Science.gov

Sample records for requires multiple pathways

  1. Rab6 Is Required for Multiple Apical Transport Pathways but Not the Basolateral Transport Pathway in Drosophila Photoreceptors.

    PubMed

    Iwanami, Nozomi; Nakamura, Yuri; Satoh, Takunori; Liu, Ziguang; Satoh, Akiko K

    2016-02-01

    Polarized membrane trafficking is essential for the construction and maintenance of multiple plasma membrane domains of cells. Highly polarized Drosophila photoreceptors are an excellent model for studying polarized transport. A single cross-section of Drosophila retina contains many photoreceptors with 3 clearly differentiated plasma membrane domains: a rhabdomere, stalk, and basolateral membrane. Genome-wide high-throughput ethyl methanesulfonate screening followed by precise immunohistochemical analysis identified a mutant with a rare phenotype characterized by a loss of 2 apical transport pathways with normal basolateral transport. Rapid gene identification using whole-genome resequencing and single nucleotide polymorphism mapping identified a nonsense mutation of Rab6 responsible for the apical-specific transport deficiency. Detailed analysis of the trafficking of a major rhabdomere protein Rh1 using blue light-induced chromophore supply identified Rab6 as essential for Rh1 to exit the Golgi units. Rab6 is mostly distributed from the trans-Golgi network to a Golgi-associated Rab11-positive compartment that likely recycles endosomes or transport vesicles going to recycling endosomes. Furthermore, the Rab6 effector, Rich, is required for Rab6 recruitment in the trans-Golgi network. Moreover, a Rich null mutation phenocopies the Rab6 null mutant, indicating that Rich functions as a guanine nucleotide exchange factor for Rab6. The results collectively indicate that Rab6 and Rich are essential for the trans-Golgi network-recycling endosome transport of cargoes destined for 2 apical domains. However, basolateral cargos are sorted and exported from the trans-Golgi network in a Rab6-independent manner.

  2. Rab6 Is Required for Multiple Apical Transport Pathways but Not the Basolateral Transport Pathway in Drosophila Photoreceptors

    PubMed Central

    Liu, Ziguang; Satoh, Akiko K.

    2016-01-01

    Polarized membrane trafficking is essential for the construction and maintenance of multiple plasma membrane domains of cells. Highly polarized Drosophila photoreceptors are an excellent model for studying polarized transport. A single cross-section of Drosophila retina contains many photoreceptors with 3 clearly differentiated plasma membrane domains: a rhabdomere, stalk, and basolateral membrane. Genome-wide high-throughput ethyl methanesulfonate screening followed by precise immunohistochemical analysis identified a mutant with a rare phenotype characterized by a loss of 2 apical transport pathways with normal basolateral transport. Rapid gene identification using whole-genome resequencing and single nucleotide polymorphism mapping identified a nonsense mutation of Rab6 responsible for the apical-specific transport deficiency. Detailed analysis of the trafficking of a major rhabdomere protein Rh1 using blue light-induced chromophore supply identified Rab6 as essential for Rh1 to exit the Golgi units. Rab6 is mostly distributed from the trans-Golgi network to a Golgi-associated Rab11-positive compartment that likely recycles endosomes or transport vesicles going to recycling endosomes. Furthermore, the Rab6 effector, Rich, is required for Rab6 recruitment in the trans-Golgi network. Moreover, a Rich null mutation phenocopies the Rab6 null mutant, indicating that Rich functions as a guanine nucleotide exchange factor for Rab6. The results collectively indicate that Rab6 and Rich are essential for the trans-Golgi network–recycling endosome transport of cargoes destined for 2 apical domains. However, basolateral cargos are sorted and exported from the trans-Golgi network in a Rab6-independent manner. PMID:26890939

  3. Rab6 Is Required for Multiple Apical Transport Pathways but Not the Basolateral Transport Pathway in Drosophila Photoreceptors.

    PubMed

    Iwanami, Nozomi; Nakamura, Yuri; Satoh, Takunori; Liu, Ziguang; Satoh, Akiko K

    2016-02-01

    Polarized membrane trafficking is essential for the construction and maintenance of multiple plasma membrane domains of cells. Highly polarized Drosophila photoreceptors are an excellent model for studying polarized transport. A single cross-section of Drosophila retina contains many photoreceptors with 3 clearly differentiated plasma membrane domains: a rhabdomere, stalk, and basolateral membrane. Genome-wide high-throughput ethyl methanesulfonate screening followed by precise immunohistochemical analysis identified a mutant with a rare phenotype characterized by a loss of 2 apical transport pathways with normal basolateral transport. Rapid gene identification using whole-genome resequencing and single nucleotide polymorphism mapping identified a nonsense mutation of Rab6 responsible for the apical-specific transport deficiency. Detailed analysis of the trafficking of a major rhabdomere protein Rh1 using blue light-induced chromophore supply identified Rab6 as essential for Rh1 to exit the Golgi units. Rab6 is mostly distributed from the trans-Golgi network to a Golgi-associated Rab11-positive compartment that likely recycles endosomes or transport vesicles going to recycling endosomes. Furthermore, the Rab6 effector, Rich, is required for Rab6 recruitment in the trans-Golgi network. Moreover, a Rich null mutation phenocopies the Rab6 null mutant, indicating that Rich functions as a guanine nucleotide exchange factor for Rab6. The results collectively indicate that Rab6 and Rich are essential for the trans-Golgi network-recycling endosome transport of cargoes destined for 2 apical domains. However, basolateral cargos are sorted and exported from the trans-Golgi network in a Rab6-independent manner. PMID:26890939

  4. Fluctuation of multiple metabolic pathways is required for Escherichia coli in response to chlortetracycline stress.

    PubMed

    Lin, Xiangmin; Kang, Liqun; Li, Hui; Peng, Xuanxian

    2014-04-01

    Bacterial antibiotic resistance has become a worldwide challenge with the overuse and misuse of drugs. Several mechanisms for the resistance are revealed, but information regarding the bacterial global response to antibiotics is largely absent. In this study, we characterized the differential proteome of Escherichia coli K12 BW25113 in response to chlortetracycline stress using isobaric tags for relative and absolute quantitation labeling quantitative proteomics technology. A total of 723 proteins including 10,763 peptides were identified with 184 decreasing and 147 increasing in abundance by liquid chromatography matrix assisted laser desorption ionization mass spectrometry. Most interestingly, crucial metabolic pathways such as the tricarboxylic acid cycle, pyruvate metabolism and glycolysis/gluconeogenesis sharply fluctuated, while the ribosome protein complexes contributing to the translation process were generally elevated in chlortetracycline stress, which is known for a compensative tactic due to the action of chlortetracycline on the ribosome. Further antimicrobial susceptibility assays validated the role of differential proteins in metabolic pathways using genetically modified mutants of gene deletion of these differential proteins. Our study demonstrated that the down-regulation of metabolic pathways was a part of the global response and played an important role in the antibiotics resistance. These results indicate that reverting of these fluctuated pathways may become a novel strategy to combat antibiotic-resistant bacteria.

  5. Convergence of multiple signaling pathways is required to coordinately up-regulate mtDNA and mitochondrial biogenesis during T cell activation.

    PubMed

    D'Souza, Anthony D; Parikh, Neal; Kaech, Susan M; Shadel, Gerald S

    2007-12-01

    The quantity and activity of mitochondria vary dramatically in tissues and are modulated in response to changing cellular energy demands and environmental factors. The amount of mitochondrial DNA (mtDNA), which encodes essential subunits of the oxidative phosphorylation complexes required for cellular ATP production, is also tightly regulated, but by largely unknown mechanisms. Using murine T cells as a model system, we have addressed how specific signaling pathways influence mitochondrial biogenesis and mtDNA copy number. T cell receptor (TCR) activation results in a large increase in mitochondrial mass and membrane potential and a corresponding amplification of mtDNA, consistent with a vital role for mitochondrial function for growth and proliferation of these cells. Independent activation of protein kinase C (via PMA) or calcium-related pathways (via ionomycin) had differential and sub-maximal effects on these mitochondrial parameters, as did activation of naïve T cells with proliferative cytokines. Thus, the robust mitochondrial biogenesis response observed upon TCR activation requires synergy of multiple downstream signaling pathways. One such pathway involves AMP-activated protein kinase (AMPK), which we show has an unprecedented role in negatively regulating mitochondrial biogenesis that is mammalian target of rapamycin (mTOR)-dependent. That is, inhibition of AMPK after TCR signaling commences results in excessive, but uncoordinated mitochondrial proliferation. Thus mitochondrial biogenesis is not under control of a single master regulatory circuit, but rather requires the convergence of multiple signaling pathways with distinct downstream consequences on the organelle's structure, composition, and function.

  6. Convergence of multiple signaling pathways is required to coordinately up-regulate mtDNA and mitochondrial biogenesis during T cell activation

    PubMed Central

    D’Souza, Anthony D.; Parikh, Neal; Kaech, Susan M.; Shadel, Gerald S.

    2009-01-01

    The quantity and activity of mitochondria vary dramatically in tissues and are modulated in response to changing cellular energy demands and environmental factors. The amount of mitochondrial DNA (mtDNA), which encodes essential subunits of the oxidative phosphorylation complexes required for cellular ATP production, is also tightly regulated, but by largely unknown mechanisms. Using murine T cells as a model system, we have addressed how specific signaling pathways influence mitochondrial biogenesis and mtDNA levels. T cell receptor (TCR) activation results in a large increase in mitochondrial mass and membrane potential and a corresponding increase of mtDNA copy number, indicating the vital role for mitochondrial function for the growth and proliferation of these cells. Independent activation of protein kinase C (via PMA) or calcium-related pathways (via ionomycin) had differential and sub-maximal effects on these mitochondrial parameters, as did activation of naïve T cells with proliferative cytokines. Thus, the robust mitochondrial biogenesis response observed upon TCR activation requires synergy of multiple downstream signaling pathways. One such pathway involves AMP-activated protein kinase (AMPK), which we show has an unprecedented role in negatively regulating mitochondrial biogenesis that is mammalian target of rapamycin (mTOR)-dependent. That is, inhibition of AMPK after TCR signaling commences results in excessive, but uncoordinated mitochondrial proliferation. We propose that mitochondrial biogenesis is not under control of a master regulatory circuit, but rather requires the convergence of multiple signaling pathways with distinct downstream consequences on the organelle’s structure, composition, and function. PMID:17890163

  7. Multiple Pathways for All Students

    ERIC Educational Resources Information Center

    Stirling, Lee Anna

    2012-01-01

    Maine has been focusing on the importance of postsecondary training. Maine's Skowhegan Area High School (SAHS) and Somerset Career and Technical Center (SCTC) have partnered in a Multiple Pathways initiative (funded by the Nellie Mae Education Foundation) to increase students' high school completion rate and to increase enrollment in postsecondary…

  8. Multiple pathways regulate shoot branching

    PubMed Central

    Rameau, Catherine; Bertheloot, Jessica; Leduc, Nathalie; Andrieu, Bruno; Foucher, Fabrice; Sakr, Soulaiman

    2015-01-01

    Shoot branching patterns result from the spatio-temporal regulation of axillary bud outgrowth. Numerous endogenous, developmental and environmental factors are integrated at the bud and plant levels to determine numbers of growing shoots. Multiple pathways that converge to common integrators are most probably involved. We propose several pathways involving not only the classical hormones auxin, cytokinins and strigolactones, but also other signals with a strong influence on shoot branching such as gibberellins, sugars or molecular actors of plant phase transition. We also deal with recent findings about the molecular mechanisms and the pathway involved in the response to shade as an example of an environmental signal controlling branching. We propose the TEOSINTE BRANCHED1, CYCLOIDEA, PCF transcription factor TB1/BRC1 and the polar auxin transport stream in the stem as possible integrators of these pathways. We finally discuss how modeling can help to represent this highly dynamic system by articulating knowledges and hypothesis and calculating the phenotype properties they imply. PMID:25628627

  9. Destruction Complex Function in the Wnt Signaling Pathway of Drosophila Requires Multiple Interactions Between Adenomatous Polyposis Coli 2 and Armadillo

    PubMed Central

    Kunttas-Tatli, Ezgi; Zhou, Meng-Ning; Zimmerman, Sandra; Molinar, Olivia; Zhouzheng, Fangyuan; Carter, Krista; Kapur, Megha; Cheatle, Alys; Decal, Richard; McCartney, Brooke M.

    2012-01-01

    The tumor suppressor Adenomatous polyposis coli (APC) negatively regulates Wnt signaling through its activity in the destruction complex. APC binds directly to the main effector of the pathway, β-catenin (βcat, Drosophila Armadillo), and helps to target it for degradation. In vitro studies demonstrated that a nonphosphorylated 20-amino-acid repeat (20R) of APC binds to βcat through the N-terminal extended region of a 20R. When phosphorylated, the phospho-region of an APC 20R also binds βcat and the affinity is significantly increased. These distinct APC–βcat interactions suggest different models for the sequential steps of destruction complex activity. However, the in vivo role of 20R phosphorylation and extended region interactions has not been rigorously tested. Here we investigated the functional role of these molecular interactions by making targeted mutations in Drosophila melanogaster APC2 that disrupt phosphorylation and extended region interactions and deletion mutants missing the Armadillo binding repeats. We tested the ability of these mutants to regulate Wnt signaling in APC2 null and in APC2 APC1 double-null embryos. Overall, our in vivo data support the role of phosphorylation and extended region interactions in APC2’s destruction complex function, but suggest that the extended region plays a more significant functional role. Furthermore, we show that the Drosophila 20Rs with homology to the vertebrate APC repeats that have the highest affinity for βcat are functionally dispensable, contrary to biochemical predictions. Finally, for some mutants, destruction complex function was dependent on APC1, suggesting that APC2 and APC1 may act cooperatively in the destruction complex. PMID:22174073

  10. Moral enhancement requires multiple virtues.

    PubMed

    Hughes, James J

    2015-01-01

    Some of the debates around the concept of moral enhancement have focused on whether the improvement of a single trait, such as empathy or intelligence, would be a good in general, or in all circumstances. All virtue theories, however, both secular and religious, have articulated multiple virtues that temper and inform one another in the development of a mature moral character. The project of moral enhancement requires a reengagement with virtue ethics and contemporary moral psychology to develop an empirically grounded model of the virtues and a fuller model of character development. Each of these virtues may be manipulable with electronic, psychopharmaceutical, and genetic interventions. A set of interdependent virtues is proposed, along with some of the research pointing to ways such virtues could be enhanced.

  11. Moral enhancement requires multiple virtues.

    PubMed

    Hughes, James J

    2015-01-01

    Some of the debates around the concept of moral enhancement have focused on whether the improvement of a single trait, such as empathy or intelligence, would be a good in general, or in all circumstances. All virtue theories, however, both secular and religious, have articulated multiple virtues that temper and inform one another in the development of a mature moral character. The project of moral enhancement requires a reengagement with virtue ethics and contemporary moral psychology to develop an empirically grounded model of the virtues and a fuller model of character development. Each of these virtues may be manipulable with electronic, psychopharmaceutical, and genetic interventions. A set of interdependent virtues is proposed, along with some of the research pointing to ways such virtues could be enhanced. PMID:25473861

  12. Demonstration of differential quantitative requirements for NSF among multiple vesicle fusion pathways of GLUT4 using a dominant-negative ATPase-deficient NSF

    SciTech Connect

    Chen Xiaoli; Matsumoto, Hideko; Hinck, Cynthia S.; Al-Hasani, Hadi; St-Denis, Jean-Francois; Whiteheart, Sidney W.; Cushman, Samuel W. . E-mail: sam_cushman@nih.gov

    2005-07-22

    In this study, we investigated the relative participation of N-ethylmaleimide-sensitive factor (NSF) in vivo in a complex multistep vesicle trafficking system, the translocation response of GLUT4 to insulin in rat adipose cells. Transfections of rat adipose cells demonstrate that over-expression of wild-type NSF has no effect on total, or basal and insulin-stimulated cell-surface expression of HA-tagged GLUT4. In contrast, a dominant-negative NSF (NSF-D1EQ) can be expressed at a low enough level that it has little effect on total HA-GLUT4, but does reduce both basal and insulin-stimulated cell-surface HA-GLUT4 by {approx}50% without affecting the GLUT4 fold-translocation response to insulin. However, high expression levels of NSF-D1EQ decrease total HA-GLUT4. The inhibitory effect of NSF-D1EQ on cell-surface HA-GLUT4 is reversed when endocytosis is inhibited by co-expression of a dominant-negative dynamin (dynamin-K44A). Moreover, NSF-D1EQ does not affect cell-surface levels of constitutively recycling GLUT1 and TfR, suggesting a predominant effect of low-level NSF-D1EQ on the trafficking of GLUT4 from the endocytic recycling compared to the intracellular GLUT4-specific compartment. Thus, our data demonstrate that the multiple fusion steps in GLUT4 trafficking have differential quantitative requirements for NSF activity. This indicates that the rates of plasma and intracellular membrane fusion reactions vary, leading to differential needs for the turnover of the SNARE proteins.

  13. Beyond Tracking: Multiple Pathways to College, Career, and Civic Participation

    ERIC Educational Resources Information Center

    Oakes, Jeannie, Ed.; Saunders, Marisa, Ed.

    2008-01-01

    "Beyond Tracking" responds to the a sobering assessment of American high schools by delineating and promoting an innovative and well-defined notion of multiple pathways. The book's authors clearly distinguish their use of the term "multiple pathways" from any updated version of the tracking system that marked so many American high schools during…

  14. Extreme-longevity mutations orchestrate silencing of multiple signaling pathways.

    PubMed

    Shmookler Reis, Robert J; Bharill, Puneet; Tazearslan, Cagdas; Ayyadevara, Srinivas

    2009-10-01

    Long-lived mutants provide unique insights into the genetic factors that limit lifespan in wild-type animals. Most mutants and RNA interference targets found to extend life, typically by 1.5- to 2.5-fold, were discovered in C. elegans. Several longevity-assurance pathways are conserved across widely divergent taxa, indicating that mechanisms of lifespan regulation evolved several hundred million years ago. Strong mutations to the C. elegans gene encoding AGE-1/PI3KCS achieve unprecedented longevity by orchestrating the modulation (predominantly silencing) of multiple signaling pathways. This is evident in a profound attenuation of total kinase activity, leading to reduced phosphoprotein content. Mutations to the gene encoding the catalytic subunit of PI3K (phosphatidylinositol 3-kinase) have the potential to modulate all enzymes that depend on its product, PIP3, for membrane tethering or activation by other kinases. Remarkably, strong mutants inactivating PI3K also silence multiple signaling pathways at the transcript level, partially but not entirely mediated by the DAF-16/FOXO transcription factor. Mammals have a relatively large proportion of somatic cells, and survival depends on their replication, whereas somatic cell divisions in nematodes are limited to development and reproductive tissues. Thus, translation of longevity gains from nematodes to mammals requires disentangling the downstream consequences of signaling mutations, to avoid their deleterious consequences.

  15. Pentagone internalises glypicans to fine-tune multiple signalling pathways.

    PubMed

    Norman, Mark; Vuilleumier, Robin; Springhorn, Alexander; Gawlik, Jennifer; Pyrowolakis, George

    2016-01-01

    Tight regulation of signalling activity is crucial for proper tissue patterning and growth. Here we investigate the function of Pentagone (Pent), a secreted protein that acts in a regulatory feedback during establishment and maintenance of BMP/Dpp morphogen signalling during Drosophila wing development. We show that Pent internalises the Dpp co-receptors, the glypicans Dally and Dally-like protein (Dlp), and propose that this internalisation is important in the establishment of a long range Dpp gradient. Pent-induced endocytosis and degradation of glypicans requires dynamin- and Rab5, but not clathrin or active BMP signalling. Thus, Pent modifies the ability of cells to trap and transduce BMP by fine-tuning the levels of the BMP reception system at the plasma membrane. In addition, and in accordance with the role of glypicans in multiple signalling pathways, we establish a requirement of Pent for Wg signalling. Our data propose a novel mechanism by which morphogen signalling is regulated. PMID:27269283

  16. Multiple Pathways Linking Racism to Health Outcomes.

    PubMed

    Harrell, Camara Jules P; Burford, Tanisha I; Cage, Brandi N; Nelson, Travette McNair; Shearon, Sheronda; Thompson, Adrian; Green, Steven

    2011-04-15

    This commentary discusses advances in the conceptual understanding of racism and selected research findings in the social neurosciences. The traditional stress and coping model holds that racism constitutes a source of aversive experiences that, when perceived by the individual, eventually lead to poor health outcomes. Current evidence points to additional psychophysiological pathways linking facets of racist environments with physiological reactions that contribute to disease. The alternative pathways emphasize prenatal experiences, subcortical emotional neural circuits, conscious and preconscious emotion regulation, perseverative cognitions, and negative affective states stemming from racist cognitive schemata. Recognition of these pathways challenges change agents to use an array of cognitive and self-controlling interventions in mitigating racism's impact. Additionally, it charges policy makers to develop strategies that eliminate deep-seated structural aspects of racism in society.

  17. Multiple pathways of commodity crop expansion in tropical forest landscapes

    NASA Astrophysics Data System (ADS)

    Meyfroidt, Patrick; Carlson, Kimberly M.; Fagan, Matthew E.; Gutiérrez-Vélez, Victor H.; Macedo, Marcia N.; Curran, Lisa M.; DeFries, Ruth S.; Dyer, George A.; Gibbs, Holly K.; Lambin, Eric F.; Morton, Douglas C.; Robiglio, Valentina

    2014-07-01

    Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7% and 89.5% of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already-cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement

  18. Multiple Pathways for Protein Transport to Peroxisomes

    PubMed Central

    Kim, P.K.; Hettema, E.H.

    2015-01-01

    Peroxisomes are unique among the organelles of the endomembrane system. Unlike other organelles that derive most if not all of their proteins from the ER (endoplasmic reticulum), peroxisomes contain dedicated machineries for import of matrix proteins and insertion of membrane proteins. However, peroxisomes are also able to import a subset of their membrane proteins from the ER. One aspect of peroxisome biology that has remained ill defined is the role the various import pathways play in peroxisome maintenance. In this review, we discuss the available data on matrix and membrane protein import into peroxisomes. PMID:25681696

  19. Multiple pathways for protein transport to peroxisomes.

    PubMed

    Kim, P K; Hettema, E H

    2015-03-27

    Peroxisomes are unique among the organelles of the endomembrane system. Unlike other organelles that derive most if not all of their proteins from the ER (endoplasmic reticulum), peroxisomes contain dedicated machineries for import of matrix proteins and insertion of membrane proteins. However, peroxisomes are also able to import a subset of their membrane proteins from the ER. One aspect of peroxisome biology that has remained ill defined is the role the various import pathways play in peroxisome maintenance. In this review, we discuss the available data on matrix and membrane protein import into peroxisomes.

  20. Multiple degradation pathways for Fos family proteins.

    PubMed

    Acquaviva, Claire; Bossis, Guillaume; Ferrara, Patrizia; Brockly, Frederique; Jariel-Encontre, Isabelle; Piechaczyk, Marc

    2002-11-01

    c-Fos protooncoprotein is a short-lived transcription factor with oncogenic potential. It is massively degraded by the proteasome in vivo under various experimental conditions. Those include consititutive expression in exponentially growing cells and transient induction in cells undergoing the G0/G1 phase transition upon stimulation by serum. Though there is evidence that c-Fos can be ubiquitinylated in vitro, the unambigous demonstration that prior ubiquitinylation is necessary for degradation by the proteasome in vivo is still lacking. c-Jun, one of the main dimerization partners of c-Fos within the AP-1 transcription complex, is also an unstable protein. Its degradation is clearly proteasome dependent. However, several lines of evidence indicate that the mechanisms by which it addresses the proteasome are different from those operating on c-Fos. Moreover, genetic analysis has indicated that c-Fos is addressed to the proteasome via pathways that differ depending on the conditions of expression. c-Fos has been transduced by two murine osteosarcomatogenic retroviruses in mutated forms, which are more stable and more oncogenic. The stabilization is not simply accounted for by simple deletion of one of the main c-Fos destabilizers but, rather, by a complex balance between opposing destabilizing and stabilizing mutations. However, although viral Fos proteins have acquired full resistance to proteasomal degradation, stabilization is limited because the mutations they have accumulated, during or after c-fos gene transduction, confer sensitivity to an unidentified proteolytic system(s). This observation is consistent with the idea that fos-expressing viruses have evolved expression machineries to ensure controlled protein levels in order to maintain an optimal balance between prooncogenic and proapoptotic activities of v-Fos proteins.

  1. Pentagone internalises glypicans to fine-tune multiple signalling pathways

    PubMed Central

    Norman, Mark; Vuilleumier, Robin; Springhorn, Alexander; Gawlik, Jennifer; Pyrowolakis, George

    2016-01-01

    Tight regulation of signalling activity is crucial for proper tissue patterning and growth. Here we investigate the function of Pentagone (Pent), a secreted protein that acts in a regulatory feedback during establishment and maintenance of BMP/Dpp morphogen signalling during Drosophila wing development. We show that Pent internalises the Dpp co-receptors, the glypicans Dally and Dally-like protein (Dlp), and propose that this internalisation is important in the establishment of a long range Dpp gradient. Pent-induced endocytosis and degradation of glypicans requires dynamin- and Rab5, but not clathrin or active BMP signalling. Thus, Pent modifies the ability of cells to trap and transduce BMP by fine-tuning the levels of the BMP reception system at the plasma membrane. In addition, and in accordance with the role of glypicans in multiple signalling pathways, we establish a requirement of Pent for Wg signalling. Our data propose a novel mechanism by which morphogen signalling is regulated. DOI: http://dx.doi.org/10.7554/eLife.13301.001 PMID:27269283

  2. Multiple oxygen entry pathways in globin proteins revealed by intrinsic pathway identification method

    NASA Astrophysics Data System (ADS)

    Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka

    2015-12-01

    Each subunit of human hemoglobin (HbA) stores an oxygen molecule (O2) in the binding site (BS) cavity near the heme group. The BS is buried in the interior of the subunit so that there is a debate over the O2 entry pathways from solvent to the BS; histidine gate or multiple pathways. To elucidate the O2 entry pathways, we executed ensemble molecular dynamics (MD) simulations of T-state tetramer HbA in high concentration O2 solvent to simulate spontaneous O2 entry from solvent into the BS. By analyzing 128 independent 8 ns MD trajectories by intrinsic pathway identification by clustering (IPIC) method, we found 141 and 425 O2 entry events into the BS of the α and β subunits, respectively. In both subunits, we found that multiple O2 entry pathways through inside cavities play a significant role for O2 entry process of HbA. The rate constants of O2 entry estimated from the MD trajectories correspond to the experimentally observed values. In addition, by analyzing monomer myoglobin, we verified that the high O2 concentration condition can reproduce the ratios of each multiple pathway in the one-tenth lower O2 concentration condition. These indicate the validity of the multiple pathways obtained in our MD simulations.

  3. Developing Teacher Leadership in Singapore: Multiple Pathways for Differentiated Journeys

    ERIC Educational Resources Information Center

    Goodwin, A. Lin; Low, Ee Ling; Ng, Pak Tee

    2015-01-01

    In this article, we examine quality teachers through teacher leadership development. Using Singapore as an illustrative case, we describe the redefinition of the teaching profession to include deliberate structures and multiple pathways designed to nurture teacher leaders, and the role of teacher leaders in supporting education reform. We go on to…

  4. Costs of California Multiple Pathway Programs. Policy Report

    ERIC Educational Resources Information Center

    Parsi, Ace; Plank, David; Stern, David

    2010-01-01

    There is widespread agreement that many of California's high schools are doing a poor job of preparing their students for college and careers. The James Irvine Foundation is sponsoring a major initiative to develop "Multiple Pathways"--now called the Linked Learning approach--as a strategy for improving the performance of California high schools.…

  5. Making assessments while taking repeated risks: a pattern of multiple response pathways.

    PubMed

    Pleskac, Timothy J; Wershbale, Avishai

    2014-02-01

    Beyond simply a decision process, repeated risky decisions also require a number of cognitive processes including learning, search and exploration, and attention. In this article, we examine how multiple response pathways develop over repeated risky decisions. Using the Balloon Analogue Risk Task (BART) as a case study, we show that 2 different response pathways emerge over the course of the task. The assessment pathway is a slower, more controlled pathway where participants deliberate over taking a risk. The 2nd pathway is a faster, more automatic process where no deliberation occurs. Results imply the slower assessment pathway is taken as choice conflict increases and that the faster automatic response is a learned response. Based on these results, we modify an existing formal cognitive model of decision making during the BART to account for these dual response pathways. The slower more deliberative response process is modeled with a sequential sampling process where evidence is accumulated to a threshold, while the other response is given automatically. We show that adolescents with conduct disorder and substance use disorder symptoms not only evaluate risks differently during the BART but also differ in the rate at which they develop the more automatic response. More broadly, our results suggest cognitive models of judgment decision making need to transition from treating observed decisions as the result of a single response pathway to the result of multiple response pathways that change and develop over time. PMID:23276285

  6. Multiple-camera tracking: UK government requirements

    NASA Astrophysics Data System (ADS)

    Hosmer, Paul

    2007-10-01

    The Imagery Library for Intelligent Detection Systems (i-LIDS) is the UK government's new standard for Video Based Detection Systems (VBDS). The standard was launched in November 2006 and evaluations against it began in July 2007. With the first four i-LIDS scenarios completed, the Home Office Scientific development Branch (HOSDB) are looking toward the future of intelligent vision in the security surveillance market by adding a fifth scenario to the standard. The fifth i-LIDS scenario will concentrate on the development, testing and evaluation of systems for the tracking of people across multiple cameras. HOSDB and the Centre for the Protection of National Infrastructure (CPNI) identified a requirement to track targets across a network of CCTV cameras using both live and post event imagery. The Detection and Vision Systems group at HOSDB were asked to determine the current state of the market and develop an in-depth Operational Requirement (OR) based on government end user requirements. Using this OR the i-LIDS team will develop a full i-LIDS scenario to aid the machine vision community in its development of multi-camera tracking systems. By defining a requirement for multi-camera tracking and building this into the i-LIDS standard the UK government will provide a widely available tool that developers can use to help them turn theory and conceptual demonstrators into front line application. This paper will briefly describe the i-LIDS project and then detail the work conducted in building the new tracking aspect of the standard.

