Sample records for requirements engineering techniques

  1. SAGA: A project to automate the management of software production systems

    NASA Technical Reports Server (NTRS)

    Campbell, Roy H.; Beckman-Davies, C. S.; Benzinger, L.; Beshers, G.; Laliberte, D.; Render, H.; Sum, R.; Smith, W.; Terwilliger, R.

    1986-01-01

    Research into software development is required to reduce its production cost and to improve its quality. Modern software systems, such as the embedded software required for NASA's space station initiative, stretch current software engineering techniques. The requirements to build large, reliable, and maintainable software systems increases with time. Much theoretical and practical research is in progress to improve software engineering techniques. One such technique is to build a software system or environment which directly supports the software engineering process, i.e., the SAGA project, comprising the research necessary to design and build a software development which automates the software engineering process. Progress under SAGA is described.

  2. Vehicle Maintenance Manpower Requirements for U.S. Army Installation Directorates of Engineering and Housing Based on Air Force, Navy, and Army Reserves’ Staffing Techniques.

    DTIC Science & Technology

    1986-07-01

    Reserves staffing. A comparison with the Navy technique, which requires estimates of mileage and operating hours, was not possible since these data were...Directorate of Engineering and Housing (DEH) vehicle maintenance activities. To make comparisons, manpower requirements data totaling two megabytes of

  3. New technique for the direct measurement of core noise from aircraft engines

    NASA Technical Reports Server (NTRS)

    Krejsa, E. A.

    1981-01-01

    A new technique is presented for directly measuring the core noise levels from gas turbine aircraft engines. The technique requires that fluctuating pressures be measured in the far-field and at two locations within the engine core. The cross-spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine core. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an AVCO Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.

  4. A top-down approach in control engineering third-level teaching: The case of hydrogen-generation

    NASA Astrophysics Data System (ADS)

    Setiawan, Eko; Habibi, M. Afnan; Fall, Cheikh; Hodaka, Ichijo

    2017-09-01

    This paper presents a top-down approach in control engineering third-level teaching. The paper shows the control engineering solution for the issue of practical implementation in order to motivate students. The proposed strategy only focuses on one technique of control engineering to lead student correctly. The proposed teaching steps are 1) defining the problem, 2) listing of acquired knowledge or required skill, 3) selecting of one control engineering technique, 4) arrangement the order of teaching: problem introduction, implementation of control engineering technique, explanation of system block diagram, model derivation, controller design, and 5) enrichment knowledge by the other control techniques. The approach presented highlights hardware implementation and the use of software simulation as a self-learning tool for students.

  5. Systems Security Engineering

    DTIC Science & Technology

    2010-08-22

    Commission (IEC). “Information technology — Security techniques — Code of practice for information security management ( ISO /IEC 27002 ...Information technology — Security techniques — Information security management systems —Requirements ( ISO /IEC 27002 ),”, “Information technology — Security...was a draft ISO standard on Systems and software engineering, Systems and software assurance [18]. Created by systems engineers for systems

  6. The formation of students’ engineering thinking as a way to create new techniques, technologies, materials

    NASA Astrophysics Data System (ADS)

    Gilmanshin, Iskander; Gilmanshina, Suriya

    2016-06-01

    Engineering thinking is regarded as the quality of the person, which is stimulating the human need for the creation of new techniques, technologies and materials. Applications in the study of competence approach allows us to consider a professional thinking as one of the core competencies required for successful engineer innovations in mechanical engineering. The author's definition of professional engineering thinking is presented. The ways of its formation at students of technical fields enrolled in university courses are illustrated

  7. Matrix Perturbation Techniques in Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Caughey, T. K.

    1973-01-01

    Matrix perturbation are developed techniques which can be used in the dynamical analysis of structures where the range of numerical values in the matrices extreme or where the nature of the damping matrix requires that complex valued eigenvalues and eigenvectors be used. The techniques can be advantageously used in a variety of fields such as earthquake engineering, ocean engineering, aerospace engineering and other fields concerned with the dynamical analysis of large complex structures or systems of second order differential equations. A number of simple examples are included to illustrate the techniques.

  8. Modeling software systems by domains

    NASA Technical Reports Server (NTRS)

    Dippolito, Richard; Lee, Kenneth

    1992-01-01

    The Software Architectures Engineering (SAE) Project at the Software Engineering Institute (SEI) has developed engineering modeling techniques that both reduce the complexity of software for domain-specific computer systems and result in systems that are easier to build and maintain. These techniques allow maximum freedom for system developers to apply their domain expertise to software. We have applied these techniques to several types of applications, including training simulators operating in real time, engineering simulators operating in non-real time, and real-time embedded computer systems. Our modeling techniques result in software that mirrors both the complexity of the application and the domain knowledge requirements. We submit that the proper measure of software complexity reflects neither the number of software component units nor the code count, but the locus of and amount of domain knowledge. As a result of using these techniques, domain knowledge is isolated by fields of engineering expertise and removed from the concern of the software engineer. In this paper, we will describe kinds of domain expertise, describe engineering by domains, and provide relevant examples of software developed for simulator applications using the techniques.

  9. A simplified gross thrust computing technique for an afterburning turbofan engine

    NASA Technical Reports Server (NTRS)

    Hamer, M. J.; Kurtenbach, F. J.

    1978-01-01

    A simplified gross thrust computing technique extended to the F100-PW-100 afterburning turbofan engine is described. The technique uses measured total and static pressures in the engine tailpipe and ambient static pressure to compute gross thrust. Empirically evaluated calibration factors account for three-dimensional effects, the effects of friction and mass transfer, and the effects of simplifying assumptions for solving the equations. Instrumentation requirements and the sensitivity of computed thrust to transducer errors are presented. NASA altitude facility tests on F100 engines (computed thrust versus measured thrust) are presented, and calibration factors obtained on one engine are shown to be applicable to the second engine by comparing the computed gross thrust. It is concluded that this thrust method is potentially suitable for flight test application and engine maintenance on production engines with a minimum amount of instrumentation.

  10. Orbit Transfer Vehicle (OTV) advanced expander cycle engine point design study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1980-01-01

    Engine control techniques were established and new technology requirements were identified. The designs of the components and engine were prepared in sufficient depth to calculate engine and component weights and envelopes, turbopump efficiencies and recirculation leakage rates, and engine performance. Engine design assumptions are presented along with the structural design criteria.

  11. Engineering Techniques for Electromagnetic Pulse-Hardness Testing.

    DTIC Science & Technology

    electromagnetic pulse (EMP). The text describes energy sources, simulation techniques, test instrumentation, and testing techniques. Emphasis is on testing that can be accomplished by engineers with knowledge of electromagnetics and circuits. Complicated systems that require special expertise are described only to acquaint the reader with their characteristics. This text is intended to supplement the testing portion of DNA 2772T ’DNA EMP Awareness Course Notes.’

  12. Applying Early Systems Engineering: Injecting Knowledge into the Capability Development Process

    DTIC Science & Technology

    2012-10-01

    involves early use of systems engi- neering and technical analyses to supplement the existing operational analysis techniques currently used in...complexity, and costs of systems now being developed require tight coupling between operational requirements stated in the CDD, system requirements...Fleischer » Keywords: Capability Development, Competitive Prototyping, Knowledge Points, Early Systems Engineering Applying Early Systems

  13. Dynamic Environmental Qualification Techniques.

    DTIC Science & Technology

    1981-12-01

    environments peculiar to military operations and requirements. numerous dynamic qualification test methods have been established. It was the purpose...requires the achievement of the highest practicable degree in the standard- ization of items, materials and engineering practices within the...standard is described as "A document that established engineering and technical requirements for processes, pro’cedures, practices and methods that have

  14. 78 FR 49781 - Notice of Intent To Seek Approval To Establish an Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... computer and information science and engineering. Awardees will be required to submit annual project... through the use of automated collection techniques or other forms of information technology. DATES...: Title of Collection: Computer and Information Science and Engineering Reporting Requirements. OMB Number...

  15. Preparing the NDE engineers of the future: Education, training, and diversity

    NASA Astrophysics Data System (ADS)

    Holland, Stephen D.

    2017-02-01

    As quantitative NDE has matured and entered the mainstream, it has created an industry need for engineers who can select, evaluate, and qualify NDE techniques to satisfy quantitative engineering requirements. NDE as a field is cross-disciplinary with major NDE techniques relying on a broad spectrum of physics disciplines including fluid mechanics, electromagnetics, mechanical waves, and high energy physics. An NDE engineer needs broad and deep understanding of the measurement physics across modalities, a general engineering background, and familiarity with shop-floor practices and tools. While there are a wide range of certification and training programs worldwide for NDE technicians, there are few programs aimed at engineers. At the same time, substantial demographic shifts are underway with many experienced NDE engineers and technicians nearing retirement, and with new generations coming from much more diverse backgrounds. There is a need for more and better education opportunities for NDE engineers. Both teaching and learning NDE engineering are inherently challenging because of the breadth and depth of knowledge required. At the same time, sustaining the field in a more diverse era will require broadening participation of previously underrepresented groups. The QNDE 2016 conference in Atlanta, GA included a session on NDE education, training, and diversity. This paper summarizes the outcomes and discussion from this session.

  16. Application of polarization in high speed, high contrast inspection

    NASA Astrophysics Data System (ADS)

    Novak, Matthew J.

    2017-08-01

    Industrial optical inspection often requires high speed and high throughput of materials. Engineers use a variety of techniques to handle these inspection needs. Some examples include line scan cameras, high speed multi-spectral and laser-based systems. High-volume manufacturing presents different challenges for inspection engineers. For example, manufacturers produce some components in quantities of millions per month, per week or even per day. Quality control of so many parts requires creativity to achieve the measurement needs. At times, traditional vision systems lack the contrast to provide the data required. In this paper, we show how dynamic polarization imaging captures high contrast images. These images are useful for engineers to perform inspection tasks in some cases where optical contrast is low. We will cover basic theory of polarization. We show how to exploit polarization as a contrast enhancement technique. We also show results of modeling for a polarization inspection application. Specifically, we explore polarization techniques for inspection of adhesives on glass.

  17. Preface to RIGiM 2009

    NASA Astrophysics Data System (ADS)

    Rolland, Colette; Yu, Eric; Salinesi, Camille; Castro, Jaelson

    The use of intentional concepts, the notion of "goal" in particular, has been prominent in recent approaches to requirement engineering (RE). Goal-oriented frameworks and methods for requirements engineering (GORE) have been keynote topics in requirements engineering, conceptual modelling, and more generally in software engineering. What are the conceptual modelling foundations in these approaches? RIGiM (Requirements Intentions and Goals in Conceptual Modelling) aims to provide a forum for discussing the interplay between requirements engineering and conceptual modelling, and in particular, to investigate how goal- and intention-driven approaches help in conceptualising purposeful systems. What are the fundamental objectives and premises of requirements engineering and conceptual modelling respectively, and how can they complement each other? What are the demands on conceptual modelling from the standpoint of requirements engineering? What conceptual modelling techniques can be further taken advantage of in requirements engineering? What are the upcoming modelling challenges and issues in GORE? What are the unresolved open questions? What lessons are there to be learnt from industrial experiences? What empirical data are there to support the cost-benefit analysis when adopting GORE methods? Are there application domains or types of project settings for which goals and intentional approaches are particularly suitable or not suitable? What degree of formalization and automation, or interactivity is feasible and appropriate for what types of participants during requirements engineering?

  18. Large Animal Models of an In Vivo Bioreactor for Engineering Vascularized Bone.

    PubMed

    Akar, Banu; Tatara, Alexander M; Sutradhar, Alok; Hsiao, Hui-Yi; Miller, Michael; Cheng, Ming-Huei; Mikos, Antonios G; Brey, Eric M

    2018-04-12

    Reconstruction of large skeletal defects is challenging due to the requirement for large volumes of donor tissue and the often complex surgical procedures. Tissue engineering has the potential to serve as a new source of tissue for bone reconstruction, but current techniques are often limited in regards to the size and complexity of tissue that can be formed. Building tissue using an in vivo bioreactor approach may enable the production of appropriate amounts of specialized tissue, while reducing issues of donor site morbidity and infection. Large animals are required to screen and optimize new strategies for growing clinically appropriate volumes of tissues in vivo. In this article, we review both ovine and porcine models that serve as models of the technique proposed for clinical engineering of bone tissue in vivo. Recent findings are discussed with these systems, as well as description of next steps required for using these models, to develop clinically applicable tissue engineering applications.

  19. Tissue engineering, stem cells, and cloning for the regeneration of urologic organs.

    PubMed

    Atala, Anthony

    2003-10-01

    Tissue engineering efforts are currently being undertaken for every type of tissue and organ within the urinary system. Most of the effort expended to engineer genitourinary tissues has occurred within the last decade. Tissue engineering techniques require a cell culture facility designed for human application. Personnel who have mastered the techniques of cell harvest, culture, and expansion as well as polymer design are essential for the successful application of this technology. Various engineered genitourinary tissues are at different stages of development, with some already being used clinically, a few in preclinical trials, and some in the discovery stage. Recent progress suggests that engineered urologic tissues may have an expanded clinical applicability in the future.

  20. Requirements model for an e-Health awareness portal

    NASA Astrophysics Data System (ADS)

    Hussain, Azham; Mkpojiogu, Emmanuel O. C.; Nawi, Mohd Nasrun M.

    2016-08-01

    Requirements engineering is at the heart and foundation of software engineering process. Poor quality requirements inevitably lead to poor quality software solutions. Also, poor requirement modeling is tantamount to designing a poor quality product. So, quality assured requirements development collaborates fine with usable products in giving the software product the needed quality it demands. In the light of the foregoing, the requirements for an e-Ebola Awareness Portal were modeled with a good attention given to these software engineering concerns. The requirements for the e-Health Awareness Portal are modeled as a contribution to the fight against Ebola and helps in the fulfillment of the United Nation's Millennium Development Goal No. 6. In this study requirements were modeled using UML 2.0 modeling technique.

  1. Systems Security Engineering

    DTIC Science & Technology

    2010-08-22

    practice for information security management ( ISO /IEC 27002 ),” “Information technology — Security techniques — Information security management...systems —Requirements ( ISO /IEC 27002 ),”, “Information technology — Security techniques — Information security risk management ( ISO /IEC 27005).” from...associated practice aids. Perhaps the most germane discovery from this effort was a draft ISO standard on Systems and software engineering, Systems and

  2. Engineering Analysis of Stresses in Railroad Rails.

    DOT National Transportation Integrated Search

    1981-10-01

    One portion of the Federal Railroad Administration's (FRA) Track Performance Improvement Program is the development of engineering and analytic techniques required for the design and maintenance of railroad track of increased integrity and safety. Un...

  3. The methods of formaldehyde emission testing of engine: A review

    NASA Astrophysics Data System (ADS)

    Zhang, Chunhui; Geng, Peng; Cao, Erming; Wei, Lijiang

    2015-12-01

    A number of measurements have been provided to detect formaldehyde in the atmosphere, but there are no clear unified standards in engine exhaust. Nowadays, formaldehyde, an unregulated emission from methanol engine, has been attracting increasing attention by researchers. This paper presents the detection techniques for formaldehyde emitted from the engines applied in recent market, introducing the approaches in terms of unregulated emission tests of formaldehyde, which involved gas chromatography, liquid chromatography, chromatography-mass spectrometry, chromatography-spectrum, Fourier infrared spectroscopy and spectrophotometry. The author also introduces the comparison regarding to the advantages of the existing detection techniques based on the principle, to compare with engine exhaust sampling method, the treatment in advance of detection, obtaining approaches accessing to the qualitative and quantitative analysis of chromatograms or spectra. The accuratest result obtained was chromatography though it cannot be used continuously. It also can be utilized to develop high requirements of emissions and other regulations. Fourier infrared spectroscopy has the advantage of continuous detection for a variety of unregulated emissions and can be applied to the bench in variable condition. However, its accuracy is not as good as chromatography. As the conclusion, a detection technique is chosen based on different requirements.

  4. Photovoltaic power system reliability considerations

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.

    1980-01-01

    An example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems is presented. This particular application is for a solar cell power system demonstration project designed to provide electric power requirements for remote villages. The techniques utilized involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of fail-safe and planned spare parts engineering philosophy.

  5. Integrating interface slicing into software engineering processes

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    Interface slicing is a tool which was developed to facilitate software engineering. As previously presented, it was described in terms of its techniques and mechanisms. The integration of interface slicing into specific software engineering activities is considered by discussing a number of potential applications of interface slicing. The applications discussed specifically address the problems, issues, or concerns raised in a previous project. Because a complete interface slicer is still under development, these applications must be phrased in future tenses. Nonetheless, the interface slicing techniques which were presented can be implemented using current compiler and static analysis technology. Whether implemented as a standalone tool or as a module in an integrated development or reverse engineering environment, they require analysis no more complex than that required for current system development environments. By contrast, conventional slicing is a methodology which, while showing much promise and intuitive appeal, has yet to be fully implemented in a production language environment despite 12 years of development.

  6. Solid Free-form Fabrication Technology and Its Application to Bone Tissue Engineering

    PubMed Central

    Lee, Jin Woo; Kim, Jong Young; Cho, Dong-Woo

    2010-01-01

    The development of scaffolds for use in cell-based therapies to repair damaged bone tissue has become a critical component in the field of bone tissue engineering. However, design of scaffolds using conventional fabrication techniques has limited further advancement, due to a lack of the required precision and reproducibility. To overcome these constraints, bone tissue engineers have focused on solid free-form fabrication (SFF) techniques to generate porous, fully interconnected scaffolds for bone tissue engineering applications. This paper reviews the potential application of SFF fabrication technologies for bone tissue engineering with respect to scaffold fabrication. In the near future, bone scaffolds made using SFF apparatus should become effective therapies for bone defects. PMID:24855546

  7. External fuel vaporization study, phase 1

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Chiappetta, L.

    1980-01-01

    A conceptual design study was conducted to devise and evaluate techniques for the external vaporization of fuel for use in an aircraft gas turbine with characteristics similar to the Energy Efficient Engine (E(3)). Three vaporizer concepts were selected and they were analyzed from the standpoint of fuel thermal stability, integration of the vaporizer system into the aircraft engine, engine and vaporizer dynamic response, startup and altitude restart, engine performance, control requirements, safety, and maintenance. One of the concepts was found to improve the performance of the baseline E(3) engine without seriously compromising engine startup and power change response. Increased maintenance is required because of the need for frequent pyrolytic cleaning of the surfaces in contact with hot fuel.

  8. Space shuttle main engine controller

    NASA Technical Reports Server (NTRS)

    Mattox, R. M.; White, J. B.

    1981-01-01

    A technical description of the space shuttle main engine controller, which provides engine checkout prior to launch, engine control and monitoring during launch, and engine safety and monitoring in orbit, is presented. Each of the major controller subassemblies, the central processing unit, the computer interface electronics, the input electronics, the output electronics, and the power supplies are described and discussed in detail along with engine and orbiter interfaces and operational requirements. The controller represents a unique application of digital concepts, techniques, and technology in monitoring, managing, and controlling a high performance rocket engine propulsion system. The operational requirements placed on the controller, the extremely harsh operating environment to which it is exposed, and the reliability demanded, result in the most complex and rugged digital system ever designed, fabricated, and flown.

  9. The making of the mechanical universe

    NASA Technical Reports Server (NTRS)

    Blinn, James

    1989-01-01

    The Mechanical Universe project required the production of over 550 different animated scenes, totaling about 7 and 1/2 hours of screen time. The project required the use of a wide range of techniques and motivated the development of several different software packages. A documentation is presented of many aspects of the project, encompassing artistic design issues, scientific simulations, software engineering, and video engineering.

  10. Assessing an Entrepreneurship Education Project in Engineering Studies by Means of Participatory Techniques

    ERIC Educational Resources Information Center

    Ortiz-Medina, Leovigilda; Fernández-Ahumada, Elvira; Lara-Vélez, Pablo; Garrido-Varo, Ana; Pérez-Marin, Dolores; Guerrero-Ginel, José Emilio

    2014-01-01

    The new imperatives of the knowledge-based society require engineering students to equip themselves with a broad range of skills, among which entrepreneurship plays a critical role. An academic itinerary was designed with the explicit aim of improving the entrepreneurial attitudes of agricultural engineering students in a state university in…

  11. Additive manufacturing techniques for the production of tissue engineering constructs.

    PubMed

    Mota, Carlos; Puppi, Dario; Chiellini, Federica; Chiellini, Emo

    2015-03-01

    'Additive manufacturing' (AM) refers to a class of manufacturing processes based on the building of a solid object from three-dimensional (3D) model data by joining materials, usually layer upon layer. Among the vast array of techniques developed for the production of tissue-engineering (TE) scaffolds, AM techniques are gaining great interest for their suitability in achieving complex shapes and microstructures with a high degree of automation, good accuracy and reproducibility. In addition, the possibility of rapidly producing tissue-engineered constructs meeting patient's specific requirements, in terms of tissue defect size and geometry as well as autologous biological features, makes them a powerful way of enhancing clinical routine procedures. This paper gives an extensive overview of different AM techniques classes (i.e. stereolithography, selective laser sintering, 3D printing, melt-extrusion-based techniques, solution/slurry extrusion-based techniques, and tissue and organ printing) employed for the development of tissue-engineered constructs made of different materials (i.e. polymeric, ceramic and composite, alone or in combination with bioactive agents), by highlighting their principles and technological solutions. Copyright © 2012 John Wiley & Sons, Ltd.

  12. NASA software documentation standard software engineering program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Software Documentation Standard (hereinafter referred to as Standard) can be applied to the documentation of all NASA software. This Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. This basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.

  13. Systems Engineering in NASA's R&TD Programs

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is largely the analysis and planning that support the design, development, and operation of systems. The most common application of systems engineering is in guiding systems development projects that use a phased process of requirements, specifications, design, and development. This paper investigates how systems engineering techniques should be applied in research and technology development programs for advanced space systems. These programs should include anticipatory engineering of future space flight systems and a project portfolio selection process, as well as systems engineering for multiple development projects.

  14. Knowledge-based system verification and validation

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.

    1990-01-01

    The objective of this task is to develop and evaluate a methodology for verification and validation (V&V) of knowledge-based systems (KBS) for space station applications with high reliability requirements. The approach consists of three interrelated tasks. The first task is to evaluate the effectiveness of various validation methods for space station applications. The second task is to recommend requirements for KBS V&V for Space Station Freedom (SSF). The third task is to recommend modifications to the SSF to support the development of KBS using effectiveness software engineering and validation techniques. To accomplish the first task, three complementary techniques will be evaluated: (1) Sensitivity Analysis (Worchester Polytechnic Institute); (2) Formal Verification of Safety Properties (SRI International); and (3) Consistency and Completeness Checking (Lockheed AI Center). During FY89 and FY90, each contractor will independently demonstrate the user of his technique on the fault detection, isolation, and reconfiguration (FDIR) KBS or the manned maneuvering unit (MMU), a rule-based system implemented in LISP. During FY91, the application of each of the techniques to other knowledge representations and KBS architectures will be addressed. After evaluation of the results of the first task and examination of Space Station Freedom V&V requirements for conventional software, a comprehensive KBS V&V methodology will be developed and documented. Development of highly reliable KBS's cannot be accomplished without effective software engineering methods. Using the results of current in-house research to develop and assess software engineering methods for KBS's as well as assessment of techniques being developed elsewhere, an effective software engineering methodology for space station KBS's will be developed, and modification of the SSF to support these tools and methods will be addressed.

  15. Manpower Requirements Report for FY 1982

    DTIC Science & Technology

    1981-02-01

    Specifically included are program elements for industrial preparedness, second destination transportation, property disposal, production engineering ...artillery, and combat - engineers . Army policy accepts the fact that women will serve in loca- .. tions throughout the battlefield, will be expected to... industrial engineering work measurement techniques and computerized models such as the Logistics Composite Model (LCOM). MEP policy emanates from the

  16. Flat-plate solar array project. Volume 6: Engineering sciences and reliability

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Smokler, M. I.

    1986-01-01

    The Flat-Plate Solar Array (FSA) Project activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety, and reliability requirements of large scale terrestrial photovoltaic systems applications are reported. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis of define design shortfalls and, thus, areas requiring additional research and development. A summary of the approach and technical outcome of these activities are provided along with a complete bibliography of the published documentation covering the detailed accomplishments and technologies developed.

  17. 14 CFR 43.2 - Records of overhaul and rebuilding.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... engine, propeller, appliance, or component part as being overhauled unless— (1) Using methods, techniques... may describe in any required maintenance entry or form an aircraft, airframe, aircraft engine, propeller, appliance, or component part as being rebuilt unless it has been disassembled, cleaned, inspected...

  18. 14 CFR 43.2 - Records of overhaul and rebuilding.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... engine, propeller, appliance, or component part as being overhauled unless— (1) Using methods, techniques... may describe in any required maintenance entry or form an aircraft, airframe, aircraft engine, propeller, appliance, or component part as being rebuilt unless it has been disassembled, cleaned, inspected...

  19. 14 CFR 43.2 - Records of overhaul and rebuilding.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... engine, propeller, appliance, or component part as being overhauled unless— (1) Using methods, techniques... may describe in any required maintenance entry or form an aircraft, airframe, aircraft engine, propeller, appliance, or component part as being rebuilt unless it has been disassembled, cleaned, inspected...

  20. Centrifugal pumps for rocket engines

    NASA Technical Reports Server (NTRS)

    Campbell, W. E.; Farquhar, J.

    1974-01-01

    The use of centrifugal pumps for rocket engines is described in terms of general requirements of operational and planned systems. Hydrodynamic and mechanical design considerations and techniques and test procedures are summarized. Some of the pump development experiences, in terms of both problems and solutions, are highlighted.

  1. Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications.

    PubMed

    Farahani, Rouhollah D; Dubé, Martine; Therriault, Daniel

    2016-07-01

    The integration of nanotechnology into three-dimensional printing (3DP) offers huge potential and opportunities for the manufacturing of 3D engineered materials exhibiting optimized properties and multifunctionality. The literature relating to different 3DP techniques used to fabricate 3D structures at the macro- and microscale made of nanocomposite materials is reviewed here. The current state-of-the-art fabrication methods, their main characteristics (e.g., resolutions, advantages, limitations), the process parameters, and materials requirements are discussed. A comprehensive review is carried out on the use of metal- and carbon-based nanomaterials incorporated into polymers or hydrogels for the manufacturing of 3D structures, mostly at the microscale, using different 3D-printing techniques. Several methods, including but not limited to micro-stereolithography, extrusion-based direct-write technologies, inkjet-printing techniques, and popular powder-bed technology, are discussed. Various examples of 3D nanocomposite macro- and microstructures manufactured using different 3D-printing technologies for a wide range of domains such as microelectromechanical systems (MEMS), lab-on-a-chip, microfluidics, engineered materials and composites, microelectronics, tissue engineering, and biosystems are reviewed. Parallel advances on materials and techniques are still required in order to employ the full potential of 3D printing of multifunctional nanocomposites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Reduction of aircraft gas turbine engine pollutant emissions

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.

    1978-01-01

    To accomplish simultaneous reduction of unburned hydrocarbons, carbon monoxide, and oxides of nitrogen, required major modifications to the combustor. The modification most commonly used was a staged combustion technique. While these designs are more complicated than production combustors, no insurmountable operational difficulties were encountered in either high pressure rig or engine tests which could not be resolved with additional normal development. The emission reduction results indicate that reductions in unburned hydrocarbons were sufficient to satisfy both near and far-termed EPA requirements. Although substantial reductions were observed, the success in achieving the CO and NOx standards was mixed and depended heavily on the engine/engine cycle on which it was employed. Technology for near term CO reduction was satisfactory or marginally satisfactory. Considerable doubt exists if this technology will satisfy all far-term requirements.

  3. Building Safer Systems With SpecTRM

    NASA Technical Reports Server (NTRS)

    2003-01-01

    System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.

  4. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics.

    PubMed

    Jang, Jinah; Park, Ju Young; Gao, Ge; Cho, Dong-Woo

    2018-02-01

    Building human tissues via 3D cell printing technology has received particular attention due to its process flexibility and versatility. This technology enables the recapitulation of unique features of human tissues and the all-in-one manufacturing process through the design of smart and advanced biomaterials and proper polymerization techniques. For the optimal engineering of tissues, a higher-order assembly of physiological components, including cells, biomaterials, and biomolecules, should meet the critical requirements for tissue morphogenesis and vascularization. The convergence of 3D cell printing with a microfluidic approach has led to a significant leap in the vascularization of engineering tissues. In addition, recent cutting-edge technology in stem cells and genetic engineering can potentially be adapted to the 3D tissue fabrication technique, and it has great potential to shift the paradigm of disease modeling and the study of unknown disease mechanisms required for precision medicine. This review gives an overview of recent developments in 3D cell printing and bioinks and provides technical requirements for engineering human tissues. Finally, we propose suggestions on the development of next-generation therapeutics and diagnostics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Langley Research Center Standard for the Evaluation of Socket Welds

    NASA Technical Reports Server (NTRS)

    Berry, R. F., Jr.

    1985-01-01

    A specification utilized for the nondestructive evaluation of socket type pipe joints at Langley Research Center (LaRC) is discussed. The scope of hardware shall include, but is not limited to, all common pipe fittings: tees, elbows, couplings, caps, and so forth, socket type flanges, unions, and valves. In addition, the exterior weld of slip on flanges shall be inspected using this specification. At the discretion of the design engineer, standard practice engineer, Fracture Mechanics Engineering Section, Pressure Systems Committee, or other authority, four nondestructive evaluation techniques may be utilized exclusively, or in combination, to inspect socket type welds. These techniques are visual, radiographic, magnetic particle, and dye penetrant. Under special circumstances, other techniques (such as eddy current or ultrasonics) may be required and their application shall be guided by the appropriate sections of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (B&PVC).

  6. Materials and structural aspects of advanced gas-turbine helicopter engines

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Acurio, J.

    1979-01-01

    The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.

  7. Advanced silver zinc battery development for the SRB and ET range safety subsystems

    NASA Technical Reports Server (NTRS)

    Adamedes, Zoe

    1994-01-01

    This document presents in viewgraph format the design and development of silver zinc (AgZn) batteries for the solid rocket booster (SRB) and external tank (ET) range safety subsystems. Various engineering techniques, including composite separator systems, new electrode processing techniques, and new restraint techniques, were used to meet difficult requirements.

  8. Designing a hands-on brain computer interface laboratory course.

    PubMed

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2016-08-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.

  9. Rocket Engine Health Management: Early Definition of Critical Flight Measurements

    NASA Technical Reports Server (NTRS)

    Christenson, Rick L.; Nelson, Michael A.; Butas, John P.

    2003-01-01

    The NASA led Space Launch Initiative (SLI) program has established key requirements related to safety, reliability, launch availability and operations cost to be met by the next generation of reusable launch vehicles. Key to meeting these requirements will be an integrated vehicle health management ( M) system that includes sensors, harnesses, software, memory, and processors. Such a system must be integrated across all the vehicle subsystems and meet component, subsystem, and system requirements relative to fault detection, fault isolation, and false alarm rate. The purpose of this activity is to evolve techniques for defining critical flight engine system measurements-early within the definition of an engine health management system (EHMS). Two approaches, performance-based and failure mode-based, are integrated to provide a proposed set of measurements to be collected. This integrated approach is applied to MSFC s MC-1 engine. Early identification of measurements supports early identification of candidate sensor systems whose design and impacts to the engine components must be considered in engine design.

  10. JPL Counterfeit Parts Avoidance

    NASA Technical Reports Server (NTRS)

    Risse, Lori

    2012-01-01

    SPACE ARCHITECTURE / ENGINEERING: It brings an extreme test bed for both technologies/concepts as well as procedures/processes. Design and construction (engineering) always go together, especially with complex systems. Requirements (objectives) are crucial. More important than the answers are the questions/Requirements/Tools-Techniques/Processes. Different environments force architects and engineering to think out of the box. For instance there might not be gravity forces. Architectural complex problems have common roots: in Space and on Earth. Let us bring Space down on Earth so we can keep sending Mankind to the stars from a better world. Have fun being architects and engineers...!!! This time is amazing and historical. We are changing the way we inhabit the solar systems!

  11. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1980-01-01

    The computational techniques are described which are utilized at Lewis Research Center to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements. Cycle performance, and engine weight can be calculated along with costs and installation effects as opposed to fuel consumption alone. Almost any conceivable turbine engine cycle can be studied. These computer codes are: NNEP, WATE, LIFCYC, INSTAL, and POD DRG. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight and cost for representative types of aircraft and missions.

  12. A design support simulation of the augmentor wing jet STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Rumsey, P. C.; Spitzer, R. E.; Glende, W. L. B.

    1972-01-01

    The modification of a C-8A (De Havilland Buffalo) aircraft to a STOL configuration is discussed. The modification consisted of the installation of an augmentor-wing jet flap system. System design requirements were investigated for the lateral and directional flight control systems, the lateral and directional axes stability augmentation systems, the engine and Pegasus nozzle control systems, and the hydraulic systems. Operational techniques for STOL landings, control of engine failures, and pilot techniques for improving engine-out go-around performance were examined. Design changes have been identified to correct deficiencies in areas of the airplane control sytems and to improve the airplane flying qualities.

  13. Use of a personal computer for dynamical engineering illustrations in a classroom and over an instructional TV network

    NASA Technical Reports Server (NTRS)

    Watson, V. R.

    1983-01-01

    A personal computer has been used to illustrate physical phenomena and problem solution techniques in engineering classes. According to student evaluations, instruction of concepts was greatly improved through the use of these illustrations. This paper describes the class of phenomena that can be effectively illustrated, the techniques used to create these illustrations, and the techniques used to display the illustrations in regular classrooms and over an instructional TV network. The features of a personal computer required to apply these techniques are listed. The capabilities of some present personal computers are discussed and a forecast of the capabilities of future personal computers is presented.

  14. Managing bioengineering complexity with AI techniques.

    PubMed

    Beal, Jacob; Adler, Aaron; Yaman, Fusun

    2016-10-01

    Our capabilities for systematic design and engineering of biological systems are rapidly increasing. Effectively engineering such systems, however, requires the synthesis of a rapidly expanding and changing complex body of knowledge, protocols, and methodologies. Many of the problems in managing this complexity, however, appear susceptible to being addressed by artificial intelligence (AI) techniques, i.e., methods enabling computers to represent, acquire, and employ knowledge. Such methods can be employed to automate physical and informational "routine" work and thus better allow humans to focus their attention on the deeper scientific and engineering issues. This paper examines the potential impact of AI on the engineering of biological organisms through the lens of a typical organism engineering workflow. We identify a number of key opportunities for significant impact, as well as challenges that must be overcome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Colonization of bone matrices by cellular components

    NASA Astrophysics Data System (ADS)

    Shchelkunova, E. I.; Voropaeva, A. A.; Korel, A. V.; Mayer, D. A.; Podorognaya, V. T.; Kirilova, I. A.

    2017-09-01

    Practical surgery, traumatology, orthopedics, and oncology require bioengineered constructs suitable for replacement of large-area bone defects. Only rigid/elastic matrix containing recipient's bone cells capable of mitosis, differentiation, and synthesizing extracellular matrix that supports cell viability can comply with these requirements. Therefore, the development of the techniques to produce structural and functional substitutes, whose three-dimensional structure corresponds to the recipient's damaged tissues, is the main objective of tissue engineering. This is achieved by developing tissue-engineering constructs represented by cells placed on the matrices. Low effectiveness of carrier matrix colonization with cells and their uneven distribution is one of the major problems in cell culture on various matrixes. In vitro studies of the interactions between cells and material, as well as the development of new techniques for scaffold colonization by cellular components are required to solve this problem.

  16. DYGABCD: A program for calculating linear A, B, C, and D matrices from a nonlinear dynamic engine simulation

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.

    1978-01-01

    A digital computer program, DYGABCD, was developed that generates linearized, dynamic models of simulated turbofan and turbojet engines. DYGABCD is based on an earlier computer program, DYNGEN, that is capable of calculating simulated nonlinear steady-state and transient performance of one- and two-spool turbojet engines or two- and three-spool turbofan engines. Most control design techniques require linear system descriptions. For multiple-input/multiple-output systems such as turbine engines, state space matrix descriptions of the system are often desirable. DYGABCD computes the state space matrices commonly referred to as the A, B, C, and D matrices required for a linear system description. The report discusses the analytical approach and provides a users manual, FORTRAN listings, and a sample case.

  17. Applicability of a Crack-Detection System for Use in Rotor Disk Spin Test Experiments Being Evaluated

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Roth, Don J.

    2004-01-01

    Engine makers and aviation safety government institutions continue to have a strong interest in monitoring the health of rotating components in aircraft engines to improve safety and to lower maintenance costs. To prevent catastrophic failure (burst) of the engine, they use nondestructive evaluation (NDE) and major overhauls for periodic inspections to discover any cracks that might have formed. The lowest cost fluorescent penetrant inspection NDE technique can fail to disclose cracks that are tightly closed during rest or that are below the surface. The NDE eddy current system is more effective at detecting both crack types, but it requires careful setup and operation and only a small portion of the disk can be practically inspected. So that sensor systems can sustain normal function in a severe environment, health-monitoring systems require the sensor system to transmit a signal if a crack detected in the component is above a predetermined length (but below the length that would lead to failure) and lastly to act neutrally upon the overall performance of the engine system and not interfere with engine maintenance operations. Therefore, more reliable diagnostic tools and high-level techniques for detecting damage and monitoring the health of rotating components are very essential in maintaining engine safety and reliability and in assessing life.

  18. Motor-Reducer Sizing through a MATLAB-Based Graphical Technique

    ERIC Educational Resources Information Center

    Giberti, H.; Cinquemani, S.

    2012-01-01

    The design of the drive system for an automatic machine and its correct sizing is a very important competence for an electrical or mechatronic engineer. This requires knowledge that crosses the fields of electrical engineering, electronics and mechanics, as well as the skill to choose commercial components based upon their technical documentation.…

  19. 40 CFR 761.130 - Sampling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sampling scheme and the guidance document are available on EPA's PCB Web site at http://www.epa.gov/pcb, or... § 761.125(c) (2) through (4). Using its best engineering judgment, EPA may sample a statistically valid random or grid sampling technique, or both. When using engineering judgment or random “grab” samples, EPA...

  20. 40 CFR 761.130 - Sampling requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sampling scheme and the guidance document are available on EPA's PCB Web site at http://www.epa.gov/pcb, or... § 761.125(c) (2) through (4). Using its best engineering judgment, EPA may sample a statistically valid random or grid sampling technique, or both. When using engineering judgment or random “grab” samples, EPA...

  1. Potential Uses of Occupational Analysis Data By Air Force Management Engineering Teams.

    ERIC Educational Resources Information Center

    McFarland, Barry P.

    Both the occupational analysis program and the management engineering program are primarily concerned with task level descriptions of time spent to perform tasks required in the Air Force, the first being personnel specialty code oriented and the second being work center oriented. However two separate and independent techniques have been developed…

  2. A new technique for thermodynamic engine modeling

    NASA Astrophysics Data System (ADS)

    Matthews, R. D.; Peters, J. E.; Beckel, S. A.; Shizhi, M.

    1983-12-01

    Reference is made to the equations given by Matthews (1983) for piston engine performance, which show that this performance depends on four fundamental engine efficiencies (combustion, thermodynamic cycle or indicated thermal, volumetric, and mechanical) as well as on engine operation and design parameters. This set of equations is seen to suggest a different technique for engine modeling; that is, that each efficiency should be modeled individually and the efficiency submodels then combined to obtain an overall engine model. A simple method for predicting the combustion efficiency of piston engines is therefore required. Various methods are proposed here and compared with experimental results. These combustion efficiency models are then combined with various models for the volumetric, mechanical, and indicated thermal efficiencies to yield three different engine models of varying degrees of sophistication. Comparisons are then made of the predictions of the resulting engine models with experimental data. It is found that combustion efficiency is almost independent of load, speed, and compression ratio and is not strongly dependent on fuel type, at least so long as the hydrogen-to-carbon ratio is reasonably close to that for isooctane.

  3. Designing a Hands-On Brain Computer Interface Laboratory Course

    PubMed Central

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2017-01-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI. PMID:28268946

  4. Biocatalysts: application and engineering for industrial purposes.

    PubMed

    Jemli, Sonia; Ayadi-Zouari, Dorra; Hlima, Hajer Ben; Bejar, Samir

    2016-01-01

    Enzymes are widely applied in various industrial applications and processes, including the food and beverage, animal feed, textile, detergent and medical industries. Enzymes screened from natural origins are often engineered before entering the market place because their native forms do not meet the requirements for industrial application. Protein engineering is concerned with the design and construction of novel enzymes with tailored functional properties, including stability, catalytic activity, reaction product inhibition and substrate specificity. Two broad approaches have been used for enzyme engineering, namely, rational design and directed evolution. The powerful and revolutionary techniques so far developed for protein engineering provide excellent opportunities for the design of industrial enzymes with specific properties and production of high-value products at lower production costs. The present review seeks to highlight the major fields of enzyme application and to provide an updated overview on previous protein engineering studies wherein natural enzymes were modified to meet the operational conditions required for industrial application.

  5. Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.

  6. Status on the Verification of Combustion Stability for the J-2X Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Casiano, Matthew; Hinerman, Tim; Kenny, R. Jeremy; Hulka, Jim; Barnett, Greg; Dodd, Fred; Martin, Tom

    2013-01-01

    Development is underway of the J -2X engine, a liquid oxygen/liquid hydrogen rocket engine for use on the Space Launch System. The Engine E10001 began hot fire testing in June 2011 and testing will continue with subsequent engines. The J -2X engine main combustion chamber contains both acoustic cavities and baffles. These stability aids are intended to dampen the acoustics in the main combustion chamber. Verification of the engine thrust chamber stability is determined primarily by examining experimental data using a dynamic stability rating technique; however, additional requirements were included to guard against any spontaneous instability or rough combustion. Startup and shutdown chug oscillations are also characterized for this engine. This paper details the stability requirements and verification including low and high frequency dynamics, a discussion on sensor selection and sensor port dynamics, and the process developed to assess combustion stability. A status on the stability results is also provided and discussed.

  7. E-Standards For Mass Properties Engineering

    NASA Technical Reports Server (NTRS)

    Cerro, Jeffrey A.

    2008-01-01

    A proposal is put forth to promote the concept of a Society of Allied Weight Engineers developed voluntary consensus standard for mass properties engineering. This standard would be an e-standard, and would encompass data, data manipulation, and reporting functionality. The standard would be implemented via an open-source SAWE distribution site with full SAWE member body access. Engineering societies and global standards initiatives are progressing toward modern engineering standards, which become functioning deliverable data sets. These data sets, if properly standardized, will integrate easily between supplier and customer enabling technically precise mass properties data exchange. The concepts of object-oriented programming support all of these requirements, and the use of a JavaTx based open-source development initiative is proposed. Results are reported for activity sponsored by the NASA Langley Research Center Innovation Institute to scope out requirements for developing a mass properties engineering e-standard. An initial software distribution is proposed. Upon completion, an open-source application programming interface will be available to SAWE members for the development of more specific programming requirements that are tailored to company and project requirements. A fully functioning application programming interface will permit code extension via company proprietary techniques, as well as through continued open-source initiatives.

  8. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production.

    PubMed

    Mans, Robert; Daran, Jean-Marc G; Pronk, Jack T

    2018-04-01

    Evolutionary engineering, which uses laboratory evolution to select for industrially relevant traits, is a popular strategy in the development of high-performing yeast strains for industrial production of fuels and chemicals. By integrating whole-genome sequencing, bioinformatics, classical genetics and genome-editing techniques, evolutionary engineering has also become a powerful approach for identification and reverse engineering of molecular mechanisms that underlie industrially relevant traits. New techniques enable acceleration of in vivo mutation rates, both across yeast genomes and at specific loci. Recent studies indicate that phenotypic trade-offs, which are often observed after evolution under constant conditions, can be mitigated by using dynamic cultivation regimes. Advances in research on synthetic regulatory circuits offer exciting possibilities to extend the applicability of evolutionary engineering to products of yeasts whose synthesis requires a net input of cellular energy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Microelectromechanical gyroscope

    DOEpatents

    Garcia, Ernest J.

    1999-01-01

    A gyroscope powered by an engine, all fabricated on a common substrate in the form of an integrated circuit. Preferably, both the gyroscope and the engine are fabricated in the micrometer domain, although in some embodiments of the present invention, the gyroscope can be fabricated in the millimeter domain. The engine disclosed herein provides torque to the gyroscope rotor for continuous rotation at varying speeds and direction. The present invention is preferably fabricated of polysilicon or other suitable materials on a single wafer using surface micromachining batch fabrication techniques or millimachining techniques that are well known in the art. Fabrication of the present invention is preferably accomplished without the need for assembly of multiple wafers which require alignment and bonding, and without piece-part assembly.

  10. Application of Optimization Techniques to Design of Unconventional Rocket Nozzle Configurations

    NASA Technical Reports Server (NTRS)

    Follett, W.; Ketchum, A.; Darian, A.; Hsu, Y.

    1996-01-01

    Several current rocket engine concepts such as the bell-annular tri-propellant engine, and the linear aerospike being proposed for the X-33 require unconventional three dimensional rocket nozzles which must conform to rectangular or sector shaped envelopes to meet integration constraints. These types of nozzles exist outside the current experience database, therefore, the application of efficient design methods for these propulsion concepts is critical to the success of launch vehicle programs. The objective of this work is to optimize several different nozzle configurations, including two- and three-dimensional geometries. Methodology includes coupling computational fluid dynamic (CFD) analysis to genetic algorithms and Taguchi methods as well as implementation of a streamline tracing technique. Results of applications are shown for several geometeries including: three dimensional thruster nozzles with round or super elliptic throats and rectangualar exits, two- and three-dimensional thrusters installed within a bell nozzle, and three dimensional thrusters with round throats and sector shaped exits. Due to the novel designs considered for this study, there is little experience which can be used to guide the effort and limit the design space. With a nearly infinite parameter space to explore, simple parametric design studies cannot possibly search the entire design space within the time frame required to impact the design cycle. For this reason, robust and efficient optimization methods are required to explore and exploit the design space to achieve high performance engine designs. Five case studies which examine the application of various techniques in the engineering environment are presented in this paper.

  11. Modelling and Simulation for Requirements Engineering and Options Analysis

    DTIC Science & Technology

    2010-05-01

    should be performed to work successfully in the domain; and process-based techniques model the processes that occur in the work domain. There is a crisp ...acad/sed/sedres/ dm /erg/cwa. DRDC Toronto CR 2010-049 39 23. Can the current technique for developing simulation models for assessments

  12. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.

    PubMed

    Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu

    2011-05-23

    The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Engineering report. Part 1: NASA wheel air seal development for space shuttle type environmental requirements

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The sealing techniques are studied for existing aircraft wheel-tire designs to meet the hard vacuum .00001 torr and cold temperature -65 F requirements of space travel. The investigation covers the use of existing wheel seal designs.

  14. RADC thermal guide for reliability engineers

    NASA Astrophysics Data System (ADS)

    Morrison, G. N.; Kallis, J. M.; Strattan, L. A.; Jones, I. R.; Lena, A. L.

    1982-06-01

    This guide was developed to provide a reliability engineer, who is not proficient in thermal design and analysis techniques, with the tools for managing and evaluating the thermal design and production of electronic equipment. It defines the requirements and tasks that should be addressed in system equipment specifications and statements of work, and describes how to evaluate performance.

  15. A Simplified Method for Tissue Engineering Skeletal Muscle Organoids in Vitro

    NASA Technical Reports Server (NTRS)

    Shansky, Janet; DelTatto, Michael; Chromiak, Joseph; Vandenburgh, Herman

    1996-01-01

    Tissue-engineered three dimensional skeletal muscle organ-like structures have been formed in vitro from primary myoblasts by several different techniques. This report describes a simplified method for generating large numbers of muscle organoids from either primary embryonic avian or neonatal rodent myoblasts, which avoids the requirements for stretching and other mechanical stimulation.

  16. 77 FR 12755 - Airworthiness Directives; Pratt & Whitney (PW) Division Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... pressure turbine (LPT) of certain PW4000-94'' and PW4000-100'' turbofan engines. These fractures caused an... stages. This AD requires reassembling the 2nd stage HPT blades at the next HPT overhaul and the 3rd stage LPT blades at the next LPT overhaul, using the latest assembly technique. The actions proposed in this...

  17. The Systems Engineering Process for Human Support Technology Development

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is designing and optimizing systems. This paper reviews the systems engineering process and indicates how it can be applied in the development of advanced human support systems. Systems engineering develops the performance requirements, subsystem specifications, and detailed designs needed to construct a desired system. Systems design is difficult, requiring both art and science and balancing human and technical considerations. The essential systems engineering activity is trading off and compromising between competing objectives such as performance and cost, schedule and risk. Systems engineering is not a complete independent process. It usually supports a system development project. This review emphasizes the NASA project management process as described in NASA Procedural Requirement (NPR) 7120.5B. The process is a top down phased approach that includes the most fundamental activities of systems engineering - requirements definition, systems analysis, and design. NPR 7120.5B also requires projects to perform the engineering analyses needed to ensure that the system will operate correctly with regard to reliability, safety, risk, cost, and human factors. We review the system development project process, the standard systems engineering design methodology, and some of the specialized systems analysis techniques. We will discuss how they could apply to advanced human support systems development. The purpose of advanced systems development is not directly to supply human space flight hardware, but rather to provide superior candidate systems that will be selected for implementation by future missions. The most direct application of systems engineering is in guiding the development of prototype and flight experiment hardware. However, anticipatory systems engineering of possible future flight systems would be useful in identifying the most promising development projects.

  18. System safety in Stirling engine development

    NASA Technical Reports Server (NTRS)

    Bankaitis, H.

    1981-01-01

    The DOE/NASA Stirling Engine Project Office has required that contractors make safety considerations an integral part of all phases of the Stirling engine development program. As an integral part of each engine design subtask, analyses are evolved to determine possible modes of failure. The accepted system safety analysis techniques (Fault Tree, FMEA, Hazards Analysis, etc.) are applied in various degrees of extent at the system, subsystem and component levels. The primary objectives are to identify critical failure areas, to enable removal of susceptibility to such failures or their effects from the system and to minimize risk.

  19. Open Source Patient-Controlled Analgesic Pump Requirements Documentation

    PubMed Central

    Larson, Brian R.; Hatcliff, John; Chalin, Patrice

    2014-01-01

    The dynamic nature of the medical domain is driving a need for continuous innovation and improvement in techniques for developing and assuring medical devices. Unfortunately, research in academia and communication between academics, industrial engineers, and regulatory authorities is hampered by the lack of realistic non-proprietary development artifacts for medical devices. In this paper, we give an overview of a detailed requirements document for a Patient-Controlled Analgesic (PCA) pump developed under the US NSF’s Food and Drug Administration (FDA) Scholar-in-Residence (SIR) program. This 60+ page document follows the methodology outlined in the US Federal Aviation Administrations (FAA) Requirements Engineering Management Handbook (REMH) and includes a domain overview, use cases, statements of safety & security requirements, and formal top-level system architectural description. Based on previous experience with release of a requirements document for a cardiac pacemaker that spawned a number of research and pedagogical activities, we believe that the described PCA requirements document can be an important research enabler within the formal methods and software engineering communities. PMID:24931440

  20. Beam modulation: A novel ToF-technique for high resolution diffraction at the Beamline for European Materials Engineering Research (BEER)

    NASA Astrophysics Data System (ADS)

    Rouijaa, M.; Kampmann, R.; Šaroun, J.; Fenske, J.; Beran, P.; Müller, M.; Lukáš, P.; Schreyer, A.

    2018-05-01

    The Beamline for European Materials Engineering Research (BEER) is under construction at the European Spallation Source (ESS) in Lund, Sweden. A basic requirement on BEER is to make best use of the long ESS pulse (2.86 ms) for engineering investigations. High-resolution diffraction, however, demands timing resolution up to 0.1% corresponding to a pulse length down to about 70 μs for the case of thermal neutrons (λ ∼ 1.8 Å). Such timing resolution can be achieved by pulse shaping techniques cutting a short section out of the long pulse, and thus paying for resolution by strong loss of intensity. In contrast to this, BEER proposes a novel operation mode called pulse modulation technique based on a new chopper design, which extracts several short pulses out of the long ESS pulse, and hence leads to a remarkable gain of intensity compared to nowadays existing conventional pulse shaping techniques. The potential of the new technique can be used with full advantage for investigating strains and textures of highly symmetric materials. Due to its instrument design and the high brilliance of the ESS pulse, BEER is expected to become the European flagship for engineering research for strain mapping and texture analysis.

  1. A Comparison of Multivariable Control Design Techniques for a Turbofan Engine Control

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Watts, Stephen R.

