram of process and emission capture equipment... at values exceeding ±15 percent of the value established under § 60.274a(c) or operation at flow...

  15. 40 CFR 60.482-3a - Standards: Compressors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (2) Equipped with a barrier fluid system degassing reservoir that is routed to a process or fuel gas... equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) of this section shall be checked daily or shall be equipped...

  16. 40 CFR 60.482-3a - Standards: Compressors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (2) Equipped with a barrier fluid system degassing reservoir that is routed to a process or fuel gas... equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) of this section shall be checked daily or shall be equipped...

  17. 40 CFR 65.3 - Compliance with standards and operation and maintenance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)(4)(i) and (ii) do not apply to Group 2A or Group 2B process vents. Compliance with design, equipment, work practice, and operational standards, including those for equipment leaks, shall be determined... this part. (5) Design, equipment, work practice, or operational standards. Paragraphs (b)(5)(i) and (ii...

  18. Environmental considerations

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A comparison was made between the environmental impact of the present nuclear-heated process and the currently commercial hydrogen-producing process utilizing coal for heating, i.e., the Lurgi coal gasification process. This comparison is based on the assumption that both plants produce the same quantity of H2, i.e., 269 cu m/sec of approximately the same purity, that all pollution abatement equipment is of the same design and efficiency for both the Lurgi process and the nuclear process, and that the energy required for the fresh nuclear fuel and the fuel recycle is generated in a power plant which is also provided with pollution abatement equipment. The pollution caused by the auxiliary units is also taken into account. As regards process water usage, the data show that the water required for the nuclear route, including the nuclear fuel production, is approximately 78% of that required for the Lurgi route.

  19. Life sciences payloads analyses and technical program planning studies. [project planning of space missions of space shuttles in aerospace medicine and space biology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Contractural requirements, project planning, equipment specifications, and technical data for space shuttle biological experiment payloads are presented. Topics discussed are: (1) urine collection and processing on the space shuttle, (2) space processing of biochemical and biomedical materials, (3) mission simulations, and (4) biomedical equipment.

  20. Furnace and support equipment for space processing. [space manufacturing - Czochralski method

    NASA Technical Reports Server (NTRS)

    Mazelsky, R.; Duncan, C. S.; Seidensticker, R. G.; Johnson, R. A.; Hopkins, R. H.; Roland, G. W.

    1975-01-01

    A core facility capable of performing a majority of materials processing experiments is discussed. Experiment classes are described, the needs peculiar to each experiment type are outlined, and projected facility requirements to perform the experiments are treated. Control equipment (automatic control) and variations of the Czochralski method for use in space are discussed.

  1. Modeling and analysis of power processing systems: Feasibility investigation and formulation of a methodology

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Yu, Y.; Middlebrook, R. D.; Schoenfeld, A. D.

    1974-01-01

    A review is given of future power processing systems planned for the next 20 years, and the state-of-the-art of power processing design modeling and analysis techniques used to optimize power processing systems. A methodology of modeling and analysis of power processing equipment and systems has been formulated to fulfill future tradeoff studies and optimization requirements. Computer techniques were applied to simulate power processor performance and to optimize the design of power processing equipment. A program plan to systematically develop and apply the tools for power processing systems modeling and analysis is presented so that meaningful results can be obtained each year to aid the power processing system engineer and power processing equipment circuit designers in their conceptual and detail design and analysis tasks.

  2. Intelligent Processing Equipment Within the Environmental Protection Agency

    NASA Technical Reports Server (NTRS)

    Greathouse, Daniel G.; Nalesnik, Richard P.

    1992-01-01

    Protection of the environment and environmental remediation requires the cooperation, at all levels, of government and industry. Intelligent processing equipment, in addition to other artificial intelligence based tools, was used by the Environmental Protection Agency to provide personnel safety and improve the efficiency of those responsible for protection and remediation of the environment. These exploratory efforts demonstrate the feasibility and utility of expanding development and widespread use of these tools. A survey of current intelligent processing equipment applications in the Agency is presented and is followed by a brief discussion of possible uses in the future.

  3. Multi-kilowatt modularized spacecraft power processing system development

    NASA Technical Reports Server (NTRS)

    Andrews, R. E.; Hayden, J. H.; Hedges, R. T.; Rehmann, D. W.

    1975-01-01

    A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations.

  4. Electrical, Electronic, and Electromechanical (EEE) parts management and control requirements for NASA space flight programs

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This document establishes electrical, electronic, and electromechanical (EEE) parts management and control requirements for contractors providing and maintaining space flight and mission-essential or critical ground support equipment for NASA space flight programs. Although the text is worded 'the contractor shall,' the requirements are also to be used by NASA Headquarters and field installations for developing program/project parts management and control requirements for in-house and contracted efforts. This document places increased emphasis on parts programs to ensure that reliability and quality are considered through adequate consideration of the selection, control, and application of parts. It is the intent of this document to identify disciplines that can be implemented to obtain reliable parts which meet mission needs. The parts management and control requirements described in this document are to be selectively applied, based on equipment class and mission needs. Individual equipment needs should be evaluated to determine the extent to which each requirement should be implemented on a procurement. Utilization of this document does not preclude the usage of other documents. The entire process of developing and implementing requirements is referred to as 'tailoring' the program for a specific project. Some factors that should be considered in this tailoring process include program phase, equipment category and criticality, equipment complexity, and mission requirements. Parts management and control requirements advocated by this document directly support the concept of 'reliability by design' and are an integral part of system reliability and maintainability. Achieving the required availability and mission success objectives during operation depends on the attention given reliability and maintainability in the design phase. Consequently, it is intended that the requirements described in this document are consistent with those of NASA publications, 'Reliability Program Requirements for Aeronautical and Space System Contractors,' NHB 5300.4(1A-l); 'Maintainability Program Requirements for Space Systems,' NHB 5300.4(1E); and 'Quality Program Provisions for Aeronautical and Space System Contractors,' NHB 5300.4(1B).

  5. Automated space processing payloads study. Volume 2, book 1: Technical report. [instrument packages and space shuttles

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The extent was investigated to which experiment hardware and operational requirements can be met by automatic control and material handling devices; payload and system concepts that make extensive use of automation technology are defined. Hardware requirements for each experiment were established and tabulated, and investigations of applicable existing hardware were documented. The capabilities and characteristics of industrial automation equipment, controls, and techniques are presented in the form of a summary of applicable equipment characteristics in three basic mutually-supporting formats. Facilities for performing groups of experiments are defined along with four levitation groups and three furnace groups; major hardware elements required to implement them were identified. A conceptual design definition of ten different automated processing facilities is presented along with the specific equipment to implement each facility and the design layouts of the different units. Constraints and packaging, weight, and power requirements for six payloads postulated for shuttle missions in the 1979 to 1982 time period were examined.

  6. Ground Handling of Batteries at Test and Launch-site Facilities

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Hohl, Alan R.

    2008-01-01

    Ground handling of flight as well as engineering batteries at test facilities and launch-site facilities is a safety critical process. Test equipment interfacing with the batteries should have the required controls to prevent a hazardous failure of the batteries. Test equipment failures should not induce catastrophic failures on the batteries. Transportation requirements for batteries should also be taken into consideration for safe transportation. This viewgraph presentation includes information on the safe handling of batteries for ground processing at test facilities as well as launch-site facilities.

  7. Autoclave Meltout of Cast Explosives

    DTIC Science & Technology

    1996-08-22

    various tanks , kettles , and pelletizing equipment a usable product was recovered. This process creates large amounts of pink water requiring...vacuum treatment melt kettles , flaker belts, and improved material handling equipment in an integrated system. During the 1976/1977 period, AED...McAlester Army Ammo Plant , Oklahoma, to discuss proposed workload and inspect available facilities and equipment . Pilot model production and testing

  8. Implementation plan for HANDI 2000 TWRS master equipment list

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BENNION, S.I.

    This document presents the implementation plan for an additional deliverable of the HANDI 2000 Project. The PassPort Equipment Data module processes include those portions of the COTS PassPort system required to support tracking and management of the Master Equipment List for Lockheed Martin Hanford Company (LMHC) and custom software created to work with the COTS products.

  9. Purchasing Supplies, Equipment and Services Under EPA Grants

    EPA Pesticide Factsheets

    EPA developed this guidance to help ensure you meet EPA requirements when making such necessary purchases. With very few exceptions, you must follow a competitive process when you use EPA grant funds to acquire equipment and professional services.

  10. KSC-08pd0081

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, elements of the ARES I-X Roll Control System, or RoCS, will undergo testing. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  11. KSC-08pd0084

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians get ready to begin testing elements of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  12. Orbital transfer vehicle launch operations study. Volume 2: Detailed summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A series of Operational Design Drivers were identified. Several of these could have significant impact(s) on program costs. These recommendations, for example, include such items as: complete factory assembly and checkout prior to shipment to the ground launch site to make significant reductions in time required at the launch site as well as overall manpower required to do this work; minimize use of nonstandard equipment when orbiter provided equipment is available; and require commonality (or interchangeability) of subsystem equipment elements that are common to the space station, Orbit Maneuvering Vehicles, and/or Orbit Transfer Vehicles. Several additional items were identified that will require a significant amount of management attention (and direction) to resolve. Key elements of the space based processing plans are discussed.

  13. Space Construction Automated Fabrication Experiment Definition Study (SCAFEDS), part 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The techniques, processes, and equipment required for automatic fabrication and assembly of structural elements in using Shuttle as a launch vehicle, and construction were defined. Additional construction systems operational techniques, processes, and equipment which can be developed and demonstrated in the same program to provide further risk reduction benefits to future large space systems were identified and examined.

  14. Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.; Mathews, Roger E.

    2014-01-01

    This standard establishes requirements and guidance for design and fabrication of ground systems (GS) that includes: ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F GSS) to provide uniform methods and processes for design and development of robust, safe, reliable, maintainable, supportable, and cost-effective GS in support of space flight and institutional programs and projects.

  15. A Preliminary Anthropometry Standard for Australian Army Equipment Evaluation

    DTIC Science & Technology

    2014-08-01

    UNCLASSIFIED Authors Mark Edwards Land Division Mark Edwards holds an undergraduate degree in Industrial Design , a Masters in Ergonomics ...equipment. Given that a built system is not a requirement of the processes described, this standard can also be used early in the design process to de...risk the design process. It must be noted that the data provided in this report are representative of the 2012 ADF Army population. The impacts

  16. Work Flow Analysis Report Consisting of Work Management - Preventive Maintenance - Materials and Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JENNINGS, T.L.

    The Work Flow analysis Report will be used to facilitate the requirements for implementing the Work Control module of Passport. The report consists of workflow integration processes for Work Management, Preventative Maintenance, Materials and Equipment

  17. Mass production of silicon pore optics for ATHENA

    NASA Astrophysics Data System (ADS)

    Wille, Eric; Bavdaz, Marcos; Collon, Maximilien

    2016-07-01

    Silicon Pore Optics (SPO) provide high angular resolution with low effective area density as required for the Advanced Telescope for High Energy Astrophysics (Athena). The x-ray telescope consists of several hundreds of SPO mirror modules. During the development of the process steps of the SPO technology, specific requirements of a future mass production have been considered right from the beginning. The manufacturing methods heavily utilise off-the-shelf equipment from the semiconductor industry, robotic automation and parallel processing. This allows to upscale the present production flow in a cost effective way, to produce hundreds of mirror modules per year. Considering manufacturing predictions based on the current technology status, we present an analysis of the time and resources required for the Athena flight programme. This includes the full production process starting with Si wafers up to the integration of the mirror modules. We present the times required for the individual process steps and identify the equipment required to produce two mirror modules per day. A preliminary timeline for building and commissioning the required infrastructure, and for flight model production of about 1000 mirror modules, is presented.

  18. Method of Optimizing the Construction of Machining, Assembly and Control Devices

    NASA Astrophysics Data System (ADS)

    Iordache, D. M.; Costea, A.; Niţu, E. L.; Rizea, A. D.; Babă, A.

    2017-10-01

    Industry dynamics, driven by economic and social requirements, must generate more interest in technological optimization, capable of ensuring a steady development of advanced technical means to equip machining processes. For these reasons, the development of tools, devices, work equipment and control, as well as the modernization of machine tools, is the certain solution to modernize production systems that require considerable time and effort. This type of approach is also related to our theoretical, experimental and industrial applications of recent years, presented in this paper, which have as main objectives the elaboration and use of mathematical models, new calculation methods, optimization algorithms, new processing and control methods, as well as some structures for the construction and configuration of technological equipment with a high level of performance and substantially reduced costs..

  19. 45 CFR 95.613 - Procurement standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Automatic Data Processing Equipment and Services-Conditions for Federal Financial Participation (FFP... conditions for prior approval. Those standards include a requirement for maximum practical open and free... State or local agency, and the ADP services and equipment acquired by a State or local Central Data...

  20. Notebook Computers Increase Communication.

    ERIC Educational Resources Information Center

    Carey, Doris M.; Sale, Paul

    1994-01-01

    Project FIT (Full Inclusion through Technology) provides notebook computers for children with severe disabilities. The computers offer many input and output options. Assessing the students' equipment needs is a complex process, requiring determination of communication goals and baseline abilities, and consideration of equipment features such as…

  1. 7 CFR 1710.106 - Uses of loan funds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... generation facilities to serve RE Act beneficiaries. (3) Warehouse and garage facilities. The purchase, remodeling, or construction of warehouse and garage facilities required for the operation of a borrower's... equipment, including furniture, office, transportation, data processing and other work equipment; and (3...

  2. Trade Study of Excavation Tools and Equipment for Lunar Outpost Development and ISRU

    NASA Astrophysics Data System (ADS)

    Mueller, R. P.; King, R. H.

    2008-01-01

    The NASA Lunar Architecture Team (LAT) has developed a candidate architecture to establish a lunar outpost that includes in-situ resource utilization (ISRU). Outpost development requires excavation for landing and launch sites, roads, trenches, foundations, radiation and thermal shielding, etc. Furthermore, ISRU requires excavation as feed stock for water processing and oxygen production plants. The design environment for lunar excavation tools and equipment including low gravity, cost of launching massive equipment, limited power, limited size, high reliability, and extreme temperatures is significantly different from terrestrial excavation equipment design environment. Consequently, the lunar application requires new approaches to developing excavation tools and equipment in the context of a systems engineering approach to building a Lunar Outpost. Several authors have proposed interesting and innovative general excavation approaches in the literature, and the authors of this paper will propose adaptations and/or new excavation concepts specific to the Lunar Outpost. The requirements for excavation from the LAT architecture will be examined and quantified with corresponding figures of merit and evaluation criteria. This paper will evaluate the proposed approaches using traditional decision making with uncertainty techniques.

  3. 40 CFR 63.864 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that uses an air pollution control system other than an ESP, wet scrubber, RTO, or fabric filter must... unit equipped with an alternative air pollution control system and monitoring operating parameters... affected source or process unit equipped with an alternative air pollution control system and monitoring...

  4. 40 CFR 63.864 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that uses an air pollution control system other than an ESP, wet scrubber, RTO, or fabric filter must... unit equipped with an alternative air pollution control system and monitoring operating parameters... affected source or process unit equipped with an alternative air pollution control system and monitoring...

  5. 40 CFR 63.864 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that uses an air pollution control system other than an ESP, wet scrubber, RTO, or fabric filter must... unit equipped with an alternative air pollution control system and monitoring operating parameters... affected source or process unit equipped with an alternative air pollution control system and monitoring...

  6. 49 CFR 178.39 - Specification 3BN seamless nickel cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... manufactured using equipment and processes adequate to ensure that each cylinder produced conforms to the.... A reasonably smooth and uniform surface finish is required. Cylinders closed in by spinning process... plugs, etc.) for those openings. Threads conforming to the following are required on openings: (1...

  7. 49 CFR 178.39 - Specification 3BN seamless nickel cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... manufactured using equipment and processes adequate to ensure that each cylinder produced conforms to the.... A reasonably smooth and uniform surface finish is required. Cylinders closed in by spinning process... plugs, etc.) for those openings. Threads conforming to the following are required on openings: (1...

  8. 49 CFR 178.39 - Specification 3BN seamless nickel cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... manufactured using equipment and processes adequate to ensure that each cylinder produced conforms to the.... A reasonably smooth and uniform surface finish is required. Cylinders closed in by spinning process... plugs, etc.) for those openings. Threads conforming to the following are required on openings: (1...

  9. Automatic Data Processing Equipment (ADPE) acquisition plan for the medical sciences

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An effective mechanism for meeting the SLSD/MSD data handling/processing requirements for Shuttle is discussed. The ability to meet these requirements depends upon the availability of a general purpose high speed digital computer system. This system is expected to implement those data base management and processing functions required across all SLSD/MSD programs during training, laboratory operations/analysis, simulations, mission operations, and post mission analysis/reporting.

  10. Process feasibility study in support of silicon material task 1

    NASA Technical Reports Server (NTRS)

    Fang, C. S.; Hansen, K. C.; Miller, J. W., Jr.; Yaws, C. L.

    1978-01-01

    Initial results for gas thermal conductivity of silicon tetrafluoride and trichlorosilane are reported in respective temperature ranges of 25 to 400 C and 50 to 400 C. For chemical engineering analyses, the preliminary process design for the original silane process of Union Carbide was completed for Cases A and B, Regular and Minimum Process Storage. Included are raw material usage, utility requirements, major process equipment lists, and production labor requirements. Because of the large differences in surge tankage between major unit operations the fixed capital investment varied from $19,094,000 to $11,138,000 for Cases A and B, respectively. For the silane process the original flowsheet was revised for a more optimum arrangement of major equipment, raw materials and operating conditions. The initial issue of the revised flowsheet (Case C) for the silane process indicated favorable cost benefits over the original scheme.

  11. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  12. 40 CFR 63.1324 - Batch process vents-monitoring equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... device (including but not limited to a thermocouple, ultra-violet beam sensor, or infrared sensor... temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, the temperature monitoring device shall be installed in the...

  13. 40 CFR 63.1324 - Batch process vents-monitoring equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... beam sensor, or infrared sensor) capable of continuously detecting the presence of a pilot flame is...) Where an incinerator is used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, the temperature monitoring...

  14. 40 CFR 63.1324 - Batch process vents-monitoring equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... beam sensor, or infrared sensor) capable of continuously detecting the presence of a pilot flame is...) Where an incinerator is used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, the temperature monitoring...

  15. 40 CFR 60.615 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Air Oxidation Unit Processes § 60.615 Reporting and recordkeeping requirements. (a) Each owner or... of recovery equipment or air oxidation reactors; (2) Any recalculation of the TRE index value...

  16. 40 CFR 60.615 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Air Oxidation Unit Processes § 60.615 Reporting and recordkeeping requirements. (a) Each owner or... of recovery equipment or air oxidation reactors; (2) Any recalculation of the TRE index value...

  17. 40 CFR 60.615 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Air Oxidation Unit Processes § 60.615 Reporting and recordkeeping requirements. (a) Each owner or... of recovery equipment or air oxidation reactors; (2) Any recalculation of the TRE index value...

  18. 40 CFR 60.615 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Air Oxidation Unit Processes § 60.615 Reporting and recordkeeping requirements. (a) Each owner or... of recovery equipment or air oxidation reactors; (2) Any recalculation of the TRE index value...

  19. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husler, R.O.; Weir, T.J.

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified tomore » include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less

  20. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husler, R.O.; Weir, T.J.

    1991-12-31

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I&C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to includemore » process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less

  1. KSC-08pd0083

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians look at some of the elements to be tested in the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  2. KSC-08pd0082

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, some of the internal elements seen here of the ARES I-X Roll Control System, or RoCS, will undergo testing. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  3. Automating the Air Force Retail-Level Equipment Management Process: An Application of Microcomputer-Based Information Systems Techniques

    DTIC Science & Technology

    1988-09-01

    could use the assistance of a microcomputer-based management information system . However, adequate system design and development requires an in-depth...understanding of the Equipment Management Section and the environment in which it functions were asked and answered. Then, a management information system was...designed, developed, and tested. The management information system is called the Equipment Management Information System (EMIS).

  4. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.

    1991-01-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  5. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    NASA Astrophysics Data System (ADS)

    Rey, Charles A.

    1991-03-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  6. The equipment access software for a distributed UNIX-based accelerator control system

    NASA Astrophysics Data System (ADS)

    Trofimov, Nikolai; Zelepoukine, Serguei; Zharkov, Eugeny; Charrue, Pierre; Gareyte, Claire; Poirier, Hervé

    1994-12-01

    This paper presents a generic equipment access software package for a distributed control system using computers with UNIX or UNIX-like operating systems. The package consists of three main components, an application Equipment Access Library, Message Handler and Equipment Data Base. An application task, which may run in any computer in the network, sends requests to access equipment through Equipment Library calls. The basic request is in the form Equipment-Action-Data and is routed via a remote procedure call to the computer to which the given equipment is connected. In this computer the request is received by the Message Handler. According to the type of the equipment connection, the Message Handler either passes the request to the specific process software in the same computer or forwards it to a lower level network of equipment controllers using MIL1553B, GPIB, RS232 or BITBUS communication. The answer is then returned to the calling application. Descriptive information required for request routing and processing is stored in the real-time Equipment Data Base. The package has been written to be portable and is currently available on DEC Ultrix, LynxOS, HPUX, XENIX, OS-9 and Apollo domain.

  7. 40 CFR 63.489 - Batch front-end process vents-monitoring equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... device (including, but not limited to, a thermocouple, ultra-violet beam sensor, or infrared sensor... temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, the temperature monitoring device shall be installed in the...

  8. 40 CFR 63.489 - Batch front-end process vents-monitoring equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... device (including, but not limited to, a thermocouple, ultra-violet beam sensor, or infrared sensor... temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, the temperature monitoring device shall be installed in the...

  9. 40 CFR 63.489 - Batch front-end process vents-monitoring equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... device (including, but not limited to, a thermocouple, ultra-violet beam sensor, or infrared sensor... temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, the temperature monitoring device shall be installed in the...

  10. The PROUST radar

    NASA Technical Reports Server (NTRS)

    Bertin, F.; Glass, M.; Ney, R.; Petitdidier, M.

    1986-01-01

    The Stratosphere-Troposphere (ST) radar called PROUST works at 935 MHz using the same klystron and antenna as the coherent-scatter radar. The use of this equipment for ST work has required some important modifications of the transmitting system and the development of receiving, data processing and acquisition (1984,1985) equipment. The modifications are discussed.

  11. Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Dianliang; Zhu Hongmin; Shanghai Key Laboratory of Advance Manufacturing Environment

    Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools andmore » equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.« less

  12. Development of a plan for automating integrated circuit processing

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The operations analysis and equipment evaluations pertinent to the design of an automated production facility capable of manufacturing beam-lead CMOS integrated circuits are reported. The overall plan shows approximate cost of major equipment, production rate and performance capability, flexibility, and special maintenance requirements. Direct computer control is compared with supervisory-mode operations. The plan is limited to wafer processing operations from the starting wafer to the finished beam-lead die after separation etching. The work already accomplished in implementing various automation schemes, and the type of equipment which can be found for instant automation are described. The plan is general, so that small shops or large production units can perhaps benefit. Examples of major types of automated processing machines are shown to illustrate the general concepts of automated wafer processing.

  13. Automotive Manufacturing Processes. Volume III - Casting and Forging Processes

    DOT National Transportation Integrated Search

    1981-02-01

    Extensive material substitution and resizing of the domestic automotive fleet, as well as the introduction of new technologies, will require major changes in the techniques and equipment used in the various manufacturing processes employed in the pro...

  14. Space processing applications payload equipment study. Volume 2C: Data acquisition and process control

    NASA Technical Reports Server (NTRS)

    Kayton, M.; Smith, A. G.

    1974-01-01

    The services provided by the Spacelab Information Management System are discussed. The majority of the services are provided by the common-support subsystems in the Support Module furnished by the Spacelab manufacturer. The information processing requirements for the space processing applications (SPA) are identified. The requirements and capabilities for electric power, display and control panels, recording and telemetry, intercom, and closed circuit television are analyzed.