  7. Umami taste in mice uses multiple receptors and transduction pathways

    PubMed Central

    Yasumatsu, Keiko; Ogiwara, Yoko; Takai, Shingo; Yoshida, Ryusuke; Iwatsuki, Ken; Torii, Kunio; Margolskee, Robert F; Ninomiya, Yuzo

    2012-01-01

    Non-technical summary The distinctive umami taste elicited by l-glutamate and some other amino acids is thought to be initiated by G-protein-coupled receptors, such as heteromers of taste receptor type 1, members 1 and 3, and metabotropic glutamate receptors 1 and 4. We demonstrate the existence of multiple types of glutamate-sensitive gustatory nerve fibres and the contribution of multiple receptors and transduction pathways to umami taste. Such multiple systems for umami taste may differentially contribute to the behavioural preference for glutamate and discriminability of glutamate taste. Abstract The distinctive umami taste elicited by l-glutamate and some other amino acids is thought to be initiated by G-protein-coupled receptors. Proposed umami receptors include heteromers of taste receptor type 1, members 1 and 3 (T1R1+T1R3), and metabotropic glutamate receptors 1 and 4 (mGluR1 and mGluR4). Multiple lines of evidence support the involvement of T1R1+T1R3 in umami responses of mice. Although several studies suggest the involvement of receptors other than T1R1+T1R3 in umami, the identity of those receptors remains unclear. Here, we examined taste responsiveness of umami-sensitive chorda tympani nerve fibres from wild-type mice and mice genetically lacking T1R3 or its downstream transduction molecule, the ion channel TRPM5. Our results indicate that single umami-sensitive fibres in wild-type mice fall into two major groups: sucrose-best (S-type) and monopotassium glutamate (MPG)-best (M-type). Each fibre type has two subtypes; one shows synergism between MPG and inosine monophosphate (S1, M1) and the other shows no synergism (S2, M2). In both T1R3 and TRPM5 null mice, S1-type fibres were absent, whereas S2-, M1- and M2-types remained. Lingual application of mGluR antagonists selectively suppressed MPG responses of M1- and M2-type fibres. These data suggest the existence of multiple receptors and transduction pathways for umami responses in mice. Information

  8. Ubiquitin-protein ligases in muscle wasting: multiple parallel pathways?

    NASA Technical Reports Server (NTRS)

    Lecker, Stewart H.; Goldberg, A. L. (Principal Investigator)

    2003-01-01

    PURPOSE OF REVIEW: Studies in a wide variety of animal models of muscle wasting have led to the concept that increased protein breakdown via the ubiquitin-proteasome pathway is responsible for the loss of muscle mass seen as muscle atrophy. The complexity of the ubiquitination apparatus has hampered our understanding of how this pathway is activated in atrophying muscles and which ubiquitin-conjugating enzymes in muscle are responsible. RECENT FINDINGS: Recent experiments have shown that two newly identified ubiquitin-protein ligases (E3s), atrogin-1/MAFbx and MURF-1, are critical in the development of muscle atrophy. Other in-vitro studies also implicated E2(14k) and E3alpha, of the N-end rule pathway, as playing an important role in the process. SUMMARY: It seems likely that multiple pathways of ubiquitin conjugation are activated in parallel in atrophying muscle, perhaps to target for degradation specific classes of muscle proteins. The emerging challenge will be to define the protein targets for, as well as inhibitors of, these E3s.

  9. Multiple Pathways to Long-lasting Phrenic Motor Facilitation

    PubMed Central

    Dale-Nagle, Erica A.; Hoffman, Michael S.; MacFarlane, Peter M.; Mitchell, Gordon S.

    2010-01-01

    Plasticity is a hallmark of neural systems, including the neural system controlling breathing (Mitchell and Johnson, 2003). Despite its biological and potential clinical significance, our understanding of mechanisms giving rise to any form of respiratory plasticity remains incomplete. Here we discuss recent advances in our understanding of cellular mechanisms giving rise to phrenic long-term facilitation (pLTF), a long-lasting increase in phrenic motor output induced by acute intermittent hypoxia (AIH). Recently, we have come to realize that multiple, distinct mechanisms are capable of giving rise to long-lasting phrenic motor facilitation (PMF); we use PMF as a general term that includes AIH-induced pLTF. It is important to begin an appreciation and understanding of these diverse pathways. Hence, we introduce a nomenclature based on upstream steps in the signaling cascade leading to PMF. Two pathways are featured here: the “Q” and the “S” pathways, named because they are induced by metabotropic receptors coupled to Gq and Gs proteins, respectively. These pathways appear to interact in complex and interesting ways, thus providing a range of potential responses in the face of changing physiological conditions or the onset of disease. PMID:20217354

  10. Estrogen Stimulation of Cell Migration Involves Multiple Signaling Pathway Interactions

    PubMed Central

    Li, Yan; Wang, Ji-Ping; Santen, Richard J.; Kim, Tae-Hyun; Park, Hoyong; Fan, Ping; Yue, Wei

    2010-01-01

    Hormone-dependent breast cancers respond to inhibitors of estrogen synthesis or action with tumor regression and with a reduction of new metastases. The mechanisms underlying the effects of estrogen on metastasis likely differ from those on tumor regression. Cell migration is a key first step in the metastatic process. Based on our prior work and other published data, we designed and tested a working model that suggested that estrogen receptor α, epidermal growth factor receptor, focal adhesion kinase (FAK), paxillin, phosphatidylinositol 3 kinase, p60 Src tyrosine kinase (c-Src), c-Jun N-terminal kinase, and MAPK interact to facilitate estradiol (E2)-induced cell migration. Accordingly, we examined the effect of E2 on activation of these pathways and demonstrated mechanistic effects by blocking each component and assessing cell migration as a biologic endpoint. Initial studies validated a robust cell migration assay characterized by highly reproducible, dose-dependent responses to E2. Examining various mechanisms involved in migration, we showed that E2 induced activation of c-Src, FAK, and paxillin with early peaks within 5–30 min and later peaks at 24 h. ERK and protein kinase B phosphorylation exhibited only early peaks. Blockade of various steps in these signaling pathways with use of small interfering RNA or specific inhibitors demonstrated mechanistic effects of these signaling molecules on cell migration. Our results suggest that the effects of E2 on cell migration involve multiple, interacting signaling pathways. Important effects are mediated by the MAPK, phosphatidylinositol 3 kinase, and c-Jun N-terminal kinase pathways and use FAK, paxillin, and c-Src for activation. Each pathway represents a potential target for blocking cell migration and metastasis of breast cancer cells. PMID:20861240

  11. EVIDENCE FOR MULTIPLE PATHWAYS TO DEUTERIUM ENHANCEMENTS IN PROTOPLANETARY DISKS

    SciTech Connect

    Oeberg, Karin I.; Qi, Chunhua; Wilner, David J.; Hogerheijde, Michiel R.

    2012-04-20

    The distributions of deuterated molecules in protoplanetary disks are expected to depend on the molecular formation pathways. We use observations of spatially resolved DCN emission from the disk around TW Hya, acquired during ALMA science verification with a {approx}3'' synthesized beam, together with comparable DCO{sup +} observations from the Submillimeter Array, to investigate differences in the radial distributions of these species and hence differences in their formation chemistry. In contrast to DCO{sup +}, which shows an increasing column density with radius, DCN is better fit by a model that is centrally peaked. We infer that DCN forms at a smaller radii and thus at higher temperatures than DCO{sup +}. This is consistent with chemical network model predictions of DCO{sup +} formation from H{sub 2}D{sup +} at T < 30 K and DCN formation from additional pathways involving CH{sub 2}D{sup +} at higher temperatures. We estimate a DCN/HCN abundance ratio of {approx}0.017, similar to the DCO{sup +}/HCO{sup +} abundance ratio. Deuterium fractionation appears to be efficient at a range of temperatures in this protoplanetary disk. These results suggest caution in interpreting the range of deuterium fractions observed in solar system bodies, as multiple formation pathways should be taken into account.

  12. Linking multiple pathogenic pathways in Alzheimer’s disease

    PubMed Central

    Bou Khalil, Rami; Khoury, Elie; Koussa, Salam

    2016-01-01

    Alzheimer’s disease (AD) is a chronic neurodegenerative disorder presenting as progressive cognitive decline with dementia that does not, to this day, benefit from any disease-modifying drug. Multiple etiologic pathways have been explored and demonstrate promising solutions. For example, iron ion chelators, such as deferoxamine, are a potential therapeutic solution around which future studies are being directed. Another promising domain is related to thrombin inhibitors. In this minireview, a common pathophysiological pathway is suggested for the pathogenesis of AD to prove that all these mechanisms converge onto the same cascade of neuroinflammatory events. This common pathway is initiated by the presence of vascular risk factors that induce brain tissue hypoxia, which leads to endothelial cell activation. However, the ensuing hypoxia stimulates the production and release of reactive oxygen species and pro-inflammatory proteins. Furthermore, the endothelial activation may become excessive and dysfunctional in predisposed individuals, leading to thrombin activation and iron ion decompartmentalization. The oxidative stress that results from these modifications in the neurovascular unit will eventually lead to neuronal and glial cell death, ultimately leading to the development of AD. Hence, future research in this field should focus on conducting trials with combinations of potentially efficient treatments, such as the combination of intranasal deferoxamine and direct thrombin inhibitors. PMID:27354962

  13. Development of water requirement factors for biomass conversion pathway.

    PubMed

    Singh, Shikhar; Kumar, Amit

    2011-01-01

    Published data were used to develop an integrated spreadsheet-based model to estimate total water requirement for 12 biomass conversion pathways. The water requirement for crop production was attributed only to the grains in the estimates since agricultural residues are produced irrespective of their use for fuel or electricity. Corn stover- and wheat straw-based ethanol production pathways are water efficient, requiring only 0.3 l, whereas biopower production pathways (i.e. direct combustion and bio-oil production) require about 0.8-0.9 l of water per MJ. Wheat- and corn-based ethanol production pathways consume 77 and 108 l of water per MJ, respectively. Utilization of switchgrass for production of ethanol, biopower through the direct combustion, and pyrolysis consume 128, 187 and 229 l of water per MJ, respectively. Biodiesel production from canola seed consumes 124 l of water per MJ. Corn stover- and wheat straw-based conversion pathways are most water efficient. PMID:20888758

  14. Multiplicity and plasticity of natural killer cell signaling pathways

    PubMed Central

    Chiesa, Sabrina; Mingueneau, Michael; Fuseri, Nicolas; Malissen, Bernard; Raulet, David H.; Malissen, Marie; Vivier, Eric; Tomasello, Elena

    2006-01-01

    Natural killer (NK) cells express an array of activating receptors that associate with DAP12 (KARAP), CD3ζ, and/or FcRγ ITAM (immunoreceptor tyrosine-based activation motif)–bearing signaling subunits. In T and mast cells, ITAM-dependent signals are integrated by critical scaffolding elements such as LAT (linker for activation of T cells) and NTAL (non–T-cell activation linker). Using mice that are deficient for ITAM-bearing molecules, LAT or NTAL, we show that NK cell cytotoxicity and interferon-γ secretion are initiated by ITAM-dependent and -independent as well as LAT/NTAL-dependent and -independent pathways. The role of these various signaling circuits depends on the target cell as well as on the activation status of the NK cell. The multiplicity and the plasticity of the pathways that initiate NK cell effector functions contrast with the situation in T cells and B cells and provide an explanation for the resiliency of NK cell effector functions to various pharmacologic inhibitors and genetic mutations in signaling molecules. PMID:16291591

  15. 27 CFR 46.235 - Filing requirements for multiple locations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Filing requirements for multiple locations. 46.235 Section 46.235 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... requirements for multiple locations. The dealer may file a consolidated return if all locations or places...

  16. Multiple sclerosis pathways: an innovative nursing role in disease management.

    PubMed

    Madonna, M G; Keating, M M

    1999-12-01

    Multiple sclerosis (MS), a chronic disease of the central nervous system, is characterized by a variable and unpredictable course. The most common pattern of the disease is the relapsing-remitting form in which clearly defined relapses (also called exacerbations) are followed by complete or incomplete recovery. Interferon beta-1b (Betaseron), a drug that affects the natural course of the disease, was developed for the treatment of relapsing-remitting MS. Multiple Sclerosis Pathways (MSP), a disease management program, was developed to provide comprehensive and personal support to MS patients taking interferon beta-1b and to serve as an information resource for all people with MS, their families, and healthcare professionals. The MSP program includes personal patient assistance, reimbursement services, a 24-hour nurse hotline, training program, educational resources, and injection supplies. The nurse hotline counselor (NHC) utilizes the nursing process in a unique telephone nursing practice in this program. The positive impact of education and support on adherence to therapy has been validated by training and nurse hotline data.

  17. Estrogen Signaling Multiple Pathways to Impact Gene Transcription

    PubMed Central

    Marino, Maria; Galluzzo, Paola; Ascenzi, Paolo

    2006-01-01

    Steroid hormones exert profound effects on cell growth, development, differentiation, and homeostasis. Their effects are mediated through specific intracellular steroid receptors that act via multiple mechanisms. Among others, the action mechanism starting upon 17β-estradiol (E2) binds to its receptors (ER) is considered a paradigmatic example of how steroid hormones function. Ligand-activated ER dimerizes and translocates in the nucleus where it recognizes specific hormone response elements located in or near promoter DNA regions of target genes. Behind the classical genomic mechanism shared with other steroid hormones, E2 also modulates gene expression by a second indirect mechanism that involves the interaction of ER with other transcription factors which, in turn, bind their cognate DNA elements. In this case, ER modulates the activities of transcription factors such as the activator protein (AP)-1, nuclear factor-κB (NF-κB) and stimulating protein-1 (Sp-1), by stabilizing DNA-protein complexes and/or recruiting co-activators. In addition, E2 binding to ER may also exert rapid actions that start with the activation of a variety of signal transduction pathways (e.g. ERK/MAPK, p38/MAPK, PI3K/AKT, PLC/PKC). The debate about the contribution of different ER-mediated signaling pathways to coordinate the expression of specific sets of genes is still open. This review will focus on the recent knowledge about the mechanism by which ERs regulate the expression of target genes and the emerging field of integration of membrane and nuclear receptor signaling, giving examples of the ways by which the genomic and non-genomic actions of ERs on target genes converge. PMID:18369406

  18. Ferritin Is Required in Multiple Tissues during Drosophila melanogaster Development

    PubMed Central

    Blowes, Liisa M.; Missirlis, Fanis; Riesgo-Escovar, Juan R.

    2015-01-01

    In Drosophila melanogaster, iron is stored in the cellular endomembrane system inside a protein cage formed by 24 ferritin subunits of two types (Fer1HCH and Fer2LCH) in a 1:1 stoichiometry. In larvae, ferritin accumulates in the midgut, hemolymph, garland, pericardial cells and in the nervous system. Here we present analyses of embryonic phenotypes for mutations in Fer1HCH, Fer2LCH and in both genes simultaneously. Mutations in either gene or deletion of both genes results in a similar set of cuticular embryonic phenotypes, ranging from non-deposition of cuticle to defects associated with germ band retraction, dorsal closure and head involution. A fraction of ferritin mutants have embryonic nervous systems with ventral nerve cord disruptions, misguided axonal projections and brain malformations. Ferritin mutants die with ectopic apoptotic events. Furthermore, we show that ferritin maternal contribution, which varies reflecting the mother’s iron stores, is used in early development. We also evaluated phenotypes arising from the blockage of COPII transport from the endoplasmic reticulum to the Golgi apparatus, feeding the secretory pathway, plus analysis of ectopically expressed and fluorescently marked Fer1HCH and Fer2LCH. Overall, our results are consistent with insect ferritin combining three functions: iron storage, intercellular iron transport, and protection from iron-induced oxidative stress. These functions are required in multiple tissues during Drosophila embryonic development. PMID:26192321

  19. Morbillivirus Receptors and Tropism: Multiple Pathways for Infection

    PubMed Central

    Sato, Hiroki; Yoneda, Misako; Honda, Tomoyuki; Kai, Chieko

    2012-01-01

    Morbilliviruses, which include measles virus (MeV), canine distemper virus, and rinderpest virus, are among the most important pathogens in their respective hosts and cause severe syndromes. Morbilliviruses are enveloped viruses with two envelope proteins, one of which is hemagglutinin (H) protein, which plays a role in binding to cellular receptors. During morbillivirus infection, the virus initially targets lymphoid cells and replicates efficiently in the lymph nodes. The principal cellular receptor for morbillivirus is signaling lymphocyte activation molecule (SLAM, also called CD150), which is exclusively expressed on immune cells. This feature reflects the strong lymphoid cell tropism and viral spread in the infected body. Morbillivirus infection, however, affects various tissues in the body, including the lung, kidney, gastrointestinal tract, vascular endothelium, and brain. Thus, other receptors for morbilliviruses in addition to SLAM might exist. Recently, nectin-4 has been identified as a novel epithelial cell receptor for MeV. The expression of nectin-4 is localized to polarized epithelial cells, and this localization supports the notion of cell tropism since MeV also grows well in the epithelial cells of the respiratory tract. Although two major receptors for lymphoid and epithelial cells in natural infection have been identified, morbillivirus can still infect many other types of cells with low infectivity, suggesting the existence of inefficient but ubiquitously expressed receptors. We have identified other molecules that are implicated in morbillivirus infection of SLAM-negative cells by alternative mechanisms. These findings indicate that morbillivirus utilizes multiple pathways for establishment of infection. These studies will advance our understanding of morbillivirus tropism and pathogenesis. PMID:22403577

  20. Reconstructing multiple free energy pathways of DNA stretching from single molecule experiments.

    PubMed

    Frey, Eric W; Li, Jingqiang; Wijeratne, Sithara S; Kiang, Ching-Hwa

    2015-04-23

    Free energy landscapes provide information on the dynamics of proteins and nucleic acid folding. It has been demonstrated that such landscapes can be reconstructed from single molecule force measurement data using Jarzynski's equality, which requires only stretching data. However, when the process is reversible, the Crooks fluctuation theorem combines both stretch and relaxation force data for the analysis and can offer more rapid convergence of free energy estimates of different states. Here we demonstrate that, similar to Jarzynski's equality, the Crooks fluctuation theorem can be used to reconstruct the full free energy landscapes. In addition, when the free energy landscapes exhibit multiple folding pathways, one can use Jarzynski's equality to reconstruct individual free energy pathways if the experimental data show distinct work distributions. We applied the method to reconstruct the overstretching transition of poly(dA) to demonstrate that the nonequilibrium work theorem combined with single molecule force measurements provides a clear picture of the free energy landscapes.

  1. Targeting Apoptosis and Multiple Signaling Pathways with Icariside II in Cancer Cells

    PubMed Central

    Khan, Muhammad; Maryam, Amara; Qazi, Javed Iqbal; Ma, Tonghui

    2015-01-01

    Cancer is the second leading cause of deaths worldwide. Despite concerted efforts to improve the current therapies, the prognosis of cancer remains dismal. Highly selective or specific blocking of only one of the signaling pathways has been associated with limited or sporadic responses. Using targeted agents to inhibit multiple signaling pathways has emerged as a new paradigm for anticancer treatment. Icariside II, a flavonol glycoside, is one of the major components of Traditional Chinese Medicine Herba epimedii and possesses multiple biological and pharmacological properties including anti-inflammatory, anti-osteoporosis, anti-oxidant, anti-aging, and anticancer activities. Recently, the anticancer activity of Icariside II has been extensively investigated. Here, in this review, our aim is to give our perspective on the current status of Icariside II, and discuss its natural sources, anticancer activity, molecular targets and the mechanisms of action with specific emphasis on apoptosis pathways which may help the further design and conduct of preclinical and clinical trials. Icariside II has been found to induce apoptosis in various human cancer cell lines of different origin by targeting multiple signaling pathways including STAT3, PI3K/AKT, MAPK/ERK, COX-2/PGE2 and β-Catenin which are frequently deregulated in cancers, suggesting that this collective activity rather than just a single effect may play an important role in developing Icariside II into a potential lead compound for anticancer therapy. This review suggests that Icariside II provides a novel opportunity for treatment of cancers, but additional investigations and clinical trials are still required to fully understand the mechanism of therapeutic effects to further validate it in anti-tumor therapy. PMID:26221076

  2. Multiple Pathways to Graduation: New Routes to High School Completion. CRPE Working Paper #2010_2

    ERIC Educational Resources Information Center

    Marsh, Shannon

    2010-01-01

    Concerned about the persistently high dropout rates from big-city secondary schools, education leaders are trying a new approach to increasing the graduation rate--multiple pathways to graduation. Multiple pathways initiatives are relatively new and far from proven. Even the most advanced examples face significant issues, i.e., the need to…

  3. Genetic variants in DNA repair pathways are not associated with disease progression among multiple myeloma patients.

    PubMed

    Thyagarajan, Bharat; Arora, Mukta; Guan, Weihua; Barcelo, Helene; Jackson, Scott; Kumar, Shaji; Gertz, Morie

    2013-11-01

    DNA damage induced by high dose melphalan and autologous transplantation is repaired by the nucleotide excision repair (NER) and base excision repair (BER) pathways. We evaluated the association between single nucleotide polymorphisms (SNPs) (n=311) in the NER and BER pathways and disease progression in 695 multiple myeloma patients who underwent autologous transplantation. None of the SNPs were associated with disease progression. Pathway based analyses showed that the NER pathway had a borderline association with disease progression (p=0.09). These findings suggest that common variation in the NER and BER pathways do not substantially influence disease progression in multiple myeloma patients.

  4. Rho/Rock signal transduction pathway is required for MSC tenogenic differentiation

    PubMed Central

    Maharam, Edward; Yaport, Miguel; Villanueva, Nathaniel L; Akinyibi, Takintope; Laudier, Damien; He, Zhiyong; Leong, Daniel J; Sun, Hui B

    2015-01-01

    Mesenchymal stem cell (MSC)-based treatments have shown promise for improving tendon healing and repair. MSCs have the potential to differentiate into multiple lineages in response to select chemical and physical stimuli, including into tenocytes. Cell elongation and cytoskeletal tension have been shown to be instrumental to the process of MSC differentiation. Previous studies have shown that inhibition of stress fiber formation leads MSCs to default toward an adipogenic lineage, which suggests that stress fibers are required for MSCs to sense the environmental factors that can induce differentiation into tenocytes. As the Rho/ROCK signal transduction pathway plays a critical role in both stress fiber formation and in cell sensation, we examined whether the activation of this pathway was required when inducing MSC tendon differentiation using rope-like silk scaffolds. To accomplish this, we employed a loss-of-function approach by knocking out ROCK, actin and myosin (two other components of the pathway) using the specific inhibitors Y-27632, Latrunculin A and blebbistatin, respectively. We demonstrated that independently disrupting the cytoskeleton and the Rho/ROCK pathway abolished the expression of tendon differentiation markers and led to a loss of spindle morphology. Together, these studies suggest that the tension that is generated by MSC elongation is essential for MSC teno-differentiation and that the Rho/ROCK pathway is a critical mediator of tendon differentiation on rope-like silk scaffolds. PMID:26509098

  5. Why do personality traits predict divorce? Multiple pathways through satisfaction.

    PubMed

    Solomon, Brittany C; Jackson, Joshua J

    2014-06-01

    While previous studies indicate that personality traits influence the likelihood of divorce, the processes that drive this relationship have yet to be examined. Accordingly, the current study utilized a nationally representative, longitudinal sample (N = 8,206) to test whether relationship satisfaction is a pathway by which personality traits influence relationship dissolution. Specifically, we examined 2 different pathways: the enduring dynamics and emergent distress pathways. The enduring dynamics pathway specifies that the association between personality and relationship satisfaction reflects ongoing relationship dynamics, which are presumed to be stable across a relationship. In contrast, the emergent distress pathway proposes that personality leads to worsening dynamics across the course of a relationship, which is indicated by changes in satisfaction. For each pathway, we assessed actor, partner, and combined effects for the Big Five. Results replicate previous research in that personality traits prospectively predict relationship dissolution. Both the enduring dynamics and emergent distress pathways served to explain this relationship, though the enduring dynamics model evidenced the largest effects. The emergent distress pathway was stronger for couples who experienced certain life events, suggesting that personality plays a role in adapting to changing life circumstances. Moreover, results suggest that the personality of the dyad is important in this process: Above and beyond actor effects, partner effects influenced relationship functioning (although the influence of combined effects was less clear). In sum, the current study demonstrates that personality traits shape the overall quality of one's relationship, which in turn influences the likelihood of relationship dissolution.

  6. Pathway-based network analysis of myeloma tumors: monoclonal gammopathy of unknown significance, smoldering multiple myeloma, and multiple myeloma.

    PubMed

    Dong, L; Chen, C Y; Ning, B; Xu, D L; Gao, J H; Wang, L L; Yan, S Y; Cheng, S

    2015-01-01

    Although many studies have been carried out on monoclonal gammopathy of unknown significances (MGUS), smoldering multiple myeloma (SMM), and multiple myeloma (MM), their classification and underlying pathogenesis are far from elucidated. To discover the relationships among MGUS, SMM, and MM at the transcriptome level, differentially expressed genes in MGUS, SMM, and MM were identified by the rank product method, and then co-expression networks were constructed by integrating the data. Finally, a pathway-network was constructed based on Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and the relationships between the pathways were identified. The results indicated that there were 55, 78, and 138 pathways involved in the myeloma tumor developmental stages of MGUS, SMM, and MM, respectively. The biological processes identified therein were found to have a close relationship with the immune system. Processes and pathways related to the abnormal activity of DNA and RNA were also present in SMM and MM. Six common pathways were found in the whole process of myeloma tumor development. Nine pathways were shown to participate in the progression of MGUS to SMM, and prostate cancer was the sole pathway that was involved only in MGUS and MM. Pathway-network analysis might provide a new indicator for the developmental stage diagnosis of myeloma tumors. PMID:26345890

  7. The nucleotide excision repair pathway is required for UV-C-induced apoptosis in Caenorhabditis elegans.

    PubMed

    Stergiou, L; Doukoumetzidis, K; Sendoel, A; Hengartner, M O

    2007-06-01

    Ultraviolet (UV) radiation is a mutagen of major clinical importance in humans. UV-induced damage activates multiple signaling pathways, which initiate DNA repair, cell cycle arrest and apoptosis. To better understand these pathways, we studied the responses to UV-C light (254 nm) of germ cells in Caenorhabditis elegans. We found that UV activates the same cellular responses in worms as in mammalian cells. Both UV-induced apoptosis and cell cycle arrest were completely dependent on the p53 homolog CEP-1, the checkpoint proteins HUS-1 and CLK-2, and the checkpoint kinases CHK-2 and ATL-1 (the C. elegans homolog of ataxia telangiectasia and Rad3-related); ATM-1 (ataxia telangiectasia mutated-1) was also required, but only at low irradiation doses. Importantly, mutation of genes encoding nucleotide excision repair pathway components severely disrupted both apoptosis and cell cycle arrest, suggesting that these genes not only participate in repair, but also signal the presence of damage to downstream components of the UV response pathway that we delineate here. Our study suggests that whereas DNA damage response pathways are conserved in metazoans in their general outline, there is significant evolution in the relative importance of individual checkpoint genes in the response to specific types of DNA damage.

  8. Biochemical Genetic Pathways that Modulate Aging in Multiple Species

    PubMed Central

    Bitto, Alessandro; Wang, Adrienne M.; Bennett, Christopher F.; Kaeberlein, Matt

    2016-01-01

    The mechanisms underlying biological aging have been extensively studied in the past 20 years with the avail of mainly four model organisms: the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, the fruitfly Drosophila melanogaster, and the domestic mouse Mus musculus. Extensive research in these four model organisms has identified a few conserved genetic pathways that affect longevity as well as metabolism and development. Here, we review how the mechanistic target of rapamycin (mTOR), sirtuins, adenosine monophosphate-activated protein kinase (AMPK), growth hormone/insulin-like growth factor 1 (IGF-1), and mitochondrial stress-signaling pathways influence aging and life span in the aforementioned models and their possible implications for delaying aging in humans. We also draw some connections between these biochemical pathways and comment on what new developments aging research will likely bring in the near future. PMID:26525455

  9. 10 CFR 63.115 - Requirements for multiple barriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Requirements for multiple barriers. 63.115 Section 63.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Technical Criteria Postclosure Performance Assessment §...

  10. 10 CFR 63.115 - Requirements for multiple barriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Requirements for multiple barriers. 63.115 Section 63.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Technical Criteria Postclosure Performance Assessment §...

  11. 10 CFR 63.115 - Requirements for multiple barriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Requirements for multiple barriers. 63.115 Section 63.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Technical Criteria Postclosure Performance Assessment §...

  12. Cinnamon polyphenols regulate multiple metabolic pathways involved in intestinal lipid metabolism of primary small intestinal enterocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing evidence suggests that dietary factors may affect the expression of multiple genes and signaling pathways including those that regulate intestinal lipoprotein metabolism. The small intestine is actively involved in the regulation of dietary lipid absorption, intracellular transport and me...

  13. Efficient transition path sampling for systems with multiple reaction pathways

    NASA Astrophysics Data System (ADS)

    Chen, L. Y.; Nash, P. L.; Horing, N. J. M.

    2005-09-01

    A new algorithm is developed for sampling transition paths and computing reaction rates. To illustrate the use of this method, we study a two-dimensional system that has two reaction pathways: one pathway is straight with a relatively high barrier and the other is roundabout with a lower barrier. The transition rate and the ratio between the numbers of the straight and roundabout transition paths are computed for a wide range of temperatures. Our study shows that the harmonic approximation for fluctuations about the steepest-descent paths is not valid even at relatively low temperatures and, furthermore, that factors related to entropy have to be determined by the global geometry of the potential-energy surface (rather than just the local curvatures alone) for complex reaction systems. It is reasonable to expect that this algorithm is also applicable to higher dimensional systems.

  14. RNAi Induces Innate Immunity through Multiple Cellular Signaling Pathways

    PubMed Central

    Wu, Jun; Pei, Rongjuan; Xu, Yang; Yang, Dongliang; Roggendorf, Michael; Lu, Mengji

    2013-01-01

    Background & Aims Our previous results showed that the knockdown of woodchuck hepatitis virus (WHV) by RNA interference (RNAi) led to upregulation of interferon stimulated genes (ISGs) in primary hepatocytes. In the present study, we tested the hypothesis that the cellular signaling pathways recognizing RNA molecules may be involved the ISG stimulation by RNAi. Methods Primary murine hepatocytes (PMHs) from wild type mice and WHV transgenic (Tg) mice were prepared and treated with defined siRNAs. The mRNA levels of target genes and ISGs were detected by real-time RT-PCR. The involvement of the signaling pathways including RIG-I/MDA5, PKR, and TLR3/7/8/9 was examined by specific inhibition and the analysis of their activation by Western blotting. Results In PMHs from WHV Tg mice, specific siRNAs targeting WHV, mouse β-actin, and GAPDH reduced the levels of targeted mRNAs and increased the mRNA expression of IFN-β, MxA, and IP-10. The enhanced ISG expression by siRNA transfection were abolished by siRNA-specific 2′-O-methyl antisense RNA and the inhibitors 2-AP and chloroquine blocking PKR and other TLR-mediated signaling pathways. Furthermore, Western blotting revealed that RNAi results in an increase in PKR phosphorylation and nuclear translocation of IRF3 and NF-êB, indicating the possible role of IRF3 in the RNAi-directed induction of ISGs. In contrast, silencing of RIG-I and MDA5 failed to block RNAi-mediated MxA induction. Conclusions RNAi is capable of enhancing innate immune responses through the PKR- and TLR-dependent signaling pathways in primary hepatocytes. The immune stimulation by RNAi may contribute to the antiviral activity of siRNAs in vivo. PMID:23700487

  15. Reliable pre-eclampsia pathways based on multiple independent microarray data sets.

    PubMed

    Kawasaki, Kaoru; Kondoh, Eiji; Chigusa, Yoshitsugu; Ujita, Mari; Murakami, Ryusuke; Mogami, Haruta; Brown, J B; Okuno, Yasushi; Konishi, Ikuo

    2015-02-01

    Pre-eclampsia is a multifactorial disorder characterized by heterogeneous clinical manifestations. Gene expression profiling of preeclamptic placenta have provided different and even opposite results, partly due to data compromised by various experimental artefacts. Here we aimed to identify reliable pre-eclampsia-specific pathways using multiple independent microarray data sets. Gene expression data of control and preeclamptic placentas were obtained from Gene Expression Omnibus. Single-sample gene-set enrichment analysis was performed to generate gene-set activation scores of 9707 pathways obtained from the Molecular Signatures Database. Candidate pathways were identified by t-test-based screening using data sets, GSE10588, GSE14722 and GSE25906. Additionally, recursive feature elimination was applied to arrive at a further reduced set of pathways. To assess the validity of the pre-eclampsia pathways, a statistically-validated protocol was executed using five data sets including two independent other validation data sets, GSE30186, GSE44711. Quantitative real-time PCR was performed for genes in a panel of potential pre-eclampsia pathways using placentas of 20 women with normal or severe preeclamptic singleton pregnancies (n = 10, respectively). A panel of ten pathways were found to discriminate women with pre-eclampsia from controls with high accuracy. Among these were pathways not previously associated with pre-eclampsia, such as the GABA receptor pathway, as well as pathways that have already been linked to pre-eclampsia, such as the glutathione and CDKN1C pathways. mRNA expression of GABRA3 (GABA receptor pathway), GCLC and GCLM (glutathione metabolic pathway), and CDKN1C was significantly reduced in the preeclamptic placentas. In conclusion, ten accurate and reliable pre-eclampsia pathways were identified based on multiple independent microarray data sets. A pathway-based classification may be a worthwhile approach to elucidate the pathogenesis of pre-eclampsia.