    1995-01-01

    This paper compares two previously published design procedures for two different multivariable control design techniques for application to a linear engine model of a jet engine. The two multivariable control design techniques compared were the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and the H-Infinity synthesis. The two control design techniques were used with specific previously published design procedures to synthesize controls which would provide equivalent closed loop frequency response for the primary control loops while assuring adequate loop decoupling. The resulting controllers were then reduced in order to minimize the programming and data storage requirements for a typical implementation. The reduced order linear controllers designed by each method were combined with the linear model of an advanced turbofan engine and the system performance was evaluated for the continuous linear system. Included in the performance analysis are the resulting frequency and transient responses as well as actuator usage and rate capability for each design method. The controls were also analyzed for robustness with respect to structured uncertainties in the unmodeled system dynamics. The two controls were then compared for performance capability and hardware implementation issues.

  2. 40 CFR 158.2110 - Microbial pesticides data requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: genetic engineering techniques used; the identity of the inserted or deleted gene segment (base sequence... evaluate genetic stability and exchange; and selected Tier II environmental expression and toxicology tests. ...

  3. 40 CFR 158.2110 - Microbial pesticides data requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: genetic engineering techniques used; the identity of the inserted or deleted gene segment (base sequence... evaluate genetic stability and exchange; and selected Tier II environmental expression and toxicology tests. ...

  4. 40 CFR 158.2110 - Microbial pesticides data requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: genetic engineering techniques used; the identity of the inserted or deleted gene segment (base sequence... evaluate genetic stability and exchange; and selected Tier II environmental expression and toxicology tests. ...

  5. 40 CFR 158.2110 - Microbial pesticides data requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: genetic engineering techniques used; the identity of the inserted or deleted gene segment (base sequence... evaluate genetic stability and exchange; and selected Tier II environmental expression and toxicology tests. ...

  6. Calibration Experiments for a Computer Vision Oyster Volume Estimation System

    ERIC Educational Resources Information Center

    Chang, G. Andy; Kerns, G. Jay; Lee, D. J.; Stanek, Gary L.

    2009-01-01

    Calibration is a technique that is commonly used in science and engineering research that requires calibrating measurement tools for obtaining more accurate measurements. It is an important technique in various industries. In many situations, calibration is an application of linear regression, and is a good topic to be included when explaining and…

  7. Genome scale engineering techniques for metabolic engineering.

    PubMed

    Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T

    2015-11-01

    Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Rotorcraft convertible engines for the 1980s

    NASA Technical Reports Server (NTRS)

    Eisenberg, J. D.

    1982-01-01

    Two rotorcraft studies were executed. The goal was to identify attractive techniques for implementing convertible powerplants for the ABC, Folded Tilt Rotor, and X-wing type high speed, high-L/D rotorcraft; to determine the DOC and fuel savings benefits achieved thereby; and to define research required to bring these powerplants into existence by the 1990's. These studies are reviewed herein and the different methods of approach are pointed out as well as the key findings. Fan shaft engines using variable inlet guide vanes or torque converters, and turboprop powerplants appear attractive. Savings in DOC and fuel consumption of over 15 percent are predicted in some cases as a result of convertible engine use rather than using separate engines for the thrust and the shaft functions. Areas of required research are fan performance (including noise), integrated engine/rotorcraft control, torque converters, turbine design, airflow for rotorcraft torque control, bleed for lift flow, and transmissions and clutches.

  9. Knee Ligament Injury and the Clinical Application of Tissue Engineering Techniques: A Systematic Review.

    PubMed

    Riley, Thomas C; Mafi, Reza; Mafi, Pouya; Khan, Wasim S

    2018-02-23

    The incidence of knee ligament injury is increasing and represents a significant cost to healthcare providers. Current interventions include tissue grafts, suture repair and non-surgical management. These techniques have demonstrated good patient outcomes but have been associated graft rejection, infection, long term immobilization and reduced joint function. The limitations of traditional management strategies have prompted research into tissue engineering of knee ligaments. This paper aims to evaluate whether tissue engineering of knee ligaments offers a viable alternative in the clinical management of knee ligament injuries. A search of existing literature was performed using OVID Medline, Embase, AMED, PubMed and Google Scholar, and a manual review of citations identified within these papers. Silk, polymer and extracellular matrix based scaffolds can all improve graft healing and collagen production. Fibroblasts and stem cells demonstrate compatibility with scaffolds, and have been shown to increase organized collagen production. These effects can be augmented using growth factors and extracellular matrix derivatives. Animal studies have shown tissue engineered ligaments can provide the biomechanical characteristics required for effective treatment of knee ligament injuries. There is a growing clinical demand for a tissue engineered alternative to traditional management strategies. Currently, there is limited consensus regarding material selection for use in tissue engineered ligaments. Further research is required to optimize tissue engineered ligament production before clinical application. Controlled clinical trials comparing the use of tissue engineered ligaments and traditional management in patients with knee ligament injury could determine whether they can provide a cost-effective alternative. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. The Teaching of Mechanical Engineering Design at UCD, Dublin.

    ERIC Educational Resources Information Center

    Timoney, Seamus

    1988-01-01

    Describes a design course which stresses the identification of talented students and gives them techniques for synthesis. Explains the course requirements, design and manufacturing functions, and product concept. (YP)

  11. Simulation of an Asynchronous Machine by using a Pseudo Bond Graph

    NASA Astrophysics Data System (ADS)

    Romero, Gregorio; Felez, Jesus; Maroto, Joaquin; Martinez, M. Luisa

    2008-11-01

    For engineers, computer simulation, is a basic tool since it enables them to understand how systems work without actually needing to see them. They can learn how they work in different circumstances and optimize their design with considerably less cost in terms of time and money than if they had to carry out tests on a physical system. However, if computer simulation is to be reliable it is essential for the simulation model to be validated. There is a wide range of commercial brands on the market offering products for electrical domain simulation (SPICE, LabVIEW PSCAD,Dymola, Simulink, Simplorer,...). These are powerful tools, but require the engineer to have a perfect knowledge of the electrical field. This paper shows an alternative methodology to can simulate an asynchronous machine using the multidomain Bond Graph technique and apply it in any program that permit the simulation of models based in this technique; no extraordinary knowledge of this technique and electric field are required to understand the process .

  12. Radio-controlled model design and testing techniques for stall/spin evaluation of general-aviation aircraft

    NASA Technical Reports Server (NTRS)

    Burk, S. M., Jr.; Wilson, C. F., Jr.

    1975-01-01

    A relatively inexpensive radio-controlled model stall/spin test technique was developed. Operational experiences using the technique are presented. A discussion of model construction techniques, spin-recovery parachute system, data recording system, and movie camera tracking system is included. Also discussed are a method of measuring moments of inertia, scaling of engine thrust, cost and time required to conduct a program, and examples of the results obtained from the flight tests.

  13. Design Approaches to Myocardial and Vascular Tissue Engineering.

    PubMed

    Akintewe, Olukemi O; Roberts, Erin G; Rim, Nae-Gyune; Ferguson, Michael A H; Wong, Joyce Y

    2017-06-21

    Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues. Because the ultimate solution to engineered tissue vascularization will require collaboration between wide-ranging disciplines such as developmental biology, tissue engineering, and computational modeling, we explore contributions from each field.

  14. Extending enterprise architecture modelling with business goals and requirements

    NASA Astrophysics Data System (ADS)

    Engelsman, Wilco; Quartel, Dick; Jonkers, Henk; van Sinderen, Marten

    2011-02-01

    The methods for enterprise architecture (EA), such as The Open Group Architecture Framework, acknowledge the importance of requirements modelling in the development of EAs. Modelling support is needed to specify, document, communicate and reason about goals and requirements. The current modelling techniques for EA focus on the products, services, processes and applications of an enterprise. In addition, techniques may be provided to describe structured requirements lists and use cases. Little support is available however for modelling the underlying motivation of EAs in terms of stakeholder concerns and the high-level goals that address these concerns. This article describes a language that supports the modelling of this motivation. The definition of the language is based on existing work on high-level goal and requirements modelling and is aligned with an existing standard for enterprise modelling: the ArchiMate language. Furthermore, the article illustrates how EA can benefit from analysis techniques from the requirements engineering domain.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelsen, H. A.; Schulz, C.; Smallwood, G. J.

    The understanding of soot formation in combustion processes and the optimization of practical combustion systems require in situ measurement techniques that can provide important characteristics, such as particle concentrations and sizes, under a variety of conditions. Of equal importance are techniques suitable for characterizing soot particles produced from incomplete combustion and emitted into the environment. Also, the production of engineered nanoparticles, such as carbon blacks, may benefit from techniques that allow for online monitoring of these processes.

  16. Design of Modular, Shape-transitioning Inlets for a Conical Hypersonic Vehicle

    NASA Technical Reports Server (NTRS)

    Gollan, Rowan J.; Smart, Michael K.

    2010-01-01

    For a hypersonic vehicle, propelled by scramjet engines, integration of the engines and airframe is highly desirable. Thus, the forward capture shape of the engine inlet should conform to the vehicle body shape. Furthermore, the use of modular engines places a constraint on the shape of the inlet sidewalls. Finally, one may desire a combustor cross- section shape that is different from that of the inlet. These shape constraints for the inlet can be accommodated by employing a streamline-tracing and lofting technique. This design technique was developed by Smart for inlets with a rectangular-to-elliptical shape transition. In this paper, we generalise that technique to produce inlets that conform to arbitrary shape requirements. As an example, we show the design of a body-integrated hypersonic inlet on a winged-cone vehicle, typical of what might be used in a three-stage orbital launch system. The special challenge of inlet design for this conical vehicle at an angle-of-attack is also discussed. That challenge is that the bow shock sits relatively close to the vehicle body.

  17. Genome engineering and plant breeding: impact on trait discovery and development.

    PubMed

    Nogué, Fabien; Mara, Kostlend; Collonnier, Cécile; Casacuberta, Josep M

    2016-07-01

    New tools for the precise modification of crops genes are now available for the engineering of new ideotypes. A future challenge in this emerging field of genome engineering is to develop efficient methods for allele mining. Genome engineering tools are now available in plants, including major crops, to modify in a predictable manner a given gene. These new techniques have a tremendous potential for a spectacular acceleration of the plant breeding process. Here, we discuss how genetic diversity has always been the raw material for breeders and how they have always taken advantage of the best available science to use, and when possible, increase, this genetic diversity. We will present why the advent of these new techniques gives to the breeders extremely powerful tools for crop breeding, but also why this will require the breeders and researchers to characterize the genes underlying this genetic diversity more precisely. Tackling these challenges should permit the engineering of optimized alleles assortments in an unprecedented and controlled way.

  18. How to Compare the Security Quality Requirements Engineering (SQUARE) Method with Other Methods

    DTIC Science & Technology

    2007-08-01

    Attack Trees for Modeling and Analysis 10 2.8 Misuse and Abuse Cases 10 2.9 Formal Methods 11 2.9.1 Software Cost Reduction 12 2.9.2 Common...modern or efficient techniques. • Requirements analysis typically is either not performed at all (identified requirements are directly specified without...any analysis or modeling) or analysis is restricted to functional re- quirements and ignores quality requirements, other nonfunctional requirements

  19. Perspectives on knowledge in engineering design

    NASA Technical Reports Server (NTRS)

    Rasdorf, W. J.

    1985-01-01

    Various perspectives are given of the knowledge currently used in engineering design, specifically dealing with knowledge-based expert systems (KBES). Constructing an expert system often reveals inconsistencies in domain knowledge while formalizing it. The types of domain knowledge (facts, procedures, judgments, and control) differ from the classes of that knowledge (creative, innovative, and routine). The feasible tasks for expert systems can be determined based on these types and classes of knowledge. Interpretive tasks require reasoning about a task in light of the knowledge available, where generative tasks create potential solutions to be tested against constraints. Only after classifying the domain by type and level can the engineer select a knowledge-engineering tool for the domain being considered. The critical features to be weighed after classification are knowledge representation techniques, control strategies, interface requirements, compatibility with traditional systems, and economic considerations.

  20. Imaging Strategies for Tissue Engineering Applications

    PubMed Central

    Nam, Seung Yun; Ricles, Laura M.; Suggs, Laura J.

    2015-01-01

    Tissue engineering has evolved with multifaceted research being conducted using advanced technologies, and it is progressing toward clinical applications. As tissue engineering technology significantly advances, it proceeds toward increasing sophistication, including nanoscale strategies for material construction and synergetic methods for combining with cells, growth factors, or other macromolecules. Therefore, to assess advanced tissue-engineered constructs, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular information. However, there is no single imaging modality that is suitable for all tissue-engineered constructs. Each imaging method has its own range of applications and provides information based on the specific properties of the imaging technique. Therefore, according to the requirements of the tissue engineering studies, the most appropriate tool should be selected among a variety of imaging modalities. The goal of this review article is to describe available biomedical imaging methods to assess tissue engineering applications and to provide tissue engineers with criteria and insights for determining the best imaging strategies. Commonly used biomedical imaging modalities, including X-ray and computed tomography, positron emission tomography and single photon emission computed tomography, magnetic resonance imaging, ultrasound imaging, optical imaging, and emerging techniques and multimodal imaging, will be discussed, focusing on the latest trends of their applications in recent tissue engineering studies. PMID:25012069

  1. Working on the Boundaries: Philosophies and Practices of the Design Process

    NASA Technical Reports Server (NTRS)

    Ryan, R.; Blair, J.; Townsend, J.; Verderaime, V.

    1996-01-01

    While systems engineering process is a program formal management technique and contractually binding, the design process is the informal practice of achieving the design project requirements throughout all design phases of the systems engineering process. The design process and organization are systems and component dependent. Informal reviews include technical information meetings and concurrent engineering sessions, and formal technical discipline reviews are conducted through the systems engineering process. This paper discusses and references major philosophical principles in the design process, identifies its role in interacting systems and disciplines analyses and integrations, and illustrates the process application in experienced aerostructural designs.

  2. Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study. Executive summary

    NASA Technical Reports Server (NTRS)

    Merino, F.; Wakabayashi, I.; Pleasant, R. L.; Hill, M.

    1982-01-01

    Preferred techniques for providing abort pressurization and engine feed system net positive suction pressure (NPSP) for low thrust chemical propulsion systems (LTPS) were determined. A representative LTPS vehicle configuration is presented. Analysis tasks include: propellant heating analysis; pressurant requirements for abort propellant dump; and comparative analysis of pressurization techniques and thermal subcoolers.

  3. FY 2002 Report on Software Visualization Techniques for IV and V

    NASA Technical Reports Server (NTRS)

    Fotta, Michael E.

    2002-01-01

    One of the major challenges software engineers often face in performing IV&V is developing an understanding of a system created by a development team they have not been part of. As budgets shrink and software increases in complexity, this challenge will become even greater as these software engineers face increased time and resource constraints. This research will determine which current aspects of providing this understanding (e.g., code inspections, use of control graphs, use of adjacency matrices, requirements traceability) are critical to the performing IV&V and amenable to visualization techniques. We will then develop state-of-the-art software visualization techniques to facilitate the use of these aspects to understand software and perform IV&V.

  4. Enhancing the Human Factors Engineering Role in an Austere Fiscal Environment

    NASA Technical Reports Server (NTRS)

    Stokes, Jack W.

    2003-01-01

    An austere fiscal environment in the aerospace community creates pressures to reduce program costs, often minimizing or sometimes even deleting the human interface requirements from the design process. With an assumption that the flight crew can recover real time from a poorly human factored space vehicle design, the classical crew interface requirements have been either not included in the design or not properly funded, though carried as requirements. Cost cuts have also affected quality of retained human factors engineering personnel. In response to this concern, planning is ongoing to correct the acting issues. Herein are techniques for ensuring that human interface requirements are integrated into a flight design, from proposal through verification and launch activation. This includes human factors requirements refinement and consolidation across flight programs; keyword phrases in the proposals; closer ties with systems engineering and other classical disciplines; early planning for crew-interface verification; and an Agency integrated human factors verification program, under the One NASA theme. Importance is given to communication within the aerospace human factors discipline, and utilizing the strengths of all government, industry, and academic human factors organizations in an unified research and engineering approach. A list of recommendations and concerns are provided in closing.

  5. High-performance wavelet engine

    NASA Astrophysics Data System (ADS)

    Taylor, Fred J.; Mellot, Jonathon D.; Strom, Erik; Koren, Iztok; Lewis, Michael P.

    1993-11-01

    Wavelet processing has shown great promise for a variety of image and signal processing applications. Wavelets are also among the most computationally expensive techniques in signal processing. It is demonstrated that a wavelet engine constructed with residue number system arithmetic elements offers significant advantages over commercially available wavelet accelerators based upon conventional arithmetic elements. Analysis is presented predicting the dynamic range requirements of the reported residue number system based wavelet accelerator.

  6. New sensors and techniques for the structural health monitoring of propulsion systems.

    PubMed

    Woike, Mark; Abdul-Aziz, Ali; Oza, Nikunj; Matthews, Bryan

    2013-01-01

    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA), through the Aviation Safety Program (AVSP), has taken a lead role in the development of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. This paper presents a summary of key results and findings obtained from three different structural health monitoring approaches that have been investigated. This includes evaluating the performance of a novel microwave blade tip clearance sensor; a vibration based crack detection technique using an externally mounted capacitive blade tip clearance sensor; and lastly the results of using data driven anomaly detection algorithms for detecting cracks in a rotating disk.

  7. New Sensors and Techniques for the Structural Health Monitoring of Propulsion Systems

    PubMed Central

    2013-01-01

    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA), through the Aviation Safety Program (AVSP), has taken a lead role in the development of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. This paper presents a summary of key results and findings obtained from three different structural health monitoring approaches that have been investigated. This includes evaluating the performance of a novel microwave blade tip clearance sensor; a vibration based crack detection technique using an externally mounted capacitive blade tip clearance sensor; and lastly the results of using data driven anomaly detection algorithms for detecting cracks in a rotating disk. PMID:23935425

  8. A Sensitivity Analysis of Circular Error Probable Approximation Techniques

    DTIC Science & Technology

    1992-03-01

    SENSITIVITY ANALYSIS OF CIRCULAR ERROR PROBABLE APPROXIMATION TECHNIQUES THESIS Presented to the Faculty of the School of Engineering of the Air Force...programming skills. Major Paul Auclair patiently advised me in this endeavor, and Major Andy Howell added numerous insightful contributions. I thank my...techniques. The two ret(st accuratec techniiques require numerical integration and can take several hours to run ov a personal comlputer [2:1-2,4-6]. Some

  9. Preliminary Description of Stresses in Railroad Rail

    DOT National Transportation Integrated Search

    1976-11-01

    One portion of the Federal Railroad Administration's (FRA) Track Performance Improvement Program is the development of engineering and analytic techniques required for the design and maintenance of railroad track of increased integrity and safety. Un...

  10. Develop Advanced Nonlinear Signal Analysis Topographical Mapping System

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1997-01-01

    During the development of the SSME, a hierarchy of advanced signal analysis techniques for mechanical signature analysis has been developed by NASA and AI Signal Research Inc. (ASRI) to improve the safety and reliability for Space Shuttle operations. These techniques can process and identify intelligent information hidden in a measured signal which is often unidentifiable using conventional signal analysis methods. Currently, due to the highly interactive processing requirements and the volume of dynamic data involved, detailed diagnostic analysis is being performed manually which requires immense man-hours with extensive human interface. To overcome this manual process, NASA implemented this program to develop an Advanced nonlinear signal Analysis Topographical Mapping System (ATMS) to provide automatic/unsupervised engine diagnostic capabilities. The ATMS will utilize a rule-based Clips expert system to supervise a hierarchy of diagnostic signature analysis techniques in the Advanced Signal Analysis Library (ASAL). ASAL will perform automatic signal processing, archiving, and anomaly detection/identification tasks in order to provide an intelligent and fully automated engine diagnostic capability. The ATMS has been successfully developed under this contract. In summary, the program objectives to design, develop, test and conduct performance evaluation for an automated engine diagnostic system have been successfully achieved. Software implementation of the entire ATMS system on MSFC's OISPS computer has been completed. The significance of the ATMS developed under this program is attributed to the fully automated coherence analysis capability for anomaly detection and identification which can greatly enhance the power and reliability of engine diagnostic evaluation. The results have demonstrated that ATMS can significantly save time and man-hours in performing engine test/flight data analysis and performance evaluation of large volumes of dynamic test data.

  11. Venturi Air-Jet Vacuum Ejector For Sampling Air

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Burney, L. Garland; Wade, Larry O.

    1990-01-01

    Venturi air-jet vacuum ejector pump light in weight, requires no electrical power, does not contribute heat to aircraft, and provides high pumping speeds at moderate suctions. High-pressure motive gas required for this type of pump bled from compressor of aircraft engine with negligible effect on performance of engine. Used as source of vacuum for differential-absorption CO-measurement (DACOM), modified to achieve in situ measurements of CO at frequency response of 10 Hz. Provides improvement in spatial resolution and potentially leads to capability to measure turbulent flux of CO by use of eddy-correlation technique.

  12. Precision manufacturing for clinical-quality regenerative medicines.

    PubMed

    Williams, David J; Thomas, Robert J; Hourd, Paul C; Chandra, Amit; Ratcliffe, Elizabeth; Liu, Yang; Rayment, Erin A; Archer, J Richard

    2012-08-28

    Innovations in engineering applied to healthcare make a significant difference to people's lives. Market growth is guaranteed by demographics. Regulation and requirements for good manufacturing practice-extreme levels of repeatability and reliability-demand high-precision process and measurement solutions. Emerging technologies using living biological materials add complexity. This paper presents some results of work demonstrating the precision automated manufacture of living materials, particularly the expansion of populations of human stem cells for therapeutic use as regenerative medicines. The paper also describes quality engineering techniques for precision process design and improvement, and identifies the requirements for manufacturing technology and measurement systems evolution for such therapies.

  13. Multiobjective Decision Analysis With Engineering and Business Applications

    NASA Astrophysics Data System (ADS)

    Wood, Eric

    The last 15 years have witnessed the development of a large number of multiobjective decision techniques. Applying these techniques to environmental, engineering, and business problems has become well accepted. Multiobjective Decision Analysis With Engineering and Business Applications attempts to cover the main multiobjective techniques both in their mathematical treatment and in their application to real-world problems.The book is divided into 12 chapters plus three appendices. The main portion of the book is represented by chapters 3-6, Where the various approaches are identified, classified, and reviewed. Chapter 3 covers methods for generating nondominated solutions; chapter 4, continuous methods with prior preference articulation; chapter 5, discrete methods with prior preference articulation; and chapter 6, methods of progressive articulation of preferences. In these four chapters, close to 20 techniques are discussed with over 20 illustrative examples. This is both a strength and a weakness; the breadth of techniques and examples provide comprehensive coverage, but it is in a style too mathematically compact for most readers. By my count, the presentation of the 20 techniques in chapters 3-6 covered 85 pages, an average of about 4.5 pages each; therefore, a sound basis in linear algebra and linear programing is required if the reader hopes to follow the material. Chapter 2, “Concepts in Multiobjective Analysis,” also assumes such a background.

  14. A survey of fault diagnosis technology

    NASA Technical Reports Server (NTRS)

    Riedesel, Joel

    1989-01-01

    Existing techniques and methodologies for fault diagnosis are surveyed. The techniques run the gamut from theoretical artificial intelligence work to conventional software engineering applications. They are shown to define a spectrum of implementation alternatives where tradeoffs determine their position on the spectrum. Various tradeoffs include execution time limitations and memory requirements of the algorithms as well as their effectiveness in addressing the fault diagnosis problem.

  15. Analytical design of an advanced radial turbine. [automobile engines

    NASA Technical Reports Server (NTRS)

    Large, G. D.; Finger, D. G.; Linder, C. G.

    1981-01-01

    The aerodynamic and mechanical potential of a single stage ceramic radial inflow turbine was evaluated for a high temperature single stage automotive engine. The aerodynamic analysis utilizes a turbine system optimization technique to evaluate both radial and nonradial rotor blading. Selected turbine rotor configurations were evaluated mechanically with three dimensional finite element techniques. Results indicate that exceptionally high rotor tip speeds (2300 ft/sec) and performance potential are feasible with radial bladed rotors if the projected ceramic material properties are realized. Nonradial rotors reduced tip speed requirements (at constant turbine efficiency) but resulted in a lower cumulative probability of success due to higher blade and disk stresses.

  16. NASA Software Documentation Standard

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Software Documentation Standard (hereinafter referred to as "Standard") is designed to support the documentation of all software developed for NASA; its goal is to provide a framework and model for recording the essential information needed throughout the development life cycle and maintenance of a software system. The NASA Software Documentation Standard can be applied to the documentation of all NASA software. The Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. The basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.

  17. Introduction to Geostatistics

    NASA Astrophysics Data System (ADS)

    Kitanidis, P. K.

    1997-05-01

    Introduction to Geostatistics presents practical techniques for engineers and earth scientists who routinely encounter interpolation and estimation problems when analyzing data from field observations. Requiring no background in statistics, and with a unique approach that synthesizes classic and geostatistical methods, this book offers linear estimation methods for practitioners and advanced students. Well illustrated with exercises and worked examples, Introduction to Geostatistics is designed for graduate-level courses in earth sciences and environmental engineering.

  18. Crack-Detection Experiments on Simulated Turbine Engine Disks in NASA Glenn Research Center's Rotordynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Abdul-Aziz, Ali

    2010-01-01

    The development of new health-monitoring techniques requires the use of theoretical and experimental tools to allow new concepts to be demonstrated and validated prior to use on more complicated and expensive engine hardware. In order to meet this need, significant upgrades were made to NASA Glenn Research Center s Rotordynamics Laboratory and a series of tests were conducted on simulated turbine engine disks as a means of demonstrating potential crack-detection techniques. The Rotordynamics Laboratory consists of a high-precision spin rig that can rotate subscale engine disks at speeds up to 12,000 rpm. The crack-detection experiment involved introducing a notch on a subscale engine disk and measuring its vibration response using externally mounted blade-tip-clearance sensors as the disk was operated at speeds up to 12 000 rpm. Testing was accomplished on both a clean baseline disk and a disk with an artificial crack: a 50.8-mm- (2-in.-) long introduced notch. The disk s vibration responses were compared and evaluated against theoretical models to investigate how successful the technique was in detecting cracks. This paper presents the capabilities of the Rotordynamics Laboratory, the baseline theory and experimental setup for the crack-detection experiments, and the associated results from the latest test campaign.

  19. Full Flight Envelope Direct Thrust Measurement on a Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.; Sims, Robert L.

    1998-01-01

    Direct thrust measurement using strain gages offers advantages over analytically-based thrust calculation methods. For flight test applications, the direct measurement method typically uses a simpler sensor arrangement and minimal data processing compared to analytical techniques, which normally require costly engine modeling and multisensor arrangements throughout the engine. Conversely, direct thrust measurement has historically produced less than desirable accuracy because of difficulty in mounting and calibrating the strain gages and the inability to account for secondary forces that influence the thrust reading at the engine mounts. Consequently, the strain-gage technique has normally been used for simple engine arrangements and primarily in the subsonic speed range. This paper presents the results of a strain gage-based direct thrust-measurement technique developed by the NASA Dryden Flight Research Center and successfully applied to the full flight envelope of an F-15 aircraft powered by two F100-PW-229 turbofan engines. Measurements have been obtained at quasi-steady-state operating conditions at maximum non-augmented and maximum augmented power throughout the altitude range of the vehicle and to a maximum speed of Mach 2.0 and are compared against results from two analytically-based thrust calculation methods. The strain-gage installation and calibration processes are also described.

  20. Fan noise prediction assessment

    NASA Technical Reports Server (NTRS)

    Bent, Paul H.

    1995-01-01

    This report is an evaluation of two techniques for predicting the fan noise radiation from engine nacelles. The first is a relatively computational intensive finite element technique. The code is named ARC, an abbreviation of Acoustic Radiation Code, and was developed by Eversman. This is actually a suite of software that first generates a grid around the nacelle, then solves for the potential flowfield, and finally solves the acoustic radiation problem. The second approach is an analytical technique requiring minimal computational effort. This is termed the cutoff ratio technique and was developed by Rice. Details of the duct geometry, such as the hub-to-tip ratio and Mach number of the flow in the duct, and modal content of the duct noise are required for proper prediction.

  1. Model building techniques for analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walther, Howard P.; McDaniel, Karen Lynn; Keener, Donald

    2009-09-01

    The practice of mechanical engineering for product development has evolved into a complex activity that requires a team of specialists for success. Sandia National Laboratories (SNL) has product engineers, mechanical designers, design engineers, manufacturing engineers, mechanical analysts and experimentalists, qualification engineers, and others that contribute through product realization teams to develop new mechanical hardware. The goal of SNL's Design Group is to change product development by enabling design teams to collaborate within a virtual model-based environment whereby analysis is used to guide design decisions. Computer-aided design (CAD) models using PTC's Pro/ENGINEER software tools are heavily relied upon in the productmore » definition stage of parts and assemblies at SNL. The three-dimensional CAD solid model acts as the design solid model that is filled with all of the detailed design definition needed to manufacture the parts. Analysis is an important part of the product development process. The CAD design solid model (DSM) is the foundation for the creation of the analysis solid model (ASM). Creating an ASM from the DSM currently is a time-consuming effort; the turnaround time for results of a design needs to be decreased to have an impact on the overall product development. This effort can be decreased immensely through simple Pro/ENGINEER modeling techniques that summarize to the method features are created in a part model. This document contains recommended modeling techniques that increase the efficiency of the creation of the ASM from the DSM.« less

  2. Are the expected benefits of requirements reuse hampered by distance? An experiment.

    PubMed

    Carrillo de Gea, Juan M; Nicolás, Joaquín; Fernández-Alemán, José L; Toval, Ambrosio; Idri, Ali

    2016-01-01

    Software development processes are often performed by distributed teams which may be separated by great distances. Global software development (GSD) has undergone a significant growth in recent years. The challenges concerning GSD are especially relevant to requirements engineering (RE). Stakeholders need to share a common ground, but there are many difficulties as regards the potentially variable interpretation of the requirements in different contexts. We posit that the application of requirements reuse techniques could alleviate this problem through the diminution of the number of requirements open to misinterpretation. This paper presents a reuse-based approach with which to address RE in GSD, with special emphasis on specification techniques, namely parameterised requirements and traceability relationships. An experiment was carried out with the participation of 29 university students enrolled on a Computer Science and Engineering course. Two main scenarios that represented co-localisation and distribution in software development were portrayed by participants from Spain and Morocco. The global teams achieved a slightly better performance than the co-located teams as regards effectiveness , which could be a result of the worse productivity of the global teams in comparison to the co-located teams. Subjective perceptions were generally more positive in the case of the distributed teams ( difficulty , speed and understanding ), with the exception of quality . A theoretical model has been proposed as an evaluation framework with which to analyse, from the point of view of the factor of distance, the effect of requirements specification techniques on a set of performance and perception-based variables. The experiment utilised a new internationalisation requirements catalogue. None of the differences found between co-located and distributed teams were significant according to the outcome of our statistical tests. The well-known benefits of requirements reuse in traditional co-located projects could, therefore, also be expected in GSD projects.

  3. Applying formal methods and object-oriented analysis to existing flight software

    NASA Technical Reports Server (NTRS)

    Cheng, Betty H. C.; Auernheimer, Brent

    1993-01-01

    Correctness is paramount for safety-critical software control systems. Critical software failures in medical radiation treatment, communications, and defense are familiar to the public. The significant quantity of software malfunctions regularly reported to the software engineering community, the laws concerning liability, and a recent NRC Aeronautics and Space Engineering Board report additionally motivate the use of error-reducing and defect detection software development techniques. The benefits of formal methods in requirements driven software development ('forward engineering') is well documented. One advantage of rigorously engineering software is that formal notations are precise, verifiable, and facilitate automated processing. This paper describes the application of formal methods to reverse engineering, where formal specifications are developed for a portion of the shuttle on-orbit digital autopilot (DAP). Three objectives of the project were to: demonstrate the use of formal methods on a shuttle application, facilitate the incorporation and validation of new requirements for the system, and verify the safety-critical properties to be exhibited by the software.

  4. Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering.

    PubMed

    Wang, Harris H; Church, George M

    2011-01-01

    Engineering at the scale of whole genomes requires fundamentally new molecular biology tools. Recent advances in recombineering using synthetic oligonucleotides enable the rapid generation of mutants at high efficiency and specificity and can be implemented at the genome scale. With these techniques, libraries of mutants can be generated, from which individuals with functionally useful phenotypes can be isolated. Furthermore, populations of cells can be evolved in situ by directed evolution using complex pools of oligonucleotides. Here, we discuss ways to utilize these multiplexed genome engineering methods, with special emphasis on experimental design and implementation. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Quality Assurance in the Presence of Variability

    NASA Astrophysics Data System (ADS)

    Lauenroth, Kim; Metzger, Andreas; Pohl, Klaus

    Software Product Line Engineering (SPLE) is a reuse-driven development paradigm that has been applied successfully in information system engineering and other domains. Quality assurance of the reusable artifacts of the product line (e.g. requirements, design, and code artifacts) is essential for successful product line engineering. As those artifacts are reused in several products, a defect in a reusable artifact can affect several products of the product line. A central challenge for quality assurance in product line engineering is how to consider product line variability. Since the reusable artifacts contain variability, quality assurance techniques from single-system engineering cannot directly be applied to those artifacts. Therefore, different strategies and techniques have been developed for quality assurance in the presence of variability. In this chapter, we describe those strategies and discuss in more detail one of those strategies, the so called comprehensive strategy. The comprehensive strategy aims at checking the quality of all possible products of the product line and thus offers the highest benefits, since it is able to uncover defects in all possible products of the product line. However, the central challenge for applying the comprehensive strategy is the complexity that results from the product line variability and the large number of potential products of a product line. In this chapter, we present one concrete technique that we have developed to implement the comprehensive strategy that addresses this challenge. The technique is based on model checking technology and allows for a comprehensive verification of domain artifacts against temporal logic properties.

  6. Application of Weibull analysis to SSME hardware

    NASA Technical Reports Server (NTRS)

    Gray, L. A. B.

    1986-01-01

    Generally, it has been documented that the wearing of engine parts forms a failure distribution which can be approximated by a function developed by Weibull. The purpose here is to examine to what extent the Weibull distribution approximates failure data for designated engine parts of the Space Shuttle Main Engine (SSME). The current testing certification requirements will be examined in order to establish confidence levels. An examination of the failure history of SSME parts/assemblies (turbine blades, main combustion chamber, or high pressure fuel pump first stage impellers) which are limited in usage by time or starts will be done by using updated Weibull techniques. Efforts will be made by the investigator to predict failure trends by using Weibull techniques for SSME parts (turbine temperature sensors, chamber pressure transducers, actuators, and controllers) which are not severely limited by time or starts.

  7. Decision Support System Requirements Definition for Human Extravehicular Activity Based on Cognitive Work Analysis

    PubMed Central

    Miller, Matthew James; McGuire, Kerry M.; Feigh, Karen M.

    2016-01-01

    The design and adoption of decision support systems within complex work domains is a challenge for cognitive systems engineering (CSE) practitioners, particularly at the onset of project development. This article presents an example of applying CSE techniques to derive design requirements compatible with traditional systems engineering to guide decision support system development. Specifically, it demonstrates the requirements derivation process based on cognitive work analysis for a subset of human spaceflight operations known as extravehicular activity. The results are presented in two phases. First, a work domain analysis revealed a comprehensive set of work functions and constraints that exist in the extravehicular activity work domain. Second, a control task analysis was performed on a subset of the work functions identified by the work domain analysis to articulate the translation of subject matter states of knowledge to high-level decision support system requirements. This work emphasizes an incremental requirements specification process as a critical component of CSE analyses to better situate CSE perspectives within the early phases of traditional systems engineering design. PMID:28491008

  8. Decision Support System Requirements Definition for Human Extravehicular Activity Based on Cognitive Work Analysis.

    PubMed

    Miller, Matthew James; McGuire, Kerry M; Feigh, Karen M

    2017-06-01

    The design and adoption of decision support systems within complex work domains is a challenge for cognitive systems engineering (CSE) practitioners, particularly at the onset of project development. This article presents an example of applying CSE techniques to derive design requirements compatible with traditional systems engineering to guide decision support system development. Specifically, it demonstrates the requirements derivation process based on cognitive work analysis for a subset of human spaceflight operations known as extravehicular activity . The results are presented in two phases. First, a work domain analysis revealed a comprehensive set of work functions and constraints that exist in the extravehicular activity work domain. Second, a control task analysis was performed on a subset of the work functions identified by the work domain analysis to articulate the translation of subject matter states of knowledge to high-level decision support system requirements. This work emphasizes an incremental requirements specification process as a critical component of CSE analyses to better situate CSE perspectives within the early phases of traditional systems engineering design.

  9. Requirements Modeling with the Aspect-oriented User Requirements Notation (AoURN): A Case Study

    NASA Astrophysics Data System (ADS)

    Mussbacher, Gunter; Amyot, Daniel; Araújo, João; Moreira, Ana

    The User Requirements Notation (URN) is a recent ITU-T standard that supports requirements engineering activities. The Aspect-oriented URN (AoURN) adds aspect-oriented concepts to URN, creating a unified framework that allows for scenario-based, goal-oriented, and aspect-oriented modeling. AoURN is applied to the car crash crisis management system (CCCMS), modeling its functional and non-functional requirements (NFRs). AoURN generally models all use cases, NFRs, and stakeholders as individual concerns and provides general guidelines for concern identification. AoURN handles interactions between concerns, capturing their dependencies and conflicts as well as the resolutions. We present a qualitative comparison of aspect-oriented techniques for scenario-based and goal-oriented requirements engineering. An evaluation carried out based on the metrics adapted from literature and a task-based evaluation suggest that AoURN models are more scalable than URN models and exhibit better modularity, reusability, and maintainability.

  10. Mandibular Tissue Engineering: Past, Present, Future.

    PubMed

    Konopnicki, Sandra; Troulis, Maria J

    2015-12-01

    Almost 2 decades ago, the senior author's (M.T.J.) first article was with our mentor, Dr Leonard B. Kaban, a review article titled "Distraction Osteogenesis: Past, Present, Future." In 1998, many thought it would be impossible to have a remotely activated, small, curvilinear distractor that could be placed using endoscopic techniques. Currently, a U.S. patent for a curvilinear automated device and endoscopic techniques for minimally invasive access for jaw reconstruction exist. With minimally invasive access for jaw reconstruction, the burden to decrease donor site morbidity has increased. Distraction osteogenesis (DO) is an in vivo form of tissue engineering. The DO technique eliminates a donor site, is less invasive, requires a shorter operative time than usual procedures, and can be used for multiple reconstruction applications. Tissue engineering could further reduce morbidity and cost and increase treatment availability. The purpose of the present report was to review our experience with tissue engineering of bone: the past, present, and our vision for the future. The present report serves as a tribute to our mentor and acknowledges Dr Kaban for his incessant tutelage, guidance, wisdom, and boundless vision. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Space Shuttle Main Engine Liquid Air Insulation Redesign Lessons Learned

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell; Carroll, Paul; Head, Kenneth; Fasheh, John; Stuart, Jessica

    2010-01-01

    The Space Shuttle Main Engine Liquid Air Insulation redesign was required to prevent the reoccurance of the STS-111 High Pressure Speed Sensor In-Flight Anomaly. The STS-111 In-Flight Anomaly Failure Investigation Team's initial redesign of the High Pressure Fuel Turbopump Pump End Ball Bearing Liquid Air Insulation failed the certification test by producing Liquid Air. The certification test failure indicated not only the High Pressure Fuel Turbopump Liquid Air Insulation, but all other Space Shuttle Main Engine Liquid Air Insulation. This paper will document the original Space Shuttle Main Engine Liquid Air STS-111 In-Flight Anomaly investigation, the heritage Space Shuttle Main Engine Insulation certification testing faults, the techniques and instrumentation used to accurately test the Liquid Air Insulation systems on the Stennis Space Center SSME test stand, the analysis techniques used to identify the Liquid Air Insulation problem areas and the analytical verification of the redesign before entering certification testing, Trade study down selected to three potential design solutions, the results of the development testing which down selected the final Liquid Air Redesign are also documented within this paper.

  12. Extractive sampling and optical remote sensing of F100 aircraft engine emissions.

    PubMed

    Cowen, Kenneth; Goodwin, Bradley; Joseph, Darrell; Tefend, Matthew; Satola, Jan; Kagann, Robert; Hashmonay, Ram; Spicer, Chester; Holdren, Michael; Mayfield, Howard

    2009-05-01

    The Strategic Environmental Research and Development Program (SERDP) has initiated several programs to develop and evaluate techniques to characterize emissions from military aircraft to meet increasingly stringent regulatory requirements. This paper describes the results of a recent field study using extractive and optical remote sensing (ORS) techniques to measure emissions from six F-15 fighter aircraft. Testing was performed between November 14 and 16, 2006 on the trim-pad facility at Tyndall Air Force Base in Panama City, FL. Measurements were made on eight different F100 engines, and the engines were tested on-wing of in-use aircraft. A total of 39 test runs were performed at engine power levels that ranged from idle to military power. The approach adopted for these tests involved extractive sampling with collocated ORS measurements at a distance of approximately 20-25 nozzle diameters downstream of the engine exit plane. The emission indices calculated for carbon dioxide, carbon monoxide, nitric oxide, and several volatile organic compounds showed very good agreement when comparing the extractive and ORS sampling methods.

  13. Development of a robust framework for controlling high performance turbofan engines

    NASA Astrophysics Data System (ADS)

    Miklosovic, Robert

    This research involves the development of a robust framework for controlling complex and uncertain multivariable systems. Where mathematical modeling is often tedious or inaccurate, the new method uses an extended state observer (ESO) to estimate and cancel dynamic information in real time and dynamically decouple the system. As a result, controller design and tuning become transparent as the number of required model parameters is reduced. Much research has been devoted towards the application of modern multivariable control techniques on aircraft engines. However, few, if any, have been implemented on an operational aircraft, partially due to the difficulty in tuning the controller for satisfactory performance. The new technique is applied to a modern two-spool, high-pressure ratio, low-bypass turbofan with mixed-flow afterburning. A realistic Modular Aero-Propulsion System Simulation (MAPSS) package, developed by NASA, is used to demonstrate the new design process and compare its performance with that of a supplied nominal controller. This approach is expected to reduce gain scheduling over the full operating envelope of the engine and allow a controller to be tuned for engine-to-engine variations.

  14. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1979-01-01

    The computational techniques utilized to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements are described. The characteristics and use of the following computer codes are discussed: (1) NNEP - a very general cycle analysis code that can assemble an arbitrary matrix fans, turbines, ducts, shafts, etc., into a complete gas turbine engine and compute on- and off-design thermodynamic performance; (2) WATE - a preliminary design procedure for calculating engine weight using the component characteristics determined by NNEP; (3) POD DRG - a table look-up program to calculate wave and friction drag of nacelles; (4) LIFCYC - a computer code developed to calculate life cycle costs of engines based on the output from WATE; and (5) INSTAL - a computer code developed to calculate installation effects, inlet performance and inlet weight. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight, and cost for representative types of aircraft and missions.

  15. Cost estimation and analysis using the Sherpa Automated Mine Cost Engineering System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stebbins, P.E.

    1993-09-01

    The Sherpa Automated Mine Cost Engineering System is a menu-driven software package designed to estimate capital and operating costs for proposed surface mining operations. The program is engineering (as opposed to statistically) based, meaning that all equipment, manpower, and supply requirements are determined from deposit geology, project design and mine production information using standard engineering techniques. These requirements are used in conjunction with equipment, supply, and labor cost databases internal to the program to estimate all associated costs. Because virtually all on-site cost parameters are interrelated within the program, Sherpa provides an efficient means of examining the impact of changesmore » in the equipment mix on total capital and operating costs. If any aspect of the operation is changed, Sherpa immediately adjusts all related aspects as necessary. For instance, if the user wishes to examine the cost ramifications of selecting larger trucks, the program not only considers truck purchase and operation costs, it also automatically and immediately adjusts excavator requirements, operator and mechanic needs, repair facility size, haul road construction and maintenance costs, and ancillary equipment specifications.« less

  16. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1979-01-01

    The paper describes the computational techniques employed in determining the optimal propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements. The computer programs used to perform calculations for all the factors that enter into the selection process of determining the optimum combinations of airplanes and engines are examined. Attention is given to the description of the computer codes including NNEP, WATE, LIFCYC, INSTAL, and POD DRG. A process is illustrated by which turbine engines can be evaluated as to fuel consumption, engine weight, cost and installation effects. Examples are shown as to the benefits of variable geometry and of the tradeoff between fuel burned and engine weights. Future plans for further improvements in the analytical modeling of engine systems are also described.

  17. Architecture and System Engineering Development Study of Space-Based Satellite Networks for NASA Missions

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2003-01-01

    Traditional NASA missions, both near Earth and deep space, have been stovepipe in nature and point-to-point in architecture. Recently, NASA and others have conceptualized missions that required space-based networking. The notion of networks in space is a drastic shift in thinking and requires entirely new architectures, radio systems (antennas, modems, and media access), and possibly even new protocols. A full system engineering approach for some key mission architectures will occur that considers issues such as the science being performed, stationkeeping, antenna size, contact time, data rates, radio-link power requirements, media access techniques, and appropriate networking and transport protocols. This report highlights preliminary architecture concepts and key technologies that will be investigated.

  18. System Engineering for J-2X Development: The Simpler, the Better

    NASA Technical Reports Server (NTRS)

    Kelly, William M.; Greasley, Paul; Greene, William D.; Ackerman, Peter

    2008-01-01

    The Ares I and Ares V Vehicles will utilize the J-2X rocket engine developed for NASA by the Pratt and Whitney Rocketdyne Company (PWR) as the upper stage engine (USE). The J-2X is an improved higher power version of the original J-2 engine used for Apollo. System Engineering (SE) facilitates direct and open discussions of issues and problems. This simple idea is often overlooked in large, complex engineering development programs. Definition and distribution of requirements from the engine level to the component level is controlled by Allocation Reports which breaks down numerical design objectives (weight, reliability, etc.) into quanta goals for each component area. Linked databases of design and verification requirements help eliminate redundancy and potential mistakes inherent in separated systems. Another tool, the Architecture Design Description (ADD), is used to control J-2X system architecture and effectively communicate configuration changes to those involved in the design process. But the proof of an effective process is in successful program accomplishment. SE is the methodology being used to meet the challenge of completing J-2X engine certification 2 years ahead of any engine program ever developed at PWR. This paper describes the simple, better SE tools and techniques used to achieve this success.

  19. Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications

    DOE PAGES

    Michelsen, H. A.; Schulz, C.; Smallwood, G. J.; ...

    2015-09-09

    The understanding of soot formation in combustion processes and the optimization of practical combustion systems require in situ measurement techniques that can provide important characteristics, such as particle concentrations and sizes, under a variety of conditions. Of equal importance are techniques suitable for characterizing soot particles produced from incomplete combustion and emitted into the environment. Also, the production of engineered nanoparticles, such as carbon blacks, may benefit from techniques that allow for online monitoring of these processes.

  20. Beyond the Natural Proteome: Nondegenerate Saturation Mutagenesis-Methodologies and Advantages.

    PubMed

    Ferreira Amaral, M M; Frigotto, L; Hine, A V

    2017-01-01

    Beyond the natural proteome, high-throughput mutagenesis offers the protein engineer an opportunity to "tweak" the wild-type activity of a protein to create a recombinant protein with required attributes. Of the various approaches available, saturation mutagenesis is one of the core techniques employed by protein engineers, and in recent times, nondegenerate saturation mutagenesis is emerging as the approach of choice. This review compares the current methodologies available for conducting nondegenerate saturation mutagenesis with traditional, degenerate saturation and briefly outlines the options available for screening the resulting libraries, to discover a novel protein with the required activity and/or specificity. © 2017 Elsevier Inc. All rights reserved.

  1. Engineering Analyses of Candidate Communication and Surveillance Techniques for the Vessel Traffic System

    DOT National Transportation Integrated Search

    1981-11-01

    Coast Guard Vessel Traffic Service (VTS) facilities rely heavily on radio communications to acquire the location of vessels and disseminate this information to other interested shipping. As the communication requirements change, the Coast Guard must ...

  2. Systems Prototyping with Fourth Generation Tools.

    ERIC Educational Resources Information Center

    Sholtys, Phyllis

    1983-01-01

    The development of information systems using an engineering approach that uses both traditional programing techniques and fourth generation software tools is described. Fourth generation applications tools are used to quickly develop a prototype system that is revised as the user clarifies requirements. (MLW)

  3. The effect of load history on reinforced concrete bridge column behavior : [summary].

    DOT National Transportation Integrated Search

    2012-08-01

    To satisfy the aims of performance based design, levels of damage which interrupt the serviceability of the : structure or require more invasive repair techniques must be related to engineering criteria. In this report, the : influence of displacemen...

  4. The effect of load history on reinforced concrete bridge column behavior.

    DOT National Transportation Integrated Search

    2012-08-01

    To satisfy the aims of performance based design, levels of damage which interrupt the serviceability of the : structure or require more invasive repair techniques must be related to engineering criteria. In this report, the : influence of displacemen...

  5. Energy-state formulation of lumped volume dynamic equations with application to a simplified free piston Stirling engine

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Lorenzo, C. F.

    1979-01-01

    Lumped volume dynamic equations are derived using an energy state formulation. This technique requires that kinetic and potential energy state functions be written for the physical system being investigated. To account for losses in the system, a Rayleigh dissipation function is formed. Using these functions, a Lagrangian is formed and using Lagrange's equation, the equations of motion for the system are derived. The results of the application of this technique to a lumped volume are used to derive a model for the free piston Stirling engine. The model was simplified and programmed on an analog computer. Results are given comparing the model response with experimental data.

  6. Energy-state formulation of lumped volume dynamic equations with application to a simplified free piston Stirling engine

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Lorenzo, C. F.

    1979-01-01

    Lumped volume dynamic equations are derived using an energy-state formulation. This technique requires that kinetic and potential energy state functions be written for the physical system being investigated. To account for losses in the system, a Rayleigh dissipation function is also formed. Using these functions, a Lagrangian is formed and using Lagrange's equation, the equations of motion for the system are derived. The results of the application of this technique to a lumped volume are used to derive a model for the free-piston Stirling engine. The model was simplified and programmed on an analog computer. Results are given comparing the model response with experimental data.

  7. Development of the Functional Flow Block Diagram for the J-2X Rocket Engine System

    NASA Technical Reports Server (NTRS)

    White, Thomas; Stoller, Sandra L.; Greene, WIlliam D.; Christenson, Rick L.; Bowen, Barry C.

    2007-01-01

    The J-2X program calls for the upgrade of the Apollo-era Rocketdyne J-2 engine to higher power levels, using new materials and manufacturing techniques, and with more restrictive safety and reliability requirements than prior human-rated engines in NASA history. Such requirements demand a comprehensive systems engineering effort to ensure success. Pratt & Whitney Rocketdyne system engineers performed a functional analysis of the engine to establish the functional architecture. J-2X functions were captured in six major operational blocks. Each block was divided into sub-blocks or states. In each sub-block, functions necessary to perform each state were determined. A functional engine schematic consistent with the fidelity of the system model was defined for this analysis. The blocks, sub-blocks, and functions were sequentially numbered to differentiate the states in which the function were performed and to indicate the sequence of events. The Engine System was functionally partitioned, to provide separate and unique functional operators. Establishing unique functional operators as work output of the System Architecture process is novel in Liquid Propulsion Engine design. Each functional operator was described such that its unique functionality was identified. The decomposed functions were then allocated to the functional operators both of which were the inputs to the subsystem or component performance specifications. PWR also used a novel approach to identify and map the engine functional requirements to customer-specified functions. The final result was a comprehensive Functional Flow Block Diagram (FFBD) for the J-2X Engine System, decomposed to the component level and mapped to all functional requirements. This FFBD greatly facilitates component specification development, providing a well-defined trade space for functional trades at the subsystem and component level. It also provides a framework for function-based failure modes and effects analysis (FMEA), and a rigorous baseline for the functional architecture.

  8. Automation based on knowledge modeling theory and its applications in engine diagnostic systems using Space Shuttle Main Engine vibrational data. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kim, Jonnathan H.

    1995-01-01

    Humans can perform many complicated tasks without explicit rules. This inherent and advantageous capability becomes a hurdle when a task is to be automated. Modern computers and numerical calculations require explicit rules and discrete numerical values. In order to bridge the gap between human knowledge and automating tools, a knowledge model is proposed. Knowledge modeling techniques are discussed and utilized to automate a labor and time intensive task of detecting anomalous bearing wear patterns in the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP).