  15. 40 CFR 63.1429 - Process vent monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the presence of a pilot flame. (3) Where a boiler or process heater of less than 44 megawatts design... series are used, a scrubbing liquid flow rate meter, or a pressure monitoring device, equipped with a continuous recorder, is required for each absorber in the series. An owner or operator may submit a request...

  16. 40 CFR 63.1429 - Process vent monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the presence of a pilot flame. (3) Where a boiler or process heater of less than 44 megawatts design... series are used, a scrubbing liquid flow rate meter, or a pressure monitoring device, equipped with a continuous recorder, is required for each absorber in the series. An owner or operator may submit a request...

  17. Instrumentation and Control for Fossil-Energy Processes

    NASA Technical Reports Server (NTRS)

    Mark, A., Jr.

    1984-01-01

    Instrumentation and control requirements for fossil-energy processes discussed in working document. Published to foster advancement of instrumentation and control technology by making equipment suppliers and others aware of specifications, needs, and potential markets.

  18. Space processing applications payload equipment study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hammel, R. L.

    1974-01-01

    A study was conducted to derive and collect payload information on the anticipated space processing payload requirements for the Spacelab and space shuttle orbiter planning activities. The six objectives generated by the study are defined. Concepts and requirements for space processing payloads to accommodate the performance of the shuttle-supported research phase are analyzed. Diagrams and tables of data are developed to show the experiments involved, the power requirements, and the payloads for shared missions.

  19. Immunity of medical electrical equipment to radiated RF disturbances

    NASA Astrophysics Data System (ADS)

    Mocha, Jan; Wójcik, Dariusz; Surma, Maciej

    2018-04-01

    Immunity of medical equipment to radiated radio frequency (RF) electromagnetic (EM) fields is a priority issue owing to the functions that the equipment is intended to perform. This is reflected in increasingly stringent normative requirements that medical electrical equipment has to conform to. A new version of the standard concerning electromagnetic compatibility of medical electrical equipment IEC 60601-1-2:2014 has recently been published. The paper discusses major changes introduced in this edition of the standard. The changes comprise more rigorous immunity requirements for medical equipment as regards radiated RF EM fields and a new requirement for testing the immunity of medical electrical equipment to disturbances coming from digital radio communication systems. Further on, the paper presents two typical designs of the input block: involving a multi-level filtering and amplification circuit and including a solution which integrates an input amplifier and an analog-to-digital converter in one circuit. Regardless of the applied solution, presence of electromagnetic disturbances in the input block leads to demodulation of the disturbance signal envelope. The article elaborates on mechanisms of amplitude detection occurring in such cases. Electromagnetic interferences penetration from the amplifier's input to the output is also described in the paper. If the aforementioned phenomena are taken into account, engineers will be able to develop a more conscious approach towards the issue of immunity to RF EM fields in the process of designing input circuits in medical electrical equipment.

  20. 36 CFR 251.51 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... recording, or any other moving image or audio recording equipment on National Forest System lands that... processing or monitoring category requiring more than 50 hours of agency time to process an application for a special use authorization (processing category 6 and, in certain situations, processing category 5) or...

  1. 47 CFR 36.123 - Operator systems equipment-Category 1.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... apportioned on the basis of the relative processor real time (i.e., actual seconds) required to process TSPS... relative processor real time (i.e., actual seconds) for the entire TSPS complex. [52 FR 17229, May 6, 1987... 47 Telecommunication 2 2014-10-01 2014-10-01 false Operator systems equipment-Category 1. 36.123...

  2. 47 CFR 36.123 - Operator systems equipment-Category 1.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... apportioned on the basis of the relative processor real time (i.e., actual seconds) required to process TSPS... relative processor real time (i.e., actual seconds) for the entire TSPS complex. [52 FR 17229, May 6, 1987... 47 Telecommunication 2 2013-10-01 2013-10-01 false Operator systems equipment-Category 1. 36.123...

  3. 47 CFR 36.123 - Operator systems equipment-Category 1.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... apportioned on the basis of the relative processor real time (i.e., actual seconds) required to process TSPS... relative processor real time (i.e., actual seconds) for the entire TSPS complex. [52 FR 17229, May 6, 1987... 47 Telecommunication 2 2012-10-01 2012-10-01 false Operator systems equipment-Category 1. 36.123...

  4. 47 CFR 36.123 - Operator systems equipment-Category 1.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... apportioned on the basis of the relative processor real time (i.e., actual seconds) required to process TSPS... relative processor real time (i.e., actual seconds) for the entire TSPS complex. [52 FR 17229, May 6, 1987... 47 Telecommunication 2 2011-10-01 2011-10-01 false Operator systems equipment-Category 1. 36.123...

  5. 40 CFR 63.1363 - Standards for equipment leaks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mechanical seal system that includes a barrier fluid system and meets the requirements specified in... dual mechanical seal system is: (A) Operated with the barrier fluid at a pressure that is at all times... paragraph (a)(2) of this section. (5) Lines and equipment not containing process fluids are not subject to...

  6. 40 CFR 60.5415 - How do I demonstrate continuous compliance with the standards for my gas well affected facility...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... plants? 60.5415 Section 60.5415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... used to reduce emissions, you must demonstrate continuous compliance with the performance requirements... sudden, infrequent, and unavoidable failure of air pollution control equipment, process equipment, or a...

  7. 47 CFR 36.123 - Operator systems equipment-Category 1.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... apportioned on the basis of the relative processor real time (i.e., actual seconds) required to process TSPS... relative processor real time (i.e., actual seconds) for the entire TSPS complex. [52 FR 17229, May 6, 1987... 47 Telecommunication 2 2010-10-01 2010-10-01 false Operator systems equipment-Category 1. 36.123...

  8. 9 CFR 590.506 - Candling and transfer-room facilities and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Candling and transfer-room facilities... INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.506 Candling and transfer-room facilities and equipment. (a) The room shall be so constructed that it can be adequately darkened to assure...

  9. 9 CFR 590.506 - Candling and transfer-room facilities and equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Candling and transfer-room facilities... INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.506 Candling and transfer-room facilities and equipment. (a) The room shall be so constructed that it can be adequately darkened to assure...

  10. 9 CFR 590.506 - Candling and transfer-room facilities and equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Candling and transfer-room facilities... INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.506 Candling and transfer-room facilities and equipment. (a) The room shall be so constructed that it can be adequately darkened to assure...

  11. 9 CFR 590.506 - Candling and transfer-room facilities and equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Candling and transfer-room facilities... INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.506 Candling and transfer-room facilities and equipment. (a) The room shall be so constructed that it can be adequately darkened to assure...

  12. Automotive Manufacturing Processes. Volume IV - Metal Stamping and Plastic Forming Processes

    DOT National Transportation Integrated Search

    1981-02-01

    Extensive material substitution and resizing of the domestic automotive fleet, as well as the introduction of new technologies, will require major changes in the techniques and equipment used in the various manufacturing processes employed in the pro...

  13. Automotive Manufacturing Processes. Volume II - Manufacturing Processes for Passive Restraint Systems

    DOT National Transportation Integrated Search

    1981-02-01

    Extensive material substitution and resizing of the domestic automotive fleet, as well as the introduction of new technologies, will require major changes in the techniques and equipment used in the various manufacturing processes employed in the pro...

  14. Distribution of human waste samples in relation to sizing waste processing in space

    NASA Technical Reports Server (NTRS)

    Parker, Dick; Gallagher, S. K.

    1992-01-01

    Human waste processing for closed ecological life support systems (CELSS) in space requires that there be an accurate knowledge of the quantity of wastes produced. Because initial CELSS will be handling relatively few individuals, it is important to know the variation that exists in the production of wastes rather than relying upon mean values that could result in undersizing equipment for a specific crew. On the other hand, because of the costs of orbiting equipment, it is important to design the equipment with a minimum of excess capacity because of the weight that extra capacity represents. A considerable quantity of information that had been independently gathered on waste production was examined in order to obtain estimates of equipment sizing requirements for handling waste loads from crews of 2 to 20 individuals. The recommended design for a crew of 8 should hold 34.5 liters per day (4315 ml/person/day) for urine and stool water and a little more than 1.25 kg per day (154 g/person/day) of human waste solids and sanitary supplies.

  15. Extraterrestrial processing and manufacturing of large space systems, volume 1, chapters 1-6

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Space program scenarios for production of large space structures from lunar materials are defined. The concept of the space manufacturing facility (SMF) is presented. The manufacturing processes and equipment for the SMF are defined and the conceptual layouts are described for the production of solar cells and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, and converters. A 'reference' SMF was designed and its operation requirements are described.

  16. Definition and means of maintaining the supply ventilation system seismic shutdown portion of the PFP safety envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keck, R.D.

    1997-01-21

    The purpose of this document is to record the technical evaluation of the Limiting Condition for Operation (LCO) described in the Plutonium Finishing Plant (PFP) Operational Safety Requirements, WHC-SD-CP-OSR- 010, Rev. 0. Kay 1994, Section 3.2.3, `Supply Ventilation System Seismic Shutdown.` This document, with its appendices, provides the following: 1. The system functional requirements for determining system operability (Section 3). 2. Evaluations of equipment to determine the safety boundary for the system (Section 4). 3. A list of annotated drawings which show the safety envelope boundaries (Appendix C). 4. A list of the safety envelope equipment (Appendix B). 5. Functionalmore » requirements for the individual safety envelope equipment, including appropriate setpoints and process parameters (Section 4.1). 6. A list of the operational, maintenance and surveillance procedures necessary to operate and maintain the system equipment within the safety envelope (Sections 5 and 6 and Appendix A).« less

  17. The Development and Implementation of Ground Safety Requirements for Project Orion Abort Flight Testing - A Case Study

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Paul D.; Williams, Jeffrey G.; Condzella, Bill R.

    2008-01-01

    A rigorous set of detailed ground safety requirements is required to make sure that ground support equipment (GSE) and associated planned ground operations are conducted safely. Detailed ground safety requirements supplement the GSE requirements already called out in NASA-STD-5005. This paper will describe the initial genesis of these ground safety requirements, the establishment and approval process and finally the implementation process for Project Orion. The future of the requirements will also be described. Problems and issues encountered and overcame will be discussed.

  18. Desulfurization of gasoline.

    PubMed Central

    Berger, J E

    1975-01-01

    Although gasoline blending streams exhibit widely varying sulfur concentrations, significant quantities of low-sulfur motor gasoline cannot be manufactured by reallocation of existing components without substantial sacrifices in the useful properties of the remaining fuels having normal sulfur levels. To meet the anticipated demand for low-sulfur unleaded gasoline which may be required for catalyst-equipped automobiles it will be necessary to install process equipment based on known hydrotreating technology. The effects which this construction program would exert on the activities, abilities and needs of one petroleum refiner are sketched for two degrees of sulfur removal. The impacts of installing the process facilities which would be necessary are discussed in terms of time requirements, capital needs, and added energy expenditures. PMID:1157782

  19. Assessment of Spacecraft Operational Status Using Electro-Optical Predictive Techniques

    DTIC Science & Technology

    2010-09-01

    panel appendages, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical sensors...observing and characterizing key spacecraft features. The simulation results are based on electro-optical signatures apparent to nonimaging sensors, along...and communication equipment, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical

  20. Component-Level Electronic-Assembly Repair (CLEAR) System Architecture

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.; Vrnak, Daniel R.

    2011-01-01

    This document captures the system architecture for a Component-Level Electronic-Assembly Repair (CLEAR) capability needed for electronics maintenance and repair of the Constellation Program (CxP). CLEAR is intended to improve flight system supportability and reduce the mass of spares required to maintain the electronics of human rated spacecraft on long duration missions. By necessity it allows the crew to make repairs that would otherwise be performed by Earth based repair depots. Because of practical knowledge and skill limitations of small spaceflight crews they must be augmented by Earth based support crews and automated repair equipment. This system architecture covers the complete system from ground-user to flight hardware and flight crew and defines an Earth segment and a Space segment. The Earth Segment involves database management, operational planning, and remote equipment programming and validation processes. The Space Segment involves the automated diagnostic, test and repair equipment required for a complete repair process. This document defines three major subsystems including, tele-operations that links the flight hardware to ground support, highly reconfigurable diagnostics and test instruments, and a CLEAR Repair Apparatus that automates the physical repair process.

  1. Automotive Manufacturing Processes. volume I - Overview

    DOT National Transportation Integrated Search

    1981-02-01

    Extensive material substitution and re-sizing of the domestic automotive fleet, as well as the introduction of new technologies, will require major changes in the techniques and equipment used in the various manufacturing processes employed in the pr...

  2. Automotive Manufacturing Processes. Volume I - Overview

    DOT National Transportation Integrated Search

    1981-02-01

    Extensive material substitution and re-sizing of the domestic automotive fleet, as well as the introduction of new technologies, will require major changes in the techniques and equipment used in the various manufacturing processes employed in the pr...

  3. Systems Engineering Management Procedures

    DTIC Science & Technology

    1966-03-10

    load -..................................................... tch 2 1t55 𔄃 Trade Study-Companson ,f Methods for Measuring Quantities of Loaded... method of system operation and the ancillary equipment required such as instru- system elements is a highly involved process mentation. depot tooling...Installation and checkout. MiGI-Maintenance g-round equipment. IM-Item manager. NIP-Materiel improvement proipct. indenturo-A method of showing relationships

  4. 40 CFR 60.482-3 - Standards: Compressors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... process or fuel gas system or connected by a closed vent system to a control device that complies with the... be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) shall be checked daily or shall be equipped with an...

  5. 40 CFR 60.482-3 - Standards: Compressors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... process or fuel gas system or connected by a closed vent system to a control device that complies with the... be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) shall be checked daily or shall be equipped with an...

  6. Methodology for reducing energy and resource costs in construction of trenchless crossover of pipelines

    NASA Astrophysics Data System (ADS)

    Toropov, V. S.

    2018-05-01

    The paper suggests a set of measures to select the equipment and its components in order to reduce energy costs in the process of pulling the pipeline into the well in the constructing the trenchless pipeline crossings of various materials using horizontal directional drilling technology. A methodology for reducing energy costs has been developed by regulating the operation modes of equipment during the process of pulling the working pipeline into a drilled and pre-expanded well. Since the power of the drilling rig is the most important criterion in the selection of equipment for the construction of a trenchless crossover, an algorithm is proposed for calculating the required capacity of the rig when operating in different modes in the process of pulling the pipeline into the well.

  7. Tank 241-AZ-102 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RASMUSSEN, J.H.

    1999-08-02

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AZ-102. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AZ-102 required to satisfy the Data Quality Objectives For TWRS Privatization Phase I: Confirm Tank TIS An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO) (Nguyen 1999a), Data Quality Objectives For TWRS Privatization Phase 1: Confirm Tank TIS An Appropriate Feed Source For Low-Activity Waste Feed Batch X (LAW DQO) (Nguyen 1999b), Low Activity Waste andmore » High Level Waste Feed Data Quality Objectives (L&H DQO) (Patello et al. 1999) and Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO) (Bloom 1996). The Tank Characterization Technical Sampling Basis document (Brown et al. 1998) indicates that these issues, except the Equipment DQO apply to tank 241-AZ-102 for this sampling event. The Equipment DQO is applied for shear strength measurements of the solids segments only. Poppiti (1999) requires additional americium-241 analyses of the sludge segments. Brown et al. (1998) also identify safety screening, regulatory issues and provision of samples to the Privatization Contractor(s) as applicable issues for this tank. However, these issues will not be addressed via this sampling event. Reynolds et al. (1999) concluded that information from previous sampling events was sufficient to satisfy the safety screening requirements for tank 241 -AZ-102. Push mode core samples will be obtained from risers 15C and 24A to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples, composite the liquids and solids, perform chemical analyses, and provide subsamples to the Process Chemistry Laboratory. The Process Chemistry Laboratory will prepare test plans and perform process tests to evaluate the behavior of the 241-AZ-102 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. Requirements for analyses of samples originating in the process tests will be documented in the corresponding test plan.« less

  8. Application of a tablet film coating model to define a process-imposed transition boundary for robust film coating.

    PubMed

    van den Ban, Sander; Pitt, Kendal G; Whiteman, Marshall

    2018-02-01

    A scientific understanding of interaction of product, film coat, film coating process, and equipment is important to enable design and operation of industrial scale pharmaceutical film coating processes that are robust and provide the level of control required to consistently deliver quality film coated product. Thermodynamic film coating conditions provided in the tablet film coating process impact film coat formation and subsequent product quality. A thermodynamic film coating model was used to evaluate film coating process performance over a wide range of film coating equipment from pilot to industrial scale (2.5-400 kg). An approximate process-imposed transition boundary, from operating in a dry to a wet environment, was derived, for relative humidity and exhaust temperature, and used to understand the impact of the film coating process on product formulation and process control requirements. This approximate transition boundary may aid in an enhanced understanding of risk to product quality, application of modern Quality by Design (QbD) based product development, technology transfer and scale-up, and support the science-based justification of critical process parameters (CPPs).

  9. 40 CFR 65.155 - Other control devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONSOLIDATED FEDERAL AIR RULE Closed Vent Systems, Control Devices, and Routing to a Fuel Gas System or a Process § 65.155 Other control devices. (a) Other control device equipment and operating requirements. (1... requirements specified in § 65.63(a)(2), or 40 CFR 60.562-1(a)(1)(i)(A) for process vents, or § 65.83(a)(1) for...

  10. 40 CFR 63.2480 - What requirements must I meet for equipment leaks?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... affected source. (5) For pumps in light liquid service in an MCPU that has no continuous process vents and.../vapor and light liquid service at an existing source, you may elect to comply with the requirements in... light liquid service in an MCPU that has no continuous process vents and is part of an existing source...

  11. Examining elite Parasport athletes with sport involvement and sports equipment.

    PubMed

    Hambrick, Marion E; Hums, Mary A; Bower, Glenna G; Wolff, Eli A

    2015-01-01

    Elite athletes require the most advanced sports equipment to maintain their competitive edge, but manufacturers cannot always satisfy these athletes' specific equipment needs. Sport involvement can influence sports-equipment selections and is described as the process by which individuals rely on attitudes and belief systems to make sports-related consumption decisions. This study involved semistructured interviews with 5 elite Parasport athletes to identify and analyze the role of sport involvement in their selection of sports equipment. The results revealed that the athletes identified product limitations, created a collaborative environment, and promoted a culture of innovation to develop new sports products and address existing limitations. Theoretical and practical implications are discussed.

  12. Spacelab Mission Implementation Cost Assessment (SMICA)

    NASA Technical Reports Server (NTRS)

    Guynes, B. V.

    1984-01-01

    A total savings of approximately 20 percent is attainable if: (1) mission management and ground processing schedules are compressed; (2) the equipping, staffing, and operating of the Payload Operations Control Center is revised, and (3) methods of working with experiment developers are changed. The development of a new mission implementation technique, which includes mission definition, experiment development, and mission integration/operations, is examined. The Payload Operations Control Center is to relocate and utilize new computer equipment to produce cost savings. Methods of reducing costs by minimizing the Spacelab and payload processing time during pre- and post-mission operation at KSC are analyzed. The changes required to reduce costs in the analytical integration process are studied. The influence of time, requirements accountability, and risk on costs is discussed. Recommendation for cost reductions developed by the Spacelab Mission Implementation Cost Assessment study are listed.

  13. 40 CFR 63.11602 - What are the performance test and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compliance requirements for new and existing sources? 63.11602 Section 63.11602 Protection of Environment... Requirements § 63.11602 What are the performance test and compliance requirements for new and existing sources... compounds of cadmium, chromium, lead, or nickel to a process vessel or to the grinding and milling equipment...

  14. 40 CFR 63.11602 - What are the performance test and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compliance requirements for new and existing sources? 63.11602 Section 63.11602 Protection of Environment... Requirements § 63.11602 What are the performance test and compliance requirements for new and existing sources... compounds of cadmium, chromium, lead, or nickel to a process vessel or to the grinding and milling equipment...

  15. 40 CFR 63.11602 - What are the performance test and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compliance requirements for new and existing sources? 63.11602 Section 63.11602 Protection of Environment... Requirements § 63.11602 What are the performance test and compliance requirements for new and existing sources... compounds of cadmium, chromium, lead, or nickel to a process vessel or to the grinding and milling equipment...

  16. 40 CFR 63.11602 - What are the performance test and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliance requirements for new and existing sources? 63.11602 Section 63.11602 Protection of Environment... Requirements § 63.11602 What are the performance test and compliance requirements for new and existing sources... compounds of cadmium, chromium, lead, or nickel to a process vessel or to the grinding and milling equipment...

  17. 40 CFR 63.11602 - What are the performance test and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compliance requirements for new and existing sources? 63.11602 Section 63.11602 Protection of Environment... Requirements § 63.11602 What are the performance test and compliance requirements for new and existing sources... compounds of cadmium, chromium, lead, or nickel to a process vessel or to the grinding and milling equipment...

  18. Optimizing process and equipment efficiency using integrated methods

    NASA Astrophysics Data System (ADS)

    D'Elia, Michael J.; Alfonso, Ted F.

    1996-09-01

    The semiconductor manufacturing industry is continually riding the edge of technology as it tries to push toward higher design limits. Mature fabs must cut operating costs while increasing productivity to remain profitable and cannot justify large capital expenditures to improve productivity. Thus, they must push current tool production capabilities to cut manufacturing costs and remain viable. Working to continuously improve mature production methods requires innovation. Furthermore, testing and successful implementation of these ideas into modern production environments require both supporting technical data and commitment from those working with the process daily. At AMD, natural work groups (NWGs) composed of operators, technicians, engineers, and supervisors collaborate to foster innovative thinking and secure commitment. Recently, an AMD NWG improved equipment cycle time on the Genus tungsten silicide (WSi) deposition system. The team used total productive manufacturing (TPM) to identify areas for process improvement. Improved in-line equipment monitoring was achieved by constructing a real time overall equipment effectiveness (OEE) calculator which tracked equipment down, idle, qualification, and production times. In-line monitoring results indicated that qualification time associated with slow Inspex turn-around time and machine downtime associated with manual cleans contributed greatly to reduced availability. Qualification time was reduced by 75% by implementing a new Inspex monitor pre-staging technique. Downtime associated with manual cleans was reduced by implementing an in-situ plasma etch back to extend the time between manual cleans. A designed experiment was used to optimize the process. Time between 18 hour manual cleans has been improved from every 250 to every 1500 cycles. Moreover defect density realized a 3X improvement. Overall, the team achieved a 35% increase in tool availability. This paper details the above strategies and accomplishments.

  19. Definition of common support equipment and space station interface requirements for IOC model technology experiments

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Waiss, Richard D.

    1988-01-01

    A study was conducted to identify the common support equipment and Space Station interface requirements for the IOC (initial operating capabilities) model technology experiments. In particular, each principal investigator for the proposed model technology experiment was contacted and visited for technical understanding and support for the generation of the detailed technical backup data required for completion of this study. Based on the data generated, a strong case can be made for a dedicated technology experiment command and control work station consisting of a command keyboard, cathode ray tube, data processing and storage, and an alert/annunciator panel located in the pressurized laboratory.

  20. Lunar-base construction equipment and methods evaluation

    NASA Technical Reports Server (NTRS)

    Boles, Walter W.; Ashley, David B.; Tucker, Richard L.

    1993-01-01

    A process for evaluating lunar-base construction equipment and methods concepts is presented. The process is driven by the need for more quantitative, systematic, and logical methods for assessing further research and development requirements in an area where uncertainties are high, dependence upon terrestrial heuristics is questionable, and quantitative methods are seldom applied. Decision theory concepts are used in determining the value of accurate information and the process is structured as a construction-equipment-and-methods selection methodology. Total construction-related, earth-launch mass is the measure of merit chosen for mathematical modeling purposes. The work is based upon the scope of the lunar base as described in the National Aeronautics and Space Administration's Office of Exploration's 'Exploration Studies Technical Report, FY 1989 Status'. Nine sets of conceptually designed construction equipment are selected as alternative concepts. It is concluded that the evaluation process is well suited for assisting in the establishment of research agendas in an approach that is first broad, with a low level of detail, followed by more-detailed investigations into areas that are identified as critical due to high degrees of uncertainty and sensitivity.