  16. Romidepsin targets multiple survival signaling pathways in malignant T cells

    PubMed Central

    Valdez, B C; Brammer, J E; Li, Y; Murray, D; Liu, Y; Hosing, C; Nieto, Y; Champlin, R E; Andersson, B S

    2015-01-01

    Romidepsin is a cyclic molecule that inhibits histone deacetylases. It is Food and Drug Administration-approved for treatment of cutaneous and peripheral T-cell lymphoma, but its precise mechanism of action against malignant T cells is unknown. To better understand the biological effects of romidepsin in these cells, we exposed PEER and SUPT1 T-cell lines, and a primary sample from T-cell lymphoma patient (Patient J) to romidepsin. We then examined the consequences in some key oncogenic signaling pathways. Romidepsin displayed IC50 values of 10.8, 7.9 and 7.0 nm in PEER, SUPT1 and Patient J cells, respectively. Strong inhibition of histone deacetylases and demethylases, increased production of reactive oxygen species and decreased mitochondrial membrane potential were observed, which may contribute to the observed DNA-damage response and apoptosis. The stress-activated protein kinase/c-Jun N-terminal kinase signaling pathway and unfolded protein response in the endoplasmic reticulum were activated, whereas the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and β-catenin pro-survival pathways were inhibited. The decreased level of β-catenin correlated with the upregulation of its inhibitor SFRP1 through romidepsin-mediated hypomethylation of its gene promoter. Our results provide new insights into how romidepsin invokes malignant T-cell killing, show evidence of its associated DNA hypomethylating activity and offer a rationale for the development of romidepsin-containing combination therapies. PMID:26473529

  17. Romidepsin targets multiple survival signaling pathways in malignant T cells.

    PubMed

    Valdez, B C; Brammer, J E; Li, Y; Murray, D; Liu, Y; Hosing, C; Nieto, Y; Champlin, R E; Andersson, B S

    2015-10-16

    Romidepsin is a cyclic molecule that inhibits histone deacetylases. It is Food and Drug Administration-approved for treatment of cutaneous and peripheral T-cell lymphoma, but its precise mechanism of action against malignant T cells is unknown. To better understand the biological effects of romidepsin in these cells, we exposed PEER and SUPT1 T-cell lines, and a primary sample from T-cell lymphoma patient (Patient J) to romidepsin. We then examined the consequences in some key oncogenic signaling pathways. Romidepsin displayed IC50 values of 10.8, 7.9 and 7.0 nm in PEER, SUPT1 and Patient J cells, respectively. Strong inhibition of histone deacetylases and demethylases, increased production of reactive oxygen species and decreased mitochondrial membrane potential were observed, which may contribute to the observed DNA-damage response and apoptosis. The stress-activated protein kinase/c-Jun N-terminal kinase signaling pathway and unfolded protein response in the endoplasmic reticulum were activated, whereas the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and β-catenin pro-survival pathways were inhibited. The decreased level of β-catenin correlated with the upregulation of its inhibitor SFRP1 through romidepsin-mediated hypomethylation of its gene promoter. Our results provide new insights into how romidepsin invokes malignant T-cell killing, show evidence of its associated DNA hypomethylating activity and offer a rationale for the development of romidepsin-containing combination therapies.

  18. Catheter Ablation of Multiple Accessory Pathways in Duchenne Muscular Dystrophy

    PubMed Central

    Stöllberger, Claudia; Steger, Christine; Gatterer, Edmund

    2013-01-01

    A 23-year-old male with Duchenne muscular dystrophy (DMD) experienced self-limiting palpitations at age 19 years for the first time. Palpitations recurred not earlier than at age 23 years, and were attributed to narrow complex tachycardia, which could be terminated with adenosine. Since electrocardiography showed a delta-wave, Wolff-Parkinson-White (WPW) syndrome was diagnosed, ajmaline prescribed and radio-frequency catheter ablation of three accessory pathways carried out one week later. One day after ablation, however, a relapse of the supraventricular tachycardia occurred and was terminated with ajmaline. Re-entry tachycardia occurred a second time six days after ablation, and as before, it was stopped only with ajmaline. Despite administration of verapamil to prevent tachycardia, it occurred a third time four months after ablation. This case shows that cardiac involvement in DMD may manifest also as WPW-syndrome. In these patients, repeated radio-frequency catheter ablation of accessory pathways may be necessary to completely block the re-entry mechanism. PMID:23508228

  19. Multiple degradation pathways of phenanthrene by Stenotrophomonas maltophilia C6

    PubMed Central

    Gao, Shumei; Seo, Jong-Su; Wang, Jun; Keum, Young-Soo; Li, Jianqiang; Li, Qing X.

    2013-01-01

    Stenotrophomonas maltophilia strain C6, capable of utilizing phenanthrene as a sole source of carbon and energy, was isolated from creosote-contaminated sites at Hilo, Hawaii. Twenty-two metabolites of phenanthrene, covering from dihydrodiol to protocatechuic acid, were isolated and characterized. Phenanthrene was degraded via an initial dioxygenation on 1,2-, 3,4-, and 9,10-C, where the 3,4-dioxygenation and subsequent metabolisms were most dominant. The metabolic pathways were further branched by ortho- and meta-cleavage of phenanthrenediols to produce 1-hydroxy-2-naphthoic acid, 2-hydroxy-1-naphthoic acid, and naphthalene-1,2-dicarboxylic acid. These intermediates were then transformed to naphthalene-1,2-diol. 1-Hydroxy-2-naphthoic acid was also degraded via a direct ring cleavage. Naphthalene-1,2-diol underwent primarily ortho-cleavage to produce trans-2-carboxycinnamic acid and then to form phthalic acid, 4,5-dihydroxyphthalic acid and protocatechuic acid. Accumulation of salicylic acid in prolonged incubation indicated that a limited extent of meta-cleavage of naphthalene-1, 2-diol also occurred. This is the first study of detailed phenanthrene metabolic pathways by Stenotrophomonas maltophilia. PMID:23539472

  20. APL-1, the Alzheimer's Amyloid precursor protein in Caenorhabditis elegans, modulates multiple metabolic pathways throughout development.

    PubMed

    Ewald, Collin Y; Raps, Daniel A; Li, Chris

    2012-06-01

    Mutations in the amyloid precursor protein (APP) gene or in genes that process APP are correlated with familial Alzheimer's disease (AD). The biological function of APP remains unclear. APP is a transmembrane protein that can be sequentially cleaved by different secretases to yield multiple fragments, which can potentially act as signaling molecules. Caenorhabditis elegans encodes one APP-related protein, APL-1, which is essential for viability. Here, we show that APL-1 signaling is dependent on the activity of the FOXO transcription factor DAF-16 and the nuclear hormone receptor DAF-12 and influences metabolic pathways such as developmental progression, body size, and egg-laying rate. Furthermore, apl-1(yn5) mutants, which produce high levels of the extracellular APL-1 fragment, show an incompletely penetrant temperature-sensitive embryonic lethality. In a genetic screen to isolate mutants in which the apl-1(yn5) lethality rate is modified, we identified a suppressor mutation in MOA-1/R155.2, a receptor-protein tyrosine phosphatase, and an enhancer mutation in MOA-2/B0495.6, a protein involved in receptor-mediated endocytosis. Knockdown of apl-1 in an apl-1(yn5) background caused lethality and molting defects at all larval stages, suggesting that apl-1 is required for each transitional molt. We suggest that signaling of the released APL-1 fragment modulates multiple metabolic states and that APL-1 is required throughout development.

  1. Network-Based Identification of Biomarkers Coexpressed with Multiple Pathways

    PubMed Central

    Guo, Nancy Lan; Wan, Ying-Wooi

    2014-01-01

    Unraveling complex molecular interactions and networks and incorporating clinical information in modeling will present a paradigm shift in molecular medicine. Embedding biological relevance via modeling molecular networks and pathways has become increasingly important for biomarker identification in cancer susceptibility and metastasis studies. Here, we give a comprehensive overview of computational methods used for biomarker identification, and provide a performance comparison of several network models used in studies of cancer susceptibility, disease progression, and prognostication. Specifically, we evaluated implication networks, Boolean networks, Bayesian networks, and Pearson’s correlation networks in constructing gene coexpression networks for identifying lung cancer diagnostic and prognostic biomarkers. The results show that implication networks, implemented in Genet package, identified sets of biomarkers that generated an accurate prediction of lung cancer risk and metastases; meanwhile, implication networks revealed more biologically relevant molecular interactions than Boolean networks, Bayesian networks, and Pearson’s correlation networks when evaluated with MSigDB database. PMID:25392692

  2. Multiple Drug Transport Pathways through Human P-Glycoprotein.

    PubMed

    McCormick, James W; Vogel, Pia D; Wise, John G

    2015-07-21

    P-Glycoprotein (P-gp) is a plasma membrane efflux pump that is commonly associated with therapy resistances in cancers and infectious diseases. P-gp can lower the intracellular concentrations of many drugs to subtherapeutic levels by translocating them out of the cell. Because of the broad range of substrates transported by P-gp, overexpression of P-gp causes multidrug resistance. We reported previously on dynamic transitions of P-gp as it moved through conformations based on crystal structures of homologous ABCB1 proteins using in silico targeted molecular dynamics techniques. We expanded these studies here by docking transport substrates to drug binding sites of P-gp in conformations open to the cytoplasm, followed by cycling the pump through conformations that opened to the extracellular space. We observed reproducible transport of two substrates, daunorubicin and verapamil, by an average of 11-12 Å through the plane of the membrane as P-gp progressed through a catalytic cycle. Methylpyrophosphate, a ligand that should not be transported by P-gp, did not show this movement through P-gp. Drug binding to either of two subsites on P-gp appeared to determine the initial pathway used for drug movement through the membrane. The specific side-chain interactions with drugs within each pathway seemed to be, at least in part, stochastic. The docking and transport properties of a P-gp inhibitor, tariquidar, were also studied. A mechanism of inhibition by tariquidar that involves stabilization of an outward open conformation with tariquidar bound in intracellular loops or at the drug binding domain of P-gp is presented.

  3. Reducing donor exposure in preterm infants requiring multiple blood transfusions.

    PubMed Central

    Wood, A.; Wilson, N.; Skacel, P.; Thomas, R.; Tidmarsh, E.; Yale, C.; de Silva, M.

    1995-01-01

    Preterm infants frequently require multiple blood transfusions. Traditionally, 'fresh' (less than seven days old) blood has been used but this often results in transfusions from multiple donors. To reduce donor exposure the policy for top-up transfusions was changed. A unit of blood under five days old with additional satellite packs was ordered for each infant and used up to its expiry date, allowing up to eight transfusions from a single donation to be given. The mean (SD) number of transfusions per infant in 43 infants transfused according to previous policy and in 29 transfused according to the new policy was similar at 5.6 (4.0) and 5.3 (3.1), respectively. However, donor exposure fell following the change in policy from 4.9 (3.5) to only 2.0 (0.9). Only one infant was exposed to more than three donors compared with 24 infants in the control group. Plasma potassium concentrations were not significantly different following transfusion of blood stored for up to 33 days. This simple change in policy has reduced donor exposure in infants requiring multiple top-up transfusions. PMID:7743280

  4. Microgravity gradiometry measurement schemes with multiple-pathway atom interferometers

    NASA Astrophysics Data System (ADS)

    Ashwood, E.; Edwards, M.; Clark, C. W.

    2015-05-01

    We propose a new atom-interferometric scheme for measuring the value and derivatives of the gravitational field in the microgravity environment found in the Cold-Atom Laboratory to be deployed to the International Space Station. The operation of the proposed atom interferometer consists of splitting a harmonically confined Bose-Einstein condensate into multiple pieces using a sequence of laser pulses. In a perfect harmonic oscillator potential all of the condensate pieces will come to rest at the same time. At this point, the harmonic trap is turned off. The nearly motionless condensate clouds then accumulate different phases due to their respective accelerations at different points in space. The trap is then turned back on bringing all of the clouds together at the same time at which point they are again split producing multiple interference patterns. We have simulated some of these interferometric schemes using a Lagrangian variational approximation to the 3D time-dependent Gross-Pitaevskii equation. We have used this method to facilitate rapid interferometer design and to understand how these interference patterns can be used to measure the gravitational field and its derivatives. We also compare the sensitivity of the different interferometric schemes. Supported by NSF grants PHY-1068761 and ARO Atomtronics MURI.

  5. Thermal Decomposition of Benzyl Radical via Multiple Active Pathways

    NASA Astrophysics Data System (ADS)

    Buckingham, Grant; Robichaud, David; Ormond, Thomas; Nimlos, Mark R.; Daily, John W.; Ellison, Barney

    2014-06-01

    The thermal decomposition of benzyl radical (C6H5CH2) has been investigated using a combination infrared absorption spectroscopy in a neon matrix and 118.2 (10.487 eV) photoionization mass spectrometry. Both techniques are coupled with a heated tubular reactor to allow temperature control over the decomposition to indicate relative barrier heights of fragmentation pathways. Three possible chemical mechanisms have been considered. 1) Ring expansion to cycloheptatrienyl radical (C7H7) with subsequent breakdown to HCCH and C5H5, 2) isomerization to the substituted five-membered ring fulvenallene (C5H4=C=CH2), which is of interest to kinetic theorists and finally 3) hydrogen shift to form methyl-substituted phenyl radical, which can then form ortho-benzyne, diacetylene and other fragments. Benzyl radical is generated from two precursors, C6H5CH2CH3 and C6H5CH2Br, and both lead to the appearance of HCCH and C5H5. At slightly hotter temperatures peaks are observed at m/z 90, presumed to be C5H4=C=CH2, and 89, potentially the substituted propargyl C5H4=C=CH. Additionally, decomposition of isotopically substituted parent molecules C6H5CD2CD3 and C6D5CH2CH3 indicates C7H7 as an intermediate due to H/D ratios in fragment molecules.

  6. Multiple pathways for invasion of anurans on a Pacific island

    USGS Publications Warehouse

    Christy, M.T.; Savidge, J.A.; Rodda, G.H.

    2007-01-01

    Since 1937, thirteen species of non-indigenous anurans have made their way to Guam. Of these, at least six have established breeding populations. Various pathways led to the introduction of these species to the island. The only anuran intentionally introduced was Chaunus marinus (formerly Bufo marinus), which was brought to Guam as a biocontrol agent. Kaloula picta, K. pulchra, Polypedates leucomystax, and probably Litoria fallax arrived as stowaways via maritime or air-transport vessels. Eleutherodactylus coqui and Euhyas (formerly Eleutherodactylus) planirostris appear to have entered Guam through the horticultural trade. Specimens of Pseudacris regilla were found among agricultural products and Christmas trees. Five species have been transported to Guam via the aquacultural trade. The importation of tilapia, milkfish, and white shrimp from China, Hong Kong, Taiwan, and the Philippines was associated with the introduction to Guam of Fejervarya cancrivora, F. limnocharis sensu lato, Microhyla pulchra, Polypedates megacephalus, and Sylvirana guentheri (formerly Rana guentheri). Presently, no quarantine or containment guidelines have been established for Guam's aquacultural industry. ?? 2007 The Authors.

  7. Neurodegeneration in Lurcher mice occurs via multiple cell death pathways.

    PubMed

    Doughty, M L; De Jager, P L; Korsmeyer, S J; Heintz, N

    2000-05-15

    Lurcher (Lc) is a gain-of-function mutation in the delta2 glutamate receptor (GRID2) that results in the cell-autonomous death of cerebellar Purkinje cells in heterozygous lurcher (+/Lc) mice. This in turn triggers the massive loss of afferent granule cells during the first few postnatal weeks. Evidence suggests that the death of Purkinje cells as a direct consequence of GRID2(Lc) activation and the secondary death of granule cells because of target deprivation occur by apoptosis. We have used mice carrying null mutations of both the Bax and p53 genes to examine the roles of these genes in cell loss in lurcher animals. The absence of Bax delayed Purkinje cell death in response to the GRID2(Lc) mutation and permanently rescued the secondary death of granule cells. In contrast, the p53 deletion had no effect on either cell death pathway. Our results demonstrate that target deprivation induces a Bax-dependent, p53-independent cell death response in cerebellar granule cells in vivo. In contrast, Bax plays a minor role in GRID2(Lc)-mediated Purkinje cell death.

  8. Modulation of the Surface Proteome through Multiple Ubiquitylation Pathways in African Trypanosomes.

    PubMed

    Zoltner, Martin; Leung, Ka Fai; Alsford, Sam; Horn, David; Field, Mark C

    2015-10-01

    Recently we identified multiple suramin-sensitivity genes with a genome wide screen in Trypanosoma brucei that includes the invariant surface glycoprotein ISG75, the adaptin-1 (AP-1) complex and two deubiquitylating enzymes (DUBs) orthologous to ScUbp15/HsHAUSP1 and pVHL-interacting DUB1 (type I), designated TbUsp7 and TbVdu1, respectively. Here we have examined the roles of these genes in trafficking of ISG75, which appears key to suramin uptake. We found that, while AP-1 does not influence ISG75 abundance, knockdown of TbUsp7 or TbVdu1 leads to reduced ISG75 abundance. Silencing TbVdu1 also reduced ISG65 abundance. TbVdu1 is a component of an evolutionarily conserved ubiquitylation switch and responsible for rapid receptor modulation, suggesting similar regulation of ISGs in T. brucei. Unexpectedly, TbUsp7 knockdown also blocked endocytosis. To integrate these observations we analysed the impact of TbUsp7 and TbVdu1 knockdown on the global proteome using SILAC. For TbVdu1, ISG65 and ISG75 are the only significantly modulated proteins, but for TbUsp7 a cohort of integral membrane proteins, including the acid phosphatase MBAP1, that is required for endocytosis, and additional ISG-related proteins are down-regulated. Furthermore, we find increased expression of the ESAG6/7 transferrin receptor and ESAG5, likely resulting from decreased endocytic activity. Therefore, multiple ubiquitylation pathways, with a complex interplay with trafficking pathways, control surface proteome expression in trypanosomes. PMID:26492041

  9. Modulation of the Surface Proteome through Multiple Ubiquitylation Pathways in African Trypanosomes

    PubMed Central

    Alsford, Sam; Horn, David; Field, Mark C.

    2015-01-01

    Recently we identified multiple suramin-sensitivity genes with a genome wide screen in Trypanosoma brucei that includes the invariant surface glycoprotein ISG75, the adaptin-1 (AP-1) complex and two deubiquitylating enzymes (DUBs) orthologous to ScUbp15/HsHAUSP1 and pVHL-interacting DUB1 (type I), designated TbUsp7 and TbVdu1, respectively. Here we have examined the roles of these genes in trafficking of ISG75, which appears key to suramin uptake. We found that, while AP-1 does not influence ISG75 abundance, knockdown of TbUsp7 or TbVdu1 leads to reduced ISG75 abundance. Silencing TbVdu1 also reduced ISG65 abundance. TbVdu1 is a component of an evolutionarily conserved ubiquitylation switch and responsible for rapid receptor modulation, suggesting similar regulation of ISGs in T. brucei. Unexpectedly, TbUsp7 knockdown also blocked endocytosis. To integrate these observations we analysed the impact of TbUsp7 and TbVdu1 knockdown on the global proteome using SILAC. For TbVdu1, ISG65 and ISG75 are the only significantly modulated proteins, but for TbUsp7 a cohort of integral membrane proteins, including the acid phosphatase MBAP1, that is required for endocytosis, and additional ISG-related proteins are down-regulated. Furthermore, we find increased expression of the ESAG6/7 transferrin receptor and ESAG5, likely resulting from decreased endocytic activity. Therefore, multiple ubiquitylation pathways, with a complex interplay with trafficking pathways, control surface proteome expression in trypanosomes. PMID:26492041

  10. Screening Reactive Metabolites Bioactivated by Multiple Enzyme Pathways Using a Multiplexed Microfluidic System

    PubMed Central

    Wasalathanthri, Dhanuka P.; Faria, Ronaldo C.; Malla, Spundana; Joshi, Amit A.; Schenkman, John B.; Rusling, James F.

    2012-01-01

    A multiplexed, microfluidic platform to detect reactive metabolites is described, and its performance is illustrated for compounds metabolized by oxidative and bioconjugation enzymes in multi-enzyme pathways to mimic natural human drug metabolism. The device features four 8-electrode screen printed carbon arrays coated with thin films of DNA, a ruthenium-polyvinylpyridine (RuPVP) catalyst, and multiple enzyme sources including human liver microsomes (HLM), cytochrome P450 (cyt P450) 1B1 supersomes, microsomal epoxide hydrolase (EH), human S9 liver fractions (Hs9) and N-acetyltransferase (NAT). Arrays are arranged in parallel to facilitate multiple compound screening, enabling up to 32 enzyme reactions and measurements in 20–30 min. In the first step of the assay, metabolic reactions are achieved under constant flow of oxygenated reactant solutions by electrode driven natural catalytic cycles of cyt P450s and cofactor-supported bioconjugation enzymes. Reactive metabolites formed in the enzyme reactions can react with DNA. Relative DNA damage is measuring in the second assay step using square wave voltammetry (SWV) with RuPVP as catalyst. Studies were done on chemicals known to require metabolic activation to induce genotoxicity, and results reproduced known features of metabolite DNA-reactivity for the test compounds. Metabolism of benzo[a]pyrene (B[a]P) by cyt P450s and epoxide hydrolase showed an enhanced relative DNA damage rate for DNA damage compared to cyt P450s alone. DNA damage rates for arylamines by pathways featuring both oxidative and conjugative enzymes at pH 7.4 gave better correlation with rodent genotoxicity metric TD50. Results illustrate the broad utility of the reactive metabolite screening device. PMID:23095952

  11. Screening reactive metabolites bioactivated by multiple enzyme pathways using a multiplexed microfluidic system.

    PubMed

    Wasalathanthri, Dhanuka P; Faria, Ronaldo C; Malla, Spundana; Joshi, Amit A; Schenkman, John B; Rusling, James F

    2013-01-01

    A multiplexed, microfluidic platform to detect reactive metabolites is described, and its performance is illustrated for compounds metabolized by oxidative and bioconjugation enzymes in multi-enzyme pathways to mimic natural human drug metabolism. The device features four 8-electrode screen printed carbon arrays coated with thin films of DNA, a ruthenium-polyvinylpyridine (RuPVP) catalyst, and multiple enzyme sources including human liver microsomes (HLM), cytochrome P450 (cyt P450) 1B1 supersomes, microsomal epoxide hydrolase (EH), human S9 liver fractions (Hs9) and N-acetyltransferase (NAT). Arrays are arranged in parallel to facilitate multiple compound screening, enabling up to 32 enzyme reactions and measurements in 20-30 min. In the first step of the assay, metabolic reactions are achieved under constant flow of oxygenated reactant solutions by electrode driven natural catalytic cycles of cyt P450s and cofactor-supported bioconjugation enzymes. Reactive metabolites formed in the enzyme reactions can react with DNA. Relative DNA damage is measured in the second assay step using square wave voltammetry (SWV) with RuPVP as catalyst. Studies were done on chemicals known to require metabolic activation to induce genotoxicity, and results reproduced known features of metabolite DNA-reactivity for the test compounds. Metabolism of benzo[a]pyrene (B[a]P) by cyt P450s and epoxide hydrolase showed an enhanced relative DNA damage rate for DNA compared to cyt P450s alone. DNA damage rates for arylamines by pathways featuring both oxidative and conjugative enzymes at pH 7.4 gave better correlation with rodent genotoxicity metric TD(50). Results illustrate the broad utility of the reactive metabolite screening device.

  12. Directed evolution of a cellobiose utilization pathway in Saccharomyces cerevisiae by simultaneously engineering multiple proteins

    PubMed Central

    2013-01-01

    Background The optimization of metabolic pathways is critical for efficient and economical production of biofuels and specialty chemicals. One such significant pathway is the cellobiose utilization pathway, identified as a promising route in biomass utilization. Here we describe the optimization of cellobiose consumption and ethanol productivity by simultaneously engineering both proteins of the pathway, the β-glucosidase (gh1-1) and the cellodextrin transporter (cdt-1), in an example of pathway engineering through directed evolution. Results The improved pathway was assessed based on the strain specific growth rate on cellobiose, with the final mutant exhibiting a 47% increase over the wild-type pathway. Metabolite analysis of the engineered pathway identified a 49% increase in cellobiose consumption (1.78 to 2.65 g cellobiose/(L · h)) and a 64% increase in ethanol productivity (0.611 to 1.00 g ethanol/(L · h)). Conclusions By simultaneously engineering multiple proteins in the pathway, cellobiose utilization in S. cerevisiae was improved. This optimization can be generally applied to other metabolic pathways, provided a selection/screening method is available for the desired phenotype. The improved in vivo cellobiose utilization demonstrated here could help to decrease the in vitro enzyme load in biomass pretreatment, ultimately contributing to a reduction in the high cost of biofuel production. PMID:23802545

  13. Thermal comfort requirements: A study of people with multiple sclerosis

    SciTech Connect

    Webb, L.H.; Parsons, K.C.; Hodder, S.G.

    1999-07-01

    Existing specifications for thermal comfort in built environments are coming under increased criticism for failing to consider the requirements of specific populations. People with physical disabilities are an example of one such population. This paper presents the results of a study on the thermal comfort requirements of 32 people with multiple sclerosis. Subjects were exposed to three conditions: 18.5 C, PMV = {minus}1.5, slightly cool to cool; 23 C, PMV = 0, neutral; 29 C, PMV = +1.5, slightly warm to warm. Results indicate that people with multiple sclerosis have a wide range of responses to the three experimental conditions. The actual percentage dissatisfied was much higher than predicted by Fange's (1970) predicted percentage dissatisfied. Their preferred environment is slightly warmer than 23 C, PMV = 0, neutral. A subgroup of the population prefers an environment that is slightly cooler than 23 C. Further work is needed to qualify if their preferred environments match that of PMV+1 and PMV{minus}1 and to identify if any of the factors such as age, duration of disability, and medication affect the actual mean vote.

  14. Multiple requirements for Hes1 during early eye formation

    PubMed Central

    Lee, Hae Young; Wroblewski, Emily; Philips, Gary T.; Stair, Carrie N.; Conley, Kevin; Reedy, Meredith; Mastick, Grant S.; Brown, Nadean L.

    2014-01-01

    During embryogenesis, multiple developmental processes are integrated through their precise temporal regulation. Hes1 is a transcriptional repressor that regulates the timing of mammalian retinal neurogenesis. However, roles for Hes1 in early eye development have not been well defined. Here, we show that Hes1 is expressed in the forming lens, optic vesicle, cup, and pigmented epithelium and is necessary for proper growth, morphogenesis, and differentiation of these tissues. Because Hes1 is required throughout the eye, we investigated its interaction with Pax6. Hes1–Pax6 double mutant embryos are eyeless suggesting these genes are coordinately required for initial morphogenesis and outgrowth of the optic vesicle. In Hes1 mutants, Math5 expression is precocious along with retinal ganglion cell, amacrine, and horizontal neuron formation. In contrast to apparent cooperativity between Pax6 and Hes1 during morphogenesis, each gene regulates Math5 and RGC genesis independently. Together, these studies demonstrate that Hes1, like Pax6, simultaneously regulates multiple developmental processes during optic development. PMID:16038893

  15. Multiple cytoskeletal pathways and PI3K signaling mediate CDC-42-induced neuronal protrusion in C. elegans.

    PubMed

    Alan, Jamie K; Struckhoff, Eric C; Lundquist, Erik A

    2013-01-01

    Rho GTPases are key regulators of cellular protrusion and are involved in many developmental events including axon guidance during nervous system development. Rho GTPase pathways display functional redundancy in developmental events, including axon guidance. Therefore, their roles can often be masked when using simple loss-of-function genetic approaches. As a complement to loss-of-function genetics, we constructed a constitutively activated CDC-42(G12V) expressed in C. elegans neurons. CDC-42(G12V) drove the formation of ectopic lamellipodial and filopodial protrusions in the PDE neurons, which resembled protrusions normally found on migrating growth cones of axons. We then used a candidate gene approach to identify molecules that mediate CDC-42(G12V)-induced ectopic protrusions by determining if loss of function of the genes could suppress CDC-42(G12V). Using this approach, we identified 3 cytoskeletal pathways previously implicated in axon guidance, the Arp2/3 complex, UNC-115/abLIM, and UNC-43/Ena. We also identified the Nck-interacting kinase MIG-15/NIK and p21-activated kinases (PAKs), also implicated in axon guidance. Finally, PI3K signaling was required, specifically the Rictor/mTORC2 branch but not the mTORC1 branch that has been implicated in other aspects of PI3K signaling including stress and aging. Our results indicate that multiple pathways can mediate CDC-42-induced neuronal protrusions that might be relevant to growth cone protrusions during axon pathfinding. Each of these pathways involves Rac GTPases, which might serve to integrate the pathways and coordinate the multiple CDC-42 pathways. These pathways might be relevant to developmental events such as axon pathfinding as well as disease states such as metastatic melanoma.

  16. Distinct Signaling Mechanisms in Multiple Developmental Pathways by the SCRAMBLED Receptor of Arabidopsis1[OPEN

    PubMed Central

    Kwak, Su-Hwan; Woo, Sooah; Lee, Myeong Min; Schiefelbein, John

    2014-01-01

    SCRAMBLED (SCM), a leucine-rich repeat receptor-like kinase in Arabidopsis (Arabidopsis thaliana), is required for positional signaling in the root epidermis and for tissue/organ development in the shoot. To further understand SCM action, we generated a series of kinase domain variants and analyzed their ability to complement scm mutant defects. We found that the SCM kinase domain, but not kinase activity, is required for its role in root epidermal patterning, supporting the view that SCM is an atypical receptor kinase. We also describe a previously uncharacterized role for SCM in fruit dehiscence, because mature siliques from scm mutants fail to open properly. Interestingly, the kinase domain of SCM appears to be dispensable for this developmental process. Furthermore, we found that most of the SCM kinase domain mutations dramatically inhibit inflorescence development. Because this process is not affected in scm null mutants, it is likely that SCM acts redundantly to regulate inflorescence size. The importance of distinct kinase residues for these three developmental processes provides an explanation for the maintenance of the conserved kinase domain in the SCM protein, and it may generally explain its conservation in other atypical kinases. Furthermore, these results indicate that individual leucine-rich repeat receptor-like kinases may participate in multiple pathways using distinct signaling mechanisms to mediate diverse cellular communication events. PMID:25136062

  17. A new cruzipain-mediated pathway of human cell invasion by Trypanosoma cruzi requires trypomastigote membranes.

    PubMed

    Aparicio, Isabela M; Scharfstein, Julio; Lima, Ana Paula C A

    2004-10-01

    The intracellular protozoan Trypanosoma cruzi causes Chagas' disease, a chronic illness associated with cardiomyopathy and digestive disorders. This pathogen invades mammalian cells by signaling them through multiple transduction pathways. We previously showed that cruzipain, the main cysteine protease of T. cruzi, promotes host cell invasion by activating kinin receptors. Here, we report a cruzipain-mediated invasion route that is not blocked by kinin receptor antagonists. By testing different strains of T. cruzi, we observed a correlation between the level of cruzipain secreted by trypomastigotes and the capacity of the pathogen to invade host cells. Consistent with a role for cruzipain, the cysteine protease inhibitor N-methylpiperazine-urea-Phe-homophenylalanine-vinylsulfone-benzene impaired the invasion of human smooth muscle cells by strains Dm28c and X10/6 but not by the G isolate. Cruzipain-rich supernatants of Dm28c trypomastigotes enhanced the infectivity of isolate G parasites twofold, an effect which was abolished by the cysteine protease inhibitor l-trans-epoxysuccinyl-leucylamido-(4-guanidino)butane and by thapsigargin, a drug that induces depletion of the intracellular Ca(2+) stores. The enhancement due to Dm28 supernatants was abolished upon cruzipain immunodepletion, and the activity was restored by purified cruzipain. In contrast, supernatants from isolate G trypomastigotes (with low levels of cruzipain) or supernatants from Dm28c epimastigotes or purified cruzipain alone did not enhance parasite invasion, indicating that the protease is required but not sufficient to engage this invasion pathway. We provide evidence that activation of this pathway requires cruzipain-mediated processing of a trypomastigote molecule associated with parasite-shed membranes. Our results couple cruzipain to host cell invasion through a kinin-independent route and further suggest that high-level cruzipain expression may contribute to parasite infectivity.