  9. Optimization of wave rotors for use as gas turbine engine topping cycles

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Paxson, Daniel E.

    1995-01-01

    Use of a wave rotor as a topping cycle for a gas turbine engine can improve specific power and reduce specific fuel consumption. Maximum improvement requires the wave rotor to be optimized for best performance at the mass flow of the engine. The optimization is a trade-off between losses due to friction and passage opening time, and rotational effects. An experimentally validated, one-dimensional CFD code, which includes these effects, has been used to calculate wave rotor performance, and find the optimum configuration. The technique is described, and results given for wave rotors sized for engines with sea level mass flows of 4, 26, and 400 lb/sec.

  10. Fiber optic controls for aircraft engines - Issues and implications

    NASA Technical Reports Server (NTRS)

    Dasgupta, Samhita; Poppel, Gary L.; Anderson, William P.

    1991-01-01

    Some of the issues involved with the application of fiber-optic controls for aircraft engines in the harsh operating environment are addressed, with emphasis on fiber-optic temperature, pressure, position, and speed sensors. Criteria are established to evaluate the optical modulation technique, the sensor/control unit interconnection, and the electrooptic architecture. Single mode and polarization dependent sensor types, sensors which depend on the reflection and/or transmission of light through the engine environment, and intensity-based analog sensors are eliminated as a possible candidate for engine implementation. Fiber-optic harnesses tested for their optical integrity, temperature stability, and mechanical strength, exhibit a capacity to meet mechanical strength requirements and still gain a significant reduction in cable weight.

  11. Implementation of Insight Responsibilities in Process Engineering

    NASA Technical Reports Server (NTRS)

    Osborne, Deborah M.

    1997-01-01

    This report describes an approach for evaluating flight readiness (COFR) and contractor performance evaluation (award fee) as part of the insight role of NASA Process Engineering at Kennedy Space Center. Several evaluation methods are presented, including systems engineering evaluations and use of systems performance data. The transition from an oversight function to the insight function is described. The types of analytical tools appropriate for achieving the flight readiness and contractor performance evaluation goals are described and examples are provided. Special emphasis is placed upon short and small run statistical quality control techniques. Training requirements for system engineers are delineated. The approach described herein would be equally appropriate in other directorates at Kennedy Space Center.

  12. TF34 convertible engine control system design

    NASA Technical Reports Server (NTRS)

    Gilmore, D. R., Jr.

    1984-01-01

    The characteristics of the TF34 convertible engine, capable of producing shaft power, thrust, or a combination of both, is investigated with respect to the control system design, development, bench testing, and the anticipated transient response during engine testing at NASA. The modifications to the prototype standard TF34-GE-400 turbofan, made primarily in the fan section, consist of the variable inlet guide vanes and variable exit guide vanes. The control system was designed using classical frequency domain techniques and was based on the anticipated convertible/VTOL airframe requirements. The engine has been run in the fan mode and in the shaft mode, exhibiting a response of 0.14 second to a 5-percent thrust change.

  13. Risk Identification and Visualization in a Concurrent Engineering Team Environment

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus; Chattopadhyay, Debarati; Shishko, Robert

    2010-01-01

    Incorporating risk assessment into the dynamic environment of a concurrent engineering team requires rapid response and adaptation. Generating consistent risk lists with inputs from all the relevant subsystems and presenting the results clearly to the stakeholders in a concurrent engineering environment is difficult because of the speed with which decisions are made. In this paper we describe the various approaches and techniques that have been explored for the point designs of JPL's Team X and the Trade Space Studies of the Rapid Mission Architecture Team. The paper will also focus on the issues of the misuse of categorical and ordinal data that keep arising within current engineering risk approaches and also in the applied risk literature.

  14. Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.; Yoo, Seung Yeun

    2011-01-01

    Asymmetric engine thrust was implemented in a hybrid-wing-body non-linear simulation to reduce the amount of aerodynamic surface deflection required for yaw stability and control. Hybrid-wing-body aircraft are especially susceptible to yaw surface deflection due to their decreased bare airframe yaw stability resulting from the lack of a large vertical tail aft of the center of gravity. Reduced surface deflection, especially for trim during cruise flight, could reduce the fuel consumption of future aircraft. Designed as an add-on, optimal control allocation techniques were used to create a control law that tracks total thrust and yaw moment commands with an emphasis on not degrading the baseline system. Implementation of engine yaw augmentation is shown and feasibility is demonstrated in simulation with a potential drag reduction of 2 to 4 percent. Future flight tests are planned to demonstrate feasibility in a flight environment.

  15. Application of Background Oriented Schlieren for Altitude Testing of Rocket Engines

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Stiegemeier, Benjamin R.

    2017-01-01

    A series of experiments was performed to determine the feasibility of using the Background Oriented Schlieren, BOS, flow visualization technique to image a simulated, small, rocket engine, plume under altitude test conditions. Testing was performed at the NASA Glenn Research Centers Altitude Combustion Stand, ACS, using nitrogen as the exhaust gas simulant. Due to limited optical access to the facility test capsule, all of the hardware required to conduct the BOS were located inside the vacuum chamber. During the test series 26 runs were performed using two different nozzle configurations with pressures in the test capsule around 0.3 psia. No problems were encountered during the test series resulting from the optical hardware being located in the test capsule and acceptable resolution images were captured. The test campaign demonstrated the ability of using the BOS technique for small, rocket engine, plume flow visualization during altitude testing.

  16. Software engineering project management - A state-of-the-art report

    NASA Technical Reports Server (NTRS)

    Thayer, R. H.; Lehman, J. H.

    1977-01-01

    The management of software engineering projects in the aerospace industry was investigated. The survey assessed such features as contract type, specification preparation techniques, software documentation required by customers, planning and cost-estimating, quality control, the use of advanced program practices, software tools and test procedures, the education levels of project managers, programmers and analysts, work assignment, automatic software monitoring capabilities, design and coding reviews, production times, success rates, and organizational structure of the projects.

  17. Experience with Aero- and Fluid-Dynamic Testing for Engineering and CFD Validation

    NASA Technical Reports Server (NTRS)

    Ross, James C.

    2016-01-01

    Ever since computations have been used to simulate aerodynamics the need to ensure that the computations adequately represent real life has followed. Many experiments have been performed specifically for validation and as computational methods have improved, so have the validation experiments. Validation is also a moving target because computational methods improve requiring validation for the new aspect of flow physics that the computations aim to capture. Concurrently, new measurement techniques are being developed that can help capture more detailed flow features pressure sensitive paint (PSP) and particle image velocimetry (PIV) come to mind. This paper will present various wind-tunnel tests the author has been involved with and how they were used for validation of various kinds of CFD. A particular focus is the application of advanced measurement techniques to flow fields (and geometries) that had proven to be difficult to predict computationally. Many of these difficult flow problems arose from engineering and development problems that needed to be solved for a particular vehicle or research program. In some cases the experiments required to solve the engineering problems were refined to provide valuable CFD validation data in addition to the primary engineering data. All of these experiments have provided physical insight and validation data for a wide range of aerodynamic and acoustic phenomena for vehicles ranging from tractor-trailers to crewed spacecraft.

  18. Laboratory Spectrometer for Wear Metal Analysis of Engine Lubricants.

    DTIC Science & Technology

    1986-04-01

    analysis, the acid digestion technique for sample pretreatment is the best approach available to date because of its relatively large sample size (1000...microliters or more). However, this technique has two major shortcomings limiting its application: (1) it requires the use of hydrofluoric acid (a...accuracy. Sample preparation including filtration or acid digestion may increase analysis times by 20 minutes or more. b. Repeatability In the analysis

  19. (Low-level radioactive waste management techniques)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoesen, S.D.; Kennerly, J.M.; Williams, L.C.

    1988-08-08

    The US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River plant (SRP), Idaho National Engineering Laboratory (INEL), and the Department of Energy, Oak Ridge Operations participated in a training program on French low-level radioactive waste (LLW) management techniques. Training in the rigorous waste characterization, acceptance and certification procedures required in France was provided at Agence Nationale pour les Gestion des Dechets Radioactif (ANDRA) offices in Paris.

  20. Cost and schedule analytical techniques development

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This contract provided technical services and products to the Marshall Space Flight Center's Engineering Cost Office (PP03) and the Program Plans and Requirements Office (PP02) for the period of 3 Aug. 1991 - 30 Nov. 1994. Accomplishments summarized cover the REDSTAR data base, NASCOM hard copy data base, NASCOM automated data base, NASCOM cost model, complexity generators, program planning, schedules, NASA computer connectivity, other analytical techniques, and special project support.

  1. Shuttle wave experiments. [space plasma investigations: design and instrumentation

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1976-01-01

    Wave experiments on shuttle are needed to verify dispersion relations, to study nonlinear and exotic phenomena, to support other plasma experiments, and to test engineering designs. Techniques based on coherent detection and bistatic geometry are described. New instrumentation required to provide modules for a variety of missions and to incorporate advanced signal processing and control techniques is discussed. An experiment for Z to 0 coupling is included.

  2. Handbook for Marine Geotechnical Engineering

    DTIC Science & Technology

    2012-02-01

    height dictated by the chosen range. The returning acoustic signals are received by the same fish and transmitted by electrical or fiber optic cable......covered here, are required to predict penetrations in lithified sediments, coral, basalt , and other rock types. These special techniques are highly

  3. Improvements in powered air purifying respirator protection in an ABSL-3E facility

    USDA-ARS?s Scientific Manuscript database

    The study of and experimentation with zoonotic pathogens such as highly pathogenic avian influenza (HPAI) requires risk mitigation strategies including laboratory engineering controls and safety equipment, personal protective equipment (PPE), and proper practices and techniques. Incidences of potent...

  4. The analytical representation of viscoelastic material properties using optimization techniques

    NASA Technical Reports Server (NTRS)

    Hill, S. A.

    1993-01-01

    This report presents a technique to model viscoelastic material properties with a function of the form of the Prony series. Generally, the method employed to determine the function constants requires assuming values for the exponential constants of the function and then resolving the remaining constants through linear least-squares techniques. The technique presented here allows all the constants to be analytically determined through optimization techniques. This technique is employed in a computer program named PRONY and makes use of commercially available optimization tool developed by VMA Engineering, Inc. The PRONY program was utilized to compare the technique against previously determined models for solid rocket motor TP-H1148 propellant and V747-75 Viton fluoroelastomer. In both cases, the optimization technique generated functions that modeled the test data with at least an order of magnitude better correlation. This technique has demonstrated the capability to use small or large data sets and to use data sets that have uniformly or nonuniformly spaced data pairs. The reduction of experimental data to accurate mathematical models is a vital part of most scientific and engineering research. This technique of regression through optimization can be applied to other mathematical models that are difficult to fit to experimental data through traditional regression techniques.

  5. Advanced Kalman Filter for Real-Time Responsiveness in Complex Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Gregory Francis; Zhang, Jinghe

    2014-06-10

    Complex engineering systems pose fundamental challenges in real-time operations and control because they are highly dynamic systems consisting of a large number of elements with severe nonlinearities and discontinuities. Today’s tools for real-time complex system operations are mostly based on steady state models, unable to capture the dynamic nature and too slow to prevent system failures. We developed advanced Kalman filtering techniques and the formulation of dynamic state estimation using Kalman filtering techniques to capture complex system dynamics in aiding real-time operations and control. In this work, we looked at complex system issues including severe nonlinearity of system equations, discontinuitiesmore » caused by system controls and network switches, sparse measurements in space and time, and real-time requirements of power grid operations. We sought to bridge the disciplinary boundaries between Computer Science and Power Systems Engineering, by introducing methods that leverage both existing and new techniques. While our methods were developed in the context of electrical power systems, they should generalize to other large-scale scientific and engineering applications.« less

  6. Forensic engineering: applying materials and mechanics principles to the investigation of product failures.

    PubMed

    Hainsworth, S V; Fitzpatrick, M E

    2007-06-01

    Forensic engineering is the application of engineering principles or techniques to the investigation of materials, products, structures or components that fail or do not perform as intended. In particular, forensic engineering can involve providing solutions to forensic problems by the application of engineering science. A criminal aspect may be involved in the investigation but often the problems are related to negligence, breach of contract, or providing information needed in the redesign of a product to eliminate future failures. Forensic engineering may include the investigation of the physical causes of accidents or other sources of claims and litigation (for example, patent disputes). It involves the preparation of technical engineering reports, and may require giving testimony and providing advice to assist in the resolution of disputes affecting life or property.This paper reviews the principal methods available for the analysis of failed components and then gives examples of different component failure modes through selected case studies.

  7. Issues in Requirements Elicitation

    DTIC Science & Technology

    1992-09-01

    oriented domain analysis ( FODA ) continues that the re- quirements analyst uses the products of domain analysis when implementing a new system [Kang 90, p...Peterson, A. Spencer. Feature-Oriented Domain Analysis ( FODA ) Feasibility Study. Technical Report CMU/SEI-90-TR-21, ADA235785, Software Engineering...3.3 Problems of Volatility 12 4 Current Elicitation Techniques 15 4.1 Information Gathering 16 4.2 Requirements Expression and Analysis 19 4.3

  8. A hydrogen-oxygen rocket engine coolant passage design program (RECOP) for fluid-cooled thrust chambers and nozzles

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.

    1994-01-01

    The design of coolant passages in regeneratively cooled thrust chambers is critical to the operation and safety of a rocket engine system. Designing a coolant passage is a complex thermal and hydraulic problem requiring an accurate understanding of the heat transfer between the combustion gas and the coolant. Every major rocket engine company has invested in the development of thrust chamber computer design and analysis tools; two examples are Rocketdyne's REGEN code and Aerojet's ELES program. In an effort to augment current design capabilities for government and industry, the NASA Lewis Research Center is developing a computer model to design coolant passages for advanced regeneratively cooled thrust chambers. The RECOP code incorporates state-of-the-art correlations, numerical techniques and design methods, certainly minimum requirements for generating optimum designs of future space chemical engines. A preliminary version of the RECOP model was recently completed and code validation work is in progress. This paper introduces major features of RECOP and compares the analysis to design points for the first test case engine; the Pratt & Whitney RL10A-3-3A thrust chamber.

  9. Success of segmentation in a sequence of images tracking the growth of endogenously fluorescent kidneys

    NASA Astrophysics Data System (ADS)

    Goldberg, Robert R.; Goldberg, Michael R.

    1999-05-01

    A previous paper by the authors presented an algorithm that successfully segmented organs grown in vitro from their surroundings. It was noticed that one difficulty in standard dyeing techniques for the analysis of contours in organs was due to the fact that the antigen necessary to bind with the fluorescent dye was not uniform throughout the cell borders. To address these concerns, a new fluorescent technique was utilized. A transgenic mouse line was genetically engineered utilizing the hoxb7/gfp (green fluorescent protein). Whereas the original technique (fixed and blocking) required a numerous number of noise removal filtering and sophisticated segmentation techniques, segmentation on the GFP kidney required only an adaptive binary threshold technique which yielded excellent results without the need for specific noise reduction. This is important for tracking the growth of kidney development through time.

  10. Investigation of Cleanliness Verification Techniques for Rocket Engine Hardware

    NASA Technical Reports Server (NTRS)

    Fritzemeier, Marilyn L.; Skowronski, Raymund P.

    1994-01-01

    Oxidizer propellant systems for liquid-fueled rocket engines must meet stringent cleanliness requirements for particulate and nonvolatile residue. These requirements were established to limit residual contaminants which could block small orifices or ignite in the oxidizer system during engine operation. Limiting organic residues in high pressure oxygen systems, such as in the Space Shuttle Main Engine (SSME), is particularly important. The current method of cleanliness verification for the SSME uses an organic solvent flush of the critical hardware surfaces. The solvent is filtered and analyzed for particulate matter followed by gravimetric determination of the nonvolatile residue (NVR) content of the filtered solvent. The organic solvents currently specified for use (1, 1, 1-trichloroethane and CFC-113) are ozone-depleting chemicals slated for elimination by December 1995. A test program is in progress to evaluate alternative methods for cleanliness verification that do not require the use of ozone-depleting chemicals and that minimize or eliminate the use of solvents regulated as hazardous air pollutants or smog precursors. Initial results from the laboratory test program to evaluate aqueous-based methods and organic solvent flush methods for NVR verification are provided and compared with results obtained using the current method. Evaluation of the alternative methods was conducted using a range of contaminants encountered in the manufacture of rocket engine hardware.

  11. Day one sustainability

    NASA Astrophysics Data System (ADS)

    Orr, John; Ibell, Timothy; Evernden, Mark; Darby, Antony

    2015-05-01

    Emissions reductions targets for the UK set out in the Climate Change Act for the period to 2050 will only be achieved with significant changes to the built environment, which is currently estimated to account for 50% of the UK's carbon emissions. The socio-technological nature of Civil Engineering means that this field is uniquely placed to lead the UK through such adaptations. This paper discusses the importance of interdisciplinary teaching to produce multi-faceted team approaches to sustainable design solutions. Methods for measuring success in education are often not fit for purpose, producing good students but poor engineers. Real-world failures to apply sustainable design present a serious, difficult to detect, and ultimately economically negative situation. Techniques to replace summative examinations are presented and discussed, with the aim of enhancing core technical skills alongside those required for sustainable design. Finally, the role of our future engineers in policy-making is discussed. In addition to carbon, the provision of water and food will heavily influence the work of civil engineers in the coming decades. Leadership from civil engineers with the technical knowledge and social awareness to tackle these issues will be required. This provides both opportunities and challenges for engineering education in the UK.

  12. How to improve the promotion of Korean beef barbecue, bulgogi, for international customers. An application of quality function deployment.

    PubMed

    Park, So-Hyun; Ham, Sunny; Lee, Min-A

    2012-10-01

    Quality function deployment (QFD) is a product development technique that translates customer requirements into activities for the development of products and services. This study utilizes QFD to identify American customer's requirements for bulgogi, a popular Korean dish among international customers, and how to fulfill those requirements. A customer survey and an expert opinion survey were conducted for US customers. The top five customer requirements for bulgogi were identified as taste, freshness, flavor, tenderness, and juiciness; ease of purchase was included in the place of tenderness after calculating the weight requirements. Eighteen engineering characteristics were developed, and a 'localization of bulgogi menu' is strongly related to the other characteristics as well. The results from the calculation of relative importance of engineering characteristics identified that the 'control of marinating time', 'localization of bulgogi menu', 'improvement of cooking and serving process', 'development of recipe by parts of beef', and 'use of various seasonings' were the highest contributors to the overall improvement of bulgogi. The relative importance of engineering characteristics, correlation, and technical difficulties are ranked and integrated to develop the most effective strategy. The findings are discussed relative to industry implications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. NATURAL BIOREMEDIATION PERSPECTIVE FOR BTX CONTAMINATED GROUNDWATER IN BRAZIL: EFFECT OF ETHANOL (R823420)

    EPA Science Inventory

    Abstract

    Natural bioremediation, the use of indigenous microorganisms to degrade hazardous substances within aquifers without engineered stimulation, shows great promise as a cost-effective approach to hydrocarbon plume management. This technique requires thorough site...

  14. REMOTE SENSING TECHNIQUES FOR MONITORING GENETICALLY ENGINEERED CROP CULTIVATION

    EPA Science Inventory

    Crops bioengineered to contain toxins derived from Bacillus thuringensis (Bt) are under regulatory scrutiny by USEPA under the FIFRA legislation. The agency has declared these crops to be "in the public good" based on the reduced use of pesticides required for management of these...

  15. A design and implementation methodology for diagnostic systems

    NASA Technical Reports Server (NTRS)

    Williams, Linda J. F.

    1988-01-01

    A methodology for design and implementation of diagnostic systems is presented. Also discussed are the advantages of embedding a diagnostic system in a host system environment. The methodology utilizes an architecture for diagnostic system development that is hierarchical and makes use of object-oriented representation techniques. Additionally, qualitative models are used to describe the host system components and their behavior. The methodology architecture includes a diagnostic engine that utilizes a combination of heuristic knowledge to control the sequence of diagnostic reasoning. The methodology provides an integrated approach to development of diagnostic system requirements that is more rigorous than standard systems engineering techniques. The advantages of using this methodology during various life cycle phases of the host systems (e.g., National Aerospace Plane (NASP)) include: the capability to analyze diagnostic instrumentation requirements during the host system design phase, a ready software architecture for implementation of diagnostics in the host system, and the opportunity to analyze instrumentation for failure coverage in safety critical host system operations.

  16. Biofunctionalized Plants as Diverse Biomaterials for Human Cell Culture.

    PubMed

    Fontana, Gianluca; Gershlak, Joshua; Adamski, Michal; Lee, Jae-Sung; Matsumoto, Shion; Le, Hau D; Binder, Bernard; Wirth, John; Gaudette, Glenn; Murphy, William L

    2017-04-01

    The commercial success of tissue engineering products requires efficacy, cost effectiveness, and the possibility of scaleup. Advances in tissue engineering require increased sophistication in the design of biomaterials, often challenging the current manufacturing techniques. Interestingly, several of the properties that are desirable for biomaterial design are embodied in the structure and function of plants. This study demonstrates that decellularized plant tissues can be used as adaptable scaffolds for culture of human cells. With simple biofunctionalization technique, it is possible to enable adhesion of human cells on a diverse set of plant tissues. The elevated hydrophilicity and excellent water transport abilities of plant tissues allow cell expansion over prolonged periods of culture. Moreover, cells are able to conform to the microstructure of the plant frameworks, resulting in cell alignment and pattern registration. In conclusion, the current study shows that it is feasible to use plant tissues as an alternative feedstock of scaffolds for mammalian cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Protein engineering for metabolic engineering: current and next-generation tools

    PubMed Central

    Marcheschi, Ryan J.; Gronenberg, Luisa S.; Liao, James C.

    2014-01-01

    Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically-produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. This article reviews advances of selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use, produce non-natural amino acids, alcohols, and carboxylic acids, and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes. PMID:23589443

  18. Protein engineering for metabolic engineering: current and next-generation tools.

    PubMed

    Marcheschi, Ryan J; Gronenberg, Luisa S; Liao, James C

    2013-05-01

    Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. We review advances in selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use; produce non-natural amino acids, alcohols, and carboxylic acids; and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering.

    PubMed

    Akbarzadeh, Rosa; Yousefi, Azizeh-Mitra

    2014-08-01

    Tissue engineering makes use of 3D scaffolds to sustain three-dimensional growth of cells and guide new tissue formation. To meet the multiple requirements for regeneration of biological tissues and organs, a wide range of scaffold fabrication techniques have been developed, aiming to produce porous constructs with the desired pore size range and pore morphology. Among different scaffold fabrication techniques, thermally induced phase separation (TIPS) method has been widely used in recent years because of its potential to produce highly porous scaffolds with interconnected pore morphology. The scaffold architecture can be closely controlled by adjusting the process parameters, including polymer type and concentration, solvent composition, quenching temperature and time, coarsening process, and incorporation of inorganic particles. The objective of this review is to provide information pertaining to the effect of these parameters on the architecture and properties of the scaffolds fabricated by the TIPS technique. © 2014 Wiley Periodicals, Inc.

  20. A Boilerplate Capsule Test Technique for the Orion Parachute Test Program

    NASA Technical Reports Server (NTRS)

    Moore, James W.; Fraire, Usbaldo, Jr.

    2013-01-01

    The test program developing parachutes for the Orion/MPCV includes drop tests of a Parachute Test Vehicle designed to emulate the wake of the Orion capsule. Delivery of this test vehicle to the initial velocity, altitude, and orientation required for the test is a difficult problem involving multiple engineering disciplines. The available delivery of aircraft options imposed constraints on the test vehicle development and concept of operations. This paper describes the development of this test technique. The engineering challenges include the extraction from an aircraft and separation of two aerodynamically unstable vehicles, one of which will be delivered to a specific orientation with reasonably small rates. The desired attitude is achieved by precisely targeting the separation point using on-board monitoring of the motion. The design of the test vehicle is described. The trajectory simulations and other analyses used to develop this technique and predict the behavior of the test article are reviewed in detail. The application of the technique on several successful drop tests is summarized.

  1. Evolution of the Ultrasonic Inspection Requirements of Heavy Rotor Forgings Over the Past Decades

    NASA Astrophysics Data System (ADS)

    Vrana, J.; Zimmer, A.; Bailey, K.; Angal, R.; Zombo, P.; Büchner, U.; Buschmann, A.; Shannon, R. E.; Lohmann, H.-P.; Heinrich, W.

    2010-02-01

    Heavy rotor forgings for land-based power generation turbines and generators are inspected ultrasonically. Several decades ago the first inspections were conducted using manual, straight beam, contact transducers with simple, non-descript reporting requirements. The development of ultrasonic inspection capabilities, the change in design engineer requirements, improvements of fracture mechanics calculations, experience with turbine operation, experience with the inspection technology, and probability of detection drove the changes that have resulted in the current day inspection requirements: sizing technologies were implemented, detection limits were lowered, angle and pitch/catch (dual crystal) scans were introduced, and most recently automated equipment for the inspection was required. Due to all these changes, model based sizing techniques, like DGS, and modern ultrasonic techniques, like phased array, are being introduced globally. This paper describes the evolution of the ultrasonic inspection requirements over the last decades and presents an outlook for tomorrow.

  2. 3D-liquid chromatography as a complex mixture characterization tool for knowledge-based downstream process development.

    PubMed

    Hanke, Alexander T; Tsintavi, Eleni; Ramirez Vazquez, Maria Del Pilar; van der Wielen, Luuk A M; Verhaert, Peter D E M; Eppink, Michel H M; van de Sandt, Emile J A X; Ottens, Marcel

    2016-09-01

    Knowledge-based development of chromatographic separation processes requires efficient techniques to determine the physicochemical properties of the product and the impurities to be removed. These characterization techniques are usually divided into approaches that determine molecular properties, such as charge, hydrophobicity and size, or molecular interactions with auxiliary materials, commonly in the form of adsorption isotherms. In this study we demonstrate the application of a three-dimensional liquid chromatography approach to a clarified cell homogenate containing a therapeutic enzyme. Each separation dimension determines a molecular property relevant to the chromatographic behavior of each component. Matching of the peaks across the different separation dimensions and against a high-resolution reference chromatogram allows to assign the determined parameters to pseudo-components, allowing to determine the most promising technique for the removal of each impurity. More detailed process design using mechanistic models requires isotherm parameters. For this purpose, the second dimension consists of multiple linear gradient separations on columns in a high-throughput screening compatible format, that allow regression of isotherm parameters with an average standard error of 8%. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1283-1291, 2016. © 2016 American Institute of Chemical Engineers.

  3. The use of moral dilemmas for teaching agricultural engineers.

    PubMed

    Lozano, J Félix; Palau-Salvador, Guillermo; Gozálvez, Vincent; Boni, Alejandra

    2006-04-01

    Agricultural engineers' jobs are especially related to sustainability and earth life issues. They usually work with plants or animals, and the aim of their work is often linked to producing food to allow people to improve their quality of life. Taking into account this dual function, the moral requirements of their day-to-day professional practice are arguably greater than those of other professions. Agricultural engineers can develop their ability to live up to this professional responsibility by receiving ethical training during their university studies, not only by taking courses specifically devoted to ethics, but also by having to deal with moral questions that are integrated into their technical courses through a program of Ethics Across the Curriculum (EAC). The authors feel that a suitable pedagogical technique for achieving this goal is the use of moral dilemmas, following Kohlberg's theory of levels of morality (1981), with the final objective of attaining a post-conventional level. This paper examines the possibilities and limitations of using moral dilemmas as a pedagogical technique for training agricultural engineers. The cases, discussions, and evaluation used in the Agricultural Engineering Department of the Technical University of Valencia (Spain) are also presented.

  4. Minimum data requirement for neural networks based on power spectral density analysis.

    PubMed

    Deng, Jiamei; Maass, Bastian; Stobart, Richard

    2012-04-01

    One of the most critical challenges ahead for diesel engines is to identify new techniques for fuel economy improvement without compromising emissions regulations. One technique is the precise control of air/fuel ratio, which requires the measurement of instantaneous fuel consumption. Measurement accuracy and repeatability for fuel rate is the key to successfully controlling the air/fuel ratio and real-time measurement of fuel consumption. The volumetric and gravimetric measurement principles are well-known methods for measurement of fuel consumption in internal combustion engines. However, the fuel flow rate measured by these methods is not suitable for either real-time control or real-time measurement purposes because of the intermittent nature of the measurements. This paper describes a technique that can be used to find the minimum data [consisting of data from just 2.5% of the non-road transient cycle (NRTC)] to solve the problem concerning discontinuous data of fuel flow rate measured using an AVL 733S fuel meter for a medium or heavy-duty diesel engine using neural networks. Only torque and speed are used as the input parameters for the fuel flow rate prediction. Power density analysis is used to find the minimum amount of the data. The results show that the nonlinear autoregressive model with exogenous inputs could predict the particulate matter successfully with R(2) above 0.96 using 2.5% NRTC data with only torque and speed as inputs.

  5. NVIDIA OptiX ray-tracing engine as a new tool for modelling medical imaging systems

    NASA Astrophysics Data System (ADS)

    Pietrzak, Jakub; Kacperski, Krzysztof; Cieślar, Marek

    2015-03-01

    The most accurate technique to model the X- and gamma radiation path through a numerically defined object is the Monte Carlo simulation which follows single photons according to their interaction probabilities. A simplified and much faster approach, which just integrates total interaction probabilities along selected paths, is known as ray tracing. Both techniques are used in medical imaging for simulating real imaging systems and as projectors required in iterative tomographic reconstruction algorithms. These approaches are ready for massive parallel implementation e.g. on Graphics Processing Units (GPU), which can greatly accelerate the computation time at a relatively low cost. In this paper we describe the application of the NVIDIA OptiX ray-tracing engine, popular in professional graphics and rendering applications, as a new powerful tool for X- and gamma ray-tracing in medical imaging. It allows the implementation of a variety of physical interactions of rays with pixel-, mesh- or nurbs-based objects, and recording any required quantities, like path integrals, interaction sites, deposited energies, and others. Using the OptiX engine we have implemented a code for rapid Monte Carlo simulations of Single Photon Emission Computed Tomography (SPECT) imaging, as well as the ray-tracing projector, which can be used in reconstruction algorithms. The engine generates efficient, scalable and optimized GPU code, ready to run on multi GPU heterogeneous systems. We have compared the results our simulations with the GATE package. With the OptiX engine the computation time of a Monte Carlo simulation can be reduced from days to minutes.

  6. EGADS: A microcomputer program for estimating the aerodynamic performance of general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Melton, John E.

    1994-01-01

    EGADS is a comprehensive preliminary design tool for estimating the performance of light, single-engine general aviation aircraft. The software runs on the Apple Macintosh series of personal computers and assists amateur designers and aeronautical engineering students in performing the many repetitive calculations required in the aircraft design process. The program makes full use of the mouse and standard Macintosh interface techniques to simplify the input of various design parameters. Extensive graphics, plotting, and text output capabilities are also included.

  7. Thermal management and mechanical structures for silicon detector systems

    NASA Astrophysics Data System (ADS)

    Viehhauser, G.

    2015-09-01

    Due to the size of current silicon tracking systems system aspects have become a major design driver. This article discusses requirements for the engineering of the mechanical structures and thermal management of such systems and reviews solutions developed to satisfy them. Modern materials and fabrication techniques have been instrumental in constructing these devices and will be discussed here. Finally, this paper will describe current and potential future developments in the engineering of silicon tracking systems which will shape the silicon tracking systems of the future.

  8. Skylab experiments. Volume 7: Living and working in space. [Skylab mission data on human factors engineering and spacecraft components for high school level education

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Experiments conducted on the Skylab vehicle that will measure and evaluate the ability of the crew to live and work effectively in space are discussed. The methods and techniques of human engineering as they relate to the design and evaluation of work spaces, requirements, and tools are described. The application of these methods and the Skylab measurements to the design of future spacecraft are analyzed.

  9. Instrumentation Working Group Summary

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle; Miake-Lye, Richard

    1999-01-01

    The Instrumentation Working Group compiled a summary of measurement techniques applicable to gas turbine engine aerosol precursors and particulates. An assessment was made of the limits, accuracy, applicability, and technology readiness of the various techniques. Despite advances made in emissions characterization of aircraft engines, uncertainties still exist in the mechanisms by which aerosols and particulates are produced in the near-field engine exhaust. To adequately assess current understanding of the formation of sulfuric acid aerosols in the exhaust plumes of gas turbine engines, measurements are required to determine the degree and importance of sulfur oxidation in the turbine and at the engine exit. Ideally, concentrations of all sulfur species would be acquired, with emphasis on SO2 and SO3. Numerous options exist for extractive and non-extractive measurement of SO2 at the engine exit, most of which are well developed. SO2 measurements should be performed first to place an upper bound on the percentage of SO2 oxidation. If extractive and non-extractive techniques indicate that a large amount of the fuel sulfur is not detected as SO2, then efforts are needed to improve techniques for SO3 measurements. Additional work will be required to account for the fuel sulfur in the engine exhaust. Chemical Ionization Mass Spectrometry (CI-MS) measurements need to be pursued, although a careful assessment needs to be made of the sampling line impact on the extracted sample composition. Efforts should also be placed on implementing non-intrusive techniques and extending their capabilities by maximizing exhaust coverage for line-of-sight measurements, as well as development of 2-D techniques, where feasible. Recommendations were made to continue engine exit and combustor measurements of particulates. Particulate measurements should include particle size distribution, mass fraction, hydration properties, and volatile fraction. However, methods to ensure that unaltered samples are obtained need to be developed. Particulate speciation was also assigned a high priority for quantifying the fractions of carbon soot, PAH, refractory materials, metals, sulfates, and nitrates. High priority was also placed on performing a comparison of particle sizing instruments. Concern was expressed by the workshop attendees who routinely make particulate measurements about the variation in number density measured during in-flight tests by different instruments. In some cases, measurements performed by different groups of researchers during the same flight tests showed an order of magnitude variation. Second priority was assigned to measuring concentrations of odd hydrogen and oxidizing species. Since OH, HO2, H2O2, and O are extremely reactive, non-extractive measurements are recommended. A combination of absorption and fluorescence is anticipated to be effective for OH measurements in the combustor and at the engine exit. Extractive measurements of HO2 have been made in the stratosphere, where the ambient level of OH is relatively low. Use of techniques that convert HO2 to OH for combustor and engine exit measurements needs to be evaluated, since the ratio of HO2/OH may be 1% or less at both the combustor and engine exit. CI-MS might be a viable option for H2O2, subject to sampling line conversion issues. However, H2O2 is a low priority oxidizing species in the combustor and at the engine exit. Two candidates for atomic oxygen measurements are Resonance Enhanced Multi-Photon Ionization (REMPI) and Laser-Induced Fluorescence (LIF). Particulate measurement by simultaneous extractive and non-extractive techniques was given equal priority to the oxidizer measurements. Concern was expressed over the ability of typical ground test sampling lines to deliver an unaltered sample to a remotely located instrument. It was suggested that the sampling probe and line losses be checked out by attempting measurements using an optical or non-extractive technique immediately upstream of the sampling probe. This is a possible application for Laser Induced Incandescence (LII) as a check on the volume fraction of soot. Optical measurements of size distribution are not well developed for ultrafine particles less than about 20 nm in diameter, so a non-extractive technique for particulate size distribution cannot be recommended without further development. Carbon dioxide measurements need to be made to complement other extractive measurement techniques. CO2 measurements enable conversion of other species concentrations to emission indices. Carbon monoxide, which acts as a sink for oxidizing species, should be measured using non-extractive techniques. CO can be rapidly converted to CO2 in extractive probes, and a comparison between extractive and non-extractive measurements should be performed. Development of non-extractive techniques would help to assess the degree of CO conversion, and might be needed to improve the concentration measurement accuracy. Measurements of NO(x) will continue to be critical due to the role of NO and NO2 in atmospheric chemistry, and their influence on atmospheric ozone. Time-resolved measurements of temperature, velocity, and species concentrations were included on the list of desired measurement. Thermocouples are typically adequate for engine exit measurements. PIV and LDV are well established for obtaining velocity profiles. The techniques are listed in the accompanying table; are divided into extractive and non-extractive techniques. Efforts were made to include a measurement uncertainty for each technique. An assessment of the technology readiness was included.

  10. Engineering and fabrication cost considerations for cryogenic wind tunnel models

    NASA Technical Reports Server (NTRS)

    Boykin, R. M., Jr.; Davenport, J. B., Jr.

    1983-01-01

    Design and fabrication cost drivers for cryogenic transonic wind tunnel models are defined. The major cost factors for wind tunnel models are model complexity, tolerances, surface finishes, materials, material validation, and model inspection. The cryogenic temperatures require the use of materials with relatively high fracture toughness but at the same time high strength. Some of these materials are very difficult to machine, requiring extensive machine hours which can add significantly to the manufacturing costs. Some additional engineering costs are incurred to certify the materials through mechanical tests and nondestructive evaluation techniques, which are not normally required with conventional models. When instrumentation such as accelerometers and electronically scanned pressure modules is required, temperature control of these devices needs to be incorporated into the design, which requires added effort. Additional thermal analyses and subsystem tests may be necessary, which also adds to the design costs. The largest driver to the design costs is potentially the additional static and dynamic analyses required to insure structural integrity of the model and support system.

  11. Genome-Wide Tuning of Protein Expression Levels to Rapidly Engineer Microbial Traits.

    PubMed

    Freed, Emily F; Winkler, James D; Weiss, Sophie J; Garst, Andrew D; Mutalik, Vivek K; Arkin, Adam P; Knight, Rob; Gill, Ryan T

    2015-11-20

    The reliable engineering of biological systems requires quantitative mapping of predictable and context-independent expression over a broad range of protein expression levels. However, current techniques for modifying expression levels are cumbersome and are not amenable to high-throughput approaches. Here we present major improvements to current techniques through the design and construction of E. coli genome-wide libraries using synthetic DNA cassettes that can tune expression over a ∼10(4) range. The cassettes also contain molecular barcodes that are optimized for next-generation sequencing, enabling rapid and quantitative tracking of alleles that have the highest fitness advantage. We show these libraries can be used to determine which genes and expression levels confer greater fitness to E. coli under different growth conditions.

  12. Optimizing spacecraft design - optimization engine development : progress and plans

    NASA Technical Reports Server (NTRS)

    Cornford, Steven L.; Feather, Martin S.; Dunphy, Julia R; Salcedo, Jose; Menzies, Tim

    2003-01-01

    At JPL and NASA, a process has been developed to perform life cycle risk management. This process requires users to identify: goals and objectives to be achieved (and their relative priorities), the various risks to achieving those goals and objectives, and options for risk mitigation (prevention, detection ahead of time, and alleviation). Risks are broadly defined to include the risk of failing to design a system with adequate performance, compatibility and robustness in addition to more traditional implementation and operational risks. The options for mitigating these different kinds of risks can include architectural and design choices, technology plans and technology back-up options, test-bed and simulation options, engineering models and hardware/software development techniques and other more traditional risk reduction techniques.

  13. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing.

    PubMed

    Butscher, A; Bohner, M; Hofmann, S; Gauckler, L; Müller, R

    2011-03-01

    This article reviews the current state of knowledge concerning the use of powder-based three-dimensional printing (3DP) for the synthesis of bone tissue engineering scaffolds. 3DP is a solid free-form fabrication (SFF) technique building up complex open porous 3D structures layer by layer (a bottom-up approach). In contrast to traditional fabrication techniques generally subtracting material step by step (a top-down approach), SFF approaches allow nearly unlimited designs and a large variety of materials to be used for scaffold engineering. Today's state of the art materials, as well as the mechanical and structural requirements for bone scaffolds, are summarized and discussed in relation to the technical feasibility of their use in 3DP. Advances in the field of 3DP are presented and compared with other SFF methods. Existing strategies on material and design control of scaffolds are reviewed. Finally, the possibilities and limiting factors are addressed and potential strategies to improve 3DP for scaffold engineering are proposed. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Esophageal tissue engineering: Current status and perspectives.

    PubMed

    Poghosyan, T; Catry, J; Luong-Nguyen, M; Bruneval, P; Domet, T; Arakelian, L; Sfeir, R; Michaud, L; Vanneaux, V; Gottrand, F; Larghero, J; Cattan, P

    2016-02-01

    Tissue engineering, which consists of the combination and in vivo implantation of elements required for tissue remodeling toward a specific organ phenotype, could be an alternative for classical techniques of esophageal replacement. The current hybrid approach entails creation of an esophageal substitute composed of an acellular matrix and autologous epithelial and muscle cells provides the most successful results. Current research is based on the use of mesenchymal stem cells, whose potential for differentiation and proangioogenic, immune-modulator and anti-inflammatory properties are important assets. In the near future, esophageal substitutes could be constructed from acellular "intelligent matrices" that contain the molecules necessary for tissue regeneration; this should allow circumvention of the implantation step and still obtain standardized in vivo biological responses. At present, tissue engineering applications to esophageal replacement are limited to enlargement plasties with absorbable, non-cellular matrices. Nevertheless, the application of existing clinical techniques for replacement of other organs by tissue engineering in combination with a multiplication of translational research protocols for esophageal replacement in large animals should soon pave the way for health agencies to authorize clinical trials. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. TRENDS IN ENGINEERING GEOLOGIC AND RELATED MAPPING.

    USGS Publications Warehouse

    Varnes, David J.; Keaton, Jeffrey R.

    1983-01-01

    Progress is reviewed that has been made during the period 1972-1982 in producing medium- and small-scale engineering geologic maps with a variety of content. Improved methods to obtain and present information are evolving. Standards concerning text and map content, soil and rock classification, and map symbols have been proposed. Application of geomorphological techniques in terrain evaluation has increased, as has the use of aerial photography and other remote sensing. Computers are being used to store, analyze, retrieve, and print both text and map information. Development of offshore resources, especially petroleum, has led to marked improvement and growth in marine engineering geology and geotechnology. Coordinated planning for societal needs has required broader scope and increased complexity of both engineering geologic and environmental geologic studies. Refs.

  16. The Engineering Potential of Rhodosporidium toruloides as a Workhorse for Biotechnological Applications.

    PubMed

    Park, Young-Kyoung; Nicaud, Jean-Marc; Ledesma-Amaro, Rodrigo

    2018-03-01

    Moving our society towards a bioeconomy requires efficient and sustainable microbial production of chemicals and fuels. Rhodotorula (Rhodosporidium) toruloides is a yeast that naturally synthesizes substantial amounts of specialty chemicals and has been recently engineered to (i) enhance its natural production of lipids and carotenoids, and (ii) produce novel industrially relevant compounds. The use of R. toruloides by companies and research groups has exponentially increased in recent years as a result of recent improvements in genetic engineering techniques and the availability of multiomics information on its genome and metabolism. This review focuses on recent engineering approaches in R. toruloides for bioproduction and explores its potential as a biotechnological chassis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Engineering clinically relevant volumes of vascularized bone

    PubMed Central

    Roux, Brianna M; Cheng, Ming-Huei; Brey, Eric M

    2015-01-01

    Vascularization remains one of the most important challenges that must be overcome for tissue engineering to be consistently implemented for reconstruction of large volume bone defects. An extensive vascular network is needed for transport of nutrients, waste and progenitor cells required for remodelling and repair. A variety of tissue engineering strategies have been investigated in an attempt to vascularize tissues, including those applying cells, soluble factor delivery strategies, novel design and optimization of bio-active materials, vascular assembly pre-implantation and surgical techniques. However, many of these strategies face substantial barriers that must be overcome prior to their ultimate translation into clinical application. In this review recent progress in engineering vascularized bone will be presented with an emphasis on clinical feasibility. PMID:25877690

  18. Metrology: Calibration and measurement processes guidelines

    NASA Technical Reports Server (NTRS)

    Castrup, Howard T.; Eicke, Woodward G.; Hayes, Jerry L.; Mark, Alexander; Martin, Robert E.; Taylor, James L.

    1994-01-01

    The guide is intended as a resource to aid engineers and systems contracts in the design, implementation, and operation of metrology, calibration, and measurement systems, and to assist NASA personnel in the uniform evaluation of such systems supplied or operated by contractors. Methodologies and techniques acceptable in fulfilling metrology quality requirements for NASA programs are outlined. The measurement process is covered from a high level through more detailed discussions of key elements within the process, Emphasis is given to the flowdown of project requirements to measurement system requirements, then through the activities that will provide measurements with defined quality. In addition, innovations and techniques for error analysis, development of statistical measurement process control, optimization of calibration recall systems, and evaluation of measurement uncertainty are presented.

  19. Fabrication of ceramic substrate-reinforced and free forms

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.; Mcdonald, G.; Hendricks, R. C.

    1985-01-01

    Components fabricated of, or coated with, ceramics have lower parasitic cooling requirements. Techniques are discussed for fabricating thin-shell ceramic components and ceramic coatings for applications in rocket or jet engine environments. Thin ceramic shells with complex geometric forms involving convolutions and reentrant surfaces were fabricated by mandrel removal. Mandrel removal was combined with electroplating or plasma spraying and isostatic pressing to form a metal support for the ceramic. Rocket engine thrust chambers coated with 0.08 mm (3 mil) of ZrO2-8Y2O3 had no failures and a tenfold increase in engine life. Some measured mechanical properties of the plasma-sprayed ceramic are presented.

  20. A Risk Management Architecture for Emergency Integrated Aircraft Control

    NASA Technical Reports Server (NTRS)

    McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.

    2011-01-01

    Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.

  1. Whole Organ Tissue Vascularization: Engineering the Tree to Develop the Fruits.

    PubMed

    Pellegata, Alessandro F; Tedeschi, Alfonso M; De Coppi, Paolo

    2018-01-01

    Tissue engineering aims to regenerate and recapitulate a tissue or organ that has lost its function. So far successful clinical translation has been limited to hollow organs in which rudimental vascularization can be achieved by inserting the graft into flaps of the omentum or muscle fascia. This technique used to stimulate vascularization of the graft takes advantage of angiogenesis from existing vascular networks. Vascularization of the engineered graft is a fundamental requirement in the process of engineering more complex organs, as it is crucial for the efficient delivery of nutrients and oxygen following in-vivo implantation. To achieve vascularization of the organ many different techniques have been investigated and exploited. The most promising results have been obtained by seeding endothelial cells directly into decellularized scaffolds, taking advantage of the channels remaining from the pre-existing vascular network. Currently, the main hurdle we need to overcome is achieving a fully functional vascular endothelium, stable over a long time period of time, which is engineered using a cell source that is clinically suitable and can generate, in vitro , a yield of cells suitable for the engineering of human sized organs. This review will give an overview of the approaches that have recently been investigated to address the issue of vascularization in the field of tissue engineering of whole organs, and will highlight the current caveats and hurdles that should be addressed in the future.

  2. Design and Implementation of High-Performance GIS Dynamic Objects Rendering Engine

    NASA Astrophysics Data System (ADS)

    Zhong, Y.; Wang, S.; Li, R.; Yun, W.; Song, G.

    2017-12-01

    Spatio-temporal dynamic visualization is more vivid than static visualization. It important to use dynamic visualization techniques to reveal the variation process and trend vividly and comprehensively for the geographical phenomenon. To deal with challenges caused by dynamic visualization of both 2D and 3D spatial dynamic targets, especially for different spatial data types require high-performance GIS dynamic objects rendering engine. The main approach for improving the rendering engine with vast dynamic targets relies on key technologies of high-performance GIS, including memory computing, parallel computing, GPU computing and high-performance algorisms. In this study, high-performance GIS dynamic objects rendering engine is designed and implemented for solving the problem based on hybrid accelerative techniques. The high-performance GIS rendering engine contains GPU computing, OpenGL technology, and high-performance algorism with the advantage of 64-bit memory computing. It processes 2D, 3D dynamic target data efficiently and runs smoothly with vast dynamic target data. The prototype system of high-performance GIS dynamic objects rendering engine is developed based SuperMap GIS iObjects. The experiments are designed for large-scale spatial data visualization, the results showed that the high-performance GIS dynamic objects rendering engine have the advantage of high performance. Rendering two-dimensional and three-dimensional dynamic objects achieve 20 times faster on GPU than on CPU.

  3. Methods for Prediction of High-Speed Reacting Flows in Aerospace Propulsion

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip

    2014-01-01

    Research to develop high-speed airbreathing aerospace propulsion systems was underway in the late 1950s. A major part of the effort involved the supersonic combustion ramjet, or scramjet, engine. Work had also begun to develop computational techniques for solving the equations governing the flow through a scramjet engine. However, scramjet technology and the computational methods to assist in its evolution would remain apart for another decade. The principal barrier was that the computational methods needed for engine evolution lacked the computer technology required for solving the discrete equations resulting from the numerical methods. Even today, computer resources remain a major pacing item in overcoming this barrier. Significant advances have been made over the past 35 years, however, in modeling the supersonic chemically reacting flow in a scramjet combustor. To see how scramjet development and the required computational tools finally merged, we briefly trace the evolution of the technology in both areas.

  4. National space transportation systems planning

    NASA Technical Reports Server (NTRS)

    Lucas, W. R.

    1985-01-01

    In the fall of 1984, the DOD and NASA had been asked to identify launch vehicle technologies which could be made available for use in 1995 to 2010. The results of the studies of the two groups were integrated, and a consumer report, dated December 1984, was forwarded to the President. Aspects of mission planning and analysis are discussed along with a combined mission model, future launch system requirements, a launch vehicle planning background, Shuttle derivative vehicle program options, payload modularization, launch vehicle technology implications, a new engine program for the mid-1990's. Future launch systems goals are to achieve an order of magnitude reduction in future launch cost and meet the lift requirements and launch rates. Attention is given to an advanced cryogenic engine, advanced LOX/hydrocarbon engine, advanced power systems, aerodynamics/flight mechanics, reentry/recovery systems, avionics/software, advanced manufacturing techniques, autonomous ground and mission operations, advanced structures/materials, and air breathing propulsion.

  5. Safety assessment for EPS electron-proton spectrometer

    NASA Technical Reports Server (NTRS)

    Gleeson, P.

    1971-01-01

    A safety analysis was conducted to identify the efforts required to assure relatively hazard free operation of the EPS and to meet the safety requirements of the program. Safety engineering criteria, principles, and techniques in applicable disciplines are stressed in the performance of the system and subsystem studies; in test planning; in the design, development, test, evaluation, and checkout of the equipment; and the operating procedures for the EPS program.

  6. Rasmussen's legacy: A paradigm change in engineering for safety.

    PubMed

    Leveson, Nancy G

    2017-03-01

    This paper describes three applications of Rasmussen's idea to systems engineering practice. The first is the application of the abstraction hierarchy to engineering specifications, particularly requirements specification. The second is the use of Rasmussen's ideas in safety modeling and analysis to create a new, more powerful type of accident causation model that extends traditional models to better handle human-operated, software-intensive, sociotechnical systems. Because this new model has a formal, mathematical foundation built on systems theory (as was Rasmussen's original model), new modeling and analysis tools become possible. The third application is to engineering hazard analysis. Engineers have traditionally either omitted human from consideration in system hazard analysis or have treated them rather superficially, for example, that they behave randomly. Applying Rasmussen's model of human error to a powerful new hazard analysis technique allows human behavior to be included in engineering hazard analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Stimulation of a turbofan engine for evaluation of multivariable optimal control concepts. [(computerized simulation)

    NASA Technical Reports Server (NTRS)

    Seldner, K.

    1976-01-01

    The development of control systems for jet engines requires a real-time computer simulation. The simulation provides an effective tool for evaluating control concepts and problem areas prior to actual engine testing. The development and use of a real-time simulation of the Pratt and Whitney F100-PW100 turbofan engine is described. The simulation was used in a multi-variable optimal controls research program using linear quadratic regulator theory. The simulation is used to generate linear engine models at selected operating points and evaluate the control algorithm. To reduce the complexity of the design, it is desirable to reduce the order of the linear model. A technique to reduce the order of the model; is discussed. Selected results between high and low order models are compared. The LQR control algorithms can be programmed on digital computer. This computer will control the engine simulation over the desired flight envelope.

  8. Numerical methods for engine-airframe integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, S.N.B.; Paynter, G.C.

    1986-01-01

    Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison ofmore » full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment.« less

  9. Protein design in systems metabolic engineering for industrial strain development.

    PubMed

    Chen, Zhen; Zeng, An-Ping

    2013-05-01

    Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development and Testing of a High Stability Engine Control (HISTEC) System

    NASA Technical Reports Server (NTRS)

    Orme, John S.; DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Doane, Paul M.