  1. Applying Separations Science to Waste Problems.

    DTIC Science & Technology

    1998-01-01

    inert cathode. Centrifugal Contactor for Processing Liquid Radioactive Waste We have developed an annular centrifugal contactor for use in liquid...radioactive waste. The CMT-designed centrifugal contactor has several advantages over other solvent-extraction equipment currently in use. It requires less...Y-12 Plant, Savannah River Site, and Oak Ridge National Laboratory. The benefits that make the centrifugal contactor the equipment of choice in the

  2. 40 CFR 65.107 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or fuel gas system or connected by a closed vent system to a control device that complies with the requirements of § 65.115; or (C) Equipped with a closed-loop system that purges the barrier fluid into a... section. (3) Routed to a process or fuel gas system or equipped with a closed vent system. Any pump that...

  3. 46 CFR 154.500 - Cargo and process piping standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Equipment Cargo and Process Piping Systems § 154.500 Cargo and process piping standards. The cargo liquid and vapor piping and process piping systems must meet the requirements in §§ 154.503 through 154.562... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo and process piping standards. 154.500 Section 154...

  4. Equipment management user's handbook for property custodians

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The NASA Equipment Management User's Handbook for Property Custodians is issued as an instructional guide for personnel designated as property custodians and technical personnel involved in the acquisition, management, and use of NASA-owned equipment. This handbook provides general information and basic operational procedures for processing equipment transactions through the agency-wide NASA Equipment Management System (NEMS). Each NASA installation must prepare supplementary instructions for local requirements beyond the scope of NASA-wide policies and procedures contained herein, or as specified for local implementation in NHB 4200.1, 'NASA Equipment Management Manual.' NHB 4200.1 sets forth policy, uniform performance standards, and procedural guidance to NASA personnel for the acquisition, management, and use of NASA-owned equipment. This handbook is a controlled document, issued in loose-leaf form and revised by page changes. Additional copies for internal use may be obtained through normal distribution.

  5. 40 CFR 65.113 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... be collected or captured. (c) Equipment design and operation. Each closed-purge, closed-loop, or... system; or (2) Collect and recycle the purged process fluid to a process; or (3) Be designed and operated to capture and transport all the purged process fluid to a control device that meets the requirements...

  6. 40 CFR 65.113 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... be collected or captured. (c) Equipment design and operation. Each closed-purge, closed-loop, or... system; or (2) Collect and recycle the purged process fluid to a process; or (3) Be designed and operated to capture and transport all the purged process fluid to a control device that meets the requirements...

  7. 40 CFR 65.113 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... be collected or captured. (c) Equipment design and operation. Each closed-purge, closed-loop, or... system; or (2) Collect and recycle the purged process fluid to a process; or (3) Be designed and operated to capture and transport all the purged process fluid to a control device that meets the requirements...

  8. Biowaste monitoring system for shuttle

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.; Sauer, R. L.

    1975-01-01

    The acquisition of crew biomedical data has been an important task on all manned space missions from Project Mercury through the recently completed Skylab Missions. The monitoring of metabolic wastes from the crew is an important aspect of this activity. On early missions emphasis was placed on the collection and return of biowaste samples for post-mission analysis. On later missions such as Skylab, equipment for inflight measurement was also added. Life Science experiments are being proposed for Shuttle missions which will require the inflight measurement and sampling of metabolic wastes. In order to minimize the crew impact associated with these requirements, a high degree of automation of these processes will be required. This paper reviews the design and capabilities of urine biowaste monitoring equipment provided on past-manned space programs and defines and describes the urine volume measurement and sampling equipment planned for the Shuttle Orbiter program.

  9. Dynamic Simulation on the Installation Process of HGIS in Transformer Substation

    NASA Astrophysics Data System (ADS)

    Lin, Tao; Li, Shaohua; Wang, Hu; Che, Deyong; Qi, Guangcai; Yao, Jianfeng; Zhang, Qingzhe

    The technological requirements of Hypid Gas Insulated Switchgear (HGIS) installation in transformer substation is high and the control points of quality is excessive. Most of the engineers and technicians in the construction enterprises are not familiar with equipments of HGIS. In order to solve these problem, equipments of HGIS is modeled on the computer by SolidWorks software. Installation process of civil foundation and closed-type equipments is optimized dynamically with virtual assemble technology. Announcements and application work are composited into animation file. Skills of modeling and simulation is tidied classify as well. The result of the visual dynamic simulation can instruct the actual construction process of HGIS to a certain degree and can promote reasonable construction planning and management. It can also improve the method and quality of staff training for electric power construction enterprises.

  10. Design and implementation for integrated UAV multi-spectral inspection system

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Li, X.; Yan, F.

    2018-04-01

    In order to improve the working efficiency of the transmission line inspection and reduce the labour intensity of the inspectors, this paper presents an Unmanned Aerial Vehicle (UAV) inspection system architecture for the transmission line inspection. In this document, the light-duty design for different inspection equipment and processing terminals is completed. It presents the reference design for the information-processing terminal, supporting the inspection and interactive equipment accessing, and obtains all performance indicators of the inspection information processing through the tests. Practical application shows that the UAV inspection system supports access and management of different types of mainstream fault detection equipment, and can implement the independent diagnosis of the detected information to generate inspection reports in line with industry norms, which can meet the fast, timely, and efficient requirements for the power line inspection work.

  11. Research on Computer Aided Innovation Model of Weapon Equipment Requirement Demonstration

    NASA Astrophysics Data System (ADS)

    Li, Yong; Guo, Qisheng; Wang, Rui; Li, Liang

    Firstly, in order to overcome the shortcoming of using only AD or TRIZ solely, and solve the problems currently existed in weapon equipment requirement demonstration, the paper construct the method system of weapon equipment requirement demonstration combining QFD, AD, TRIZ, FA. Then, we construct a CAI model frame of weapon equipment requirement demonstration, which include requirement decomposed model, requirement mapping model and requirement plan optimization model. Finally, we construct the computer aided innovation model of weapon equipment requirement demonstration, and developed CAI software of equipment requirement demonstration.

  12. Chemical cleaning re-invented: clean, lean and green.

    PubMed

    Hanson, Margaret; Vangeel, Michel

    2014-01-01

    A project undertaken in the Central Cleaning Department of Janssen, a Johnson and Johnson pharmaceutical company, demonstrates how ergonomics, environmental and industrial hygiene risks and quality concerns can be tackled simultaneously. The way equipment was cleaned was re-designed by an in-house cross-functional team to ensure a 'clean, lean and green' process. Initiatives included a new layout of the area, and new work processes and equipment to facilitate cleaning and handling items. This resulted in significant improvements: all ergonomics high risk tasks were reduced to moderate or low risk; hearing protection was no longer required; respirator requirement reduced by 67%; solvent use reduced by 73%; productivity improved, with 55% fewer operator hours required; and quality improved 40-fold. The return on investment was estimated at 3.125 years based on an investment of over €1.5 million (2008 prices). This win-win intervention allowed ergonomics, environmental, industrial hygiene, productivity and quality concerns all to be addressed.

  13. Satellite services system analysis study. Volume 3: Service equipment requirements

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Service equipment mission requirements are discussed. On-orbit operations, satellite classes, and reference missions are included. Service equipment usage and requirements are considered. Equipment identification methodology is discussed. Service equipment usage is analyzed, including initial launch, revisit, Earth return, and orbital storage. A summary of service requirements and equipment is presented, including service equipment status, even interaction, satellite features, and observations.

  14. [Medical Equipment Maintenance Methods].

    PubMed

    Liu, Hongbin

    2015-09-01

    Due to the high technology and the complexity of medical equipment, as well as to the safety and effectiveness, it determines the high requirements of the medical equipment maintenance work. This paper introduces some basic methods of medical instrument maintenance, including fault tree analysis, node method and exclusive method which are the three important methods in the medical equipment maintenance, through using these three methods for the instruments that have circuit drawings, hardware breakdown maintenance can be done easily. And this paper introduces the processing methods of some special fault conditions, in order to reduce little detours in meeting the same problems. Learning is very important for stuff just engaged in this area.

  15. Space Construction Automated Fabrication Experiment Definition Study (SCAFEDS). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The techniques, processes, and equipment required for automatic fabrication and assembly of structural elements in space using the space shuttle as a launch vehicle and construction base were investigated. Additional construction/systems/operational techniques, processes, and equipment which can be developed/demonstrated in the same program to provide further risk reduction benefits to future large space systems were included. Results in the areas of structure/materials, fabrication systems (beam builder, assembly jig, and avionics/controls), mission integration, and programmatics are summarized. Conclusions and recommendations are given.

  16. Powder Metallurgy Reconditioning of Food and Processing Equipment Components

    NASA Astrophysics Data System (ADS)

    Nafikov, M. Z.; Aipov, R. S.; Konnov, A. Yu.

    2017-12-01

    A powder metallurgy method is developed to recondition the worn surfaces of food and processing equipment components. A combined additive is composed to minimize the powder losses in sintering. A technique is constructed to determine the powder consumption as a function of the required metallic coating thickness. A rapid method is developed to determine the porosity of the coating. The proposed technology is used to fabricate a wear-resistant defectless metallic coating with favorable residual stresses, and the adhesive strength of this coating is equal to the strength of the base metal.

  17. Spacelab data analysis and interactive control study

    NASA Technical Reports Server (NTRS)

    Tarbell, T. D.; Drake, J. F.

    1980-01-01

    The study consisted of two main tasks, a series of interviews of Spacelab users and a survey of data processing and display equipment. Findings from the user interviews on questions of interactive control, downlink data formats, and Spacelab computer software development are presented. Equipment for quick look processing and display of scientific data in the Spacelab Payload Operations Control Center (POCC) was surveyed. Results of this survey effort are discussed in detail, along with recommendations for NASA development of several specific display systems which meet common requirements of many Spacelab experiments.

  18. Get the Power You Need, When and Where You Need It Aboard the International Space Station (ISS) Using the ISS Plug-In Plan (IPiP) Requirement Request Process

    NASA Technical Reports Server (NTRS)

    Moore, Kevin D.

    2017-01-01

    Trying to get your experiment aboard ISS? You likely will need power. Many enditem providers do. ISS Plug-In Plan (IPiP) supports power and data for science, Payloads (or Utilization), vehicle systems, and daily operations through the Electrical Power System (EPS) Secondary Power/Data Subsystem. Yet limited resources and increasing requirements continue to influence decisions on deployment of ISS end items. Given the fluid launch schedule and the rapidly- increasing number of end item providers requiring power support, the focus of the Plug-In Plan has evolved from a simple FIFO recommendation to provide power to end item users, to anticipating future requirements by judicious development and delivery of support equipment (cables, power supplies, power strips, and alternating current (AC) power inverters), employing innovative deployment strategies, and collaborating on end item development. This paper describes the evolution of the ISS Program Office, Engineering Directorate, Flight Operations Directorate (FOD), International Partners and the end item provider relationship and how collaboration successfully leverages unique requirements with limited on- board equipment and resources, tools and processes which result in more agile integration, and describes the process designed for the new ISS end item provider to assure that their power requirements will be met.

  19. Architecture for distributed design and fabrication

    NASA Astrophysics Data System (ADS)

    McIlrath, Michael B.; Boning, Duane S.; Troxel, Donald E.

    1997-01-01

    We describe a flexible, distributed system architecture capable of supporting collaborative design and fabrication of semi-conductor devices and integrated circuits. Such capabilities are of particular importance in the development of new technologies, where both equipment and expertise are limited. Distributed fabrication enables direct, remote, physical experimentation in the development of leading edge technology, where the necessary manufacturing resources are new, expensive, and scarce. Computational resources, software, processing equipment, and people may all be widely distributed; their effective integration is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages current vendor and consortia developments to define software interfaces and infrastructure based on existing and merging networking, CIM, and CAD standards. Process engineers and product designers access processing and simulation results through a common interface and collaborate across the distributed manufacturing environment.

  20. Gas processing developments. Why not use methanol for hydrate control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, R.B.; Bucklin, R.W.

    1983-04-01

    Hydrate formation in turboexpander plants can be avoided more economically by using methanol than by using solid bed dehydration. Although the first turboexpander plant used methanol, most expander installations now have used solid bed dehydration. The reasons are obscure, since methanol often grants greater ease of operation as well as lower capital and operating costs, especially when the water in the feed gas is low or when recompression is required. Natural gas generally contains water before processing. High pressure, low temperature, or both favor the combination of water with light gases to form hydrates. Free water always must be presentmore » for hydrates to form. Hydrates cause problems by plugging pipelines, valves, and other process equipment. Therefore, proper equipment design requires accurate prediction of the limiting conditions at which hydrates are formed anytime a gas stream containing hydrate formers and free water is cooled below 80 F. (16 refs.)« less

  1. Criteria for Determining whether Equipment is Air Pollution Control Equipment or Process Equipment

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  2. 40 CFR 63.1026 - Pumps in light liquid service standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or fuel gas system or connected by a closed-vent system to a control device that complies with the requirements of either § 63.1034 or § 63.1021(b) of this part; or (C) Equipped with a closed-loop system that... paragraph (b) of this section. (3) Routed to a process or fuel gas system or equipped with a closed vent...

  3. 40 CFR 60.665 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Distillation Operations § 60.665 Reporting and recordkeeping requirements. (a) Each owner or operator subject... of recovery equipment or a distillation unit; (2) Any recalculation of the TRE index value performed... distillation process unit containing the affected facility. These must be reported as soon as possible after...

  4. 40 CFR 60.665 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Distillation Operations § 60.665 Reporting and recordkeeping requirements. (a) Each owner or operator subject... of recovery equipment or a distillation unit; (2) Any recalculation of the TRE index value performed... distillation process unit containing the affected facility. These must be reported as soon as possible after...

  5. 40 CFR 63.1429 - Process vent monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a... used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature monitoring device shall be installed in...

  6. 40 CFR 63.1429 - Process vent monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a... used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature monitoring device shall be installed in...

  7. 40 CFR 63.114 - Process vent provisions-monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... but not limited to a thermocouple, ultra-violet beam sensor, or infrared sensor) capable of... accurately. (1) Where an incinerator is used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature...

  8. 40 CFR 63.1429 - Process vent monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a... used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature monitoring device shall be installed in...

  9. 40 CFR 63.114 - Process vent provisions-monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... but not limited to a thermocouple, ultra-violet beam sensor, or infrared sensor) capable of... accurately. (1) Where an incinerator is used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature...

  10. 40 CFR 63.114 - Process vent provisions-monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... but not limited to a thermocouple, ultra-violet beam sensor, or infrared sensor) capable of... accurately. (1) Where an incinerator is used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature...

  11. 40 CFR 63.9632 - What are the installation, operation, and maintenance requirements for my monitoring equipment?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing Continuous Compliance Requirements § 63.9632 What are...

  12. 40 CFR 63.9632 - What are the installation, operation, and maintenance requirements for my monitoring equipment?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing Continuous Compliance Requirements § 63.9632 What are...

  13. Development of augmented reality system for servicing electromechanical equipment

    NASA Astrophysics Data System (ADS)

    Zhukovskiy, Y.; Koteleva, N.

    2018-05-01

    Electromechanical equipment is widely used. It is used in industrial enterprises, in the spheres of public services, in everyday life, etc. Maintenance servicing of electromechanical equipment is an important part of its life cycle. High-quality and timely service can extend the life of the electromechanical equipment. The creation of special systems that simplify the process of servicing electromechanical equipment is an urgent task. Such systems can shorten the time for maintenance of electrical equipment, and, therefore, reduce the cost of maintenance in general. This article presents an analysis of information on the operation of service services for maintenance and repair of electromechanical equipment, identifies the list of services, and estimates the time required to perform basic service operations. The structure of the augmented reality system is presented, the ways of interaction of the augmented reality system with the automated control systems working at the enterprise are presented.

  14. Nodes packaging option for Space Station application

    NASA Technical Reports Server (NTRS)

    So, Kenneth T.; Hall, John B., Jr.

    1988-01-01

    Space Station nodes packaging analyses are presented relative to moving environmental control and life support system (ECLSS) equipment from the habitability (HAB) module to node 4, in order to provide more living space and privacy for the crew, remove inherently noisy equipment from the crew quarter, retain crew waste collection and processing equipment in one location, and keep objectionable odor away from the living quarters. In addition, options for moving external electronic equipment from the Space Station truss to pressurized node 3 were evaluated in order to reduce the crew extravehicular-activity time required to install and maintain the equipment. Node size considered in this analysis is 3.66 m in diameter and 5.38 m long. The analysis shows that significant external electronic equipment could be relocated from the Space Station truss structure to node 3, and nonlife critical ECLSS HAB module equipment could be moved to node 4.

  15. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune

    2011-07-12

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet.more » The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks using feasibly-implementable rate adaptivity. • A buffer-management algorithm that is designed to reduce the size of router buffers, and hence energy consumed. • A packet-scheduling algorithm designed to minimize packet-processing energy requirements. Additional research is recommended in at least two areas: further exploration of rate-adaptation in network switching equipment, including incorporation of rate-adaptation in actual hardware, allowing experimentation in operational networks; and development of control protocols that allow parts of networks to be shut down while minimizing disruption to traffic flow in the network. The research is an integral part of a large effort within Bell Laboratories, Alcatel-Lucent, aimed at dramatic improvements in the energy efficiency of telecommunication networks. This Study did not explicitly consider any commercialization opportunities.« less

  16. Nonterrestrial material processing and manufacturing of large space systems

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. F.

    1978-01-01

    An attempt is made to provide pertinent and readily usable information on the extraterrestrial processing of materials and manufacturing of components and elements of these planned large space systems from preprocessed lunar materials which are made available at a processing and manufacturing site in space. Required facilities, equipment, machinery, energy and manpower are defined.

  17. 16 CFR 1210.16 - Production testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in the manufacturing process, the assembly process, the equipment used to manufacture the product, or... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Production testing. 1210.16 Section 1210.16... STANDARD FOR CIGARETTE LIGHTERS Certification Requirements § 1210.16 Production testing. (a) General...

  18. Processing Materials in Space

    NASA Technical Reports Server (NTRS)

    Zoller, L. K.

    1982-01-01

    Suggested program of material processing experiments in space described in 81 page report. For each experiment, report discusses influence of such gravitational effects as convection, buoyancy, sedimentation, and hydrostatic pressure. Report contains estimates of power and mission duration required for each experiment. Lists necessary equipment and appropriate spacecraft.

  19. KSC ground operations planning for Space Station

    NASA Technical Reports Server (NTRS)

    Lyon, J. R.; Revesz, W., Jr.

    1993-01-01

    At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.

  20. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Chemical engineering analysis of the HSC process (Hemlock Semiconductor Corporation) for producing silicon from dichlorosilane in a 1,000 MT/yr plant was continued. Progress and status for the chemical engineering analysis of the HSC process are reported for the primary process design engineering activities: base case conditions (85%), reaction chemistry (85%), process flow diagram (60%), material balance (60%), energy balance (30%), property data (30%), equipment design (20%) and major equipment list (10%). Engineering design of the initial distillation column (D-01, stripper column) in the process was initiated. The function of the distillation column is to remove volatile gases (such as hydrogen and nitrogen) which are dissolved in liquid chlorosilanes. Initial specifications and results for the distillation column design are reported including the variation of tray requirements (equilibrium stages) with reflux ratio for the distillation.

  1. Zero-G life support for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kolodney, Matthew; Dall-Bauman, L.

    1992-01-01

    Optimal design of spacecraft environmental control and life support systems (ECLSS) for long duration missions requires an understanding of microgravity and its long-term influence on ECLSS performance characteristics. This understanding will require examination of the fundamental processes associated with air revitalization and water recovery in a microgravity environment. Short term testing can be performed on NASA's reduced gravity aircraft (a KC-135), but longer tests will need to be conducted on the shuttle or Space Station Freedom. Conceptual designs have been prepared for ECLSS test beds that will allow extended testing of equipment under microgravity conditions. Separate designs have been formulated for air revitalization and water recovery test beds. In order to allow testing of a variety of hardware with minimal alteration of the beds themselves, the designs include storage tanks, plumbing, and limited instrumentation that would be expected to be common to all air (or water) treatment equipment of interest. In the interest of minimizing spacecraft/test bed interface requirements, the beds are designed to recycle process fluids to the greatest extent possible. In most cases, only cooling water and power interfaces are required. A volume equal to that of two SSF lockers was allowed for each design. These bed dimensions would limit testing to equipment with a 0.5- to 1.5-person-equivalent throughput. The mass, volume, and power requirements for the air revitalization test bed are estimated at 125-280 kg, 1.0- 1.4 cubic meters, and 170 min 1070 W. Corresponding ranges for the water recovery test bed are 325-375 kg, 1.0- 1.1 cubic meters, and 350-850 W. These figures include individual test articles and accompanying hardware as well as the tanks, plumbing, and instrumentation included in the bed designs. Process fluid weight (i.e., water weight) is also included.

  2. Automated Space Processing Payloads Study. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An investigation is described which examined the extent to which the experiment hardware and operational requirements can be met by automatic control and material handling devices; payload and system concepts are defined which make extensive use of automation technology. Topics covered include experiment requirements and hardware data, capabilities and characteristics of industrial automation equipment and controls, payload grouping, automated payload conceptual design, space processing payload preliminary design, automated space processing payloads for early shuttle missions, and cost and scheduling.

  3. 46 CFR 169.527 - Required equipment for lifeboats.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... VESSELS Lifesaving and Firefighting Equipment Equipment for Primary Lifesaving Apparatus § 169.527 Required equipment for lifeboats. Lifeboats must be equipped in accordance with Table 169.527. This... 46 Shipping 7 2010-10-01 2010-10-01 false Required equipment for lifeboats. 169.527 Section 169...

  4. 40 CFR 65.156 - General monitoring requirements for control and recovery devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Closed Vent Systems, Control Devices, and Routing to a Fuel Gas System or a Process § 65.156 General monitoring requirements for... systems. (1) All monitoring equipment shall be installed, calibrated, maintained, and operated according...

  5. 40 CFR 63.114 - Process vent provisions-monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., temperature monitoring devices shall be installed in the gas stream immediately before and after the catalyst... but not limited to a thermocouple, ultra-violet beam sensor, or infrared sensor) capable of... monitoring device in the firebox equipped with a continuous recorder. This requirement does not apply to gas...

  6. 40 CFR 63.114 - Process vent provisions-monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., temperature monitoring devices shall be installed in the gas stream immediately before and after the catalyst... but not limited to a thermocouple, ultra-violet beam sensor, or infrared sensor) capable of... monitoring device in the firebox equipped with a continuous recorder. This requirement does not apply to gas...

  7. 78 FR 5446 - Federal Acquisition Regulation; Submission for OMB Review; Price Redetermination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    .... The PRA requires that agencies use the Federal Register notice and comment process, to extend the OMB... onerous, and will require a contractor to implement accounting systems that are equipped to account for...-price contract with prospective price redetermination would have accounting systems that allow for...

  8. Risk exposures for human ornithosis in a poultry processing plant modified by use of personal protective equipment: an analytical outbreak study.