  18. Cholesterol is required in the exit pathway of Semliki Forest virus

    PubMed Central

    1993-01-01

    The enveloped alphavirus Semliki Forest virus (SFV) infects cells via a membrane fusion reaction triggered by low pH. For fusion to occur cholesterol is required in the target membrane, as demonstrated both in in vitro fusion assays and in vivo for virus infection of a host cell. In this paper we examine the role of cholesterol in postfusion events in the SFV life cycle. Cholesterol-depleted insect cells were transfected with SFV RNA or infected at very high multiplicities to circumvent the fusion block caused by the absence of cholesterol. Under these conditions, the viral spike proteins were synthesized and transported to the site of p62 cleavage with normal kinetics. Surprisingly, the subsequent exit of virus particles was dramatically slowed compared to cholesterol-containing cells. The inhibition of virus production could be reversed by the addition of cholesterol to depleted cells. In contrast to results with SFV, no cholesterol requirement for virus exit was observed for the production of either the unrelated vesicular stomatitis virus or a cholesterol-independent SFV fusion mutant. Thus, cholesterol was only critical in the exit pathway of viruses that also require cholesterol for fusion. These results demonstrate a specific and unexpected lipid requirement in virus exit, and suggest that in addition to its role in fusion, cholesterol is involved in the assembly or budding of SFV. PMID:8408205

  19. Creating Multiple Pathways in the Arts: A New York City Case Study

    ERIC Educational Resources Information Center

    Maguire, Cindy; Mishook, Jacob; Garcia, Ivonne; de Gaillande, Genevieve

    2013-01-01

    Increasingly, education policy makers understand the importance of students and families having access to a range of high quality educational opportunities inside and outside of school, 365 days a year. This paper explores the concept of multiple pathways in arts education to further conceptualize and build upon such opportunities, inside and…

  20. Language Learning in Children Who Are Deaf and Hard of Hearing: Multiple Pathways.

    ERIC Educational Resources Information Center

    Easterbrooks, Susan R.; Baker, Sharon

    This text on teaching language to students with hearing impairments stresses the use of multiple language learning pathways to meet the individual needs of students. The introductory chapter looks at language issues in the context of history, instruction, technology, culture, and the law. Chapter 2, on language acquisition, discusses the nature of…

  1. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways.

    PubMed Central

    Westwick, J K; Lambert, Q T; Clark, G J; Symons, M; Van Aelst, L; Pestell, R G; Der, C J

    1997-01-01

    Rac1 and RhoA are members of the Rho family of Ras-related proteins and function as regulators of actin cytoskeletal organization, gene expression, and cell cycle progression. Constitutive activation of Rac1 and RhoA causes tumorigenic transformation of NIH 3T3 cells, and their functions may be required for full Ras transformation. The effectors by which Rac1 and RhoA mediate these diverse activities, as well as the interrelationship between these events, remain poorly understood. Rac1 is distinct from RhoA in its ability to bind and activate the p65 PAK serine/threonine kinase, to induce lamellipodia and membrane ruffling, and to activate the c-Jun NH2-terminal kinase (JNK). To assess the role of PAK in Rac1 function, we identified effector domain mutants of Rac1 and Rac1-RhoA chimeric proteins that no longer bound PAK. Surprisingly, PAK binding was dispensable for Rac1-induced transformation and lamellipodium formation, as well as activation of JNK, p38, and serum response factor (SRF). However, the ability of Rac1 to bind to and activate PAK correlated with its ability to stimulate transcription from the cyclin D1 promoter. Furthermore, Rac1 activation of JNK or SRF, or induction of lamellipodia, was neither necessary nor sufficient for Rac1 transforming activity. Finally, the signaling pathways that mediate Rac1 activation of SRF or JNK were distinct from those that mediate Rac1 induction of lamellipodia. Taken together, these observations suggest that Rac1 regulates at least four distinct effector-mediated functions and that multiple pathways may contribute to Rac1-induced cellular transformation. PMID:9032259

  2. The PKC-NFκB Signaling Pathway Induces APOBEC3B Expression in Multiple Human Cancers

    PubMed Central

    Leonard, Brandon; McCann, Jennifer L.; Starrett, Gabriel J.; Kosyakovsky, Leah; Luengas, Elizabeth M.; Molan, Amy M.; Burns, Michael B.; McDougle, Rebecca M.; Parker, Peter J.; Brown, William L.; Harris, Reuben S.

    2015-01-01

    Overexpression of the antiviral DNA cytosine deaminase APOBEC3B has been linked to somatic mutagenesis in many cancers. HPV infection accounts for APOBEC3B upregulation in cervical and head/neck cancers, but the mechanisms underlying non-viral malignancies are unclear. In this study, we investigated the signal transduction pathways responsible for APOBEC3B upregulation. Activation of protein kinase C (PKC) by the diacylglycerol (DAG) mimic phorbol-myristic acid (PMA) resulted in specific and dose-responsive increases in APOBEC3B expression and activity, which could then be strongly suppressed by PKC or NFκB inhibition. PKC activation caused the recruitment of RELB, but not RELA, to the APOBEC3B promoter implicating non-canonical NFκB signaling. Notably, PKC was required for APOBEC3B upregulation in cancer cell lines derived from multiple tumor types. By revealing how APOBEC3B is upregulated in many cancers, our findings suggest that PKC and NFκB inhibitors may be repositioned to suppress cancer mutagenesis, dampen tumor evolution, and decrease the probability of adverse outcomes such as drug resistance and metastases. PMID:26420215

  3. Environmental pathways to autoimmune diseases: the cases of primary biliary cirrhosis and multiple sclerosis

    PubMed Central

    Selmi, Carlo; Maria Papini, Anna; Pugliese, Piera; Claudia Alcaro, Maria; Gershwin, M. Eric

    2011-01-01

    The pathways leading to autoimmunity remain enigmatic despite numerous lines of experimental inquiry and epidemiological evidence. The mechanisms leading to the initiation and perpetuation of specific diseases such as primary biliary cirrhosis (PBC) or multiple sclerosis (MS) remain largely enigmatic, although it is established that a combination of genetic predisposition and environmental stimulation is required. The growing number of genome-wide association studies and the largely incomplete concordance for autoimmune diseases in monozygotic twins concur to support the role of the environment (including infectious agents and chemicals) in the breakdown of tolerance leading to autoimmunity through different mechanisms. In the present article we illustrate the current hypotheses related to an environmental impact on the onset of PBC and MS as two representative conditions investigated with complementary approaches. Indeed, while a role of post-translational antigen modifications has been proposed for MS, this field remain unexplored in PBC where, conversely, most evidence is gathered from geoepidemiology and experimental data on xenobiotics or infectious agents. PMID:22295019

  4. A critical role for the NFkB pathway in multiple myeloma

    PubMed Central

    Demchenko, Yulia N.; Kuehl, W. Michael

    2010-01-01

    NFkB transcription factors play a key role in the survival and proliferation of many kinds of B-cell tumors, including multiple myeloma (MM). It was shown that NFkB activation in MM tumors results mainly from extrinsic signaling by APRIL and BAFF ligands that stimulate receptors on normal plasma cells as well as on pre-malignant monoclonal gammopathy of undetermined significance (MGUS) and MM tumors. However, the mutations that occur during MM progression and that constitutively activate NFkB would be expected to decrease dependence of tumor cells on the bone marrow microenvironment. These mutations can activate the classical or alternative NFkB pathways selectively, but usually both pathways are activated in MM. Significantly, activation of either NFkB pathway leads to a similar response of MM cell lines. This frequent activation of the alternative pathway distinguishes MM from other B-cell tumors, which more frequently have mutations that are predicted to activate only the classical NFkB pathway. Given the strong dependence of MGUS and MM tumors on NFkB pathway activation, inhibition by a combination of targeting extrinsic signaling plus both NFkB pathways appears to be an attractive therapeutic approach in MM tumors. PMID:20890394

  5. Growing up in a dangerous environment: a network of multiple targeting and folding pathways for nascent polypeptides in the cytosol.

    PubMed

    Bukau, B; Hesterkamp, T; Luirink, J

    1996-12-01

    The first events in the lives of proteins are the most hazardous. Starting at the ribosome, nascent polypeptides undergo complex folding processes endangered by aggregation reactions. Proteins with organellar destinations require correct targeting to the translocation machineries and prevention from premature folding. The high precision and speed of these processes is ensured by a cystosolic system consisting of molecular chaperones, folding catalysts and targeting factors. This review focuses on the interactions of this system with nascent polypeptides and discusses new concepts for protein folding in the cytosol. It is proposed that folding and targeting are promoted by a flexible network of multiple unassisted and assisted pathways.

  6. Colony-stimulating Factor-1 Receptor Utilizes Multiple Signaling Pathways to Induce Cyclin D2 Expression

    PubMed Central

    Dey, Arunangsu; She, Hongyun; Kim, Leopold; Boruch, Allan; Guris, Deborah L.; Carlberg, Kristen; Sebti, Saïd M.; Woodley, David T.; Imamoto, Akira; Li, Wei

    2000-01-01

    Colony-stimulating factor-1 (CSF-1) induces expression of immediate early gene, such as c-myc and c-fos and delayed early genes such as D-type cyclins (D1 and D2), whose products play essential roles in the G1 to S phase transition of the cell cycle. Little is known, however, about the cytoplasmic signal transduction pathways that connect the surface CSF-1 receptor to these genes in the nucleus. We have investigated the signaling mechanism of CSF-1-induced D2 expression. Analyses of CSF-1 receptor autophosphorylation mutants show that, although certain individual mutation has a partial inhibitory effect, only multiple combined mutations completely block induction of D2 in response to CSF-1. We report that at least three parallel pathways, the Src pathway, the MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, and the c-myc pathway, are involved. Induction of D2 is partially inhibited in Src−/− bone marrow-derived macrophages and by Src inhibitor PP1 and is enhanced in v-Src-overexpressing cells. Activation of myc's transactivating activity selectively induces D2 but not D1. Blockade of c-myc expression partially blocks CSF-1-induced D2 expression. Complete inhibition of the MEK/ERK pathway causes 50% decrease of D2 expression. Finally, simultaneous inhibition of Src, MEK activation, and c-myc expression additively blocks CSF-1-induced D2 expression. This study indicates that multiple signaling pathways are involved in full induction of a single gene, and this finding may also apply broadly to other growth factor-inducible genes. PMID:11071910

  7. CSF Proteomics Identifies Specific and Shared Pathways for Multiple Sclerosis Clinical Subtypes

    PubMed Central

    Avsar, Timucin; Durası, İlknur Melis; Uygunoğlu, Uğur; Tütüncü, Melih; Demirci, Nuri Onat; Saip, Sabahattin; Sezerman, O. Uğur; Siva, Aksel; Tahir Turanlı, Eda

    2015-01-01

    Multiple sclerosis (MS) is an immune-mediated, neuro-inflammatory, demyelinating and neurodegenerative disease of the central nervous system (CNS) with a heterogeneous clinical presentation and course. There is a remarkable phenotypic heterogeneity in MS, and the molecular mechanisms underlying it remain unknown. We aimed to investigate further the etiopathogenesis related molecular pathways in subclinical types of MS using proteomic and bioinformatics approaches in cerebrospinal fluids of patients with clinically isolated syndrome, relapsing remitting MS and progressive MS (n=179). Comparison of disease groups with controls revealed a total of 151 proteins that are differentially expressed in clinically different MS subtypes. KEGG analysis using PANOGA tool revealed the disease related pathways including aldosterone-regulated sodium reabsorption (p=8.02x10-5) which is important in the immune cell migration, renin-angiotensin (p=6.88x10-5) system that induces Th17 dependent immunity, notch signaling (p=1.83x10-10) pathway indicating the activated remyelination and vitamin digestion and absorption pathways (p=1.73x10-5). An emerging theme from our studies is that whilst all MS clinical forms share common biological pathways, there are also clinical subtypes specific and pathophysiology related pathways which may have further therapeutic implications. PMID:25942430

  8. SCAP/SREBP pathway is required for the full steroidogenic response to cyclic AMP.

    PubMed

    Shimizu-Albergine, Masami; Van Yserloo, Brian; Golkowski, Martin G; Ong, Shao-En; Beavo, Joseph A; Bornfeldt, Karin E

    2016-09-20

    Luteinizing hormone (LH) stimulates steroidogenesis largely through a surge in cyclic AMP (cAMP). Steroidogenic rates are also critically dependent on the availability of cholesterol at mitochondrial sites of synthesis. This cholesterol is provided by cellular uptake of lipoproteins, mobilization of intracellular lipid, and de novo synthesis. Whether and how these pathways are coordinated by cAMP are poorly understood. Recent phosphoproteomic analyses of cAMP-dependent phosphorylation sites in MA10 Leydig cells suggested that cAMP regulates multiple steps in these processes, including activation of the SCAP/SREBP pathway. SCAP [sterol-regulatory element-binding protein (SREBP) cleavage-activating protein] acts as a cholesterol sensor responsible for regulating intracellular cholesterol balance. Its role in cAMP-mediated control of steroidogenesis has not been explored. We used two CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR associated protein 9) knockout approaches to test the role of SCAP in steroidogenesis. Our results demonstrate that SCAP is required for progesterone production induced by concurrent inhibition of the cAMP phosphodiesterases PDE4 and PDE8. These inhibitors increased SCAP phosphorylation, SREBP2 activation, and subsequent expression of cholesterol biosynthetic genes, whereas SCAP deficiency largely prevented these effects. Reexpression of SCAP in SCAP-deficient cells restored SREBP2 protein expression and partially restored steroidogenic responses, confirming the requirement of SCAP-SREBP2 in steroidogenesis. Inhibitors of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase and isoprenylation attenuated, whereas exogenously provided cholesterol augmented, PDE inhibitor-induced steroidogenesis, suggesting that the cholesterol substrate needed for steroidogenesis is provided by both de novo synthesis and isoprenylation-dependent mechanisms. Overall, these results demonstrate a novel role for LH/cAMP in SCAP

  9. Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation.

    PubMed

    Tokunaga, Hiroki; Kojima, Mikiko; Kuroha, Takeshi; Ishida, Takashi; Sugimoto, Keiko; Kiba, Takatoshi; Sakakibara, Hitoshi

    2012-01-01

    Cytokinins are phytohormones that play key roles in the maintenance of stem cell activity in plants. Although alternative single-step and two-step activation pathways for cytokinin have been proposed, the significance of the single-step pathway which is catalyzed by LONELY GUY (LOG), is not fully understood. We analyzed the metabolic flow of cytokinin activation in Arabidopsis log multiple mutants using stable isotope-labeled tracers and characterized the mutants' morphological and developmental phenotypes. In tracer experiments, cytokinin activation was inhibited most pronouncedly by log7, while the other log mutations had cumulative effects. Although sextuple or lower-order mutants did not show drastic phenotypes in vegetative growth, the log1log2log3log4log5log7log8 septuple T-DNA insertion mutant in which the LOG-dependent pathway is impaired, displayed severe retardation of shoot and root growth with defects in the maintenance of the apical meristems. Detailed observation of the mutants showed that LOG7 was required for the maintenance of shoot apical meristem size. LOG7 was also suggested to play a role for normal primary root growth together with LOG3 and LOG4. These results suggest a dominant role of the single-step activation pathway mediated by LOGs for cytokinin production, and overlapping but differentiated functions of the members of the LOG gene family in growth and development.

  10. Multiple GPCR conformations and signalling pathways: implications for antagonist affinity estimates

    PubMed Central

    Baker, Jillian G.; Hill, Stephen J.

    2007-01-01

    Antagonist affinity measurements have traditionally been considered important in characterizing the cell-surface receptors present in a particular cell or tissue. A central assumption has been that antagonist affinity is constant for a given receptor–antagonist interaction, regardless of the agonist used to stimulate that receptor or the downstream response that is measured. As a consequence, changes in antagonist affinity values have been taken as initial evidence for the presence of novel receptor subtypes. Emerging evidence suggests, however, that receptors can possess multiple binding sites and the same receptor can show different antagonist affinity measurements under distinct experimental conditions. Here, we discuss several mechanisms by which antagonists have different affinities for the same receptor as a consequence of allosterism, coupling to different G proteins, multiple (but non-interacting) receptor sites, and signal-pathway-dependent pharmacology (where the pharmacology observed varies depending on the signalling pathway measured). PMID:17629959

  11. Multiple myeloma acquires resistance to EGFR inhibitor via induction of pentose phosphate pathway.

    PubMed

    Chen, Yan; Huang, Ruibin; Ding, Jianghua; Ji, Dexiang; Song, Bing; Yuan, Liya; Chang, Hong; Chen, Guoan

    2015-04-20

    Multiple myeloma (MM) was characterized by frequent mutations in KRAS/NRAS/BRAF within the EGFR pathway that could induce resistance to EGFR inhibitors. We here report that EGFR inhibition solely exhibited moderate inhibition in KRAS/NRAS/BRAF wildtype (triple-WT) MM cells, whilst had no effect in myeloma cells with any of the mutated genes. The moderate inhibitory effect was conferred by induction of pentose phosphate pathway (PPP) when cells were treated with Gefitinib, the EGFR inhibitor. Combination of Gefitinib with PPP inhibitor 6AN effected synergistically in triple-WT cells. The inhibition could be restored by addition of NADPH. Dual EGFR/ERBB2 inhibitor Afatinib also exhibited similar effects. Further genetic silencing of EGFR, ERBB2 and mTOR indicated that major effect conferred by ERBB2 was via convergence to EGFR pathway in MM. Our results contributed to the individualized targeted therapy with EGFR inhibitors in MM.

  12. Synergy between Multiple Microtubule-Generating Pathways Confers Robustness to Centrosome-Driven Mitotic Spindle Formation

    PubMed Central

    Hayward, Daniel; Metz, Jeremy; Pellacani, Claudia; Wakefield, James G.

    2014-01-01

    Summary The mitotic spindle is defined by its organized, bipolar mass of microtubules, which drive chromosome alignment and segregation. Although different cells have been shown to use different molecular pathways to generate the microtubules required for spindle formation, how these pathways are coordinated within a single cell is poorly understood. We have tested the limits within which the Drosophila embryonic spindle forms, disrupting the inherent temporal control that overlays mitotic microtubule generation, interfering with the molecular mechanism that generates new microtubules from preexisting ones, and disrupting the spatial relationship between microtubule nucleation and the usually dominant centrosome. Our work uncovers the possible routes to spindle formation in embryos and establishes the central role of Augmin in all microtubule-generating pathways. It also demonstrates that the contributions of each pathway to spindle formation are integrated, highlighting the remarkable flexibility with which cells can respond to perturbations that limit their capacity to generate microtubules. PMID:24389063

  13. Deciphering the biological effects of acupuncture treatment modulating multiple metabolism pathways

    PubMed Central

    Zhang, Aihua; Yan, Guangli; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Xie, Ning; Wang, Xijun

    2016-01-01

    Acupuncture is an alternative therapy that is widely used to treat various diseases. However, detailed biological interpretation of the acupuncture stimulations is limited. We here used metabolomics and proteomics technology, thereby identifying the serum small molecular metabolites into the effect and mechanism pathways of standardized acupuncture treatments at ‘Zusanli’ acupoint which was the most often used acupoint in previous reports. Comprehensive overview of serum metabolic profiles during acupuncture stimulation was investigated. Thirty-four differential metabolites were identified in serum metabolome and associated with ten metabolism pathways. Importantly, we have found that high impact glycerophospholipid metabolism, fatty acid metabolism, ether lipid metabolism were acutely perturbed by acupuncture stimulation. As such, these alterations may be useful to clarify the biological mechanism of acupuncture stimulation. A series of differentially expressed proteins were identified and such effects of acupuncture stimulation were found to play a role in transport, enzymatic activity, signaling pathway or receptor interaction. Pathway analysis further revealed that most of these proteins were found to play a pivotal role in the regulation of multiple metabolism pathways. It demonstrated that the metabolomics coupled with proteomics as a powerful approach for potential applications in understanding the biological effects of acupuncture stimulation. PMID:26879284

  14. Multiple signaling pathways leading to the activation of interferon regulatory factor 3.

    PubMed

    Servant, Marc J; Grandvaux, Nathalie; Hiscott, John

    2002-09-01

    Virus infection of susceptible cells activates multiple signaling pathways that orchestrate the activation of genes, such as cytokines, involved in the antiviral and innate immune response. Among the kinases induced are the mitogen-activated protein (MAP) kinases, Jun-amino terminal kinases (JNK) and p38, the IkappaB kinase (IKK) and DNA-PK. In addition, virus infection also activates an uncharacterized VAK responsible for the C-terminal phosphorylation and subsequent activation of interferon regulatory factor 3 (IRF-3). Virus-mediated activation of IRF-3 through VAK is dependent on viral entry and transcription, since replication deficient virus failed to induce IRF-3 activity. The pathways leading to VAK activation are not well characterized, but IRF-3 appears to represent a novel cellular detection pathway that recognizes viral nucleocapsid (N) structure. Recently, the range of inducers responsible for IRF-3 activation has increased. In addition to virus infection, recognition of bacterial infection mediated through lipopolysaccharide by Toll-like receptor 4 has also been reported. Furthermore, MAP kinase kinase kinase (MAP KKK)-related pathways and DNA-PK induce N-terminal phosphorylation of IRF-3. This review summarizes recent observations in the identification of novel signaling pathways leading to IRF-3 activation.

  15. Carbon dioxide fixation in 'Archaeoglobus lithotrophicus': are there multiple autotrophic pathways?

    PubMed

    Estelmann, Sebastian; Ramos-Vera, Walter Hugo; Gad'on, Nasser; Huber, Harald; Berg, Ivan A; Fuchs, Georg

    2011-06-01

    Several representatives of the euryarchaeal class Archaeoglobi are able to grow facultative autotrophically using the reductive acetyl-CoA pathway, with 'Archaeoglobus lithotrophicus' being an obligate autotroph. However, genome sequencing revealed that some species harbor genes for key enzymes of other autotrophic pathways, i.e. 4-hydroxybutyryl-CoA dehydratase of the dicarboxylate/hydroxybutyrate cycle and the hydroxypropionate/hydroxybutyrate cycle and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) of the Calvin-Benson cycle. This raised the question of whether only one or multiple autotrophic pathways are operating in these species. We searched for the presence of enzyme activities specific for the dicarboxylate/hydroxybutyrate or the hydroxypropionate/hydroxybutyrate cycles in 'A. lithotrophicus', but such enzymes could not be detected. Low Rubisco activity was detected that could not account for the carbon dioxide (CO(2)) fixation rate; in addition, phosphoribulokinase activity was not found. The generation of ribulose 1,5-bisphosphate from 5-phospho-D-ribose 1-pyrophosphate was observed, but not from AMP; these sources for ribulose 1,5-bisphosphate have been proposed before. Our data indicate that the reductive acetyl-CoA pathway is the only functioning CO(2) fixation pathway in 'A. lithotrophicus'.

  16. 24 CFR 1710.15 - Regulatory exemption-multiple site subdivision-determination required.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Regulatory exemption-multiple site... PROGRAM) LAND REGISTRATION General Requirements § 1710.15 Regulatory exemption—multiple site subdivision—determination required. (a) General. (1) The sale of lots contained in multiple sites of fewer than 100...

  17. 29 CFR 1926.1432 - Multiple-crane/derrick lifts-supplemental requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Multiple-crane/derrick lifts-supplemental requirements... Cranes and Derricks in Construction § 1926.1432 Multiple-crane/derrick lifts—supplemental requirements... implementation. (1) The multiple-crane/derrick lift must be directed by a person who meets the criteria for...

  18. 29 CFR 1926.1432 - Multiple-crane/derrick lifts-supplemental requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Multiple-crane/derrick lifts-supplemental requirements... Cranes and Derricks in Construction § 1926.1432 Multiple-crane/derrick lifts—supplemental requirements... implementation. (1) The multiple-crane/derrick lift must be directed by a person who meets the criteria for...

  19. The Toll-Dorsal Pathway Is Required for Resistance to Viral Oral Infection in Drosophila

    PubMed Central

    Ferreira, Álvaro Gil; Naylor, Huw; Esteves, Sara Santana; Pais, Inês Silva; Martins, Nelson Eduardo; Teixeira, Luis

    2014-01-01

    Pathogen entry route can have a strong impact on the result of microbial infections in different hosts, including insects. Drosophila melanogaster has been a successful model system to study the immune response to systemic viral infection. Here we investigate the role of the Toll pathway in resistance to oral viral infection in D. melanogaster. We show that several Toll pathway components, including Spätzle, Toll, Pelle and the NF-kB-like transcription factor Dorsal, are required to resist oral infection with Drosophila C virus. Furthermore, in the fat body Dorsal is translocated from the cytoplasm to the nucleus and a Toll pathway target gene reporter is upregulated in response to Drosophila C Virus infection. This pathway also mediates resistance to several other RNA viruses (Cricket paralysis virus, Flock House virus, and Nora virus). Compared with control, viral titres are highly increased in Toll pathway mutants. The role of the Toll pathway in resistance to viruses in D. melanogaster is restricted to oral infection since we do not observe a phenotype associated with systemic infection. We also show that Wolbachia and other Drosophila-associated microbiota do not interact with the Toll pathway-mediated resistance to oral infection. We therefore identify the Toll pathway as a new general inducible pathway that mediates strong resistance to viruses with a route-specific role. These results contribute to a better understanding of viral oral infection resistance in insects, which is particularly relevant in the context of transmission of arboviruses by insect vectors. PMID:25473839

  20. Acridine Derivatives as Inhibitors of the IRE1α-XBP1 Pathway Are Cytotoxic to Human Multiple Myeloma.

    PubMed

    Jiang, Dadi; Tam, Arvin B; Alagappan, Muthuraman; Hay, Michael P; Gupta, Aparna; Kozak, Margaret M; Solow-Cordero, David E; Lum, Pek Y; Denko, Nicholas C; Giaccia, Amato J; Le, Quynh-Thu; Niwa, Maho; Koong, Albert C

    2016-09-01

    Using a luciferase reporter-based high-throughput chemical library screen and topological data analysis, we identified N-acridine-9-yl-N',N'-dimethylpropane-1,3-diamine (DAPA) as an inhibitor of the inositol requiring kinase 1α (IRE1α)-X-box binding protein-1 (XBP1) pathway of the unfolded protein response. We designed a collection of analogues based on the structure of DAPA to explore structure-activity relationships and identified N(9)-(3-(dimethylamino)propyl)-N(3),N(3),N(6),N(6)-tetramethylacridine-3,6,9-triamine (3,6-DMAD), with 3,6-dimethylamino substitution on the chromophore, as a potent inhibitor. 3,6-DMAD inhibited both IRE1α oligomerization and in vitro endoribonuclease (RNase) activity, whereas the other analogues only blocked IRE1α oligomerization. Consistent with the inhibition of IRE1α-mediated XBP1 splicing, which is critical for multiple myeloma cell survival, these analogues were cytotoxic to multiple myeloma cell lines. Furthermore, 3,6-DMAD inhibited XBP1 splicing in vivo and the growth of multiple myeloma tumor xenografts. Our study not only confirmed the utilization of topological data analysis in drug discovery but also identified a class of compounds with a unique mechanism of action as potent IRE1α-XBP1 inhibitors in the treatment of multiple myeloma. Mol Cancer Ther; 15(9); 2055-65. ©2016 AACR. PMID:27307600

  1. Activation of Notch1 synergizes with multiple pathways in promoting castration-resistant prostate cancer

    PubMed Central

    Stoyanova, Tanya; Riedinger, Mireille; Lin, Shu; Faltermeier, Claire M.; Smith, Bryan A.; Zhang, Kelvin X.; Going, Catherine C.; Goldstein, Andrew S.; Lee, John K.; Drake, Justin M.; Rice, Meghan A.; Hsu, En-Chi; Nowroozizadeh, Behdokht; Castor, Brandon; Orellana, Sandra Y.; Blum, Steven M.; Cheng, Donghui; Pienta, Kenneth J.; Reiter, Robert E.; Pitteri, Sharon J.; Huang, Jiaoti; Witte, Owen N.

    2016-01-01

    Metastatic castration-resistant prostate cancer (CRPC) is the primary cause of prostate cancer-specific mortality. Defining new mechanisms that can predict recurrence and drive lethal CRPC is critical. Here, we demonstrate that localized high-risk prostate cancer and metastatic CRPC, but not benign prostate tissues or low/intermediate-risk prostate cancer, express high levels of nuclear Notch homolog 1, translocation-associated (Notch1) receptor intracellular domain. Chronic activation of Notch1 synergizes with multiple oncogenic pathways altered in early disease to promote the development of prostate adenocarcinoma. These tumors display features of epithelial-to-mesenchymal transition, a cellular state associated with increased tumor aggressiveness. Consistent with its activation in clinical CRPC, tumors driven by Notch1 intracellular domain in combination with multiple pathways altered in prostate cancer are metastatic and resistant to androgen deprivation. Our study provides functional evidence that the Notch1 signaling axis synergizes with alternative pathways in promoting metastatic CRPC and may represent a new therapeutic target for advanced prostate cancer. PMID:27694579

  2. Metabolomics and proteomics annotate therapeutic properties of geniposide: targeting and regulating multiple perturbed pathways.