    1998-01-01

    Flight tests were recently completed to demonstrate an inlet-distortion-tolerant engine control system. These flight tests were part of NASA's High Stability Engine Control (HISTEC) program. The objective of the HISTEC program was to design, develop, and flight demonstrate an advanced integrated engine control system that uses measurement-based, real-time estimates of inlet airflow distortion to enhance engine stability. With improved stability and tolerance of inlet airflow distortion, future engine designs may benefit from a reduction in design stall-margin requirements and enhanced reliability, with a corresponding increase in performance and decrease in fuel consumption. This paper describes the HISTEC methodology, presents an aircraft test bed description (including HISTEC-specific modifications) and verification and validation ground tests. Additionally, flight test safety considerations, test plan and technique design and approach, and flight operations are addressed. Some illustrative results are presented to demonstrate the type of analysis and results produced from the flight test program.

  11. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  12. Advanced online control mode selection for gas turbine aircraft engines

    NASA Astrophysics Data System (ADS)

    Wiseman, Matthew William

    The modern gas turbine aircraft engine is a complex, highly nonlinear system the operates in a widely varying environment. Traditional engine control techniques based on the hydro mechanical control concepts of early turbojet engines are unable to deliver the performance required from today's advanced engine designs. A new type of advanced control utilizing multiple control modes and an online mode selector is investigated, and various strategies for improving the baseline mode selection architecture are introduced. The ability to five-tune actuator command outputs is added to the basic mode selection and blending process, and mode selection designs that we valid for the entire flight envelope are presented. Methods for optimizing the mode selector to improve overall engine performance are also discussed. Finally, using flight test data from a GE F110-powered F16 aircraft, the full-envelope mode selector designs are validated and shown to provide significant performance benefits. Specifically, thrust command tracking is enhanced while critical engine limits are protected, with very little impact on engine efficiency.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Viola, J. Edwards, T. Brown, L. Dudek, R. Ellis, P. Heitzenroeder, R. Strykowsky and Michael Cole

    The National Compact Stellarator Experiment (NCSX) was a collaborative effort between ORNL and PPPL. PPPL provided the assembly techniques with guidance from ORNL to meet design criteria. The individual vacuum vessel segments, modular coils, trim coils, and toroidal field coils components were delivered to the Field Period Assembly (FPA) crew who then would complete the component assemblies and then assemble the final three field period assemblies, each consisting of two sets of three modular coils assembled over a 120o vacuum vessel segment with the trim coils and toroidal field coils providing the outer layer. The requirements for positioning the modularmore » coils were found to be most demanding. The assembly tolerances required for accurate positioning of the field coil windings in order to generate sufficiently accurate magnetic fields strained state of the art techniques in metrology and alignment and required constant monitoring of assembly steps with laser trackers, measurement arms, and photogrammetry. The FPA activities were being performed concurrently while engineering challenges were being resolved. For example, it was determined that high friction electrically isolated shims were needed between the modular coil interface joints and low distortion welding was required in the nose region of those joints. This took months of analysis and development yet the assembly was not significantly impacted because other assembly tasks could be performed in parallel with ongoing assembly tasks as well as tasks such as advance tooling setup preparation for the eventual welding tasks. The crew technicians developed unique, accurate time saving techniques and tooling which provided significant cost and schedule savings. Project management displayed extraordinary foresight and every opportunity to gain advanced knowledge and develop techniques was taken advantage of. Despite many risk concerns, the cost and schedule performance index was maintained nearly 1.0 during the assembly phase until project cancellation. In this paper, the assembly logic, the engineering challenges, solutions to those challenges and some of the unique and clever assembly techniques, will be presented.« less

  14. Class and Home Problems: Optimization Problems

    ERIC Educational Resources Information Center

    Anderson, Brian J.; Hissam, Robin S.; Shaeiwitz, Joseph A.; Turton, Richard

    2011-01-01

    Optimization problems suitable for all levels of chemical engineering students are available. These problems do not require advanced mathematical techniques, since they can be solved using typical software used by students and practitioners. The method used to solve these problems forces students to understand the trends for the different terms…

  15. LATUX: An Iterative Workflow for Designing, Validating, and Deploying Learning Analytics Visualizations

    ERIC Educational Resources Information Center

    Martinez-Maldonado, Roberto; Pardo, Abelardo; Mirriahi, Negin; Yacef, Kalina; Kay, Judy; Clayphan, Andrew

    2015-01-01

    Designing, validating, and deploying learning analytics tools for instructors or students is a challenge that requires techniques and methods from different disciplines, such as software engineering, human-computer interaction, computer graphics, educational design, and psychology. Whilst each has established its own design methodologies, we now…

  16. Influence of cross section variations on the structural behaviour of composite rotor blades

    NASA Astrophysics Data System (ADS)

    Rapp, Helmut; Woerndle, Rudolf

    1991-09-01

    A highly sophisticated structural analysis is required for helicopter rotor blades with nonhomogeneous cross sections made from nonisotropic material. Combinations of suitable analytical techniques with FEM-based techniques permit a cost effective and sufficiently accurate analysis of these complicated structures. It is determined that in general the 1D engineering theory of bending combined with 2D theories for determining the cross section properties is sufficient to describe the structural blade behavior.

  17. Requirements Engineering for inter-organizational health information systems with functions for spatial analyses: modeling a WHO safe community applying Use Case Maps.

    PubMed

    Olvingson, C; Hallberg, N; Timpka, T; Lindqvist, K

    2002-01-01

    To evaluate Use Case Maps (UCMs) as a technique for Requirements Engineering (RE) in the development of information systems with functions for spatial analyses in inter-organizational public health settings. In this study, Participatory Action Research (PAR) is used to explore the UCM notation for requirements elicitation and to gather the opinions of the users. The Delphi technique is used to reach consensus in the construction of UCMs. The results show that UCMs can provide a visualization of the system's functionality and in combination with PAR provide a sound basis for gathering requirements in inter-organizational settings. UCMs were found to represent a suitable level for describing the organization and the dynamic flux of information including spatial resolution to all stakeholders. Moreover, by using PAR, the voices of the users and their tacit knowledge is intercepted. Further, UCMs are found useful in generating intuitive requirements by the creation of use cases. With UCMs and PAR it is possible to study the effects of design changes in the general information display and the spatial resolution in the same context. Both requirements on the information system in general and the functions for spatial analyses are possible to elicit when identifying the different responsibilities and the demands on spatial resolution associated to the actions of each administrative unit. However, the development process of UCM is not well documented and needs further investigation and formulation of guidelines.

  18. CF6 jet engine diagnostics program. High pressure turbine roundness/clearance investigation

    NASA Technical Reports Server (NTRS)

    Howard, W. D.; Fasching, W. A.

    1982-01-01

    The effects of high pressure turbine clearance changes on engine and module performance was evaluated in addition to the measurement of CF6-50C high pressure turbine Stage 1 tip clearance and stator out-of-roundness during steady-state and transient operation. The results indicated a good correlation of the analytical model of round engine clearance response with measured data. The stator out-of-roundness measurements verified that the analytical technique for predicting the distortion effects of mechanical loads is accurate, whereas the technique for calculating the effects of certain circumferential thermal gradients requires some modifications. A potential for improvement in roundness was established in the order of 0.38 mm (0.015 in.), equivalent to 0.86 percent turbine efficiency which translates to a cruise SFC improvement of 0.36 percent. The HP turbine Stage 1 tip clearance performance derivative was established as 0.44 mm (17 mils) per percent of turbine efficiency at take-off power, somewhat smaller, therefore, more sensitive than predicted from previous investigations.

  19. Photogrammetric techniques for aerospace applications

    NASA Astrophysics Data System (ADS)

    Liu, Tianshu; Burner, Alpheus W.; Jones, Thomas W.; Barrows, Danny A.

    2012-10-01

    Photogrammetric techniques have been used for measuring the important physical quantities in both ground and flight testing including aeroelastic deformation, attitude, position, shape and dynamics of objects such as wind tunnel models, flight vehicles, rotating blades and large space structures. The distinct advantage of photogrammetric measurement is that it is a non-contact, global measurement technique. Although the general principles of photogrammetry are well known particularly in topographic and aerial survey, photogrammetric techniques require special adaptation for aerospace applications. This review provides a comprehensive and systematic summary of photogrammetric techniques for aerospace applications based on diverse sources. It is useful mainly for aerospace engineers who want to use photogrammetric techniques, but it also gives a general introduction for photogrammetrists and computer vision scientists to new applications.

  20. From scenarios to domain models: processes and representations

    NASA Astrophysics Data System (ADS)

    Haddock, Gail; Harbison, Karan

    1994-03-01

    The domain specific software architectures (DSSA) community has defined a philosophy for the development of complex systems. This philosophy improves productivity and efficiency by increasing the user's role in the definition of requirements, increasing the systems engineer's role in the reuse of components, and decreasing the software engineer's role to the development of new components and component modifications only. The scenario-based engineering process (SEP), the first instantiation of the DSSA philosophy, has been adopted by the next generation controller project. It is also the chosen methodology of the trauma care information management system project, and the surrogate semi-autonomous vehicle project. SEP uses scenarios from the user to create domain models and define the system's requirements. Domain knowledge is obtained from a variety of sources including experts, documents, and videos. This knowledge is analyzed using three techniques: scenario analysis, task analysis, and object-oriented analysis. Scenario analysis results in formal representations of selected scenarios. Task analysis of the scenario representations results in descriptions of tasks necessary for object-oriented analysis and also subtasks necessary for functional system analysis. Object-oriented analysis of task descriptions produces domain models and system requirements. This paper examines the representations that support the DSSA philosophy, including reference requirements, reference architectures, and domain models. The processes used to create and use the representations are explained through use of the scenario-based engineering process. Selected examples are taken from the next generation controller project.

  1. Bone tissue engineering scaffolding: computer-aided scaffolding techniques.

    PubMed

    Thavornyutikarn, Boonlom; Chantarapanich, Nattapon; Sitthiseripratip, Kriskrai; Thouas, George A; Chen, Qizhi

    Tissue engineering is essentially a technique for imitating nature. Natural tissues consist of three components: cells, signalling systems (e.g. growth factors) and extracellular matrix (ECM). The ECM forms a scaffold for its cells. Hence, the engineered tissue construct is an artificial scaffold populated with living cells and signalling molecules. A huge effort has been invested in bone tissue engineering, in which a highly porous scaffold plays a critical role in guiding bone and vascular tissue growth and regeneration in three dimensions. In the last two decades, numerous scaffolding techniques have been developed to fabricate highly interconnective, porous scaffolds for bone tissue engineering applications. This review provides an update on the progress of foaming technology of biomaterials, with a special attention being focused on computer-aided manufacturing (Andrade et al. 2002) techniques. This article starts with a brief introduction of tissue engineering (Bone tissue engineering and scaffolds) and scaffolding materials (Biomaterials used in bone tissue engineering). After a brief reviews on conventional scaffolding techniques (Conventional scaffolding techniques), a number of CAM techniques are reviewed in great detail. For each technique, the structure and mechanical integrity of fabricated scaffolds are discussed in detail. Finally, the advantaged and disadvantage of these techniques are compared (Comparison of scaffolding techniques) and summarised (Summary).

  2. Cellular and multicellular form and function.

    PubMed

    Liu, Wendy F; Chen, Christopher S

    2007-11-10

    Engineering artificial tissue constructs requires the appropriate spatial arrangement of cells within scaffolds. The introduction of microengineering tools to the biological community has provided a valuable set of techniques to manipulate the cellular environment, and to examine how cell structure affects cellular function. Using micropatterning techniques, investigators have found that the geometric presentation of cell-matrix adhesions are important regulators of various cell behaviors including cell growth, proliferation, differentiation, polarity and migration. Furthermore, the presence of neighboring cells in multicellular aggregates has a significant impact on the proliferative and differentiated state of cells. Using microengineering tools, it will now be possible to manipulate the various environmental factors for practical applications such as engineering tissue constructs with greater control over the physical structure and spatial arrangement of cells within their surrounding microenvironment.

  3. Advanced fabrication techniques for hydrogen-cooled engine structures

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.; Arefian, V. V.; Warren, H. A.; Vuigner, A. A.; Pohlman, M. J.

    1985-01-01

    Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

  4. The Scenario-Based Engineering Process (SEP): a user-centered approach for the development of health care systems.

    PubMed

    Harbison, K; Kelly, J; Burnell, L; Silva, J

    1995-01-01

    The Scenario-based Engineering Process (SEP) is a user-focused methodology for large and complex system design. This process supports new application development from requirements analysis with domain models to component selection, design and modification, implementation, integration, and archival placement. It is built upon object-oriented methodologies, domain modeling strategies, and scenario-based techniques to provide an analysis process for mapping application requirements to available components. We are using SEP in the health care applications that we are developing. The process has already achieved success in the manufacturing and military domains and is being adopted by many organizations. SEP should prove viable in any domain containing scenarios that can be decomposed into tasks.

  5. An optical method for measuring exhaust gas pressure from an internal combustion engine at high speed

    NASA Astrophysics Data System (ADS)

    Leach, Felix C. P.; Davy, Martin H.; Siskin, Dmitrij; Pechstedt, Ralf; Richardson, David

    2017-12-01

    Measurement of exhaust gas pressure at high speed in an engine is important for engine efficiency, computational fluid dynamics analysis, and turbocharger matching. Currently used piezoresistive sensors are bulky, require cooling, and have limited lifetimes. A new sensor system uses an interferometric technique to measure pressure by measuring the size of an optical cavity, which varies with pressure due to movement of a diaphragm. This pressure measurement system has been used in gas turbine engines where the temperatures and pressures have no significant transients but has never been applied to an internal combustion engine before, an environment where both temperature and pressure can change rapidly. This sensor has been compared with a piezoresistive sensor representing the current state-of-the-art at three engine operating points corresponding to both light load and full load. The results show that the new sensor can match the measurements from the piezoresistive sensor except when there are fast temperature swings, so the latter part of the pressure during exhaust blowdown is only tracked with an offset. A modified sensor designed to compensate for these temperature effects is also tested. The new sensor has shown significant potential as a compact, durable sensor, which does not require external cooling.

  6. An optical method for measuring exhaust gas pressure from an internal combustion engine at high speed.

    PubMed

    Leach, Felix C P; Davy, Martin H; Siskin, Dmitrij; Pechstedt, Ralf; Richardson, David

    2017-12-01

    Measurement of exhaust gas pressure at high speed in an engine is important for engine efficiency, computational fluid dynamics analysis, and turbocharger matching. Currently used piezoresistive sensors are bulky, require cooling, and have limited lifetimes. A new sensor system uses an interferometric technique to measure pressure by measuring the size of an optical cavity, which varies with pressure due to movement of a diaphragm. This pressure measurement system has been used in gas turbine engines where the temperatures and pressures have no significant transients but has never been applied to an internal combustion engine before, an environment where both temperature and pressure can change rapidly. This sensor has been compared with a piezoresistive sensor representing the current state-of-the-art at three engine operating points corresponding to both light load and full load. The results show that the new sensor can match the measurements from the piezoresistive sensor except when there are fast temperature swings, so the latter part of the pressure during exhaust blowdown is only tracked with an offset. A modified sensor designed to compensate for these temperature effects is also tested. The new sensor has shown significant potential as a compact, durable sensor, which does not require external cooling.

  7. Contingency power for small turboshaft engines using water injection into turbine cooling air

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Klann, Gary A.; Clark, David A.; Berger, Brett

    1987-01-01

    Because of one engine inoperative requirements, together with hot-gas reingestion and hot day, high altitude takeoff situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stresses is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  8. Extended frequency turbofan model

    NASA Technical Reports Server (NTRS)

    Mason, J. R.; Park, J. W.; Jaekel, R. F.

    1980-01-01

    The fan model was developed using two dimensional modeling techniques to add dynamic radial coupling between the core stream and the bypass stream of the fan. When incorporated into a complete TF-30 engine simulation, the fan model greatly improved compression system frequency response to planar inlet pressure disturbances up to 100 Hz. The improved simulation also matched engine stability limits at 15 Hz, whereas the one dimensional fan model required twice the inlet pressure amplitude to stall the simulation. With verification of the two dimensional fan model, this program formulated a high frequency F-100(3) engine simulation using row by row compression system characteristics. In addition to the F-100(3) remote splitter fan, the program modified the model fan characteristics to simulate a proximate splitter version of the F-100(3) engine.

  9. Can IR scene projectors reduce total system cost?

    NASA Astrophysics Data System (ADS)

    Ginn, Robert; Solomon, Steven

    2006-05-01

    There is an incredible amount of system engineering involved in turning the typical infrared system needs of probability of detection, probability of identification, and probability of false alarm into focal plane array (FPA) requirements of noise equivalent irradiance (NEI), modulation transfer function (MTF), fixed pattern noise (FPN), and defective pixels. Unfortunately, there are no analytic solutions to this problem so many approximations and plenty of "seat of the pants" engineering is employed. This leads to conservative specifications, which needlessly drive up system costs by increasing system engineering costs, reducing FPA yields, increasing test costs, increasing rework and the never ending renegotiation of requirements in an effort to rein in costs. These issues do not include the added complexity to the FPA factory manager of trying to meet varied, and changing, requirements for similar products because different customers have made different approximations and flown down different specifications. Scene generation technology may well be mature and cost effective enough to generate considerable overall savings for FPA based systems. We will compare the costs and capabilities of various existing scene generation systems and estimate the potential savings if implemented at several locations in the IR system fabrication cycle. The costs of implementing this new testing methodology will be compared to the probable savings in systems engineering, test, rework, yield improvement and others. The diverse requirements and techniques required for testing missile warning systems, missile seekers, and FLIRs will be defined. Last, we will discuss both the hardware and software requirements necessary to meet the new test paradigm and discuss additional cost improvements related to the incorporation of these technologies.

  10. The Evolution of Utilizing Manual Throttles to Avoid Low LH2 NPSP at the SSME Inlet

    NASA Technical Reports Server (NTRS)

    Henfling, Rick

    2011-01-01

    Even before the first flight of the Space Shuttle, it was understood low liquid hydrogen (LH2) Net Positive Suction Pressure (NPSP) at the inlet to the Space Shuttle Main Engine (SSME) can have adverse effects on engine operation. A number of failures within both the External Tank (ET) and the Orbiter Main Propulsion System could result in a low LH2 NPSP condition. Operational workarounds were developed to take advantage of the onboard crew s ability to manually throttle down the SSMEs, which alleviated the low LH2 NPSP condition. A throttling down of the SSME resulted in an increase in NPSP, mainly due to the reduction in frictional flow losses while at a lower throttle setting. As engineers refined their understanding of the NPSP requirements for the SSME (through a robust testing program), the operational techniques evolved to take advantage of these additional capabilities. Currently the procedure, which for early Space Shuttle missions required a Return-to-Launch-Site abort, now would result in a nominal Main Engine Cut Off (MECO) and no loss of mission objectives.

  11. Accelerated Genome Engineering through Multiplexing

    PubMed Central

    Zhao, Huimin

    2015-01-01

    Throughout the biological sciences, the past fifteen years have seen a push towards the analysis and engineering of biological systems at the organism level. Given the complexity of even the simplest organisms, though, to elicit a phenotype of interest often requires genotypic manipulation of several loci. By traditional means, sequential editing of genomic targets requires a significant investment of time and labor, as the desired editing event typically occurs at a very low frequency against an overwhelming unedited background. In recent years, the development of a suite of new techniques has greatly increased editing efficiency, opening up the possibility for multiple editing events to occur in parallel. Termed as multiplexed genome engineering, this approach to genome editing has greatly expanded the scope of possible genome manipulations in diverse hosts, ranging from bacteria to human cells. The enabling technologies for multiplexed genome engineering include oligonucleotide-based and nuclease-based methodologies, and their application has led to the great breadth of successful examples described in this review. While many technical challenges remain, there also exists a multiplicity of opportunities in this rapidly expanding field. PMID:26394307

  12. Using interactive problem-solving techniques to enhance control systems education for non English-speakers

    NASA Astrophysics Data System (ADS)

    Lamont, L. A.; Chaar, L.; Toms, C.

    2010-03-01

    Interactive learning is beneficial to students in that it allows the continual development and testing of many skills. An interactive approach enables students to improve their technical capabilities, as well as developing both verbal and written communicative ability. Problem solving and communication skills are vital for engineering students; in the workplace they will be required to communicate with people of varying technical abilities and from different linguistic and engineering backgrounds. In this paper, a case study is presented that discusses how the traditional method of teaching control systems can be improved. 'Control systems' is a complex engineering topic requiring students to process an extended amount of mathematical formulae. MATLAB software, which enables students to interactively compare a range of possible combinations and analyse the optimal solution, is used to this end. It was found that students became more enthusiastic and interested when given ownership of their learning objectives. As well as improving the students' technical knowledge, other important engineering skills are also improved by introducing an interactive method of teaching.

  13. Improved Real-Time Monitoring Using Multiple Expert Systems

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Angelino, Robert; Quan, Alan G.; Veregge, John; Childs, Cynthia

    1993-01-01

    Monitor/Analyzer of Real-Time Voyager Engineering Link (MARVEL) computer program implements combination of techniques of both conventional automation and artificial intelligence to improve monitoring of complicated engineering system. Designed to support ground-based operations of Voyager spacecraft, also adapted to other systems. Enables more-accurate monitoring and analysis of telemetry, enhances productivity of monitoring personnel, reduces required number of such personnel by performing routine monitoring tasks, and helps ensure consistency in face of turnover of personnel. Programmed in C language and includes commercial expert-system software shell also written in C.

  14. Model-based engineering for medical-device software.

    PubMed

    Ray, Arnab; Jetley, Raoul; Jones, Paul L; Zhang, Yi

    2010-01-01

    This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software. 1.

  15. The assessment of engine losses due to friction and lubricant limitations. Final report May 80-Mar 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, C.F.; Taylor, T. Jr; Kallin, R.L.

    A major area for improving the efficiency of spark ignition and diesel engines is a reduction of frictional losses. Existing literature on engine friction was used as a basis for estimating possible gains in engine fuel economy which look promising within the constraints of modern practice. The means considered include reduction in oil viscosity, increase in bearing and piston clearances, possible changes in piston and valve gear design, and reduction of pumping losses. Estimates indicate potential fuel consumption improvements of 3 to 4% for Otto-Cycle at wide open throttle, 7 to 9% for Otto-Cycle at road load, 4 to 5%more » for diesel at wide open throttle, and 6% for diesel at road-load. Much larger gains at road load could be obtained by using a stratified charge system which requires no air throttling. A literature search on techniques for measuring engine friction under firing conditions was also performed and various concepts employing Pressure-Volume Indicator Diagrams were assessed. Balanced pressure and direct pressure measurement in concert with instantaneous measurement of piston position provide the most reliable and repeatable assessment of engine efficiency. Pressure measurements in the range of 1/2 to 1% are achievable with digital processing techniques reducing dramatically the time and effort to generate P-V Indicator Diagrams.« less

  16. Fabrication of ceramic substrate-reinforced and free forms by mandrel plasma spraying metal-ceramic composites

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.; Mcdonald, G.; Hendricks, R. C.

    1985-01-01

    Components fabricated of, or coated with, ceramics have lower parasitic cooling requirements. Techniques are discussed for fabricating thin-shell ceramic components and ceramic coatings for applications in rocket or jet engine environments. Thin ceramic shells with complex geometric forms involving convolutions and reentrant surfaces were fabricated by mandrel removal. Mandrel removal was combined with electroplating or plasma spraying and isostatic pressing to form a metal support for the ceramic. Rocket engine thrust chambers coated with 0.08 mm (3 mil) of ZrO2-8Y2O3 had no failures and a tenfold increase in engine life. Some measured mechanical properties of the plasma-sprayed ceramic are presented.

  17. Ceramic components for the AGT 100 engine

    NASA Technical Reports Server (NTRS)

    Helms, H. E.; Heitman, P. W.

    1983-01-01

    Historically, automotive gas turbines have not been able to meet requirements of the marketplace with respect to cost, performance, and reliability. However, the development of appropriate ceramic materials has overcome problems related to a need for expensive superalloy components and to limitations regarding the operating temperature. An automotive gas turbine utilizing ceramic components has been developed by a U.S. automobile manufacturer. A 100-horsepower, two-shaft, regenerative engine geometry was selected because it is compatible with manual, automatic, and continuously variable transmissions. Attention is given to the ceramic components, the ceramic gasifier turbine rotor development, the ceramic gasifier scroll, ceramic component testing, and the use of advanced nondestructive techniques for the evaluation of the engine components.

  18. Enabling plant synthetic biology through genome engineering.

    PubMed

    Baltes, Nicholas J; Voytas, Daniel F

    2015-02-01

    Synthetic biology seeks to create new biological systems, including user-designed plants and plant cells. These systems can be employed for a variety of purposes, ranging from producing compounds of industrial or therapeutic value, to reducing crop losses by altering cellular responses to pathogens or climate change. To realize the full potential of plant synthetic biology, techniques are required that provide control over the genetic code - enabling targeted modifications to DNA sequences within living plant cells. Such control is now within reach owing to recent advances in the use of sequence-specific nucleases to precisely engineer genomes. We discuss here the enormous potential provided by genome engineering for plant synthetic biology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The Application of Hardware in the Loop Testing for Distributed Engine Control

    NASA Technical Reports Server (NTRS)

    Thomas, George L.; Culley, Dennis E.; Brand, Alex

    2016-01-01

    The essence of a distributed control system is the modular partitioning of control function across a hardware implementation. This type of control architecture requires embedding electronics in a multitude of control element nodes for the execution of those functions, and their integration as a unified system. As the field of distributed aeropropulsion control moves toward reality, questions about building and validating these systems remain. This paper focuses on the development of hardware-in-the-loop (HIL) test techniques for distributed aero engine control, and the application of HIL testing as it pertains to potential advanced engine control applications that may now be possible due to the intelligent capability embedded in the nodes.

  20. Status review of NASA programs for reducing aircraft gas turbine engine emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    The paper describes and discusses the results from some of the research and development programs for reducing aircraft gas turbine engine emissions. Although the paper concentrates on NASA programs only, work supported by other U.S. government agencies and industry has provided considerable data on low emission advanced technology for aircraft gas turbine engine combustors. The results from the two major NASA technology development programs, the ECCP (Experimental Clean Combustor Program) and the PRTP (Pollution Reduction Technology Program), are presented and compared with the requirements of the 1979 U.S. EPA standards. Emission reduction techniques currently being evaluated in these programs are described along with the results and a qualitative assessment of development difficulty.

  1. Evaluation of a simplified gross thrust calculation method for a J85-21 afterburning turbojet engine in an altitude facility

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, J. L.

    1982-01-01

    A simplified gross thrust calculation method was evaluated on its ability to predict the gross thrust of a modified J85-21 engine. The method used tailpipe pressure data and ambient pressure data to predict the gross thrust. The method's algorithm is based on a one-dimensional analysis of the flow in the afterburner and nozzle. The test results showed that the method was notably accurate over the engine operating envelope using the altitude facility measured thrust for comparison. A summary of these results, the simplified gross thrust method and requirements, and the test techniques used are discussed in this paper.

  2. Flight test techniques for the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Cooper, James M., Jr.; Sefic, Walter J.

    1987-01-01

    The X-29A advanced technology demonstrator is a single-seat, single-engine aircraft with a forward-swept wing. The aircraft incorporates many advanced technologies being considered for this country's next generation of aircraft. This unusual aircraft configuration, which had never been flown before, required a precise approach to flight envelope expansion. This paper describes the real-time analysis methods and flight test techniques used during the envelope expansion of the x-29A aircraft, including new and innovative approaches.

  3. Development of Oxidation Resistant Coatings on GRCop-84 Substrates by Cold Spray Process

    NASA Technical Reports Server (NTRS)

    Karthikeyan, J.

    2007-01-01

    GRCop-84, a Cu-CR-Nb alloy, has been developed for rocket engine liner applications. For maximum life additional oxidation protection is required to prevent blanching. NiCrAlY was identified as a suitable coating, and efforts were initiated to develop suitable coating techniques. Cold spray is one technique under consideration. Efforts at ASB Industries to produce dense, adherent coatings are detailed. The work culminated in the production of samples for testing at NASA Glenn Research Center.

  4. Structural Health Monitoring on Turbine Engines Using Microwave Blade Tip Clearance Sensors

    NASA Technical Reports Server (NTRS)

    Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle

    2014-01-01

    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA) has taken a lead role in the investigation of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. As part of this effort, microwave sensor technology has been investigated as a means of making high temperature non-contact blade tip clearance, blade tip timing, and blade vibration measurements for use in gas turbine engines. This paper presents a summary of key results and findings obtained from the evaluation of two different types of microwave sensors that have been investigated for use possible in structural health monitoring applications. The first is a microwave blade tip clearance sensor that has been evaluated on a large scale Axial Vane Fan, a subscale Turbofan, and more recently on sub-scale turbine engine like disks. The second is a novel microwave based blade vibration sensor that was also used in parallel with the microwave blade tip clearance sensors on the experiments with the sub-scale turbine engine disks.

  5. Structural health monitoring on turbine engines using microwave blade tip clearance sensors

    NASA Astrophysics Data System (ADS)

    Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle

    2014-04-01

    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to the aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA) has taken a lead role in the investigation of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. As part of this effort, microwave sensor technology has been investigated as a means of making high temperature non-contact blade tip clearance, blade tip timing, and blade vibration measurements for use in gas turbine engines. This paper presents a summary of key results and findings obtained from the evaluation of two different types of microwave sensors that have been investigated for possible use in structural health monitoring applications. The first is a microwave blade tip clearance sensor that has been evaluated on a large scale Axial Vane Fan, a subscale Turbofan, and more recently on sub-scale turbine engine like disks. The second is a novel microwave based blade vibration sensor that was also used in parallel with the microwave blade tip clearance sensors on the same experiments with the sub-scale turbine engine disks.

  6. An experimental investigation of the aerodynamics and cooling of a horizontally-opposed air-cooled aircraft engine installation

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Cross, E. J., Jr.; Owens, J. K.; Lawrence, D. L.

    1981-01-01

    A flight-test based research program was performed to investigate the aerodynamics and cooling of a horizontally-opposed engine installation. Specific areas investigated were the internal aerodynamics and cooling mechanics of the installation, inlet aerodynamics, and exit aerodynamics. The applicable theory and current state of the art are discussed for each area. Flight-test and ground-test techniques for the development of the cooling installation and the solution of cooling problems are presented. The results show that much of the internal aerodynamics and cooling technology developed for radial engines are applicable to horizontally opposed engines. Correlation is established between engine manufacturer's cooling design data and flight measurements of the particular installation. Also, a flight-test method for the development of cooling requirements in terms of easily measurable parameters is presented. The impact of inlet and exit design on cooling and cooling drag is shown to be of major significance.

  7. Engineering Values into Genetic Engineering: A Proposed Analytic Framework for Scientific Social Responsibility

    PubMed Central

    Cho, Mildred K.

    2016-01-01

    Recent experiments have been used to “edit” genomes of various plant, animal and other species, including humans, with unprecedented precision. Furthermore, editing Cas9 endonuclease gene with a gene encoding the desired guide RNA into an organism, adjacent to an altered gene, could create a “gene drive” that could spread a trait through an entire population of organisms. These experiments represent advances along a spectrum of technological abilities that genetic engineers have been working on since the advent of recombinant DNA techniques. The scientific and bioethics communities have built substantial literatures about the ethical and policy implications of genetic engineering, especially in the age of bioterrorism. However, recent CRISPr/Cas experiments have triggered a rehashing of previous policy discussions, suggesting that the scientific community requires guidance on how to think about social responsibility. We propose a framework to enable analysis of social responsibility, using two examples of genetic engineering experiments. PMID:26632356

  8. Engineering Values Into Genetic Engineering: A Proposed Analytic Framework for Scientific Social Responsibility.

    PubMed

    Sankar, Pamela L; Cho, Mildred K

    2015-01-01

    Recent experiments have been used to "edit" genomes of various plant, animal and other species, including humans, with unprecedented precision. Furthermore, editing the Cas9 endonuclease gene with a gene encoding the desired guide RNA into an organism, adjacent to an altered gene, could create a "gene drive" that could spread a trait through an entire population of organisms. These experiments represent advances along a spectrum of technological abilities that genetic engineers have been working on since the advent of recombinant DNA techniques. The scientific and bioethics communities have built substantial literatures about the ethical and policy implications of genetic engineering, especially in the age of bioterrorism. However, recent CRISPr/Cas experiments have triggered a rehashing of previous policy discussions, suggesting that the scientific community requires guidance on how to think about social responsibility. We propose a framework to enable analysis of social responsibility, using two examples of genetic engineering experiments.

  9. Future heavy duty trucking engine requirements

    NASA Technical Reports Server (NTRS)

    Strawhorn, L. W.; Suski, V. A.

    1985-01-01

    Developers of advanced heavy duty diesel engines are engaged in probing the opportunities presented by new materials and techniques. This process is technology driven, but there is neither assurance that the eventual users of the engines so developed will be comfortable with them nor, indeed, that those consumers will continue to exist in either the same form, or numbers as they do today. To ensure maximum payoff of research dollars, the equipment development process must consider user needs. This study defines motor carrier concerns, cost tolerances, and the engine parameters which match the future projected industry needs. The approach taken to do that is to be explained and the results presented. The material to be given comes basically from a survey of motor carrier fleets. It provides indications of the role of heavy duty vehicles in the 1998 period and their desired maintenance and engine performance parameters.

  10. Design concepts for low-cost composite turbofan engine frame

    NASA Technical Reports Server (NTRS)

    Mitchell, S. C.; Stoffer, L. J.

    1980-01-01

    Design concepts for low cost, lightweight composite engine frames were applied to the design requirements for the frame of a commercial, high bypass engine. Four alternative composite frame design concepts identified which consisted of generic type components and subcomponents that could be adapted to use in different locations in the engine and the different engine sizes. A variety of materials and manufacturing methods were projected with a goal for the lowest number of parts at the lowest possible cost. After a preliminary evaluation of all four frame concepts, two designs were selected for an extended design and evaluation which narrowed the final selection down to one frame that was significantly lower in cost and slighty lighter than the other frame. An implementation plan for this lowest cost frame is projected for future development and includes prospects for reducing its weight with proposed unproven, innovative fabrication techniques.

  11. Development Status and Performance Comparisons of Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan

    2016-01-01

    Environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft turbine engine systems, because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. This paper presents current NASA EBC-CMC development emphases including: the coating composition and processing improvements, laser high heat flux-thermal gradient thermo-mechanical fatigue - environmental testing methodology development, and property evaluations for next generation EBC-CMC systems. EBCs processed with various deposition techniques including Plasma Spray, Electron Beam - Physical Vapor Deposition, and Plasma Spray Physical Vapor Deposition (PS-PVD) will be particularly discussed. The testing results and demonstrations of advanced EBCs-CMCs in complex simulated engine thermal gradient cyclic fatigue, oxidizing-steam and CMAS environments will help provide insights into the coating development strategies to meet long-term engine component durability goals.

  12. Low-thrust chemical orbit to orbit propulsion system propellant management study

    NASA Technical Reports Server (NTRS)

    Dergance, R. H.

    1980-01-01

    Propellant requirements, tankage configurations, preferred propellant management techniques, propulsion systems weights, and technology deficiencies for low thrust expendable propulsion systems are examined. A computer program was utilized which provided a complete propellant inventory (including boil-off for cryogenic cases), pressurant and propellant tank dimensions for a given ullage, pressurant requirements, insulation requirements, and miscellaneous masses. The output also includes the masses of all tanks; the mass of the insulation, engines and other components; total wet system and burnout mass; system mass fraction; total impulse and burn time.

  13. Tangential Flow Filtration of Colloidal Silver Nanoparticles: A "Green" Laboratory Experiment for Chemistry and Engineering Students

    ERIC Educational Resources Information Center

    Dorney, Kevin M.; Baker, Joshua D.; Edwards, Michelle L.; Kanel, Sushil R.; O'Malley, Matthew; Pavel Sizemore, Ioana E.

    2014-01-01

    Numerous nanoparticle (NP) fabrication methodologies employ "bottom-up" syntheses, which may result in heterogeneous mixtures of NPs or may require toxic capping agents to reduce NP polydispersity. Tangential flow filtration (TFF) is an alternative "green" technique for the purification, concentration, and size-selection of…

  14. 40 CFR 86.1227-96 - Test procedures; overview.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... evaporative emissions as a consequence of diurnal temperature fluctuation urban driving and hot soaks during...; this test is not required for gaseous-fueled vehicles); and (3) Hot soak losses, which result when the vehicle is parked and the hot engine is turned off, measured by the enclosure technique (see § 86.1238...

  15. Development of a Situated Spectrum Analyzer Learning Platform for Enhancing Student Technical Skills

    ERIC Educational Resources Information Center

    Chuang, Chien-Pen; Jou, Min; Lin, Yen-Ting; Lu, Cheng-Tien

    2015-01-01

    Electronic engineering industries require technical specialists to operate precision electronic instruments. However, limitations in course designs and equipment availability mean that only a few students are able to use the equipment in practical lessons within a limited timeframe. Also, instruction of techniques and skills are still mostly…

  16. The Design and Realization of Net Testing System on Campus Network

    ERIC Educational Resources Information Center

    Ren, Zhanying; Liu, Shijie

    2005-01-01

    According to the requirement of modern teaching theory and technology, based on software engineering, database theory, the technique of net information security and system integration, a net testing system on local network was designed and realized. The system benefits for dividing of testing & teaching and settles the problems of random…

  17. Theory and practice: How do we teach our students about light?

    NASA Astrophysics Data System (ADS)

    Creath, Katherine

    2007-08-01

    As optical scientists and engineers we have an educational paradigm that stresses passing knowledge from teacher to student. We are also taught to use inductive reasoning to solve problems. Yet many of the fundamental questions in optics such as the topic of this conference "What are photons?" require that we use retroductive reasoning to deduce the possible and probable cause of the observations and measurements we make. We can agree that we don't have all the answers for many fundamental questions in optics. The retroductive reasoning process requires a different way of thinking from our traditional classroom setting. Most of us learned to do this through working in a research lab or industry. With the amount of information and new discoveries to consider, it makes it difficult to cover everything in the classroom. This paper looks at transformational learning techniques and how they have been applied in science and engineering. These techniques show promise to prepare our students to learn how to learn and develop skills they can directly apply to research and industry.

  18. Achieving reutilization of scheduling software through abstraction and generalization

    NASA Technical Reports Server (NTRS)

    Wilkinson, George J.; Monteleone, Richard A.; Weinstein, Stuart M.; Mohler, Michael G.; Zoch, David R.; Tong, G. Michael

    1995-01-01

    Reutilization of software is a difficult goal to achieve particularly in complex environments that require advanced software systems. The Request-Oriented Scheduling Engine (ROSE) was developed to create a reusable scheduling system for the diverse scheduling needs of the National Aeronautics and Space Administration (NASA). ROSE is a data-driven scheduler that accepts inputs such as user activities, available resources, timing contraints, and user-defined events, and then produces a conflict-free schedule. To support reutilization, ROSE is designed to be flexible, extensible, and portable. With these design features, applying ROSE to a new scheduling application does not require changing the core scheduling engine, even if the new application requires significantly larger or smaller data sets, customized scheduling algorithms, or software portability. This paper includes a ROSE scheduling system description emphasizing its general-purpose features, reutilization techniques, and tasks for which ROSE reuse provided a low-risk solution with significant cost savings and reduced software development time.

  19. Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Chen, Wenjing; Zhang, Qican; Liu, Yuankun; Li, Dahai; Zhou, Xinzhi; Wei, Jun

    2017-08-01

    Common problems faced in optical comprehensive design experiment and going against the Washington Accord are pointed out. For resolving these problems, an instructional and innovative teaching scheme for Optics Comprehensive Design Experiment is proposed. We would like to understand the student that can improve the hands-on practical ability, theory knowledge understanding ability, complex problem solving ability, engineering application ability, cooperative ability after tracking and researching the student who have attended the class about Optical Comprehensive Design Experiment, We found that there are some problems on the course such as the experiment content vague, the student beginning less time, phase separation theory and engineering application, the experiment content lack of selectivity and so on. So we have made some improvements reference to the Washington Accord for the class teaching plan about Optical Comprehensive Design Experiment. This class must relevant to the engineering basic courses, professional foundation course and the major courses, so far as to the future study and work that which can play a role in inheriting and continuity to the students. The Optical Comprehensive Design Experiment teaching program requires students learning this course to have learnt basic courses like analog electronics technique, digital electronic technique, applied optics and computer and other related courses which students are required to comprehensively utilize. This teaching scheme contains six practical complex engineering problems which are respectively optical system design, light energy meter design, illuminometer design, material refractive index measuring system design, light intensity measuring system design and open design. Establishing the optional experiment and open experiment can provide students with a greater choice and enhance the students' creativity, vivid teaching experimental teachers and enriching contents of experiment can make the experiment more interesting, providing students with more opportunities to conduct experiment and improving students' practical ability with long learning time, putting emphasis on student's understanding of complex engineering problems and the cognitive of the process to solve complex engineering problems with actual engineering problems. Applying the scheme in other courses and improving accordingly will be able to ensure the quality of engineering education. Look forward to offering useful reference for the curriculum system construction in colleges and universities.

  20. Use of the Delphi method in resolving complex water resources issues

    USGS Publications Warehouse

    Taylor, J.G.; Ryder, S.D.

    2003-01-01

    The tri-state river basins, shared by Georgia, Alabama, and Florida, are being modeled by the U.S. Fish and Wildlife Service and the U.S. Army Corps of Engineers to help facilitate agreement in an acrimonious water dispute among these different state governments. Modeling of such basin reservoir operations requires parallel understanding of several river system components: hydropower production, flood control, municipal and industrial water use, navigation, and reservoir fisheries requirements. The Delphi method, using repetitive surveying of experts, was applied to determine fisheries' water and lake-level requirements on 25 reservoirs in these interstate basins. The Delphi technique allowed the needs and requirements of fish populations to be brought into the modeling effort on equal footing with other water supply and demand components. When the subject matter is concisely defined and limited, this technique can rapidly assess expert opinion on any natural resource issue, and even move expert opinion toward greater agreement.

  1. Applicability of the PEMS technique for simplified NO X monitoring on board ships

    NASA Astrophysics Data System (ADS)

    Cooper, D. A.; Ekström, M.

    The performance of a predictive emission monitoring system (PEMS) as a technique for NO x monitoring on medium speed marine diesel engines has been evaluated for 16 similar engines on four different ships. The PEMS function tested measured O 2 concentration in the exhaust gas, engine load, combustion air temperature and humidity, and barometric pressure to calculate the NO x concentration. Emission measurements were carried out by means of a conventional continuous emission monitoring system (CEMS) and the measured NO x concentrations were compared with those calculated by the PEMS function. For 11 of the 16 engines, the average error between measured and calculated NO x concentration was <10% of the calibration range (1725 ppm). In addition, 10 of the engines displayed correlation coefficients between measured and calculated NO x as 0.90 or higher. For two of the ships, the predicted NO x concentrations from all engines on board gave good agreement with those measured (2.6-4.7% and 2.6-8.0% average error). In other cases however, the performance of the PEMS function was poor e.g. the four engines of ship D showed average errors of 10.3-17.7%. Although similar engine models, fuel and load characteristics were compared in the tests, the specific NO x emissions at steady-state loads used varied from 12.6 up to 15.8 g k -1Wh corr. Although a single PEMS function may prove universal and adequate for calculating NO x emissions from similar engines on board the same ship, an engine specific PEMS function is recommended. The form of the PEMS function, i.e. using exhaust O 2 and engine load as inputs, is however likely to be applicable to most propeller-law diesel engines. Bearing in mind the performance criteria for using PEMS at land-based installations, the results from this study are promising. Viewed as a single data set of 56 h with 16 separate engine comparisons between CEMS and PEMS, the data set shows a relative accuracy of 14.5% i.e. within the 20% requirement of the US Environmental Protection Agency. In light of the increased interest and international guidelines for continuous NO x monitoring on board ships, the PEMS technique can offer a simple but cost-effective option.

  2. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    PubMed

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016. © 2016 American Institute of Chemical Engineers.

  3. Biomanufacturing: a US-China National Science Foundation-sponsored workshop.

    PubMed

    Sun, Wei; Yan, Yongnian; Lin, Feng; Spector, Myron

    2006-05-01

    A recent US-China National Science Foundation-sponsored workshop on biomanufacturing reviewed the state-of-the-art of an array of new technologies for producing scaffolds for tissue engineering, providing precision multi-scale control of material, architecture, and cells. One broad category of such techniques has been termed solid freeform fabrication. The techniques in this category include: stereolithography, selected laser sintering, single- and multiple-nozzle deposition and fused deposition modeling, and three-dimensional printing. The precise and repetitive placement of material and cells in a three-dimensional construct at the micrometer length scale demands computer control. These novel computer-controlled scaffold production techniques, when coupled with computer-based imaging and structural modeling methods for the production of the templates for the scaffolds, define an emerging field of computer-aided tissue engineering. In formulating the questions that remain to be answered and discussing the knowledge required to further advance the field, the Workshop provided a basis for recommendations for future work.

  4. Recent developments in turbomachinery component materials and manufacturing challenges for aero engine applications

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.

    2018-02-01

    In the recent years the development of turbomachinery materials performance enhancement plays a vital role especially in aircraft air breathing engines like turbojet engine, turboprop engine, turboshaft engine and turbofan engines. Especially the transonic flow engines required highly sophisticated materials where it can sustain the entire thrust which can create by the engine. The main objective of this paper is to give an overview of the present cost-effective and technological capabilities process for turbomachinery component materials. Especially the main focus is given to study the Electro physical, Photonic additive removal process and Electro chemical process for turbomachinery parts manufacture. The aeronautical propulsion based technologies are reviewed thoroughly where in surface reliability, geometrical precession, and material removal and highly strengthened composite material deposition rates usually difficult to cut dedicated steels, Titanium and Nickel based alloys. In this paper the past aeronautical and propulsion mechanical based manufacturing technologies, current sophisticated technologies and also future challenging material processing techniques are covered. The paper also focuses on the brief description of turbomachinery components of shaping process and coating in aeromechanical applications.

  5. Rocket Engine Plume Diagnostics at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Tejwani, Gopal D.; Langford, Lester A.; VanDyke, David B.; McVay, Gregory P.; Thurman, Charles C.

    2003-01-01

    The Stennis Space Center has been at the forefront of development and application of exhaust plume spectroscopy to rocket engine health monitoring since 1989. Various spectroscopic techniques, such as emission, absorption, FTIR, LIF, and CARS, have been considered for application at the engine test stands. By far the most successful technology h a been exhaust plume emission spectroscopy. In particular, its application to the Space Shuttle Main Engine (SSME) ground test health monitoring has been invaluable in various engine testing and development activities at SSC since 1989. On several occasions, plume diagnostic methods have successfully detected a problem with one or more components of an engine long before any other sensor indicated a problem. More often, they provide corroboration for a failure mode, if any occurred during an engine test. This paper gives a brief overview of our instrumentation and computational systems for rocket engine plume diagnostics at SSC. Some examples of successful application of exhaust plume spectroscopy (emission as well as absorption) to the SSME testing are presented. Our on-going plume diagnostics technology development projects and future requirements are discussed.

  6. Bacteriophage vehicles for phage display: biology, mechanism, and application.

    PubMed

    Ebrahimizadeh, Walead; Rajabibazl, Masoumeh

    2014-08-01

    The phage display technique is a powerful tool for selection of various biological agents. This technique allows construction of large libraries from the antibody repertoire of different hosts and provides a fast and high-throughput selection method. Specific antibodies can be isolated based on distinctive characteristics from a library consisting of millions of members. These features made phage display technology preferred method for antibody selection and engineering. There are several phage display methods available and each has its unique merits and application. Selection of appropriate display technique requires basic knowledge of available methods and their mechanism. In this review, we describe different phage display techniques, available bacteriophage vehicles, and their mechanism.

  7. Multi-Center Implementation of NPR 7123.1A: A Collaborative Effort

    NASA Technical Reports Server (NTRS)

    Hall, Phillip B.; McNelis, Nancy B.

    2011-01-01

    Collaboration efforts between MSFC and GRC Engineering Directorates to implement the NASA Systems Engineering (SE) Engine have expanded over the past year to include other NASA Centers. Sharing information on designing, developing, and deploying SE processes has sparked further interest based on the realization that there is relative consistency in implementing SE processes at the institutional level. This presentation will provide a status on the ongoing multi-center collaboration and provide insight into how these NPR 7123.1A SE-aligned directives are being implemented and managed to better support the needs of NASA programs and projects. NPR 7123.1A, NASA Systems Engineering Processes and Requirements, was released on March 26, 2007 to clearly articulate and establish the requirements on the implementing organization for performing, supporting, and evaluating SE activities. In early 2009, MSFC and GRC Engineering Directorates undertook a collaborative opportunity to share their research and work associated with developing, updating and revising their SE process policy to comply and align with NPR 7123.1A. The goal is to develop instructions, checklists, templates, and procedures for each of the 17 SE process requirements so that systems engineers will be a position to define work that is process-driven. Greater efficiency and more effective technical management will be achieved due to consistency and repeatability of SE process implementation across and throughout each of the NASA centers. An added benefit will be to encourage NASA centers to pursue and collaborate on joint projects as a result of using common or similar processes, methods, tools, and techniques.

  8. Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials

    PubMed Central

    Dalecki, Diane; Mercado, Karla P.; Hocking, Denise C.

    2015-01-01

    Non-invasive, non-destructive technologies for imaging and quantitatively monitoring the development of artificial tissues are critical for the advancement of tissue engineering. Current standard techniques for evaluating engineered tissues, including histology, biochemical assays and mechanical testing, are destructive approaches. Ultrasound is emerging as a valuable tool for imaging and quantitatively monitoring the properties of engineered tissues and biomaterials longitudinally during fabrication and post-implantation. Ultrasound techniques are rapid, non-invasive, non-destructive and can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, high-frequency quantitative ultrasound techniques can enable volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation. This review provides an overview of ultrasound imaging, quantitative ultrasound techniques, and elastography, with representative examples of applications of these ultrasound-based techniques to the field of tissue engineering. PMID:26581347

  9. Development of Advanced Carbon Face Seals for Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Falaleev, S. V.; Bondarchuk, P. V.; Tisarev, A. Yu

    2018-01-01

    Modern aircraft gas turbine engines require the development of seals which can operate for a long time with low leakages. The basic type of seals applied for gas turbine engine rotor supports is face seal. To meet the modern requirements of reliability, leak-tightness and weight, low-leakage gas-static and hydrodynamic seals have to be developed. Dry gas seals use both gas-static and hydrodynamic principles. In dry gas seals microgrooves are often used, which ensure the reverse injection of leakages in the sealed cavity. Authors have developed a calculation technique including the concept of coupled hydrodynamic, thermal and structural calculations. This technique allows to calculate the seal performance taking into account the forces of inertia, rupture of the lubricant layer and the real form of the gap. Authors have compared the efficiency of seals with different forms of microgrooves. Results of calculations show that seal with rectangular form of microgrooves has a little gap leading to both the contact of seal surfaces and the wear. Reversible microgrooves have a higher oil mass flow rate, whereas HST micro-grooves have good performance, but they are difficult to produce. Spiral microgrooves have both an acceptable leakages and a high stiffness of liquid layer that is important in terms of ensuring of sealing performance at vibration conditions. Therefore, the spiral grooves were chosen for the developed seal. Based on calculation results, geometric dimensions were chosen to ensure the reliability of the seal operation by creating a guaranteed liquid film, which eliminates the wear of the sealing surfaces. Seals designed were tested both at the test rig and in the engine.

  10. Cooperative control theory and integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Schierman, John D.

    1995-01-01

    The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multivariable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. In these example evaluations, the significance of these interactions was underscored. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important nonlinear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multivariable techniques, including model-following formulations of LQG and/or H infinity methods, showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods. The major contributions of the second phase of the grant was the development of conditions under which no decentralized controller could achieve closed loop system requirements on stability and/or performance. Sought were conditions that depended only on properties of the plant and the requirement, and independent of any particular control law or synthesis approach. Therefore, they could be applied a priori, before synthesis of a candidate control law. Under this grant, such conditions were found regarding stability, and encouraging initial results were obtained regarding performance.