    PubMed

    Williams, C J; Sillis, M; Fearne, V; Pezzoli, L; Beasley, G; Bracebridge, S; Reacher, M; Nair, P

    2013-09-01

    Ornithosis outbreaks in poultry processing plants are well-described, but evidence for preventive measures is currently lacking. This study describes a case-control study into an outbreak of ornithosis at a poultry processing plant in the East of England, identified following three employees being admitted to hospital. Workers at the affected plant were recruited via their employer, with exposures assessed using a self-completed questionnaire. Cases were ascertained using serological methods or direct antigen detection in sputum. 63/225 (28%) staff participated, with 10% of participants showing evidence of recent infection. Exposure to the killing/defeathering and automated evisceration areas, and contact with viscera or blood were the main risk factors for infection. Personal protective equipment (goggles and FFP3 masks) reduced the effect of exposure to risk areas and to self-contamination with potentially infectious material. Our study provides some evidence of effectiveness for respiratory protective equipment in poultry processing plants where there is a known and current risk of ornithosis. Further studies are required to confirm this tentative finding, but in the meantime respiratory protective equipment is recommended as a precautionary measure in plants where outbreaks of ornithosis occur.

  9. Implementation of a configurable laboratory information management system for use in cellular process development and manufacturing.

    PubMed

    Russom, Diana; Ahmed, Amira; Gonzalez, Nancy; Alvarnas, Joseph; DiGiusto, David

    2012-01-01

    Regulatory requirements for the manufacturing of cell products for clinical investigation require a significant level of record-keeping, starting early in process development and continuing through to the execution and requisite follow-up of patients on clinical trials. Central to record-keeping is the management of documentation related to patients, raw materials, processes, assays and facilities. To support these requirements, we evaluated several laboratory information management systems (LIMS), including their cost, flexibility, regulatory compliance, ongoing programming requirements and ability to integrate with laboratory equipment. After selecting a system, we performed a pilot study to develop a user-configurable LIMS for our laboratory in support of our pre-clinical and clinical cell-production activities. We report here on the design and utilization of this system to manage accrual with a healthy blood-donor protocol, as well as manufacturing operations for the production of a master cell bank and several patient-specific stem cell products. The system was used successfully to manage blood donor eligibility, recruiting, appointments, billing and serology, and to provide annual accrual reports. Quality management reporting features of the system were used to capture, report and investigate process and equipment deviations that occurred during the production of a master cell bank and patient products. Overall the system has served to support the compliance requirements of process development and phase I/II clinical trial activities for our laboratory and can be easily modified to meet the needs of similar laboratories.

  10. Bioregenerative food system cost based on optimized menus for advanced life support

    NASA Technical Reports Server (NTRS)

    Waters, Geoffrey C R.; Olabi, Ammar; Hunter, Jean B.; Dixon, Mike A.; Lasseur, Christophe

    2002-01-01

    Optimized menus for a bioregenerative life support system have been developed based on measures of crop productivity, food item acceptability, menu diversity, and nutritional requirements of crew. Crop-specific biomass requirements were calculated from menu recipe demands while accounting for food processing and preparation losses. Under the assumption of staggered planting, the optimized menu demanded a total crop production area of 453 m2 for six crew. Cost of the bioregenerative food system is estimated at 439 kg per menu cycle or 7.3 kg ESM crew-1 day-1, including agricultural waste processing costs. On average, about 60% (263.6 kg ESM) of the food system cost is tied up in equipment, 26% (114.2 kg ESM) in labor, and 14% (61.5 kg ESM) in power and cooling. This number is high compared to the STS and ISS (nonregenerative) systems but reductions in ESM may be achieved through intensive crop productivity improvements, reductions in equipment masses associated with crop production, and planning of production, processing, and preparation to minimize the requirement for crew labor.

  11. CORSE-81: The 1981 Conference on Remote Sensing Education

    NASA Technical Reports Server (NTRS)

    Davis, S. M. (Compiler)

    1981-01-01

    Summaries of the presentations and tutorial workshops addressing various strategies in remote sensing education are presented. Course design from different discipline perspectives, equipment requirements for image interpretation and processing, and the role of universities, private industry, and government agencies in the education process are covered.

  12. 40 CFR 68.77 - Pre-startup review.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.77 Pre-startup review. (a) The... stationary sources when the modification is significant enough to require a change in the process safety... substances to a process: (1) Construction and equipment is in accordance with design specifications; (2...

  13. Noncontaminating technique for making holes in existing process systems

    NASA Technical Reports Server (NTRS)

    Hecker, T. P.; Czapor, H. P.; Giordano, S. M.

    1972-01-01

    Technique is developed for making cleanly-contoured holes in assembled process systems without introducing chips or other contaminants into system. Technique uses portable equipment and does not require dismantling of system. Method was tested on Inconel, stainless steel, ASTMA-53, and Hastelloy X in all positions.

  14. Hardware Development Process for Human Research Facility Applications

    NASA Technical Reports Server (NTRS)

    Bauer, Liz

    2000-01-01

    The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. The source of hardware requirements is the science community and HRF program. The HRF Science Working Group, consisting of SCientists from various medical disciplines, defined a basic set of equipment with functional requirements. This established the performance requirements of the hardware. HRF program requirements focus on making the hardware safe and operational in a space environment. This includes structural, thermal, human factors, and material requirements. Science and HRF program requirements are defined in a hardware requirements document which includes verification methods. Once the hardware is fabricated, requirements are verified by inspection, test, analysis, or demonstration. All data is compiled and reviewed to certify the hardware for flight. Obviously, the basis for all hardware development activities is requirement definition. Full and complete requirement definition is ideal prior to initiating the hardware development. However, this is generally not the case, but the hardware team typically has functional inputs as a guide. The first step is for engineers to conduct market research based on the functional inputs provided by scientists. CommerCially available products are evaluated against the science requirements as well as modifications needed to meet program requirements. Options are consolidated and the hardware development team reaches a hardware development decision point. Within budget and schedule constraints, the team must decide whether or not to complete the hardware as an in-house, subcontract with vendor, or commercial-off-the-shelf (COTS) development. An in-house development indicates NASA personnel or a contractor builds the hardware at a NASA site. A subcontract development is completed off-site by a commercial company. A COTS item is a vendor product available by ordering a specific part number. The team evaluates the pros and cons of each development path. For example, in-bouse developments utilize existing corporate knowledge regarding bow to build equipment for use in space. However, technical expertise would be required to fully understand the medical equipment capabilities, such as for an ultrasound system. It may require additional time and funding to gain the expertise that commercially exists. The major benefit of subcontracting a hardware development is the product is delivered as an end-item and commercial expertise is utilized. On the other hand, NASA has limited control over schedule delays. The final option of COTS or modified COTS equipment is a compromise between in-house and subcontracts. A vendor product may exist that meets all functional requirements but req uires in-house modifications for successful operation in a space environment. The HRF utilizes equipment developed using all of the paths described: inhouse, subcontract, and modified COTS.

  15. Optics education for machine operators in the semiconductor industry: moving beyond button pushing

    NASA Astrophysics Data System (ADS)

    Karakekes, Meg; Currier, Deborah

    1995-10-01

    In the competitive semiconductor manufacturing industry, employees who operate equipment are able to make greater contributions if they understand how the equipment works. By understanding the 'why' behind the 'what', the equipment operators can better partner with other technical staff to produce quality integrated circuits efficiently and effectively. This additional knowledge also opens equipment operators to job enrichment and enlargement opportunities. Advanced Micro Devices (AMD) is in the process of upgrading the skills of its equipment operators. This paper is an overview of a pilot program that employs optics education to upgrade stepper operators' skills. The paper starts with stepper tasks that require optics knowledge, examines teaching methods, reports both end-of-course and three months post-training knowledge retention, and summarizes how the training has impacted the production floor.

  16. Lessons Learned "Establishing an Electrically Safe Work Condition" Specifically related to Racking Electrical Breakers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Tommy Robert; Romero, Philbert Roland; Garcia, Samuel Anthony

    During low voltage electrical equipment maintenance, a bad breaker was identified. The breaker was racked out from the substation cubicle without following the hazardous energy control process identified in the Integrated Work Document (IWD). The IWD required the substation to be in an electrically safe work condition prior to racking the breaker. Per NFPA 70E requirements, electrical equipment shall be put into an electrically safe work condition before an employee performs work on or interacts with equipment in a manner that increases the likelihood of creating an arc flash. Racking in or out a breaker on an energized bus maymore » increase the likelihood of creating an arc flash dependent on equipment conditions. A thorough risk assessment must be performed prior to performing such a task. The risk assessment determines the risk control measures to be put in place prior to performing the work. Electrical Safety Officers (ESO) can assist in performing risk assessments and incorporating risk control measures.« less

  17. Shuttle/payload communications and data systems interface analysis

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1980-01-01

    The payload/orbiter functional command signal flow and telemetry signal flow are discussed. Functional descriptions of the various orbiter communication/avionic equipment involved in processing a command to a payload either from the ground through the orbiter by the payload specialist on the orbiter are included. Functional descriptions of the various orbiter communication/avionic equipment involved in processing telemetry data by the orbiter and transmitting the processed data to the ground are presented. The results of the attached payload/orbiter single processing and data handling system evaluation are described. The causes of the majority of attached payload/orbiter interface problems are delineated. A refined set of required flux density values for a detached payload to communicate with the orbiter is presented.

  18. 40 CFR 60.590 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or replacement of equipment (defined in § 60.591) for the purpose of process improvement which is... in § 60.591) within a process unit is an affected facility. (b) Any affected facility under paragraph... “process unit” in § 60.590 of this subpart until the EPA takes final action to require compliance and...

  19. Economic Viability of Brewery Spent Grain as a Biofuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, Charles

    This report summarizes an investigation into the technical feasibility and economic viability of use grain wastes from the beer brewing process as fuel to generate the heat needed in subsequent brewing process. The study finds that while use of spent grain as a biofuel is technically feasible, the economics are not attractive. Economic viability is limited by the underuse of capital equipment. The investment in heating equipment requires a higher utilization that the client brewer currently anticipates. It may be possible in the future that changing factors may swing the decision to a more positive one.

  20. 49 CFR 178.60 - Specification 8AL steel cylinders with porous fillings for acetylene.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... process and a welded circumferential body seam is authorized. Longitudinal seams are not authorized. (b... using equipment and processes adequate to ensure that each cylinder produced conforms to the... operations. Liquid quenching is not authorized. (i) Openings. Standard taper pipe threads required in all...

  1. 49 CFR 178.60 - Specification 8AL steel cylinders with porous fillings for acetylene.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... process and a welded circumferential body seam is authorized. Longitudinal seams are not authorized. (b... using equipment and processes adequate to ensure that each cylinder produced conforms to the... operations. Liquid quenching is not authorized. (i) Openings. Standard taper pipe threads required in all...

  2. 49 CFR 178.60 - Specification 8AL steel cylinders with porous fillings for acetylene.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... process and a welded circumferential body seam is authorized. Longitudinal seams are not authorized. (b... using equipment and processes adequate to ensure that each cylinder produced conforms to the... operations. Liquid quenching is not authorized. (i) Openings. Standard taper pipe threads required in all...

  3. 40 CFR 63.104 - Heat exchange system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry... subpart shall monitor each heat exchange system used to cool process equipment in a chemical manufacturing process unit meeting the conditions of § 63.100 (b)(1) through (b)(3) of this subpart, except for chemical...

  4. 40 CFR 63.104 - Heat exchange system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry... subpart shall monitor each heat exchange system used to cool process equipment in a chemical manufacturing process unit meeting the conditions of § 63.100 (b)(1) through (b)(3) of this subpart, except for chemical...

  5. 40 CFR 63.104 - Heat exchange system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry... subpart shall monitor each heat exchange system used to cool process equipment in a chemical manufacturing process unit meeting the conditions of § 63.100 (b)(1) through (b)(3) of this subpart, except for chemical...

  6. Process test plan, phase II: waste retrieval sluicing system emissions collection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POWERS, R.L.

    1999-06-01

    This Process Test Plan is prepared to continue from HNF-3733 which was Phase I of the test. Supplemental operational controls and sampling requirements are defined to safely obtain gas samples from the 296-C-006 ventilation system stack during active operation of the sluicing equipment.

  7. 40 CFR 63.1367 - Recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and malfunction and a program for corrective action for a malfunctioning process, air pollution... duration of each malfunction of the process operations or of air pollution control equipment used to comply... explanation of the cause of the alarm and the corrective action taken. (6) The owner or operator of an...

  8. Payload transportation system study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A standard size set of shuttle payload transportation equipment was defined that will substantially reduce the cost of payload transportation and accommodate a wide range of payloads with minimum impact on payload design. The system was designed to accommodate payload shipments between the level 4 payload integration sites and the launch site during the calendar years 1979-1982. In addition to defining transportation multi-use mission support equipment (T-MMSE) the mode of travel, prime movers, and ancillary equipment required in the transportation process were also considered. Consistent with the STS goals of low cost and the use of standardized interfaces, the transportation system was designed to commercial grade standards and uses the payload flight mounting interfaces for transportation. The technical, cost, and programmatic data required to permit selection of a baseline system of MMSE for intersite movement of shuttle payloads were developed.

  9. Optimal Draft requirement for vibratory tillage equipment using Genetic Algorithm Technique

    NASA Astrophysics Data System (ADS)

    Rao, Gowripathi; Chaudhary, Himanshu; Singh, Prem

    2018-03-01

    Agriculture is an important sector of Indian economy. Primary and secondary tillage operations are required for any land preparation process. Conventionally different tractor-drawn implements such as mouldboard plough, disc plough, subsoiler, cultivator and disc harrow, etc. are used for primary and secondary manipulations of soils. Among them, oscillatory tillage equipment is one such type which uses vibratory motion for tillage purpose. Several investigators have reported that the requirement for draft consumption in primary tillage implements is more as compared to oscillating one because they are always in contact with soil. Therefore in this paper, an attempt is made to find out the optimal parameters from the experimental data available in the literature to obtain minimum draft consumption through genetic algorithm technique.

  10. Precision Cleaning - Path to Premier

    NASA Technical Reports Server (NTRS)

    Mackler, Scott E.

    2008-01-01

    ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.

  11. Working with the superabrasives industry to optimize tooling for grinding brittle materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, J.S.; Piscotty, M.A.; Blaedel, K.L.

    1996-05-01

    The optics manufacturing industry is undertaking a significant modernization, as computer-numeric-controlled (CNC) equipment is joining or replacing open-loop equipment and hand lapping/polishing on the shop floor. Several prototype CNC lens grinding platforms employing ring tools are undergoing development and demonstration at the Center for Optics Manufacturing in Rochester, NY, and several machine tool companies have CNC product lines aimed at the optics industry. Benefits to using CNC ring tool grinding equipment include: essentially unlimited flexibility in selecting radii of curvature without special radiused tooling, the potential for CIM linkages to CAD workstations, and the cultural shift from craftsmen with undocumentedmore » procedures to CNC machine operators employing computerized routines for process control. In recent years, these developments, have inspired a number of US optics companies to invest in CNC equipment and participate in process development activities involving bound diamond tooling. This modernization process,extends beyond large optics companies that have historically embraced advanced equipment, to also include smaller optical shops where a shift to CNC equipment requires a significant company commitment. This paper addresses our efforts to optimize fine grinding wheels to support the new generation of CNC equipment. We begin with a discussion of how fine grinding fits into the optical production process, and then describe an initiative for improving the linkage between optics industry and the grinding wheel industry. For the purposes of this paper, we define fine wheels to have diamond sizes below 20 micrometers, which includes wheels used for what is sometimes called medium grinding (e.g. 10-20 micrometers diamond) and for fine grinding (e.g. 2-4 micrometers diamond).« less

  12. 46 CFR 160.051-9 - Equipment required for Coastal Service inflatable liferafts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Equipment required for Coastal Service inflatable...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Inflatable Liferafts for Domestic Service § 160.051-9 Equipment required for Coastal Service inflatable liferafts. In...

  13. 14 CFR 135.157 - Oxygen equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Oxygen equipment requirements. 135.157... Equipment § 135.157 Oxygen equipment requirements. (a) Unpressurized aircraft. No person may operate an unpressurized aircraft at altitudes prescribed in this section unless it is equipped with enough oxygen...

  14. 14 CFR 135.157 - Oxygen equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Oxygen equipment requirements. 135.157... Equipment § 135.157 Oxygen equipment requirements. (a) Unpressurized aircraft. No person may operate an unpressurized aircraft at altitudes prescribed in this section unless it is equipped with enough oxygen...

  15. 14 CFR 135.157 - Oxygen equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Oxygen equipment requirements. 135.157... Equipment § 135.157 Oxygen equipment requirements. (a) Unpressurized aircraft. No person may operate an unpressurized aircraft at altitudes prescribed in this section unless it is equipped with enough oxygen...

  16. 14 CFR 135.157 - Oxygen equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Oxygen equipment requirements. 135.157... Equipment § 135.157 Oxygen equipment requirements. (a) Unpressurized aircraft. No person may operate an unpressurized aircraft at altitudes prescribed in this section unless it is equipped with enough oxygen...

  17. 14 CFR 135.157 - Oxygen equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Oxygen equipment requirements. 135.157... Equipment § 135.157 Oxygen equipment requirements. (a) Unpressurized aircraft. No person may operate an unpressurized aircraft at altitudes prescribed in this section unless it is equipped with enough oxygen...

  18. 30 CFR 903.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Article 1. (9) Fish and Wildlife Coordination Act, 16 U.S.C. 661-667. (10) Noise Control Act, 42 U.S.C...-256); (iv) Solid waste and air pollution discharge permits, installation and operation permits required for equipment causing air pollution and water pollution discharge permits (A.R.S. Title 49); (v...

  19. 30 CFR 903.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Article 1. (9) Fish and Wildlife Coordination Act, 16 U.S.C. 661-667. (10) Noise Control Act, 42 U.S.C...-256); (iv) Solid waste and air pollution discharge permits, installation and operation permits required for equipment causing air pollution and water pollution discharge permits (A.R.S. Title 49); (v...

  20. 30 CFR 903.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Article 1. (9) Fish and Wildlife Coordination Act, 16 U.S.C. 661-667. (10) Noise Control Act, 42 U.S.C...-256); (iv) Solid waste and air pollution discharge permits, installation and operation permits required for equipment causing air pollution and water pollution discharge permits (A.R.S. Title 49); (v...

  1. 40 CFR 63.771 - Control equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... includes openings necessary to equalize or balance the internal pressure of the unit following changes in... flame zone of the boiler or process heater. (ii) A vapor recovery device (e.g., carbon adsorption system... demonstrate compliance according to the requirements of § 63.772(f) or (g), as applicable. (5) For each carbon...

  2. 40 CFR 63.771 - Control equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... includes openings necessary to equalize or balance the internal pressure of the unit following changes in... flame zone of the boiler or process heater. (ii) A vapor recovery device (e.g., carbon adsorption system... demonstrate compliance according to the requirements of § 63.772(f) or (g), as applicable. (5) For each carbon...

  3. 30 CFR 903.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Article 1. (9) Fish and Wildlife Coordination Act, 16 U.S.C. 661-667. (10) Noise Control Act, 42 U.S.C...-256); (iv) Solid waste and air pollution discharge permits, installation and operation permits required for equipment causing air pollution and water pollution discharge permits (A.R.S. Title 49); (v...

  4. 40 CFR 63.7720 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...

  5. 40 CFR 63.7720 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...

  6. 40 CFR 63.7720 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...

  7. 40 CFR 63.7720 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...

  8. 40 CFR 63.7720 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...

  9. 40 CFR 63.655 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a process shutdown shall be recorded and retained for 2 years. (ii) [Reserved] (2) The Notification... failure is detected in the control equipment. (i) For vessels for which annual inspections are required... listed in paragraphs (g)(2)(i)(A) through (g)(2)(i)(C) of this section apply. (A) A failure is defined as...

  10. 14 CFR 121.358 - Low-altitude windshear system equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Low-altitude windshear system equipment... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.358 Low-altitude windshear system equipment requirements. (a) Airplanes manufactured after January...

  11. 14 CFR 121.358 - Low-altitude windshear system equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Low-altitude windshear system equipment... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.358 Low-altitude windshear system equipment requirements. (a) Airplanes manufactured after January...

  12. 14 CFR 121.358 - Low-altitude windshear system equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Low-altitude windshear system equipment... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.358 Low-altitude windshear system equipment requirements. (a) Airplanes manufactured after January...

  13. 14 CFR 121.358 - Low-altitude windshear system equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Low-altitude windshear system equipment... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.358 Low-altitude windshear system equipment requirements. (a) Airplanes manufactured after January...

  14. 14 CFR 121.358 - Low-altitude windshear system equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Low-altitude windshear system equipment... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.358 Low-altitude windshear system equipment requirements. (a) Airplanes manufactured after January...

  15. The pharmaceutical vial capping process: Container closure systems, capping equipment, regulatory framework, and seal quality tests.

    PubMed

    Mathaes, Roman; Mahler, Hanns-Christian; Buettiker, Jean-Pierre; Roehl, Holger; Lam, Philippe; Brown, Helen; Luemkemann, Joerg; Adler, Michael; Huwyler, Joerg; Streubel, Alexander; Mohl, Silke

    2016-02-01

    Parenteral drug products are protected by appropriate primary packaging to protect against environmental factors, including potential microbial contamination during shelf life duration. The most commonly used CCS configuration for parenteral drug products is the glass vial, sealed with a rubber stopper and an aluminum crimp cap. In combination with an adequately designed and controlled aseptic fill/finish processes, a well-designed and characterized capping process is indispensable to ensure product quality and integrity and to minimize rejections during the manufacturing process. In this review, the health authority requirements and expectations related to container closure system quality and container closure integrity are summarized. The pharmaceutical vial, the rubber stopper, and the crimp cap are described. Different capping techniques are critically compared: The most common capping equipment with a rotating capping plate produces the lowest amount of particle. The strength and challenges of methods to control the capping process are discussed. The residual seal force method can characterize the capping process independent of the used capping equipment or CCS. We analyze the root causes of several cosmetic defects associated with the vial capping process. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Technical information report: Plasma melter operation, reliability, and maintenance analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrickson, D.W.

    1995-03-14

    This document provides a technical report of operability, reliability, and maintenance of a plasma melter for low-level waste vitrification, in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. A process description is provided that minimizes maintenance and downtime and includes material and energy balances, equipment sizes and arrangement, startup/operation/maintence/shutdown cycle descriptions, and basis for scale-up to a 200 metric ton/day production facility. Operational requirements are provided including utilities, feeds, labor, and maintenance. Equipment reliability estimates and maintenance requirements are provided which includes a list of failure modes, responses, and consequences.

  17. 30 CFR 75.506-1 - Electric face equipment; permissible condition; maintenance requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric face equipment; permissible condition... Equipment-General § 75.506-1 Electric face equipment; permissible condition; maintenance requirements. (a) Except as provided in paragraph (b) of this section, electric face equipment which meets the requirements...

  18. 30 CFR 75.506-1 - Electric face equipment; permissible condition; maintenance requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric face equipment; permissible condition... Equipment-General § 75.506-1 Electric face equipment; permissible condition; maintenance requirements. (a) Except as provided in paragraph (b) of this section, electric face equipment which meets the requirements...

  19. 30 CFR 75.506-1 - Electric face equipment; permissible condition; maintenance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric face equipment; permissible condition... Equipment-General § 75.506-1 Electric face equipment; permissible condition; maintenance requirements. (a) Except as provided in paragraph (b) of this section, electric face equipment which meets the requirements...

  20. 30 CFR 75.506-1 - Electric face equipment; permissible condition; maintenance requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric face equipment; permissible condition... Equipment-General § 75.506-1 Electric face equipment; permissible condition; maintenance requirements. (a) Except as provided in paragraph (b) of this section, electric face equipment which meets the requirements...

  1. 30 CFR 75.506-1 - Electric face equipment; permissible condition; maintenance requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric face equipment; permissible condition... Equipment-General § 75.506-1 Electric face equipment; permissible condition; maintenance requirements. (a) Except as provided in paragraph (b) of this section, electric face equipment which meets the requirements...

  2. The dynamic improvement methods of energy efficiency and reliability of oil production submersible electric motors

    NASA Astrophysics Data System (ADS)

    Romanov, V. S.; Goldstein, V. G.