    PubMed

    Wang, Xijun; Zhang, Aihua; Yan, Guangli; Sun, Wenjun; Han, Ying; Sun, Hui

    2013-01-01

    Geniposide is an important constituent of Gardenia jasminoides Ellis, a famous Chinese medicinal plant, and has displayed bright prospects in prevention and therapy of hepatic injury (HI). Unfortunately, the working mechanisms of this compound are difficult to determine and thus remain unknown. To determine the mechanisms that underlie this compound, we conducted a systematic analysis of the therapeutic effects of geniposide using biochemistry, metabolomics and proteomics. Geniposide significantly intensified the therapeutic efficacy as indicated by our modern biochemical analysis. Metabolomics results indicate 9 ions in the positive mode as differentiating metabolites which were associated with perturbations in primary bile acid biosynthesis, butanoate metabolism, citrate cycle (TCA cycle), alanine, aspartate and glutamate metabolism. Of note, geniposide has potential pharmacological effect through regulating multiple perturbed pathways to normal state. In an attempt to address the benefits of geniposide based on the proteomics approaches, the protein-interacting networks were constructed to aid identifying the drug targets of geniposide. Six identified differential proteins appear to be involved in antioxidation and signal transduction, energy production, immunity, metabolism, chaperoning. These proteins were closely related in the protein-protein interaction network and the modulation of multiple vital physiological pathways. These data will help to understand the molecular therapeutic mechanisms of geniposide on hepatic damage rats. We also conclude that metabolomics and proteomics are powerful and versatile tools for both biomarker discovery and exploring the complex relationships between biological pathways and drug response, highlighting insights into drug discovery. PMID:23967205

  3. Efficient inhibition of infectious prions multiplication and release by targeting the exosomal pathway.

    PubMed

    Vilette, Didier; Laulagnier, Karine; Huor, Alvina; Alais, Sandrine; Simoes, Sabrina; Maryse, Romao; Provansal, Monique; Lehmann, Sylvain; Andreoletti, Olivier; Schaeffer, Laurent; Raposo, Graça; Leblanc, Pascal

    2015-11-01

    Exosomes are secreted membrane vesicles of endosomal origin present in biological fluids. Exosomes may serve as shuttles for amyloidogenic proteins, notably infectious prions, and may participate in their spreading in vivo. To explore the significance of the exosome pathway on prion infectivity and release, we investigated the role of the endosomal sorting complex required for transport (ESCRT) machinery and the need for ceramide, both involved in exosome biogenesis. Silencing of HRS-ESCRT-0 subunit drastically impairs the formation of cellular infectious prion due to an altered trafficking of cholesterol. Depletion of Tsg101-ESCRT-I subunit or impairment of the production of ceramide significantly strongly decreases infectious prion release. Together, our data reveal that ESCRT-dependent and -independent pathways can concomitantly regulate the exosomal secretion of infectious prion, showing that both pathways operate for the exosomal trafficking of a particular cargo. These data open up a new avenue to regulate prion release and propagation.

  4. Multiple Signaling Pathways Converge on the Cbfa1/Runx2 Transcription Factor to Regulate Osteoblast Differentiation

    PubMed Central

    Franceschi, Renny T.; Xiao, Guozhi; Jiang, Di; Gopalakrishnan, Rajaram; Yang, Shuying; Reith, Elizabeth

    2013-01-01

    The Cbfa1/Runx2 transcription factor is essential for osteoblast differentiation. However, levels of Runx2 are often not well correlated with its transcriptional activity suggesting that this factor must be activated either by covalent modification or through interactions with other nuclear components. Runx2 is phosphorylated and activated by the mitogen-activated protein kinase (MAPK) pathway. This pathway is stimulated in at least two ways: by binding of type I collagen to β2β1 integrins on the osteoblast surface and by treatment of cells with the osteogenic growth factor, FGF2. Protein kinase A (PKA) also may phosphorylate/activate Runx2 under certain conditions. Runx2 activity also is enhanced by factors known to stimulate specific signal transduction pathways such as PTH/PTHrP (signals through PKA and PKC pathways) and BMPs (Signal through Smad proteins). Interactions with Runx2 are complex involving both binding of distinct components such as AP-1 factors and Smads to separate sites on DNA, direct interactions between Runx2 and AP-1/Smad factors and MAPK or PKA-dependent Runx2 phosphorylation. These findings suggest that Runx2 plays a central role in coordinating multiple signals involved in osteoblast differentiation. PMID:12952183

  5. Integrated modeling of flow and residence times at the catchment scale with multiple interacting pathways

    NASA Astrophysics Data System (ADS)

    Davies, J.; Beven, K.; Rodhe, A.; Nyberg, L.; Bishop, K.

    2013-08-01

    There is still a need for catchment hydrological and transport models that properly integrate the effects of preferential flows while accounting for differences in velocities and celerities. A modeling methodology is presented here which uses particle tracking methods to simulate both flow and transport in multiple pathways in a single consistent solution. Water fluxes and storages are determined by the volume and density of particles and transport is attained by labeling the particles with information that may be tracked throughout the lifetime of that particle in the catchment. The methodology allows representation of preferential flows through the use of particle velocity distributions, and mixing between pathways can be achieved with pathway transition probabilities. A transferable 3-D modeling methodology is presented for the first time and applied to a unique step-shift isotope experiment that was carried out at the 0.63 ha G1 catchment in Gårdsjön, Sweden. This application highlights the importance of combining flow and transport in hydrological representations, and the importance of pathway velocity distributions and interactions in obtaining a satisfactory representation of the observations.

  6. NF-κB Pathways in the Pathogenesis of Multiple Sclerosis and the Therapeutic Implications

    PubMed Central

    Leibowitz, Saskia M.; Yan, Jun

    2016-01-01

    Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways are involved in cell immune responses, apoptosis and infections. In multiple sclerosis (MS), NF-κB pathways are changed, leading to increased levels of NF-κB activation in cells. This may indicate a key role for NF-κB in MS pathogenesis. NF-κB signaling is complex, with many elements involved in its activation and regulation. Interestingly, current MS treatments are found to be directly or indirectly linked to NF-κB pathways and act to adjust the innate and adaptive immune system in patients. In this review, we will first focus on the intricacies of NF-κB signaling, including the activating pathways and regulatory elements. Next, we will theorize about the role of NF-κB in MS pathogenesis, based on current research findings, and discuss some of the associated therapeutic implications. Lastly, we will review four new MS treatments which interrupt NF-κB pathways—fingolimod, teriflunomide, dimethyl fumarate (DMF) and laquinimod (LAQ)—and explain their mechanisms, and the possible strategy for MS treatments in the future.

  7. NF-κB Pathways in the Pathogenesis of Multiple Sclerosis and the Therapeutic Implications

    PubMed Central

    Leibowitz, Saskia M.; Yan, Jun

    2016-01-01

    Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways are involved in cell immune responses, apoptosis and infections. In multiple sclerosis (MS), NF-κB pathways are changed, leading to increased levels of NF-κB activation in cells. This may indicate a key role for NF-κB in MS pathogenesis. NF-κB signaling is complex, with many elements involved in its activation and regulation. Interestingly, current MS treatments are found to be directly or indirectly linked to NF-κB pathways and act to adjust the innate and adaptive immune system in patients. In this review, we will first focus on the intricacies of NF-κB signaling, including the activating pathways and regulatory elements. Next, we will theorize about the role of NF-κB in MS pathogenesis, based on current research findings, and discuss some of the associated therapeutic implications. Lastly, we will review four new MS treatments which interrupt NF-κB pathways—fingolimod, teriflunomide, dimethyl fumarate (DMF) and laquinimod (LAQ)—and explain their mechanisms, and the possible strategy for MS treatments in the future. PMID:27695399

  8. Th17 Cells Pathways in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders: Pathophysiological and Therapeutic Implications

    PubMed Central

    Passos, Giordani Rodrigues Dos; Sato, Douglas Kazutoshi; Becker, Jefferson; Fujihara, Kazuo

    2016-01-01

    Several animal and human studies have implicated CD4+ T helper 17 (Th17) cells and their downstream pathways in the pathogenesis of central nervous system (CNS) autoimmunity in multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), challenging the traditional Th1-Th2 paradigm. Th17 cells can efficiently cross the blood-brain barrier using alternate ways from Th1 cells, promote its disruption, and induce the activation of other inflammatory cells in the CNS. A number of environmental factors modulate the activity of Th17 pathways, so changes in the diet, exposure to infections, and other environmental factors can potentially change the risk of development of autoimmunity. Currently, new drugs targeting specific points of the Th17 pathways are already being tested in clinical trials and provide basis for the development of biomarkers to monitor disease activity. Herein, we review the key findings supporting the relevance of the Th17 pathways in the pathogenesis of MS and NMOSD, as well as their potential role as therapeutic targets in the treatment of immune-mediated CNS disorders. PMID:26941483

  9. Use of multiple dispersal pathways facilitates amphibian persistence in stream networks

    USGS Publications Warehouse

    Campbell, Grant E.H.; Nichols, J.D.; Lowe, W.H.; Fagan, W.F.

    2010-01-01

    Although populations of amphibians are declining worldwide, there is no evidence that salamanders occupying small streams are experiencing enigmatic declines, and populations of these species seem stable. Theory predicts that dispersal through multiple pathways can stabilize populations, preventing extinction in habitat networks. However, empirical data to support this prediction are absent for most species, especially those at risk of decline. Our mark-recapture study of stream salamanders reveals both a strong upstream bias in dispersal and a surprisingly high rate of overland dispersal to adjacent headwater streams. This evidence of route-dependent variation in dispersal rates suggests a spatial mechanism for population stability in headwater-stream salamanders. Our results link the movement behavior of stream salamanders to network topology, and they underscore the importance of identifying and protecting critical dispersal pathways when addressing region-wide population declines.

  10. Multiple Pathways of Recombination Induced by Double-Strand Breaks in Saccharomyces cerevisiae

    PubMed Central

    Pâques, Frédéric; Haber, James E.

    1999-01-01

    The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination. PMID:10357855

  11. Use of multiple dispersal pathways facilitates amphibian persistence in stream networks.

    PubMed

    Campbell Grant, Evan H; Nichols, James D; Lowe, Winsor H; Fagan, William F

    2010-04-13

    Although populations of amphibians are declining worldwide, there is no evidence that salamanders occupying small streams are experiencing enigmatic declines, and populations of these species seem stable. Theory predicts that dispersal through multiple pathways can stabilize populations, preventing extinction in habitat networks. However, empirical data to support this prediction are absent for most species, especially those at risk of decline. Our mark-recapture study of stream salamanders reveals both a strong upstream bias in dispersal and a surprisingly high rate of overland dispersal to adjacent headwater streams. This evidence of route-dependent variation in dispersal rates suggests a spatial mechanism for population stability in headwater-stream salamanders. Our results link the movement behavior of stream salamanders to network topology, and they underscore the importance of identifying and protecting critical dispersal pathways when addressing region-wide population declines.

  12. Ecosystem services capacity across heterogeneous forest types: understanding the interactions and suggesting pathways for sustaining multiple ecosystem services.

    PubMed

    Alamgir, Mohammed; Turton, Stephen M; Macgregor, Colin J; Pert, Petina L

    2016-10-01

    As ecosystem services supply from tropical forests is declining due to deforestation and forest degradation, much effort is essential to sustain ecosystem services supply from tropical forested landscapes, because tropical forests provide the largest flow of multiple ecosystem services among the terrestrial ecosystems. In order to sustain multiple ecosystem services, understanding ecosystem services capacity across heterogeneous forest types and identifying certain ecosystem services that could be managed to leverage positive effects across the wider bundle of ecosystem services are required. We sampled three forest types, tropical rainforests, sclerophyll forests, and rehabilitated plantation forests, over an area of 32,000m(2) from Wet Tropics bioregion, Australia, aiming to compare supply and evaluate interactions and patterns of eight ecosystem services (global climate regulation, air quality regulation, erosion regulation, nutrient regulation, cyclone protection, habitat provision, energy provision, and timber provision). On average, multiple ecosystem services were highest in the rainforests, lowest in sclerophyll forests, and intermediate in rehabilitated plantation forests. However, a wide variation was apparent among the plots across the three forest types. Global climate regulation service had a synergistic impact on the supply of multiple ecosystem services, while nutrient regulation service was found to have a trade-off impact. Considering multiple ecosystem services, most of the rehabilitated plantation forest plots shared the same ordination space with rainforest plots in the ordination analysis, indicating that rehabilitated plantation forests may supply certain ecosystem services nearly equivalent to rainforests. Two synergy groups and one trade-off group were identified. Apart from conserving rainforests and sclerophyll forests, our findings suggest two additional integrated pathways to sustain the supply of multiple ecosystem services from a

  13. Ecosystem services capacity across heterogeneous forest types: understanding the interactions and suggesting pathways for sustaining multiple ecosystem services.

    PubMed

    Alamgir, Mohammed; Turton, Stephen M; Macgregor, Colin J; Pert, Petina L

    2016-10-01

    As ecosystem services supply from tropical forests is declining due to deforestation and forest degradation, much effort is essential to sustain ecosystem services supply from tropical forested landscapes, because tropical forests provide the largest flow of multiple ecosystem services among the terrestrial ecosystems. In order to sustain multiple ecosystem services, understanding ecosystem services capacity across heterogeneous forest types and identifying certain ecosystem services that could be managed to leverage positive effects across the wider bundle of ecosystem services are required. We sampled three forest types, tropical rainforests, sclerophyll forests, and rehabilitated plantation forests, over an area of 32,000m(2) from Wet Tropics bioregion, Australia, aiming to compare supply and evaluate interactions and patterns of eight ecosystem services (global climate regulation, air quality regulation, erosion regulation, nutrient regulation, cyclone protection, habitat provision, energy provision, and timber provision). On average, multiple ecosystem services were highest in the rainforests, lowest in sclerophyll forests, and intermediate in rehabilitated plantation forests. However, a wide variation was apparent among the plots across the three forest types. Global climate regulation service had a synergistic impact on the supply of multiple ecosystem services, while nutrient regulation service was found to have a trade-off impact. Considering multiple ecosystem services, most of the rehabilitated plantation forest plots shared the same ordination space with rainforest plots in the ordination analysis, indicating that rehabilitated plantation forests may supply certain ecosystem services nearly equivalent to rainforests. Two synergy groups and one trade-off group were identified. Apart from conserving rainforests and sclerophyll forests, our findings suggest two additional integrated pathways to sustain the supply of multiple ecosystem services from a

  14. Smoldering multiple myeloma requiring treatment: time for a new definition?

    PubMed Central

    Stewart, A. Keith; Chanan-Khan, Asher; Rajkumar, S. Vincent; Kyle, Robert A.; Fonseca, Rafael; Kapoor, Prashant; Bergsagel, P. Leif; McCurdy, Arleigh; Gertz, Morie A.; Lacy, Martha Q.; Lust, John A.; Russell, Stephen J.; Zeldenrust, Steven R.; Reeder, Craig; Roy, Vivek; Buadi, Francis; Dingli, David; Hayman, Suzanne R.; Leung, Nelson; Lin, Yi; Mikhael, Joseph; Kumar, Shaji K.

    2013-01-01

    Smoldering multiple myeloma (SMM) bridges the gap between monoclonal gammopathy of undetermined significance (a mostly premalignant disorder) and active multiple myeloma (MM). Until recently, no interventional study in patients with SMM showed improved overall survival (OS) with therapy as compared with observation. A report from the PETHEMA-GEM (Programa Español de Tratamientos en Hematologica) group described both fewer myeloma-related events and better OS among patients with high-risk SMM who were treated with lenalidomide and dexamethasone. This unique study prompted us to review current knowledge about SMM and address the following questions: (1) Are there patients currently defined as SMM who should be treated routinely? (2) Should the definitions of SMM and MM be reconsidered? (3) Has the time come when not treating is more dangerous than treating? (4) Could unintended medical harm result from overzealous intervention? Our conclusion is that those patients with the highest-risk SMM (extreme bone marrow plasmacytosis, extremely abnormal serum immunoglobulin free light chain ratio, and multiple bone lesions detected only by modern imaging) should be reclassified as active MM so that they can receive MM-appropriate therapy and the paradigm of careful observation for patients with SMM can be preserved. PMID:24144641

  15. Smoldering multiple myeloma requiring treatment: time for a new definition?

    PubMed

    Dispenzieri, Angela; Stewart, A Keith; Chanan-Khan, Asher; Rajkumar, S Vincent; Kyle, Robert A; Fonseca, Rafael; Kapoor, Prashant; Bergsagel, P Leif; McCurdy, Arleigh; Gertz, Morie A; Lacy, Martha Q; Lust, John A; Russell, Stephen J; Zeldenrust, Steven R; Reeder, Craig; Roy, Vivek; Buadi, Francis; Dingli, David; Hayman, Suzanne R; Leung, Nelson; Lin, Yi; Mikhael, Joseph; Kumar, Shaji K

    2013-12-19

    Smoldering multiple myeloma (SMM) bridges the gap between monoclonal gammopathy of undetermined significance (a mostly premalignant disorder) and active multiple myeloma (MM). Until recently, no interventional study in patients with SMM showed improved overall survival (OS) with therapy as compared with observation. A report from the PETHEMA-GEM (Programa Español de Tratamientos en Hematologica) group described both fewer myeloma-related events and better OS among patients with high-risk SMM who were treated with lenalidomide and dexamethasone. This unique study prompted us to review current knowledge about SMM and address the following questions: (1) Are there patients currently defined as SMM who should be treated routinely? (2) Should the definitions of SMM and MM be reconsidered? (3) Has the time come when not treating is more dangerous than treating? (4) Could unintended medical harm result from overzealous intervention? Our conclusion is that those patients with the highest-risk SMM (extreme bone marrow plasmacytosis, extremely abnormal serum immunoglobulin free light chain ratio, and multiple bone lesions detected only by modern imaging) should be reclassified as active MM so that they can receive MM-appropriate therapy and the paradigm of careful observation for patients with SMM can be preserved. PMID:24144641

  16. Mutant p53 Drives Cancer by Subverting Multiple Tumor Suppression Pathways

    PubMed Central

    Haupt, Sue; Raghu, Dinesh; Haupt, Ygal

    2016-01-01

    The tumor suppressor p53 normally acts as a brake to halt damaged cells from perpetrating their genetic errors into future generations. If p53 is disrupted by mutation, it may not only lose these corrective powers, but counterproductively acquire new capacities that drive cancer. A newly emerging manner in which mutant p53 executes its cancer promoting functions is by harnessing key proteins, which normally partner with its wild type, tumor-inhibiting counterpart. In association with the subverted activities of these protein partners, mutant p53 is empowered to act across multiple fundamental cellular pathways (regulating cell division and metabolism) and corrupt them to become cancer promoting. PMID:26858938

  17. Suppressed RNA-polymerase 1 pathway is associated with benign multiple sclerosis.

    PubMed

    Achiron, Anat; Feldman, Anna; Magalashvili, David; Dolev, Mark; Gurevich, Michael

    2012-01-01

    Benign multiple sclerosis (BMS) occurs in about 15% of patients with relapsing-remitting multiple sclerosis (RRMS) that over time do not develop significant neurological disability. The molecular events associated with BMS are not clearly understood. This study sought to underlie the biological mechanisms associated with BMS. Blood samples obtained from a cohort of 31 patients with BMS and 36 patients with RRMS were applied for gene expression microarray analysis using HG-U133A-2 array (Affymetrix). Data were analyzed by Partek and pathway reconstruction was performed by Ingenuity for the most informative genes (MIGs). We identified a differing gene expression signature of 406 MIGs between BMS patients, mean±SE age 44.5±1.5 years, 24 females, 7 males, EDSS 1.9±0.2, disease duration 17.0±1.3 years, and RRMS patients, age 40.3±1.8 years, 24 females, 12 males, EDSS 3.5±0.2, disease duration 10.9±1.4 years. The signature was enriched by genes related RNA polymerase I (POL-1) transcription, general inflammatory response and activation of cell death. The most significant under-expressed pathway operating in BMS was the POL-1 pathway (p = 4.0*10(-5)) known while suppressed to activate P53 dependent apoptosis and to suppress NFκB induced inflammation. In accordance, of the 30 P53 target genes presented within the BMS signature, 19 had expression direction consistent with P53 activation. The transcripts within the pathway include POL-1 transcription factor 3 (RRN3, p = 4.8*10(-5)), POL-1 polypeptide D (POLR1D, p = 2.2*10(-4)), leucine-rich PPR-motif containing protein (LRPPRC p = 2.3*10(-5)), followed by suppression of the downstream family of ribosomal genes like RPL3, 6,13,22 and RPS6. In accordance POL-1 transcript and release factor PTRF that terminates POL-1 transcription, was over-expressed (p = 4.4*10(-3)). Verification of POL-1 pathway key genes was confirmed by qRT-PCR, and RRN3 silencing resulted in significant increase in the apoptosis level of PBMC sub

  18. Associations between Proprioceptive Neural Pathway Structural Connectivity and Balance in People with Multiple Sclerosis.

    PubMed

    Fling, Brett W; Dutta, Geetanjali Gera; Schlueter, Heather; Cameron, Michelle H; Horak, Fay B

    2014-01-01

    Mobility and balance impairments are a hallmark of multiple sclerosis (MS), affecting nearly half of patients at presentation and resulting in decreased activity and participation, falls, injuries, and reduced quality of life. A growing body of work suggests that balance impairments in people with mild MS are primarily the result of deficits in proprioception, the ability to determine body position in space in the absence of vision. A better understanding of the pathophysiology of balance disturbances in MS is needed to develop evidence-based rehabilitation approaches. The purpose of the current study was to (1) map the cortical proprioceptive pathway in vivo using diffusion-weighted imaging and (2) assess associations between proprioceptive pathway white matter microstructural integrity and performance on clinical and behavioral balance tasks. We hypothesized that people with MS (PwMS) would have reduced integrity of cerebral proprioceptive pathways, and that reduced white matter microstructure within these tracts would be strongly related to proprioceptive-based balance deficits. We found poorer balance control on proprioceptive-based tasks and reduced white matter microstructural integrity of the cortical proprioceptive tracts in PwMS compared with age-matched healthy controls (HC). Microstructural integrity of this pathway in the right hemisphere was also strongly associated with proprioceptive-based balance control in PwMS and controls. Conversely, while white matter integrity of the right hemisphere's proprioceptive pathway was significantly correlated with overall balance performance in HC, there was no such relationship in PwMS. These results augment existing literature suggesting that balance control in PwMS may become more dependent upon (1) cerebellar-regulated proprioceptive control, (2) the vestibular system, and/or (3) the visual system.

  19. Cellular uptake of cyclotide MCoTI-I follows multiple endocytic pathways.

    PubMed

    Contreras, Janette; Elnagar, Ahmed Y O; Hamm-Alvarez, Sarah F; Camarero, Julio A

    2011-10-30

    Cyclotides are plant-derived proteins that naturally exhibit various biological activities and whose unique cyclic structure makes them remarkably stable and resistant to denaturation or degradation. These attributes, among others, make them ideally suited for use as drug development tools. This study investigated the cellular uptake of cyclotide, MCoTI-I in live HeLa cells. Using real time confocal fluorescence microscopy imaging, we show that MCoTI-I is readily internalized in live HeLa cells and that its endocytosis is temperature-dependent. Endocytosis of MCoTI-I in HeLa cells is achieved primarily through fluid-phase endocytosis, as evidenced by its significant colocalization with 10K-dextran, but also through other pathways as well, as evidenced by its colocalization with markers for cholesterol-dependent and clathrin-mediated endocytosis, cholera toxin B and EGF respectively. Uptake does not appear to occur only via macropinocytosis as inhibition of this pathway by Latrunculin B-induced disassembly of actin filaments did not affect MCoTI-I uptake and treatment with EIPA which also seemed to inhibit other pathways collectively inhibited approximately 80% of cellular uptake. As well, a significant amount of MCoTI-I accumulates in late endosomal and lysosomal compartments and MCoTI-I-containing vesicles continue to exhibit directed movements. These findings demonstrate internalization of MCoTI-I through multiple endocytic pathways that are dominant in the cell type investigated, suggesting that this cyclotide has ready access to general endosomal/lysosomal pathways but could readily be re-targeted to specific receptors through addition of targeting ligands. PMID:21906641

  20. Genomewide association study of opioid dependence: multiple associations mapped to calcium and potassium pathways

    PubMed Central

    Gelernter, Joel; Kranzler, Henry R.; Sherva, Richard; Koesterer, Ryan; Almasy, Laura; Zhao, Hongyu; Farrer, Lindsay A.

    2013-01-01

    Background We report a GWAS of two populations, African- and European-American (AA, EA) for opioid dependence (OD) in three sets of subjects, to identify pathways, genes, and alleles important in OD risk. Methods Design employed three phases (based on separate sample collections). Phase 1 included our discovery GWAS dataset consisting of 5,697 subjects (58% AA) diagnosed with opioid and/or other substance dependence (SD), and controls. Subjects were genotyped using the Illumina OmniQuad microarray, yielding 890,000 SNPs suitable for analysis. Additional genotypes were imputed using the 1000 Genomes reference panel. Top-ranked findings were further evaluated in Phase 2 by incorporating information from the publicly available SAGE dataset, with GWAS data from 4,063 subjects (32% AA). In Phase 3, the most significant SNPs from Phase 2 were genotyped in 2,549 independent subjects (32% AA). Analyses were performed using case-control and ordinal trait designs. Results Most significant results emerged from the AA subgroup. Genomewide-significant associations (p<5.0×10−8) were observed with SNPs from multiple loci - KCNC1*rs60349741 most significant after combining results from datasets in every phase of the study. The most compelling results were obtained with genes involved in potassium signaling pathways (e.g., KCNC1, KCNG2, and KCNA4). Pathway analysis also implicated genes involved in calcium signaling and long-term potentiation. Conclusions This is the first study to identify risk variants for OD using GWAS. Our results strongly implicate risk pathways, provide insights into novel therapeutic and prevention strategies, and may provide biologically bridge OD and other non-SD psychiatric traits where similar pathways have been implicated. PMID:24143882

  1. Cellular uptake of cyclotide MCoTI-I follows multiple endocytic pathways.

    PubMed

    Contreras, Janette; Elnagar, Ahmed Y O; Hamm-Alvarez, Sarah F; Camarero, Julio A

    2011-10-30

    Cyclotides are plant-derived proteins that naturally exhibit various biological activities and whose unique cyclic structure makes them remarkably stable and resistant to denaturation or degradation. These attributes, among others, make them ideally suited for use as drug development tools. This study investigated the cellular uptake of cyclotide, MCoTI-I in live HeLa cells. Using real time confocal fluorescence microscopy imaging, we show that MCoTI-I is readily internalized in live HeLa cells and that its endocytosis is temperature-dependent. Endocytosis of MCoTI-I in HeLa cells is achieved primarily through fluid-phase endocytosis, as evidenced by its significant colocalization with 10K-dextran, but also through other pathways as well, as evidenced by its colocalization with markers for cholesterol-dependent and clathrin-mediated endocytosis, cholera toxin B and EGF respectively. Uptake does not appear to occur only via macropinocytosis as inhibition of this pathway by Latrunculin B-induced disassembly of actin filaments did not affect MCoTI-I uptake and treatment with EIPA which also seemed to inhibit other pathways collectively inhibited approximately 80% of cellular uptake. As well, a significant amount of MCoTI-I accumulates in late endosomal and lysosomal compartments and MCoTI-I-containing vesicles continue to exhibit directed movements. These findings demonstrate internalization of MCoTI-I through multiple endocytic pathways that are dominant in the cell type investigated, suggesting that this cyclotide has ready access to general endosomal/lysosomal pathways but could readily be re-targeted to specific receptors through addition of targeting ligands.

  2. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    NASA Astrophysics Data System (ADS)

    Kundu, Sourav; Karmakar, S. N.

    2016-07-01

    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of environmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectronic devices than its other biological counterparts e.g., single-stranded DNA.

  3. Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans

    PubMed Central

    Russell, Joshua; Vidal-Gadea, Andrés G.; Makay, Alex; Lanam, Carolyn; Pierce-Shimomura, Jonathan T.

    2014-01-01

    All terrestrial animals must find a proper level of moisture to ensure their health and survival. The cellular-molecular basis for sensing humidity is unknown in most animals, however. We used the model nematode Caenorhabditis elegans to uncover a mechanism for sensing humidity. We found that whereas C. elegans showed no obvious preference for humidity levels under standard culture conditions, worms displayed a strong preference after pairing starvation with different humidity levels, orienting to gradients as shallow as 0.03% relative humidity per millimeter. Cell-specific ablation and rescue experiments demonstrate that orientation to humidity in C. elegans requires the obligatory combination of distinct mechanosensitive and thermosensitive pathways. The mechanosensitive pathway requires a conserved DEG/ENaC/ASIC mechanoreceptor complex in the FLP neuron pair. Because humidity levels influence the hydration of the worm’s cuticle, our results suggest that FLP may convey humidity information by reporting the degree that subcuticular dendritic sensory branches of FLP neurons are stretched by hydration. The thermosensitive pathway requires cGMP-gated channels in the AFD neuron pair. Because humidity levels affect evaporative cooling, AFD may convey humidity information by reporting thermal flux. Thus, humidity sensation arises as a metamodality in C. elegans that requires the integration of parallel mechanosensory and thermosensory pathways. This hygrosensation strategy, first proposed by Thunberg more than 100 y ago, may be conserved because the underlying pathways have cellular and molecular equivalents across a wide range of species, including insects and humans. PMID:24843133

  4. Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans.

    PubMed

    Russell, Joshua; Vidal-Gadea, Andrés G; Makay, Alex; Lanam, Carolyn; Pierce-Shimomura, Jonathan T

    2014-06-01

    All terrestrial animals must find a proper level of moisture to ensure their health and survival. The cellular-molecular basis for sensing humidity is unknown in most animals, however. We used the model nematode Caenorhabditis elegans to uncover a mechanism for sensing humidity. We found that whereas C. elegans showed no obvious preference for humidity levels under standard culture conditions, worms displayed a strong preference after pairing starvation with different humidity levels, orienting to gradients as shallow as 0.03% relative humidity per millimeter. Cell-specific ablation and rescue experiments demonstrate that orientation to humidity in C. elegans requires the obligatory combination of distinct mechanosensitive and thermosensitive pathways. The mechanosensitive pathway requires a conserved DEG/ENaC/ASIC mechanoreceptor complex in the FLP neuron pair. Because humidity levels influence the hydration of the worm's cuticle, our results suggest that FLP may convey humidity information by reporting the degree that subcuticular dendritic sensory branches of FLP neurons are stretched by hydration. The thermosensitive pathway requires cGMP-gated channels in the AFD neuron pair. Because humidity levels affect evaporative cooling, AFD may convey humidity information by reporting thermal flux. Thus, humidity sensation arises as a metamodality in C. elegans that requires the integration of parallel mechanosensory and thermosensory pathways. This hygrosensation strategy, first proposed by Thunberg more than 100 y ago, may be conserved because the underlying pathways have cellular and molecular equivalents across a wide range of species, including insects and humans. PMID:24843133

  5. Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans.

    PubMed

    Russell, Joshua; Vidal-Gadea, Andrés G; Makay, Alex; Lanam, Carolyn; Pierce-Shimomura, Jonathan T

    2014-06-01

    All terrestrial animals must find a proper level of moisture to ensure their health and survival. The cellular-molecular basis for sensing humidity is unknown in most animals, however. We used the model nematode Caenorhabditis elegans to uncover a mechanism for sensing humidity. We found that whereas C. elegans showed no obvious preference for humidity levels under standard culture conditions, worms displayed a strong preference after pairing starvation with different humidity levels, orienting to gradients as shallow as 0.03% relative humidity per millimeter. Cell-specific ablation and rescue experiments demonstrate that orientation to humidity in C. elegans requires the obligatory combination of distinct mechanosensitive and thermosensitive pathways. The mechanosensitive pathway requires a conserved DEG/ENaC/ASIC mechanoreceptor complex in the FLP neuron pair. Because humidity levels influence the hydration of the worm's cuticle, our results suggest that FLP may convey humidity information by reporting the degree that subcuticular dendritic sensory branches of FLP neurons are stretched by hydration. The thermosensitive pathway requires cGMP-gated channels in the AFD neuron pair. Because humidity levels affect evaporative cooling, AFD may convey humidity information by reporting thermal flux. Thus, humidity sensation arises as a metamodality in C. elegans that requires the integration of parallel mechanosensory and thermosensory pathways. This hygrosensation strategy, first proposed by Thunberg more than 100 y ago, may be conserved because the underlying pathways have cellular and molecular equivalents across a wide range of species, including insects and humans.