  11. Current Approaches to Bone Tissue Engineering: The Interface between Biology and Engineering.

    PubMed

    Li, Jiao Jiao; Ebied, Mohamed; Xu, Jen; Zreiqat, Hala

    2018-03-01

    The successful regeneration of bone tissue to replace areas of bone loss in large defects or at load-bearing sites remains a significant clinical challenge. Over the past few decades, major progress is achieved in the field of bone tissue engineering to provide alternative therapies, particularly through approaches that are at the interface of biology and engineering. To satisfy the diverse regenerative requirements of bone tissue, the field moves toward highly integrated approaches incorporating the knowledge and techniques from multiple disciplines, and typically involves the use of biomaterials as an essential element for supporting or inducing bone regeneration. This review summarizes the types of approaches currently used in bone tissue engineering, beginning with those primarily based on biology or engineering, and moving into integrated approaches in the areas of biomaterial developments, biomimetic design, and scalable methods for treating large or load-bearing bone defects, while highlighting potential areas for collaboration and providing an outlook on future developments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Processing Techniques Developed to Fabricate Lanthanum Titanate Piezoceramic Material for High-Temperature Smart Structures

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.; Farmer, Serene C.; Sayir, Ali

    2004-01-01

    Piezoelectric ceramic materials are potential candidates for use as actuators and sensors in intelligent gas turbine engines. For piezoceramics to be applied in gas turbine engines, they will have to be able to function in temperatures ranging from 1000 to 2500 F. However, the maximum use temperature for state-of-the-art piezoceramic materials is on the order of 300 to 400 F. Research activities have been initiated to develop high-temperature piezoceramic materials for gas turbine engine applications. Lanthanum titanate has been shown to have high-temperature piezoelectric properties with Curie temperatures of T(sub c) = 1500 C and use temperatures greater than 1000 C. However, the fabrication of lanthanum titanate poses serious challenges because of the very high sintering temperatures required for densification. Two different techniques have been developed at the NASA Glenn Research Center to fabricate dense lanthanum titanate piezoceramic material. In one approach, lower sintering temperatures were achieved by adding yttrium oxide to commercially available lanthanum titanate powder. Addition of only 0.1 mol% yttrium oxide lowered the sintering temperature by as much as 300 C, to just 1100 C, and dense lanthanum titanate was produced by pressure-assisted sintering. The second approach utilized the same commercially available powders but used an innovative sintering approach called differential sintering, which did not require any additive.

  13. Optimizing antibody expression: The nuts and bolts.

    PubMed

    Ayyar, B Vijayalakshmi; Arora, Sushrut; Ravi, Shiva Shankar

    2017-03-01

    Antibodies are extensively utilized entities in biomedical research, and in the development of diagnostics and therapeutics. Many of these applications require high amounts of antibodies. However, meeting this ever-increasing demand of antibodies in the global market is one of the outstanding challenges. The need to maintain a balance between demand and supply of antibodies has led the researchers to discover better means and methods for optimizing their expression. These strategies aim to increase the volumetric productivity of the antibodies along with the reduction of associated manufacturing costs. Recent years have witnessed major advances in recombinant protein technology, owing to the introduction of novel cloning strategies, gene manipulation techniques, and an array of cell and vector engineering techniques, together with the progress in fermentation technologies. These innovations were also highly beneficial for antibody expression. Antibody expression depends upon the complex interplay of multiple factors that may require fine tuning at diverse levels to achieve maximum yields. However, each antibody is unique and requires individual consideration and customization for optimizing the associated expression parameters. This review provides a comprehensive overview of several state-of-the-art approaches, such as host selection, strain engineering, codon optimization, gene optimization, vector modification and process optimization that are deemed suitable for enhancing antibody expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Lean, premixed, prevaporized fuel combustor conceptual design study

    NASA Technical Reports Server (NTRS)

    Fiorentino, A. J.; Greene, W.; Kim, J.

    1979-01-01

    Four combustor concepts, designed for the energy efficient engine, utilize variable geometry or other flow modulation techniques to control the equivalence ratio of the initial burning zone. Lean conditions are maintained at high power to control oxides of nitrogen while near stoichometric conditions are maintained at low power for low CO and THC emissions. Each concept was analyzed and ranked for its potential in meeting the goals of the program. Although the primary goal of the program is a low level of nitric oxide emissions at stratospheric cruise conditions, both the ground level EPA emission standards and combustor performance and operational requirements typical of advanced subsonic aircraft engines are retained as goals as well. Based on the analytical projections made, two of the concepts offer the potential of achieving the emission goals; however, the projected operational characteristics and reliability of any concept to perform satisfactorily over an entire aircraft flight envelope would require extensive experimental substantiation before engine adaptation can be considered.

  15. Applied in situ product recovery in ABE fermentation.

    PubMed

    Outram, Victoria; Lalander, Carl-Axel; Lee, Jonathan G M; Davies, E Timothy; Harvey, Adam P

    2017-05-01

    The production of biobutanol is hindered by the product's toxicity to the bacteria, which limits the productivity of the process. In situ product recovery of butanol can improve the productivity by removing the source of inhibition. This paper reviews in situ product recovery techniques applied to the acetone butanol ethanol fermentation in a stirred tank reactor. Methods of in situ recovery include gas stripping, vacuum fermentation, pervaporation, liquid-liquid extraction, perstraction, and adsorption, all of which have been investigated for the acetone, butanol, and ethanol fermentation. All techniques have shown an improvement in substrate utilization, yield, productivity or both. Different fermentation modes favored different techniques. For batch processing gas stripping and pervaporation were most favorable, but in fed-batch fermentations gas stripping and adsorption were most promising. During continuous processing perstraction appeared to offer the best improvement. The use of hybrid techniques can increase the final product concentration beyond that of single-stage techniques. Therefore, the selection of an in situ product recovery technique would require comparable information on the energy demand and economics of the process. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:563-579, 2017. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  16. Ion propulsion

    NASA Technical Reports Server (NTRS)

    Meserole, J. S.; Keefer, Dennis; Ruyten, Wilhelmus; Peng, Xiaohang

    1995-01-01

    An ion engine is a plasma thruster which produces thrust by extracting ions from the plasma and accelerating them to high velocity with an electrostatic field. The ions are then neutralized and leave the engine as high velocity neutral particles. The advantages of ion engines are high specific impulse and efficiency and their ability to operate over a wide range of input powers. In comparison with other electric thrusters, the ion engine has higher efficiency and specific impulse than thermal electric devices such as the arcjet, microwave, radiofrequency and laser heated thrusters and can operate at much lower current levels than the MPD thruster. However, the thrust level for an ion engine may be lower than a thermal electric thruster of the same operating power, consistent with its higher specific impulse, and therefore ion engines are best suited for missions which can tolerate longer duration propulsive phases. The critical issue for the ion engine is lifetime, since the prospective missions may require operation for several thousands of hours. The critical components of the ion engine, with respect to engine lifetime, are the screen and accelerating grid structures. Typically, these are large metal screens that must support a large voltage difference and maintain a small gap between them. Metallic whisker growth, distortion and vibration can lead to arcing, and over a long period of time ion sputtering will erode the grid structures and change their geometry. In order to study the effects of long time operation of the grid structure, we are developing computer codes based on the Particle-In-Cell (PIC) technique and Laser Induced Fluorescence (LIF) diagnostic techniques to study the physical processes which control the performance and lifetime of the grid structures.

  17. Ultra-fast quantitative imaging using ptychographic iterative engine based digital micro-mirror device

    NASA Astrophysics Data System (ADS)

    Sun, Aihui; Tian, Xiaolin; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng

    2018-01-01

    As a lensfree imaging technique, ptychographic iterative engine (PIE) method can provide both quantitative sample amplitude and phase distributions avoiding aberration. However, it requires field of view (FoV) scanning often relying on mechanical translation, which not only slows down measuring speed, but also introduces mechanical errors decreasing both resolution and accuracy in retrieved information. In order to achieve high-accurate quantitative imaging with fast speed, digital micromirror device (DMD) is adopted in PIE for large FoV scanning controlled by on/off state coding by DMD. Measurements were implemented using biological samples as well as USAF resolution target, proving high resolution in quantitative imaging using the proposed system. Considering its fast and accurate imaging capability, it is believed the DMD based PIE technique provides a potential solution for medical observation and measurements.

  18. Identifying and engineering promoters for high level and sustainable therapeutic recombinant protein production in cultured mammalian cells.

    PubMed

    Ho, Steven C L; Yang, Yuansheng

    2014-08-01

    Promoters are essential on plasmid vectors to initiate transcription of the transgenes when generating therapeutic recombinant proteins expressing mammalian cell lines. High and sustained levels of gene expression are desired during therapeutic protein production while gene expression is useful for cell engineering. As many finely controlled promoters exhibit cell and product specificity, new promoters need to be identified, optimized and carefully evaluated before use. Suitable promoters can be identified using techniques ranging from simple molecular biology methods to modern high-throughput omics screenings. Promoter engineering is often required after identification to either obtain high and sustained expression or to provide a wider range of gene expression. This review discusses some of the available methods to identify and engineer promoters for therapeutic recombinant protein expression in mammalian cells.

  19. Engineering clinically relevant volumes of vascularized bone.

    PubMed

    Roux, Brianna M; Cheng, Ming-Huei; Brey, Eric M

    2015-05-01

    Vascularization remains one of the most important challenges that must be overcome for tissue engineering to be consistently implemented for reconstruction of large volume bone defects. An extensive vascular network is needed for transport of nutrients, waste and progenitor cells required for remodelling and repair. A variety of tissue engineering strategies have been investigated in an attempt to vascularize tissues, including those applying cells, soluble factor delivery strategies, novel design and optimization of bio-active materials, vascular assembly pre-implantation and surgical techniques. However, many of these strategies face substantial barriers that must be overcome prior to their ultimate translation into clinical application. In this review recent progress in engineering vascularized bone will be presented with an emphasis on clinical feasibility. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. Contingency power for a small turboshaft engine by using water injection into turbine cooling air

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Klann, Gary A.

    1992-01-01

    Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  1. Procedures for generation and reduction of linear models of a turbofan engine

    NASA Technical Reports Server (NTRS)

    Seldner, K.; Cwynar, D. S.

    1978-01-01

    A real time hybrid simulation of the Pratt & Whitney F100-PW-F100 turbofan engine was used for linear-model generation. The linear models were used to analyze the effect of disturbances about an operating point on the dynamic performance of the engine. A procedure that disturbs, samples, and records the state and control variables was developed. For large systems, such as the F100 engine, the state vector is large and may contain high-frequency information not required for control. This, reducing the full-state to a reduced-order model may be a practicable approach to simplifying the control design. A reduction technique was developed to generate reduced-order models. Selected linear and nonlinear output responses to exhaust-nozzle area and main-burner fuel flow disturbances are presented for comparison.

  2. Implementation of a finite element analysis procedure for structural analysis of shape memory behaviour of fibre reinforced shape memory polymer composites

    NASA Astrophysics Data System (ADS)

    Azzawi, Wessam Al; Epaarachchi, J. A.; Islam, Mainul; Leng, Jinsong

    2017-12-01

    Shape memory polymers (SMPs) offer a unique ability to undergo a substantial shape deformation and subsequently recover the original shape when exposed to a particular external stimulus. Comparatively low mechanical properties being the major drawback for extended use of SMPs in engineering applications. However the inclusion of reinforcing fibres in to SMPs improves mechanical properties significantly while retaining intrinsic shape memory effects. The implementation of shape memory polymer composites (SMPCs) in any engineering application is a unique task which requires profound materials and design optimization. However currently available analytical tools have critical limitations to undertake accurate analysis/simulations of SMPC structures and slower derestrict transformation of breakthrough research outcomes to real-life applications. Many finite element (FE) models have been presented. But majority of them require a complicated user-subroutines to integrate with standard FE software packages. Furthermore, those subroutines are problem specific and difficult to use for a wider range of SMPC materials and related structures. This paper presents a FE simulation technique to model the thermomechanical behaviour of the SMPCs using commercial FE software ABAQUS. Proposed technique incorporates material time-dependent viscoelastic behaviour. The ability of the proposed technique to predict the shape fixity and shape recovery was evaluated by experimental data acquired by a bending of a SMPC cantilever beam. The excellent correlation between the experimental and FE simulation results has confirmed the robustness of the proposed technique.

  3. Photography equipment and techniques. A survey of NASA developments

    NASA Technical Reports Server (NTRS)

    Derr, A. J.

    1972-01-01

    The Apollo program has been the most complex exploration ever attempted by man, requiring extensive research, development, and engineering in most of the sciences before the leap through space could begin. Photography has been used at each step of the way to document the efforts and activities, isolate mistakes, reveal new phenomena, and to record much that cannot be seen by the human eye. At the same time, the capabilities of photography were extended because of the need of meeting space requirements. The results of this work have been applied to community planning and ecology, for example, as well as to space and engineering. Special uses of standard equipment, modifications and new designs, as well as film combinations that indicate actual or potential ecological problems are described.

  4. Needs assessment for nondestructive testing and materials characterization for improved reliability in structural ceramics for heat engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.; McClung, R.W.; Janney, M.A.

    1987-08-01

    A needs assessment was performed for nondestructive testing and materials characterization to achieve improved reliability in ceramic materials for heat engine applications. Raw materials, green state bodies, and sintered ceramics were considered. The overall approach taken to improve reliability of structural ceramics requires key inspections throughout the fabrication flowsheet, including raw materials, greed state, and dense parts. The applications of nondestructive inspection and characterization techniques to ceramic powders and other raw materials, green ceramics, and sintered ceramics are discussed. The current state of inspection technology is reviewed for all identified attributes and stages of a generalized flowsheet for advanced structuralmore » ceramics, and research and development requirements are identified and listed in priority order. 164 refs., 3 figs.« less

  5. An expert system shell for inferring vegetation characteristics: Interface for the addition of techniques (Task H)

    NASA Technical Reports Server (NTRS)

    Harrison, P. Ann

    1993-01-01

    All the NASA VEGetation Workbench (VEG) goals except the Learning System provide the scientist with several different techniques. When VEG is run, rules assist the scientist in selecting the best of the available techniques to apply to the sample of cover type data being studied. The techniques are stored in the VEG knowledge base. The design and implementation of an interface that allows the scientist to add new techniques to VEG without assistance from the developer were completed. A new interface that enables the scientist to add techniques to VEG without assistance from the developer was designed and implemented. This interface does not require the scientist to have a thorough knowledge of Knowledge Engineering Environment (KEE) by Intellicorp or a detailed knowledge of the structure of VEG. The interface prompts the scientist to enter the required information about the new technique. It prompts the scientist to enter the required Common Lisp functions for executing the technique and the left hand side of the rule that causes the technique to be selected. A template for each function and rule and detailed instructions about the arguments of the functions, the values they should return, and the format of the rule are displayed. Checks are made to ensure that the required data were entered, the functions compiled correctly, and the rule parsed correctly before the new technique is stored. The additional techniques are stored separately from the VEG knowledge base. When the VEG knowledge base is loaded, the additional techniques are not normally loaded. The interface allows the scientist the option of adding all the previously defined new techniques before running VEG. When the techniques are added, the required units to store the additional techniques are created automatically in the correct places in the VEG knowledge base. The methods file containing the functions required by the additional techniques is loaded. New rule units are created to store the new rules. The interface that allow the scientist to select which techniques to use is updated automatically to include the new techniques. Task H was completed. The interface that allows the scientist to add techniques to VEG was implemented and comprehensively tested. The Common Lisp code for the Add Techniques system is listed in Appendix A.

  6. Model-based Acceleration Control of Turbofan Engines with a Hammerstein-Wiener Representation

    NASA Astrophysics Data System (ADS)

    Wang, Jiqiang; Ye, Zhifeng; Hu, Zhongzhi; Wu, Xin; Dimirovsky, Georgi; Yue, Hong

    2017-05-01

    Acceleration control of turbofan engines is conventionally designed through either schedule-based or acceleration-based approach. With the widespread acceptance of model-based design in aviation industry, it becomes necessary to investigate the issues associated with model-based design for acceleration control. In this paper, the challenges for implementing model-based acceleration control are explained; a novel Hammerstein-Wiener representation of engine models is introduced; based on the Hammerstein-Wiener model, a nonlinear generalized minimum variance type of optimal control law is derived; the feature of the proposed approach is that it does not require the inversion operation that usually upsets those nonlinear control techniques. The effectiveness of the proposed control design method is validated through a detailed numerical study.

  7. Development and qualification of the US Cruise Missile Propulsion System

    NASA Astrophysics Data System (ADS)

    Reardon, William H.; Cifone, Anthony J.

    1992-09-01

    This paper provides a description of the very successful Cruise Missile gas turbine propulsion program managed by the United States Department of Defense. The paper contains a summary of the procurement process, the technical and programmatic milestones, issues and challenges, and lessons learned. In the past fifteen years, testing at the Naval Air Propulsion Center has included over 800 cruise engine development and component substantiation efforts spanning the engine specification qualification requirements. This paper provides a detailed account of environmental test techniques used to qualify the F107 family of gas turbine engines which propel the U.S. Cruise Missile. In addition, a missile freestream flight test simulation for the TOMAHAWK Cruise Missile is discussed along with current and future program efforts.

  8. Practical Application of Model-based Programming and State-based Architecture to Space Missions

    NASA Technical Reports Server (NTRS)

    Horvath, Gregory A.; Ingham, Michel D.; Chung, Seung; Martin, Oliver; Williams, Brian

    2006-01-01

    Innovative systems and software engineering solutions are required to meet the increasingly challenging demands of deep-space robotic missions. While recent advances in the development of an integrated systems and software engineering approach have begun to address some of these issues, they are still at the core highly manual and, therefore, error-prone. This paper describes a task aimed at infusing MIT's model-based executive, Titan, into JPL's Mission Data System (MDS), a unified state-based architecture, systems engineering process, and supporting software framework. Results of the task are presented, including a discussion of the benefits and challenges associated with integrating mature model-based programming techniques and technologies into a rigorously-defined domain specific architecture.

  9. Sample Delivery and Computer Control Systems for Detecting Leaks in the Main Engines of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Griffin, Timothy P.; Naylor, Guy R.; Hritz, Richard J.; Barrett, Carolyn A.

    1997-01-01

    The main engines of the Space Shuttle use hydrogen and oxygen as the fuel and oxidant. The explosive and fire hazards associated with these two components pose a serious danger to personnel and equipment. Therefore prior to use the main engines undergo extensive leak tests. Instead of using hazardous gases there tests utilize helium as the tracer element. This results in a need to monitor helium in the ppm level continuously for hours. The major challenge in developing such a low level gas monitor is the sample delivery system. This paper discuss a system developed to meet the requirements while also being mobile. Also shown is the calibration technique, stability, and accuracy results for the system.

  10. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives.

    PubMed

    Roseti, Livia; Parisi, Valentina; Petretta, Mauro; Cavallo, Carola; Desando, Giovanna; Bartolotti, Isabella; Grigolo, Brunella

    2017-09-01

    This review is intended to give a state of the art description of scaffold-based strategies utilized in Bone Tissue Engineering. Numerous scaffolds have been tested in the orthopedic field with the aim of improving cell viability, attachment, proliferation and homing, osteogenic differentiation, vascularization, host integration and load bearing. The main traits that characterize a scaffold suitable for bone regeneration concerning its biological requirements, structural features, composition, and types of fabrication are described in detail. Attention is then focused on conventional and Rapid Prototyping scaffold manufacturing techniques. Conventional manufacturing approaches are subtractive methods where parts of the material are removed from an initial block to achieve the desired shape. Rapid Prototyping techniques, introduced to overcome standard techniques limitations, are additive fabrication processes that manufacture the final three-dimensional object via deposition of overlying layers. An important improvement is the possibility to create custom-made products by means of computer assisted technologies, starting from patient's medical images. As a conclusion, it is highlighted that, despite its encouraging results, the clinical approach of Bone Tissue Engineering has not taken place on a large scale yet, due to the need of more in depth studies, its high manufacturing costs and the difficulty to obtain regulatory approval. PUBMED search terms utilized to write this review were: "Bone Tissue Engineering", "regenerative medicine", "bioactive scaffolds", "biomimetic scaffolds", "3D printing", "3D bioprinting", "vascularization" and "dentistry". Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Get Your Requirements Straight: Storyboarding Revisited

    NASA Astrophysics Data System (ADS)

    Haesen, Mieke; Luyten, Kris; Coninx, Karin

    Current user-centred software engineering (UCSE) approaches provide many techniques to combine know-how available in multidisciplinary teams. Although the involvement of various disciplines is beneficial for the user experience of the future application, the transition from a user needs analysis to a structured interaction analysis and UI design is not always straightforward. We propose storyboards, enriched by metadata, to specify functional and non-functional requirements. Accompanying tool support should facilitate the creation and use of storyboards. We used a meta-storyboard for the verification of storyboarding approaches.

  12. Probabilistic Requirements (Partial) Verification Methods Best Practices Improvement. Variables Acceptance Sampling Calculators: Derivations and Verification of Plans. Volume 1

    NASA Technical Reports Server (NTRS)

    Johnson, Kenneth L.; White, K, Preston, Jr.

    2012-01-01

    The NASA Engineering and Safety Center was requested to improve on the Best Practices document produced for the NESC assessment, Verification of Probabilistic Requirements for the Constellation Program, by giving a recommended procedure for using acceptance sampling by variables techniques. This recommended procedure would be used as an alternative to the potentially resource-intensive acceptance sampling by attributes method given in the document. This document contains the outcome of the assessment.

  13. Dual nozzle aerodynamic and cooling analysis study

    NASA Technical Reports Server (NTRS)

    Meagher, G. M.

    1981-01-01

    Analytical models to predict performance and operating characteristics of dual nozzle concepts were developed and improved. Aerodynamic models are available to define flow characteristics and bleed requirements for both the dual throat and dual expander concepts. Advanced analytical techniques were utilized to provide quantitative estimates of the bleed flow, boundary layer, and shock effects within dual nozzle engines. Thermal analyses were performed to define cooling requirements for baseline configurations, and special studies of unique dual nozzle cooling problems defined feasible means of achieving adequate cooling.

  14. Neutron imaging data processing using the Mantid framework

    NASA Astrophysics Data System (ADS)

    Pouzols, Federico M.; Draper, Nicholas; Nagella, Sri; Yang, Erica; Sajid, Ahmed; Ross, Derek; Ritchie, Brian; Hill, John; Burca, Genoveva; Minniti, Triestino; Moreton-Smith, Christopher; Kockelmann, Winfried

    2016-09-01

    Several imaging instruments are currently being constructed at neutron sources around the world. The Mantid software project provides an extensible framework that supports high-performance computing for data manipulation, analysis and visualisation of scientific data. At ISIS, IMAT (Imaging and Materials Science & Engineering) will offer unique time-of-flight neutron imaging techniques which impose several software requirements to control the data reduction and analysis. Here we outline the extensions currently being added to Mantid to provide specific support for neutron imaging requirements.

  15. Shuttle Tethered Aerothermodynamics Research Facility (STARFAC) Instrumentation Requirements

    NASA Technical Reports Server (NTRS)

    Wood, George M.; Siemers, Paul M.; Carlomagno, Giovanni M.; Hoffman, John

    1986-01-01

    The instrumentation requirements for the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC) are presented. The typical physical properties of the terrestrial atmosphere are given along with representative atmospheric daytime ion concentrations and the equilibrium and nonequilibrium gas property comparison from a point away from a wall. STARFAC science and engineering measurements are given as are the TSS free stream gas analysis. The potential nonintrusive measurement techniques for hypersonic boundary layer research are outlined along with the quantitative physical measurement methods for aerothermodynamic studies.

  16. Systems Prototyping with Fourth Generation Tools: One Answer to the Productivity Puzzle? AIR 1983 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Sholtys, Phyllis A.

    The development of information systems using an engineering approach employing both traditional programming techniques and nonprocedural languages is described. A fourth generation application tool is used to develop a prototype system that is revised and expanded as the user clarifies individual requirements. When fully defined, a combination of…

  17. A Graphical Simulation of Vapor-Liquid Equilibrium for Use as an Undergraduate Laboratory Experiment and to Demonstrate the Concept of Mathematical Modeling.

    ERIC Educational Resources Information Center

    Whitman, David L.; Terry, Ronald E.

    1985-01-01

    Demonstrating petroleum engineering concepts in undergraduate laboratories often requires expensive and time-consuming experiments. To eliminate these problems, a graphical simulation technique was developed for junior-level laboratories which illustrate vapor-liquid equilibrium and the use of mathematical modeling. A description of this…

  18. 40 CFR Appendix C-1 to Subpart E... - Required Provisions-Consulting Engineering Agreements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Changes 5. Termination 6. Remedies 7. Payment 8. Project Design 9. Audit; Access to Records 10. Price... production techniques, methods, and processes, consistent with 40 CFR 35.936-3 and 35.936-13 in effect on the date of execution of this agreement, except to the extent to which innovative technology may be used...

  19. Hertzian Dipole Radiation over Isotropic Magnetodielectric Substrates

    DTIC Science & Technology

    2015-03-01

    Analytical and numerical techniques in the Green’s function treatment of microstrip antennas and scatterers. IEE Proceedings. March 1983:130(2). 3...public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This report investigates dipole antennas printed on grounded...engineering of thin planar antennas . Since these materials often require complicated constitutive equations to describe their properties rigorously, the

  20. 40 CFR 112.8 - Spill Prevention, Control, and Countermeasure Plan requirements for onshore facilities (excluding...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... drainage from diked storage areas by valves to prevent a discharge into the drainage system or facility... facility drainage systems from undiked areas with a potential for a discharge (such as where piping is... pumps. Whatever techniques you use, you must engineer facility drainage systems to prevent a discharge...

  1. A Model for Engaging Students in a Research Experience Involving Variational Techniques, Mathematica, and Descent Methods.

    ERIC Educational Resources Information Center

    Mahavier, W. Ted

    2002-01-01

    Describes a two-semester numerical methods course that serves as a research experience for undergraduate students without requiring external funding or the modification of current curriculum. Uses an engineering problem to introduce students to constrained optimization via a variation of the traditional isoperimetric problem of finding the curve…

  2. Preliminary study of temperature measurement techniques for Stirling engine reciprocating seals

    NASA Technical Reports Server (NTRS)

    Wilcock, D. F.; Hoogenboom, L.; Meinders, M.; Winer, W. O.

    1981-01-01

    Methods of determining the contact surface temperature in reciprocating seals are investigated. Direct infrared measurement of surface temperatures of a rod exiting a loaded cap seal or simulated seal are compared with surface thermocouple measurements. Significant cooling of the surface requires several milliseconds so that exit temperatures may be considered representative of internal contact temperatures.

  3. Cost Effective Repair Techniques for Turbine Airfoils. Volume 2

    DTIC Science & Technology

    1979-04-01

    BLADES , *GUIDE VANES , *REPAIR, TURBOFAN ENGINES , DIFFUSION BONDING, COST EFFECTIVENESS Identifiers: (U) * Turbine vanes , TF-39 engines , Activated...REPAIR TECHNIQUES FOR TURBINE AIRFOILS J. A. WEIN W. R. YOUNG GENERAL ELECTRIC COMPANY AIRCRAFT ENGINE GROUP CINCINNATI, OHIO 45215 APRIL 1979...Author: GENERAL ELECTRIC CO CINCINNATI OH AIRCRAFT ENGINE BUSINESS GROUP Unclassified Title: (U) Cost Effective Repair Techniques for

  4. Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic Raman spectroscopy.

    PubMed

    Bergholt, Mads S; Albro, Michael B; Stevens, Molly M

    2017-09-01

    Tissue engineering (TE) has the potential to improve the outcome for patients with osteoarthritis (OA). The successful clinical translation of this technique as part of a therapy requires the ability to measure extracellular matrix (ECM) production of engineered tissues in vitro, in order to ensure quality control and improve the likelihood of tissue survival upon implantation. Conventional techniques for assessing the ECM content of engineered cartilage, such as biochemical assays and histological staining are inherently destructive. Raman spectroscopy, on the other hand, represents a non-invasive technique for in situ biochemical characterization. Here, we outline current roadblocks in translational Raman spectroscopy in TE and introduce a comprehensive workflow designed to non-destructively monitor and quantify ECM biomolecules in large (>3 mm), live cell TE constructs online. Diffuse near-infrared fiber-optic Raman spectra were measured from live cell cartilaginous TE constructs over a 56-day culturing period. We developed a multivariate curve resolution model that enabled quantitative biochemical analysis of the TE constructs. Raman spectroscopy was able to non-invasively quantify the ECM components and showed an excellent correlation with biochemical assays for measurement of collagen (R 2  = 0.84) and glycosaminoglycans (GAGs) (R 2  = 0.86). We further demonstrated the robustness of this technique for online prospective analysis of live cell TE constructs. The fiber-optic Raman spectroscopy strategy developed in this work offers the ability to non-destructively monitor construct growth online and can be adapted to a broad range of TE applications in regenerative medicine toward controlled clinical translation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Turbine Engine Flowpath Averaging Techniques

    DTIC Science & Technology

    1980-10-01

    u~%x AEDC- TMR- 8 I-G 1 • R. P TURBINE ENGINE FLOWPATH AVERAGING TECHNIQUES T. W. Skiles ARO, Inc. October 1980 Final Report for Period...COVERED 00-01-1980 to 00-10-1980 4. TITLE AND SUBTITLE Turbine Engine Flowpath Averaging Techniques 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...property for gas turbine engines were investigated. The investigation consisted of a literature review and review of turbine engine current flowpath

  6. Signal Processing Methods for Liquid Rocket Engine Combustion Stability Assessments

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Lee, Erik; Hulka, James R.; Casiano, Matthew

    2011-01-01

    The J2X Gas Generator engine design specifications include dynamic, spontaneous, and broadband combustion stability requirements. These requirements are verified empirically based high frequency chamber pressure measurements and analyses. Dynamic stability is determined with the dynamic pressure response due to an artificial perturbation of the combustion chamber pressure (bomb testing), and spontaneous and broadband stability are determined from the dynamic pressure responses during steady operation starting at specified power levels. J2X Workhorse Gas Generator testing included bomb tests with multiple hardware configurations and operating conditions, including a configuration used explicitly for engine verification test series. This work covers signal processing techniques developed at Marshall Space Flight Center (MSFC) to help assess engine design stability requirements. Dynamic stability assessments were performed following both the CPIA 655 guidelines and a MSFC in-house developed statistical-based approach. The statistical approach was developed to better verify when the dynamic pressure amplitudes corresponding to a particular frequency returned back to pre-bomb characteristics. This was accomplished by first determining the statistical characteristics of the pre-bomb dynamic levels. The pre-bomb statistical characterization provided 95% coverage bounds; these bounds were used as a quantitative measure to determine when the post-bomb signal returned to pre-bomb conditions. The time for post-bomb levels to acceptably return to pre-bomb levels was compared to the dominant frequency-dependent time recommended by CPIA 655. Results for multiple test configurations, including stable and unstable configurations, were reviewed. Spontaneous stability was assessed using two processes: 1) characterization of the ratio of the peak response amplitudes to the excited chamber acoustic mode amplitudes and 2) characterization of the variability of the peak response's frequency over the test duration. This characterization process assists in evaluating the discreteness of a signal as well as the stability of the chamber response. Broadband stability was assessed using a running root-mean-square evaluation. These techniques were also employed, in a comparative analysis, on available Fastrac data, and these results are presented here.

  7. Micro to Nanoscale Engineering of Surface Precipitates Using Reconfigurable Contact Lines.

    PubMed

    Kabi, Prasenjit; Chaudhuri, Swetaprovo; Basu, Saptarshi

    2018-02-06

    Nanoscale engineering has traditionally adopted the chemical route of synthesis or optochemical techniques such as lithography requiring large process times, expensive equipment, and an inert environment. Directed self-assembly using evaporation of nanocolloidal droplet can be a potential low-cost alternative across various industries ranging from semiconductors to biomedical systems. It is relatively simple to scale and reorient the evaporation-driven internal flow field in an evaporating droplet which can direct dispersed matter into functional agglomerates. The resulting functional precipitates not only exhibit macroscopically discernible changes but also nanoscopic variations in the particulate assembly. Thus, the evaporating droplet forms an autonomous system for nanoscale engineering without the need for external resources. In this article, an indigenous technique of interfacial re-engineering, which is both simple and inexpensive to implement, is developed. Such re-engineering widens the horizon for surface patterning previously limited by the fixed nature of the droplet interface. It involves handprinting hydrophobic lines on a hydrophilic substrate to form a confinement of any selected geometry using a simple document stamp. Droplets cast into such confinements get modulated into a variety of shapes. The droplet shapes control the contact line behavior, evaporation dynamics, and complex internal flow pattern. By exploiting the dynamic interplay among these variables, we could control the deposit's macro- as well as nanoscale assembly not possible with simple circular droplets. We provide a detailed mechanism of the coupling at various length scales enabling a predictive capability in custom engineering, particularly useful in nanoscale applications such as photonic crystals.

  8. High-Pressure Oxygen Test Evaluations

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.; Key, C. F.

    1974-01-01

    The relevance of impact sensitivity testing to the development of the space shuttle main engine is discussed in the light of the special requirements for the engine. The background and history of the evolution of liquid and gaseous oxygen testing techniques and philosophy is discussed also. The parameters critical to reliable testing are treated in considerable detail, and test apparatus and procedures are described and discussed. Materials threshold sensitivity determination procedures are considered and a decision logic diagram for sensitivity threshold determination was plotted. Finally, high-pressure materials sensitivity test data are given for selected metallic and nonmetallic materials.

  9. Assessment of scaffold porosity: the new route of micro-CT.

    PubMed

    Bertoldi, Serena; Farè, Silvia; Tanzi, Maria Cristina

    2011-01-01

    A complete morphologic characterization of porous scaffolds for tissue engineering application is fundamental, as the architectural parameters, in particular porosity, strongly affect the mechanical and biological performance of the structures. Therefore, appropriate techniques for this purpose need to be selected. Several techniques for the assessment of scaffold porosity have been proposed, including Scanning Electron Microscopy observation, mercury and liquid extrusion porosimetry, gas pycnometry, and capillary flow porometry. Each of these techniques has several drawbacks and, a combination of different techniques is often required so as to achieve an in depth study of the morphologic properties of the scaffold. A single technique is often limited and suitable only for the assessment of a specific parameter. To overcome this limit, the most attractive option would be a single nondestructive technique, yet capable of providing a comprehensive set of data. It appears that micro-computed tomography (micro-CT) can potentially fulfill this role. Initially developed to characterize the 3D trabecular microarchitecture of bone, its use has been recently exploited by researchers for the morphologic characterization of porous biomaterials, as it enables obtaining a full assessment of the porous structures both in terms of pore size and interconnected porosity. This review aims to explore the use of micro-CT in scaffold characterization, comparing it with other previously developed techniques; we also focus on the contribution of this innovative tool to the development of scaffold-based tissue engineering application.

  10. Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method.

    PubMed

    Chen, Jinglong; Wang, Yu; He, Zhengjia; Wang, Xiaodong

    2015-10-23

    The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments.

  11. Recent advances in engineering microparticles and their nascent utilization in biomedical delivery and diagnostic applications.

    PubMed

    Choi, Andrew; Seo, Kyoung Duck; Kim, Do Wan; Kim, Bum Chang; Kim, Dong Sung

    2017-02-14

    Complex microparticles (MPs) bearing unique characteristics such as well-tailored sizes, various morphologies, and multi-compartments have been attempted to be produced by many researchers in the past decades. However, a conventionally used method of fabricating MPs, emulsion polymerization, has a limitation in achieving the aforementioned characteristics and several approaches such as the microfluidics-assisted (droplet-based microfluidics and flow lithography-based microfluidics), electrohydrodynamics (EHD)-based, centrifugation-based, and template-based methods have been recently suggested to overcome this limitation. The outstanding features of complex MPs engineered through these suggested methods have provided new opportunities for MPs to be applied in a wider range of applications including cell carriers, drug delivery agents, active pigments for display, microsensors, interface stabilizers, and catalyst substrates. Overall, the engineered MPs expose their potential particularly in the field of biomedical engineering as the increased complexity in the engineered MPs fulfills well the requirements of the high-end applications. This review outlines the current trends of newly developed techniques used for engineered MPs fabrication and focuses on the current state of engineered MPs in biomedical applications.

  12. Mass estimating techniques for earth-to-orbit transports with various configuration factors and technologies applied

    NASA Technical Reports Server (NTRS)

    Klich, P. J.; Macconochie, I. O.

    1979-01-01

    A study of an array of advanced earth-to-orbit space transportation systems with a focus on mass properties and technology requirements is presented. Methods of estimating weights of these vehicles differ from those used for commercial and military aircraft; the new techniques emphasizing winged horizontal and vertical takeoff advanced systems are described utilizing the space shuttle subsystem data base for the weight estimating equations. The weight equations require information on mission profile, the structural materials, the thermal protection system, and the ascent propulsion system, allowing for the type of construction and various propellant tank shapes. The overall system weights are calculated using this information and incorporated into the Systems Engineering Mass Properties Computer Program.

  13. Zero-gravity cloud physics laboratory: Candidate experiments definition and preliminary concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, R. V.; Hollinden, A. B.

    1973-01-01

    The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.

  14. Requirements for facilities and measurement techniques to support CFD development for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Sellers, William L., III; Dwoyer, Douglas L.

    1992-01-01

    The design of a hypersonic aircraft poses unique challenges to the engineering community. Problems with duplicating flight conditions in ground based facilities have made performance predictions risky. Computational fluid dynamics (CFD) has been proposed as an additional means of providing design data. At the present time, CFD codes are being validated based on sparse experimental data and then used to predict performance at flight conditions with generally unknown levels of uncertainty. This paper will discuss the facility and measurement techniques that are required to support CFD development for the design of hypersonic aircraft. Illustrations are given of recent success in combining experimental and direct numerical simulation in CFD model development and validation for hypersonic perfect gas flows.

  15. Advanced Light-Duty SI Engine Fuels Research: Multiple Optical Diagnostics of Well-mixed and Stratified Operation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoberg, Carl Magnus Goran; Vuilleumier, David

    Ever tighter fuel economy standards and concerns about energy security motivate efforts to improve engine efficiency and to develop alternative fuels. This project contributes to the science base needed by industry to develop highly efficient direct injection spark ignition (DISI) engines that also beneficially exploit the different properties of alternative fuels. Here, the emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, the focus is on techniques that can overcome these challenges. Specifically, fuel stratification is usedmore » to ensure ignition and completeness of combustion but this technique has soot and NOx emissions challenges. For ultra-lean well-mixed operation, turbulent deflagration can be combined with controlled end-gas autoignition to render mixed-mode combustion for sufficiently fast heat release. However, such mixed-mode combustion requires very stable inflammation, motivating studies on the effects of near-spark flow and turbulence, and the use of small amounts of fuel stratification near the spark plug.« less

  16. Foundations for Streaming Model Transformations by Complex Event Processing.

    PubMed

    Dávid, István; Ráth, István; Varró, Dániel

    2018-01-01

    Streaming model transformations represent a novel class of transformations to manipulate models whose elements are continuously produced or modified in high volume and with rapid rate of change. Executing streaming transformations requires efficient techniques to recognize activated transformation rules over a live model and a potentially infinite stream of events. In this paper, we propose foundations of streaming model transformations by innovatively integrating incremental model query, complex event processing (CEP) and reactive (event-driven) transformation techniques. Complex event processing allows to identify relevant patterns and sequences of events over an event stream. Our approach enables event streams to include model change events which are automatically and continuously populated by incremental model queries. Furthermore, a reactive rule engine carries out transformations on identified complex event patterns. We provide an integrated domain-specific language with precise semantics for capturing complex event patterns and streaming transformations together with an execution engine, all of which is now part of the Viatra reactive transformation framework. We demonstrate the feasibility of our approach with two case studies: one in an advanced model engineering workflow; and one in the context of on-the-fly gesture recognition.

  17. A function approximation approach to anomaly detection in propulsion system test data

    NASA Technical Reports Server (NTRS)

    Whitehead, Bruce A.; Hoyt, W. A.

    1993-01-01

    Ground test data from propulsion systems such as the Space Shuttle Main Engine (SSME) can be automatically screened for anomalies by a neural network. The neural network screens data after being trained with nominal data only. Given the values of 14 measurements reflecting external influences on the SSME at a given time, the neural network predicts the expected nominal value of a desired engine parameter at that time. We compared the ability of three different function-approximation techniques to perform this nominal value prediction: a novel neural network architecture based on Gaussian bar basis functions, a conventional back propagation neural network, and linear regression. These three techniques were tested with real data from six SSME ground tests containing two anomalies. The basis function network trained more rapidly than back propagation. It yielded nominal predictions with, a tight enough confidence interval to distinguish anomalous deviations from the nominal fluctuations in an engine parameter. Since the function-approximation approach requires nominal training data only, it is capable of detecting unknown classes of anomalies for which training data is not available.

  18. Rocket engine system reliability analyses using probabilistic and fuzzy logic techniques

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Rapp, Douglas C.

    1994-01-01

    The reliability of rocket engine systems was analyzed by using probabilistic and fuzzy logic techniques. Fault trees were developed for integrated modular engine (IME) and discrete engine systems, and then were used with the two techniques to quantify reliability. The IRRAS (Integrated Reliability and Risk Analysis System) computer code, developed for the U.S. Nuclear Regulatory Commission, was used for the probabilistic analyses, and FUZZYFTA (Fuzzy Fault Tree Analysis), a code developed at NASA Lewis Research Center, was used for the fuzzy logic analyses. Although both techniques provided estimates of the reliability of the IME and discrete systems, probabilistic techniques emphasized uncertainty resulting from randomness in the system whereas fuzzy logic techniques emphasized uncertainty resulting from vagueness in the system. Because uncertainty can have both random and vague components, both techniques were found to be useful tools in the analysis of rocket engine system reliability.

  19. Embedded expert system for space shuttle main engine maintenance

    NASA Technical Reports Server (NTRS)

    Pooley, J.; Thompson, W.; Homsley, T.; Teoh, W.; Jones, J.; Lewallen, P.

    1987-01-01

    The SPARTA Embedded Expert System (SEES) is an intelligent health monitoring system that directs analysis by placing confidence factors on possible engine status and then recommends a course of action to an engineer or engine controller. The technique can prevent catastropic failures or costly rocket engine down time because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable rocket engine systems. The SEES methodology synergistically integrates vibration analysis, pattern recognition and communications theory techniques with an artificial intelligence technique - the Embedded Expert System (EES).

  20. Quantitative ultrasonic evaluation of engineering properties in metals, composites and ceramics

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    Ultrasonic technology from the perspective of nondestructive evaluation approaches to material strength prediction and property verification is reviewed. Emergent advanced technology involving quantitative ultrasonic techniques for materials characterization is described. Ultrasonic methods are particularly useful in this area because they involve mechanical elastic waves that are strongly modulated by the same morphological factors that govern mechanical strength and dynamic failure processes. It is emphasized that the technology is in its infancy and that much effort is still required before all the available techniques can be transferred from laboratory to industrial environments.

  1. Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective

    PubMed Central

    Henkel, Jan; Woodruff, Maria A.; Epari, Devakara R.; Steck, Roland; Glatt, Vaida; Dickinson, Ian C.; Choong, Peter F. M.; Schuetz, Michael A.; Hutmacher, Dietmar W.

    2013-01-01

    The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteoconductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineering and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental “origin” require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts. PMID:26273505

  2. Developing High-Frequency Quantitative Ultrasound Techniques to Characterize Three-Dimensional Engineered Tissues

    NASA Astrophysics Data System (ADS)

    Mercado, Karla Patricia E.

    Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.

  3. Cutting More than Metal: Breaking the Development Cycle

    NASA Technical Reports Server (NTRS)

    Singer, Chris

    2014-01-01

    New technology is changing the way we do business at NASA. The ability to use these new tools is made possible by a learning culture able to embrace innovation, flexibility, and prudent risk tolerance, while retaining the hard-won lessons learned of other successes and failures. Technologies such as 3-D manufacturing and structured light scanning are re-shaping the entire product life cycle, from design and analysis, through production, verification, logistics and operations. New fabrication techniques, verification techniques, integrated analysis, and models that follow the hardware from initial concept through operation are reducing the cost and time of building space hardware. Using these technologies to be more efficient, reliable and affordable requires we bring them to a level safe for NASA systems, maintain appropriate rigor in testing and acceptance, and transition new technology. Maximizing these technologies also requires cultural acceptance and understanding and balancing rules with creativity. Evolved systems engineering processes at NASA are increasingly more flexible than they have been in the past, enabling the implementation of new techniques and approaches. This paper provides an overview of NASA Marshall Space Flight Center's new approach to development, as well as examples of how that approach has been incorporated into NASA's Space Launch System (SLS) Program, which counts among its key tenants - safety, affordability, and sustainability. One of the 3D technologies that will be discussed in this paper is the design and testing of various rocket engine components.

  4. [Development of computer aided forming techniques in manufacturing scaffolds for bone tissue engineering].

    PubMed

    Wei, Xuelei; Dong, Fuhui

    2011-12-01

    To review recent advance in the research and application of computer aided forming techniques for constructing bone tissue engineering scaffolds. The literature concerning computer aided forming techniques for constructing bone tissue engineering scaffolds in recent years was reviewed extensively and summarized. Several studies over last decade have focused on computer aided forming techniques for bone scaffold construction using various scaffold materials, which is based on computer aided design (CAD) and bone scaffold rapid prototyping (RP). CAD include medical CAD, STL, and reverse design. Reverse design can fully simulate normal bone tissue and could be very useful for the CAD. RP techniques include fused deposition modeling, three dimensional printing, selected laser sintering, three dimensional bioplotting, and low-temperature deposition manufacturing. These techniques provide a new way to construct bone tissue engineering scaffolds with complex internal structures. With rapid development of molding and forming techniques, computer aided forming techniques are expected to provide ideal bone tissue engineering scaffolds.

  5. Challenges in engineering large customized bone constructs.

    PubMed

    Forrestal, David P; Klein, Travis J; Woodruff, Maria A

    2017-06-01

    The ability to treat large tissue defects with customized, patient-specific scaffolds is one of the most exciting applications in the tissue engineering field. While an increasing number of modestly sized tissue engineering solutions are making the transition to clinical use, successfully scaling up to large scaffolds with customized geometry is proving to be a considerable challenge. Managing often conflicting requirements of cell placement, structural integrity, and a hydrodynamic environment supportive of cell culture throughout the entire thickness of the scaffold has driven the continued development of many techniques used in the production, culturing, and characterization of these scaffolds. This review explores a range of technologies and methods relevant to the design and manufacture of large, anatomically accurate tissue-engineered scaffolds with a focus on the interaction of manufactured scaffolds with the dynamic tissue culture fluid environment. Biotechnol. Bioeng. 2017;114: 1129-1139. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Variable aperture-based ptychographical iterative engine method.

    PubMed

    Sun, Aihui; Kong, Yan; Meng, Xin; He, Xiaoliang; Du, Ruijun; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng

    2018-02-01

    A variable aperture-based ptychographical iterative engine (vaPIE) is demonstrated both numerically and experimentally to reconstruct the sample phase and amplitude rapidly. By adjusting the size of a tiny aperture under the illumination of a parallel light beam to change the illumination on the sample step by step and recording the corresponding diffraction patterns sequentially, both the sample phase and amplitude can be faithfully reconstructed with a modified ptychographical iterative engine (PIE) algorithm. Since many fewer diffraction patterns are required than in common PIE and the shape, the size, and the position of the aperture need not to be known exactly, this proposed vaPIE method remarkably reduces the data acquisition time and makes PIE less dependent on the mechanical accuracy of the translation stage; therefore, the proposed technique can be potentially applied for various scientific researches. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  7. Ullmann-like reactions for the synthesis of complex two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Quardokus, Rebecca C.; Tewary, V. K.; DelRio, Frank W.

    2016-11-01

    Engineering two-dimensional materials through surface-confined synthetic techniques is a promising avenue for designing new materials with tailored properties. Developing and understanding reaction mechanisms for surface-confined synthesis of two-dimensional materials requires atomic-level characterization and chemical analysis. Beggan et al (2015 Nanotechnology 26 365602) used scanning tunneling microscopy and x-ray photoelectron spectroscopy to elucidate the formation mechanism of surface-confined Ullmann-like coupling of thiophene substituted porphyrins on Ag(111). Upon surface deposition, bromine is dissociated and the porphyrins couple with surface adatoms to create linear strands and hexagonally packed molecules. Annealing the sample results in covalently-bonded networks of thienylporphyrin derivatives. A deeper understanding of surface-confined Ullmann-like coupling has the potential to lead to precision-engineered nano-structures through synthetic techniques. Contribution of the National Institute of Standards and Technology, not subject to copyright in the United States of America.

  8. Territories typification technique with use of statistical models

    NASA Astrophysics Data System (ADS)

    Galkin, V. I.; Rastegaev, A. V.; Seredin, V. V.; Andrianov, A. V.

    2018-05-01

    Territories typification is required for solution of many problems. The results of geological zoning received by means of various methods do not always agree. That is why the main goal of the research given is to develop a technique of obtaining a multidimensional standard classified indicator for geological zoning. In the course of the research, the probabilistic approach was used. In order to increase the reliability of geological information classification, the authors suggest using complex multidimensional probabilistic indicator P K as a criterion of the classification. The second criterion chosen is multidimensional standard classified indicator Z. These can serve as characteristics of classification in geological-engineering zoning. Above mentioned indicators P K and Z are in good correlation. Correlation coefficient values for the entire territory regardless of structural solidity equal r = 0.95 so each indicator can be used in geological-engineering zoning. The method suggested has been tested and the schematic map of zoning has been drawn.

  9. A case study on topology optimized design for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Gebisa, A. W.; Lemu, H. G.

    2017-12-01

    Topology optimization is an optimization method that employs mathematical tools to optimize material distribution in a part to be designed. Earlier developments of topology optimization considered conventional manufacturing techniques that have limitations in producing complex geometries. This has hindered the topology optimization efforts not to fully be realized. With the emergence of additive manufacturing (AM) technologies, the technology that builds a part layer upon a layer directly from three dimensional (3D) model data of the part, however, producing complex shape geometry is no longer an issue. Realization of topology optimization through AM provides full design freedom for the design engineers. The article focuses on topologically optimized design approach for additive manufacturing with a case study on lightweight design of jet engine bracket. The study result shows that topology optimization is a powerful design technique to reduce the weight of a product while maintaining the design requirements if additive manufacturing is considered.

  10. Vacuum Plasma Spray (VPS) Forming of Solar Thermal Propulsion Components Using Refractory Metals

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank; Gerish, Harold; Davis, William; Hissam, D. Andy

    1998-01-01

    The Thermal Spray Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using Vacuum Plasma Spray (VPS) to form structural components from a tungsten/rhenium alloy. The components were assembled into an absorption cavity for a fully-functioning, ground test unit of a solar thermal propulsion engine. The VPS process deposits refractory metal onto a graphite mandrel of the desired shape. The mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the deposit. Tungsten and tungsten/25% rhenium were used in the development and production of several absorber cavity components. These materials were selected for their high temperature (less than 2500 C) strength. Each absorber cavity comprises 3 coaxial shells with two, double-helical flow passages through which the propellant gas flows. This paper describes the processing techniques, design considerations, and process development associated with forming these engine components.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, J.S.

    Several factors in the development of the East Wilmington oil field by THUMS Long Beach Co. are described. These include: critical path scheduling, complex stratigraphy, reservoir engineering, drilling program, production methods, pressure maintenance, crude oil processing, automation, transportation facilities, service lines, and electrical facilities. The complexity and closely scheduled operational events interwoven in the THUMS project demands a method for the carefully planned sequence of jobs to be done, beginning with island construction up through routine production and to the LACT system. These demanding requirements necessitated the use of a critical path scheduling program. It was decided to use themore » program evaluation technique. This technique is used to assign responsibilities for individual assignments to time assignments, and to keep the overall program on schedule. The stratigraphy of East Wilmington complicates all engineering functions associated with recovery methods and reservoir evaluation. At least 5 major faults are anticipated.« less

  12. Dissecting single-molecule signal transduction in carbon nanotube circuits with protein engineering

    PubMed Central

    Choi, Yongki; Olsen, Tivoli J.; Sims, Patrick C.; Moody, Issa S.; Corso, Brad L.; Dang, Mytrang N.; Weiss, Gregory A.; Collins, Philip G.

    2013-01-01

    Single molecule experimental methods have provided new insights into biomolecular function, dynamic disorder, and transient states that are all invisible to conventional measurements. A novel, non-fluorescent single molecule technique involves attaching single molecules to single-walled carbon nanotube field-effective transistors (SWNT FETs). These ultrasensitive electronic devices provide long-duration, label-free monitoring of biomolecules and their dynamic motions. However, generalization of the SWNT FET technique first requires design rules that can predict the success and applicability of these devices. Here, we report on the transduction mechanism linking enzymatic processivity to electrical signal generation by a SWNT FET. The interaction between SWNT FETs and the enzyme lysozyme was systematically dissected using eight different lysozyme variants synthesized by protein engineering. The data prove that effective signal generation can be accomplished using a single charged amino acid, when appropriately located, providing a foundation to widely apply SWNT FET sensitivity to other biomolecular systems. PMID:23323846

  13. Comparison of hand-instrumented, heated gutta-percha and engine-driven, cold gutta-percha endodontic techniques.

    PubMed

    Stein, Keith E; Manfra Marretta, Sandra; Siegel, Arthur; Vitoux, Jeanne

    2004-09-01

    An in vitro study compared two gutta-percha obturation techniques of the mandibular first molar in dogs. The mandibular first molars were instrumented and obturated using either K-files and the SuccessFil vertical compaction technique or rotary instruments and the Simplifill/guttapercha master cone technique. Instrumentation and obturation times were recorded for each tooth. Radiographs were used for evaluation of overall appearance of the final fill. A modified apical dye leakage technique was used to evaluate the ability of each method to provide an adequate barrier to apical leakage. The endodontic technique utilizing rotary instruments and Simplifill/gutta-percha master cone required less time and provided a better radiographic appearance to the endodontic fill. In addition, there was no apical dye leakage associated with this technique compared with a 44% leakage incidence in teeth treated with K-file instrumentation and SuccessFil.