    2018-01-01

    In the organization of production and operation of submersible electric motors (ESP), as the most essential element of electric submersible plants (ESP) in the oil industry, it is necessary to consider specific operating conditions. The submersible electric motors (SEM) as most essential element of electrosubmersible installations (EI) in oil branch accounting of operation specific conditions is necessary in the process production and operation. They are determined by the conditions under which the EPU is operated. They are defined by the EPU operation conditions. For a complete picture the current state of the SED fleet in oil production, the results of its statistical analysis are given. For a comprehensive idea of the SEM park current state the results of statistical analysis are given in oil production. Currently, assessed the performance of submersible equipment produced by major manufacturers. Currently the operational characteristics assessment of the submersible equipment released by the main producers is given. It is stated that standard equipment cannot fully ensure efficient operation with the help of serial EIs, therefore new technologies and corresponding equipment are required to be developed. It is noted that the standard equipment could not provide fully effective operation by means of serial ESP therefore new technologies development and the corresponding equipment are required.

  3. Proposals for Solutions to Problems Related to the Use of F-34 (SFP) and High Sulphur Diesel on Ground Equipment Using Advanced Reduction Emission Technologies (Propositions de solutions aux problemes lies a l’utilisation de F-34 (SFP) et de diesel a haute teneur en soufre pour le materiel terrestre disposant de technologies avancees de reduction des emissions)

    DTIC Science & Technology

    2008-09-01

    In a two - stage process the urea decomposes to ammonia (NH3) which then reacts with the nitrogen oxides (NOx) and leads to formation of nitrogen and...Sulphur Fuel (HSF) is a potential problem to NATO forces when vehicles and equipment are fitted with advanced emission reduction devices that require Low...worldwide available, standard fuel (F-34) and equipment capable of using such high sulphur fuels (HSF). Recommendations • Future equipment fitted with

  4. Influence of forces acting on side of machine on precision machining of large diameter holes

    NASA Astrophysics Data System (ADS)

    Fedorenko, M. A.; Bondarenko, J. A.; Sanina, T. M.

    2018-03-01

    One of the most important factors that increase efficiency, durability and reliability of rotating units is precision installation, preventive maintenance work, timely replacing of a failed or worn components and assemblies. These works should be carried out in the operation of the equipment, as the downtime in many cases leads to large financial losses. Stop of one unit of an industrial enterprise can interrupt the technological chain of production, resulting in a possible stop of the entire equipment. Improving the efficiency and optimization of the repair process increases accuracy of installation work when installing equipment, conducting restoration under operating conditions relevant for enterprises of different industries because it eliminates dismantling the equipment, sending it to maintenance, the expectation of equipment return, the new installation with the required quality and accuracy of repair.

  5. 47 CFR 80.273 - Technical requirements for radar equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Technical requirements for radar equipment. 80... Technical requirements for radar equipment. (a) Radar installations on board ships that are required by the Safety Convention or the U.S. Coast Guard to be equipped with radar must comply with the documents...

  6. 47 CFR 80.273 - Technical requirements for radar equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Technical requirements for radar equipment. 80... Technical requirements for radar equipment. (a) Radar installations on board ships that are required by the Safety Convention or the U.S. Coast Guard to be equipped with radar must comply with the documents...

  7. SOLVENT WASTE REDUCTION ALTERNATIVES

    EPA Science Inventory

    This publication contains edited versions of presentations on this subject made at five Technology Transfer seminars in 1988. Chapters are included on land disposal regulations and requirements; waste solvent disposal alternatives from various industries such as process equipment...

  8. Nonterrestrial material processing and manufacturing of large space systems

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  9. 40 CFR Appendix F to Subpart B of... - Standard for Recover-Only Equipment That Extracts a Single, Specific Refrigerant Other Than CFC...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... refrigerant, which are either (1) to be returned to a refrigerant reclamation facility that will process the... capability is required which shall process contaminated refrigerant samples at specific temperatures. 6.2The... the recovery process to ±2% of the original manufacturer's formulation submitted to, and accepted by...

  10. 40 CFR Appendix F to Subpart B of... - Standard for Recover-Only Equipment That Extracts a Single, Specific Refrigerant Other Than CFC...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... refrigerant, which are either (1) to be returned to a refrigerant reclamation facility that will process the... capability is required which shall process contaminated refrigerant samples at specific temperatures. 6.2The... the recovery process to ±2% of the original manufacturer's formulation submitted to, and accepted by...

  11. 40 CFR Appendix F to Subpart B of... - Standard for Recover-Only Equipment That Extracts a Single, Specific Refrigerant Other Than CFC...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... refrigerant, which are either (1) to be returned to a refrigerant reclamation facility that will process the... capability is required which shall process contaminated refrigerant samples at specific temperatures. 6.2The... the recovery process to ±2% of the original manufacturer's formulation submitted to, and accepted by...

  12. 40 CFR Appendix F to Subpart B of... - Standard for Recover-Only Equipment That Extracts a Single, Specific Refrigerant Other Than CFC...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... refrigerant, which are either (1) to be returned to a refrigerant reclamation facility that will process the... capability is required which shall process contaminated refrigerant samples at specific temperatures. 6.2The... the recovery process to ±2% of the original manufacturer's formulation submitted to, and accepted by...

  13. 40 CFR Appendix F to Subpart B of... - Standard for Recover-Only Equipment That Extracts a Single, Specific Refrigerant Other Than CFC...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... refrigerant, which are either (1) to be returned to a refrigerant reclamation facility that will process the... capability is required which shall process contaminated refrigerant samples at specific temperatures. 6.2The... the recovery process to ±2% of the original manufacturer's formulation submitted to, and accepted by...

  14. Material Processing Laser Systems In Production

    NASA Astrophysics Data System (ADS)

    Taeusch, David R.

    1988-11-01

    The laser processing system is now a respected, productive machine tool in the manufacturing industries. Systems in use today are proving their cost effectiveness and capabilities of processing quality parts. Several types of industrial lasers are described and their applications are discussed, with emphasis being placed on the production environment and methods of protection required for optical equipment against this normally hostile environment.

  15. Furniture rough mill costs evaluated by computer simulation

    Treesearch

    R. Bruce Anderson

    1983-01-01

    A crosscut-first furniture rough mill was simulated to evaluate processing and raw material costs on an individual part basis. Distributions representing the real-world characteristics of lumber, equipment feed speeds, and processing requirements are programed into the simulation. Costs of parts from a specific cutting bill are given, and effects of lumber input costs...

  16. Rough Mill Improvement Guide for Managers and Supervisors

    Treesearch

    Philip H. Mitchell; Jan Wiedenbeck; Bobby Ammerman; Bobby Ammerman

    2005-01-01

    Wood products manufacturers require an efficient recovery of product from lumber to remain profitable. A company's ability to obtain the best yield in lumber cut-up operations (i.e., the rough mill) varies according to the raw material, product, processing equipment, processing environment, and knowledge and skill of the rough mill's employees. This book...

  17. 49 CFR 178.56 - Specification 4AA480 welded steel cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... by spinning process not permitted. (b) Steel. The limiting chemical composition of steel authorized... equipment and processes adequate to ensure that each cylinder produced conforms to the requirements of this... welding or by threads. If threads are used they must comply with the following: (i) Threads must be clean...

  18. 49 CFR 178.56 - Specification 4AA480 welded steel cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... by spinning process not permitted. (b) Steel. The limiting chemical composition of steel authorized... equipment and processes adequate to ensure that each cylinder produced conforms to the requirements of this... welding or by threads. If threads are used they must comply with the following: (i) Threads must be clean...

  19. 49 CFR 178.56 - Specification 4AA480 welded steel cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... by spinning process not permitted. (b) Steel. The limiting chemical composition of steel authorized... equipment and processes adequate to ensure that each cylinder produced conforms to the requirements of this... welding or by threads. If threads are used they must comply with the following: (i) Threads must be clean...

  20. 49 CFR 178.56 - Specification 4AA480 welded steel cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... by spinning process not permitted. (b) Steel. The limiting chemical composition of steel authorized... equipment and processes adequate to ensure that each cylinder produced conforms to the requirements of this... welding or by threads. If threads are used they must comply with the following: (i) Threads must be clean...

  1. Price Estimation Guidelines

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.; Aster, R. W.; Firnett, P. J.; Miller, M. A.

    1985-01-01

    Improved Price Estimation Guidelines, IPEG4, program provides comparatively simple, yet relatively accurate estimate of price of manufactured product. IPEG4 processes user supplied input data to determine estimate of price per unit of production. Input data include equipment cost, space required, labor cost, materials and supplies cost, utility expenses, and production volume on industry wide or process wide basis.

  2. 40 CFR 63.2480 - What requirements must I meet for equipment leaks?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Manufacturing Emission Limits, Work Practice Standards, and Compliance Requirements § 63.2480 What requirements... reconfiguration of an equipment train if flexible hose connections are the only disturbed equipment. (3) For an... accordance with § 65.117(b) is not required after reconfiguration of an equipment train if flexible hose...

  3. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogenmore » from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.« less

  4. Military applications of emission and susceptibility data

    NASA Astrophysics Data System (ADS)

    Kohlbacher, Howard; Walker, William

    A basic design consideration for new military communications-electronics (C-E) equipment is that it be electromagnetically compatible with the environment in which it will operate. A military standard (MIL-STD-461B) describes the design requirements for the control of the unintentional electromagnetic emission and susceptibility characteristics of electronic equipment and subsystems designed or procured by the US Department of Defense. For new systems which fail the test standards of MIL-STD-461B with regard to radiated susceptibility (RSO3) or radiated emissions (RE02), a decision must be made to fix the new system or to field it without a fix. A procedure to aid in the decision process is outlined. The minimum separation distances required between a failed test system and other C-E equipment in its environment to avoid interference are determined. If this distance is operationally acceptable, the failed unit may be considered to be operationally compatible with its electromagnetic environment.

  5. Procurement of a fully licensed radioisotope thermoelectric generator transportation system

    NASA Astrophysics Data System (ADS)

    Adkins, Harold E.; Bearden, Thomas E.

    The present transportation system for radioisotope thermoelectric generators and heater units is being developed to comply with all applicable U.S. DOT regulations, including a doubly-contained 'bell jar' concept for the required double-containment of plutonium. Modifications in handling equipment and procedures are entailed by this novel packaging design, and will affect high-capacity forklifts, overhead cranes, He-backfilling equipment, etc. Attention is given to the design constraints involved, and to the Federal procurement process.

  6. Developing a Logistics Data Process for Support Equipment for NASA Ground Operations

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Suman

    2010-01-01

    The United States NASA Space Shuttle has long been considered an extremely capable yet relatively expensive rocket. A great part of the roughly US $500 million per launch expense was the support footprint: refurbishment and maintenance of the space shuttle system, together with the long list of resources required to support it, including personnel, tools, facilities, transport and support equipment. NASA determined to make its next rocket system with a smaller logistics footprint, and thereby more cost-effective and quicker turnaround. The logical solution was to adopt a standard Logistics Support Analysis (LSA) process based on GEIA-STD-0007 http://www.logisticsengineers.org/may09pres/GEIASTD0007DEXShortIntro.pdf which is the successor of MIL-STD-1388-2B widely used by U.S., NATO, and other world military services and industries. This approach is unprecedented at NASA: it is the first time a major program of programs, Project Constellation, is factoring logistics and supportability into design at many levels. This paper will focus on one of those levels NASA ground support equipment for the next generation of NASA rockets and on building a Logistics Support Analysis Record (LSAR) for developing and documenting a support solution and inventory of resources for. This LSAR is actually a standards-based database, containing analyses of the time and tools, personnel, facilities and support equipment required to assemble and integrate the stages and umbilicals of a rocket. This paper will cover building this database from scratch: including creating and importing a hierarchical bill of materials (BOM) from legacy data; identifying line-replaceable units (LRUs) of a given piece of equipment; analyzing reliability and maintainability of said LRUs; and therefore making an assessment back to design whether the support solution for a piece of equipment is too much work, i.e., too resource-intensive. If one must replace or inspect an LRU too much, perhaps a modification of the design of the equipment can make such operational effort unnecessary. Finally, this paper addresses processes of tying resources to a timeline of tasks performed in ground operations: this enables various overarching analyses, e.g., a summarization of all resources used for a given piece of equipment. Quality Control of data will also be discussed: importing and exporting data from product teams, including spreadsheets-todatabase or data exchange between databases.

  7. 40 CFR Table 3 to Subpart Hhhhh of... - Requirements for Equipment Leaks

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false Requirements for Equipment Leaks 3... Manufacturing Pt. 63, Subpt. HHHHH, Table 3 Table 3 to Subpart HHHHH of Part 63—Requirements for Equipment Leaks... equipment leaks. For all . . . You must . . . 1. Equipment that is in organic HAP service at an existing...

  8. Plasma Diagnostics: Use and Justification in an Industrial Environment

    NASA Astrophysics Data System (ADS)

    Loewenhardt, Peter

    1998-10-01

    The usefulness and importance of plasma diagnostics have played a major role in the development of plasma processing tools in the semiconductor industry. As can be seen through marketing materials from semiconductor equipment manufacturers, results from plasma diagnostic equipment can be a powerful tool in selling the technological leadership of tool design. Some diagnostics have long been used for simple process control such as optical emission for endpoint determination, but in recent years more sophisticated and involved diagnostic tools have been utilized in chamber and plasma source development and optimization. It is now common to find an assortment of tools at semiconductor equipment companies such as Langmuir probes, mass spectrometers, spatial optical emission probes, impedance, ion energy and ion flux probes. An outline of how the importance of plasma diagnostics has grown at an equipment manufacturer over the last decade will be given, with examples of significant and useful results obtained. Examples will include the development and optimization of an inductive plasma source, trends and hardware effects on ion energy distributions, mass spectrometry influences on process development and investigations of plasma-wall interactions. Plasma diagnostic focus, in-house development and proliferation in an environment where financial justification requirements are both strong and necessary will be discussed.

  9. Aligning Seminars with Bologna Requirements: Reciprocal Peer Tutoring, the Solo Taxonomy and Deep Learning

    ERIC Educational Resources Information Center

    Lueg, Rainer; Lueg, Klarissa; Lauridsen, Ole

    2016-01-01

    Changes in public policy, such as the Bologna Process, require students to be equipped with multifunctional competencies to master relevant tasks in unfamiliar situations. Achieving this goal might imply a change in many curricula toward deeper learning. As a didactical means to achieve deep learning results, the authors suggest reciprocal peer…

  10. 40 CFR 65.3 - Compliance with standards and operation and maintenance requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)(4)(i) and (ii) do not apply to Group 2A or Group 2B process vents. Compliance with design, equipment... include, but are not limited to, air pollution control technologies, recovery technologies, work practices... control devices are not required but may be used if available. This paragraph (a)(3) does not apply to...

  11. 40 CFR 65.3 - Compliance with standards and operation and maintenance requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)(4)(i) and (ii) do not apply to Group 2A or Group 2B process vents. Compliance with design, equipment... include, but are not limited to, air pollution control technologies, recovery technologies, work practices... control devices are not required but may be used if available. This paragraph (a)(3) does not apply to...

  12. 40 CFR 60.733 - Reconstruction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... on processing equipment shall not be considered in calculating either the “fixed capital cost of the new components” or the “fixed capital cost that would be required to construct a comparable new... seals, flights, and refractory lining. ...

  13. Teaching about photosynthesis with simple equipment: analysis of light-induced changes in fluorescence and reflectance of plant leaves.

    PubMed

    Björn, Lars Olof; Li, Shaoshan

    2013-10-01

    Solar energy absorbed by plants results in either reflection or absorption. The latter results in photosynthesis, fluorescence, or heat. Measurements of fluorescence changes have been used for monitoring processes associated with photosynthesis. A simple method to follow changes in leaf fluorescence and leaf reflectance associated with nonphotochemical quenching and light acclimation of leaves is described. The main equipment needed consists of a green-light emitting laser pointer, a digital camera, and a personal computer equipped with the camera acquisition software and the programs ImageJ and Excel. Otherwise, only commonly available cheap materials are required.

  14. Some significant considerations in the planning of sortie missions. [of space transportation system

    NASA Technical Reports Server (NTRS)

    Loftus, J. P., Jr.; Cour-Palais, B. G.; Moore, J. W.; Lohman, R. L.

    1980-01-01

    Opportunities and limitations to be considered in the planning of Space Shuttle/Spacelab sortie missions are discussed. As shown by a simple model of the flow of STS equipment through ground processing and flights under ideal conditions, mission duration is constrained by Orbiter availability, which is determined initially by the Orbiter production schedule and the turnaround time required between missions, and by the usage rate and quantity limitations of mission consumables. Additional considerations affecting mission duration include reductions in crew productivity upon increased mission duration and crew size, spacecraft and experiment degradation, equipment and processing facility cost effectiveness, and requirements for a power extension package, which considerations imply that increased allowable landing weight would make co-manifesting (the combination of Spacelab and deliverable payload missions) more attractive. Advantages related to payload recoverability, human presence, ease of access and the availability of different orbits are also pointed out.

  15. "Reliability Of Fiber Optic Lans"

    NASA Astrophysics Data System (ADS)

    Code n, Michael; Scholl, Frederick; Hatfield, W. Bryan

    1987-02-01

    Fiber optic Local Area Network Systems are being used to interconnect increasing numbers of nodes. These nodes may include office computer peripherals and terminals, PBX switches, process control equipment and sensors, automated machine tools and robots, and military telemetry and communications equipment. The extensive shared base of capital resources in each system requires that the fiber optic LAN meet stringent reliability and maintainability requirements. These requirements are met by proper system design and by suitable manufacturing and quality procedures at all levels of a vertically integrated manufacturing operation. We will describe the reliability and maintainability of Codenoll's passive star based systems. These include LAN systems compatible with Ethernet (IEEE 802.3) and MAP (IEEE 802.4), and software compatible with IBM Token Ring (IEEE 802.5). No single point of failure exists in this system architecture.

  16. 46 CFR 108.105 - Substitutes for required fittings, material, apparatus, equipment, arrangements, calculations...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....105 Substitutes for required fittings, material, apparatus, equipment, arrangements, calculations, and tests. (a) Where this subchapter requires a particular fitting, material, apparatus, equipment... satisfaction of the Commandant that the use of any particular equipment, apparatus, arrangement, or test is...

  17. 46 CFR 108.105 - Substitutes for required fittings, material, apparatus, equipment, arrangements, calculations...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....105 Substitutes for required fittings, material, apparatus, equipment, arrangements, calculations, and tests. (a) Where this subchapter requires a particular fitting, material, apparatus, equipment... satisfaction of the Commandant that the use of any particular equipment, apparatus, arrangement, or test is...

  18. Capital cost estimate

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The capital cost estimate for the nuclear process heat source (NPHS) plant was made by: (1) using costs from the current commercial HTGR for electricity production as a base for items that are essentially the same and (2) development of new estimates for modified or new equipment that is specifically for the process heat application. Results are given in tabular form and cover the total investment required for each process temperature studied.

  19. Chemical Stockpile Disposal Program. Monitoring Concept Plan

    DTIC Science & Technology

    1987-09-10

    Government Owned Contractor Operated GPL General Population Limit H Bis (2-chloroethyl) sulfide or Levinstein Mustard (75% purity) P HCI Hydrogen Chloride... government agencies, will provide technical expertise and equipment necessary to monitor affected areas and resources. 2-25 SECTIO 3 PROCESS CONTROL AND...conditions and to issue correct emergency response notifications, if required. The process sensors work in conjunction with the process control system and

  20. 14 CFR 121.345 - Radio equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Radio equipment. 121.345 Section 121.345..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.345 Radio equipment. (a) No person may operate an airplane unless it is equipped with radio equipment required for the kind of...

  1. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  2. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  3. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  4. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  5. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  6. 77 FR 75400 - Labeling Requirements for Commercial and Industrial Equipment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    .... EERE-2012-BT-NOA-0037] RIN 1904-AC84 Labeling Requirements for Commercial and Industrial Equipment... standards for certain commercial and industrial equipment, and requires the Department of Energy (DOE) to administer an energy conservation program for the equipment, including the development of labeling...

  7. Space Shuttle SRM development. [Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Brinton, B. C.; Kilminster, J. C.

    1979-01-01

    The successful static test of the fourth Development Space Shuttle Solid Rocket Motor (SRM) in February 1979 concluded the development testing phase of the SRM Project. Qualification and flight motors are currently being fabricated, with the first qualification motor to be static tested. Delivered thrust-time traces on all development motors were very close to predicted values, and both specific and total impulse exceeded specification requirements. 'All-up' static tests conducted with a solid rocket booster equipment on development motors achieved all test objectives. Transportation and support equipment concepts have been proven, baselining is complete, and component reusability has been demonstrated. Evolution of the SRM transportation support equipment, and special test equipment designs are reviewed, and development activities discussed. Handling and processing aspects of large, heavy components are described.

  8. Power Supply for a Manned International Asteroid Mission

    NASA Technical Reports Server (NTRS)

    Weingartner, Stefan; Nahra, Henry K.; Kohout, Lisa L.; Larin, Max

    1991-01-01

    A feasibility study considering the exploitation of a near Earth asteroid was performed. The power requirements and proposed power systems for the crew vehicle, cargo vehicles, mining and processing equipment are described. A photovoltaic power system was selected to meet the 52.1 kWe and the 3.9 kWe power requirements of the crew and cargo vehicles, respectively. A nuclear power plant using a thermodynamic Rankine cycle with a total mass of 62.1 tons was chosen to provide the 7.225 MWe and the 5.5 MWth required for the mining and processing activities at the asteroid.

  9. Preliminary Solar Sail Design and Fabrication Assessment: Spinning Sail Blade, Square Sail Sheet

    NASA Technical Reports Server (NTRS)

    Daniels, J. B.; Dowdle, D. M.; Hahn, D. W.; Hildreth, E. N.; Lagerquist, D. R.; Mahaonoul, E. J.; Munson, J. B.; Origer, T. F.

    1977-01-01

    Blade design aspects most affecting producibility and means of measurement and control of length, scallop, fullness and straightness requirements and tolerances were extensively considered. Alternate designs of the panel seams and edge reinforcing members are believed to offer advantages of seam integrity, producibility, reliability, cost and weight. Approaches to and requirements for highly specialized metalizing methods, processes and equipment were studied and identified. Alternate methods of sail blade fabrication and related special machinery, tooling, fixtures and trade offs were examined. A preferred and recommended approach is also described. Quality control plans, inspection procedures, flow charts and special test equipment associated with the preferred manufacturing method were analyzed and are discussed.

  10. RMP Guidance for Chemical Distributors - Chapter 8: Emergency Response Program

    EPA Pesticide Factsheets

    Depending on the level of processes at your facility, part 68 may require an emergency response program: an emergency response plan, emergency response equipment procedures, employee training, and procedures to ensure the program is up-to-date.

  11. Automation of servicibility of radio-relay station equipment

    NASA Astrophysics Data System (ADS)

    Uryev, A. G.; Mishkin, Y. I.; Itkis, G. Y.

    1985-03-01

    Automation of the serviceability of radio relay station equipment must ensure central gathering and primary processing of reliable instrument reading with subsequent display on the control panel, detection and recording of failures soon enough, advance enough warning based on analysis of detertioration symptoms, and correct remote measurement of equipment performance parameters. Such an inspection will minimize transmission losses while reducing nonproductive time and labor spent on documentation and measurement. A multichannel automated inspection system for this purpose should operate by a parallel rather than sequential procedure. Digital data processing is more expedient in this case than analog method and, therefore, analog to digital converters are required. Spepcial normal, above limit and below limit test signals provide means of self-inspection, to which must be added adequate interference immunization, stabilization, and standby power supply. Use of a microcomputer permits overall refinement and expansion of the inspection system while it minimizes though not completely eliminates dependence on subjective judgment.

  12. SOM neural network fault diagnosis method of polymerization kettle equipment optimized by improved PSO algorithm.

    PubMed

    Wang, Jie-sheng; Li, Shu-xia; Gao, Jie

    2014-01-01

    For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective.