  6. Curcumin suppresses proliferation and induces apoptosis in human biliary cancer cells through modulation of multiple cell signaling pathways.

    PubMed

    Prakobwong, Suksanti; Gupta, Subash C; Kim, Ji Hye; Sung, Bokyung; Pinlaor, Porntip; Hiraku, Yusuke; Wongkham, Sopit; Sripa, Banchob; Pinlaor, Somchai; Aggarwal, Bharat B

    2011-09-01

    Cholangiocarcinoma (CCA) is a tumor with poor prognosis that is resistant to all currently available treatments. Whether curcumin, a nutraceutical derived from turmeric (Curcuma longa), has potential therapeutic activity against human CCA was investigated using three CCA cell lines (KKU100, KKU-M156 and KKU-M213). Examination of mitochondrial dehydrogenase activity, phosphatidylserine externalization, esterase staining, caspase activation and poly-adenosine diphosphate ribose polymerase cleavage demonstrated that curcumin inhibited proliferation of and induced apoptosis in these biliary cancer cells. Colony-formation assay confirmed the growth-inhibitory effect of curcumin on CCA cells. When examined for the mechanism, curcumin was found to activate multiple cell signaling pathways in these cells. First, all CCA cells exhibited constitutively active nuclear factor (NF)-κB, and treatment with curcumin abolished this activation as indicated by DNA binding, nuclear translocation and p65 phosphorylation. Second, curcumin suppressed activation of signal transducer and activator of transcription-3 as indicated by decreased phosphorylation at both tyrosine(705) and serine(727) and inhibition of janus kinase-1 phosphorylation. Third, curcumin induced expression of peroxisome proliferator-activated receptor gamma. Fourth, curcumin upregulated death receptors, DR4 and DR5. Fifth, curcumin suppressed the Akt activation pathway. Sixth, curcumin inhibited expression of cell survival proteins such as B-cell lymphoma-2, B-cell leukemia protein xL, X-linked inhibitor of apoptosis protein, c-FLIP, cellular inhibitor of apoptosis protein (cIAP)-1, cIAP-2 and survivin and proteins linked to cell proliferation, such as cyclin D1 and c-Myc. Seventh, the growth inhibitory effect of curcumin was enhanced in the IκB kinase-deficient cells, the enzyme required for nuclear factor-kappaB activation. Overall, our results indicate that curcumin mediates its antiproliferative and apoptotic

  7. 49 CFR 234.306 - Multiple dispatching or maintaining railroads with respect to the same highway-rail or pathway...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... respect to the same highway-rail or pathway grade crossing; appointment of responsible railroad. 234.306... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SAFETY, INCLUDING SIGNAL SYSTEMS, STATE ACTION PLANS... Conditions at Highway-Rail and Pathway Grade Crossings § 234.306 Multiple dispatching or...

  8. 49 CFR 234.306 - Multiple dispatching or maintaining railroads with respect to the same highway-rail or pathway...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... respect to the same highway-rail or pathway grade crossing; appointment of responsible railroad. 234.306... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SAFETY, INCLUDING SIGNAL SYSTEMS, STATE ACTION PLANS... Conditions at Highway-Rail and Pathway Grade Crossings § 234.306 Multiple dispatching or...

  9. 49 CFR 234.306 - Multiple dispatching or maintaining railroads with respect to the same highway-rail or pathway...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... respect to the same highway-rail or pathway grade crossing; appointment of responsible railroad. 234.306... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SAFETY, INCLUDING SIGNAL SYSTEMS, STATE ACTION PLANS... Conditions at Highway-Rail and Pathway Grade Crossings § 234.306 Multiple dispatching or...

  10. New Direction in Hydrogeochemical Transport Modeling: Incorporating Multiple Kinetic and Equilibrium Reaction Pathways

    SciTech Connect

    Steefel, C.I.

    2000-02-02

    At least two distinct kinds of hydrogeochemical models have evolved historically for use in analyzing contaminant transport, but each has important limitations. One kind, focusing on organic contaminants, treats biodegradation reactions as parts of relatively simple kinetic reaction networks with no or limited coupling to aqueous and surface complexation and mineral dissolution/precipitation reactions. A second kind, evolving out of the speciation and reaction path codes, is capable of handling a comprehensive suite of multicomponent complexation (aqueous and surface) and mineral precipitation and dissolution reactions, but has not been able to treat reaction networks characterized by partial redox disequilibrium and multiple kinetic pathways. More recently, various investigators have begun to consider biodegradation reactions in the context of comprehensive equilibrium and kinetic reaction networks (e.g. Hunter et al. 1998, Mayer 1999). Here we explore two examples of multiple equilibrium and kinetic reaction pathways using the reactive transport code GIMRT98 (Steefel, in prep.): (1) a computational example involving the generation of acid mine drainage due to oxidation of pyrite, and (2) a computational/field example where the rates of chlorinated VOC degradation are linked to the rates of major redox processes occurring in organic-rich wetland sediments overlying a contaminated aerobic aquifer.

  11. The proteomic signature of NPM/ALK reveals deregulation of multiple cellular pathways.

    PubMed

    Lim, Megan S; Carlson, Mary L; Crockett, David K; Fillmore, G Chris; Abbott, David R; Elenitoba-Johnson, Olaotan F; Tripp, Sheryl R; Rassidakis, George Z; Medeiros, L Jeffrey; Szankasi, Philippe; Elenitoba-Johnson, Kojo S J

    2009-08-20

    Constitutive expression of the chimeric NPM/ALK fusion protein encoded by the t(2;5)(p32;q35) is a key oncogenic event in the pathogenesis of most anaplastic large cell lymphomas (ALCLs). The proteomic network alterations produced by this aberration remain largely uncharacterized. Using a mass spectrometry (MS)-driven approach to identify changes in protein expression caused by the NPM/ALK fusion, we identified diverse NPM/ALK-induced changes affecting cell proliferation, ribosome synthesis, survival, apoptosis evasion, angiogenesis, and cytoarchitectural organization. MS-based findings were confirmed using Western blotting and/or immunostaining of NPM/ALK-transfected cells and ALK-deregulated lymphomas. A subset of the proteins distinguished NPM/ALK-positive ALCLs from NPM/ALK-negative ALCLs and Hodgkin lymphoma. The multiple NPM/ALK-deregulated pathways identified by MS analysis also predicted novel biologic effects of NPM/ALK expression. In this regard, we showed loss of cell adhesion as a consequence of NPM/ALK expression in a kinase-dependent manner, and sensitivity of NPM/ALK-positive ALCLs to inhibition of the RAS, p42/44ERK, and FRAP/mTOR signaling pathways. These findings reveal that the NPM/ALK alteration affects diverse cellular pathways, and provide novel insights into NPM/ALK-positive ALCL pathobiology. Our studies carry important implications for the use of MS-driven approaches for the elucidation of neoplastic pathobiology, the identification of novel diagnostic biomarkers, and pathogenetically relevant therapeutic targets.

  12. Simultaneous Reconstruction of Multiple Signaling Pathways via the Prize-Collecting Steiner Forest Problem

    PubMed Central

    Tuncbag, Nurcan; Braunstein, Alfredo; Pagnani, Andrea; Huang, Shao-Shan Carol; Chayes, Jennifer; Borgs, Christian; Zecchina, Riccardo

    2013-01-01

    Abstract Signaling and regulatory networks are essential for cells to control processes such as growth, differentiation, and response to stimuli. Although many “omic” data sources are available to probe signaling pathways, these data are typically sparse and noisy. Thus, it has been difficult to use these data to discover the cause of the diseases and to propose new therapeutic strategies. We overcome these problems and use “omic” data to reconstruct simultaneously multiple pathways that are altered in a particular condition by solving the prize-collecting Steiner forest problem. To evaluate this approach, we use the well-characterized yeast pheromone response. We then apply the method to human glioblastoma data, searching for a forest of trees, each of which is rooted in a different cell-surface receptor. This approach discovers both overlapping and independent signaling pathways that are enriched in functionally and clinically relevant proteins, which could provide the basis for new therapeutic strategies. Although the algorithm was not provided with any information about the phosphorylation status of receptors, it identifies a small set of clinically relevant receptors among hundreds present in the interactome. PMID:23383998

  13. Partitioning the effects of an ecosystem engineer: kangaroo rats control community structure via multiple pathways.

    PubMed

    Prugh, Laura R; Brashares, Justin S

    2012-05-01

    1. Ecosystem engineers impact communities by altering habitat conditions, but they can also have strong effects through consumptive, competitive and other non-engineering pathways. 2. Engineering effects can lead to fundamentally different community dynamics than non-engineering effects, but the relative strengths of these interactions are seldom quantified. 3. We combined structural equation modelling and exclosure experiments to partition the effects of a keystone engineer, the giant kangaroo rat (Dipodomys ingens), on plants, invertebrates and vertebrates in a semi-arid California grassland. 4. We separated the effects of burrow creation from kangaroo rat density and found that kangaroo rats increased the diversity and abundance of other species via both engineering and non-engineering pathways. 5. Engineering was the primary factor structuring plant and small mammal communities, whereas non-engineering effects structured invertebrate communities and increased lizard abundance. 6. These results highlight the importance of the non-engineering effects of ecosystem engineers and shed new light on the multiple pathways by which strong-interactors shape communities.

  14. Toward Multiple Conductance Pathways with Heterocycle-Based Oligo(phenyleneethynylene) Derivatives.

    PubMed

    Miguel, Delia; Álvarez de Cienfuegos, Luis; Martín-Lasanta, Ana; Morcillo, Sara P; Zotti, Linda A; Leary, Edmund; Bürkle, Marius; Asai, Yoshihiro; Jurado, Rocío; Cárdenas, Diego J; Rubio-Bollinger, Gabino; Agraït, Nicolás; Cuerva, Juan M; González, M Teresa

    2015-11-01

    In this paper, we have systematically studied how the replacement of a benzene ring by a heterocyclic compound in oligo(phenyleneethynylene) (OPE) derivatives affects the conductance of a molecular wire using the scanning tunneling microscope-based break junction technique. We describe for the first time how OPE derivatives with a central pyrimidine ring can efficiently link to the gold electrode by two pathways presenting two different conductance G values. We have demonstrated that this effect is associated with the presence of two efficient conductive pathways of different length: the conventional end-to-end configuration, and another with one of the electrodes linked directly to the central ring. This represents one of the few examples in which two defined conductive states can be set up in a single molecule without the aid of an external stimulus. Moreover, we have observed that the conductance through the full length of the heterocycle-based OPEs is basically unaffected by the presence of the heterocycle. All these results and the simplicity of the proposed molecules push forward the development of compounds with multiple conductance pathways, which would be a breakthrough in the field of molecular electronics. PMID:26452050

  15. Multiple splicing pathways of group II trans-splicing introns in wheat mitochondria.

    PubMed

    Massel, Karen; Silke, Jordan R; Bonen, Linda

    2016-05-01

    Trans-splicing of discontinuous introns in plant mitochondria requires the assembly of independently-transcribed precursor RNAs into splicing-competent structures, and they are expected to be excised as Y-branched molecules ("broken lariats") because these introns belong to the group II ribozyme family. We now demonstrate that this is just one of several trans-splicing pathways for wheat mitochondrial nad1 intron 4 and nad5 intron 2; they also use a hydrolytic pathway and the liberated 5'-half-intron linear molecules are unexpectedly abundant in the RNA population. We also observe a third productive splicing pathway for nad5 intron 2 that yields full-length excised introns in which the termini are joined in vivo and possess non-encoded nucleotides. In the case of trans-splicing nad1 intron 1, which has a weakly-structured and poorly-conserved core sequence, excision appears to be solely through a hydrolytic pathway. When wheat embryos are germinated in the cold rather than at room temperature, an increased complexity in trans-splicing products is seen for nad1 intron 4, suggesting that there can be environmental effects on the RNA folding of bipartite introns. Our observations provide insights into intron evolution and the complexity of RNA processing events in plant mitochondria.

  16. Multiple splicing pathways of group II trans-splicing introns in wheat mitochondria.

    PubMed

    Massel, Karen; Silke, Jordan R; Bonen, Linda

    2016-05-01

    Trans-splicing of discontinuous introns in plant mitochondria requires the assembly of independently-transcribed precursor RNAs into splicing-competent structures, and they are expected to be excised as Y-branched molecules ("broken lariats") because these introns belong to the group II ribozyme family. We now demonstrate that this is just one of several trans-splicing pathways for wheat mitochondrial nad1 intron 4 and nad5 intron 2; they also use a hydrolytic pathway and the liberated 5'-half-intron linear molecules are unexpectedly abundant in the RNA population. We also observe a third productive splicing pathway for nad5 intron 2 that yields full-length excised introns in which the termini are joined in vivo and possess non-encoded nucleotides. In the case of trans-splicing nad1 intron 1, which has a weakly-structured and poorly-conserved core sequence, excision appears to be solely through a hydrolytic pathway. When wheat embryos are germinated in the cold rather than at room temperature, an increased complexity in trans-splicing products is seen for nad1 intron 4, suggesting that there can be environmental effects on the RNA folding of bipartite introns. Our observations provide insights into intron evolution and the complexity of RNA processing events in plant mitochondria. PMID:26970277

  17. Serum Metabolomic Profiling in Acute Alcoholic Hepatitis Identifies Multiple Dysregulated Pathways

    PubMed Central

    Rachakonda, Vikrant; Gabbert, Charles; Raina, Amit; Bell, Lauren N.; Cooper, Sara; Malik, Shahid; Behari, Jaideep

    2014-01-01

    Background and Objectives While animal studies have implicated derangements of global energy homeostasis in the pathogenesis of acute alcoholic hepatitis (AAH), the relevance of these findings to the development of human AAH remains unclear. Using global, unbiased serum metabolomics analysis, we sought to characterize alterations in metabolic pathways associated with severe AAH and identify potential biomarkers for disease prognosis. Methods This prospective, case-control study design included 25 patients with severe AAH and 25 ambulatory patients with alcoholic cirrhosis. Serum samples were collected within 24 hours of the index clinical encounter. Global, unbiased metabolomics profiling was performed. Patients were followed for 180 days after enrollment to determine survival. Results Levels of 234 biochemicals were altered in subjects with severe AAH. Random-forest analysis, principal component analysis, and integrated hierarchical clustering methods demonstrated that metabolomics profiles separated the two cohorts with 100% accuracy. Severe AAH was associated with enhanced triglyceride lipolysis, impaired mitochondrial fatty acid beta oxidation, and upregulated omega oxidation. Low levels of multiple lysolipids and related metabolites suggested decreased plasma membrane remodeling in severe AAH. While most measured bile acids were increased in severe AAH, low deoxycholate and glycodeoxycholate levels indicated intestinal dysbiosis. Several changes in substrate utilization for energy homeostasis were identified in severe AAH, including increased glucose consumption by the pentose phosphate pathway, altered tricarboxylic acid (TCA) cycle activity, and enhanced peptide catabolism. Finally, altered levels of small molecules related to glutathione metabolism and antioxidant vitamin depletion were observed in patients with severe AAH. Univariable logistic regression revealed 15 metabolites associated with 180-day survival in severe AAH. Conclusion Severe AAH is

  18. APL-1, the Alzheimer’s Amyloid Precursor Protein in Caenorhabditis elegans, Modulates Multiple Metabolic Pathways Throughout Development

    PubMed Central

    Ewald, Collin Y.; Raps, Daniel A.; Li, Chris

    2012-01-01

    Mutations in the amyloid precursor protein (APP) gene or in genes that process APP are correlated with familial Alzheimer’s disease (AD). The biological function of APP remains unclear. APP is a transmembrane protein that can be sequentially cleaved by different secretases to yield multiple fragments, which can potentially act as signaling molecules. Caenorhabditis elegans encodes one APP-related protein, APL-1, which is essential for viability. Here, we show that APL-1 signaling is dependent on the activity of the FOXO transcription factor DAF-16 and the nuclear hormone receptor DAF-12 and influences metabolic pathways such as developmental progression, body size, and egg-laying rate. Furthermore, apl-1(yn5) mutants, which produce high levels of the extracellular APL-1 fragment, show an incompletely penetrant temperature-sensitive embryonic lethality. In a genetic screen to isolate mutants in which the apl-1(yn5) lethality rate is modified, we identified a suppressor mutation in MOA-1/R155.2, a receptor-protein tyrosine phosphatase, and an enhancer mutation in MOA-2/B0495.6, a protein involved in receptor-mediated endocytosis. Knockdown of apl-1 in an apl-1(yn5) background caused lethality and molting defects at all larval stages, suggesting that apl-1 is required for each transitional molt. We suggest that signaling of the released APL-1 fragment modulates multiple metabolic states and that APL-1 is required throughout development. PMID:22466039

  19. The Toll pathway is required in the epidermis for muscle development in the Drosophila embryo

    NASA Technical Reports Server (NTRS)

    Halfon, M. S.; Keshishian, H.

    1998-01-01

    The Toll signaling pathway functions in several Drosophila processes, including dorsal-ventral pattern formation and the immune response. Here, we demonstrate that this pathway is required in the epidermis for proper muscle development. Previously, we showed that the zygotic Toll protein is necessary for normal muscle development; in the absence of zygotic Toll, close to 50% of hemisegments have muscle patterning defects consisting of missing, duplicated and misinserted muscle fibers (Halfon, M.S., Hashimoto, C., and Keshishian, H., Dev. Biol. 169, 151-167, 1995). We have now also analyzed the requirements for easter, spatzle, tube, and pelle, all of which function in the Toll-mediated dorsal-ventral patterning pathway. We find that spatzle, tube, and pelle, but not easter, are necessary for muscle development. Mutations in these genes give a phenotype identical to that seen in Toll mutants, suggesting that elements of the same pathway used for Toll signaling in dorsal-ventral development are used during muscle development. By expressing the Toll cDNA under the control of distinct Toll enhancer elements in Toll mutant flies, we have examined the spatial requirements for Toll expression during muscle development. Expression of Toll in a subset of epidermal cells that includes the epidermal muscle attachment cells, but not Toll expression in the musculature, is necessary for proper muscle development. Our results suggest that signals received by the epidermis early during muscle development are an important part of the muscle patterning process.

  20. Multiple pathways to identification: exploring the multidimensionality of academic identity formation in ethnic minority males.

    PubMed

    Matthews, Jamaal S

    2014-04-01

    Empirical trends denote the academic underachievement of ethnic minority males across various academic domains. Identity-based explanations for this persistent phenomenon describe ethnic minority males as disidentified with academics, alienated, and oppositional. The present work interrogates these theoretical explanations and empirically substantiates a multidimensional lens for discussing academic identity formation within 330 African American and Latino early-adolescent males. Both hierarchical and iterative person-centered methods were utilized and reveal 5 distinct profiles derived from 6 dimensions of academic identity. These profiles predict self-reported classroom grades, mastery orientation, and self-handicapping in meaningful and varied ways. The results demonstrate multiple pathways to motivation and achievement, challenging previous oversimplified stereotypes of marginalized males. This exploratory study triangulates unique interpersonal and intrapersonal attributes for promoting healthy identity development and academic achievement among ethnic minority adolescent males.

  1. Immune escape by human immunodeficiency virus type 1 from neutralizing antibodies: evidence for multiple pathways.

    PubMed Central

    Watkins, B A; Reitz, M S; Wilson, C A; Aldrich, K; Davis, A E; Robert-Guroff, M

    1993-01-01

    Sera from many HIV-1-infected individuals contain broadly reactive, specific neutralizing antibodies. Despite their broad reactivity, variant viruses, resistant to neutralization, can be selected in vitro in the presence of such antisera. We have previously shown that neutralization resistance of an escape mutant with an amino acid substitution in the transmembrane protein (A582T) occurs because of alteration of a conformational epitope that is recognized by neutralizing antibodies directed against the CD4 binding site. In this report we demonstrate that immune escape via a single-amino-acid substitution (A281V) within a conserved region of the envelope glycoprotein gp120 confers neutralization resistance against a broadly reactive neutralizing antiserum from a seropositive individual. We show this alteration affects V3 and additional regions unrelated to V3 or the CD4 binding site. Together with previous studies on escape mutants selected in vitro, our findings suggest that immune-selective pressure can arise by multiple pathways. PMID:7693973

  2. Multiple Functions of Let-23, a Caenorhabditis Elegans Receptor Tyrosine Kinase Gene Required for Vulval Induction

    PubMed Central

    Aroian, R. V.; Sternberg, P. W.

    1991-01-01

    The let-23 gene, which encodes a putative tyrosine kinase of the epidermal growth factor (EGF) receptor subfamily, has multiple functions during Caenorhabditis elegans development. We show that let-23 function is required for vulval precursor cells (VPCs) to respond to the signal that induces vulval differentiation: a complete loss of let-23 function results in no induction. However, some let-23 mutations that genetically reduce but do not eliminate let-23 function result in VPCs apparently hypersensitive to inductive signal: as many as five of six VPCs can adopt vulval fates, in contrast to the three that normally do. These results suggest that the let-23 receptor tyrosine kinase controls two opposing pathways, one that stimulates vulval differentiation and another that negatively regulates vulval differentiation. Furthermore, analysis of 16 new let-23 mutations indicates that the let-23 kinase functions in at least five tissues. Since various let-23 mutant phenotypes can be obtained independently, the let-23 gene is likely to have tissue-specific functions. PMID:2071015

  3. Pim2 is required for maintaining multiple myeloma cell growth through modulating TSC2 phosphorylation.

    PubMed

    Lu, Jing; Zavorotinskaya, Tatiana; Dai, Yumin; Niu, Xiao-Hong; Castillo, Joseph; Sim, Janet; Yu, Jianjun; Wang, Yingyun; Langowski, John L; Holash, Jocelyn; Shannon, Kevin; Garcia, Pablo D

    2013-08-29

    Multiple myeloma (MM) is the second most common hematologic malignancy. Despite recent treatment advances, it remains incurable. Here, we report that Pim2 kinase expression is highly elevated in MM cells and demonstrate that it is required for MM cell proliferation. Functional interference of Pim2 activity either by short hairpin RNAs or by a potent and selective small-molecule inhibitor leads to significant inhibition of MM cell proliferation. Pim inhibition results in a significant decrease of mammalian target of rapamycin C1 (mTOR-C1) activity, which is critical for cell proliferation. We identify TSC2, a negative regulator of mTOR-C1, as a novel Pim2 substrate and show that Pim2 directly phosphorylates TSC2 on Ser-1798 and relieves the suppression of TSC2 on mTOR-C1. These findings support Pim2 as a promising therapeutic target for MM and define a novel Pim2-TSC2-mTOR-C1 pathway that drives MM proliferation. PMID:23818547

  4. The controlled relay of multiple protons required at the active site of nitrogenase.

    PubMed

    Dance, Ian

    2012-07-01

    The enzyme nitrogenase, when reducing natural and unnatural substrates, requires large numbers of protons per chemical catalytic cycle. The active face of the catalytic site (the FeMo-cofactor, FeMo-co) is situated in a protein domain which is largely hydrophobic and anhydrous, and incapable of serial provision of multiple protons. Through detailed analysis of the high quality protein crystal structures available the characteristics of a chain of water molecules leading from the protein surface to a key sulfur atom (S3B) of FeMo-co are described. The first half of the water chain from the surface inwards is branched, slightly variable, and able to accommodate exogenous small molecules: this is dubbed the proton bay. The second half, from the proton bay to S3B, is comprised of a single chain of eight hydrogen bonded water molecules. This section is strictly conserved, and is intimately involved in hydrogen bonds with homocitrate, an essential component that chelates Mo. This is the proton wire, and a detailed Grotthuss mechanism for serial translocation of protons through this proton wire to S3B is proposed. This controlled serial proton relay from the protein surface to S3B is an essential component of the intramolecular hydrogenation paradigm for the complete chemical mechanisms of nitrogenase. Each proton reaching S3B, instigated by electron transfer to FeMo-co, becomes a hydrogen atom that migrates to other components of the active face of FeMo-co and to bound substrates and intermediates, allowing subsequent multiple proton transfers along the proton wire. Experiments to test the proposed mechanism of proton supply are suggested. The water chain in nitrogenase is comparable with the purported proton pumping pathway of cytochrome c oxidase.

  5. Hydrogen generation from alcohols catalyzed by ruthenium-triphenylphosphine complexes: multiple reaction pathways.

    PubMed

    Sieffert, Nicolas; Bühl, Michael

    2010-06-16

    We report a comprehensive density functional theory (DFT) study of the mechanism of the methanol dehydrogenation reaction catalyzed by [RuH(2)(H(2))(PPh(3))(3)]. Using the B97-D dispersion-corrected functional, four pathways have been fully characterized, which differ in the way the critical beta-hydrogen transfer step is brought about (e.g., by prior dissociation of one PPh(3) ligand). All these pathways are found to be competitive (DeltaG(++) = 27.0-32.1 kcal/mol at 150 degrees C) and strongly interlocked. The reaction can thus follow multiple reaction channels, a feature which is expected to be at the origin of the good kinetics of this system. Our results also point to the active role of PPh(3) ligands, which undergo significant conformational changes as the reaction occurs, and provide insights into the role of the base, which acts as a "co-catalyst" by facilitating proton transfers within active species. Activation barriers decrease on going from methanol to ethanol and 2-propanol substrates, in accord with experiment. PMID:20481632

  6. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    PubMed Central

    Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage. PMID:27053445

  7. Cellular lifespan and senescence: a complex balance between multiple cellular pathways.

    PubMed

    Dolivo, David; Hernandez, Sarah; Dominko, Tanja

    2016-07-01

    The study of cellular senescence and proliferative lifespan is becoming increasingly important because of the promises of autologous cell therapy, the need for model systems for tissue disease and the implication of senescent cell phenotypes in organismal disease states such as sarcopenia, diabetes and various cancers, among others. Here, we explain the concepts of proliferative cellular lifespan and cellular senescence, and we present factors that have been shown to mediate cellular lifespan positively or negatively. We review much recent literature and present potential molecular mechanisms by which lifespan mediation occurs, drawing from the fields of telomere biology, metabolism, NAD(+) and sirtuin biology, growth factor signaling and oxygen and antioxidants. We conclude that cellular lifespan and senescence are complex concepts that are governed by multiple independent and interdependent pathways, and that greater understanding of these pathways, their interactions and their convergence upon specific cellular phenotypes may lead to viable therapies for tissue regeneration and treatment of age-related pathologies, which are caused by or exacerbated by senescent cells in vivo.

  8. Cellular lifespan and senescence: a complex balance between multiple cellular pathways.

    PubMed

    Dolivo, David; Hernandez, Sarah; Dominko, Tanja

    2016-07-01

    The study of cellular senescence and proliferative lifespan is becoming increasingly important because of the promises of autologous cell therapy, the need for model systems for tissue disease and the implication of senescent cell phenotypes in organismal disease states such as sarcopenia, diabetes and various cancers, among others. Here, we explain the concepts of proliferative cellular lifespan and cellular senescence, and we present factors that have been shown to mediate cellular lifespan positively or negatively. We review much recent literature and present potential molecular mechanisms by which lifespan mediation occurs, drawing from the fields of telomere biology, metabolism, NAD(+) and sirtuin biology, growth factor signaling and oxygen and antioxidants. We conclude that cellular lifespan and senescence are complex concepts that are governed by multiple independent and interdependent pathways, and that greater understanding of these pathways, their interactions and their convergence upon specific cellular phenotypes may lead to viable therapies for tissue regeneration and treatment of age-related pathologies, which are caused by or exacerbated by senescent cells in vivo. PMID:27417120

  9. Male adolescent rites of passage: positive visions of multiple developmental pathways.

    PubMed

    Pollack, William S

    2004-12-01

    Unlike the separation-based, stereotyped views of boys' developmental movement into adulthood, this paper will argue that there are more modern and relational models, as well as multiple pathways, for young males to journey through such rites of passage. Indeed, it will be suggested and supported by both qualitative and quantitative data that the more classic models depend on a "boy code" of traumatic separation from mother and the feminine, a process that is not only negative rather than positive in its developmental trajectory, but also likely to create a premature traumatic separation, leaving boys at risk for emotional maladjustment, everyday sadness, increased incidence of depression and the potential for violence toward the self, suicide, as well as violence toward others. More-positive visions and versions of male rites of passage will be posited and described. The definition of emotional "resilience" during this significant period will be re-addressed as one of "healthy vulnerability," sustained through connection to loving adults, rather than a classic belief in stoicism and release from relational ties. Attachment theory will be brought to bear and the desperate yearnings of adolescent males not only for connection to adult mentors, but also for non-romanticized friendships with adolescent females, will be discussed. Finally, the understanding and substitution of these new, more positive, developmental pathways will be linked to the prevention of violence. PMID:15817735

  10. Angiogenic activity of sesamin through the activation of multiple signal pathways

    SciTech Connect

    Chung, Byung-Hee; Lee, Jung Joon; Kim, Jong-Dai; Jeoung, Dooil; Lee, Hansoo; Choe, Jongseon; Ha, Kwon-Soo; Kwon, Young-Geun; Kim, Young-Myeong

    2010-01-01

    The natural product sesamin has been known to act as a potent antioxidant and prevent endothelial dysfunction. We here found that sesamin increased in vitro angiogenic processes, such as endothelial cell proliferation, migration, and tube formation, as well as neovascularization in an animal model. This compound elicited the activation of multiple angiogenic signal modulators, such as ERK, Akt, endothelial nitric oxide synthase (eNOS), NO production, FAK, and p38 MAPK, but not Src. The MEK inhibitor PD98059 and the PI3K inhibitor Wortmannin specifically inhibited sesamin-induced activation of the ERK and Akt/eNOS pathways. These inhibitors reduced angiogenic events, with high specificity for MEK/ERK-dependent cell proliferation and migration and PI3K/Akt-mediated tube formation. Moreover, inhibition of p38 MAPK effectively inhibited sesamin-induced cell migration. The angiogenic activity of sesamin was not associated with VEGF expression. Furthermore, this compound did not induce vascular permeability and upregulated ICAM-1 and VCAM-1 expression, which are hallmarks of vascular inflammation. These results suggest that sesamin stimulates angiogenesis in vitro and in vivo through the activation of MEK/ERK-, PI3K/Akt/eNOS-, p125{sup FAK}-, and p38 MAPK-dependent pathways, without increasing vascular inflammation, and may be used for treating ischemic diseases and tissue regeneration.

  11. Mechanisms for autophagy modulation by isoprenoid biosynthetic pathway inhibitors in multiple myeloma cells

    PubMed Central

    Dykstra, Kaitlyn M.; Allen, Cheryl; Born, Ella J.; Tong, Huaxiang; Holstein, Sarah A.

    2015-01-01

    Multiple myeloma (MM) is characterized by the production of monoclonal protein (MP). We have shown previously that disruption of the isoprenoid biosynthetic pathway (IBP) causes a block in MP secretion through a disruption of Rab GTPase activity, leading to an enhanced unfolded protein response and subsequent apoptosis in MM cells. Autophagy is induced by cellular stressors including nutrient deprivation and ER stress. IBP inhibitors have been shown to have disparate effects on autophagy. Here we define the mechanisms underlying the differential effects of IBP inhibitors on autophagic flux in MM cells utilizing specific pharmacological inhibitors. We demonstrate that IBP inhibition induces a net increase in autophagy as a consequence of disruption of isoprenoid biosynthesis which is not recapitulated by direct geranylgeranyl transferase inhibition. IBP inhibitor-induced autophagy is a cellular defense mechanism as treatment with the autophagy inhibitor bafilomycin A1 enhances the cytotoxic effects of GGPP depletion, but not geranylgeranyl transferase inhibition. Immunofluorescence microscopy studies revealed that IBP inhibitors disrupt ER to Golgi trafficking of monoclonal light chain protein and that this protein is not a substrate for alternative degradative pathways such as aggresomes and autophagosomes. These studies support further development of specific GGTase II inhibitors as anti-myeloma agents. PMID:26595805

  12. p205, a potential tumor suppressor, inhibits cell proliferation via multiple pathways of cell cycle regulation.