  14. Ion Engine Grid Gap Measurements

    NASA Technical Reports Server (NTRS)

    Soulas, Gerge C.; Frandina, Michael M.

    2004-01-01

    A simple technique for measuring the grid gap of an ion engine s ion optics during startup and steady-state operation was demonstrated with beam extraction. The grid gap at the center of the ion optics assembly was measured with a long distance microscope that was focused onto an alumina pin that protruded through the center accelerator grid aperture and was mechanically attached to the screen grid. This measurement technique was successfully applied to a 30 cm titanium ion optics assembly mounted onto an NSTAR engineering model ion engine. The grid gap and each grid s movement during startup from room temperature to both full and low power were measured. The grid gaps with and without beam extraction were found to be significantly different. The grid gaps at the ion optics center were both significantly smaller than the cold grid gap and different at the two power levels examined. To avoid issues associated with a small grid gap during thruster startup with titanium ion optics, a simple method was to operate the thruster initially without beam extraction to heat the ion optics. Another possible method is to apply high voltage to the grids prior to igniting the discharge because power deposition to the grids from the plasma is lower with beam extraction than without. Further testing would be required to confirm this approach.

  15. Engineering mesenchymal stem cells for regenerative medicine and drug delivery.

    PubMed

    Park, Ji Sun; Suryaprakash, Smruthi; Lao, Yeh-Hsing; Leong, Kam W

    2015-08-01

    Researchers have applied mesenchymal stem cells (MSC) to a variety of therapeutic scenarios by harnessing their multipotent, regenerative, and immunosuppressive properties with tropisms toward inflamed, hypoxic, and cancerous sites. Although MSC-based therapies have been shown to be safe and effective to a certain degree, the efficacy remains low in most cases when MSC are applied alone. To enhance their therapeutic efficacy, researchers have equipped MSC with targeted delivery functions using genetic engineering, therapeutic agent incorporation, and cell surface modification. MSC can be genetically modified virally or non-virally to overexpress therapeutic proteins that complement their innate properties. MSC can also be primed with non-peptidic drugs or magnetic nanoparticles for enhanced efficacy and externally regulated targeting, respectively. Furthermore, MSC can be functionalized with targeting moieties to augment their homing toward therapeutic sites using enzymatic modification, chemical conjugation, or non-covalent interactions. These engineering techniques are still works in progress, requiring optimization to improve the therapeutic efficacy and targeting effectiveness while minimizing any loss of MSC function. In this review, we will highlight the advanced techniques of engineering MSC, describe their promise and the challenges of translation into clinical settings, and suggest future perspectives on realizing their full potential for MSC-based therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    imon, Donald L.; Armstrong, Jeffrey B.

    2012-01-01

    A Kalman filter-based approach for integrated on-line aircraft engine performance estimation and gas path fault diagnostics is presented. This technique is specifically designed for underdetermined estimation problems where there are more unknown system parameters representing deterioration and faults than available sensor measurements. A previously developed methodology is applied to optimally design a Kalman filter to estimate a vector of tuning parameters, appropriately sized to enable estimation. The estimated tuning parameters can then be transformed into a larger vector of health parameters representing system performance deterioration and fault effects. The results of this study show that basing fault isolation decisions solely on the estimated health parameter vector does not provide ideal results. Furthermore, expanding the number of the health parameters to address additional gas path faults causes a decrease in the estimation accuracy of those health parameters representative of turbomachinery performance deterioration. However, improved fault isolation performance is demonstrated through direct analysis of the estimated tuning parameters produced by the Kalman filter. This was found to provide equivalent or superior accuracy compared to the conventional fault isolation approach based on the analysis of sensed engine outputs, while simplifying online implementation requirements. Results from the application of these techniques to an aircraft engine simulation are presented and discussed.

  17. Engineering therapies in the CNS: what works and what can be translated.

    PubMed

    Shoffstall, Andrew J; Taylor, Dawn M; Lavik, Erin B

    2012-06-25

    Engineering is the art of taking what we know and using it to solve problems. As engineers, we build tool chests of approaches; we attempt to learn as much as possible about the problem at hand, and then we design, build, and test our approaches to see how they impact the system. The challenge of applying this approach to the central nervous system (CNS) is that we often do not know the details of what is needed from the biological side. New therapeutic options for treating the CNS range from new biomaterials to make scaffolds, to novel drug-delivery techniques, to functional electrical stimulation. However, the reality is that translating these new therapies and making them widely available to patients requires collaborations between scientists, engineers, clinicians, and patients to have the greatest chance of success. Here we discuss a variety of new treatment strategies and explore the pragmatic challenges involved with engineering therapies in the CNS. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Engineering Therapies in the CNS: What works and what can be translated

    PubMed Central

    Shoffstall, Andrew J.; Taylor, Dawn M.; Lavik, Erin B.

    2012-01-01

    Engineering is the art of taking what we know and using it to solve problems. As engineers, we build tool chests of approaches; we attempt to learn as much as possible about the problem at hand, and then we design, build, and test our approaches to see how they impact the system. The challenge of applying this approach to the central nervous system (CNS) is that we often do not know the details of what is needed from the biological side. New therapeutic options for treating the CNS range from new biomaterials to make scaffolds, to novel drug-delivery techniques, to functional electrical stimulation. However, the reality is that translating these new therapies and making them widely available to patients requires collaborations between scientists, engineers, clinicians, and patients to have the greatest chance of success. Here we discuss a variety of new treatment strategies and explore the pragmatic challenges involved with engineering therapies in the CNS. PMID:22330751

  19. Combustion and Engine-Core Noise

    NASA Astrophysics Data System (ADS)

    Ihme, Matthias

    2017-01-01

    The implementation of advanced low-emission aircraft engine technologies and the reduction of noise from airframe, fan, and jet exhaust have made noise contributions from an engine core increasingly important. Therefore, meeting future ambitious noise-reduction goals requires the consideration of engine-core noise. This article reviews progress on the fundamental understanding, experimental analysis, and modeling of engine-core noise; addresses limitations of current techniques; and identifies opportunities for future research. After identifying core-noise contributions from the combustor, turbomachinery, nozzles, and jet exhaust, they are examined in detail. Contributions from direct combustion noise, originating from unsteady combustion, and indirect combustion noise, resulting from the interaction of flow-field perturbations with mean-flow variations in turbine stages and nozzles, are analyzed. A new indirect noise-source contribution arising from mixture inhomogeneities is identified by extending the theory. Although typically omitted in core-noise analysis, the impact of mean-flow variations and nozzle-upstream perturbations on the jet-noise modulation is examined, providing potential avenues for future core-noise mitigation.

  20. 3D-printed microfluidic automation.

    PubMed

    Au, Anthony K; Bhattacharjee, Nirveek; Horowitz, Lisa F; Chang, Tim C; Folch, Albert

    2015-04-21

    Microfluidic automation - the automated routing, dispensing, mixing, and/or separation of fluids through microchannels - generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology's use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer.

  1. Re-engineering the Federal planning process: A total Federal planning strategy, integrating NEPA with modern management tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eccleston, C.H.

    1997-09-05

    The National Environmental Policy Act (NEPA) of 1969 was established by Congress more than a quarter of a century ago, yet there is a surprising lack of specific tools, techniques, and methodologies for effectively implementing these regulatory requirements. Lack of professionally accepted techniques is a principal factor responsible for many inefficiencies. Often, decision makers do not fully appreciate or capitalize on the true potential which NEPA provides as a platform for planning future actions. New approaches and modem management tools must be adopted to fully achieve NEPA`s mandate. A new strategy, referred to as Total Federal Planning, is proposed formore » unifying large-scale federal planning efforts under a single, systematic, structured, and holistic process. Under this approach, the NEPA planning process provides a unifying framework for integrating all early environmental and nonenvironmental decision-making factors into a single comprehensive planning process. To promote effectiveness and efficiency, modem tools and principles from the disciplines of Value Engineering, Systems Engineering, and Total Quality Management are incorporated. Properly integrated and implemented, these planning tools provide the rigorous, structured, and disciplined framework essential in achieving effective planning. Ultimately, the goal of a Total Federal Planning strategy is to construct a unified and interdisciplinary framework that substantially improves decision-making, while reducing the time, cost, redundancy, and effort necessary to comply with environmental and other planning requirements. At a time when Congress is striving to re-engineer the governmental framework, apparatus, and process, a Total Federal Planning philosophy offers a systematic approach for uniting the disjointed and often convoluted planning process currently used by most federal agencies. Potentially this approach has widespread implications in the way federal planning is approached.« less

  2. Industrial metrology as applied to large physics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veal, D.

    1993-05-01

    A physics experiment is a large complex 3-D object (typ. 1200 m{sup 3}, 35000 tonnes), with sub-millimetric alignment requirements. Two generic survey alignment tasks can be identified; first, an iterative positioning of the apparatus subsystems in space and, second, a quantification of as-built parameters. The most convenient measurement technique is industrial triangulation but the complexity of the measured object and measurement environment constraints frequently requires a more sophisticated approach. To enlarge the ``survey alignment toolbox`` measurement techniques commonly associated with other disciplines such as geodesy, applied geodesy for accelerator alignment, and mechanical engineering are also used. Disparate observables require amore » heavy reliance on least squares programs for campaign pre-analysis and calculation. This paper will offer an introduction to the alignment of physics experiments and will identify trends for the next generation of SSC experiments.« less

  3. Development and Evaluation of a Performance Modeling Flight Test Approach Based on Quasi Steady-State Maneuvers

    NASA Technical Reports Server (NTRS)

    Yechout, T. R.; Braman, K. B.

    1984-01-01

    The development, implementation and flight test evaluation of a performance modeling technique which required a limited amount of quasisteady state flight test data to predict the overall one g performance characteristics of an aircraft. The concept definition phase of the program include development of: (1) the relationship for defining aerodynamic characteristics from quasi steady state maneuvers; (2) a simplified in flight thrust and airflow prediction technique; (3) a flight test maneuvering sequence which efficiently provided definition of baseline aerodynamic and engine characteristics including power effects on lift and drag; and (4) the algorithms necessary for cruise and flight trajectory predictions. Implementation of the concept include design of the overall flight test data flow, definition of instrumentation system and ground test requirements, development and verification of all applicable software and consolidation of the overall requirements in a flight test plan.

  4. Quality - Inexpensive if a way of life.

    NASA Technical Reports Server (NTRS)

    Grau, D.

    1972-01-01

    NASA major projects require phased planning. The participation of persons charged with maintaining the proper quality during the last two of four phases has become accepted practice. Current objectives are concerned with the application of quality assurance techniques during the second phase. It is pointed out that quality must be emphasized during the entire engineering process, starting with the selection of the components.

  5. NASA Ares I Crew Launch Vehicle Upper Stage Overview

    NASA Technical Reports Server (NTRS)

    Davusm Daniel J.; McArthur, J. Craig

    2008-01-01

    By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA's Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program's transportation system.

  6. NASA Ares I Crew Launch Vehicle Upper State Overview

    NASA Technical Reports Server (NTRS)

    Davis, Daniel J.

    2008-01-01

    By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA s Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program s transportation system.

  7. Chemistry Is Dead. Long Live Chemistry!

    PubMed

    Lavis, Luke D

    2017-10-03

    Chemistry, once king of fluorescence microscopy, was usurped by the field of fluorescent proteins. The increased demands of modern microscopy techniques on the "photon budget" require better and brighter fluorophores, causing a renewed interest in synthetic dyes. Here, we review the recent advances in biochemistry, protein engineering, and organic synthesis that have allowed a triumphant return of chemical fluorophores to modern biological imaging.

  8. Technology for National Security

    DTIC Science & Technology

    1988-10-01

    tanks, and automobiles are already driven by turbines, and more will be. Turbines must be operated at very high temperatures to compete with the...efficiency of internal combustion engines. Cheap, high-temperature turbines for automobiles and land vehicles will probably require the use of ceramic...of bytes of data. Erasable optical storage techniques are maturing and breakthroughs in reprogrammable optical storage for platform or missile

  9. Software Requirements Engineering Methodology (Development)

    DTIC Science & Technology

    1979-06-01

    Higher Order Software [20]; and the Michael Jackson Design Methodology [21]. Although structured programming constructs have proven to be more useful...reviewed here. Similarly, the manual techniques for software design (e.g., HIPO Diagrams, Nassi-Schneidermann charts, Top-Down Design, the Michael ... Jackson Design Methodology, Yourdon’s Structured Design) are not addressed. 6.1.3 Research Programs There are a number of research programs underway

  10. Digital prototyping technique applied for redesigning plastic products

    NASA Astrophysics Data System (ADS)

    Pop, A.; Andrei, A.

    2015-11-01

    After products are on the market for some time, they often need to be redesigned to meet new market requirements. New products are generally derived from similar but outdated products. Redesigning a product is an important part of the production and development process. The purpose of this paper is to show that using modern technology, like Digital Prototyping in industry is an effective way to produce new products. This paper tries to demonstrate and highlight the effectiveness of the concept of Digital Prototyping, both to reduce the design time of a new product, but also the costs required for implementing this step. The results of this paper show that using Digital Prototyping techniques in designing a new product from an existing one available on the market mould offers a significantly manufacturing time and cost reduction. The ability to simulate and test a new product with modern CAD-CAM programs in all aspects of production (designing of the 3D model, simulation of the structural resistance, analysis of the injection process and beautification) offers a helpful tool for engineers. The whole process can be realised by one skilled engineer very fast and effective.

  11. High frequency flow-structural interaction in dense subsonic fluids

    NASA Technical Reports Server (NTRS)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  12. Model-based optimal design of experiments - semidefinite and nonlinear programming formulations

    PubMed Central

    Duarte, Belmiro P.M.; Wong, Weng Kee; Oliveira, Nuno M.C.

    2015-01-01

    We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D–, A– and E–optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D–optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice. PMID:26949279

  13. Model-based optimal design of experiments - semidefinite and nonlinear programming formulations.

    PubMed

    Duarte, Belmiro P M; Wong, Weng Kee; Oliveira, Nuno M C

    2016-02-15

    We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D -, A - and E -optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D -optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice.

  14. Engine control techniques to account for fuel effects

    DOEpatents

    Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.

    2014-08-26

    A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.

  15. A simple, physically-based method for evaluating the economic costs of geo-engineering schemes

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.

    2009-04-01

    The consumption of primary energy (e.g coal, oil, uranium) by the global economy is done in expectation of a return on investment. For geo-engineering schemes, however, the relationship between the primary energy consumption required and the economic return is, at first glance, quite different. The energy costs of a given scheme represent a removal of economically productive available energy to do work in the normal global economy. What are the economic implications of the energy consumption associated with geo-engineering techniques? I will present a simple thermodynamic argument that, in general, real (inflation-adjusted) economic value has a fixed relationship to the rate of global primary energy consumption. This hypothesis will be shown to be supported by 36 years of available energy statistics and a two millennia period of statistics for global economic production. What is found from this analysis is that the value in any given inflation-adjusted 1990 dollar is sustained by a constant 9.7 +/- 0.3 milliwatts of global primary energy consumption. Thus, insofar as geo-engineering is concerned, any scheme that requires some nominal fraction of continuous global primary energy output necessitates a corresponding inflationary loss of real global economic value. For example, if 1% of global energy output is required, at today's consumption rates of 15 TW this corresponds to an inflationary loss of 15 trillion 1990 dollars of real value. The loss will be less, however, if the geo-engineering scheme also enables a demonstrable enhancement to global economic production capacity through climate modification.

  16. Deairing Techniques for Double-Ended Centrifugal Total Artificial Heart Implantation.

    PubMed

    Karimov, Jamshid H; Horvath, David J; Byram, Nicole; Sunagawa, Gengo; Grady, Patrick; Sinkewich, Martin; Moazami, Nader; Sale, Shiva; Golding, Leonard A R; Fukamachi, Kiyotaka

    2017-06-01

    The unique device architecture of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) requires dedicated and specific air-removal techniques during device implantation in vivo. These procedures comprise special surgical techniques and intraoperative manipulations, as well as engineering design changes and optimizations to the device itself. The current study evaluated the optimal air-removal techniques during the Cleveland Clinic double-ended centrifugal CFTAH in vivo implants (n = 17). Techniques and pump design iterations consisted of developing a priming method for the device and the use of built-in deairing ports in the early cases (n = 5). In the remaining cases (n = 12), deairing ports were not used. Dedicated air-removal ports were not considered an essential design requirement, and such ports may represent an additional risk for pump thrombosis. Careful passive deairing was found to be an effective measure with a centrifugal pump of this design. In this report, the techniques and design changes that were made during this CFTAH development program to enable effective residual air removal and prevention of air embolism during in vivo device implantation are explained. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. Small gas turbine engine technology

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, Richard W.; Meitner, Peter L.

    1988-01-01

    Performance of small gas turbine engines in the 250 to 1,000 horsepower size range is significantly lower than that of large engines. Engines of this size are typically used in rotorcraft, commutercraft, general aviation, and cruise missile applications. Principal reasons for the lower efficiencies of a smaller engine are well known: component efficients are lower by as much as 8 to 10 percentage points because of size effects. Small engines are designed for lower cycle pressures and temperatures because of smaller blading and cooling limitations. The highly developed analytical and manufacturing techniques evolved for large engines are not directly transferrable to small engines. Thus, it was recognized that a focused effort addressing technologies for small engies was needed and could significantly impact their performance. Recently, in-house and contract studies were undertaken at the NASA Lewis Research Center to identify advanced engine cycle and component requirements for substantial performance improvement of small gas turbines for projected year 2000 applications. The results of both in-house research and contract studies are presented. In summary, projected fuel savings of 22 to 42 percent could be obtained. Accompanying direct operating cost reductions of 11 to 17 percent, depending on fuel cost, were also estimated. High payoff technologies are identified for all engine applications, and recent results of experimental research to evolve the high payoff technologies are described.

  18. A History of Welding on the Space Shuttle Main Engine (1975 to 2010)

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.; Russell, Carolyn K.

    2010-01-01

    The Space Shuttle Main Engine (SSME) is a high performance, throttleable, liquid hydrogen fueled rocket engine. High thrust and specific impulse (Isp) are achieved through a staged combustion engine cycle, combined with high combustion pressure (approx.3000psi) generated by the two-stage pump and combustion process. The SSME is continuously throttleable from 67% to 109% of design thrust level. The design criteria for this engine maximize performance and weight, resulting in a 7,800 pound rocket engine that produces over a half million pounds of thrust in vacuum with a specific impulse of 452/sec. It is the most reliable rocket engine in the world, accumulating over one million seconds of hot-fire time and achieving 100% flight success in the Space Shuttle program. A rocket engine with the unique combination of high reliability, performance, and reusability comes at the expense of manufacturing simplicity. Several innovative design features and fabrication techniques are unique to this engine. This is as true for welding as any other manufacturing process. For many of the weld joints it seemed mean cheating physics and metallurgy to meet the requirements. This paper will present a history of the welding used to produce the world s highest performance throttleable rocket engine.

  19. Life with Four Billion Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Thomas

    2013-04-10

    Today it is commonplace to design and construct single silicon chips with billions of transistors. These are complex systems, difficult (but possible) to design, test, and fabricate. Remarkably, simple living systems can be assembled from a similar number of atoms, most of them in water molecules. In this talk I will present the current status of our attempts at full understanding and complexity reduction of one of the simplest living systems, the free-living bacterial species Mesoplasma florum. This 400 nm diameter cell thrives and replicates every 40 minutes with a genome of only 800 kilobases. Our recent experiments using transposonmore » gene knockouts identified 354 of 683 annotated genes as inessential in laboratory culture when inactivated individually. While a functional redesigned genome will certainly not remove all of those genes, this suggests that roughly half the genome can be removed in an intentional redesign. I will discuss our recent knockout results and methodology, and our future plans for Genome re-engineering using targeted knock-in/knock-out double recombination; whole cell metabolic models; comprehensive whole cell metabolite measurement techniques; creation of plug-and-play metabolic modules for the simplified organism; inherent and engineered biosafety control mechanisms. This redesign is part of a comprehensive plan to lay the foundations for a new discipline of engineering biology. Engineering biological systems requires a fundamentally different viewpoint from that taken by the science of biology. Key engineering principles of modularity, simplicity, separation of concerns, abstraction, flexibility, hierarchical design, isolation, and standardization are of critical importance. The essence of engineering is the ability to imagine, design, model, build, and characterize novel systems to achieve specific goals. Current tools and components for these tasks are primitive. Our approach is to create and distribute standard biological parts, organisms, assembly techniques, and measurement techniques as a way of enabling this new field.« less

  20. Mesenchymal stem cells and alginate microcarriers for craniofacial bone tissue engineering: A review.

    PubMed

    Saltz, Adam; Kandalam, Umadevi

    2016-05-01

    Craniofacial bone is a complex structure with an intricate anatomical and physiological architecture. The defects that exist in this region therefore require a precise control of osteogenesis in their reconstruction. Unlike traditional surgical intervention, tissue engineering techniques mediate bone development with limited postoperative risk and cost. Alginate stands as the premier polymer in bone repair because of its mild ionotropic gelation and excellent biocompatibility, biodegradability, and injectability. Alginate microcarriers are candidates of choice to mediate cells and accommodate into 3-D environment. Several studies reported the use of alginate microcarriers for delivering cells, drugs, and growth factors. This review will explore the potential use of alginate microcarrier for stem cell systems and its application in craniofacial bone tissue engineering. © 2016 Wiley Periodicals, Inc.

  1. CERTS Microgrid Laboratory Test Bed - PIER Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Joseph H.; Eto, Joseph H.; Lasseter, Robert

    2008-07-25

    The objective of the CERTS Microgrid Laboratory Test Bed project was to enhance the ease of integrating small energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; 2) an approach to electrical protection within the microgrid that does not depend on highmore » fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications. The techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers 1547 and power quality requirements. The electrical protections system was able to distinguish between normal and faulted operation. The controls were found to be robust and under all conditions, including difficult motor starts. The results from these test are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or mroe of the CERTS Microgrid concepts.« less

  2. Trace: a high-throughput tomographic reconstruction engine for large-scale datasets.

    PubMed

    Bicer, Tekin; Gürsoy, Doğa; Andrade, Vincent De; Kettimuthu, Rajkumar; Scullin, William; Carlo, Francesco De; Foster, Ian T

    2017-01-01

    Modern synchrotron light sources and detectors produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used imaging techniques that generates data at tens of gigabytes per second is computed tomography (CT). Although CT experiments result in rapid data generation, the analysis and reconstruction of the collected data may require hours or even days of computation time with a medium-sized workstation, which hinders the scientific progress that relies on the results of analysis. We present Trace, a data-intensive computing engine that we have developed to enable high-performance implementation of iterative tomographic reconstruction algorithms for parallel computers. Trace provides fine-grained reconstruction of tomography datasets using both (thread-level) shared memory and (process-level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations that we apply to the replicated reconstruction objects and evaluate them using tomography datasets collected at the Advanced Photon Source. Our experimental evaluations show that our optimizations and parallelization techniques can provide 158× speedup using 32 compute nodes (384 cores) over a single-core configuration and decrease the end-to-end processing time of a large sinogram (with 4501 × 1 × 22,400 dimensions) from 12.5 h to <5 min per iteration. The proposed tomographic reconstruction engine can efficiently process large-scale tomographic data using many compute nodes and minimize reconstruction times.

  3. Stirling engine external heat system design with heat pipe heater

    NASA Technical Reports Server (NTRS)

    Godett, Ted M.; Ziph, Benjamin

    1986-01-01

    This final report presents the conceptual design of a liquid fueled external heating system (EHS) and the preliminary design of a heat pipe heater for the STM-4120 Stirling cycle engine, to meet the Air Force mobile electric power (MEP) requirement for units in the range of 20 to 60 kW. The EHS design had the following constraints: (1) Packaging requirements limited the overall system dimensions to about 330 mm x 250 mm x 100 mm; (2) Heat flux to the sodium heat pipe evaporator was limited to an average of 100 kW/m and a maximum of 550 kW/m based on previous experience; and (3) The heat pipe operating temperature was specified to be 800 C based on heat input requirements of the STM4-120. An analysis code was developed to optimize the EHS performance parameters and an analytical development of the sodium heat pipe heater was performed; both are presented and discussed. In addition, construction techniques were evaluated and scale model heat pipe testing performed.

  4. A lunar base reference mission for the phased implementation of bioregenerative life support system components

    NASA Technical Reports Server (NTRS)

    Dittmer, Laura N.; Drews, Michael E.; Lineaweaver, Sean K.; Shipley, Derek E.; Hoehn, A.

    1991-01-01

    Previous design efforts of a cost effective and reliable regenerative life support system (RLSS) provided the foundation for the characterization of organisms or 'biological processors' in engineering terms and a methodology was developed for their integration into an engineered ecological LSS in order to minimize the mass flow imbalances between consumers and producers. These techniques for the design and the evaluation of bioregenerative LSS have now been integrated into a lunar base reference mission, emphasizing the phased implementation of components of such a BLSS. In parallel, a designers handbook was compiled from knowledge and experience gained during past design projects to aid in the design and planning of future space missions requiring advanced RLSS technologies. The lunar base reference mission addresses in particular the phased implementation and integration of BLS parts and includes the resulting infrastructure burdens and needs such as mass, power, volume, and structural requirements of the LSS. Also, operational aspects such as manpower requirements and the possible need and application of 'robotics' were addressed.

  5. Crew interface specification development study for in-flight maintenance and stowage functions

    NASA Technical Reports Server (NTRS)

    Carl, J. G.

    1971-01-01

    The need and potential solutions for an orderly systems engineering approach to the definition, management and documentation requirements for in-flight maintenance, assembly, servicing, and stowage process activities of the flight crews of future spacecraft were investigated. These processes were analyzed and described using a new technique (mass/function flow diagramming), developed during the study, to give visibility to crew functions and supporting requirements, including data products. This technique is usable by NASA for specification baselines and can assist the designer in identifying both upper and lower level requirements associated with these processes. These diagrams provide increased visibility into the relationships between functions and related equipments being utilized and managed and can serve as a common communicating vehicle between the designer, program management, and the operational planner. The information and data product requirements to support the above processes were identified along with optimum formats and contents of these products. The resulting data product concepts are presented to support these in-flight maintenance and stowage processes.

  6. Potential for Imaging Engineered Tissues with X-Ray Phase Contrast

    PubMed Central

    Appel, Alyssa; Anastasio, Mark A.

    2011-01-01

    As the field of tissue engineering advances, it is crucial to develop imaging methods capable of providing detailed three-dimensional information on tissue structure. X-ray imaging techniques based on phase-contrast (PC) have great potential for a number of biomedical applications due to their ability to provide information about soft tissue structure without exogenous contrast agents. X-ray PC techniques retain the excellent spatial resolution, tissue penetration, and calcified tissue contrast of conventional X-ray techniques while providing drastically improved imaging of soft tissue and biomaterials. This suggests that X-ray PC techniques are very promising for evaluation of engineered tissues. In this review, four different implementations of X-ray PC imaging are described and applications to tissues of relevance to tissue engineering reviewed. In addition, recent applications of X-ray PC to the evaluation of biomaterial scaffolds and engineered tissues are presented and areas for further development and application of these techniques are discussed. Imaging techniques based on X-ray PC have significant potential for improving our ability to image and characterize engineered tissues, and their continued development and optimization could have significant impact on the field of tissue engineering. PMID:21682604

  7. Multi-beam range imager for autonomous operations

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Lee, H. Sang; Ramaswami, R.

    1993-01-01

    For space operations from the Space Station Freedom the real time range imager will be very valuable in terms of refuelling, docking as well as space exploration operations. For these applications as well as many other robotics and remote ranging applications, a small potable, power efficient, robust range imager capable of a few tens of km ranging with 10 cm accuracy is needed. The system developed is based on a well known pseudo-random modulation technique applied to a laser transmitter combined with a novel range resolution enhancement technique. In this technique, the transmitter is modulated by a relatively low frequency of an order of a few MHz to enhance the signal to noise ratio and to ease the stringent systems engineering requirements while accomplishing a very high resolution. The desired resolution cannot easily be attained by other conventional approaches. The engineering model of the system is being designed to obtain better than 10 cm range accuracy simply by implementing a high precision clock circuit. In this paper we present the principle of the pseudo-random noise (PN) lidar system and the results of the proof of experiment.

  8. The Design of Large-Scale Complex Engineered Systems: Present Challenges and Future Promise

    NASA Technical Reports Server (NTRS)

    Bloebaum, Christina L.; McGowan, Anna-Maria Rivas

    2012-01-01

    Model-Based Systems Engineering techniques are used in the SE community to address the need for managing the development of complex systems. A key feature of the MBSE approach is the use of a model to capture the requirements, architecture, behavior, operating environment and other key aspects of the system. The focus on the model differentiates MBSE from traditional SE techniques that may have a document centric approach. In an effort to assess the benefit of utilizing MBSE on its flight projects, NASA Langley has implemented a pilot program to apply MBSE techniques during the early phase of the Materials International Space Station Experiment-X (MISSE-X). MISSE-X is a Technology Demonstration Mission being developed by the NASA Office of the Chief Technologist i . Designed to be installed on the exterior of the International Space Station (ISS), MISSE-X will host experiments that advance the technology readiness of materials and devices needed for future space exploration. As a follow-on to the highly successful series of previous MISSE experiments on ISS, MISSE-X benefits from a significant interest by the

  9. Intertwining Risk Insights and Design Decisions

    NASA Technical Reports Server (NTRS)

    Cornford, Steven L.; Feather, Martin S.; Jenkins, J. Steven

    2006-01-01

    The state of systems engineering is such that a form of early and continued use of risk assessments is conducted (as evidenced by NASA's adoption and use of the 'Continuous Risk Management' paradigm developed by SEI). ... However, these practices fall short of theideal: (1) Integration between risk assessment techniques and other systems engineering tools is weak. (2) Risk assessment techniques and the insights they yield are only informally coupled to design decisions. (3) Individual riskassessment techniques lack the mix of breadth, fidelity and agility required to span the gamut of the design space. In this paper we present an approach that addresses these shortcomings. The hallmark of our approach is a simple representation comprising objectives (what the system is to do), risks (whose occurrence would detract from attainment of objectives) and activities (a.k.a. 'mitigations') that, if performed, will decrease those risks. These are linked to indicate by how much a risk would detract from attainment of an objective, and by how much an activity would reduce a risk. The simplicity of our representational framework gives it the breadth to encompass the gamut of the design space concerns, the agility to be utilized in even the earliest phases of designs, and the capability to connect to system engineering models and higher-fidelity risk tools. It is through this integration that we address the shortcomings listed above, and so achieve the intertwining between risk insights and design decisions needed to guide systems engineering towards superior final designs while avoiding costly rework to achieve them. The paper will use an example, constructed to be representative of space mission design, to illustrate our approach.

  10. Development of an instantaneous local fuel-concentration measurement probe: an engine application

    NASA Astrophysics Data System (ADS)

    Guibert, P.; Boutar, Z.; Lemoyne, L.

    2003-11-01

    This work presents a new tool which can deliver instantaneous local measurements of fuel concentration in an engine cylinder with a high temporal resolution, particularly during compression strokes. Fuel concentration is represented by means of equivalence fuel-air ratio, i.e. the real engine mass ratio of fuel to air divided by the same ratio in ideal stoichiometry conditions. Controlling the mixture configuration for any strategy in a spark ignition engine and for auto-ignition combustion has a dominant effect on the subsequent processes of ignition, flame propagation and auto-ignition combustion progression, pollutant formation under lean or even stoichiometric operating conditions. It is extremely difficult, under a transient operation, to control the equivalence air/fuel ratio precisely at a required value and at the right time. This requires the development of a highly accurate equivalence air/fuel ratio control system and a tool to measure using crank angle (CA) resolution. Although non-intrusive laser techniques have considerable advantages, they are most of the time inappropriate due to their optical inaccessibility or the complex experimental set-up involved. Therefore, as a response to the demand for a relatively simple fuel-concentration measurement system a probe is presented that replaces a spark plug and allows the engine to run completely normally. The probe is based on hot-wire like apparatus, but involves catalytic oxidation at the wire surface. The development, characteristics and calibration of the probe are presented followed by applications to in-cylinder engine measurements.

  11. Solving deterministic non-linear programming problem using Hopfield artificial neural network and genetic programming techniques

    NASA Astrophysics Data System (ADS)

    Vasant, P.; Ganesan, T.; Elamvazuthi, I.

    2012-11-01

    A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.

  12. Attributes and characteristics of the Mathematics, Engineering, Science, Achievement (MESA) high school program for first-generation Latino students

    NASA Astrophysics Data System (ADS)

    Flores, Ramon

    This study used a web-based survey collected data from 28 first-generation Latino engineers who participated in the Mathematics, Engineering, Science, Achievement (MESA) program during their high school years. From the set of 28 respondents, 5 volunteered to participate in an optional telephone interview. The purpose of this study was to describe the critical attributes and characteristics of the MESA program that lead to success at both the high school and college levels for first-generation Latino students. Success at the high school level was operationally defined as successfully graduating with a high school diploma. Success at the college level was operationally defined here as college graduation with an engineering degree. Using a mixed-methods technique, the researcher attempted to secure consensus of opinion from a sample population of 28 first-generation Latino engineers. The mixed-methods technique was chosen since it allowed the researcher to draw on the strengths of quantitative and qualitative approaches. According to the findings, the typical respondent felt that mentoring was the attribute of the MESA program that most prepared him to graduate from high school. The respondents felt that the following MESA attributes most helped them transition into an undergraduate engineering program: Academic and University Advising; Enrichment Activities; Career Advising; Field Trips; Mentoring; Scholarship Incentive Awards; and Speakers. The respondents viewed study groups as the MESA attribute that best prepared them to graduate college with an engineering degree. This study was purposefully designed as a descriptive study. Future research is required to extend this work into an evaluative study. This would allow for the generalization of the critical attributes to the general student population serviced by the MESA program.

  13. Stakeholder requirements for commercially successful wave energy converter farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babarit, Aurélien; Bull, Diana; Dykes, Katherine

    2017-12-01

    In this study, systems engineering techniques are applied to wave energy to identify and specify stakeholders' requirements for a commercially successful wave energy farm. The focus is on the continental scale utility market. Lifecycle stages and stakeholders are identified. Stakeholders' needs across the whole lifecycle of the wave energy farm are analyzed. A list of 33 stakeholder requirements are identified and specified. This list of requirements should serve as components of a technology performance level metric that could be used by investors and funding agencies to make informed decisions when allocating resources. It is hoped that the technology performance levelmore » metric will accelerate wave energy conversion technology convergence.« less

  14. Preliminary plan for a Shuttle Coherent Atmospheric Lidar Experiment (SCALE)

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, D.; Beranek, R.; Bilbro, J.; Mabry, J.

    1985-01-01

    A study has been completed to define a Shuttle experiment that solves the most crucial scientific and engineering problems involved in building a satellite Doppler wind profiler for making global wind measurements. The study includes: (1) a laser study to determine the feasibility of using the existing NOAA Windvan laser in the Space Shuttle spacecraft; (2) a preliminary optics and telescope design; (3) an accommodations study including power, weight, thermal, and control system requirements; and (4) a flight trajectory and operations plan designed to accomplish the required scientific and engineering goals. The experiment will provide much-needed data on the global distribution of atmospheric aerosols and demonstrate the technique of making wind measurements from space, including scanning the laser beam and interpreting the data. Engineering accomplishments will include space qualification of the laser, development of signal processing and lag angle compensation hardware and software, and telescope and optics design. All of the results of this limited Spacelab experiment will be directly applicable to a complete satellite wind profiler for the Earth Observation System/Space Station or other free-flying satellite.

  15. Nanofibers and their applications in tissue engineering

    PubMed Central

    Vasita, Rajesh; Katti, Dhirendra S

    2006-01-01

    Developing scaffolds that mimic the architecture of tissue at the nanoscale is one of the major challenges in the field of tissue engineering. The development of nanofibers has greatly enhanced the scope for fabricating scaffolds that can potentially meet this challenge. Currently, there are three techniques available for the synthesis of nanofibers: electrospinning, self-assembly, and phase separation. Of these techniques, electrospinning is the most widely studied technique and has also demonstrated the most promising results in terms of tissue engineering applications. The availability of a wide range of natural and synthetic biomaterials has broadened the scope for development of nanofibrous scaffolds, especially using the electrospinning technique. The three dimensional synthetic biodegradable scaffolds designed using nanofibers serve as an excellent framework for cell adhesion, proliferation, and differentiation. Therefore, nanofibers, irrespective of their method of synthesis, have been used as scaffolds for musculoskeletal tissue engineering (including bone, cartilage, ligament, and skeletal muscle), skin tissue engineering, vascular tissue engineering, neural tissue engineering, and as carriers for the controlled delivery of drugs, proteins, and DNA. This review summarizes the currently available techniques for nanofiber synthesis and discusses the use of nanofibers in tissue engineering and drug delivery applications. PMID:17722259

  16. Automated payload experiment tool feasibility study

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.; Clark, James; Delugach, Harry; Hammons, Charles; Logan, Julie; Provancha, Anna

    1991-01-01

    To achieve an environment less dependent on the flow of paper, automated techniques of data storage and retrieval must be utilized. The prototype under development seeks to demonstrate the ability of a knowledge-based, hypertext computer system. This prototype is concerned with the logical links between two primary NASA support documents, the Science Requirements Document (SRD) and the Engineering Requirements Document (ERD). Once developed, the final system should have the ability to guide a principal investigator through the documentation process in a more timely and efficient manner, while supplying more accurate information to the NASA payload developer.

  17. Probabilistic Requirements (Partial) Verification Methods Best Practices Improvement. Variables Acceptance Sampling Calculators: Empirical Testing. Volume 2

    NASA Technical Reports Server (NTRS)

    Johnson, Kenneth L.; White, K. Preston, Jr.

    2012-01-01

    The NASA Engineering and Safety Center was requested to improve on the Best Practices document produced for the NESC assessment, Verification of Probabilistic Requirements for the Constellation Program, by giving a recommended procedure for using acceptance sampling by variables techniques as an alternative to the potentially resource-intensive acceptance sampling by attributes method given in the document. In this paper, the results of empirical tests intended to assess the accuracy of acceptance sampling plan calculators implemented for six variable distributions are presented.

  18. Performance documentation of the engineering model 30-cm diameter thruster

    NASA Technical Reports Server (NTRS)

    Bechtel, R. T.; Rawlin, V. K.

    1976-01-01

    The results of extensive testing of two 30-cm ion thrusters which are virtually identical to the 900 series Engineering Model Thruster in an ongoing 15,000-hour life test are presented. Performance data for the nominal fullpower (2650 W) operating point; performance sensitivities to discharge voltage, discharge losses, accelerator voltage, and magnetic baffle current; and several power throttling techniques (maximum Isp, maximum thrust/power ratio, and two cases in between are included). Criteria for throttling are specified in terms of the screen power supply envelope, thruster operating limits, and control stability. In addition, reduced requirements for successful high voltage recycles are presented.

  19. Inactivation of an integrated antibiotic resistance gene in mammalian cells to re-enable antibiotic selection.

    PubMed

    Ni, Peiling; Zhang, Qian; Chen, Haixia; Chen, Lingyi

    2014-01-01

    Removing an antibiotic resistance gene allows the same antibiotic to be re-used in the next round of genetic manipulation. Here we applied the CRISPR/Cas system to disrupt the puromycin resistance gene in an engineered mouse embryonic stem cell line and then re-used puromycin selection in the resulting cells to establish stable reporter cell lines. With the CRISPR/Cas system, pre-engineered sequences, such as loxP or FRT, are not required. Thus, this technique can be used to disrupt antibiotic resistance genes that cannot be removed by the Cre-loxP and Flp-FRT systems.

  20. Production and engineering methods for CARB: TEK (trade name) batteries in fork lift trucks

    NASA Astrophysics Data System (ADS)

    Schaefer, J. C.

    1975-03-01

    The purpose of this program is to develop the manufacturing technology of the Carb Tek molten salt Li/Cl battery to the prototype level. This purpose is being accomplished by actually constructing cells on a pilot line, optimizing process steps, establishing quality control procedures, and engineering appropriate changes. The majority of the cell work is performed in a controlled argon atmosphere. Results show that the carbon selected for the cell cathode can develop the required 5 Whr/cubic inch even when damaged by stress cracks. Anode contamination and fabrication problems have been reduced by a new alloying technique. Cell yields are dependent on weld quality.

  1. The effects of gas mixtures on ion engine erosion and performance

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Brophy, John R.; Aston, Graeme

    1987-01-01

    Erosion measurements were performed on a modified J-series 30 cm ion engine operating on xenon propellant. Erosion data was obtained by measuring the trench depth etched into masked polished metal samples for test durations of up to 24 hours. The data indicates that erosion is greatest at the cathode side of the baffle, with tantalum being the material with the least erosion of all materials tested. There is a clear indication of a significant reduction in erosion of all materials tested when nitrogen is added to the propellant. The technique used in these experiments requires test samples which are extremely smooth and flat.

  2. AGT101 automotive gas turbine system development

    NASA Technical Reports Server (NTRS)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    The AGT101 automotive gas turbine system consisting of a 74.6 kw regenerated single-shaft gas turbine engine, is presented. The development and testing of the system is reviewed, and results for aerothermodynamic components indicate that compressor and turbine performance levels are within one percent of projected levels. Ceramic turbine rotor development is encouraging with successful cold spin testing of simulated rotors to speeds over 12,043 rad/sec. Spin test results demonstrate that ceramic materials having the required strength levels can be fabricated by net shape techniques to the thick hub cross section, which verifies the feasibility of the single-stage radial rotor in single-shaft engines.

  3. Spectrum-modulating fiber-optic sensors for aircraft control systems

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Fritsch, Klaus

    1987-01-01

    A family of fiber-optic sensors for aircraft engine control systems is described. Each of these sensors uses a spectrum-modulation method to obtain an output which is largely independent of the fiber link transmissivity. A position encoder is described which uses a code plate to digitally modulate the sensor output spectrum. Also described are pressure and temperature sensors, each of which uses a Fabry-Perot cavity to modulate the sensor output spectrum as a continuous function of the measurand. A technique is described whereby a collection of these sensors may be effectively combined to perform a number of the measurements which are required by an aircraft-engine control system.

  4. 3D geometrical assessment of femoral curvature: a reverse engineering technique.

    PubMed

    Chantarapanich, Nattapon; Sitthiseripratip, Kriskrai; Mahaisavariya, Banchong; Wongcumchang, Marut; Siribodhi, Pongwit

    2008-09-01

    Investigate the 2D/3D geometry of femoral curvature and femoral length using the advanced technique of computerized tomography combined with reverse engineering techniques. The present study was performed using reverse engineering technique based on CT data of 99 cadaveric femora. The femur was divided into three segments, proximal, mid-shaft, and distal regions by defining 35% and 65% of the femoral total length as a boundary of each region. The intramedullary canal in the mid-shaft region was mainly extracted to determine the set of circular center, which could consequence to approximate the 3D femoral radius of curvature using the 3D least square best fit. The 3D femoral curvature was then projected into A-P and M-L directions to investigate the correlation of 2D/3D femoral curvature as normal radiographic images. It was found that the average 3D Thai femoral curvature was 895.46-mm (SD = 238.06) and the average femoral total length is 421.96-mm (SD = 27.61). In addition, the 2D femoral curvature derived from sagittal radiographic image can be used to determine the 3D femoral curvature with this equation: R3D = RSagittal + 3.67 with r = 0.987. This described technique is a non-destructive method that can effectively assess the internal/ external 3D geometric data of the femur The obtained data is useful to develop a proper design of prosthesis that required inserting into the intramedullary canal. From the present study, it can be concluded that the 2DSagittal femoral curvature derived from standard radiographic image can be represented for the 3D femoral curvature.

  5. Artificial intelligence approaches to software engineering

    NASA Technical Reports Server (NTRS)

    Johannes, James D.; Macdonald, James R.

    1988-01-01

    Artificial intelligence approaches to software engineering are examined. The software development life cycle is a sequence of not so well-defined phases. Improved techniques for developing systems have been formulated over the past 15 years, but pressure continues to attempt to reduce current costs. Software development technology seems to be standing still. The primary objective of the knowledge-based approach to software development presented in this paper is to avoid problem areas that lead to schedule slippages, cost overruns, or software products that fall short of their desired goals. Identifying and resolving software problems early, often in the phase in which they first occur, has been shown to contribute significantly to reducing risks in software development. Software development is not a mechanical process but a basic human activity. It requires clear thinking, work, and rework to be successful. The artificial intelligence approaches to software engineering presented support the software development life cycle through the use of software development techniques and methodologies in terms of changing current practices and methods. These should be replaced by better techniques that that improve the process of of software development and the quality of the resulting products. The software development process can be structured into well-defined steps, of which the interfaces are standardized, supported and checked by automated procedures that provide error detection, production of the documentation and ultimately support the actual design of complex programs.

  6. Shielding requirements for the Space Station habitability modules

    NASA Technical Reports Server (NTRS)

    Avans, Sherman L.; Horn, Jennifer R.; Williamsen, Joel E.

    1990-01-01

    The design, analysis, development, and tests of the total meteoroid/debris protection system for the Space Station Freedom habitability modules, such as the habitation module, the laboratory module, and the node structures, are described. Design requirements are discussed along with development efforts, including a combination of hypervelocity testing and analyses. Computer hydrocode analysis of hypervelocity impact phenomena associated with Space Station habitability structures is covered and the use of optimization techniques, engineering models, and parametric analyses is assessed. Explosive rail gun development efforts and protective capability and damage tolerance of multilayer insulation due to meteoroid/debris impact are considered. It is concluded that anticipated changes in the debris environment definition and requirements will require rescoping the tests and analysis required to develop a protection system.

  7. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    DTIC Science & Technology

    2016-09-01

    AFRL-RQ-WP-TR-2016-0131 DEMONSTRATION OF NOVEL SAMPLING TECHNIQUES FOR MEASUREMENT OF TURBINE ENGINE VOLATILE AND NON-VOLATILE PARTICULATE...MATTER (PM) EMISSIONS Edwin Corporan Fuels and Energy Branch Turbine Engine Division Matthew DeWitt and Chris Klingshirn University of...Energy Branch Turbine Engine Division Turbine Engine Division Aerospace Systems Directorate //Signature// CHARLES W. STEVENS Lead Engineer

  8. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This handbook is intended to provide general guidance and information on systems engineering that will be useful to the NASA community. It provides a generic description of Systems Engineering (SE) as it should be applied throughout NASA. A goal of the handbook is to increase awareness and consistency across the Agency and advance the practice of SE. This handbook provides perspectives relevant to NASA and data particular to NASA. The coverage in this handbook is limited to general concepts and generic descriptions of processes, tools, and techniques. It provides information on systems engineering best practices and pitfalls to avoid. There are many Center-specific handbooks and directives as well as textbooks that can be consulted for in-depth tutorials. This handbook describes systems engineering as it should be applied to the development and implementation of large and small NASA programs and projects. NASA has defined different life cycles that specifically address the major project categories, or product lines, which are: Flight Systems and Ground Support (FS&GS), Research and Technology (R&T), Construction of Facilities (CoF), and Environmental Compliance and Restoration (ECR). The technical content of the handbook provides systems engineering best practices that should be incorporated into all NASA product lines. (Check the NASA On-Line Directives Information System (NODIS) electronic document library for applicable NASA directives on topics such as product lines.) For simplicity this handbook uses the FS&GS product line as an example. The specifics of FS&GS can be seen in the description of the life cycle and the details of the milestone reviews. Each product line will vary in these two areas; therefore, the reader should refer to the applicable NASA procedural requirements for the specific requirements for their life cycle and reviews. The engineering of NASA systems requires a systematic and disciplined set of processes that are applied recursively and iteratively for the design, development, operation, maintenance, and closeout of systems throughout the life cycle of the programs and projects.

  9. An overview of inverted colloidal crystal systems for tissue engineering.

    PubMed

    João, Carlos Filipe C; Vasconcelos, Joana Marta; Silva, Jorge Carvalho; Borges, João Paulo

    2014-10-01

    Scaffolding is at the heart of tissue engineering but the number of techniques available for turning biomaterials into scaffolds displaying the features required for a tissue engineering application is somewhat limited. Inverted colloidal crystals (ICCs) are inverse replicas of an ordered array of monodisperse colloidal particles, which organize themselves in packed long-range crystals. The literature on ICC systems has grown enormously in the past 20 years, driven by the need to find organized macroporous structures. Although replicating the structure of packed colloidal crystals (CCs) into solid structures has produced a wide range of advanced materials (e.g., photonic crystals, catalysts, and membranes) only in recent years have ICCs been evaluated as devices for medical/pharmaceutical and tissue engineering applications. The geometry, size, pore density, and interconnectivity are features of the scaffold that strongly affect the cell environment with consequences on cell adhesion, proliferation, and differentiation. ICC scaffolds are highly geometrically ordered structures with increased porosity and connectivity, which enhances oxygen and nutrient diffusion, providing optimum cellular development. In comparison to other types of scaffolds, ICCs have three major unique features: the isotropic three-dimensional environment, comprising highly uniform and size-controllable pores, and the presence of windows connecting adjacent pores. Thus far, this is the only technique that guarantees these features with a long-range order, between a few nanometers and thousands of micrometers. In this review, we present the current development status of ICC scaffolds for tissue engineering applications.

  10. Linking mathematics with engineering applications at an early stage - implementation, experimental set-up and evaluation of a pilot project

    NASA Astrophysics Data System (ADS)

    Rooch, Aeneas; Junker, Philipp; Härterich, Jörg; Hackl, Klaus

    2016-03-01

    Too difficult, too abstract, too theoretical - many first-year engineering students complain about their mathematics courses. The project MathePraxis aims to resolve this disaffection. It links mathematical methods as they are taught in the first semesters with practical problems from engineering applications - and thereby shall give first-year engineering students a vivid and convincing impression of where they will need mathematics in their later working life. But since real applications usually require more than basic mathematics and first-year engineering students typically are not experienced with construction, mensuration and the use of engineering software, such an approach is hard to realise. In this article, we show that it is possible. We report on the implementation of MathePraxis at Ruhr-Universität Bochum. We describe the set-up and the implementation of a course on designing a mass damper which combines basic mathematical techniques with an impressive experiment. In an accompanying evaluation, we have examined the students' motivation relating to mathematics. This opens up new perspectives how to address the need for a more practically oriented mathematical education in engineering sciences.

  11. Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method

    PubMed Central

    Chen, Jinglong; Wang, Yu; He, Zhengjia; Wang, Xiaodong

    2015-01-01

    The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments. PMID:26512668

  12. Modeling and Hazard Analysis Using STPA

    NASA Astrophysics Data System (ADS)

    Ishimatsu, Takuto; Leveson, Nancy; Thomas, John; Katahira, Masa; Miyamoto, Yuko; Nakao, Haruka

    2010-09-01

    A joint research project between MIT and JAXA/JAMSS is investigating the application of a new hazard analysis to the system and software in the HTV. Traditional hazard analysis focuses on component failures but software does not fail in this way. Software most often contributes to accidents by commanding the spacecraft into an unsafe state(e.g., turning off the descent engines prematurely) or by not issuing required commands. That makes the standard hazard analysis techniques of limited usefulness on software-intensive systems, which describes most spacecraft built today. STPA is a new hazard analysis technique based on systems theory rather than reliability theory. It treats safety as a control problem rather than a failure problem. The goal of STPA, which is to create a set of scenarios that can lead to a hazard, is the same as FTA but STPA includes a broader set of potential scenarios including those in which no failures occur but the problems arise due to unsafe and unintended interactions among the system components. STPA also provides more guidance to the analysts that traditional fault tree analysis. Functional control diagrams are used to guide the analysis. In addition, JAXA uses a model-based system engineering development environment(created originally by Leveson and called SpecTRM) which also assists in the hazard analysis. One of the advantages of STPA is that it can be applied early in the system engineering and development process in a safety-driven design process where hazard analysis drives the design decisions rather than waiting until reviews identify problems that are then costly or difficult to fix. It can also be applied in an after-the-fact analysis and hazard assessment, which is what we did in this case study. This paper describes the experimental application of STPA to the JAXA HTV in order to determine the feasibility and usefulness of the new hazard analysis technique. Because the HTV was originally developed using fault tree analysis and following the NASA standards for safety-critical systems, the results of our experimental application of STPA can be compared with these more traditional safety engineering approaches in terms of the problems identified and the resources required to use it.