  13. Preparation of wood for energy use

    Treesearch

    Donald L. Sirois; Bryce J. Stokes

    1985-01-01

    This paper presents an overview & current sources and forms of raw materials for wood energy use and the types of machines available to convert them to the desired form for boiler fuel. Both the fuel source or raw material, and the combustion furnace will dictate the requirements for the processing system. Because of the wide range of processing equipment...

  14. Processing Maple Syrup with a Vapor Compression Distiller: An Economic Analysis

    Treesearch

    Lawrence D. Garrett

    1977-01-01

    A test of vapor compression distillers for processing maple syrup revealed that: (1) vapor compression equipment tested evaporated 1 pound of water with .047 pounds of steam equivalent (electrical energy); open-pan evaporators of similar capacity required 1.5 pounds of steam equivalent (oil energy) to produce 1 pound of water; (2) vapor compression evaporation produced...

  15. 46 CFR 160.151-45 - Equipment required for servicing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Equipment required for servicing facilities. 160.151-45 Section 160.151-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT...) § 160.151-45 Equipment required for servicing facilities. Each servicing facility approved by the Coast...

  16. 47 CFR 80.231 - Technical Requirements for Class B Automatic Identification System (AIS) equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Identification System (AIS) equipment. 80.231 Section 80.231 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... § 80.231 Technical Requirements for Class B Automatic Identification System (AIS) equipment. (a) Class B Automatic Identification System (AIS) equipment must meet the technical requirements of IEC 62287...

  17. 47 CFR 80.231 - Technical Requirements for Class B Automatic Identification System (AIS) equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Identification System (AIS) equipment. 80.231 Section 80.231 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... § 80.231 Technical Requirements for Class B Automatic Identification System (AIS) equipment. (a) Class B Automatic Identification System (AIS) equipment must meet the technical requirements of IEC 62287...

  18. 47 CFR 80.231 - Technical Requirements for Class B Automatic Identification System (AIS) equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Identification System (AIS) equipment. 80.231 Section 80.231 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... § 80.231 Technical Requirements for Class B Automatic Identification System (AIS) equipment. (a) Class B Automatic Identification System (AIS) equipment must meet the technical requirements of IEC 62287...

  19. 46 CFR 197.206 - Substitutes for required equipment, materials, apparatus, arrangements, procedures, or tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Substitutes for required equipment, materials, apparatus... Operations General § 197.206 Substitutes for required equipment, materials, apparatus, arrangements, procedures, or tests. (a) The Coast Guard may accept substitutes for equipment, materials, apparatus...

  20. 46 CFR 197.206 - Substitutes for required equipment, materials, apparatus, arrangements, procedures, or tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Substitutes for required equipment, materials, apparatus... Operations General § 197.206 Substitutes for required equipment, materials, apparatus, arrangements, procedures, or tests. (a) The Coast Guard may accept substitutes for equipment, materials, apparatus...

  1. Field guide for collecting and processing stream-water samples for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Shelton, Larry R.

    1994-01-01

    The U.S. Geological Survey's National Water-Quality Assessment program includes extensive data- collection efforts to assess the quality of the Nations's streams. These studies require analyses of stream samples for major ions, nutrients, sediments, and organic contaminants. For the information to be comparable among studies in different parts of the Nation, consistent procedures specifically designed to produce uncontaminated samples for trace analysis in the laboratory are critical. This field guide describes the standard procedures for collecting and processing samples for major ions, nutrients, organic contaminants, sediment, and field analyses of conductivity, pH, alkalinity, and dissolved oxygen. Samples are collected and processed using modified and newly designed equipment made of Teflon to avoid contamination, including nonmetallic samplers (D-77 and DH-81) and a Teflon sample splitter. Field solid-phase extraction procedures developed to process samples for organic constituent analyses produce an extracted sample with stabilized compounds for more accurate results. Improvements to standard operational procedures include the use of processing chambers and capsule filtering systems. A modified collecting and processing procedure for organic carbon is designed to avoid contamination from equipment cleaned with methanol. Quality assurance is maintained by strict collecting and processing procedures, replicate sampling, equipment blank samples, and a rigid cleaning procedure using detergent, hydrochloric acid, and methanol.

  2. CNC Machining Of The Complex Copper Electrodes

    NASA Astrophysics Data System (ADS)

    Popan, Ioan Alexandru; Balc, Nicolae; Popan, Alina

    2015-07-01

    This paper presents the machining process of the complex copper electrodes. Machining of the complex shapes in copper is difficult because this material is soft and sticky. This research presents the main steps for processing those copper electrodes at a high dimensional accuracy and a good surface quality. Special tooling solutions are required for this machining process and optimal process parameters have been found for the accurate CNC equipment, using smart CAD/CAM software.

  3. Designing a Common Interchange Format for Unit Data Using the Command and Control Information Exchange Data Model (C2IEDM) and XSLT

    DTIC Science & Technology

    2004-09-01

    Required> </Equipment> <Equipment code="L44680"> <Description>LAUNCHER GRENADE SMOKE: SCREENING RP M250 </Description> <Required...EquipmentPiecesOnHand> </UnitEquipment> <UnitEquipment> <EquipmentDescription>LAUNCHER GRENADE SMOKE: SCREENING RP M250 </EquipmentDescription

  4. Implementation of new integrated evaporation equipment for the preparation of 238U targets and improvement of the deposition process

    NASA Astrophysics Data System (ADS)

    Vanleeuw, D.; Lewis, D.; Moens, A.; Sibbens, G.; Wiss, T.

    2018-05-01

    Measurement of neutron cross section data is a core activity of the JRC-Directorate G for Nuclear Safety and Security in Geel. After a period of reduced activity and in line with a renewed interest for nuclear data required for GenIV reactors and waste minimization, the demand for high quality actinide targets increased. Physical vapour deposition by thermal evaporation is a key technique to prepare homogeneous thin actinide layers, but due to ageing effects the earlier in-house developed equipment can no longer provide the required quality. Because of a current lack of experience and human resources cooperation with private companies is required for the development of new deposition equipment directly integrated in a glove box. In this paper we describe the design, implementation and validation of the first commercial actinide evaporator in a glove box as well as the optimization of the deposition process. Highly enriched 238U3O8 was converted to 238UF4 powder and several deposition runs were performed on different substrates. The deposition parameters were varied and defined in order to guarantee physical and chemical stable homogeneous UF4 layers, even on polished substrates which was not longer feasible with the older equipment. The stability problem is discussed in view of the thin layer growth by physical vapour deposition and the influence of the deposition parameters on the layer quality. The deposits were characterized for the total mass by means of substitution weighing and for the areal density of 238U by means of alpha particle counting and thermal ionization mass spectrometry (TIMS). The quality of the layer was visually evaluated and by means of stereo microscopy and auto radiography.

  5. Preparation of composite materials in space. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.; Kaye, S.

    1973-01-01

    A study to define promising materials, significant processing criteria, and the related processing techniques and apparatus for the preparation of composite materials in space was conducted. The study also established a program for zero gravity experiments and the required developmental efforts. The following composite types were considered: (1) metal-base fiber and particle composites, including cemented compacts, (2) controlled density metals, comprising plain and reinforced metal foams, and (3) unidirectionally solidified eutectic alloys. A program of suborbital and orbital experiments for the 1972 to 1978 time period was established to identify materials, processes, and required experiment equipment.

  6. 40 CFR 86.1206-96 - Equipment required; overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1206-96 Equipment required; overview. This subpart... methanol-fueled heavy-duty vehicles. Equipment required and specifications are as follows: (a) Evaporative...

  7. 40 CFR 86.1206-96 - Equipment required; overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1206-96 Equipment required; overview. This subpart... methanol-fueled heavy-duty vehicles. Equipment required and specifications are as follows: (a) Evaporative...

  8. Fluid dynamics simulation for design on sludge drying equipment

    NASA Astrophysics Data System (ADS)

    Li, Shuiping; Liang, Wang; Kai, Zhang

    2017-10-01

    Sludge drying equipment is a key component in the sludge drying disposal, the structure of drying equipment directly affects the drying disposal of the sludge, so it is necessary to analyse the performance of the drying equipment with different structure. Fluent software can be very convenient to get the distribution of the flow field and temperature field inside the drying equipment which reflects the performance of the structure. In this paper, the outlet position of the sludge and the shape of the sludge inlet are designed. The geometrical model of the drying equipment is established by using pre-processing software Gambit, and the meshing of the model is carried out. The Eulerian model is used to simulate the flow of each phase and the interaction between them, and the realizable turbulence model is used to simulate the turbulence of each phase. Finally, the simulation results of the scheme are compared and the optimal structure scheme is obtained, the operational requirement is proposed. The CFD theory provides a reliable basis for the drying equipment research and reduces the time and costs of the research.

  9. 46 CFR 108.103 - Equipment not required on a unit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Equipment not required on a unit. 108.103 Section 108.103 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT General § 108.103 Equipment not required on a unit. Each item of lifesaving and...

  10. 46 CFR 108.103 - Equipment not required on a unit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Equipment not required on a unit. 108.103 Section 108.103 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT General § 108.103 Equipment not required on a unit. Each item of lifesaving and...

  11. 46 CFR 108.103 - Equipment not required on a unit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Equipment not required on a unit. 108.103 Section 108.103 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT General § 108.103 Equipment not required on a unit. Each item of lifesaving and...

  12. 46 CFR 108.103 - Equipment not required on a unit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Equipment not required on a unit. 108.103 Section 108.103 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT General § 108.103 Equipment not required on a unit. Each item of lifesaving and...

  13. 46 CFR 108.103 - Equipment not required on a unit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Equipment not required on a unit. 108.103 Section 108.103 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT General § 108.103 Equipment not required on a unit. Each item of lifesaving and...

  14. 42 CFR 52b.12 - What are the minimum requirements of construction and equipment?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and equipment? 52b.12 Section 52b.12 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... requirements of construction and equipment? (a) General. In addition to being subject to other laws... have been determined by the Director to constitute minimum requirements of construction and equipment...

  15. 30 CFR 75.523-2 - Deenergization of self-propelled electric face equipment; performance requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Deenergization of self-propelled electric face... Electrical Equipment-General § 75.523-2 Deenergization of self-propelled electric face equipment; performance requirements. (a) Deenergization of the tramming motors of self-propelled electric face equipment, required by...

  16. 30 CFR 75.523-2 - Deenergization of self-propelled electric face equipment; performance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Deenergization of self-propelled electric face... Electrical Equipment-General § 75.523-2 Deenergization of self-propelled electric face equipment; performance requirements. (a) Deenergization of the tramming motors of self-propelled electric face equipment, required by...

  17. 30 CFR 75.523-2 - Deenergization of self-propelled electric face equipment; performance requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Deenergization of self-propelled electric face... Electrical Equipment-General § 75.523-2 Deenergization of self-propelled electric face equipment; performance requirements. (a) Deenergization of the tramming motors of self-propelled electric face equipment, required by...

  18. 30 CFR 75.523-2 - Deenergization of self-propelled electric face equipment; performance requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Deenergization of self-propelled electric face... Electrical Equipment-General § 75.523-2 Deenergization of self-propelled electric face equipment; performance requirements. (a) Deenergization of the tramming motors of self-propelled electric face equipment, required by...

  19. 30 CFR 75.523-2 - Deenergization of self-propelled electric face equipment; performance requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Deenergization of self-propelled electric face... Electrical Equipment-General § 75.523-2 Deenergization of self-propelled electric face equipment; performance requirements. (a) Deenergization of the tramming motors of self-propelled electric face equipment, required by...

  20. 46 CFR 76.01-5 - Equipment installed but not required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Equipment installed but not required. 76.01-5 Section 76.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Application § 76.01-5 Equipment installed but not required. (a) Where fire detecting or...

  1. Research and development of a safety standard for workstation tables in the United States

    DOT National Transportation Integrated Search

    2013-02-21

    The US safety standard for workstation tables is presented to an international audience, : such that rail operators and equipment manufacturers may better understand the research : behind the requirements, the process through which the safety standar...

  2. 21 CFR 212.30 - What requirements must my facilities and equipment meet?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... could reasonably be expected to adversely affect the identity, strength, quality, or purity of a PET..., in-process materials, or PET drugs are not reactive, additive, or absorptive so as to alter the quality of PET drugs. ...

  3. 21 CFR 212.30 - What requirements must my facilities and equipment meet?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... could reasonably be expected to adversely affect the identity, strength, quality, or purity of a PET..., in-process materials, or PET drugs are not reactive, additive, or absorptive so as to alter the quality of PET drugs. ...

  4. 21 CFR 212.30 - What requirements must my facilities and equipment meet?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... could reasonably be expected to adversely affect the identity, strength, quality, or purity of a PET..., in-process materials, or PET drugs are not reactive, additive, or absorptive so as to alter the quality of PET drugs. ...

  5. Monolayer boron-aluminum compacted sheet material

    NASA Technical Reports Server (NTRS)

    Sumner, E. V.

    1973-01-01

    The manufacturing techniques, basic materials used, and equipment required to produce monolayer boron-aluminum composites are described. Tentative materials and process specifications are included. Improvements in bonding and filament spacing obtained through use of brazing powder in the fugitive binder are discussed.

  6. What Fermenter?

    ERIC Educational Resources Information Center

    Terry, John

    1987-01-01

    Discusses the feasibility of using fermenters in secondary school laboratories. Includes discussions of equipment, safety, and computer interfacing. Describes how a simple fermenter could be used to simulate large-scale processes. Concludes that, although teachers and technicians will require additional training, the prospects for biotechnology in…

  7. The Use of a Microcomputer Based Array Processor for Real Time Laser Velocimeter Data Processing

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    1990-01-01

    The application of an array processor to laser velocimeter data processing is presented. The hardware is described along with the method of parallel programming required by the array processor. A portion of the data processing program is described in detail. The increase in computational speed of a microcomputer equipped with an array processor is illustrated by comparative testing with a minicomputer.

  8. The Impact of Environmental Regulation on Defense System Acquisition Management

    DTIC Science & Technology

    1976-05-01

    producer, had been the sole source for the fuel. The process of manufacturing the fuel also produced a toxic ~arcinogenic byproduct. This condition caused...minimized. Could the design be quieter? Does the maintenance of the system require environmentally sensitive equipment, processes , or material? For ... Of particular interest to this report is the effect of such regulation on the defense system acquisition process . There is a direct impact on the

  9. Life sciences payload definition and integration study. Volume 2: Requirements, design, and planning studies for the carry-on laboratories. [for Spacelab

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The task phase concerned with the requirements, design, and planning studies for the carry-on laboratory (COL) began with a definition of biomedical research areas and candidate research equipment, and then went on to develop conceptual layouts for COL which were each evaluated in order to arrive at a final conceptual design. Each step in this design/evaluation process concerned itself with man/systems integration research and hardware, and life support and protective systems research and equipment selection. COL integration studies were also conducted and include attention to electrical power and data management requirements, operational considerations, and shuttle/Spacelab interface specifications. A COL program schedule was compiled, and a cost analysis was finalized which takes into account work breakdown, annual funding, and cost reduction guidelines.

  10. Marshall Space Flight Center Electromagnetic Compatibility Design and Interference Control (MEDIC) handbook

    NASA Astrophysics Data System (ADS)

    Clark, T. L.; McCollum, M. B.; Trout, D. H.; Javor, K.

    1995-06-01

    The purpose of the MEDIC Handbook is to provide practical and helpful information in the design of electrical equipment for electromagnetic compatibility (EMS). Included is the definition of electromagnetic interference (EMI) terms and units as well as an explanation of the basic EMI interactions. An overview of typical NASA EMI test requirements and associated test setups is given. General design techniques to minimize the risk of EMI and EMI suppression techniques at the board and equipment interface levels are presented. The Handbook contains specific EMI test compliance design techniques and retrofit fixes for noncompliant equipment. Also presented are special tests that are useful in the design process or in instances of specification noncompliance.

  11. Marshall Space Flight Center Electromagnetic Compatibility Design and Interference Control (MEDIC) handbook

    NASA Technical Reports Server (NTRS)

    Clark, T. L.; Mccollum, M. B.; Trout, D. H.; Javor, K.

    1995-01-01

    The purpose of the MEDIC Handbook is to provide practical and helpful information in the design of electrical equipment for electromagnetic compatibility (EMS). Included is the definition of electromagnetic interference (EMI) terms and units as well as an explanation of the basic EMI interactions. An overview of typical NASA EMI test requirements and associated test setups is given. General design techniques to minimize the risk of EMI and EMI suppression techniques at the board and equipment interface levels are presented. The Handbook contains specific EMI test compliance design techniques and retrofit fixes for noncompliant equipment. Also presented are special tests that are useful in the design process or in instances of specification noncompliance.

  12. A Review of the Aging Process and Facilities Topic.

    PubMed

    Jornitz, Maik W

    2015-01-01

    Aging facilities have become a concern in the pharmaceutical and biopharmaceutical manufacturing industry, so much that task forces are formed by trade organizations to address the topic. Too often, examples of aging or obsolete equipment, unit operations, processes, or entire facilities have been encountered. Major contributors to this outcome are the failure to invest in new equipment, disregarding appropriate maintenance activities, and neglecting the implementation of modern technologies. In some cases, a production process is insufficiently modified to manufacture a new product in an existing process that was used to produce a phased-out product. In other instances, manufacturers expanded the facility or processes to fulfill increasing demand and the scaling occurred in a non-uniform manner, which led to non-optimal results. Regulatory hurdles of post-approval changes in the process may thwart companies' efforts to implement new technologies. As an example, some changes have required 4 years to gain global approval. This paper will address cases of aging processes and facilities aside from modernizing options. © PDA, Inc. 2015.

  13. Space station functional relationships analysis

    NASA Technical Reports Server (NTRS)

    Tullis, Thomas S.; Bied, Barbra R.

    1988-01-01

    A systems engineering process is developed to assist Space Station designers to understand the underlying operational system of the facility so that it can be physically arranged and configured to support crew productivity. The study analyzes the operational system proposed for the Space Station in terms of mission functions, crew activities, and functional relationships in order to develop a quantitative model for evaluation of interior layouts, configuration, and traffic analysis for any Station configuration. Development of the model involved identification of crew functions, required support equipment, criteria of assessing functional relationships, and tools for analyzing functional relationship matrices, as well as analyses of crew transition frequency, sequential dependencies, support equipment requirements, potential for noise interference, need for privacy, and overall compatability of functions. The model can be used for analyzing crew functions for the Initial Operating Capability of the Station and for detecting relationships among these functions. Note: This process (FRA) was used during Phase B design studies to test optional layouts of the Space Station habitat module. The process is now being automated as a computer model for use in layout testing of the Space Station laboratory modules during Phase C.

  14. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements for electrical stimulating (EST) equipment. (a) General. Electrical stimulating (EST) equipment is... of facilitating blood removal. These provisions do not apply to electrical equipment used to stun and... generate pulsed DC or AC voltage for stimulation and is separate from the equipment used to apply the...

  15. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements for electrical stimulating (EST) equipment. (a) General. Electrical stimulating (EST) equipment is... of facilitating blood removal. These provisions do not apply to electrical equipment used to stun and... generate pulsed DC or AC voltage for stimulation and is separate from the equipment used to apply the...

  16. 14 CFR 23.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... environmental conditions, including the indirect effects of lightning strikes. (2) Any equipment and system does... Equipment General § 23.1309 Equipment, systems, and installations. The requirements of this section, except... requirements of part 23, to any equipment or system as installed in the airplane. This section is a regulation...

  17. 14 CFR 23.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... environmental conditions, including the indirect effects of lightning strikes. (2) Any equipment and system does... Equipment General § 23.1309 Equipment, systems, and installations. The requirements of this section, except... requirements of part 23, to any equipment or system as installed in the airplane. This section is a regulation...

  18. 46 CFR 133.07 - Additional equipment and requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Additional equipment and requirements. 133.07 Section 133.07 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS LIFESAVING SYSTEMS General § 133.07 Additional equipment and requirements. The OCMI may require an OSV to...

  19. 46 CFR 133.07 - Additional equipment and requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Additional equipment and requirements. 133.07 Section 133.07 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS LIFESAVING SYSTEMS General § 133.07 Additional equipment and requirements. The OCMI may require an OSV to...

  20. Processes of Skill Performance: A Foundation for the Design and Use of Training Equipment

    DTIC Science & Technology

    1983-11-01

    F. I. M., & Lockhart , R. S. Levels of processing : A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 1972, 11. 671-784...knowledge regarding the basic processes , the kinds and levels of information to be sought in examining individual skills can be Identified. Analysis of...explaining what is involved In even the simple compass example would require analyses of cognitive processes that go far beyond the level of

  1. Transition process from emerging NDT technology to production inspection application

    NASA Astrophysics Data System (ADS)

    Jappe, William; Wood, Nancy; Johnson, Maurice

    1995-07-01

    The successful application of emerging NDT technologies for specific aging aircraft inspections requires an integration of efforts between aircraft operators, airframe manufacturers, NDT equipment designers, and government regulators. This paper describes the development process that was followed to establish an alternate inspection technique for a DC-10 crown skin butt joint inspection. Initial investigation, intermediate development, and final evaluations are discussed.

  2. Optimizing biomass feedstock logistics for forest residue processing and transportation on a tree-shaped road network

    Treesearch

    Hee Han; Woodam Chung; Lucas Wells; Nathaniel Anderson

    2018-01-01

    An important task in forest residue recovery operations is to select the most cost-efficient feedstock logistics system for a given distribution of residue piles, road access, and available machinery. Notable considerations include inaccessibility of treatment units to large chip vans and frequent, long-distance mobilization of forestry equipment required to process...

  3. KENNEDY SPACE CENTER, FLA. - This bird's-eye view of a high bay in the Orbiter Processing Facility (OPF) shows Space Shuttle Atlantis surrounded by the standard platforms and equipment required to process a Space Shuttle orbiter for flight. The high bay is 197 feet (60 meters) long, 150 feet (46 meters) wide, 95 feet (29 meters) high, and encompasses a 29,000-square-foot (2,694-meter) area. Platforms, a main access bridge, and two rolling bridges with trucks provide access to various parts of the orbiter. The next mission scheduled for Atlantis is STS-114, a utilization and logistics flight to the International Space Station.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - This bird's-eye view of a high bay in the Orbiter Processing Facility (OPF) shows Space Shuttle Atlantis surrounded by the standard platforms and equipment required to process a Space Shuttle orbiter for flight. The high bay is 197 feet (60 meters) long, 150 feet (46 meters) wide, 95 feet (29 meters) high, and encompasses a 29,000-square-foot (2,694-meter) area. Platforms, a main access bridge, and two rolling bridges with trucks provide access to various parts of the orbiter. The next mission scheduled for Atlantis is STS-114, a utilization and logistics flight to the International Space Station.

  4. Process improvement for regulatory analyses of custom-blend fertilizers.

    PubMed

    Wegner, Keith A

    2014-01-01

    Chemical testing of custom-blend fertilizers is essential to ensure that the products meet the formulation requirements. For purposes of proper crop nutrition and consumer protection, regulatory oversight promotes compliance and particular attention to blending and formulation specifications. Analyses of custom-blend fertilizer products must be performed and reported within a very narrow window in order to be effective. The Colorado Department of Agriculture's Biochemistry Laboratory is an ISO 17025 accredited facility and conducts analyses of custom-blend fertilizer products primarily during the spring planting season. Using the Lean Six Sigma (LSS) process, the Biochemistry Laboratory has reduced turnaround times from as much as 45 days to as little as 3 days. The LSS methodology focuses on waste reduction through identifying: non-value-added steps, unneeded process reviews, optimization of screening and confirmatory analyses, equipment utilization, nonessential reporting requirements, and inefficient personnel deployment. Eliminating these non-value-added activities helped the laboratory significantly shorten turnaround time and reduce costs. Key improvement elements discovered during the LSS process included: focused sample tracking, equipment redundancy, strategic supply stocking, batch size optimization, critical sample paths, elimination of nonessential QC reviews, and more efficient personnel deployment.