    PubMed

    Asefa, Benyam; Dermott, Jonathan M; Kaldis, Philipp; Stefanisko, Karen; Garfinkel, David J; Keller, Jonathan R

    2006-02-20

    p205 is a member of the interferon-inducible p200 family of proteins that regulate cell proliferation. Over-expression of p205 inhibits cell growth, although its mechanism of action is currently unknown. Therefore, we evaluated the effect of p205 on the p53 and Rb-dependent pathways of cell cycle regulation. p205 expression results in elevated levels of p21, and activates the p21 promoter in vitro in a p53-dependent manner. In addition, p205 induces increased expression of Rb, and binds directly to Rb and p53. Interestingly, p205 also induces growth inhibition independent of p53 and Rb by delaying G2/M progression in proliferating cells, and is a substrate for Cdk2 kinase activity. Finally, we have identified other binding partners of p205 by a yeast two-hybrid screen, including the paired homeodomain protein HoxB2. Taken together, our results indicate that p205 induces growth arrest by interaction with multiple transcription factors that regulate the cell cycle, including but not entirely dependent on the Rb- and p53-mediated pathways of growth inhibition. PMID:16458891

  13. Multiple Transduction Pathways Mediate Thyrotropin Receptor Signaling in Preosteoblast-Like Cells

    PubMed Central

    Boutin, Alisa; Neumann, Susanne

    2016-01-01

    It has been shown that the TSH receptor (TSHR) couples to a number of different signaling pathways, although the Gs-cAMP pathway has been considered primary. Here, we measured the effects of TSH on bone marker mRNA and protein expression in preosteoblast-like U2OS cells stably expressing TSHRs. We determined which signaling cascades are involved in the regulation of IL-11, osteopontin (OPN), and alkaline phosphatase (ALPL). We demonstrated that TSH-induced up-regulation of IL-11 is primarily mediated via the Gs pathway as IL-11 was up-regulated by forskolin (FSK), an adenylyl cyclase activator, and inhibited by protein kinase A inhibitor H-89 and by silencing of Gαs by small interfering RNA. OPN levels were not affected by FSK, but its up-regulation was inhibited by TSHR/Gi-uncoupling by pertussis toxin. Pertussis toxin decreased p38 MAPK kinase phosphorylation, and a p38 inhibitor and small interfering RNA knockdown of p38α inhibited OPN induction by TSH. Up-regulation of ALPL expression required high doses of TSH (EC50 = 395nM), whereas low doses (EC50 = 19nM) were inhibitory. FSK-stimulated cAMP production decreased basal ALPL expression, whereas protein kinase A inhibition by H-89 and silencing of Gαs increased basal levels of ALPL. Knockdown of Gαq/11 and a protein kinase C inhibitor decreased TSH-stimulated up-regulation of ALPL, whereas a protein kinase C activator increased ALPL levels. A MAPK inhibitor and silencing of ERK1/2 inhibited TSH-stimulated ALPL expression. We conclude that TSH regulates expression of different bone markers via distinct signaling pathways. PMID:26950201

  14. Multiple Episodes of Convergence in Genes of the Dim Light Vision Pathway in Bats

    PubMed Central

    Shen, Yong-Yi; Lim, Burton K.; Liu, He-Qun; Liu, Jie; Irwin, David M.; Zhang, Ya-Ping

    2012-01-01

    The molecular basis of the evolution of phenotypic characters is very complex and is poorly understood with few examples documenting the roles of multiple genes. Considering that a single gene cannot fully explain the convergence of phenotypic characters, we choose to study the convergent evolution of rod vision in two divergent bats from a network perspective. The Old World fruit bats (Pteropodidae) are non-echolocating and have binocular vision, whereas the sheath-tailed bats (Emballonuridae) are echolocating and have monocular vision; however, they both have relatively large eyes and rely more on rod vision to find food and navigate in the night. We found that the genes CRX, which plays an essential role in the differentiation of photoreceptor cells, SAG, which is involved in the desensitization of the photoactivated transduction cascade, and the photoreceptor gene RH, which is directly responsible for the perception of dim light, have undergone parallel sequence evolution in two divergent lineages of bats with larger eyes (Pteropodidae and Emballonuroidea). The multiple convergent events in the network of genes essential for rod vision is a rare phenomenon that illustrates the importance of investigating pathways and networks in the evolution of the molecular basis of phenotypic convergence. PMID:22509324

  15. Family Histories and Multiple Transitions Among Homeless Young Adults: Pathways to Homelessness

    PubMed Central

    Tyler, Kimberly A.; Schmitz, Rachel M.

    2013-01-01

    This study explored the early family histories of homeless young adults, the types and number of transitions they experienced, and their pathways to the street. Intensive qualitative interviews were audio taped and transcribed with 40 homeless young adults 19 to 21 years of age in the Midwest. Findings show that family backgrounds were generally characterized by substance use, child maltreatment, and witnessing violence, all of which provide social context for understanding why so many of these young people opted to leave home in search of an alternative living situation. The current findings also reveal that while some young adults ran away from home as adolescents, others were “pushed out” (i.e., told to leave), or removed by state agencies. Current study findings illustrate that young adults’ trajectories are marked by multiple living arrangements such as home, foster care, detention facility, and drug rehabilitation. Overall, study results show that young adults’ family histories place them on trajectories for early independence marked by multiple transitions and numerous living situations, culminating in a lack of a permanent residence to call home. PMID:24151346

  16. Requirements of the cytosolic iron–sulfur cluster assembly pathway in Arabidopsis

    PubMed Central

    Bernard, Delphine G.; Netz, Daili J. A.; Lagny, Thibaut J.; Pierik, Antonio J.; Balk, Janneke

    2013-01-01

    The assembly of iron–sulfur (Fe–S) clusters requires dedicated protein factors inside the living cell. Striking similarities between prokaryotic and eukaryotic assembly proteins suggest that plant cells inherited two different pathways through endosymbiosis: the ISC pathway in mitochondria and the SUF pathway in plastids. Fe–S proteins are also found in the cytosol and nucleus, but little is known about how they are assembled in plant cells. Here, we show that neither plastid assembly proteins nor the cytosolic cysteine desulfurase ABA3 are required for the activity of cytosolic aconitase, which depends on a [4Fe–4S] cluster. In contrast, cytosolic aconitase activity depended on the mitochondrial cysteine desulfurase NFS1 and the mitochondrial transporter ATM3. In addition, we were able to complement a yeast mutant in the cytosolic Fe–S cluster assembly pathway, dre2, with the Arabidopsis homologue AtDRE2, but only when expressed together with the diflavin reductase AtTAH18. Spectroscopic characterization showed that purified AtDRE2 could bind up to two Fe–S clusters. Purified AtTAH18 bound one flavin per molecule and was able to accept electrons from NAD(P)H. These results suggest that the proteins involved in cytosolic Fe–S cluster assembly are highly conserved, and that dependence on the mitochondria arose before the second endosymbiosis event leading to plastids. PMID:23754812

  17. Aryl hydrocarbon receptor knock-out exacerbates choroidal neovascularization via multiple pathogenic pathways.

    PubMed

    Choudhary, Mayur; Kazmin, Dmitri; Hu, Peng; Thomas, Russell S; McDonnell, Donald P; Malek, Goldis

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is a heterodimeric transcriptional regulator with pleiotropic functions in xenobiotic metabolism and detoxification, vascular development and cancer. Herein, we report a previously undescribed role for the AhR signalling pathway in the pathogenesis of the wet, neovascular subtype of age-related macular degeneration (AMD), the leading cause of vision loss in the elderly in the Western world. Comparative analysis of gene expression profiles of aged AhR(-/-) and wild-type (wt) mice, using high-throughput RNA sequencing, revealed differential modulation of genes belonging to several AMD-related pathogenic pathways, including inflammation, angiogenesis and extracellular matrix regulation. To investigate AhR regulation of these pathways in wet AMD, we experimentally induced choroidal neovascular lesions in AhR(-/-) mice and found that they measured significantly larger in area and volume compared to age-matched wt mice. Furthermore, these lesions displayed a higher number of ionized calcium-binding adaptor molecule 1-positive (Iba1(+) ) microglial cells and a greater amount of collagen type IV deposition, events also seen in human wet AMD pathology specimens. Consistent with our in vivo observations, AhR knock-down was sufficient to increase choroidal endothelial cell migration and tube formation in vitro. Moreover, AhR knock-down caused an increase in collagen type IV production and secretion in both retinal pigment epithelial (RPE) and choroidal endothelial cell cultures, increased expression of angiogenic and inflammatory molecules, including vascular endothelial growth factor A (VEGFA) and chemokine (C-C motif) ligand 2 (CCL2) in RPE cells, and increased expression of secreted phosphoprotein 1 (SPP1) and transforming growth factor-β1 (TGFβ1) in choroidal endothelial cells. Collectively, our findings identify AhR as a regulator of multiple pathogenic pathways in experimentally induced choroidal neovascularization, findings that

  18. Protein Analysis of Sapienic Acid-Treated Porphyromonas gingivalis Suggests Differential Regulation of Multiple Metabolic Pathways

    PubMed Central

    Dawson, Deborah V.; Blanchette, Derek R.; Drake, David R.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    ABSTRACT Lipids endogenous to skin and mucosal surfaces exhibit potent antimicrobial activity against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Our previous work demonstrated the antimicrobial activity of the fatty acid sapienic acid (C16:1Δ6) against P. gingivalis and found that sapienic acid treatment alters both protein and lipid composition from those in controls. In this study, we further examined whole-cell protein differences between sapienic acid-treated bacteria and untreated controls, and we utilized open-source functional association and annotation programs to explore potential mechanisms for the antimicrobial activity of sapienic acid. Our analyses indicated that sapienic acid treatment induces a unique stress response in P. gingivalis resulting in differential expression of proteins involved in a variety of metabolic pathways. This network of differentially regulated proteins was enriched in protein-protein interactions (P = 2.98 × 10−8), including six KEGG pathways (P value ranges, 2.30 × 10−5 to 0.05) and four Gene Ontology (GO) molecular functions (P value ranges, 0.02 to 0.04), with multiple suggestive enriched relationships in KEGG pathways and GO molecular functions. Upregulated metabolic pathways suggest increases in energy production, lipid metabolism, iron acquisition and processing, and respiration. Combined with a suggested preferential metabolism of serine, which is necessary for fatty acid biosynthesis, these data support our previous findings that the site of sapienic acid antimicrobial activity is likely at the bacterial membrane. IMPORTANCE P. gingivalis is an important opportunistic pathogen implicated in periodontitis. Affecting nearly 50% of the population, periodontitis is treatable, but the resulting damage is irreversible and eventually progresses to tooth loss. There is a great need for natural products that can be used to treat and/or prevent the overgrowth of

  19. Aryl hydrocarbon receptor knock-out exacerbates choroidal neovascularization via multiple pathogenic pathways

    PubMed Central

    Choudhary, Mayur; Kazmin, Dmitri; Hu, Peng; Thomas, Russell S; McDonnell, Donald P; Malek, Goldis

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is a heterodimeric transcriptional regulator with pleiotropic functions in xenobiotic metabolism and detoxification, vascular development and cancer. Herein, we report a previously undescribed role for the AhR signalling pathway in the pathogenesis of the wet, neovascular subtype of age-related macular degeneration (AMD), the leading cause of vision loss in the elderly in the Western world. Comparative analysis of gene expression profiles of aged AhR−/− and wild-type (wt) mice, using high-throughput RNA sequencing, revealed differential modulation of genes belonging to several AMD-related pathogenic pathways, including inflammation, angiogenesis and extracellular matrix regulation. To investigate AhR regulation of these pathways in wet AMD, we experimentally induced choroidal neovascular lesions in AhR−/− mice and found that they measured significantly larger in area and volume compared to age-matched wt mice. Furthermore, these lesions displayed a higher number of ionized calcium-binding adaptor molecule 1-positive (Iba1+) microglial cells and a greater amount of collagen type IV deposition, events also seen in human wet AMD pathology specimens. Consistent with our in vivo observations, AhR knock-down was sufficient to increase choroidal endothelial cell migration and tube formation in vitro. Moreover, AhR knock-down caused an increase in collagen type IV production and secretion in both retinal pigment epithelial (RPE) and choroidal endothelial cell cultures, increased expression of angiogenic and inflammatory molecules, including vascular endothelial growth factor A (VEGFA) and chemokine (C–C motif) ligand 2 (CCL2) in RPE cells, and increased expression of secreted phosphoprotein 1 (SPP1) and transforming growth factor-β1 (TGFβ1) in choroidal endothelial cells. Collectively, our findings identify AhR as a regulator of multiple pathogenic pathways in experimentally induced choroidal neovascularization, findings that

  20. A targeted spatial-temporal proteomics approach implicates multiple cellular trafficking pathways in human cytomegalovirus virion maturation.

    PubMed

    Moorman, Nathaniel J; Sharon-Friling, Ronit; Shenk, Thomas; Cristea, Ileana M

    2010-05-01

    The assembly of infectious virus particles is a complex event. For human cytomegalovirus (HCMV) this process requires the coordinated expression and localization of at least 60 viral proteins that comprise the infectious virion. To gain insight into the mechanisms controlling this process, we identified protein binding partners for two viral proteins, pUL99 (also termed pp28) and pUL32 (pp150), which are essential for HCMV virion assembly. We utilized HCMV strains expressing pUL99 or pUL32 carboxyl-terminal green fluorescent protein fusion proteins from their native location in the HCMV genome. Based on the presence of ubiquitin in the pUL99 immunoisolation, we discovered that this viral protein colocalizes with components of the cellular endosomal sorting complex required for transport (ESCRT) pathway during the initial stages of virion assembly. We identified the nucleocapsid and a large number of tegument proteins as pUL32 binding partners, suggesting that events controlling trafficking of this viral protein in the cytoplasm regulate nucleocapsid/tegument maturation. The finding that pUL32, but not pUL99, associates with clathrin led to the discovery that the two viral proteins traffic via distinct pathways during the early stages of virion assembly. Additional investigation revealed that the majority of the major viral glycoprotein gB initially resides in a third compartment. Analysis of the trafficking of these three viral proteins throughout a time course of virion assembly allowed us to visualize their merger into a single large cytoplasmic structure during the late stages of viral assembly. We propose a model of HCMV virion maturation in which multiple components of the virion traffic independently of one another before merging.

  1. Beclin 1 Is Required for Neuron Viability and Regulates Endosome Pathways via the UVRAG-VPS34 Complex

    PubMed Central

    Wold, Mitchell S.; Gong, Shiaoching; Phillips, Greg R.; Dou, Zhixun; Zhao, Yanxiang; Heintz, Nathaniel; Zong, Wei-Xing; Yue, Zhenyu

    2014-01-01

    Deficiency of autophagy protein beclin 1 is implicated in tumorigenesis and neurodegenerative diseases, but the molecular mechanism remains elusive. Previous studies showed that Beclin 1 coordinates the assembly of multiple VPS34 complexes whose distinct phosphatidylinositol 3-kinase III (PI3K-III) lipid kinase activities regulate autophagy at different steps. Recent evidence suggests a function of beclin 1 in regulating multiple VPS34-mediated trafficking pathways beyond autophagy; however, the precise role of beclin 1 in autophagy-independent cellular functions remains poorly understood. Herein we report that beclin 1 regulates endocytosis, in addition to autophagy, and is required for neuron viability in vivo. We find that neuronal beclin 1 associates with endosomes and regulates EEA1/early endosome localization and late endosome formation. Beclin 1 maintains proper cellular phosphatidylinositol 3-phosphate (PI(3)P) distribution and total levels, and loss of beclin 1 causes a disruption of active Rab5 GTPase-associated endosome formation and impairment of endosome maturation, likely due to a failure of Rab5 to recruit VPS34. Furthermore, we find that Beclin 1 deficiency causes complete loss of the UVRAG-VPS34 complex and associated lipid kinase activity. Interestingly, beclin 1 deficiency impairs p40phox-linked endosome formation, which is rescued by overexpressed UVRAG or beclin 1, but not by a coiled-coil domain-truncated beclin 1 (a UVRAG-binding mutant), Atg14L or RUBICON. Thus, our study reveals the essential role for beclin 1 in neuron survival involving multiple membrane trafficking pathways including endocytosis and autophagy, and suggests that the UVRAG-beclin 1 interaction underlies beclin 1's function in endocytosis. PMID:25275521

  2. Toxic Accumulation of LPS Pathway Intermediates Underlies the Requirement of LpxH for Growth of Acinetobacter baumannii ATCC 19606

    PubMed Central

    Richie, Daryl L.; Takeoka, Kenneth T.; Bojkovic, Jade; Metzger, Louis E.; Rath, Christopher M.; Sawyer, William S.; Wei, Jun-Rong; Dean, Charles R.

    2016-01-01

    The lipid A moiety of lipopolysaccharide (LPS) is the main constituent of the outer leaflet of the Gram-negative bacterial outer membrane (OM) and is essential in many Gram-negative pathogens. An exception is Acinetobacter baumannii ATCC 19606, where mutants lacking enzymes occurring early in lipid A biosynthesis (LpxA, LpxC or LpxD), and correspondingly lacking LPS, can grow. In contrast, we show here that LpxH, an enzyme that occurs downstream of LpxD in the lipid A biosynthetic pathway, is essential for growth in this strain. Multiple attempts to disrupt lpxH on the genome were unsuccessful, and when LpxH expression was controlled by an isopropyl β-d-1-thiogalactopyranoside (IPTG) inducible promoter, cell growth under typical laboratory conditions required IPTG induction. Mass spectrometry analysis of cells shifted from LpxH-induced to uninduced (and whose growth was correspondingly slowing as LpxH was depleted) showed a large cellular accumulation of UDP-2,3-diacyl-GlcN (substrate of LpxH), a C14:0(3-OH) acyl variant of the LpxD substrate (UDP-3-O-[(R)-3-OH-C14]-GlcN), and disaccharide 1-monophosphate (DSMP). Furthermore, the viable cell counts of the LpxH depleted cultures dropped modestly, and electron microscopy revealed clear defects at the cell (inner) membrane, suggesting lipid A intermediate accumulation was toxic. Consistent with this, blocking the synthesis of these intermediates by inhibition of the upstream LpxC enzyme using CHIR-090 abrogated the requirement for IPTG induction of LpxH. Taken together, these data indicate that LpxH is essential for growth in A. baumannii ATCC19606, because, unlike earlier pathway steps like LpxA or LpxC, blockage of LpxH causes accumulation of detergent-like pathway intermediates that prevents cell growth. PMID:27526195

  3. Toxic Accumulation of LPS Pathway Intermediates Underlies the Requirement of LpxH for Growth of Acinetobacter baumannii ATCC 19606.

    PubMed

    Richie, Daryl L; Takeoka, Kenneth T; Bojkovic, Jade; Metzger, Louis E; Rath, Christopher M; Sawyer, William S; Wei, Jun-Rong; Dean, Charles R

    2016-01-01

    The lipid A moiety of lipopolysaccharide (LPS) is the main constituent of the outer leaflet of the Gram-negative bacterial outer membrane (OM) and is essential in many Gram-negative pathogens. An exception is Acinetobacter baumannii ATCC 19606, where mutants lacking enzymes occurring early in lipid A biosynthesis (LpxA, LpxC or LpxD), and correspondingly lacking LPS, can grow. In contrast, we show here that LpxH, an enzyme that occurs downstream of LpxD in the lipid A biosynthetic pathway, is essential for growth in this strain. Multiple attempts to disrupt lpxH on the genome were unsuccessful, and when LpxH expression was controlled by an isopropyl β-d-1-thiogalactopyranoside (IPTG) inducible promoter, cell growth under typical laboratory conditions required IPTG induction. Mass spectrometry analysis of cells shifted from LpxH-induced to uninduced (and whose growth was correspondingly slowing as LpxH was depleted) showed a large cellular accumulation of UDP-2,3-diacyl-GlcN (substrate of LpxH), a C14:0(3-OH) acyl variant of the LpxD substrate (UDP-3-O-[(R)-3-OH-C14]-GlcN), and disaccharide 1-monophosphate (DSMP). Furthermore, the viable cell counts of the LpxH depleted cultures dropped modestly, and electron microscopy revealed clear defects at the cell (inner) membrane, suggesting lipid A intermediate accumulation was toxic. Consistent with this, blocking the synthesis of these intermediates by inhibition of the upstream LpxC enzyme using CHIR-090 abrogated the requirement for IPTG induction of LpxH. Taken together, these data indicate that LpxH is essential for growth in A. baumannii ATCC19606, because, unlike earlier pathway steps like LpxA or LpxC, blockage of LpxH causes accumulation of detergent-like pathway intermediates that prevents cell growth. PMID:27526195

  4. Cancer predisposition in mutant mice defective in multiple genetic pathways: uncovering important genetic interactions.

    PubMed

    Meira, L B; Reis, A M; Cheo, D L; Nahari, D; Burns, D K; Friedberg, E C

    2001-06-01

    Mouse models that mimic the human skin cancer-prone disease xeroderma pigmentosum (XP) provide an useful experimental system with which to study the relationship between the DNA repair process of nucleotide excision repair (NER) and ultraviolet- (UV) induced skin carcinogenesis. We have generated Xpc mutant mice and documented their deficiency in the process of NER of UV-induced DNA damage. Xpc mutant mice are highly predisposed to UV-B radiation-induced skin cancer, both in the homozygous and the heterozygous state. The combination of Xpc and Trp53 mutations enhances this predisposition and alters the tumor spectrum observed in single mutant mice. These results suggest a synergism between NER and the function of Trp53 in suppression of cancer. We have examined the mutational spectrum in the Trp53 gene from skin cancers in Trp53+/+ and Trp53+/- mice of all three Xpc genotypes and have found evidence for signature mutations associated with defective NER. In addition, we have demonstrated that Xpc mutant mice are highly predisposed to the induction of lung and liver cancers by treatment with 2-acetylaminofluorene (2-AAF) and N-OH-2-AAF. By combining the Xpc mutation with other mutations in genes involved in repair of DNA damage we have identified additional genetic interactions important in carcinogenesis. The mouse Apex gene is a critical component of the base excision repair (BER) pathway as well as the redox regulation of transcription factors important in growth control and the cellular response to DNA damage. By combining mutations in Xpc, Trp53 and Apex we have obtained genetic evidence for a functional interaction between Apex and Trp53 which probably involves the activation of the Trp53 protein by Apex. Mutations in the mismatch repair (MMR) gene Msh2 also influence the carcinogenesis observed in Xpc Trp53 mutant mice. Our results demonstrate that multiple repair pathways operate in prevention of tumor formation. PMID:11376686

  5. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans

    PubMed Central

    Kumar, Jitendra; Barhydt, Tracy; Awasthi, Anjali; Lithgow, Gordon J.; Killilea, David W.; Kapahi, Pankaj

    2016-01-01

    Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy. PMID:27078872

  6. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans.

    PubMed

    Kumar, Jitendra; Barhydt, Tracy; Awasthi, Anjali; Lithgow, Gordon J; Killilea, David W; Kapahi, Pankaj

    2016-01-01

    Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy.

  7. Activation of Diverse Signaling Pathways by Ex-Vivo Delivery of Multiple Cytokines for Myocardial Repair

    PubMed Central

    Konoplyannikov, Mikhail; Haider, Khawaja Husnain; Lai, Vien Khach; Ahmed, Rafeeq P.H.; Jiang, Shujia

    2013-01-01

    We tested the hypothesis that simultaneous transgenic overexpression of a select quartet of growth factors activates diverse signaling pathways for mobilization and participation of various stem/progenitor cells for cardiogenesis in the infarcted heart. Human insulin growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), stromal cell–derived factor-1 (SDF-1a), and hepatocyte growth factor (HGF) plasmids were synthesized and transfected into skeletal myoblasts (SM) from young male wild-type or transgenic rats expressing green fluorescent protein (GFP). Overexpression of growth factors in transfected SM (TransSM) was confirmed by reverse transcription polymerase chain reaction, western blotting, and fluorescence immunostaining. Using our custom-made growth factor array and western blotting, multiple angiogenic and prosurvival factors were detected in TransSM, including secreted frizzled related protein-1,2,4,5, matrix metalloproteinases-3 and 9, connexin-43, netrin-1, Nos-2, Wnt-3, Akt, MAPK42/44, Stat3, nuclear factor kappa B (NFκB), hypoxia-inducible factor 1 (HIF-1α), and protein kinase C (PKC). The conditioned medium (CM) from TransSM was cytoprotective for cardiomyocytes following H2O2 treatment [P<0.01 vs. CM from native SM (NatSM)], promoted a higher transwell migration of human umbilical cord vein endothelial cells (223.3±1.8, P<0.01) and in vitro tube formation (47.8±1.9, P<0.01). Intramyocardial transplantation of 1.5×106 TransSM (group-3) in a rat model of acute myocardial infarction induced extensive mobilization of cMet+, ckit+, ckit+/GATA4+, CXCR4+, CD44+, CD31+, and CD59+ cells into the infarcted heart on day 7 and improved integration of TransSM in the heart compared to NatSM (group 2) (P<0.05). Extensive neomyogenesis and angiogenesis in group-3 (P<0.01 vs. group-2), with resultant attenuation of infarct size (P<0.01 vs. group-2) and improvement in global heart function (P<0.01 vs. group-2) was observed at 8 weeks. In conclusion

  8. 49 CFR 173.423 - Requirements for multiple hazard limited quantity Class 7 (radioactive) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Class 7 (radioactive) materials. 173.423 Section 173.423 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.423 Requirements for multiple hazard limited quantity Class 7 (radioactive) materials....

  9. 49 CFR 173.423 - Requirements for multiple hazard limited quantity Class 7 (radioactive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Class 7 (radioactive) materials. 173.423 Section 173.423 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.423 Requirements for multiple hazard limited quantity Class 7 (radioactive) materials....

  10. 49 CFR 173.423 - Requirements for multiple hazard limited quantity Class 7 (radioactive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Class 7 (radioactive) materials. 173.423 Section 173.423 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.423 Requirements for multiple hazard limited quantity Class 7 (radioactive) materials....

  11. 49 CFR 173.423 - Requirements for multiple hazard limited quantity Class 7 (radioactive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Class 7 (radioactive) materials. 173.423 Section 173.423 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.423 Requirements for multiple hazard limited quantity Class 7 (radioactive) materials....

  12. 49 CFR 173.423 - Requirements for multiple hazard limited quantity Class 7 (radioactive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Class 7 (radioactive) materials. 173.423 Section 173.423 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.423 Requirements for multiple hazard limited quantity Class 7 (radioactive) materials....

  13. Insulin receptors internalize by a rapid, saturable pathway requiring receptor autophosphorylation and an intact juxtamembrane region

    PubMed Central

    1991-01-01

    The effect of receptor occupancy on insulin receptor endocytosis was examined in CHO cells expressing normal human insulin receptors (CHO/IR), autophosphorylation- and internalization-deficient receptors (CHO/IRA1018), and receptors which undergo autophosphorylation but lack a sequence required for internalization (CHO/IR delta 960). The rate of [125I]insulin internalization in CHO/IR cells at 37 degrees C was rapid at physiological concentrations, but decreased markedly in the presence of increasing unlabeled insulin (ED50 = 1-3 nM insulin, or 75,000 occupied receptors/cell). In contrast, [125I]insulin internalization by CHO/IRA1018 and CHO/IR delta 960 cells was slow and was not inhibited by unlabeled insulin. At saturating insulin concentrations, the rate of internalization by wild-type and mutant receptors was similar. Moreover, depletion of intracellular potassium, which has been shown to disrupt coated pit formation, inhibited the rapid internalization of [125I]insulin at physiological insulin concentrations by CHO/IR cells, but had little or no effect on [125I]insulin uptake by CHO/IR delta 960 and CHO/IRA1018 cells or wild-type cells at high insulin concentrations. These data suggest that the insulin-stimulated entry of the insulin receptor into a rapid, coated pit-mediated internalization pathway is saturable and requires receptor autophosphorylation and an intact juxtamembrane region. Furthermore, CHO cells also contain a constitutive nonsaturable pathway which does not require receptor autophosphorylation or an intact juxtamembrane region; this second pathway is unaffected by depletion of intracellular potassium, and therefore may be independent of coated pits. Our data suggest that the ligand-stimulated internalization of the insulin receptor may require specific saturable interactions between the receptor and components of the endocytic system. PMID:1757462

  14. The G alpha i homologue gna-1 controls multiple differentiation pathways in Neurospora crassa.

    PubMed Central

    Ivey, F D; Hodge, P N; Turner, G E; Borkovich, K A

    1996-01-01

    Heterotrimeric G proteins are components of principal signaling pathways in eukaryotes. In higher organisms, alpha subunits of G proteins have been divided into four families, Gi, Gs, Gq, and G12. We previously identified a G alpha i homologue gna-1 in the filamentous fungus Neurospora crassa. Now we report that deletion of gna-1 leads to multiple phenotypes during the vegetative and sexual cycles in N. crassa. On solid medium, delta gna-1 strains have a slower rate of hyphal apical extension than wild type, a rate that is more pronounced under hyperosmotic conditions or in the presence of a cellophane overlay. delta gna-1 mutants accumulate less mass than wild-type strains, and their mass accumulation is not affected in the same way by exposure to light. delta gna-1 strains are defective in macroconidiation, possessing aerial hyphae that are shorter, contain abnormal swellings, and differentiate adherent macroconidia. During the sexual cycle, delta gna-1 strains are fertile as males. However, the mutants are female-sterile, producing small, aberrant female reproductive structures. After fertilization, delta gna-1 female structures do not enlarge and develop normally, and no sexual spores are produced. Thus, mutation of gna-1 results in sex-specific loss of fertility. Images PMID:8856670

  15. Curcumin Induces Apoptosis of Upper Aerodigestive Tract Cancer Cells by Targeting Multiple Pathways

    PubMed Central

    Amin, A. R. M. Ruhul; Haque, Abedul; Rahman, Mohammad Aminur; Chen, Zhuo Georgia; Khuri, Fadlo Raja; Shin, Dong Moon

    2015-01-01

    Curcumin, a natural compound isolated from the Indian spice "Haldi" or "curry powder", has been used for centuries as a traditional remedy for many ailments. Recently, the potential use of curcumin in cancer prevention and therapy urges studies to uncover the molecular mechanisms associated with its anti-tumor effects. In the current manuscript, we investigated the mechanism of curcumin-induced apoptosis in upper aerodigestive tract cancer cell lines and showed that curcumin-induced apoptosis is mediated by the modulation of multiple pathways such as induction of p73, and inhibition of p-AKT and Bcl-2. Treatment of cells with curcumin induced both p53 and the related protein p73 in head and neck and lung cancer cell lines. Inactivation of p73 by dominant negative p73 significantly protected cells from curcumin-induced apoptosis, whereas ablation of p53 by shRNA had no effect. Curcumin treatment also strongly inhibited p-AKT and Bcl-2 and overexpression of constitutively active AKT or Bcl-2 significantly inhibited curcumin-induced apoptosis. Taken together, our findings suggest that curcumin-induced apoptosis is mediated via activating tumor suppressor p73 and inhibiting p-AKT and Bcl-2. PMID:25910231

  16. Massive parallel IGHV gene sequencing reveals a germinal center pathway in origins of human multiple myeloma.

    PubMed

    Cowan, Graeme; Weston-Bell, Nicola J; Bryant, Dean; Seckinger, Anja; Hose, Dirk; Zojer, Niklas; Sahota, Surinder S

    2015-05-30

    Human multiple myeloma (MM) is characterized by accumulation of malignant terminally differentiated plasma cells (PCs) in the bone marrow (BM), raising the question when during maturation neoplastic transformation begins. Immunoglobulin IGHV genes carry imprints of clonal tumor history, delineating somatic hypermutation (SHM) events that generally occur in the germinal center (GC). Here, we examine MM-derived IGHV genes using massive parallel deep sequencing, comparing them with profiles in normal BM PCs. In 4/4 presentation IgG MM, monoclonal tumor-derived IGHV sequences revealed significant evidence for intraclonal variation (ICV) in mutation patterns. IGHV sequences of 2/2 normal PC IgG populations revealed dominant oligoclonal expansions, each expansion also displaying mutational ICV. Clonal expansions in MM and in normal BM PCs reveal common IGHV features. In such MM, the data fit a model of tumor origins in which neoplastic transformation is initiated in a GC B-cell committed to terminal differentiation but still targeted by on-going SHM. Strikingly, the data parallel IGHV clonal sequences in some monoclonal gammopathy of undetermined significance (MGUS) known to display on-going SHM imprints. Since MGUS generally precedes MM, these data suggest origins of MGUS and MM with IGHV gene mutational ICV from the same GC B-cell, arising via a distinctive pathway.