  13. Effect of Cold Temperature on the Dielectric Constant of Soil

    DTIC Science & Technology

    2012-04-01

    explosive device (IED) threats is ground-penetrating radar ( GPR ). Proper development of GPR technology for this application requires a unique...success or failure of GPR as a detection technique. One soil property of interest to radar engineers is the dielectric constant. Previous...results to temperatures, moisture levels, and frequencies relevant to GPR systems. 2. Dielectric Constant and the Ring-resonator Concept The two

  14. Neural network architectures to analyze OPAD data

    NASA Technical Reports Server (NTRS)

    Whitaker, Kevin W.

    1992-01-01

    A prototype Optical Plume Anomaly Detection (OPAD) system is now installed on the space shuttle main engine (SSME) Technology Test Bed (TTB) at MSFC. The OPAD system requirements dictate the need for fast, efficient data processing techniques. To address this need of the OPAD system, a study was conducted into how artificial neural networks could be used to assist in the analysis of plume spectral data.

  15. Foreign Outsourcing of the U.S. Electronics Industry

    DTIC Science & Technology

    1993-04-01

    There is also great concern over the success of Japan and the "Asian Tigers" (Hong Kong, Korea, Malaysia , Singapore, and Taiwan) in capturing market share...Quality Management), JIT (Just In Time) inventory, MRP (Manufacturing Resources Planning), BPR (Business Process Reengineering), and EI ( Employee ...planning, business process re-engineering, employee empowering, just to name a few. All these techniques look to address the requirement to remain

  16. Sensitivity Analysis and Mitigation with Applications to Ballistic and Low-thrust Trajectory Design

    NASA Astrophysics Data System (ADS)

    Alizadeh, Iman

    The ever increasing desire to expand space mission capabilities within the limited budgets of space industries requires new approaches to the old problem of spacecraft trajectory design. For example, recent initiatives for space exploration involve developing new tools to design low-cost, fail-safe trajectories to visit several potential destinations beyond our celestial neighborhood such as Jupiter's moons, asteroids, etc. Designing and navigating spacecraft trajectories to reach these destinations safely are complex and challenging. In particular, fundamental questions of orbital stability imposed by planetary protection requirements are not easily taken into account by standard optimal control schemes. The event of temporary engine loss or an unexpected missed thrust can indeed quickly lead to impact with planetary bodies or other unrecoverable trajectories. While electric propulsion technology provides superior efficiency compared to chemical engines, the very low-control authority and engine performance degradation can impose higher risk to the mission in strongly perturbed orbital environments. The risk is due to the complex gravitational field and its associated chaotic dynamics which causes large navigation dispersions in a short time if left un-controlled. Moreover, in these situations it can be outside the low-thrust propulsion system capability to correct the spacecraft trajectory in a reasonable time frame. These concerns can lead to complete or partial mission failure or even an infeasible mission concept at the early design stage. The goal of this research is to assess and increase orbital stability of ballistic and low-thrust transfer trajectories in multi-body systems. In particular, novel techniques are presented to characterize sensitivity and improve recovery characteristics of ballistic and low-thrust trajectories in unstable orbital environments. The techniques developed are based on perturbation analysis around ballistic trajectories to determine analytically the maximum divergence directions and also optimal control theory with nonstandard cost functions along with inverse dynamics applied to low-thrust trajectories. Several mission scenarios are shown to demonstrate the applicability of the techniques in the Earth-Moon and the Jupiter-Europa system. In addition, the results provide fundamental insight into design, stability analysis and guidance, navigation and control of low-thrust trajectories to meet challenging mission requirements in support of NASA's vision for space exploration.

  17. Patterning via optical saturable transitions

    NASA Astrophysics Data System (ADS)

    Cantu, Precious

    For the past 40 years, optical lithography has been the patterning workhorse for the semiconductor industry. However, as integrated circuits have become more and more complex, and as device geometries shrink, more innovative methods are required to meet these needs. In the far-field, the smallest feature that can be generated with light is limited to approximately half the wavelength. This, so called far-field diffraction limit or the Abbe limit (after Prof. Ernst Abbe who first recognized this), effectively prevents the use of long-wavelength photons >300nm from patterning nanostructures <100nm. Even with a 193nm laser source and extremely complicated processing, patterns below ˜20nm are incredibly challenging to create. Sources with even shorter wavelengths can potentially be used. However, these tend be much more expensive and of much lower brightness, which in turn limits their patterning speed. Multi-photon reactions have been proposed to overcome the diffraction limit. However, these require very large intensities for modest gain in resolution. Moreover, the large intensities make it difficult to parallelize, thus limiting the patterning speed. In this dissertation, a novel nanopatterning technique using wavelength-selective small molecules that undergo single-photon reactions, enabling rapid top-down nanopatterning over large areas at low-light intensities, thereby allowing for the circumvention of the far-field diffraction barrier is developed and experimentally verified. This approach, which I refer to as Patterning via Optical Saturable Transitions (POST) has the potential for massive parallelism, enabling the creation of nanostructures and devices at a speed far surpassing what is currently possible with conventional optical lithographic techniques. The fundamental understanding of this technique goes beyond optical lithography in the semiconductor industry and is applicable to any area that requires the rapid patterning of large-area two or three-dimensional complex geometries. At a basic level, this research intertwines the fields of electrochemistry, material science, electrical engineering, optics, physics, and mechanical engineering with the goal of developing a novel super-resolution lithographic technique.

  18. 3D-Printed Microfluidic Automation

    PubMed Central

    Au, Anthony K.; Bhattacharjee, Nirveek; Horowitz, Lisa F.; Chang, Tim C.; Folch, Albert

    2015-01-01

    Microfluidic automation – the automated routing, dispensing, mixing, and/or separation of fluids through microchannels – generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology’s use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer. PMID:25738695

  19. The Effect of Gravity on the Combustion Synthesis of Porous Biomaterials

    NASA Technical Reports Server (NTRS)

    Castillo, M.; Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.

    2003-01-01

    Production of highly porous composite materials by traditional materials processing is limited by difficult processing techniques. This work investigates the use of self propagating high temperature (combustion) synthesis (SHS) to create porous tricalcium phosphate (Ca3(PO4)2), TiB-Ti, and NiTi in low and microgravity. Combustion synthesis provides the ability to use set processing parameters to engineer the required porous structure suitable for bone repair or replacement. The processing parameters include green density, particle size, gasifying agents, composition, and gravity. The advantage of the TiB-Ti system is the high level of porosity achieved together with a modulus that can be controlled by both composition (TiB-Ti) and porosity. At the same time, NiTi exhibits shape memory properties. SHS of biomaterials allows the engineering of required porosity coupled with resorbtion properties and specific mechanical properties into the composite materials to allow for a better biomaterial.

  20. 46 CFR 11.502 - Additional requirements for engineer endorsements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Additional requirements for engineer endorsements. 11... SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.502 Additional requirements for engineer endorsements. (a) For all original and raise of grade of engineer...

  1. 46 CFR 11.502 - Additional requirements for engineer endorsements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Additional requirements for engineer endorsements. 11... SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.502 Additional requirements for engineer endorsements. (a) For all original and raise of grade of engineer...

  2. 46 CFR 11.502 - Additional requirements for engineer endorsements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Additional requirements for engineer endorsements. 11... SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.502 Additional requirements for engineer endorsements. (a) For all original and raise of grade of engineer...

  3. 46 CFR 11.502 - Additional requirements for engineer endorsements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Additional requirements for engineer endorsements. 11... SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.502 Additional requirements for engineer endorsements. (a) For all original and raise of grade of engineer...

  4. Design optimum frac jobs using virtual intelligence techniques

    NASA Astrophysics Data System (ADS)

    Mohaghegh, Shahab; Popa, Andrei; Ameri, Sam

    2000-10-01

    Designing optimal frac jobs is a complex and time-consuming process. It usually involves the use of a two- or three-dimensional computer model. For the computer models to perform as intended, a wealth of input data is required. The input data includes wellbore configuration and reservoir characteristics such as porosity, permeability, stress and thickness profiles of the pay layers as well as the overburden layers. Among other essential information required for the design process is fracturing fluid type and volume, proppant type and volume, injection rate, proppant concentration and frac job schedule. Some of the parameters such as fluid and proppant types have discrete possible choices. Other parameters such as fluid and proppant volume, on the other hand, assume values from within a range of minimum and maximum values. A potential frac design for a particular pay zone is a combination of all of these parameters. Finding the optimum combination is not a trivial process. It usually requires an experienced engineer and a considerable amount of time to tune the parameters in order to achieve desirable outcome. This paper introduces a new methodology that integrates two virtual intelligence techniques, namely, artificial neural networks and genetic algorithms to automate and simplify the optimum frac job design process. This methodology requires little input from the engineer beyond the reservoir characterizations and wellbore configuration. The software tool that has been developed based on this methodology uses the reservoir characteristics and an optimization criteria indicated by the engineer, for example a certain propped frac length, and provides the detail of the optimum frac design that will result in the specified criteria. An ensemble of neural networks is trained to mimic the two- or three-dimensional frac simulator. Once successfully trained, these networks are capable of providing instantaneous results in response to any set of input parameters. These networks will be used as the fitness function for a genetic algorithm routine that will search for the best combination of the design parameters for the frac job. The genetic algorithm will search through the entire solution space and identify the optimal combination of parameters to be used in the design process. Considering the complexity of this task this methodology converges relatively fast, providing the engineer with several near-optimum scenarios for the frac job design. These scenarios, which can be achieved in just a minute or two, can be valuable initial points for the engineer to start his/her design job and save him/her hours of runs on the simulator.

  5. Improvements in algal lipid production: a systems biology and gene editing approach.

    PubMed

    Banerjee, Avik; Banerjee, Chiranjib; Negi, Sangeeta; Chang, Jo-Shu; Shukla, Pratyoosh

    2018-05-01

    In the wake of rising energy demands, microalgae have emerged as potential sources of sustainable and renewable carbon-neutral fuels, such as bio-hydrogen and bio-oil. For rational metabolic engineering, the elucidation of metabolic pathways in fine detail and their manipulation according to requirements is the key to exploiting the use of microalgae. Emergence of site-specific nucleases have revolutionized applied research leading to biotechnological gains. Genome engineering as well as modulation of the endogenous genome with high precision using CRISPR systems is being gradually employed in microalgal research. Further, to optimize and produce better algal platforms, use of systems biology network analysis and integration of omics data is required. This review discusses two important approaches: systems biology and gene editing strategies used on microalgal systems with a focus on biofuel production and sustainable solutions. It also emphasizes that the integration of such systems would contribute and compliment applied research on microalgae. Recent advances in microalgae are discussed, including systems biology, gene editing approaches in lipid bio-synthesis, and antenna engineering. Lastly, it has been attempted here to showcase how CRISPR/Cas systems are a better editing tool than existing techniques that can be utilized for gene modulation and engineering during biofuel production.

  6. Development of a Noninterference Technique for Measurement of Turbine Engine Compressor Blade Stress

    DTIC Science & Technology

    1980-06-01

    TECHNIQUE FOR MEASUREMENT OF TURBINE ENGINE COMPRESSOR BLADE STRESS 7 A U T H O R ( s ) P . E. M c C a r t y a n d J . W. Thompson , J r...e a e a ~ and tdentJ~ by b|ock numbe~ A noninterference technique for measuring stress in compressor blades of turbine engines is being developed...43 4 AEDC-TR-79-78 1.0 INTRODUCTION 1.1 BACKGROUND Compressor rotor blades in turbojet engines are subjected to

  7. Numerical Propulsion System Simulation: An Overview

    NASA Technical Reports Server (NTRS)

    Lytle, John K.

    2000-01-01

    The cost of implementing new technology in aerospace propulsion systems is becoming prohibitively expensive and time consuming. One of the main contributors to the high cost and lengthy time is the need to perform many large-scale hardware tests and the inability to integrate all appropriate subsystems early in the design process. The NASA Glenn Research Center is developing the technologies required to enable simulations of full aerospace propulsion systems in sufficient detail to resolve critical design issues early in the design process before hardware is built. This concept, called the Numerical Propulsion System Simulation (NPSS), is focused on the integration of multiple disciplines such as aerodynamics, structures and heat transfer with computing and communication technologies to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS, as illustrated, is to be a "numerical test cell" that enables full engine simulation overnight on cost-effective computing platforms. There are several key elements within NPSS that are required to achieve this capability: 1) clear data interfaces through the development and/or use of data exchange standards, 2) modular and flexible program construction through the use of object-oriented programming, 3) integrated multiple fidelity analysis (zooming) techniques that capture the appropriate physics at the appropriate fidelity for the engine systems, 4) multidisciplinary coupling techniques and finally 5) high performance parallel and distributed computing. The current state of development in these five area focuses on air breathing gas turbine engines and is reported in this paper. However, many of the technologies are generic and can be readily applied to rocket based systems and combined cycles currently being considered for low-cost access-to-space applications. Recent accomplishments include: (1) the development of an industry-standard engine cycle analysis program and plug 'n play architecture, called NPSS Version 1, (2) A full engine simulation that combines a 3D low-pressure subsystem with a 0D high pressure core simulation. This demonstrates the ability to integrate analyses at different levels of detail and to aerodynamically couple components, the fan/booster and low-pressure turbine, through a 3D computational fluid dynamics simulation. (3) Simulation of all of the turbomachinery in a modern turbofan engine on parallel computing platform for rapid and cost-effective execution. This capability can also be used to generate full compressor map, requiring both design and off-design simulation. (4) Three levels of coupling characterize the multidisciplinary analysis under NPSS: loosely coupled, process coupled and tightly coupled. The loosely coupled and process coupled approaches require a common geometry definition to link CAD to analysis tools. The tightly coupled approach is currently validating the use of arbitrary Lagrangian/Eulerian formulation for rotating turbomachinery. The validation includes both centrifugal and axial compression systems. The results of the validation will be reported in the paper. (5) The demonstration of significant computing cost/performance reduction for turbine engine applications using PC clusters. The NPSS Project is supported under the NASA High Performance Computing and Communications Program.

  8. High-rate RTK and PPP multi-GNSS positioning for small-scale dynamic displacements monitoring

    NASA Astrophysics Data System (ADS)

    Paziewski, Jacek; Sieradzki, Rafał; Baryła, Radosław; Wielgosz, Pawel

    2017-04-01

    The monitoring of dynamic displacements and deformations of engineering structures such as buildings, towers and bridges is of great interest due to several practical and theoretical reasons. The most important is to provide information required for safe maintenance of the constructions. High temporal resolution and precision of GNSS observations predestine this technology to be applied to most demanding application in terms of accuracy, availability and reliability. GNSS technique supported by appropriate processing methodology may meet the specific demands and requirements of ground and structures monitoring. Thus, high-rate multi-GNSS signals may be used as reliable source of information on dynamic displacements of ground and engineering structures, also in real time applications. In this study we present initial results of application of precise relative GNSS positioning for detection of small scale (cm level) high temporal resolution dynamic displacements. Methodology and algorithms applied in self-developed software allowing for relative positioning using high-rate dual-frequency phase and pseudorange GPS+Galileo observations are also given. Additionally, an approach was also made to use the Precise Point Positioning technique to such application. In the experiment were used the observations obtained from high-rate (20 Hz) geodetic receivers. The dynamic displacements were simulated using specially constructed device moving GNSS antenna with dedicated amplitude and frequency. The obtained results indicate on possibility of detection of dynamic displacements of the GNSS antenna even at the level of few millimetres using both relative and Precise Point Positioning techniques after suitable signals processing.

  9. Modeling operators' emergency response time for chemical processing operations.

    PubMed

    Murray, Susan L; Harputlu, Emrah; Mentzer, Ray A; Mannan, M Sam

    2014-01-01

    Operators have a crucial role during emergencies at a variety of facilities such as chemical processing plants. When an abnormality occurs in the production process, the operator often has limited time to either take corrective actions or evacuate before the situation becomes deadly. It is crucial that system designers and safety professionals can estimate the time required for a response before procedures and facilities are designed and operations are initiated. There are existing industrial engineering techniques to establish time standards for tasks performed at a normal working pace. However, it is reasonable to expect the time required to take action in emergency situations will be different than working at a normal production pace. It is possible that in an emergency, operators will act faster compared to a normal pace. It would be useful for system designers to be able to establish a time range for operators' response times for emergency situations. This article develops a modeling approach to estimate the time standard range for operators taking corrective actions or following evacuation procedures in emergency situations. This will aid engineers and managers in establishing time requirements for operators in emergency situations. The methodology used for this study combines a well-established industrial engineering technique for determining time requirements (predetermined time standard system) and adjustment coefficients for emergency situations developed by the authors. Numerous videos of workers performing well-established tasks at a maximum pace were studied. As an example, one of the tasks analyzed was pit crew workers changing tires as quickly as they could during a race. The operations in these videos were decomposed into basic, fundamental motions (such as walking, reaching for a tool, and bending over) by studying the videos frame by frame. A comparison analysis was then performed between the emergency pace and the normal working pace operations to determine performance coefficients. These coefficients represent the decrease in time required for various basic motions in emergency situations and were used to model an emergency response. This approach will make hazardous operations requiring operator response, alarm management, and evacuation processes easier to design and predict. An application of this methodology is included in the article. The time required for an emergency response was roughly a one-third faster than for a normal response time.

  10. Status review of NASA programs for reducing aircraft gas turbine engine emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    Programs initiated by NASA to develop and demonstrate low emission advanced technology combustors for reducing aircraft gas turbine engine pollution are reviewed. Program goals are consistent with urban emission level requirements as specified by the U. S. Environmental Protection Agency and with upper atmosphere cruise emission levels as recommended by the U. S. Climatic Impact Assessment Program and National Research Council. Preliminary tests of advanced technology combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft gas turbine engines without adverse effects on fuel consumption. Preliminary test results from fundamental studies indicate that extremely low emission combustion systems may be possible for future generation jet aircraft. The emission reduction techniques currently being evaluated in these programs are described along with the results and a qualitative assessment of development difficulty.

  11. Engineering designer transcription activator-like effector nucleases (TALENs) by REAL or REAL-Fast assembly.

    PubMed

    Reyon, Deepak; Khayter, Cyd; Regan, Maureen R; Joung, J Keith; Sander, Jeffry D

    2012-10-01

    Engineered transcription activator-like effector nucleases (TALENs) are broadly useful tools for performing targeted genome editing in a wide variety of organisms and cell types including plants, zebrafish, C. elegans, rat, human somatic cells, and human pluripotent stem cells. Here we describe detailed protocols for the serial, hierarchical assembly of TALENs that require neither PCR nor specialized multi-fragment ligations and that can be implemented by any laboratory. These restriction enzyme and ligation (REAL)-based protocols can be practiced using plasmid libraries and user-friendly, Web-based software that both identifies target sites in sequences of interest and generates printable graphical guides that facilitate assembly of TALENs. With the described platform of reagents, protocols, and software, researchers can easily engineer multiple TALENs within 2 weeks using standard cloning techniques. 2012 by John Wiley & Sons, Inc.

  12. Variable aperture-based ptychographical iterative engine method

    NASA Astrophysics Data System (ADS)

    Sun, Aihui; Kong, Yan; Meng, Xin; He, Xiaoliang; Du, Ruijun; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng

    2018-02-01

    A variable aperture-based ptychographical iterative engine (vaPIE) is demonstrated both numerically and experimentally to reconstruct the sample phase and amplitude rapidly. By adjusting the size of a tiny aperture under the illumination of a parallel light beam to change the illumination on the sample step by step and recording the corresponding diffraction patterns sequentially, both the sample phase and amplitude can be faithfully reconstructed with a modified ptychographical iterative engine (PIE) algorithm. Since many fewer diffraction patterns are required than in common PIE and the shape, the size, and the position of the aperture need not to be known exactly, this proposed vaPIE method remarkably reduces the data acquisition time and makes PIE less dependent on the mechanical accuracy of the translation stage; therefore, the proposed technique can be potentially applied for various scientific researches.

  13. Prototyping of Remote Experiment and Exercise Systems for an Engineering Education based on World Wide Web

    NASA Astrophysics Data System (ADS)

    Iwatsuki, Masami; Kato, Yoriyuki; Yonekawa, Akira

    State-of-the-art Internet technologies allow us to provide advanced and interactive distance education services. However, we could not help but gather students for experiments and exercises in an education for engineering because large-scale equipments and expensive software are required. On the other hand, teleoperation systems with robot manipulator or vehicle via Internet have been developed in the field of robotics. By fusing these two techniques, we can realize remote experiment and exercise systems for the engineering education based on World Wide Web. This paper presents how to construct the remote environment that allows students to take courses on experiment and exercise independently of their locations. By using the proposed system, users can exercise and practice remotely about control of a manipulator and a robot vehicle and programming of image processing.

  14. A Literature Review of Indexing and Searching Techniques Implementation in Educational Search Engines

    ERIC Educational Resources Information Center

    El Guemmat, Kamal; Ouahabi, Sara

    2018-01-01

    The objective of this article is to analyze the searching and indexing techniques of educational search engines' implementation while treating future challenges. Educational search engines could greatly help in the effectiveness of e-learning if used correctly. However, these engines have several gaps which influence the performance of e-learning…

  15. Closed Loop Requirements and Analysis Management

    NASA Technical Reports Server (NTRS)

    Lamoreaux, Michael; Verhoef, Brett

    2015-01-01

    Effective systems engineering involves the use of analysis in the derivation of requirements and verification of designs against those requirements. The initial development of requirements often depends on analysis for the technical definition of specific aspects of a product. Following the allocation of system-level requirements to a product's components, the closure of those requirements often involves analytical approaches to verify that the requirement criteria have been satisfied. Meanwhile, changes that occur in between these two processes need to be managed in order to achieve a closed-loop requirement derivation/verification process. Herein are presented concepts for employing emerging Team center capabilities to jointly manage requirements and analysis data such that analytical techniques are utilized to effectively derive and allocate requirements, analyses are consulted and updated during the change evaluation processes, and analyses are leveraged during the design verification process. Recommendations on concept validation case studies are also discussed.

  16. User modeling techniques for enhanced usability of OPSMODEL operations simulation software

    NASA Technical Reports Server (NTRS)

    Davis, William T.

    1991-01-01

    The PC based OPSMODEL operations software for modeling and simulation of space station crew activities supports engineering and cost analyses and operations planning. Using top-down modeling, the level of detail required in the data base can be limited to being commensurate with the results required of any particular analysis. To perform a simulation, a resource environment consisting of locations, crew definition, equipment, and consumables is first defined. Activities to be simulated are then defined as operations and scheduled as desired. These operations are defined within a 1000 level priority structure. The simulation on OPSMODEL, then, consists of the following: user defined, user scheduled operations executing within an environment of user defined resource and priority constraints. Techniques for prioritizing operations to realistically model a representative daily scenario of on-orbit space station crew activities are discussed. The large number of priority levels allows priorities to be assigned commensurate with the detail necessary for a given simulation. Several techniques for realistic modeling of day-to-day work carryover are also addressed.

  17. A real time Pegasus propulsion system model for VSTOL piloted simulation evaluation

    NASA Technical Reports Server (NTRS)

    Mihaloew, J. R.; Roth, S. P.; Creekmore, R.

    1981-01-01

    A real time propulsion system modeling technique suitable for use in man-in-the-loop simulator studies was developd. This technique provides the system accuracy, stability, and transient response required for integrated aircraft and propulsion control system studies. A Pegasus-Harrier propulsion system was selected as a baseline for developing mathematical modeling and simulation techniques for VSTOL. Initially, static and dynamic propulsion system characteristics were modeled in detail to form a nonlinear aerothermodynamic digital computer simulation of a Pegasus engine. From this high fidelity simulation, a real time propulsion model was formulated by applying a piece-wise linear state variable methodology. A hydromechanical and water injection control system was also simulated. The real time dynamic model includes the detail and flexibility required for the evaluation of critical control parameters and propulsion component limits over a limited flight envelope. The model was programmed for interfacing with a Harrier aircraft simulation. Typical propulsion system simulation results are presented.

  18. System Engineering on the Use for Ares I,V - the Simpler, the Better

    NASA Technical Reports Server (NTRS)

    Kelly, William; Greene, William D.; Greasley, Paul; Ackerman, Peter C.

    2008-01-01

    The Ares I and Ares V Vehicles will utilize the J-2X rocket engine developed for NASA by the Pratt & Whitney Rocketdyne Company. The J-2X is an improved higher power version of the original J-2 engine used during the Apollo program. With higher power and updated requirements for safety and performance, the J-2X becomes a new engine using state-of-the-art design methodology, materials and manufacturing processes. The implementation of Systems Engineering (SE) principles enables the rapid J-2X development program to remain aligned with the ARES I and V vehicle programs, Meeting the aggressive development schedule is a challenge. Coordinating the best expertise thai NASA and PWR have to offer requires effectively utilizing resources at multiple sites. This presents formidable communication challenges. SE allows honest and open discussions of issues and problems. This simple idea is often overlooked in large and complex SE programs. Regular and effective meetings linking SE objectives to component designs are used to voice differences of opinions with customer and contractor in attendance so that the best mutual decisions can be made on the shortest possible schedule. Regular technical interchange meetings on secure program wide computer networks and CM processes are effective,in the "Controlled Change" process that exemplifies good SE. Good communication is a key effective SE implementation. The System of Systems approach is the vision of the Orion program which facilitates the establishment of dynamic SE processes at all levels including the engine. SE enables requirements evolution by facilitating organizational and process agility. Flow down and distribution of requirements is controlled by Allocation Reports which breakdown numerical design objectives (weight, reliability, etc.) into quanta goals for each component area. Linked databases of design and verification requirements helps eliminate redundancy and potential mistakes inherent m separated systems. Another tool, the Architecture Design Description, is being used to control J-2X system architecture and effectively communicate configuration changes to those involved in the design process. But the proof is in successful program accomplishment. The SE is the methodology being used to meet the challenge of completing J-2X engine certification 2 years ahead of any engine program ever developed at PWR. The Ares I SE system of systems has delivered according to expectations thus far. All major design reviews (SRR. PDR, CDR) have been successfully conducted to satisfy overall program objectives using SE as the basis for accomplishment. The paper describes SE tools and techniques utilized to achieve this success.

  19. System engineering approach to GPM retrieval algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, C. R.; Chandrasekar, V.

    2004-01-01

    System engineering principles and methods are very useful in large-scale complex systems for developing the engineering requirements from end-user needs. Integrating research into system engineering is a challenging task. The proposed Global Precipitation Mission (GPM) satellite will use a dual-wavelength precipitation radar to measure and map global precipitation with unprecedented accuracy, resolution and areal coverage. The satellite vehicle, precipitation radars, retrieval algorithms, and ground validation (GV) functions are all critical subsystems of the overall GPM system and each contributes to the success of the mission. Errors in the radar measurements and models can adversely affect the retrieved output values. Groundmore » validation (GV) systems are intended to provide timely feedback to the satellite and retrieval algorithms based on measured data. These GV sites will consist of radars and DSD measurement systems and also have intrinsic constraints. One of the retrieval algorithms being studied for use with GPM is the dual-wavelength DSD algorithm that does not use the surface reference technique (SRT). The underlying microphysics of precipitation structures and drop-size distributions (DSDs) dictate the types of models and retrieval algorithms that can be used to estimate precipitation. Many types of dual-wavelength algorithms have been studied. Meneghini (2002) analyzed the performance of single-pass dual-wavelength surface-reference-technique (SRT) based algorithms. Mardiana (2003) demonstrated that a dual-wavelength retrieval algorithm could be successfully used without the use of the SRT. It uses an iterative approach based on measured reflectivities at both wavelengths and complex microphysical models to estimate both No and Do at each range bin. More recently, Liao (2004) proposed a solution to the Do ambiguity problem in rain within the dual-wavelength algorithm and showed a possible melting layer model based on stratified spheres. With the No and Do calculated at each bin, the rain rate can then be calculated based on a suitable rain-rate model. This paper develops a system engineering interface to the retrieval algorithms while remaining cognizant of system engineering issues so that it can be used to bridge the divide between algorithm physics an d overall mission requirements. Additionally, in line with the systems approach, a methodology is developed such that the measurement requirements pass through the retrieval model and other subsystems and manifest themselves as measurement and other system constraints. A systems model has been developed for the retrieval algorithm that can be evaluated through system-analysis tools such as MATLAB/Simulink.« less

  20. Structural Modeling Using "Scanning and Mapping" Technique

    NASA Technical Reports Server (NTRS)

    Amos, Courtney L.; Dash, Gerald S.; Shen, J. Y.; Ferguson, Frederick; Noga, Donald F. (Technical Monitor)

    2000-01-01

    Supported by NASA Glenn Center, we are in the process developing a structural damage diagnostic and monitoring system for rocket engines, which consists of five modules: Structural Modeling, Measurement Data Pre-Processor, Structural System Identification, Damage Detection Criterion, and Computer Visualization. The function of the system is to detect damage as it is incurred by the engine structures. The scientific principle to identify damage is to utilize the changes in the vibrational properties between the pre-damaged and post-damaged structures. The vibrational properties of the pre-damaged structure can be obtained based on an analytic computer model of the structure. Thus, as the first stage of the whole research plan, we currently focus on the first module - Structural Modeling. Three computer software packages are selected, and will be integrated for this purpose. They are PhotoModeler-Pro, AutoCAD-R14, and MSC/NASTRAN. AutoCAD is the most popular PC-CAD system currently available in the market. For our purpose, it plays like an interface to generate structural models of any particular engine parts or assembly, which is then passed to MSC/NASTRAN for extracting structural dynamic properties. Although AutoCAD is a powerful structural modeling tool, the complexity of engine components requires a further improvement in structural modeling techniques. We are working on a so-called "scanning and mapping" technique, which is a relatively new technique. The basic idea is to producing a full and accurate 3D structural model by tracing on multiple overlapping photographs taken from different angles. There is no need to input point positions, angles, distances or axes. Photographs can be taken by any types of cameras with different lenses. With the integration of such a modeling technique, the capability of structural modeling will be enhanced. The prototypes of any complex structural components will be produced by PhotoModeler first based on existing similar components, then passed to AutoCAD for modification and correction of any discrepancies seen in the Photomodeler version of the 3Dmodel. These three software packages are fully compatible. The DXF file can be used to transfer drawings among those packages. To begin this entire process, we are using a small replica of an actual engine blade as a test object. This paper introduces the accomplishment of our recent work.

  1. Substructuring of multibody systems for numerical transfer path analysis in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Acri, Antonio; Offner, Guenter; Nijman, Eugene; Rejlek, Jan

    2016-10-01

    Noise legislations and the increasing customer demands determine the Noise Vibration and Harshness (NVH) development of modern commercial vehicles. In order to meet the stringent legislative requirements for the vehicle noise emission, exact knowledge of all vehicle noise sources and their acoustic behavior is required. Transfer path analysis (TPA) is a fairly well established technique for estimating and ranking individual low-frequency noise or vibration contributions via the different transmission paths. Transmission paths from different sources to target points of interest and their contributions can be analyzed by applying TPA. This technique is applied on test measurements, which can only be available on prototypes, at the end of the designing process. In order to overcome the limits of TPA, a numerical transfer path analysis methodology based on the substructuring of a multibody system is proposed in this paper. Being based on numerical simulation, this methodology can be performed starting from the first steps of the designing process. The main target of the proposed methodology is to get information of noise sources contributions of a dynamic system considering the possibility to have multiple forces contemporary acting on the system. The contributions of these forces are investigated with particular focus on distribute or moving forces. In this paper, the mathematical basics of the proposed methodology and its advantages in comparison with TPA will be discussed. Then, a dynamic system is investigated with a combination of two methods. Being based on the dynamic substructuring (DS) of the investigated model, the methodology proposed requires the evaluation of the contact forces at interfaces, which are computed with a flexible multi-body dynamic (FMBD) simulation. Then, the structure-borne noise paths are computed with the wave based method (WBM). As an example application a 4-cylinder engine is investigated and the proposed methodology is applied on the engine block. The aim is to get accurate and clear relationships between excitations and responses of the simulated dynamic system, analyzing the noise and vibrational sources inside a car engine, showing the main advantages of a numerical methodology.

  2. The scaling of performance and losses in miniature internal combustion engines

    NASA Astrophysics Data System (ADS)

    Menon, Shyam Kumar

    Miniature glow ignition internal combustion (IC) piston engines are an off--the--shelf technology that could dramatically increase the endurance of miniature electric power supplies and the range and endurance of small unmanned air vehicles provided their overall thermodynamic efficiencies can be increased to 15% or better. This thesis presents the first comprehensive analysis of small (<500 g) piston engine performance. A unique dynamometer system is developed that is capable of making reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat transfer, exhaust, mechanical, and combustion losses. These instruments and techniques are used to investigate the performance of seven single-cylinder, two-stroke, glow fueled engines ranging in size from 15 to 450 g (0.16 to 7.5 cm3 displacement). Scaling rules for power output, overall efficiency, and normalized power are developed from the data. These will be useful to developers of micro-air vehicles and miniature power systems. The data show that the minimum length scale of a thermodynamically viable piston engine based on present technology is approximately 3 mm. Incomplete combustion is the most important challenge as it accounts for 60-70% of total energy losses. Combustion losses are followed in order of importance by heat transfer, sensible enthalpy, and friction. A net heat release analysis based on in-cylinder pressure measurements suggest that a two--stage combustion process occurs at low engine speeds and equivalence ratios close to 1. Different theories based on burning mode and reaction kinetics are proposed to explain the observed results. High speed imaging of the combustion chamber suggests that a turbulent premixed flame with its origin in the vicinity of the glow plug is the primary driver of combustion. Placing miniature IC engines on a turbulent combustion regime diagram shows that they operate in the 'flamelet in eddy' regime whereas conventional--scale engines operate mostly in the 'wrinkled laminar flame sheet' regime. Taken together, the results show that the combustion process is the key obstacle to realizing the potential of small IC engines. Overcoming this obstacle will require new diagnostic techniques, measurements, combustion models, and high temperature materials.

  3. A hybrid nonlinear programming method for design optimization

    NASA Technical Reports Server (NTRS)

    Rajan, S. D.

    1986-01-01

    Solutions to engineering design problems formulated as nonlinear programming (NLP) problems usually require the use of more than one optimization technique. Moreover, the interaction between the user (analysis/synthesis) program and the NLP system can lead to interface, scaling, or convergence problems. An NLP solution system is presented that seeks to solve these problems by providing a programming system to ease the user-system interface. A simple set of rules is used to select an optimization technique or to switch from one technique to another in an attempt to detect, diagnose, and solve some potential problems. Numerical examples involving finite element based optimal design of space trusses and rotor bearing systems are used to illustrate the applicability of the proposed methodology.

  4. The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology: Capabilities and Applications

    NASA Technical Reports Server (NTRS)

    Evers, Ken H.; Bachert, Robert F.

    1987-01-01

    The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology has been formulated and applied over a five-year period. It has proven to be a unique, integrated approach utilizing a top-down, structured technique to define and document the system of interest; a knowledge engineering technique to collect and organize system descriptive information; a rapid prototyping technique to perform preliminary system performance analysis; and a sophisticated simulation technique to perform in-depth system performance analysis.

  5. A quantitative evaluation of the public response to climate engineering

    NASA Astrophysics Data System (ADS)

    Wright, Malcolm J.; Teagle, Damon A. H.; Feetham, Pamela M.

    2014-02-01

    Atmospheric greenhouse gas concentrations continue to increase, with CO2 passing 400 parts per million in May 2013. To avoid severe climate change and the attendant economic and social dislocation, existing energy efficiency and emissions control initiatives may need support from some form of climate engineering. As climate engineering will be controversial, there is a pressing need to inform the public and understand their concerns before policy decisions are taken. So far, engagement has been exploratory, small-scale or technique-specific. We depart from past research to draw on the associative methods used by corporations to evaluate brands. A systematic, quantitative and comparative approach for evaluating public reaction to climate engineering is developed. Its application reveals that the overall public evaluation of climate engineering is negative. Where there are positive associations they favour carbon dioxide removal (CDR) over solar radiation management (SRM) techniques. Therefore, as SRM techniques become more widely known they are more likely to elicit negative reactions. Two climate engineering techniques, enhanced weathering and cloud brightening, have indistinct concept images and so are less likely to draw public attention than other CDR or SRM techniques.

  6. A novel porous scaffold fabrication technique for epithelial and endothelial tissue engineering.

    PubMed

    McHugh, Kevin J; Tao, Sarah L; Saint-Geniez, Magali

    2013-07-01

    Porous scaffolds have the ability to minimize transport barriers for both two- (2D) and three-dimensional tissue engineering. However, current porous scaffolds may be non-ideal for 2D tissues such as epithelium due to inherent fabrication-based characteristics. While 2D tissues require porosity to support molecular transport, pores must be small enough to prevent cell migration into the scaffold in order to avoid non-epithelial tissue architecture and compromised function. Though electrospun meshes are the most popular porous scaffolds used today, their heterogeneous pore size and intense topography may be poorly-suited for epithelium. Porous scaffolds produced using other methods have similar unavoidable limitations, frequently involving insufficient pore resolution and control, which make them incompatible with 2D tissues. In addition, many of these techniques require an entirely new round of process development in order to change material or pore size. Herein we describe "pore casting," a fabrication method that produces flat scaffolds with deterministic pore shape, size, and location that can be easily altered to accommodate new materials or pore dimensions. As proof-of-concept, pore-cast poly(ε-caprolactone) (PCL) scaffolds were fabricated and compared to electrospun PCL in vitro using canine kidney epithelium, human colon epithelium, and human umbilical vein endothelium. All cell types demonstrated improved morphology and function on pore-cast scaffolds, likely due to reduced topography and universally small pore size. These results suggest that pore casting is an attractive option for creating 2D tissue engineering scaffolds, especially when the application may benefit from well-controlled pore size or architecture.

  7. Status of Technological Advancements for Reducing Aircraft Gas Turbine Engine Pollutant Emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1975-01-01

    Combustor test rig results indicate that substantial reductions from current emission levels of carbon monoxide (CO), total unburned hydrocarbons (THC), oxides of nitrogen (NOx), and smoke are achievable by employing varying degrees of technological advancements in combustion systems. Minor to moderate modifications to existing conventional combustors produced significant reductions in CO and THC emissions at engine low power (idle/taxi) operating conditions but did not effectively reduce NOx at engine full power (takeoff) operating conditions. Staged combusiton techniques were needed to simultaneously reduce the levels of all the emissions over the entire engine operating range (from idle to takeoff). Emission levels that approached or were below the requirements of the 1979 EPA standards were achieved with the staged combustion systems and in some cases with the minor to moderate modifications to existing conventional combustion systems. Results from research programs indicate that an entire new generation of combustor technology with extremely low emission levels may be possible in the future.

  8. Toward a patient-specific tissue engineered vascular graft

    PubMed Central

    Best, Cameron; Strouse, Robert; Hor, Kan; Pepper, Victoria; Tipton, Amy; Kelly, John; Shinoka, Toshiharu; Breuer, Christopher

    2018-01-01

    Integrating three-dimensional printing with the creation of tissue-engineered vascular grafts could provide a readily available, patient-specific, autologous tissue source that could significantly improve outcomes in newborns with congenital heart disease. Here, we present the recent case of a candidate for our tissue-engineered vascular graft clinical trial deemed ineligible due to complex anatomical requirements and consider the application of three-dimensional printing technologies for a patient-specific graft. We 3D-printed a closed-disposable seeding device and validated that it performed equivalently to the traditional open seeding technique using ovine bone marrow–derived mononuclear cells. Next, our candidate’s preoperative imaging was reviewed to propose a patient-specific graft. A seeding apparatus was then designed to accommodate the custom graft and 3D-printed on a commodity fused deposition modeler. This exploratory feasibility study represents an important proof of concept advancing progress toward a rationally designed patient-specific tissue-engineered vascular graft for clinical application. PMID:29568478

  9. Delamination Mechanisms of Thermal and Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    Advanced ceramic thermal harrier coatings will play an increasingly important role In future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability issue remains a major concern with the ever-increasing temperature requirements. In this paper, thermal cyclic response and delamination failure modes of a ZrO2-8wt%Y2O3 and mullite/BSAS thermaVenvironmenta1 barrier coating system on SiC/SiC ceramic matrix composites were investigated using a laser high-heat-flux technique. The coating degradation and delamination processes were monitored in real time by measuring coating apparent conductivity changes during the cyclic tests under realistic engine temperature and stress gradients, utilizing the fact that delamination cracking causes an apparent decrease in the measured thermal conductivity. The ceramic coating crack initiation and propagation driving forces under the cyclic thermal loads, in conjunction with the mechanical testing results, will be discussed.

  10. Delamination Mechanisms of Thermal and Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Lee, Kang N.; Miller, Robert A.

    1990-01-01

    Advanced ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability issue remains a major concern with the ever-increasing temperature requirements. In this paper, thermal cyclic response and delamination failure modes of a ZrO2-8wt%Y2O3 and mullite/BSAS thermal/environmental barrier coating system on SiC/SiC ceramic matrix composites were investigated using a laser high-heat-flux technique. The coating degradation and delamination processes were monitored in real time by measuring coating apparent conductivity changes during the cyclic tests under realistic engine temperature and stress gradients, utilizing the fact that delamination cracking causes an apparent decrease in the measured thermal conductivity. The ceramic coating crack initiation and propagation driving forces under the cyclic thermal loads, in conjunction with the mechanical testing results, will be discussed.

  11. Modeling approaches for characterizing and evaluating environmental exposure to engineered nanomaterials in support of risk-based decision making.

    PubMed

    Hendren, Christine Ogilvie; Lowry, Michael; Grieger, Khara D; Money, Eric S; Johnston, John M; Wiesner, Mark R; Beaulieu, Stephen M

    2013-02-05

    As the use of engineered nanomaterials becomes more prevalent, the likelihood of unintended exposure to these materials also increases. Given the current scarcity of experimental data regarding fate, transport, and bioavailability, determining potential environmental exposure to these materials requires an in depth analysis of modeling techniques that can be used in both the near- and long-term. Here, we provide a critical review of traditional and emerging exposure modeling approaches to highlight the challenges that scientists and decision-makers face when developing environmental exposure and risk assessments for nanomaterials. We find that accounting for nanospecific properties, overcoming data gaps, realizing model limitations, and handling uncertainty are key to developing informative and reliable environmental exposure and risk assessments for engineered nanomaterials. We find methods suited to recognizing and addressing significant uncertainty to be most appropriate for near-term environmental exposure modeling, given the current state of information and the current insufficiency of established deterministic models to address environmental exposure to engineered nanomaterials.

  12. 10 CFR Appendix A to Part 725 - Categories of Restricted Data Available

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and radiation studies. b. Chemistry, chemical engineering and radiochemistry of all the elements and their compounds. Included are techniques and processes of chemical separations, radioactive waste..., including chemical engineering, processes and techniques. Reactor physics, engineering and criticality...

  13. Insoluble coatings for Stirling engine heat pipe condenser surfaces

    NASA Astrophysics Data System (ADS)

    Dussinger, Peter M.

    1993-09-01

    The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, 'Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in). The results indicate that the heat pipe environment is not directly comparable to liquid metal pumped loop data, that nickel aluminide is still a leading candidate for solubility corrosion protection, and that longer duration tests are required to reach a definitive conclusion whether coatings are required at all. Should further testing be required, the test vehicle and analytical tools were developed.

  14. Insoluble coatings for Stirling engine heat pipe condenser surfaces

    NASA Technical Reports Server (NTRS)

    Dussinger, Peter M.

    1993-01-01

    The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, 'Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in). The results indicate that the heat pipe environment is not directly comparable to liquid metal pumped loop data, that nickel aluminide is still a leading candidate for solubility corrosion protection, and that longer duration tests are required to reach a definitive conclusion whether coatings are required at all. Should further testing be required, the test vehicle and analytical tools were developed.

  15. Defining Gas Turbine Engine Performance Requirements for the Large Civil TiltRotor (LCTR2)

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2013-01-01

    Defining specific engine requirements is a critical part of identifying technologies and operational models for potential future rotary wing vehicles. NASA's Fundamental Aeronautics Program, Subsonic Rotary Wing Project has identified the Large Civil TiltRotor (LCTR) as the configuration to best meet technology goals. This notional vehicle concept has evolved with more clearly defined mission and operational requirements to the LCTR-iteration 2 (LCTR2). This paper reports on efforts to further review and refine the LCTR2 analyses to ascertain specific engine requirements and propulsion sizing criteria. The baseline mission and other design or operational requirements are reviewed. Analysis tools are described to help understand their interactions and underlying assumptions. Various design and operational conditions are presented and explained for their contribution to defining operational and engine requirements. These identified engine requirements are discussed to suggest which are most critical to the engine sizing and operation. The most-critical engine requirements are compared to in-house NASA engine simulations to try to ascertain which operational requirements define engine requirements versus points within the available engine operational capability. Finally, results are summarized with suggestions for future efforts to improve analysis capabilities, and better define and refine mission and operational requirements.

  16. Recent Advances and Future Challenges in Risk-Based Radiation Engineering

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2016-01-01

    We cover a top-level introduction to hardness assurance (HA) from a robotic space system perspective, starting at the piece-part level. We discuss error sources inherent to presently-accepted HA practices and why they cause us to be risk-averse. We conclude by reviewing current proposals that move towards more risk-tolerant system design approaches as well as future challenges that will require these advanced techniques.

  17. Analysis of small crack behavior for airframe applications

    NASA Technical Reports Server (NTRS)

    Mcclung, R. C.; Chan, K. S.; Hudak, S. J., Jr.; Davidson, D. L.

    1994-01-01

    The small fatigue crack problem is critically reviewed from the perspective of airframe applications. Different types of small cracks-microstructural, mechanical, and chemical-are carefully defined and relevant mechanisms identified. Appropriate analysis techniques, including both rigorous scientific and practical engineering treatments, are briefly described. Important materials data issues are addressed, including increased scatter in small crack data and recommended small crack test methods. Key problems requiring further study are highlighted.

  18. The Development of Educational Environment Suited to the Japan-Specific Educational Service Using Requirements Engineering Techniques: Case Study of Running Sakai with PostgreSQL

    ERIC Educational Resources Information Center

    Terawaki, Yuki; Takahashi, Yuichi; Kodama, Yasushi; Yana, Kazuo

    2011-01-01

    This paper describes an integration of different Relational Database Management System (RDBMS) of two Course Management Systems (CMS) called Sakai and the Common Factory for Inspiration and Value in Education (CFIVE). First, when the service of CMS is provided campus-wide, the problems of user support, CMS operation and customization of CMS are…

  19. Computational fluid dynamics: An engineering tool?

    NASA Astrophysics Data System (ADS)

    Anderson, J. D., Jr.

    1982-06-01

    Computational fluid dynamics in general, and time dependent finite difference techniques in particular, are examined from the point of view of direct engineering applications. Examples are given of the supersonic blunt body problem and gasdynamic laser calculations, where such techniques are clearly engineering tools. In addition, Navier-Stokes calculations of chemical laser flows are discussed as an example of a near engineering tool. Finally, calculations of the flowfield in a reciprocating internal combustion engine are offered as a promising future engineering application of computational fluid dynamics.

  20. Plasma-assisted physical vapor deposition surface treatments for tribological control

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1990-01-01

    In any mechanical or engineering system where contacting surfaces are in relative motion, adhesion, wear, and friction affect reliability and performance. With the advancement of space age transportation systems, the tribological requirements have dramatically increased. This is due to the optimized design, precision tolerance requirements, and high reliability expected for solid lubricating films in order to withstand hostile operating conditions (vacuum, high-low temperatures, high loads, and space radiation). For these problem areas the ion-assisted deposition/modification processes (plasma-based and ion beam techniques) offer the greatest potential for the synthesis of thin films and the tailoring of adherence and chemical and structural properties for optimized tribological performance. The present practices and new approaches of applying soft solid lubricant and hard wear resistant films to engineering substrates are reviewed. The ion bombardment treatments have increased film adherence, lowered friction coefficients, and enhanced wear life of the solid lubricating films such as the dichalcogenides (MoS2) and the soft metals (Au, Ag, Pb). Currently, sputtering is the preferred method of applying MoS2 films; and ion plating, the soft metallic films. Ultralow friction coefficients (less than 0.01) were achieved with sputtered MoS2. Further, new diamond-like carbon and BN lubricating films are being developed by using the ion assisted deposition techniques.

  1. A continuous latitudinal energy balance model to explore non-uniform climate engineering strategies

    NASA Astrophysics Data System (ADS)

    Bonetti, F.; McInnes, C. R.

    2016-12-01

    Current concentrations of atmospheric CO2 exceed measured historical levels in modern times, largely attributed to anthropogenic forcing since the industrial revolution. The required decline in emissions rates has never been achieved leading to recent interest in climate engineering for future risk-mitigation strategies. Climate engineering aims to offset human-driven climate change. It involves techniques developed both to reduce the concentration of CO2 in the atmosphere (Carbon Dioxide Removal (CDR) methods) and to counteract the radiative forcing that it generates (Solar Radiation Management (SRM) methods). In order to investigate effects of SRM technologies for climate engineering, an analytical model describing the main dynamics of the Earth's climate has been developed. The model is a time-dependent Energy Balance Model (EBM) with latitudinal resolution and allows for the evaluation of non-uniform climate engineering strategies. A significant disadvantage of climate engineering techniques involving the management of solar radiation is regional disparities in cooling. This model offers an analytical approach to design multi-objective strategies that counteract climate change on a regional basis: for example, to cool the Artic and restrict undesired impacts at mid-latitudes, or to control the equator-to-pole temperature gradient. Using the Green's function approach the resulting partial differential equation allows for the computation of the surface temperature as a function of time and latitude when a 1% per year increase in the CO2 concentration is considered. After the validation of the model through comparisons with high fidelity numerical models, it will be used to explore strategies for the injection of the aerosol precursors in the stratosphere. In particular, the model involves detailed description of the optical properties of the particles, the wash-out dynamics and the estimation of the radiative cooling they can generate.

  2. A Systematic Approach for Model-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A requirement for effective aircraft engine performance estimation is the ability to account for engine degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. This paper presents a linear point design methodology for minimizing the degradation-induced error in model-based aircraft engine performance estimation applications. The technique specifically focuses on the underdetermined estimation problem, where there are more unknown health parameters than available sensor measurements. A condition for Kalman filter-based estimation is that the number of health parameters estimated cannot exceed the number of sensed measurements. In this paper, the estimated health parameter vector will be replaced by a reduced order tuner vector whose dimension is equivalent to the sensed measurement vector. The reduced order tuner vector is systematically selected to minimize the theoretical mean squared estimation error of a maximum a posteriori estimator formulation. This paper derives theoretical estimation errors at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the estimation accuracy achieved through conventional maximum a posteriori and Kalman filter estimation approaches. Maximum a posteriori estimation results demonstrate that reduced order tuning parameter vectors can be found that approximate the accuracy of estimating all health parameters directly. Kalman filter estimation results based on the same reduced order tuning parameter vectors demonstrate that significantly improved estimation accuracy can be achieved over the conventional approach of selecting a subset of health parameters to serve as the tuner vector. However, additional development is necessary to fully extend the methodology to Kalman filter-based estimation applications.

  3. Investigating the probability of detection of typical cavity shapes through modelling and comparison of geophysical techniques

    NASA Astrophysics Data System (ADS)

    James, P.