  5. EnergySolution's Clive Disposal Facility Operational Research Model - 13475

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissley, Paul; Berry, Joanne

    2013-07-01

    EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operatedmore » waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying processing bottlenecks and unused equipment and/or labor, improvements to operating efficiency could be determined and appropriate cost saving measures implemented. Model runs forecasting various scenarios helped illustrate potential impacts of certain conditions (e.g. 20% decrease in shipments arrived), variables (e.g. 20% decrease in labor), or other possible situations. (authors)« less

  6. Alignment and assembly process for primary mirror subsystem of a spaceborne telescope

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Cheng; Chang, Shenq-Tsong; Chang, Sheng-Hsiung; Chang, Chen-Peng; Lin, Yu-Chuan; Chin, Chi-Chieh; Pan, Hsu-Pin; Huang, Ting-Ming

    2015-11-01

    In this study, a multispectral spaceborne Cassegrain telescope was developed. The telescope was equipped with a primary mirror with a 450-mm clear aperture composed of Zerodur and lightweighted at a ratio of approximately 50% to meet both thermal and mass requirements. Reducing the astigmatism was critical for this mirror. The astigmatism is caused by gravity effects, the bonding process, and deformation from mounting the main structure of the telescope (main plate). This article presents the primary mirror alignment, mechanical ground-supported equipment (MGSE), assembly process, and optical performance test used to assemble the primary mirror. A mechanical compensated shim is used as the interface between the bipod flexure and main plate. The shim was used to compensate for manufacturer errors found in components and differences between local coplanarity errors to prevent stress while the bipod flexure was screwed to the main plate. After primary mirror assembly, an optical performance test method called a bench test with an algorithm was used to analyze the astigmatism caused by the gravity effect and deformation from the mounting or supporter. The tolerance conditions for the primary mirror assembly require the astigmatism caused by gravity and mounting force deformation to be less than P-V 0.02 λ at 632.8 nm. The results demonstrated that the designed MGSE used in the alignment and assembly processes met the critical requirements for the primary mirror assembly of the telescope.

  7. COMPUTER-AIDED SOLVENT DESIGN FOR POLLUTION PREVENTION: PARIS II

    EPA Science Inventory

    Solvent substitution is an attractive way of elijminating the use of regulated solvents because it usually does not require major chanages in existing processes, equipment or operations. Successful solvent substitution is dependent on finding solvents that are as effective or be...

  8. 40 CFR 63.1281 - Control equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dehydration unit baseline operations (as defined in § 63.1271). Records of glycol dehydration unit baseline... the Administrator's satisfaction, the conditions for which glycol dehydration unit baseline operations... emission reduction of 95.0 percent for the glycol dehydration unit process vent. Only modifications in...

  9. 40 CFR 63.1281 - Control equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dehydration unit baseline operations (as defined in § 63.1271). Records of glycol dehydration unit baseline... the Administrator's satisfaction, the conditions for which glycol dehydration unit baseline operations... emission reduction of 95.0 percent for the glycol dehydration unit process vent. Only modifications in...

  10. 40 CFR Table 1 of Subpart Bbbbbbb... - Emission Reduction and PM Concentration Requirements

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... from equipment in target HAP service Route the process vent stream to a PM control device with:a. A PM percent reduction efficiency of 95 percent (98 percent for new sources), or b. An outlet concentration of...

  11. 40 CFR Table 1 of Subpart Bbbbbbb... - Emission Reduction and PM Concentration Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... from equipment in target HAP service Route the process vent stream to a PM control device with:a. A PM percent reduction efficiency of 95 percent (98 percent for new sources), or b. An outlet concentration of...

  12. 30 CFR 250.1910 - What safety and environmental information is required?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... appropriate, a simplified process flow diagram and acceptable upper and lower limits, where applicable, for items such as temperature, pressure, flow and composition; and (3) mechanical design information including, as appropriate, piping and instrument diagrams; electrical area classifications; equipment...

  13. 30 CFR 250.1910 - What safety and environmental information is required?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... appropriate, a simplified process flow diagram and acceptable upper and lower limits, where applicable, for items such as temperature, pressure, flow and composition; and (3) mechanical design information including, as appropriate, piping and instrument diagrams; electrical area classifications; equipment...

  14. 30 CFR 250.1910 - What safety and environmental information is required?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... appropriate, a simplified process flow diagram and acceptable upper and lower limits, where applicable, for items such as temperature, pressure, flow and composition; and (3) mechanical design information including, as appropriate, piping and instrument diagrams; electrical area classifications; equipment...

  15. 32 CFR 199.1 - General provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... authority to make benefit determinations or obligate Government funds. Advice given to beneficiaries as to... research activities in the health care area to assist in formulating policy required to guide OCHAMPUS in... for claims processing services, studies and research, supplies, equipment, an other services necessary...

  16. A Selected Bibliography on Microbiological Laboratory Design.

    ERIC Educational Resources Information Center

    Laboratory Design Notes, 1967

    1967-01-01

    Reference sources on microbiological laboratory design are cited. Subjects covered include--(1) policies and general requirements, (2) ventilated cabinets, (3) animal isolation equipment, (4) air handling, ventilation, and filtration, (5) germicidal ultraviolet irradiation, (6) aerosol test facilities, (7) process production of microorganisms, and…

  17. Reliability-Based Model to Analyze the Performance and Cost of a Transit Fare Collection System.

    DOT National Transportation Integrated Search

    1985-06-01

    The collection of transit system fares has become more sophisticated in recent years, with more flexible structures requiring more sophisticated fare collection equipment to process tickets and admit passengers. However, this new and complex equipmen...

  18. CFD Analysis of a Penta-hulled, Air-Entrapment, High-Speed Planning Vessel

    DTIC Science & Technology

    2008-03-01

    INTRODUCTION A. BACKGROUND The 2007 Total Ship Systems Engineering (TSSE) class was tasked with designing a new riverine craft or specialized...the concept of operations, for our defined system architecture (combined Specialized Command and Control Craft / Mobile Operating Base). This also...of an integration process that requires both systems and equipment optimization while meeting predetermined requirements set for by the Concept of

  19. Space Construction Automated Fabrication Experiment Definition Study (SCAFEDS), part 3. Volume 3: Requirements

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The performance, design and verification requirements for the space Construction Automated Fabrication Experiment (SCAFE) are defined. The SCAFE program defines, develops, and demonstrates the techniques, processes, and equipment required for the automatic fabrication of structural elements in space and for the assembly of such elements into a large, lightweight structure. The program defines a large structural platform to be constructed in orbit using the space shuttle as a launch vehicle and construction base.

  20. 7 CFR 305.20 - Treatment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Have equipment that is capable of adequately circulating air or water (as relevant to the treatment... must contain requirements for equipment, temperature, water quality, circulation, and other measures... APHIS. The work plan must contain requirements for equipment, temperature, water quality, circulation...

  1. Training Manual for Elements of Interface Definition and Control

    NASA Technical Reports Server (NTRS)

    Lalli, Vincent R. (Editor); Kastner, Robert E. (Editor); Hartt, Henry N. (Editor)

    1997-01-01

    The primary thrust of this manual is to ensure that the format and information needed to control interfaces between equipment are clear and understandable. The emphasis is on controlling the engineering design of the interface and not on the functional performance requirements of the system or the internal workings of the interfacing equipment. Interface control should take place, with rare exception, at the interfacing elements and no further. There are two essential sections of the manual. Chapter 2, Principles of Interface Control, discusses how interfaces are defined. It describes different types of interfaces to be considered and recommends a format for the documentation necessary for adequate interface control. Chapter 3, The Process: Through the Design Phases, provides tailored guidance for interface definition and control. This manual can be used to improve planned or existing interface control processes during system design and development. It can also be used to refresh and update the corporate knowledge base. The information presented herein will reduce the amount of paper and data required in interface definition and control processes by as much as 50 percent and will shorten the time required to prepare an interface control document. It also highlights the essential technical parameters that ensure that flight subsystems will indeed fit together and function as intended after assembly and checkout.

  2. Hot-melt co-extrusion: requirements, challenges and opportunities for pharmaceutical applications.

    PubMed

    Vynckier, An-Katrien; Dierickx, Lien; Voorspoels, Jody; Gonnissen, Yves; Remon, Jean Paul; Vervaet, Chris

    2014-02-01

    Co-extrusion implies the simultaneous hot-melt extrusion of two or more materials through the same die, creating a multi-layered extrudate. It is an innovative continuous production technology that offers numerous advantages over traditional pharmaceutical processing techniques. This review provides an overview of the co-extrusion equipment, material requirements and medical and pharmaceutical applications. The co-extrusion equipment needed for pharmaceutical production has been summarized. Because the geometrical design of the die dictates the shape of the final product, different die types have been discussed. As one of the major challenges at the moment is shaping the final product in a continuous way, an overview of downstream solutions for processing co-extrudates into drug products is provided. Layer adhesion, extrusion temperature and viscosity matching are pointed out as most important requirements for material selection. Examples of medical and pharmaceutical applications are presented and some recent findings considering the production of oral drug delivery systems have been summarized. Co-extrusion provides great potential for the continuous production of fixed-dose combination products which are gaining importance in pharmaceutical industry. There are still some barriers to the implementation of co-extrusion in the pharmaceutical industry. The optimization of downstream processing remains a point of attention. © 2013 Royal Pharmaceutical Society.

  3. Automated processing of whole blood units: operational value and in vitro quality of final blood components

    PubMed Central

    Jurado, Marisa; Algora, Manuel; Garcia-Sanchez, Félix; Vico, Santiago; Rodriguez, Eva; Perez, Sonia; Barbolla, Luz

    2012-01-01

    Background The Community Transfusion Centre in Madrid currently processes whole blood using a conventional procedure (Compomat, Fresenius) followed by automated processing of buffy coats with the OrbiSac system (CaridianBCT). The Atreus 3C system (CaridianBCT) automates the production of red blood cells, plasma and an interim platelet unit from a whole blood unit. Interim platelet unit are pooled to produce a transfusable platelet unit. In this study the Atreus 3C system was evaluated and compared to the routine method with regards to product quality and operational value. Materials and methods Over a 5-week period 810 whole blood units were processed using the Atreus 3C system. The attributes of the automated process were compared to those of the routine method by assessing productivity, space, equipment and staffing requirements. The data obtained were evaluated in order to estimate the impact of implementing the Atreus 3C system in the routine setting of the blood centre. Yield and in vitro quality of the final blood components processed with the two systems were evaluated and compared. Results The Atreus 3C system enabled higher throughput while requiring less space and employee time by decreasing the amount of equipment and processing time per unit of whole blood processed. Whole blood units processed on the Atreus 3C system gave a higher platelet yield, a similar amount of red blood cells and a smaller volume of plasma. Discussion These results support the conclusion that the Atreus 3C system produces blood components meeting quality requirements while providing a high operational efficiency. Implementation of the Atreus 3C system could result in a large organisational improvement. PMID:22044958

  4. Automated processing of whole blood units: operational value and in vitro quality of final blood components.

    PubMed

    Jurado, Marisa; Algora, Manuel; Garcia-Sanchez, Félix; Vico, Santiago; Rodriguez, Eva; Perez, Sonia; Barbolla, Luz

    2012-01-01

    The Community Transfusion Centre in Madrid currently processes whole blood using a conventional procedure (Compomat, Fresenius) followed by automated processing of buffy coats with the OrbiSac system (CaridianBCT). The Atreus 3C system (CaridianBCT) automates the production of red blood cells, plasma and an interim platelet unit from a whole blood unit. Interim platelet unit are pooled to produce a transfusable platelet unit. In this study the Atreus 3C system was evaluated and compared to the routine method with regards to product quality and operational value. Over a 5-week period 810 whole blood units were processed using the Atreus 3C system. The attributes of the automated process were compared to those of the routine method by assessing productivity, space, equipment and staffing requirements. The data obtained were evaluated in order to estimate the impact of implementing the Atreus 3C system in the routine setting of the blood centre. Yield and in vitro quality of the final blood components processed with the two systems were evaluated and compared. The Atreus 3C system enabled higher throughput while requiring less space and employee time by decreasing the amount of equipment and processing time per unit of whole blood processed. Whole blood units processed on the Atreus 3C system gave a higher platelet yield, a similar amount of red blood cells and a smaller volume of plasma. These results support the conclusion that the Atreus 3C system produces blood components meeting quality requirements while providing a high operational efficiency. Implementation of the Atreus 3C system could result in a large organisational improvement.

  5. Internal Controls Over the Army Military Equipment Baseline Valuation Effort

    DTIC Science & Technology

    2008-08-29

    Equipment and required thai military equipment assets be capitalized and depreciated . The Under Secretary of Defense (Acquisition, Technology, and...Property, Plant, and Equipment and requires that military equipment assets be capitalized and depreciated . Prior to SFFAS No. 23, DoD expensed military...net book value of military equipment is the total acquisition cost minus the accumulated depreciation . The Army’s financial statements also include

  6. 75 FR 1276 - Requirements for Subsurface Safety Valve Equipment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ...-0066] RIN 1010-AD45 Requirements for Subsurface Safety Valve Equipment AGENCY: Minerals Management... Edition of the American Petroleum Institute's Specification for Subsurface Safety Valve Equipment (API... 14A, Specification for Subsurface Safety Valve Equipment, Eleventh Edition, October 2005, Effective...

  7. ISS Logistics Hardware Disposition and Metrics Validation

    NASA Technical Reports Server (NTRS)

    Rogers, Toneka R.

    2010-01-01

    I was assigned to the Logistics Division of the International Space Station (ISS)/Spacecraft Processing Directorate. The Division consists of eight NASA engineers and specialists that oversee the logistics portion of the Checkout, Assembly, and Payload Processing Services (CAPPS) contract. Boeing, their sub-contractors and the Boeing Prime contract out of Johnson Space Center, provide the Integrated Logistics Support for the ISS activities at Kennedy Space Center. Essentially they ensure that spares are available to support flight hardware processing and the associated ground support equipment (GSE). Boeing maintains a Depot for electrical, mechanical and structural modifications and/or repair capability as required. My assigned task was to learn project management techniques utilized by NASA and its' contractors to provide an efficient and effective logistics support infrastructure to the ISS program. Within the Space Station Processing Facility (SSPF) I was exposed to Logistics support components, such as, the NASA Spacecraft Services Depot (NSSD) capabilities, Mission Processing tools, techniques and Warehouse support issues, required for integrating Space Station elements at the Kennedy Space Center. I also supported the identification of near-term ISS Hardware and Ground Support Equipment (GSE) candidates for excessing/disposition prior to October 2010; and the validation of several Logistics Metrics used by the contractor to measure logistics support effectiveness.

  8. 30 CFR 250.457 - What equipment is required to monitor drilling fluids?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.457 What equipment is required to monitor drilling fluids? Once you... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What equipment is required to monitor drilling...

  9. 30 CFR 250.457 - What equipment is required to monitor drilling fluids?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.457 What equipment is required... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What equipment is required to monitor drilling...

  10. 30 CFR 250.457 - What equipment is required to monitor drilling fluids?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What equipment is required to monitor drilling..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.457 What equipment is required to monitor...

  11. 30 CFR 250.457 - What equipment is required to monitor drilling fluids?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What equipment is required to monitor drilling..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.457 What equipment is required to monitor...

  12. 30 CFR 250.457 - What equipment is required to monitor drilling fluids?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What equipment is required to monitor drilling..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.457 What equipment is required to monitor...

  13. Medicare Program; Prior Authorization Process for Certain Durable Medical Equipment, Prosthetics, Orthotics, and Supplies. Final rule.

    PubMed

    2015-12-30

    This final rule establishes a prior authorization program for certain durable medical equipment, prosthetics, orthotics, and supplies (DMEPOS) items that are frequently subject to unnecessary utilization. This rule defines unnecessary utilization and creates a new requirement that claims for certain DMEPOS items must have an associated provisional affirmed prior authorization decision as a condition of payment. This rule also adds the review contractor's decision regarding prior authorization of coverage of DMEPOS items to the list of actions that are not initial determinations and therefore not appealable.

  14. A novel variable baseline visibility detection system and its measurement method

    NASA Astrophysics Data System (ADS)

    Li, Meng; Jiang, Li-hui; Xiong, Xing-long; Zhang, Guizhong; Yao, JianQuan

    2017-10-01

    As an important meteorological observation instrument, the visibility meter can ensure the safety of traffic operation. However, due to the optical system contamination as well as sample error, the accuracy and stability of the equipment are difficult to meet the requirement in the low-visibility environment. To settle this matter, a novel measurement equipment was designed based upon multiple baseline, which essentially acts as an atmospheric transmission meter with movable optical receiver, applying weighted least square method to process signal. Theoretical analysis and experiments in real atmosphere environment support this technique.

  15. 40 CFR 63.1335 - General recordkeeping and reporting provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Precompliance Report. The Administrator may deem alternative controls to be equivalent to the controls required... (CONTINUED) National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins... malfunction and a program for corrective action for malfunctioning process and air pollution control equipment...

  16. 78 FR 53784 - Notice of Lodging of Proposed Consent Decree Under the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... Decree would require (1) Installation of process equipment to provide redundancy that will allow hot.../Consent_Decrees.html . We will provide a paper copy of the Consent Decree upon written request and payment... cents per page [[Page 53785

  17. 40 CFR 63.982 - Requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., transfer racks, and equipment leaks. An owner or operator who is referred to this subpart for controlling regulated material emissions from storage vessels, process vents, low and high throughput transfer racks, or... racks. (i) For low throughput transfer racks, the owner or operator shall comply with the applicable...

  18. Quantitative assessment of anthrax vaccine immunogenicity using the dried blood spot matrix.

    PubMed

    Schiffer, Jarad M; Maniatis, Panagiotis; Garza, Ilana; Steward-Clark, Evelene; Korman, Lawrence T; Pittman, Phillip R; Mei, Joanne V; Quinn, Conrad P

    2013-03-01

    The collection, processing and transportation to a testing laboratory of large numbers of clinical samples during an emergency response situation present significant cost and logistical issues. Blood and serum are common clinical samples for diagnosis of disease. Serum preparation requires significant on-site equipment and facilities for immediate processing and cold storage, and significant costs for cold-chain transport to testing facilities. The dried blood spot (DBS) matrix offers an alternative to serum for rapid and efficient sample collection with fewer on-site equipment requirements and considerably lower storage and transport costs. We have developed and validated assay methods for using DBS in the quantitative anti-protective antigen IgG enzyme-linked immunosorbent assay (ELISA), one of the primary assays for assessing immunogenicity of anthrax vaccine and for confirmatory diagnosis of Bacillus anthracis infection in humans. We have also developed and validated high-throughput data analysis software to facilitate data handling for large clinical trials and emergency response. Published by Elsevier Ltd.

  19. Equipment for linking the AutoAnalyzer on-line to a computer

    PubMed Central

    Simpson, D.; Sims, G. E.; Harrison, M. I.; Whitby, L. G.

    1971-01-01

    An Elliott 903 computer with 8K central core store and magnetic tape backing store has been operated for approximately 20 months in a clinical chemistry laboratory. Details of the equipment designed for linking AutoAnalyzers on-line to the computer are described, and data presented concerning the time required by the computer for different processes. The reliability of the various components in daily operation is discussed. Limitations in the system's capabilities have been defined, and ways of overcoming these are delineated. At present, routine operations include the preparation of worksheets for a limited range of tests (five channels), monitoring of up to 11 AutoAnalyzer channels at a time on a seven-day week basis (with process control and automatic calculation of results), and the provision of quality control data. Cumulative reports can be printed out on those analyses for which computer-prepared worksheets are provided but the system will require extension before these can be issued sufficiently rapidly for routine use. PMID:5551384

  20. Collection and hauling of cereal grain chaff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reding, B.; Leduc, P.; Stumborg, M.

    1993-12-31

    Cereal grain chaff has been identified by Energy Mines and Resources, Canada, and Agriculture Canada, as a suitable feedstock for ethanol production. Canada produces 13,300,000 t (14,600,000 ton) of cereal grain chaff annually; mainly in the prairie region. Work conducted at the Prairie Agricultural Machinery Institute (PAMI), Humboldt, Saskatchewan, has determined that the collection of chaff for centralized processing is a problem due to low bulk density in its natural state. This problem can be overcome by densification using either compression or size reduction. Either method will be economical in a chaff shed radius of 140 km (87 mi) whenmore » chaff is densified to 160 kg/m{sup 3} (10 lb/ft{sup 3}). The size reduction method of densification may be economical to hauling distances exceeding 166 km (103 mi), particularly if size reduction is a required part of ethanol processing. Further work is under way to develop the required equipment modifications to allow existing farm equipment to be used for this purpose.« less

  1. Engineering Tests of Experimental Ammonia Process Printer-Developer

    DTIC Science & Technology

    1950-07-06

    of materials and processes for photo reproduction by the amonia process. c. It was expected that the new machine might also pro- vide an interim...grease, oil, amonia waste can, and attachzmnts. A 6- inch diareter flexible tube is attached at the roar of the rxchine for carrying away the exhaust heat...by field troops. 2 TGIF 58 SUBJECT: Amonia Process Equipment Developed Under Project 8-35-09-005 19 Jan 50 7. An early reply would be required in

  2. Industrialization of the mirror plate coatings for the ATHENA mission

    NASA Astrophysics Data System (ADS)

    Massahi, S.; Christensen, F. E.; Ferreira, D. D. M.; Shortt, B.; Collon, M.; Sforzini, J.; Landgraf, B.; Hinze, F.; Aulhorn, S.; Biedermann, R.

    2017-08-01

    In the frame of the development of the Advanced Telescope for High-ENergy Astrophysics (Athena) mission, currently in phase A, ESA is continuing to mature the optics technology and the associated mass production techniques. These efforts are driven by the programmatic and technical requirement of reaching TRL 6 prior to proposing the mission for formal adoption (planned for 2020). A critical part of the current phase A preparation activities is addressing the industrialization of the Silicon Pore Optics mirror plates coating. This include the transfer of the well-established coating processes and techniques, performed at DTU Space, to an industrial scale facility suitable for coating the more than 100,000 mirror plates required for Athena. In this paper, we explain the considerations for the planned coating facility including, requirement specification, equipment and supplier selection, preparing the coating facility for the deposition equipment, designing and fabrication.

  3. Innovation design of medical equipment based on TRIZ.

    PubMed

    Gao, Changqing; Guo, Leiming; Gao, Fenglan; Yang, Bo

    2015-01-01

    Medical equipment is closely related to personal health and safety, and this can be of concern to the equipment user. Furthermore, there is much competition among medical equipment manufacturers. Innovative design is the key to success for those enterprises. The design of medical equipment usually covers vastly different domains of knowledge. The application of modern design methodology in medical equipment and technology invention is an urgent requirement. TRIZ (Russian abbreviation of what can be translated as `theory of inventive problem solving') was born in Russia, which contain some problem-solving methods developed by patent analysis around the world, including Conflict Matrix, Substance Field Analysis, Standard Solution, Effects, etc. TRIZ is an inventive methodology for problems solving. As an Engineering example, infusion system is analyzed and re-designed by TRIZ. The innovative idea is generated to liberate the caretaker from the infusion bag watching out. The research in this paper shows the process of the application of TRIZ in medical device inventions. It is proved that TRIZ is an inventive methodology for problems solving and can be used widely in medical device development.

  4. 10 CFR 34.20 - Performance requirements for industrial radiography equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Performance requirements for industrial radiography equipment. 34.20 Section 34.20 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.20 Performance...

  5. 10 CFR 34.20 - Performance requirements for industrial radiography equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Performance requirements for industrial radiography equipment. 34.20 Section 34.20 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.20 Performance...

  6. 10 CFR 34.20 - Performance requirements for industrial radiography equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Performance requirements for industrial radiography equipment. 34.20 Section 34.20 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.20 Performance...

  7. 10 CFR 34.20 - Performance requirements for industrial radiography equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Performance requirements for industrial radiography equipment. 34.20 Section 34.20 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.20 Performance...