    2011-12-01

    With a growing need for housing in the U.K., the government has proposed increased development of brownfield sites. However, old mine workings and natural cavities represent a potential hazard before, during and after construction on such sites, and add further complication to subsurface parameters. Cavities are hence a limitation to certain redevelopment and their detection is an ever important consideration. The current standard technique for cavity detection is a borehole grid, which is intrusive, non-continuous, slow and expensive. A new robust investigation standard in the detection of cavities is sought and geophysical techniques offer an attractive alternative. Geophysical techniques have previously been utilised successfully in the detection of cavities in various geologies, but still has an uncertain reputation in the engineering industry. Engineers are unsure of the techniques and are inclined to rely on well known techniques than utilise new technologies. Bad experiences with geophysics are commonly due to the indiscriminate choice of particular techniques. It is imperative that a geophysical survey is designed with the specific site and target in mind at all times, and the ability and judgement to rule out some, or all, techniques. To this author's knowledge no comparative software exists to aid technique choice. Also, previous modelling software limit the shapes of bodies and hence typical cavity shapes are not represented. Here, we introduce 3D modelling software (Matlab) which computes and compares the response to various cavity targets from a range of techniques (gravity, gravity gradient, magnetic, magnetic gradient and GPR). Typical near surface cavity shapes are modelled including shafts, bellpits, various lining and capping materials, and migrating voids. The probability of cavity detection is assessed in typical subsurface and noise conditions across a range of survey parameters. Techniques can be compared and the limits of detection distance assessed. The density of survey points required to achieve a required probability of detection can be calculated. The software aids discriminate choice of technique, improves survey design, and increases the likelihood of survey success; all factors sought in the engineering industry. As a simple example, the response from magnetometry, gravimetry, and gravity gradient techniques above an example 3m deep, 1m cube air cavity in limestone across a 15m grid was calculated. The maximum responses above the cavity are small (amplitudes of 0.018nT, 0.0013mGal, 8.3eotvos respectively), but at typical site noise levels the detection reliability is over 50% for the gradient gravity method on a single survey line. Increasing the number of survey points across the site increases the reliability of detection of the anomaly by the addition of probabilities. We can calculate the probability of detection at different profile spacings to assess the best possible survey design. At 1m spacing the overall probability of by the gradient gravity method is over 90%, and over 60% for magnetometry (at 3m spacing the probability drops to 32%). The use of modelling in near surface surveys is a useful tool to assess the feasibility of a range of techniques to detect subtle signals. Future work will integrate this work with borehole measured parameters.

  4. 77 FR 43076 - Federal Acquisition Regulation; Information Collection; Value Engineering Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ...; Information Collection; Value Engineering Requirements AGENCIES: Department of Defense (DOD), General Services... collection requirement concerning Value Engineering Requirements. Public comments are particularly invited on... Information Collection 9000- 0027, Value Engineering Requirements, by any of the following methods...

  5. [An object-oriented intelligent engineering design approach for lake pollution control].

    PubMed

    Zou, Rui; Zhou, Jing; Liu, Yong; Zhu, Xiang; Zhao, Lei; Yang, Ping-Jian; Guo, Huai-Cheng

    2013-03-01

    Regarding the shortage and deficiency of traditional lake pollution control engineering techniques, a new lake pollution control engineering approach was proposed in this study, based on object-oriented intelligent design (OOID) from the perspective of intelligence. It can provide a new methodology and framework for effectively controlling lake pollution and improving water quality. The differences between the traditional engineering techniques and the OOID approach were compared. The key points for OOID were described as object perspective, cause and effect foundation, set points into surface, and temporal and spatial optimization. The blue algae control in lake was taken as an example in this study. The effect of algae control and water quality improvement were analyzed in details from the perspective of object-oriented intelligent design based on two engineering techniques (vertical hydrodynamic mixer and pumping algaecide recharge). The modeling results showed that the traditional engineering design paradigm cannot provide scientific and effective guidance for engineering design and decision-making regarding lake pollution. Intelligent design approach is based on the object perspective and quantitative causal analysis in this case. This approach identified that the efficiency of mixers was much higher than pumps in achieving the goal of low to moderate water quality improvement. However, when the objective of water quality exceeded a certain value (such as the control objective of peak Chla concentration exceeded 100 microg x L(-1) in this experimental water), the mixer cannot achieve this goal. The pump technique can achieve the goal but with higher cost. The efficiency of combining the two techniques was higher than using one of the two techniques alone. Moreover, the quantitative scale control of the two engineering techniques has a significant impact on the actual project benefits and costs.

  6. Evolutionary and biological metaphors for engineering design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakiela, M.

    1994-12-31

    Since computing became generally available, there has been strong interest in using computers to assist and automate engineering design processes. Specifically, for design optimization and automation, nonlinear programming and artificial intelligence techniques have been extensively studied. New computational techniques, based upon the natural processes of evolution, adaptation, and learing, are showing promise because of their generality and robustness. This presentation will describe the use of two such techniques, genetic algorithms and classifier systems, for a variety of engineering design problems. Structural topology optimization, meshing, and general engineering optimization are shown as example applications.

  7. Hierarchical Modeling and Robust Synthesis for the Preliminary Design of Large Scale Complex Systems

    NASA Technical Reports Server (NTRS)

    Koch, Patrick N.

    1997-01-01

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis; Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration; and Noise modeling techniques for implementing robust preliminary design when approximate models are employed. Hierarchical partitioning and modeling techniques including intermediate responses, linking variables, and compatibility constraints are incorporated within a hierarchical compromise decision support problem formulation for synthesizing subproblem solutions for a partitioned system. Experimentation and approximation techniques are employed for concurrent investigations and modeling of partitioned subproblems. A modified composite experiment is introduced for fitting better predictive models across the ranges of the factors, and an approach for constructing partitioned response surfaces is developed to reduce the computational expense of experimentation for fitting models in a large number of factors. Noise modeling techniques are compared and recommendations are offered for the implementation of robust design when approximate models are sought. These techniques, approaches, and recommendations are incorporated within the method developed for hierarchical robust preliminary design exploration. This method as well as the associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system. The case study is developed in collaboration with Allison Engine Company, Rolls Royce Aerospace, and is based on the Allison AE3007 existing engine designed for midsize commercial, regional business jets. For this case study, the turbofan system-level problem is partitioned into engine cycle design and configuration design and a compressor modules integrated for more detailed subsystem-level design exploration, improving system evaluation. The fan and low pressure turbine subsystems are also modeled, but in less detail. Given the defined partitioning, these subproblems are investigated independently and concurrently, and response surface models are constructed to approximate the responses of each. These response models are then incorporated within a commercial turbofan hierarchical compromise decision support problem formulation. Five design scenarios are investigated, and robust solutions are identified. The method and solutions identified are verified by comparison with the AE3007 engine. The solutions obtained are similar to the AE3007 cycle and configuration, but are better with respect to many of the requirements.

  8. Flight Test Results of a GPS-Based Pitot-Static Calibration Method Using Output-Error Optimization for a Light Twin-Engine Airplane

    NASA Technical Reports Server (NTRS)

    Martos, Borja; Kiszely, Paul; Foster, John V.

    2011-01-01

    As part of the NASA Aviation Safety Program (AvSP), a novel pitot-static calibration method was developed to allow rapid in-flight calibration for subscale aircraft while flying within confined test areas. This approach uses Global Positioning System (GPS) technology coupled with modern system identification methods that rapidly computes optimal pressure error models over a range of airspeed with defined confidence bounds. This method has been demonstrated in subscale flight tests and has shown small 2- error bounds with significant reduction in test time compared to other methods. The current research was motivated by the desire to further evaluate and develop this method for full-scale aircraft. A goal of this research was to develop an accurate calibration method that enables reductions in test equipment and flight time, thus reducing costs. The approach involved analysis of data acquisition requirements, development of efficient flight patterns, and analysis of pressure error models based on system identification methods. Flight tests were conducted at The University of Tennessee Space Institute (UTSI) utilizing an instrumented Piper Navajo research aircraft. In addition, the UTSI engineering flight simulator was used to investigate test maneuver requirements and handling qualities issues associated with this technique. This paper provides a summary of piloted simulation and flight test results that illustrates the performance and capabilities of the NASA calibration method. Discussion of maneuver requirements and data analysis methods is included as well as recommendations for piloting technique.

  9. Advanced computer-aided design for bone tissue-engineering scaffolds.

    PubMed

    Ramin, E; Harris, R A

    2009-04-01

    The design of scaffolds with an intricate and controlled internal structure represents a challenge for tissue engineering. Several scaffold-manufacturing techniques allow the creation of complex architectures but with little or no control over the main features of the channel network such as the size, shape, and interconnectivity of each individual channel, resulting in intricate but random structures. The combined use of computer-aided design (CAD) systems and layer-manufacturing techniques allows a high degree of control over these parameters with few limitations in terms of achievable complexity. However, the design of complex and intricate networks of channels required in CAD is extremely time-consuming since manually modelling hundreds of different geometrical elements, all with different parameters, may require several days to design individual scaffold structures. An automated design methodology is proposed by this research to overcome these limitations. This approach involves the investigation of novel software algorithms, which are able to interact with a conventional CAD program and permit the automated design of several geometrical elements, each with a different size and shape. In this work, the variability of the parameters required to define each geometry has been set as random, but any other distribution could have been adopted. This methodology has been used to design five cubic scaffolds with interconnected pore channels that range from 200 to 800 microm in diameter, each with an increased complexity of the internal geometrical arrangement. A clinical case study, consisting of an integration of one of these geometries with a craniofacial implant, is then presented.

  10. Suspended, Shrinkage-Free, Electrospun PLGA Nanofibrous Scaffold for Skin Tissue Engineering.

    PubMed

    Ru, Changhai; Wang, Feilong; Pang, Ming; Sun, Lining; Chen, Ruihua; Sun, Yu

    2015-05-27

    Electrospinning is a technique for creating continuous nanofibrous networks that can architecturally be similar to the structure of extracellular matrix (ECM). However, the shrinkage of electrospun mats is unfavorable for the triggering of cell adhesion and further growth. In this work, electrospun PLGA nanofiber assemblies are utilized to create a scaffold. Aided by a polypropylene auxiliary supporter, the scaffold is able to maintain long-term integrity without dimensional shrinkage. This scaffold is also able to suspend in cell culture medium; hence, keratinocyte cells seeded on the scaffold are exposed to air as required in skin tissue engineering. Experiments also show that human skin keratinocytes can proliferate on the scaffold and infiltrate into the scaffold.

  11. Broadband metamaterial as an "invisible" radiative cooling coat

    NASA Astrophysics Data System (ADS)

    Huang, Yijia; Pu, Mingbo; Zhao, Zeyu; Li, Xiong; Ma, Xiaoliang; Luo, Xiangang

    2018-01-01

    In this paper, we propose a compact planar device in infrared (3- 12 μm) that has a high emission range from 5 μm to 8 μm while simultaneously serving as a broadband mirror for the rest wavelengths by engineering its thermal emission characteristics. The structure utilizes a random-stacked multilayer to reduce the thickness required for ideal spectrum engineering. In addition, it is also convenient to fabricate and scale up. All the features above makes it an ;invisible; radiative cooling coat by taking advantage of the atmospheric transparency window. We believe that this device may fundamentally enable new technological possibilities for stealth techniques by integrating the device with traditional cloaking methods.

  12. A systems engineering approach to automated failure cause diagnosis in space power systems

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Faymon, Karl A.

    1987-01-01

    Automatic failure-cause diagnosis is a key element in autonomous operation of space power systems such as Space Station's. A rule-based diagnostic system has been developed for determining the cause of degraded performance. The knowledge required for such diagnosis is elicited from the system engineering process by using traditional failure analysis techniques. Symptoms, failures, causes, and detector information are represented with structured data; and diagnostic procedural knowledge is represented with rules. Detected symptoms instantiate failure modes and possible causes consistent with currently held beliefs about the likelihood of the cause. A diagnosis concludes with an explanation of the observed symptoms in terms of a chain of possible causes and subcauses.

  13. A conceptual design of shock-eliminating clover combustor for large scale scramjet engine

    NASA Astrophysics Data System (ADS)

    Sun, Ming-bo; Zhao, Yu-xin; Zhao, Guo-yan; Liu, Yuan

    2017-01-01

    A new concept of shock-eliminating clover combustor is proposed for large scale scramjet engine to fulfill the requirements of fuel penetration, total pressure recovery and cooling. To generate the circular-to-clover transition shape of the combustor, the streamline tracing technique is used based on an axisymmetric expansion parent flowfield calculated using the method of characteristics. The combustor is examined using inviscid and viscous numerical simulations and a pure circular shape is calculated for comparison. The results showed that the combustor avoids the shock wave generation and produces low total pressure losses in a wide range of flight condition with various Mach number. The flameholding device for this combustor is briefly discussed.

  14. [Possibilities and prospects of three-dimensional bioprinting in vascular surgery].

    PubMed

    Gavrilenko, A V; Khesuani, Yu J; Kalinin, V D

    2016-01-01

    Rapid development of tissue engineering is gradually changing the approach to patient care. Despite the fact that the use of an autograft or transplantation of an artificial prosthesis is preferred in most cases, this is frequently impossible due to shortage of suitable material or the patient's condition. Regenerative medicine and tissue engineering make it possible to reduce the terms of treatment and restoration after vascular operations, as well as complications rate. At the present moment there is a lot of information about methods of biofabrication and multiple techniques of using stem cells. Nevertheless, clinical efficacy of these methods requires further detailed examination. The review of literature contains the data concerning modern achievements in the area of bioprinting.

  15. Applicability and Limitations of Reliability Allocation Methods

    NASA Technical Reports Server (NTRS)

    Cruz, Jose A.

    2016-01-01

    Reliability allocation process may be described as the process of assigning reliability requirements to individual components within a system to attain the specified system reliability. For large systems, the allocation process is often performed at different stages of system design. The allocation process often begins at the conceptual stage. As the system design develops, more information about components and the operating environment becomes available, different allocation methods can be considered. Reliability allocation methods are usually divided into two categories: weighting factors and optimal reliability allocation. When properly applied, these methods can produce reasonable approximations. Reliability allocation techniques have limitations and implied assumptions that need to be understood by system engineers. Applying reliability allocation techniques without understanding their limitations and assumptions can produce unrealistic results. This report addresses weighting factors, optimal reliability allocation techniques, and identifies the applicability and limitations of each reliability allocation technique.

  16. Combining results of multiple search engines in proteomics.

    PubMed

    Shteynberg, David; Nesvizhskii, Alexey I; Moritz, Robert L; Deutsch, Eric W

    2013-09-01

    A crucial component of the analysis of shotgun proteomics datasets is the search engine, an algorithm that attempts to identify the peptide sequence from the parent molecular ion that produced each fragment ion spectrum in the dataset. There are many different search engines, both commercial and open source, each employing a somewhat different technique for spectrum identification. The set of high-scoring peptide-spectrum matches for a defined set of input spectra differs markedly among the various search engine results; individual engines each provide unique correct identifications among a core set of correlative identifications. This has led to the approach of combining the results from multiple search engines to achieve improved analysis of each dataset. Here we review the techniques and available software for combining the results of multiple search engines and briefly compare the relative performance of these techniques.

  17. Combining Results of Multiple Search Engines in Proteomics*

    PubMed Central

    Shteynberg, David; Nesvizhskii, Alexey I.; Moritz, Robert L.; Deutsch, Eric W.

    2013-01-01

    A crucial component of the analysis of shotgun proteomics datasets is the search engine, an algorithm that attempts to identify the peptide sequence from the parent molecular ion that produced each fragment ion spectrum in the dataset. There are many different search engines, both commercial and open source, each employing a somewhat different technique for spectrum identification. The set of high-scoring peptide-spectrum matches for a defined set of input spectra differs markedly among the various search engine results; individual engines each provide unique correct identifications among a core set of correlative identifications. This has led to the approach of combining the results from multiple search engines to achieve improved analysis of each dataset. Here we review the techniques and available software for combining the results of multiple search engines and briefly compare the relative performance of these techniques. PMID:23720762

  18. An application of holographic interferometry for dynamic vibration analysis of a jet engine turbine compressor rotor

    NASA Astrophysics Data System (ADS)

    Fein, Howard

    2003-09-01

    Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under dynamic stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of jet engine turbine, rotor, vane, and compressor structures has always required advanced instrumentation for data collection in either simulated flight operation test or computer-based modeling and simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data in a noninvasive, noncontact environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced jet engine turbine and compressor rotor structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy of mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of turbine rotor and compressor structures for high stress applications. Aircraft engine applications in particular most consider operational environments where extremes in vibration and impulsive as well as continuous mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of turbine rotor components. Holographic techniques are nondestructive, real-time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as critical operational parameters of turbine structural components or unit turbine components fabricated from advanced and exotic new materials or using new fabrication methods. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects.

  19. 14 CFR 125.265 - Flight engineer requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a flight engineer is required by the type certification requirements without a flight crewmember holding a current...

  20. 14 CFR 125.265 - Flight engineer requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a flight engineer is required by the type certification requirements without a flight crewmember holding a current...

  1. 14 CFR 125.265 - Flight engineer requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a flight engineer is required by the type certification requirements without a flight crewmember holding a current...

  2. 14 CFR 125.265 - Flight engineer requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a flight engineer is required by the type certification requirements without a flight crewmember holding a current...

  3. 14 CFR 125.265 - Flight engineer requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a flight engineer is required by the type certification requirements without a flight crewmember holding a current...

  4. de novo computational enzyme design.

    PubMed

    Zanghellini, Alexandre

    2014-10-01

    Recent advances in systems and synthetic biology as well as metabolic engineering are poised to transform industrial biotechnology by allowing us to design cell factories for the sustainable production of valuable fuels and chemicals. To deliver on their promises, such cell factories, as much as their brick-and-mortar counterparts, will require appropriate catalysts, especially for classes of reactions that are not known to be catalyzed by enzymes in natural organisms. A recently developed methodology, de novo computational enzyme design can be used to create enzymes catalyzing novel reactions. Here we review the different classes of chemical reactions for which active protein catalysts have been designed as well as the results of detailed biochemical and structural characterization studies. We also discuss how combining de novo computational enzyme design with more traditional protein engineering techniques can alleviate the shortcomings of state-of-the-art computational design techniques and create novel enzymes with catalytic proficiencies on par with natural enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Turbine blade and vane heat flux sensor development, phase 1

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1984-01-01

    Heat flux sensors available for installation in the hot section airfoils of advanced aircraft gas turbine engines were developed. Two heat flux sensors were designed, fabricated, calibrated, and tested. Measurement techniques are compared in an atmospheric pressure combustor rig test. Sensors, embedded thermocouple and the Gordon gauge, were fabricated that met the geometric and fabricability requirements and could withstand the hot section environmental conditions. Calibration data indicate that these sensors yielded repeatable results and have the potential to meet the accuracy goal of measuring local heat flux to within 5%. Thermal cycle tests and thermal soak tests indicated that the sensors are capable of surviving extended periods of exposure to the environment conditions in the turbine. Problems in calibration of the sensors caused by severe non-one dimensional heat flow were encountered. Modifications to the calibration techniques are needed to minimize this problem and proof testing of the sensors in an engine is needed to verify the designs.

  6. Turbine blade and vane heat flux sensor development, phase 1

    NASA Astrophysics Data System (ADS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1984-08-01

    Heat flux sensors available for installation in the hot section airfoils of advanced aircraft gas turbine engines were developed. Two heat flux sensors were designed, fabricated, calibrated, and tested. Measurement techniques are compared in an atmospheric pressure combustor rig test. Sensors, embedded thermocouple and the Gordon gauge, were fabricated that met the geometric and fabricability requirements and could withstand the hot section environmental conditions. Calibration data indicate that these sensors yielded repeatable results and have the potential to meet the accuracy goal of measuring local heat flux to within 5%. Thermal cycle tests and thermal soak tests indicated that the sensors are capable of surviving extended periods of exposure to the environment conditions in the turbine. Problems in calibration of the sensors caused by severe non-one dimensional heat flow were encountered. Modifications to the calibration techniques are needed to minimize this problem and proof testing of the sensors in an engine is needed to verify the designs.

  7. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds.

    PubMed

    Mondschein, Ryan J; Kanitkar, Akanksha; Williams, Christopher B; Verbridge, Scott S; Long, Timothy E

    2017-09-01

    This review highlights the synthesis, properties, and advanced applications of synthetic and natural polymers 3D printed using stereolithography for soft tissue engineering applications. Soft tissue scaffolds are of great interest due to the number of musculoskeletal, cardiovascular, and connective tissue injuries and replacements humans face each year. Accurately replacing or repairing these tissues is challenging due to the variation in size, shape, and strength of different types of soft tissue. With advancing processing techniques such as stereolithography, control of scaffold resolution down to the μm scale is achievable along with the ability to customize each fabricated scaffold to match the targeted replacement tissue. Matching the advanced manufacturing technique to polymer properties as well as maintaining the proper chemical, biological, and mechanical properties for tissue replacement is extremely challenging. This review discusses the design of polymers with tailored structure, architecture, and functionality for stereolithography, while maintaining chemical, biological, and mechanical properties to mimic a broad range of soft tissue types. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Vacuum Plasma Spray (VPS) Forming of Solar Thermal Propulsion Components Using Refractory Metals

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.; Hissam, David A.; Gerrish, Harold P.; Davis, William M.

    1999-01-01

    The Thermal Spray Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using Vacuum Plasma Spray (VPS) to form structural components from a tungsten/rhenium alloy. The components were assembled into an absorber cavity for a fully-functioning, ground test unit of a solar then-nal propulsion engine. The VPS process deposits refractory metal onto a graphite mandrel of the desired shape. The mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the deposit. Tungsten and tungsten/25% rhenium were used in the development and production of several absorber cavity components. These materials were selected for their high temperature (greater than 25000 C [greater than 4530 F]) strength. Each absorber cavity comprises 3 coaxial shells with two, double-helical flow passages through which the propellant gas flows. This paper describes the processing techniques, design considerations, and process development associated with forming these engine components.

  9. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.

    PubMed

    Ding, Xiaoyun; Lin, Sz-Chin Steven; Kiraly, Brian; Yue, Hongjun; Li, Sixing; Chiang, I-Kao; Shi, Jinjie; Benkovic, Stephen J; Huang, Tony Jun

    2012-07-10

    Techniques that can dexterously manipulate single particles, cells, and organisms are invaluable for many applications in biology, chemistry, engineering, and physics. Here, we demonstrate standing surface acoustic wave based "acoustic tweezers" that can trap and manipulate single microparticles, cells, and entire organisms (i.e., Caenorhabditis elegans) in a single-layer microfluidic chip. Our acoustic tweezers utilize the wide resonance band of chirped interdigital transducers to achieve real-time control of a standing surface acoustic wave field, which enables flexible manipulation of most known microparticles. The power density required by our acoustic device is significantly lower than its optical counterparts (10,000,000 times less than optical tweezers and 100 times less than optoelectronic tweezers), which renders the technique more biocompatible and amenable to miniaturization. Cell-viability tests were conducted to verify the tweezers' compatibility with biological objects. With its advantages in biocompatibility, miniaturization, and versatility, the acoustic tweezers presented here will become a powerful tool for many disciplines of science and engineering.

  10. 46 CFR 11.502 - General requirements for national engineer endorsements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false General requirements for national engineer endorsements... AND SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for National Engineer Officer Endorsements § 11.502 General requirements for national engineer endorsements. (a) For all...

  11. Analysis of space tug operating techniques. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design requirements for space tug systems and cost analysis of the refurbishment phases are discussed. The vehicle is an integral propulsion stage using liquid hydrogen and liquid oxygen as propellants and is capable of operating either as a fully or a partially autonomous vehicle. Structural features are an integral liquid hydrogen tank, a liquid oxygen tank, a meteoroid shield, an aft conical docking and structural support ring, and a staged combustion main engine. The vehicle is constructed of major modules for ease of maintenance. Line drawings and block diagrams are included to explain the maintenance requirements for the subsystems.

  12. Apical extrusion of debris and irrigants using two hand and three engine-driven instrumentation techniques.

    PubMed

    Ferraz, C C; Gomes, N V; Gomes, B P; Zaia, A A; Teixeira, F B; Souza-Filho, F J

    2001-07-01

    To evaluate the weight of debris and irrigant volume extruded apically from extracted teeth in vitro after endodontic instrumentation using the balanced force technique, a hybrid hand instrumentation technique, and three engine-driven techniques utilizing nickel-titanium instruments (ProFile .04, Quantec 2000 and Pow-R). Five groups of 20 extracted human teeth with single canals were instrumented using one or other of five techniques: balanced force, hybrid, Quantec 2000, ProFile .04, or Pow-R. Debris extruded from the apical foramen during instrumentation were collected into preweighed 1.5 mL tubes. Following instrumentation, the volume of extruded irrigant fluid was determined by visual comparison to control centrifuge tubes filled with 0.25 mL increments of distilled water. The weight of dry extruded dentine debris was also established. Overall, the engine-driven techniques extruded less debris than the manual ones. However, there was no statistical difference between the balanced force technique and the engine-driven methods. The volume of irrigant extruded through the apex was directly associated with the weight of extruded debris, except within the ProFile group. The hybrid technique was associated with the greatest extrusion of both debris and irrigant. Overall, the engine-driven nickel-titanium systems were associated with less apical extrusion.

  13. Teaching ethics to engineers: ethical decision making parallels the engineering design process.

    PubMed

    Bero, Bridget; Kuhlman, Alana

    2011-09-01

    In order to fulfill ABET requirements, Northern Arizona University's Civil and Environmental engineering programs incorporate professional ethics in several of its engineering courses. This paper discusses an ethics module in a 3rd year engineering design course that focuses on the design process and technical writing. Engineering students early in their student careers generally possess good black/white critical thinking skills on technical issues. Engineering design is the first time students are exposed to "grey" or multiple possible solution technical problems. To identify and solve these problems, the engineering design process is used. Ethical problems are also "grey" problems and present similar challenges to students. Students need a practical tool for solving these ethical problems. The step-wise engineering design process was used as a model to demonstrate a similar process for ethical situations. The ethical decision making process of Martin and Schinzinger was adapted for parallelism to the design process and presented to students as a step-wise technique for identification of the pertinent ethical issues, relevant moral theories, possible outcomes and a final decision. Students had greatest difficulty identifying the broader, global issues presented in an ethical situation, but by the end of the module, were better able to not only identify the broader issues, but also to more comprehensively assess specific issues, generate solutions and a desired response to the issue.

  14. Some historical trends in the research and development of aircraft

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1983-01-01

    A survey of some trends in aircraft design was made in an effort to determine the relation between research, development, test, and evaluation (RDT and E) and aircraft mission capability, requirements, and objectives. Driving forces in the history of aircraft include the quest for speed which involved design concepts incorporating jet propulsion systems and low drag features. The study of high speed design concepts promoted new experimental and analytical research techniques. These research techniques, in turn, have lead to concepts offering new performance potential. Design trends were directed toward increased speed, efficiency, productivity, and safety. Generally speaking, the research and development effort has been evolutionary in nature and, with the exception of the transition to supersonic flight, little has occurred since the origin of flight that has drastically changed the basic design fundamentals of aircraft. However, this does not preclude the possibility of dramatic changes in the future since the products of research are frequently unpredictable. Advances should be expected and sought in improved aerodynamics (reduced drag, enhanced lift, flow field exploitation); propulsion (improved engine cycles, multimode engines, alternate fuels, alternate power sources); structures (new materials, manufacturing techniques); all with a view toward increased efficiency and utility.

  15. 77 FR 66464 - Federal Acquisition Regulation; Submission for OMB Review; Value Engineering Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ...; Submission for OMB Review; Value Engineering Requirements AGENCIES: Department of Defense (DOD), General... collection requirement concerning Value Engineering Requirements. A notice was published in the Federal... comments identified by Information Collection 9000- 0027, Value Engineering Requirements, by any of the...

  16. Preliminary design of an alternate high-temperature turbine. A topical report for Phase II of the High-Temperature-Turbine Technology Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strough, R.I.

    The feasibility of designing a convectively air-cooled turbine to operate in the environment of a 3000/sup 0/F combustor exit temperature with maximum turbine airfoil metal temperatures held to 1500/sup 0/F was established. The United Technologies-Kraftwerk Union V84.3 gas turbine design was used as the basic configuration for the design of the 3000/sup 0/F turbine. Turbine cooling requirements were determined based on the use of the modified V84.3 type silo combustor with a pattern factor of 0.1. The convective air-cooling technology levels in terms of cooling effectiveness required to satisfy the airfoil cooling requirements were identified. Cooling schemes and fabrication technologiesmore » required are discussed. Turbine airfoil cooling technology levels required for the 3000/sup 0/F engine were selected. The performance of the 3000/sup 0/F convectively air-cooled gas turbine in simple and combined cycle was calculated. The 3000/sup 0/F gas turbine combined-cycle system provides an increase in power of 61% and a decrease in heat rate of 10% compared to a similar system with a combustor exit temperature of 2210/sup 0/F and the same airflow. The development of a successful 3000/sup 0/F convectively air-cooled turbine can be accomplished with a reasonable design and fabrication development effort on the cooled turbine airfoils. Use of the convectively air-cooled turbine provides the transfer of technology from extensive aircraft engines developed programs and operating experience to industrial gas turbines. It eliminates the requirement for large investments in alternate cooling techniques tailored specifically for industrial engines which offer no additional benefits.« less

  17. Aerosols and Particulates Workshop Sampling Procedures and Venues Working Group Summary

    NASA Technical Reports Server (NTRS)

    Pachlhofer, Peter; Howard, Robert

    1999-01-01

    The Sampling Procedures and Venues Workgroup discussed the potential venues available and issues associated with obtaining measurements. Some of the issues included Incoming Air Quality, Sampling Locations, Probes and Sample Systems. The following is a summary of the discussion of the issues and venues. The influence of inlet air to the measurement of exhaust species, especially trace chemical species, must be considered. Analysis procedures for current engine exhaust emissions regulatory measurements require adjustments for air inlet humidity. As a matter of course in scientific investigations, it is recommended that "background" measurements for any species, particulate or chemical, be performed during inlet air flow before initiation of combustion, if possible, and during the engine test period as feasible and practical. For current regulatory measurements, this would be equivalent to setting the "zero" level for conventional gas analyzers. As a minimum, it is recommended that measurements of the humidity and particulates in the incoming air be taken at the start and end of each test run. Additional measurement points taken during the run are desirable if they can be practically obtained. It was felt that the presence of trace gases in the incoming air is not a significant problem. However, investigators should consider the ambient levels and influences of local air pollution for species of interest. Desired measurement locations depend upon the investigation requirements. A complete investigation of phenomenology of particulate formation and growth requires measurements at a number of locations both within the engine and in the exhaust field downstream of the nozzle exit plane. Desirable locations for both extractive and in situ measurements include: (1) Combustion Zone (Multiple axial locations); (2) Combustor Exit (Multiple radial locations for annular combustors); (3) Turbine Stage (Inlet and exit of the stage); (4) Exit Nozzle (Multiple axial locations downstream of the nozzle). Actual locations with potential for extractive or non-intrusive measurements depend upon the test article and test configuration. Committee members expressed the importance of making investigators aware of various ports that could allow access to various stages of the existing engines. Port locations are engine si)ecific and might allow extractive sampling or innovative hybrid optical-probe access. The turbine stage region was one the most desirable locations for obtaining samples and might be accessed through boroscope ports available in some engine designs. Discussions of probes and sampling systems quickly identified issues dependent on particular measurement quantities. With general consensus, the group recommends SAE procedures for measurements and data analyses of currently regulated exhaust species (CO2, CO, THC, NO(x),) using conventional gas sampling techniques. Special procedures following sound scientific practices must be developed as required for species and/or measurement conditions not covered by SAE standards. Several issues arose concerning short lived radicals and highly reactive species. For conventional sampling, there are concerns of perturbing the sample during extraction, line losses, line-wall reactions, and chemical reactions during the sample transport to the analyzers. Sample lines coated with quartz.or other materials should be investigated for minimization of such effects. The group advocates the development of innovative probe techniques and non-intrusive optical techniques for measurement of short lived radicals and highly reactive species that cannot be sampled accurately otherwise. Two innovative probe concepts were discussed. One concept uses specially designed probes to transfer optical beams to and from a region of flow inaccessible by traditional ports or windows. The probe can perturb the flow field but must have a negligible impact on the region to be optically sampled. Such probes are referred to as hybrid probes and are under development at AEDC for measurement in the high pressure, high temperature of a combustor under development for power generation. The other concept consists of coupling an instrument directly to the probe. The probe would isolate a representative sample stream, freeze chemical reactions and direct the sample into the analyzer portion of the probe. Thus, the measurement would be performed in situ without sample line losses due either to reactions or binding at the wall surfaces. This concept was used to develop a fast, in situ, time-of-flight mass spectrometer measurement system for temporal quantification of NO in the IMPULSE facility at AEDC. Additional work is required in this area to determine the best probe and sampling technique for each species measurement requirement identified by the Trace Chemistry Working Group. A partial list of Venues was used as a baseline for discussion. Additional venues were added to the list and the list was broken out into the following categories: (1)Engines (a) Sea Level Test Stands (b) Altitude Chambers; (2) Annular Combustor Test Stands, (3) Sector Flametube Test Stands, (4) Fundamentals Rigs/Experiments.

  18. Progress in The Semantic Analysis of Scientific Code

    NASA Technical Reports Server (NTRS)

    Stewart, Mark

    2000-01-01

    This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, independent expert parsers. These semantic parsers encode domain knowledge and recognize formulae in different disciplines including physics, numerical methods, mathematics, and geometry. The parsers will automatically recognize and document some static, semantic concepts and help locate some program semantic errors. These techniques may apply to a wider range of scientific codes. If so, the techniques could reduce the time, risk, and effort required to develop and modify scientific codes.

  19. Characterization of hydrogel printer for direct cell-laden scaffolds

    NASA Astrophysics Data System (ADS)

    Whulanza, Yudan; Arsyan, Rendria; Saragih, Agung Shamsuddin

    2018-02-01

    The additive manufacturing technology has been massively developed since the last decade. The technology was previously known as rapid prototyping techniques that aimed to produce a prototyping product in fast and economical way. Currently, this technique is also applied to fabricate microstructure utilized in tissue engineering technology. Here, we introduce a 3D printer which using hydrogel gelatin to realize cell laden scaffold with dimension around 50-100 µm. However, in order to fabricate such a precise dimension, an optimum working parameters are required to control the physical properties of gelatin. At the end of our study, we formulated the best parameters to perform the product as we desired.

  20. Real-time in-flight engine performance and health monitoring techniques for flight research application

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Hicks, John W.; Wichman, Keith D.

    1991-01-01

    Procedures for real time evaluation of the inflight health and performance of gas turbine engines and related systems were developed to enhance flight test safety and productivity. These techniques include the monitoring of the engine, the engine control system, thrust vectoring control system health, and the detection of engine stalls. Real time performance techniques were developed for the determination and display of inflight thrust and for aeroperformance drag polars. These new methods were successfully shown on various research aircraft at NASA-Dryden. The capability of NASA's Western Aeronautical Test Range and the advanced data acquisition systems were key factors for implementation and real time display of these methods.

  1. Bayesian networks in overlay recipe optimization

    NASA Astrophysics Data System (ADS)

    Binns, Lewis A.; Reynolds, Greg; Rigden, Timothy C.; Watkins, Stephen; Soroka, Andrew

    2005-05-01

    Currently, overlay measurements are characterized by "recipe", which defines both physical parameters such as focus, illumination et cetera, and also the software parameters such as algorithm to be used and regions of interest. Setting up these recipes requires both engineering time and wafer availability on an overlay tool, so reducing these requirements will result in higher tool productivity. One of the significant challenges to automating this process is that the parameters are highly and complexly correlated. At the same time, a high level of traceability and transparency is required in the recipe creation process, so a technique that maintains its decisions in terms of well defined physical parameters is desirable. Running time should be short, given the system (automatic recipe creation) is being implemented to reduce overheads. Finally, a failure of the system to determine acceptable parameters should be obvious, so a certainty metric is also desirable. The complex, nonlinear interactions make solution by an expert system difficult at best, especially in the verification of the resulting decision network. The transparency requirements tend to preclude classical neural networks and similar techniques. Genetic algorithms and other "global minimization" techniques require too much computational power (given system footprint and cost requirements). A Bayesian network, however, provides a solution to these requirements. Such a network, with appropriate priors, can be used during recipe creation / optimization not just to select a good set of parameters, but also to guide the direction of search, by evaluating the network state while only incomplete information is available. As a Bayesian network maintains an estimate of the probability distribution of nodal values, a maximum-entropy approach can be utilized to obtain a working recipe in a minimum or near-minimum number of steps. In this paper we discuss the potential use of a Bayesian network in such a capacity, reducing the amount of engineering intervention. We discuss the benefits of this approach, especially improved repeatability and traceability of the learning process, and quantification of uncertainty in decisions made. We also consider the problems associated with this approach, especially in detailed construction of network topology, validation of the Bayesian network and the recipes it generates, and issues arising from the integration of a Bayesian network with a complex multithreaded application; these primarily relate to maintaining Bayesian network and system architecture integrity.

  2. Engineering Ethics Education on the Basis of Continuous Education to Improve Communication Ability

    NASA Astrophysics Data System (ADS)

    Takahara, Kenji; Kajiwara, Toshinori

    The paper proposes the engineering ethics education method for students on the basis of continuous education to improve communication ability. First, through a debate, the students acquire the fundamental skills required to marshal their arguments, to construct the rebuttals and to summarize the debates. Secondly, the students study the fundamental techniques to make a presentation on technical subjects related to electrical engineering. Following these classes, in the lecture of engineering ethics, the students probe the cause of each accident and consider the better means for avoiding such an accident, each other. In most cases, the students can express right and commonsensical opinions from an ethical standpoint. However, they can hardly make judgments when the situations such as the human relations in the above accidents are set concretely. During the engineering ethics class, the students come to know that human relations behind the case make the ethical matters more complicated. Furthermore, they come to understand that facilitating daily communications with co-workers and/or bosses is very important in order to avoid the accidents. The recognition of the students is just the results of the continuous education through three years. It can be said that the engineering ethics education thus constructed makes the students raise such spontaneous awareness and their ethical qualities as engineers.

  3. Dynamic Gate Product and Artifact Generation from System Models

    NASA Technical Reports Server (NTRS)

    Jackson, Maddalena; Delp, Christopher; Bindschadler, Duane; Sarrel, Marc; Wollaeger, Ryan; Lam, Doris

    2011-01-01

    Model Based Systems Engineering (MBSE) is gaining acceptance as a way to formalize systems engineering practice through the use of models. The traditional method of producing and managing a plethora of disjointed documents and presentations ("Power-Point Engineering") has proven both costly and limiting as a means to manage the complex and sophisticated specifications of modern space systems. We have developed a tool and method to produce sophisticated artifacts as views and by-products of integrated models, allowing us to minimize the practice of "Power-Point Engineering" from model-based projects and demonstrate the ability of MBSE to work within and supersede traditional engineering practices. This paper describes how we have created and successfully used model-based document generation techniques to extract paper artifacts from complex SysML and UML models in support of successful project reviews. Use of formal SysML and UML models for architecture and system design enables production of review documents, textual artifacts, and analyses that are consistent with one-another and require virtually no labor-intensive maintenance across small-scale design changes and multiple authors. This effort thus enables approaches that focus more on rigorous engineering work and less on "PowerPoint engineering" and production of paper-based documents or their "office-productivity" file equivalents.

  4. Propulsion simulation test technique for V/STOL configurations

    NASA Technical Reports Server (NTRS)

    Bailey, R. O.; Smith, S. C.; Bustie, J. B.

    1983-01-01

    Ames Research Center is developing the technology for turbine-powered jet engine simulators so that airframe/propulsion system interactions on V/STOL fighter aircraft and other highly integrated configurations can be studied. This paper describes the status of the compact multimission aircraft propulsion simulator (CMAPS) technology. Three CMAPS units have accumulated a total of 340 hr during approximately 1-1/2 yr of static and wind-tunnel testing. A wind-tunnel test of a twin-engine CMAPS-equipped close-coupled canard-wing V/STOL model configuration with nonaxisymmetric nozzles was recently completed. During this test approximately 140 total hours were logged on two CMAPS units, indicating that the rotating machinery is reliable and that the CMAPS and associated control system provide a usable test tool. However, additional development is required to correct a drive manifold O-ring problem that limits the engine-pressure-ratio (EPR) to approximately 3.5.

  5. A new design for electrospinner collecting device facilitates the removal of small diameter tubular scaffolds and paves the way for tissue engineering of capillaries.

    PubMed

    Sohrabi, Abbas; Naderi, Mahmood; Gorjipour, Fazel; Ghamgosar, Abolfazl; Ahmadbeigi, Naser

    2016-09-10

    Electrospinning is a technique widely used for tissue engineering. Despite hurdles, electrospun vascular tissue scaffolds has shown great promise in in vitro studies. One problem is the removal of tubular scaffolds from a electrospinning collection device with no unwanted crumpling or tearing, especially for small diameter scaffolds. To tackle this problem we designed a collection device for simple removal of the scaffold from the collector while no chemical pretreatment was required. The scaffolds fabricated on this collecting device maintained their tubular structure and showed favorable surface properties, mechanical strength and biocompatibility. The device offers a new opportunity for tissue engineering researchers to fabricate tubular scaffolds from materials which have not been possible to date and help them improve the quality of synthesized scaffolds. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Bioengineering a vaginal replacement using a small biopsy of autologous tissue.

    PubMed

    Dorin, Ryan P; Atala, Anthony; Defilippo, Roger E

    2011-01-01

    Many congenital and acquired diseases result in the absence of a normal vagina. Patients with these conditions often require reconstructive surgery to achieve satisfactory cosmesis and physiological function, and a variety of materials have been used as tissue sources. Currently employed graft materials such as collagen scaffolds and small intestine are not ideal in that they fail to mimic the physiology of normal vaginal tissue. Engineering of true vaginal tissue from a small biopsy of autologous vagina should produce a superior graft material for vaginal reconstruction. This review describes our current experience with the engineering of such tissue and its use for vaginal reconstruction in animal models. Our successful construction and implantation of neovaginas through tissue engineering techniques demonstrates the feasibility of similar endeavors in human patients. Additionally, the use of pluripotent stem cells instead of autologous tissue could provide an "off-the-shelf" tissue source for vaginal reconstruction.

  7. Energy efficient engine combustor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Zeisser, M. H.; Greene, W.; Dubiel, D. J.

    1982-01-01

    The combustor for the Energy Efficient Engine is an annular, two-zone component. As designed, it either meets or exceeds all program goals for performance, safety, durability, and emissions, with the exception of oxides of nitrogen. When compared to the configuration investigated under the NASA-sponsored Experimental Clean Combustor Program, which was used as a basis for design, the Energy Efficient Engine combustor component has several technology advancements. The prediffuser section is designed with short, strutless, curved-walls to provide a uniform inlet airflow profile. Emissions control is achieved by a two-zone combustor that utilizes two types of fuel injectors to improve fuel atomization for more complete combustion. The combustor liners are a segmented configuration to meet the durability requirements at the high combustor operating pressures and temperatures. Liner cooling is accomplished with a counter-parallel FINWALL technique, which provides more effective heat transfer with less coolant.

  8. Optical Sensors for Use in Propulsion Control Systems

    NASA Technical Reports Server (NTRS)

    Fritsch, Klaus

    1997-01-01

    This final technical report describes the results of a cooperative effort which was originally established between John Carroll University and the Instrumentation and Control Technology Division at NASA Lewis Research Center on November, 1982, and then continued with the Engine Sensor Technology Branch at NASA Lewis until March, 1995. All work at John Carroll University was directed by the principal investigator of this grant, Klaus Fritsch, Ph.D. For the first two years of this grant this effort was supervised at NASA by Mr. Robert J. Baumbick and for the remainder of the grant by Dr. Glenn M. Beheim. All research was carried out in close cooperation with Dr. Beheim. Electrically passive optical sensors for measurands such as pressure, temperature, position, and rotational speed are required for aircraft engine control in fly-by-light digital aircraft control systems. Fiberoptic data links and optical multiplexing techniques should be used for combining and processing the outputs from several sensors, sharing as many optical end electronic parts as possible. The overall objective of this grant was to explore techniques for designing and constructing such electrically passive optical sensors for measuring physical parameters in jet aircraft engines and for use in aircraft control systems. We have concentrated our efforts on pressure, temperature, and position sensors employing techniques which are relatively immune to transmissivity variations of the fiber links and to variations in intensity of the light source. Infrared light-emitting diodes are employed because of their longevity and immunity to vibration. We have also studied a number of multiplexing techniques. On the following pages I will give thumbnail sketches of the projects carried out under this grant and provide references to publications and John Carroll M.S. theses which resulted directly from this work and which describe these projects in greater detail.

  9. Global Design Optimization for Aerodynamics and Rocket Propulsion Components

    NASA Technical Reports Server (NTRS)

    Shyy, Wei; Papila, Nilay; Vaidyanathan, Rajkumar; Tucker, Kevin; Turner, James E. (Technical Monitor)

    2000-01-01

    Modern computational and experimental tools for aerodynamics and propulsion applications have matured to a stage where they can provide substantial insight into engineering processes involving fluid flows, and can be fruitfully utilized to help improve the design of practical devices. In particular, rapid and continuous development in aerospace engineering demands that new design concepts be regularly proposed to meet goals for increased performance, robustness and safety while concurrently decreasing cost. To date, the majority of the effort in design optimization of fluid dynamics has relied on gradient-based search algorithms. Global optimization methods can utilize the information collected from various sources and by different tools. These methods offer multi-criterion optimization, handle the existence of multiple design points and trade-offs via insight into the entire design space, can easily perform tasks in parallel, and are often effective in filtering the noise intrinsic to numerical and experimental data. However, a successful application of the global optimization method needs to address issues related to data requirements with an increase in the number of design variables, and methods for predicting the model performance. In this article, we review recent progress made in establishing suitable global optimization techniques employing neural network and polynomial-based response surface methodologies. Issues addressed include techniques for construction of the response surface, design of experiment techniques for supplying information in an economical manner, optimization procedures and multi-level techniques, and assessment of relative performance between polynomials and neural networks. Examples drawn from wing aerodynamics, turbulent diffuser flows, gas-gas injectors, and supersonic turbines are employed to help demonstrate the issues involved in an engineering design context. Both the usefulness of the existing knowledge to aid current design practices and the need for future research are identified.

  10. Analysis of high load dampers

    NASA Technical Reports Server (NTRS)

    Bhat, S. T.; Buono, D. F.; Hibner, D. H.

    1981-01-01

    High load damping requirements for modern jet engines are discussed. The design of damping systems which could satisfy these requirements is also discusseed. In order to evaluate high load damping requirements, engines in three major classes were studied; large transport engines, small general aviation engines, and military engines. Four damper concepts applicable to these engines were evaluated; multi-ring, cartridge, curved beam, and viscous/friction. The most promising damper concept was selected for each engine and performance was assessed relative to conventional dampers and in light of projected damping requirements for advanced jet engines.

  11. Manufacturing engineering: Principles for optimization

    NASA Astrophysics Data System (ADS)

    Koenig, Daniel T.

    Various subjects in the area of manufacturing engineering are addressed. The topics considered include: manufacturing engineering organization concepts and management techniques, factory capacity and loading techniques, capital equipment programs, machine tool and equipment selection and implementation, producibility engineering, methods, planning and work management, and process control engineering in job shops. Also discussed are: maintenance engineering, numerical control of machine tools, fundamentals of computer-aided design/computer-aided manufacture, computer-aided process planning and data collection, group technology basis for plant layout, environmental control and safety, and the Integrated Productivity Improvement Program.

  12. Anomaly Detection Techniques with Real Test Data from a Spinning Turbine Engine-Like Rotor

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Woike, Mark R.; Oza, Nikunj C.; Matthews, Bryan L.

    2012-01-01

    Online detection techniques to monitor the health of rotating engine components are becoming increasingly attractive to aircraft engine manufacturers in order to increase safety of operation and lower maintenance costs. Health monitoring remains a challenge to easily implement, especially in the presence of scattered loading conditions, crack size, component geometry, and materials properties. The current trend, however, is to utilize noninvasive types of health monitoring or nondestructive techniques to detect hidden flaws and mini-cracks before any catastrophic event occurs. These techniques go further to evaluate material discontinuities and other anomalies that have grown to the level of critical defects that can lead to failure. Generally, health monitoring is highly dependent on sensor systems capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system.

  13. Application of enhanced modern structured analysis techniques to Space Station Freedom electric power system requirements

    NASA Technical Reports Server (NTRS)

    Biernacki, John; Juhasz, John; Sadler, Gerald

    1991-01-01

    A team of Space Station Freedom (SSF) system engineers are in the process of extensive analysis of the SSF requirements, particularly those pertaining to the electrical power system (EPS). The objective of this analysis is the development of a comprehensive, computer-based requirements model, using an enhanced modern structured analysis methodology (EMSA). Such a model provides a detailed and consistent representation of the system's requirements. The process outlined in the EMSA methodology is unique in that it allows the graphical modeling of real-time system state transitions, as well as functional requirements and data relationships, to be implemented using modern computer-based tools. These tools permit flexible updating and continuous maintenance of the models. Initial findings resulting from the application of EMSA to the EPS have benefited the space station program by linking requirements to design, providing traceability of requirements, identifying discrepancies, and fostering an understanding of the EPS.

  14. [Advanced online search techniques and dedicated search engines for physicians].

    PubMed

    Nahum, Yoav

    2008-02-01

    In recent years search engines have become an essential tool in the work of physicians. This article will review advanced search techniques from the world of information specialists, as well as some advanced search engine operators that may help physicians improve their online search capabilities, and maximize the yield of their searches. This article also reviews popular dedicated scientific and biomedical literature search engines.

  15. Probing Enzyme-Surface Interactions via Protein Engineering and Single-Molecule Techniques

    DTIC Science & Technology

    2017-06-26

    SECURITY CLASSIFICATION OF: The overall objective of this research was to exploit protein engineering and fluorescence single-molecule methods to... Engineering and Single-Molecule Techniques The views, opinions and/or findings contained in this report are those of the author(s) and should not...Status: Technology Transfer: Report Date: 1 FINAL REPORT Project Title: Probing Enzyme-Surface Interactions via Protein Engineering and

  16. Genetic engineering possibilities for CELSS: A bibliography and summary of techniques

    NASA Technical Reports Server (NTRS)

    Johnson, E. J.

    1982-01-01

    A bibliography of the most useful techniques employed in genetic engineering of higher plants, bacteria associated with plants, and plant cell cultures is provided. A resume of state-of-the-art genetic engineering of plants and bacteria is presented. The potential application of plant bacterial genetic engineering to CELSS (Controlled Ecological Life Support System) program and future research needs are discussed.

  17. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    DTIC Science & Technology

    2015-12-30

    FINAL REPORT Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM...Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M...report contains color. 14. ABSTRACT This project consists of demonstrating the performance and viability of two devices to condition aircraft turbine

  18. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andrew M.; Greene, William D.

    2017-01-01

    The stated goals of NASA's Research Announcement for the Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS and enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Dynetics, Inc. and Aerojet Rocketdyne (AR) formed a team to offer a wide-ranging set of risk reduction activities and full-scale, system-level demonstrations that support NASA's ABEDRR goals. During the ABEDRR effort, the Dynetics Team has modified flight-proven Apollo-Saturn F-1 engine components and subsystems to improve affordability and reliability (e.g., reduce parts counts, touch labor, or use lower cost manufacturing processes and materials). The team has built hardware to validate production costs and completed tests to demonstrate it can meet performance requirements. State-of-the-art manufacturing and processing techniques have been applied to the heritage F-1, resulting in a low recurring cost engine while retaining the benefits of Apollo-era experience. NASA test facilities have been used to perform low-cost risk-reduction engine testing. In early 2014, NASA and the Dynetics Team agreed to move additional large liquid oxygen/kerosene engine work under Dynetics' ABEDRR contract. Also led by AR, the objectives of this work are to demonstrate combustion stability and measure performance of a 500,000 lbf class Oxidizer-Rich Staged Combustion (ORSC) cycle main injector. A trade study was completed to investigate the feasibility, cost effectiveness, and technical maturity of a domestically-produced engine that could potentially both replace the RD-180 on Atlas V and satisfy NASA SLS payload-to-orbit requirements via an advanced booster application. Engine physical dimensions and performance parameters resulting from this study provide the system level requirements for the ORSC risk reduction test article. The test article is scheduled to complete fabrication and assembly soon and continue testing through late 2019. Dynetics has also designed, developed, and built innovative tank and structure assemblies using friction stir welding to leverage recent NASA investments in manufacturing tools, facilities, and processes, significantly reducing development and recurring costs. The full-scale cryotank assembly was used to verify the structural design and prove affordable processes. Dynetics performed hydrostatic and cryothermal proof tests on the assembly to verify the assembly meets performance requirements..

  19. 46 CFR 11.516 - Service requirements for third assistant engineer of steam and/or motor vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Service requirements for third assistant engineer of... Engineer Officer § 11.516 Service requirements for third assistant engineer of steam and/or motor vessels. (a) The minimum service required to qualify an applicant for endorsement as third assistant engineer...

  20. 46 CFR 11.516 - Service requirements for third assistant engineer of steam and/or motor vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Service requirements for third assistant engineer of... Engineer Officer § 11.516 Service requirements for third assistant engineer of steam and/or motor vessels. (a) The minimum service required to qualify an applicant for endorsement as third assistant engineer...

Top