  8. 10 CFR 34.20 - Performance requirements for industrial radiography equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Performance requirements for industrial radiography equipment. 34.20 Section 34.20 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.20 Performance...

  9. Space transportation system payload interface verification

    NASA Technical Reports Server (NTRS)

    Everline, R. T.

    1977-01-01

    The paper considers STS payload-interface verification requirements and the capability provided by STS to support verification. The intent is to standardize as many interfaces as possible, not only through the design, development, test and evaluation (DDT and E) phase of the major payload carriers but also into the operational phase. The verification process is discussed in terms of its various elements, such as the Space Shuttle DDT and E (including the orbital flight test program) and the major payload carriers DDT and E (including the first flights). Five tools derived from the Space Shuttle DDT and E are available to support the verification process: mathematical (structural and thermal) models, the Shuttle Avionics Integration Laboratory, the Shuttle Manipulator Development Facility, and interface-verification equipment (cargo-integration test equipment).

  10. Tank 241-AY-101 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-01-12

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AY-101. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AY-101 required to satisfy Data Quality Objectives For RPP Privatization Phase I: Confirm Tank T Is An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO) (Nguyen 1999a), Data Quality Objectives For TWRS Privatization Phase I : Confirm Tank T Is An Appropriate Feed Source For Low-Activity Waste Feed Batch X (LAW DQO) (Nguyen 1999b), Low Activitymore » Waste and High-Level Waste Feed Data Quality Objectives (L and H DQO) (Patello et al. 1999), and Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO) (Bloom 1996). Special instructions regarding support to the LAW and HLW DQOs are provided by Baldwin (1999). Push mode core samples will be obtained from risers 15G and 150 to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples; composite the liquids and solids; perform chemical analyses on composite and segment samples; archive half-segment samples; and provide subsamples to the Process Chemistry Laboratory. The Process Chemistry Laboratory will prepare test plans and perform process tests to evaluate the behavior of the 241-AY-101 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. Requirements for analyses of samples originating in the process tests will be documented in the corresponding test plans and are not within the scope of this SAP.« less

  11. Tank 241-AY-101 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-05-19

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AY-101. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AY-101 required to satisfy ''Data Quality Objectives For RPP Privatization Phase I: Confirm Tank T Is An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO)' (Nguyen 1999a), ''Data Quality Objectives For TWRS Privatization Phase I: Confirm Tank T Is An Appropriate Feed Source For Low-Activity Waste Feed Butch X (LAW DQO) (Nguyen 1999b)'', ''Low Activity Wastemore » and High-Level Waste Feed Data Quality Objectives (L&H DQO)'' (Patello et al. 1999), and ''Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO)'' (Bloom 1996). Special instructions regarding support to the LAW and HLW DQOs are provided by Baldwin (1999). Push mode core samples will be obtained from risers 15G and 150 to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples; composite the liquids and solids; perform chemical analyses on composite and segment samples; archive half-segment samples; and provide sub-samples to the Process Chemistry Laboratory. The Process Chemistry Laboratory will prepare test plans and perform process tests to evaluate the behavior of the 241-AY-101 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. Requirements for analyses of samples originating in the process tests will be documented in the corresponding test plans and are not within the scope of this SAP.« less

  12. Orbital Spacecraft Consumables Resupply System (OSCRS). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The objective was to establish an earth storable fluid tanker concept which satisfies the initial resupply requirements for the Gamma Ray Observatory (GRO) at a reasonable front end cost while providing growth potential for foreseeable future earth storable fluid resupply mission requirements. The estimated costs required to design, develop, qualify, fabricate, and deliver a flight tanker and its associated control avionics, ground support equipment (GSE), and processing facilities, and the contractors costs to support the first operations mission are reviewed.

  13. Satellite services system analysis study. Volume 5: Programmatics

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The overall program and resources needed for development and operation of a Satellite Services System is reviewed. Program requirements covered system operations through 1993 and were completed in preliminary form. Program requirements were refined based on equipment preliminary design and analysis. Schedules, costs, equipment utilization, and facility/advanced technology requirements were included in the update. Equipment user charges were developed for each piece of equipment and for representative satellite servicing missions.

  14. Developing Qualified Logistics Readiness Officers (LROs) Within Air Combat Command (ACC): A Delphi Study

    DTIC Science & Technology

    2009-06-01

    today face ( Lovewell , 2007). Although the model equips LROs with the understanding of most basic logistics processes, it falls short to deliver a...areas to the degree the operations tempo requires ( Lovewell , 2007). Due to recent changes in mission requirements and organizational re-structuring...the current CFETP appears to be outdated ( Lovewell , 2007). 6 Base-Level Training Guiding the officer to fulfill their training

  15. Producibility and Production Aspects of the Market Analysis Process

    DTIC Science & Technology

    1989-06-01

    for most TROSCOM general purpose systems and equipment are the U.S. Army Quartermaster Center and School, Fort Lee, VA ( fuels handling and storage...established a Mission Area Proponency Branch staffed with military R&D Coordinator Officers (formerly TRISOs - Technical Requirements Integration Staff...time is spent reacting, rather than acting, i.e., the amount of work required to supply numerous reports on delinquent contractors and on Technical

  16. The precision measurement and assembly for miniature parts based on double machine vision systems

    NASA Astrophysics Data System (ADS)

    Wang, X. D.; Zhang, L. F.; Xin, M. Z.; Qu, Y. Q.; Luo, Y.; Ma, T. M.; Chen, L.

    2015-02-01

    In the process of miniature parts' assembly, the structural features on the bottom or side of the parts often need to be aligned and positioned. The general assembly equipment integrated with one vertical downward machine vision system cannot satisfy the requirement. A precision automatic assembly equipment was developed with double machine vision systems integrated. In the system, a horizontal vision system is employed to measure the position of the feature structure at the parts' side view, which cannot be seen with the vertical one. The position measured by horizontal camera is converted to the vertical vision system with the calibration information. By careful calibration, the parts' alignment and positioning in the assembly process can be guaranteed. The developed assembly equipment has the characteristics of easy implementation, modularization and high cost performance. The handling of the miniature parts and assembly procedure were briefly introduced. The calibration procedure was given and the assembly error was analyzed for compensation.

  17. 76 FR 72902 - Materials Processing Equipment Technical Advisory Committee;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical... questions that affect the level of export controls applicable to materials processing equipment and related...

  18. 40 CFR 63.11566 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information § 63.11566 What definitions apply to this subpart? Asphalt coating equipment means the saturators, coating mixers, and coaters used to apply asphalt...

  19. 40 CFR 63.11566 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information § 63.11566 What definitions apply to this subpart? Asphalt coating equipment means the saturators, coating mixers, and coaters used to apply asphalt...

  20. 40 CFR 63.11566 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information § 63.11566 What definitions apply to this subpart? Asphalt coating equipment means the saturators, coating mixers, and coaters used to apply asphalt...

  1. 40 CFR 63.11566 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information § 63.11566 What definitions apply to this subpart? Asphalt coating equipment means the saturators, coating mixers, and coaters used to apply asphalt...

  2. 40 CFR 63.1031 - Compressors standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... specified in the referencing subpart. (b) Seal system standard. Each compressor shall be equipped with a seal system that includes a barrier fluid system and that prevents leakage of process fluid to the.... Each compressor seal system shall meet the applicable requirements specified in paragraph (b)(1), (b)(2...

  3. 40 CFR 63.1031 - Compressors standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... specified in the referencing subpart. (b) Seal system standard. Each compressor shall be equipped with a seal system that includes a barrier fluid system and that prevents leakage of process fluid to the.... Each compressor seal system shall meet the applicable requirements specified in paragraph (b)(1), (b)(2...

  4. 47 CFR 74.750 - Transmission system facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Translator, and TV Booster Stations § 74.750 Transmission system facilities. (a) A low power TV, TV translator, or TV booster station shall operate with a transmitter that is either certificated for licensing... rebroadcasting TV booster transmitting equipment using a modulation process must meet the following requirements...

  5. 47 CFR 74.750 - Transmission system facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Translator, and TV Booster Stations § 74.750 Transmission system facilities. (a) A low power TV, TV translator, or TV booster station shall operate with a transmitter that is either certificated for licensing... rebroadcasting TV booster transmitting equipment using a modulation process must meet the following requirements...

  6. 47 CFR 74.750 - Transmission system facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Translator, and TV Booster Stations § 74.750 Transmission system facilities. (a) A low power TV, TV translator, or TV booster station shall operate with a transmitter that is either certificated for licensing... rebroadcasting TV booster transmitting equipment using a modulation process must meet the following requirements...

  7. RTM: Cost-effective processing of composite structures

    NASA Technical Reports Server (NTRS)

    Hasko, Greg; Dexter, H. Benson

    1991-01-01

    Resin transfer molding (RTM) is a promising method for cost effective fabrication of high strength, low weight composite structures from textile preforms. In this process, dry fibers are placed in a mold, resin is introduced either by vacuum infusion or pressure, and the part is cured. RTM has been used in many industries, including automotive, recreation, and aerospace. Each of the industries has different requirements of material strength, weight, reliability, environmental resistance, cost, and production rate. These requirements drive the selection of fibers and resins, fiber volume fractions, fiber orientations, mold design, and processing equipment. Research is made into applying RTM to primary aircraft structures which require high strength and stiffness at low density. The material requirements are discussed of various industries, along with methods of orienting and distributing fibers, mold configurations, and processing parameters. Processing and material parameters such as resin viscosity, perform compaction and permeability, and tool design concepts are discussed. Experimental methods to measure preform compaction and permeability are presented.

  8. Crew interface specification development study for in-flight maintenance and stowage functions

    NASA Technical Reports Server (NTRS)

    Carl, J. G.

    1971-01-01

    The need and potential solutions for an orderly systems engineering approach to the definition, management and documentation requirements for in-flight maintenance, assembly, servicing, and stowage process activities of the flight crews of future spacecraft were investigated. These processes were analyzed and described using a new technique (mass/function flow diagramming), developed during the study, to give visibility to crew functions and supporting requirements, including data products. This technique is usable by NASA for specification baselines and can assist the designer in identifying both upper and lower level requirements associated with these processes. These diagrams provide increased visibility into the relationships between functions and related equipments being utilized and managed and can serve as a common communicating vehicle between the designer, program management, and the operational planner. The information and data product requirements to support the above processes were identified along with optimum formats and contents of these products. The resulting data product concepts are presented to support these in-flight maintenance and stowage processes.

  9. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  10. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  11. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  12. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  13. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  14. 27 CFR 19.189 - Identification of structures, areas, apparatus, and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... structures, areas, apparatus, and equipment. 19.189 Section 19.189 Alcohol, Tobacco Products and Firearms... Construction, Equipment, and Security Requirements Other Plant Requirements § 19.189 Identification of structures, areas, apparatus, and equipment. (a) Buildings. The proprietor must mark each building at a...

  15. 77 FR 18151 - Discharge Removal Equipment for Vessels Carrying Oil

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... Facility Response Plans for Oil: 2003 Removal Equipment Requirements and Alternative Technology Revisions... ``Vessel and Facility Response Plans for Oil: 2003 Removal Equipment Requirements and Alternative... CGD 90-068] RIN 1625-AA02, Formerly 2115-AD66 Discharge Removal Equipment for Vessels Carrying Oil...

  16. 47 CFR 80.881 - Equipment requirements for ship stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Equipment requirements for ship stations. 80.881 Section 80.881 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... Subject to Subpart W § 80.881 Equipment requirements for ship stations. Vessels subject to subpart R of...

  17. 47 CFR 80.881 - Equipment requirements for ship stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Equipment requirements for ship stations. 80.881 Section 80.881 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... Subject to Subpart W § 80.881 Equipment requirements for ship stations. Vessels subject to subpart R of...

  18. 47 CFR 80.881 - Equipment requirements for ship stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Equipment requirements for ship stations. 80.881 Section 80.881 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... Subject to Subpart W § 80.881 Equipment requirements for ship stations. Vessels subject to subpart R of...

  19. 47 CFR 80.881 - Equipment requirements for ship stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Equipment requirements for ship stations. 80.881 Section 80.881 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... Subject to Subpart W § 80.881 Equipment requirements for ship stations. Vessels subject to subpart R of...

  20. 47 CFR 80.881 - Equipment requirements for ship stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Equipment requirements for ship stations. 80.881 Section 80.881 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... Subject to Subpart W § 80.881 Equipment requirements for ship stations. Vessels subject to subpart R of...

  1. 14 CFR 145.109 - Equipment, materials, and data requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Equipment, materials, and data requirements. 145.109 Section 145.109 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., Materials, and Data § 145.109 Equipment, materials, and data requirements. (a) Except as otherwise...

  2. 14 CFR 145.109 - Equipment, materials, and data requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Equipment, materials, and data requirements. 145.109 Section 145.109 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., Materials, and Data § 145.109 Equipment, materials, and data requirements. (a) Except as otherwise...

  3. 14 CFR 145.109 - Equipment, materials, and data requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Equipment, materials, and data requirements. 145.109 Section 145.109 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., Materials, and Data § 145.109 Equipment, materials, and data requirements. (a) Except as otherwise...

  4. 14 CFR 145.109 - Equipment, materials, and data requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Equipment, materials, and data requirements. 145.109 Section 145.109 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., Materials, and Data § 145.109 Equipment, materials, and data requirements. (a) Except as otherwise...

  5. 14 CFR 145.109 - Equipment, materials, and data requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Equipment, materials, and data requirements. 145.109 Section 145.109 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., Materials, and Data § 145.109 Equipment, materials, and data requirements. (a) Except as otherwise...

  6. Trends and problems in development of the power plants electrical part

    NASA Astrophysics Data System (ADS)

    Gusev, Yu. P.

    2015-03-01

    The article discusses some problems relating to development of the electrical part of modern nuclear and thermal power plants, which are stemming from the use of new process and electrical equipment, such as gas turbine units, power converters, and intellectual microprocessor devices in relay protection and automated control systems. It is pointed out that the failure rates of electrical equipment at Russian and foreign power plants tend to increase. The ongoing power plant technical refitting and innovative development processes generate the need to significantly widen the scope of research works on the electrical part of power plants and rendering scientific support to works on putting in use innovative equipment. It is indicated that one of main factors causing the growth of electrical equipment failures is that some of components of this equipment have insufficiently compatible dynamic characteristics. This, in turn may be due to lack or obsolescence of regulatory documents specifying the requirements for design solutions and operation of electric power equipment that incorporates electronic and microprocessor control and protection devices. It is proposed to restore the system of developing new and updating existing departmental regulatory technical documents that existed in the 1970s, one of the fundamental principles of which was placing long-term responsibility on higher schools and leading design institutions for rendering scientific-technical support to innovative development of components and systems forming the electrical part of power plants. This will make it possible to achieve lower failure rates of electrical equipment and to steadily improve the competitiveness of the Russian electric power industry and energy efficiency of generating companies.

  7. Lessons-Learned from D and D Activities at the Five Gaseous Diffusion Buildings (K-25, K- 27, K-29, K-31 and K-33) East Tennessee Technology Park, Oak Ridge, TN - 13574

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopotic, James D.; Ferri, Mark S.; Buttram, Claude

    The East Tennessee Technology Park (ETTP) is the site of five former gaseous diffusion plant (GDP) process buildings that were used to enrich uranium from 1945 to 1985. The process equipment in the original two buildings (K-25 and K-27) was used for the production of highly enriched uranium (HEU), while that in the three later buildings (K-29, K-31 and K-33) produced low enriched uranium (LEU). Equipment was contaminated primarily with uranium and to a lesser extent technetium (Tc). Decommissioning of the GDP process buildings has presented several unique challenges and produced many lessons-learned. Among these is the importance of good,more » up-front characterization in developing the best demolition approach. Also, chemical cleaning of process gas equipment and piping (PGE) prior to shutdown should be considered to minimize the amount of hold-up material that must be removed by demolition crews. Another lesson learned is to maintain shutdown buildings in a dry state to minimize structural degradation which can significantly complicate characterization, deactivation and demolition efforts. Perhaps the most important lesson learned is that decommissioning GDP process buildings is first and foremost a waste logistics challenge. Innovative solutions are required to effectively manage the sheer volume of waste generated from decontamination and demolition (D and D) of these enormous facilities. Finally, close coordination with Security is mandatory to effectively manage Special Nuclear Material (SNM) and classified equipment issues. (authors)« less

  8. 47 CFR 80.225 - Requirements for selective calling equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... selective calling (DSC) equipment and selective calling equipment installed in ship and coast stations, and...-STD, “RTCM Recommended Minimum Standards for Digital Selective Calling (DSC) Equipment Providing... Class ‘D’ Digital Selective Calling (DSC)—Methods of testing and required test results,” March 2003. ITU...

  9. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  10. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  11. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  12. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  13. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  14. 40 CFR 1039.625 - What requirements apply under the program for equipment-manufacturer flexibility?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... NONROAD COMPRESSION-IGNITION ENGINES Special Compliance Provisions § 1039.625 What requirements apply... manufacturers to produce equipment with engines that are subject to less stringent emission standards after the... such equipment without manufacturing it. Engines and equipment you produce under this section are...

  15. 40 CFR 1039.625 - What requirements apply under the program for equipment-manufacturer flexibility?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... NONROAD COMPRESSION-IGNITION ENGINES Special Compliance Provisions § 1039.625 What requirements apply... manufacturers to produce equipment with engines that are subject to less stringent emission standards after the... such equipment without manufacturing it. Engines and equipment you produce under this section are...

  16. 40 CFR 63.986 - Nonflare control devices used for equipment leaks only.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment leaks only. 63.986 Section 63.986 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... leaks only. (a) Equipment and operating requirements. (1) Owners or operators using a nonflare control device to meet the applicable requirements of a referencing subpart for equipment leaks shall meet the...

  17. 77 FR 72411 - The Standard on Personal Protective Equipment (PPE) for Shipyard Employment; Extension of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... Standard on Personal Protective Equipment (PPE) for Shipyard Employment; Extension of the Office of... requirements specified in the Standard on Personal Protective Equipment (PPE) for Shipyard Employment (29 CFR... information collection requirements contained in the Standard on Personal Protective Equipment (PPE) for...

  18. 30 CFR 77.1707 - First aid equipment; location; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false First aid equipment; location; minimum... OF UNDERGROUND COAL MINES Miscellaneous § 77.1707 First aid equipment; location; minimum requirements. (a) Each operator of a surface coal mine shall maintain a supply of the first aid equipment set forth...

  19. 76 FR 29169 - Requirements for Intermodal Equipment Providers and for Motor Carriers and Drivers Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... No. FMCSA-2005-23315] RIN 2126-AB37 Requirements for Intermodal Equipment Providers and for Motor Carriers and Drivers Operating Intermodal Equipment AGENCY: Federal Motor Carrier Safety Administration... driver- vehicle inspection report (DVIR) on an item of intermodal equipment (IME) when no damage, defects...

  20. 46 CFR 148.85 - Required equipment for confined spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Required equipment for confined spaces. 148.85 Section 148.85 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF... Required equipment for confined spaces. When transporting a material that is listed in Table 148.10 of this...

  1. 46 CFR 148.85 - Required equipment for confined spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Required equipment for confined spaces. 148.85 Section 148.85 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF... Required equipment for confined spaces. When transporting a material that is listed in Table 148.10 of this...

  2. 30 CFR 250.806 - Safety and pollution prevention equipment quality assurance requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Safety and pollution prevention equipment... pollution prevention equipment quality assurance requirements. (a) General requirements. (1) Except as provided in paragraph (b)(1) of this section, you may install only certified safety and pollution...

  3. Satellite services system analysis study: Propellant transfer system

    NASA Technical Reports Server (NTRS)

    1982-01-01

    General servicing requirements, a servicing mission concept and scenario, overall servicing needs, basic servicing equipment, and a general servicing mission configuration layout are addressed. Servicing needs, equipment concepts, system requirements equipment specifications, preliminary designs, and resource requirements for flight hardware for the propellant transfer system are also addressed.

  4. Microgravity science experiment integration - When the PI and the PED differ

    NASA Technical Reports Server (NTRS)

    Baer-Peckham, M. S.; Mccarley, K. S.

    1991-01-01

    This paper addresses issues related to the integration of principal investigators (PIs) and payload-element developers (PEDs) for conducting effective microgravity experiments. The Crystal Growth Furnace (CGF) is used as an example to demonstrate the key issues related to the integration of a PI's sample into a facility run by a different organization. Attention is given to the typical preflight timeline, documentation required for experimental implementation, and hardware deliverables. A flow chart delineates the payload-integration process flow, and PI inputs required for an experiment include equipment and procedure definitions, detailed design and fabrication of the experiment-specific equipment, and specifications of the contract-end item. The present analysis is of interest to the coordination of effective microgravity experiments on the Space Station Freedom that incorporate PIs and PEDs from different organizations.

  5. 75 FR 47546 - Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  6. 75 FR 66356 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  7. 78 FR 13625 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  8. 77 FR 65857 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  9. 76 FR 20949 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  10. 77 FR 42483 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  11. 78 FR 24160 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  12. 77 FR 25960 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  13. 78 FR 42754 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  14. 76 FR 42678 - Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  15. 78 FR 63161 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  16. HL-20 operations and support requirements for the Personnel Launch System mission

    NASA Technical Reports Server (NTRS)

    Morris, W. D.; White, Nancy H.; Caldwell, Ronald G.

    1993-01-01

    The processing, mission planning, and support requirements were defined for the HL-20 lifting-body configuration that can serve as a Personnel Launch System. These requirements were based on the assumption of an operating environment that incorporates aircraft and airline support methods and techniques that are applicable to operations. The study covered the complete turnaround process for the HL-20, including landing through launch, and mission operations, but did not address the support requirements of the launch vehicle except for the integrated activities. Support is defined in terms of manpower, staffing levels, facilities, ground support equipment, maintenance/sparing requirements, and turnaround processing time. Support results were drawn from two contracted studies, plus an in-house analysis used to define the maintenance manpower. The results of the contracted studies were used as the basis for a stochastic simulation of the support environment to determine the sufficiency of support and the effect of variance on vehicle processing. Results indicate the levels of support defined for the HL-20 through this process to be sufficient to achieve the desired flight rate of eight flights per year.

  17. Apollo Experiment Report: Lunar-Sample Processing in the Lunar Receiving Laboratory High-Vacuum Complex

    NASA Technical Reports Server (NTRS)

    White, D. R.

    1976-01-01

    A high-vacuum complex composed of an atmospheric decontamination system, sample-processing chambers, storage chambers, and a transfer system was built to process and examine lunar material while maintaining quarantine status. Problems identified, equipment modifications, and procedure changes made for Apollo 11 and 12 sample processing are presented. The sample processing experiences indicate that only a few operating personnel are required to process the sample efficiently, safely, and rapidly in the high-vacuum complex. The high-vacuum complex was designed to handle the many contingencies, both quarantine and scientific, associated with handling an unknown entity such as the lunar sample. Lunar sample handling necessitated a complex system that could not respond rapidly to changing scientific requirements as the characteristics of the lunar sample were better defined. Although the complex successfully handled the processing of Apollo 11 and 12 lunar samples, the scientific requirement for vacuum samples was deleted after the Apollo 12 mission just as the vacuum system was reaching its full potential.

  18. 40 CFR 98.173 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources). (b... basis (% CO2). Q = Hourly stack gas volumetric flow rate (scfh). %H2O = Hourly moisture percentage in... vented through the same stack as any combustion unit or process equipment that reports CO2 emissions...

  19. 40 CFR 98.173 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources). (b..., dry basis (% CO2). Q = Hourly stack gas volumetric flow rate (scfh). %H2O = Hourly moisture percentage... reduction furnace are vented through the same stack as any combustion unit or process equipment that reports...

  20. 40 CFR 98.173 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources). (b... basis (% CO2). Q = Hourly stack gas volumetric flow rate (scfh). %H2O = Hourly moisture percentage in... vented through the same stack as any combustion unit or process equipment that reports CO2 emissions...

Top