  17. Galvanic zinc-copper microparticles inhibit melanogenesis via multiple pigmentary pathways.

    PubMed

    Won, Yen-Kim; Lin, Connie B; Seiberg, Miri; Chen, Nannan; Hu, Yaping; Rossetti, Dianne; Saliou, Claude; Loy, Chong-Jin

    2014-01-01

    The endogenous electrical field of human skin plays an important role in many skin functions. However, the biological effects and mechanism of action of externally applied electrical stimulation on skin remain unclear. Recent study showed that galvanic zinc-copper microparticles produce electrical stimulation and reduce inflammatory and immune responses in intact skin, suggesting the important role of electrical stimulation in non-wounded skin. The objective of this study is to investigate the biological effect of galvanic zinc-copper microparticles on skin pigmentation. Our findings showed that galvanic zinc-copper microparticles inhibited melanogenesis in a human melanoma cell line (MNT-1), human keratinocytes and melanoma cells co-cultures, and in pigmented epidermal equivalents. Treatment of galvanic zinc-copper microparticles inhibited melanogenesis by reducing the promoter transactivation of tyrosinase and tyrosinase-related protein-1 in human melanoma cells. In a co-culture Transwell system of keratinocytes and melanoma cells, galvanic zinc-copper microparticles reduced melanin production via downregulation of endothelin-1 secretion from keratinocytes and reduced tyrosinase gene expression in melanoma cells. In addition, exposure of pigmented epidermal equivalents to galvanic zinc-copper microparticles resulted in reduced melanin deposition. In conclusion, our data demonstrated for the first time that galvanic zinc-copper microparticles reduced melanogenesis in melanoma cells and melanin deposition in pigmented epidermal equivalents by affecting multiple pigmentary pathways. PMID:23700242

  18. Galvanic zinc-copper microparticles inhibit melanogenesis via multiple pigmentary pathways.

    PubMed

    Won, Yen-Kim; Lin, Connie B; Seiberg, Miri; Chen, Nannan; Hu, Yaping; Rossetti, Dianne; Saliou, Claude; Loy, Chong-Jin

    2014-01-01

    The endogenous electrical field of human skin plays an important role in many skin functions. However, the biological effects and mechanism of action of externally applied electrical stimulation on skin remain unclear. Recent study showed that galvanic zinc-copper microparticles produce electrical stimulation and reduce inflammatory and immune responses in intact skin, suggesting the important role of electrical stimulation in non-wounded skin. The objective of this study is to investigate the biological effect of galvanic zinc-copper microparticles on skin pigmentation. Our findings showed that galvanic zinc-copper microparticles inhibited melanogenesis in a human melanoma cell line (MNT-1), human keratinocytes and melanoma cells co-cultures, and in pigmented epidermal equivalents. Treatment of galvanic zinc-copper microparticles inhibited melanogenesis by reducing the promoter transactivation of tyrosinase and tyrosinase-related protein-1 in human melanoma cells. In a co-culture Transwell system of keratinocytes and melanoma cells, galvanic zinc-copper microparticles reduced melanin production via downregulation of endothelin-1 secretion from keratinocytes and reduced tyrosinase gene expression in melanoma cells. In addition, exposure of pigmented epidermal equivalents to galvanic zinc-copper microparticles resulted in reduced melanin deposition. In conclusion, our data demonstrated for the first time that galvanic zinc-copper microparticles reduced melanogenesis in melanoma cells and melanin deposition in pigmented epidermal equivalents by affecting multiple pigmentary pathways.

  19. Mycophenolic Acid Inhibits Migration and Invasion of Gastric Cancer Cells via Multiple Molecular Pathways

    PubMed Central

    Dun, Boying; Sharma, Ashok; Teng, Yong; Liu, Haitao; Purohit, Sharad; Xu, Heng; Zeng, Lingwen; She, Jin-Xiong

    2013-01-01

    Mycophenolic acid (MPA) is the metabolized product and active element of mycophenolate mofetil (MMF) that has been widely used for the prevention of acute graft rejection. MPA potently inhibits inosine monophosphate dehydrogenase (IMPDH) that is up-regulated in many tumors and MPA is known to inhibit cancer cell proliferation as well as fibroblast and endothelial cell migration. In this study, we demonstrated for the first time MPA’s antimigratory and anti-invasion abilities of MPA-sensitive AGS (gastric cancer) cells. Genome-wide expression analyses using Illumina whole genome microarrays identified 50 genes with ≥2 fold changes and 15 genes with > 4 fold alterations and multiple molecular pathways implicated in cell migration. Real-time RT-PCR analyses of selected genes also confirmed the expression differences. Furthermore, targeted proteomic analyses identified several proteins altered by MPA treatment. Our results indicate that MPA modulates gastric cancer cell migration through down-regulation of a large number of genes (PRKCA, DOCK1, INF2, HSPA5, LRP8 and PDGFRA) and proteins (PRKCA, AKT, SRC, CD147 and MMP1) with promigratory functions as well as up-regulation of a number of genes with antimigratory functions (ATF3, SMAD3, CITED2 and CEAMCAM1). However, a few genes that may promote migration (CYR61 and NOS3) were up-regulated. Therefore, MPA’s overall antimigratory role on cancer cells reflects a balance between promigratory and antimigratory signals influenced by MPA treatment. PMID:24260584

  20. TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms

    PubMed Central

    Rauert, H; Stühmer, T; Bargou, R; Wajant, H; Siegmund, D

    2011-01-01

    The huge majority of myeloma cell lines express TNFR2 while a substantial subset of them failed to show TNFR1 expression. Stimulation of TNFR1 in the TNFR1-expressing subset of MM cell lines had no or only a very mild effect on cellular viability. Surprisingly, however, TNF stimulation enhanced cell death induction by CD95L and attenuated the apoptotic effect of TRAIL. The contrasting regulation of TRAIL- and CD95L-induced cell death by TNF could be traced back to the concomitant NFκB-mediated upregulation of CD95 and the antiapoptotic FLIP protein. It appeared that CD95 induction, due to its strength, overcompensated a rather moderate upregulation of FLIP so that the net effect of TNF-induced NFκB activation in the context of CD95 signaling is pro-apoptotic. TRAIL-induced cell death, however, was antagonized in response to TNF because in this context only the induction of FLIP is relevant. Stimulation of TNFR2 in myeloma cells leads to TRAF2 depletion. In line with this, we observed cell death induction in TNFR1-TNFR2-costimulated JJN3 cells. Our studies revealed that the TNF-TNF receptor system adjusts the responsiveness of the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms that generate a highly context-dependent net effect on myeloma cell survival. PMID:21850048

  1. The history and visions of African American psychology: multiple pathways to place, space, and authority.

    PubMed

    Holliday, Bertha Garrett

    2009-10-01

    The author describes the multiple pathways of events and strategies that served to nurture African American psychology in the United States. Special attention is given to strategies for inclusion and empowerment used in 4 psychological professional and scholarly associations: the American Counseling Association, the American Psychological Association, the Association of Black Psychologists, and the Society for Research in Child Development. In addition, the author describes 4 major intellectual traditions that informed not only the strategies of inclusion but also the theoretical, research, and intervention perspectives and other professional and academic efforts of African American psychologists. Those perspectives are the Afrocentric/African-centered tradition derived from longstanding nationalist/Pan-African and culturally centered traditions within African American communities; the social contextual/multidisciplinary research tradition of the University of Chicago School of Social Science; the empirical social science research tradition of the University of Michigan; and the Black scholar/activist tradition of Howard University. This article also presents a chronological timeline of major events in the history of African American psychology.

  2. The Major Cellular Sterol Regulatory Pathway Is Required for Andes Virus Infection

    PubMed Central

    Riblett, Amber M.; Didigu, Chukwuka A.; Wilen, Craig B.; Malani, Nirav; Male, Frances; Lee, Fang-Hua; Bushman, Frederic D.; Cherry, Sara; Doms, Robert W.; Bates, Paul; Briley, Kenneth

    2014-01-01

    The Bunyaviridae comprise a large family of RNA viruses with worldwide distribution and includes the pathogenic New World hantavirus, Andes virus (ANDV). Host factors needed for hantavirus entry remain largely enigmatic and therapeutics are unavailable. To identify cellular requirements for ANDV infection, we performed two parallel genetic screens. Analysis of a large library of insertionally mutagenized human haploid cells and a siRNA genomic screen converged on components (SREBP-2, SCAP, S1P and S2P) of the sterol regulatory pathway as critically important for infection by ANDV. The significance of this pathway was confirmed using functionally deficient cells, TALEN-mediated gene disruption, RNA interference and pharmacologic inhibition. Disruption of sterol regulatory complex function impaired ANDV internalization without affecting virus binding. Pharmacologic manipulation of cholesterol levels demonstrated that ANDV entry is sensitive to changes in cellular cholesterol and raises the possibility that clinically approved regulators of sterol synthesis may prove useful for combating ANDV infection. PMID:24516383

  3. Reconciling the role of organic matter pathways in aquatic food webs by measuring multiple tracers in individuals.

    PubMed

    Jardine, Timothy D; Woods, Ryan; Marshall, Jonathan; Fawcetr, James; Lobegeiger, Jaye; Valdez, Dominic; Kainz, Martin J

    2015-12-01

    Few studies measure multiple ecological tracers in individual organisms, thus limiting our ability to differentiate among organic matter source pathways and understand consequences of dietary variation and the use of external subsidies in complex food webs. We combined two tracers, stable isotope (SI) ratios and fatty acids (FA), to investigate linkages among ecological compartments (water column, benthos, riparian zone) in food webs in waterholes of a dryland river network, the Border Rivers in southwestern Queensland, Australia. Comprehensive analyses of sources (plankton, periphyton, leaf litter, riparian grasses) and animals (benthic insects, mollusks, large crustaceans, fishes) for SI and FA showed that all three zones contribute to animal biomass, depending on species and life stage. Large fishes derived a subsidy from the riparian/floodplain zone, likely through the consumption of terrestrial and semi-aquatic insects and prawns that fed on detritivorous insects. Importantly, post-larval bony bream (Nematalosa erebi) and golden perch (Macquaria ambigua) were tightly connected to the water column, as evidenced by 13C-depleted, 15N-enriched isotope ratios and a high content of plankton-derived polyunsaturated fatty acids (eicosapentaenoic acid [EPA; 20:53] and docosahexaenoic acid [DHA; 22:6003]). These observations were consistent with expectations from nutritional requirements of fish early life stages and habitat changes associated with maturity. These results highlight the importance of high-quality foods during early development of fishes, and show that attempting to attribute food-web production to a single source pathway overlooks important but often subtle subsidies that maintain viable populations. A complete understanding of food-web dynamics must consider both quantity and quality of different available organic matter sources. This understanding can be achieved with a combined SI and FA approach, but more controlled dietary studies are needed to

  4. Reconciling the role of organic matter pathways in aquatic food webs by measuring multiple tracers in individuals.

    PubMed

    Jardine, Timothy D; Woods, Ryan; Marshall, Jonathan; Fawcetr, James; Lobegeiger, Jaye; Valdez, Dominic; Kainz, Martin J

    2015-12-01

    Few studies measure multiple ecological tracers in individual organisms, thus limiting our ability to differentiate among organic matter source pathways and understand consequences of dietary variation and the use of external subsidies in complex food webs. We combined two tracers, stable isotope (SI) ratios and fatty acids (FA), to investigate linkages among ecological compartments (water column, benthos, riparian zone) in food webs in waterholes of a dryland river network, the Border Rivers in southwestern Queensland, Australia. Comprehensive analyses of sources (plankton, periphyton, leaf litter, riparian grasses) and animals (benthic insects, mollusks, large crustaceans, fishes) for SI and FA showed that all three zones contribute to animal biomass, depending on species and life stage. Large fishes derived a subsidy from the riparian/floodplain zone, likely through the consumption of terrestrial and semi-aquatic insects and prawns that fed on detritivorous insects. Importantly, post-larval bony bream (Nematalosa erebi) and golden perch (Macquaria ambigua) were tightly connected to the water column, as evidenced by 13C-depleted, 15N-enriched isotope ratios and a high content of plankton-derived polyunsaturated fatty acids (eicosapentaenoic acid [EPA; 20:53] and docosahexaenoic acid [DHA; 22:6003]). These observations were consistent with expectations from nutritional requirements of fish early life stages and habitat changes associated with maturity. These results highlight the importance of high-quality foods during early development of fishes, and show that attempting to attribute food-web production to a single source pathway overlooks important but often subtle subsidies that maintain viable populations. A complete understanding of food-web dynamics must consider both quantity and quality of different available organic matter sources. This understanding can be achieved with a combined SI and FA approach, but more controlled dietary studies are needed to

  5. A maternal effect rough deal mutation suggests that multiple pathways regulate Drosophila RZZ kinetochore recruitment

    PubMed Central

    Défachelles, Lénaïg; Hainline, Sarah G.; Menant, Alexandra; Lee, Laura A.; Karess, Roger E.

    2015-01-01

    ABSTRACT Proper kinetochore recruitment and regulation of dynein and the Mad1–Mad2 complex requires the Rod–Zw10–Zwilch (RZZ) complex. Here, we describe rodZ3, a maternal-effect Drosophila mutation changing a single residue in the Rough Deal (Rod) subunit of RZZ. Although the RZZ complex containing this altered subunit (denoted RZ3ZZ) is present in early syncytial stage embryos laid by homozygous rodZ3 mothers, it is not recruited to kinetochores. Consequently, the embryos have no spindle assembly checkpoint (SAC), and syncytial mitoses are profoundly perturbed. The polar body (residual meiotic products) cannot remain in its SAC-dependent metaphase-like state, and decondenses into chromatin. In neuroblasts of homozygous rodZ3 larvae, RZ3ZZ recruitment is only partially reduced, the SAC is functional and mitosis is relatively normal. RZ3ZZ nevertheless behaves abnormally: it does not further accumulate on kinetochores when microtubules are depolymerized; it reduces the rate of Mad1 recruitment; and it dominantly interferes with the dynein-mediated streaming of RZZ from attached kinetochores. These results suggest that the mutated residue of rodZ3 is required for normal RZZ kinetochore recruitment and function and, moreover, that the RZZ recruitment pathway might differ in syncytial stage embryos and post-embryonic somatic cells. PMID:25616898

  6. A maternal effect rough deal mutation suggests that multiple pathways regulate Drosophila RZZ kinetochore recruitment.

    PubMed

    Défachelles, Lénaïg; Hainline, Sarah G; Menant, Alexandra; Lee, Laura A; Karess, Roger E

    2015-03-15

    Proper kinetochore recruitment and regulation of dynein and the Mad1-Mad2 complex requires the Rod-Zw10-Zwilch (RZZ) complex. Here, we describe rod(Z3), a maternal-effect Drosophila mutation changing a single residue in the Rough Deal (Rod) subunit of RZZ. Although the RZZ complex containing this altered subunit (denoted R(Z3)ZZ) is present in early syncytial stage embryos laid by homozygous rod(Z3) mothers, it is not recruited to kinetochores. Consequently, the embryos have no spindle assembly checkpoint (SAC), and syncytial mitoses are profoundly perturbed. The polar body (residual meiotic products) cannot remain in its SAC-dependent metaphase-like state, and decondenses into chromatin. In neuroblasts of homozygous rod(Z3) larvae, R(Z3)ZZ recruitment is only partially reduced, the SAC is functional and mitosis is relatively normal. R(Z3)ZZ nevertheless behaves abnormally: it does not further accumulate on kinetochores when microtubules are depolymerized; it reduces the rate of Mad1 recruitment; and it dominantly interferes with the dynein-mediated streaming of RZZ from attached kinetochores. These results suggest that the mutated residue of rod(Z3) is required for normal RZZ kinetochore recruitment and function and, moreover, that the RZZ recruitment pathway might differ in syncytial stage embryos and post-embryonic somatic cells.

  7. A functional 4-hydroxybenzoate degradation pathway in the phytopathogen Xanthomonas campestris is required for full pathogenicity

    PubMed Central

    Wang, Jia-Yuan; Zhou, Lian; Chen, Bo; Sun, Shuang; Zhang, Wei; Li, Ming; Tang, Hongzhi; Jiang, Bo-Le; Tang, Ji-Liang; He, Ya-Wen

    2015-01-01

    Plants contain significant levels of natural phenolic compounds essential for reproduction and growth, as well as defense mechanisms against pathogens. Xanthomonas campestris pv. campestris (Xcc) is the causal agent of crucifers black rot. Here we showed that genes required for the synthesis, utilization, transportation, and degradation of 4-hydroxybenzoate (4-HBA) are present in Xcc. Xcc rapidly degrades 4-HBA, but has no effect on 2-hydroxybenzoate and 3-hydroxybenzoate when grown in XOLN medium. The genes for 4-HBA degradation are organized in a superoperonic cluster. Bioinformatics, biochemical, and genetic data showed that 4-HBA is hydroxylated by 4-HBA 3-hydroxylase (PobA), which is encoded by Xcc0356, to yield PCA. The resulting PCA is further metabolized via the PCA branches of the β-ketoadipate pathway, including Xcc0364, Xcc0365, and PcaFHGBDCR. Xcc0364 and Xcc0365 encode a new form of β-ketoadipate succinyl-coenzyme A transferase that is required for 4-HBA degradation. pobA expression was induced by 4-HBA via the transcriptional activator, PobR. Radish and cabbage hydrolysates contain 2-HBA, 3-HBA, 4-HBA, and other phenolic compounds. Addition of radish and cabbage hydrolysates to Xcc culture significantly induced the expression of pobA via PobR. The 4-HBA degradation pathway is required for full pathogenicity of Xcc in radish. PMID:26672484

  8. Current Evidence for a Role of the Kynurenine Pathway of Tryptophan Metabolism in Multiple Sclerosis.

    PubMed

    Lovelace, Michael D; Varney, Bianca; Sundaram, Gayathri; Franco, Nunzio F; Ng, Mei Li; Pai, Saparna; Lim, Chai K; Guillemin, Gilles J; Brew, Bruce J

    2016-01-01

    The kynurenine pathway (KP) is the major metabolic pathway of the essential amino acid tryptophan (TRP). Stimulation by inflammatory molecules, such as interferon-γ (IFN-γ), is the trigger for induction of the KP, driving a complex cascade of production of both neuroprotective and neurotoxic metabolites, and in turn, regulation of the immune response and responses of brain cells to the KP metabolites. Consequently, substantial evidence has accumulated over the past couple of decades that dysregulation of the KP and the production of neurotoxic metabolites are associated with many neuroinflammatory and neurodegenerative diseases, including Parkinson's disease, AIDS-related dementia, motor neurone disease, schizophrenia, Huntington's disease, and brain cancers. In the past decade, evidence of the link between the KP and multiple sclerosis (MS) has rapidly grown and has implicated the KP in MS pathogenesis. KP enzymes, indoleamine 2,3-dioxygenase (IDO-1) and tryptophan dioxygenase (highest expression in hepatic cells), are the principal enzymes triggering activation of the KP to produce kynurenine from TRP. This is in preference to other routes such as serotonin and melatonin production. In neurological disease, degradation of the blood-brain barrier, even if transient, allows the entry of blood monocytes into the brain parenchyma. Similar to microglia and macrophages, these cells are highly responsive to IFN-γ, which upregulates the expression of enzymes, including IDO-1, producing neurotoxic KP metabolites such as quinolinic acid. These metabolites circulate systemically or are released locally in the brain and can contribute to the excitotoxic death of oligodendrocytes and neurons in neurological disease principally by virtue of their agonist activity at N-methyl-d-aspartic acid receptors. The latest evidence is presented and discussed. The enzymes that control the checkpoints in the KP represent an attractive therapeutic target, and consequently several KP

  9. Current Evidence for a Role of the Kynurenine Pathway of Tryptophan Metabolism in Multiple Sclerosis

    PubMed Central

    Lovelace, Michael D.; Varney, Bianca; Sundaram, Gayathri; Franco, Nunzio F.; Ng, Mei Li; Pai, Saparna; Lim, Chai K.; Guillemin, Gilles J.; Brew, Bruce J.

    2016-01-01

    The kynurenine pathway (KP) is the major metabolic pathway of the essential amino acid tryptophan (TRP). Stimulation by inflammatory molecules, such as interferon-γ (IFN-γ), is the trigger for induction of the KP, driving a complex cascade of production of both neuroprotective and neurotoxic metabolites, and in turn, regulation of the immune response and responses of brain cells to the KP metabolites. Consequently, substantial evidence has accumulated over the past couple of decades that dysregulation of the KP and the production of neurotoxic metabolites are associated with many neuroinflammatory and neurodegenerative diseases, including Parkinson’s disease, AIDS-related dementia, motor neurone disease, schizophrenia, Huntington’s disease, and brain cancers. In the past decade, evidence of the link between the KP and multiple sclerosis (MS) has rapidly grown and has implicated the KP in MS pathogenesis. KP enzymes, indoleamine 2,3-dioxygenase (IDO-1) and tryptophan dioxygenase (highest expression in hepatic cells), are the principal enzymes triggering activation of the KP to produce kynurenine from TRP. This is in preference to other routes such as serotonin and melatonin production. In neurological disease, degradation of the blood–brain barrier, even if transient, allows the entry of blood monocytes into the brain parenchyma. Similar to microglia and macrophages, these cells are highly responsive to IFN-γ, which upregulates the expression of enzymes, including IDO-1, producing neurotoxic KP metabolites such as quinolinic acid. These metabolites circulate systemically or are released locally in the brain and can contribute to the excitotoxic death of oligodendrocytes and neurons in neurological disease principally by virtue of their agonist activity at N-methyl-d-aspartic acid receptors. The latest evidence is presented and discussed. The enzymes that control the checkpoints in the KP represent an attractive therapeutic target, and consequently several

  10. Pseudomonas aeruginosa Uses Multiple Pathways To Acquire Iron during Chronic Infection in Cystic Fibrosis Lungs

    PubMed Central

    Konings, Anna F.; Martin, Lois W.; Sharples, Katrina J.; Roddam, Louise F.; Latham, Roger; Reid, David W.

    2013-01-01

    Pseudomonas aeruginosa chronically infects the lungs of more than 80% of adult patients with cystic fibrosis (CF) and is a major contributor to the progression of disease pathology. P. aeruginosa requires iron for growth and has multiple iron uptake systems that have been studied in bacteria grown in laboratory culture. The purpose of this research was to determine which of these are active during infection in CF. RNA was extracted from 149 sputum samples obtained from 23 CF patients. Reverse transcription–quantitative real-time PCR (RT-qPCR) was used to measure the expression of P. aeruginosa genes encoding transport systems for the siderophores pyoverdine and pyochelin, for heme, and for ferrous ions. Expression of P. aeruginosa genes could be quantified in 89% of the sputum samples. Expression of genes associated with siderophore-mediated iron uptake was detected in most samples but was at low levels in some samples, indicating that other iron uptake mechanisms are active. Expression of genes encoding heme transport systems was also detected in most samples, indicating that heme uptake occurs during infection in CF. feoB expression was detected in all sputum samples, implying an important role for ferrous ion uptake by P. aeruginosa in CF. Our data show that multiple P. aeruginosa iron uptake mechanisms are active in chronic CF infection and that RT-qPCR of RNA extracted from sputum provides a powerful tool for investigating bacterial physiology during infection in CF. PMID:23690396

  11. Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs.

    PubMed

    Konings, Anna F; Martin, Lois W; Sharples, Katrina J; Roddam, Louise F; Latham, Roger; Reid, David W; Lamont, Iain L

    2013-08-01

    Pseudomonas aeruginosa chronically infects the lungs of more than 80% of adult patients with cystic fibrosis (CF) and is a major contributor to the progression of disease pathology. P. aeruginosa requires iron for growth and has multiple iron uptake systems that have been studied in bacteria grown in laboratory culture. The purpose of this research was to determine which of these are active during infection in CF. RNA was extracted from 149 sputum samples obtained from 23 CF patients. Reverse transcription-quantitative real-time PCR (RT-qPCR) was used to measure the expression of P. aeruginosa genes encoding transport systems for the siderophores pyoverdine and pyochelin, for heme, and for ferrous ions. Expression of P. aeruginosa genes could be quantified in 89% of the sputum samples. Expression of genes associated with siderophore-mediated iron uptake was detected in most samples but was at low levels in some samples, indicating that other iron uptake mechanisms are active. Expression of genes encoding heme transport systems was also detected in most samples, indicating that heme uptake occurs during infection in CF. feoB expression was detected in all sputum samples, implying an important role for ferrous ion uptake by P. aeruginosa in CF. Our data show that multiple P. aeruginosa iron uptake mechanisms are active in chronic CF infection and that RT-qPCR of RNA extracted from sputum provides a powerful tool for investigating bacterial physiology during infection in CF. PMID:23690396

  12. Bacterial decolorization of textile dyes is an extracellular process requiring a multicomponent electron transfer pathway.

    PubMed

    Brigé, Ann; Motte, Bart; Borloo, Jimmy; Buysschaert, Géraldine; Devreese, Bart; Van Beeumen, Jozef J

    2008-01-01

    Many studies have reported microorganisms as efficient biocatalysts for colour removal of dye-containing industrial wastewaters. We present the first comprehensive study to identify all molecular components involved in decolorization by bacterial cells. Mutants from the model organism Shewanella oneidensis MR-1, generated by random transposon and targeted insertional mutagenesis, were screened for defects in decolorization of an oxazine and diazo dye. We demonstrate that decolorization is an extracellular reduction process requiring a multicomponent electron transfer pathway that consists of cytoplasmic membrane, periplasmic and outer membrane components. The presence of melanin, a redox-active molecule excreted by S. oneidensis, was shown to enhance the dye reduction rates. Menaquinones and the cytochrome CymA are the crucial cytoplasmic membrane components of the pathway, which then branches off via a network of periplasmic cytochromes to three outer membrane cytochromes. The key proteins of this network are MtrA and OmcB in the periplasm and outer membrane respectively. A model of the complete dye reduction pathway is proposed in which the dye molecules are reduced by the outer membrane cytochromes either directly or indirectly via melanin.

  13. Bacterial decolorization of textile dyes is an extracellular process requiring a multicomponent electron transfer pathway

    PubMed Central

    Brigé, Ann; Motte, Bart; Borloo, Jimmy; Buysschaert, Géraldine; Devreese, Bart; Van Beeumen, Jozef J.

    2008-01-01

    Summary Many studies have reported microorganisms as efficient biocatalysts for colour removal of dye‐containing industrial wastewaters. We present the first comprehensive study to identify all molecular components involved in decolorization by bacterial cells. Mutants from the model organism Shewanella oneidensis MR‐1, generated by random transposon and targeted insertional mutagenesis, were screened for defects in decolorization of an oxazine and diazo dye. We demonstrate that decolorization is an extracellular reduction process requiring a multicomponent electron transfer pathway that consists of cytoplasmic membrane, periplasmic and outer membrane components. The presence of melanin, a redox‐active molecule excreted by S. oneidensis, was shown to enhance the dye reduction rates. Menaquinones and the cytochrome CymA are the crucial cytoplasmic membrane components of the pathway, which then branches off via a network of periplasmic cytochromes to three outer membrane cytochromes. The key proteins of this network are MtrA and OmcB in the periplasm and outer membrane respectively. A model of the complete dye reduction pathway is proposed in which the dye molecules are reduced by the outer membrane cytochromes either directly or indirectly via melanin. PMID:21261820

  14. Delineating the requirements for spontaneous DNA damage resistance pathways in genome maintenance and viability in Saccharomyces cerevisiae.

    PubMed Central

    Morey, Natalie J; Doetsch, Paul W; Jinks-Robertson, Sue

    2003-01-01

    Cellular metabolic processes constantly generate reactive species that damage DNA. To counteract this relentless assault, cells have developed multiple pathways to resist damage. The base excision repair (BER) and nucleotide excision repair (NER) pathways remove damage whereas the recombination (REC) and postreplication repair (PRR) pathways bypass the damage, allowing deferred removal. Genetic studies in yeast indicate that these pathways can process a common spontaneous lesion(s), with mutational inactivation of any pathway increasing the burden on the remaining pathways. In this study, we examine the consequences of simultaneously compromising three or more of these pathways. Although the presence of a functional BER pathway alone is able to support haploid growth, retention of the NER, REC, or PRR pathway alone is not, indicating that BER is the key damage resistance pathway in yeast and may be responsible for the removal of the majority of either spontaneous DNA damage or specifically those lesions that are potentially lethal. In the diploid state, functional BER, NER, or REC alone can support growth, while PRR alone is insufficient for growth. In diploids, the presence of PRR alone may confer a lethal mutation load or, alternatively, PRR alone may be insufficient to deal with potentially lethal, replication-blocking lesions. PMID:12807766

  15. Regeneration of sensory hair cells requires localized interactions between the Notch and Wnt pathways

    PubMed Central

    Romero-Carvajal, Andrés; Acedo, Joaquín Navajas; Jiang, Linjia; Kozlovskaja-Gumbrienė, Agnė; Alexander, Richard; Li, Hua; Piotrowski, Tatjana

    2015-01-01

    Summary In vertebrates, mechano-electrical transduction of sound is accomplished by sensory hair cells. While mammalian hair cells are not replaced when lost, in fish they constantly renew and regenerate after injury. In vivo tracking and cell fate analyses of all dividing cells during lateral line hair cell regeneration revealed that support and hair cell progenitors localize to distinct tissue compartments. Importantly, we find that the balance between self-renewal and differentiation in these compartments is controlled by spatially restricted Notch signaling and its inhibition of Wnt-induced proliferation. The ability to simultaneously study and manipulate individual cell behaviors and multiple pathways in vivo, transforms the lateral line into a powerful paradigm to mechanistically dissect sensory organ regeneration. The striking similarities to other vertebrate stem cell compartments uniquely place zebrafish to help elucidate why mammals possess such low capacity to regenerate hair cells. PMID:26190147

  16. Reactions of diborane with ammonia and ammonia borane: catalytic effects for multiple pathways for hydrogen release.

    PubMed

    Nguyen, Vinh Son; Matus, Myrna H; Nguyen, Minh Tho; Dixon, David A

    2008-10-01

    High-level electronic structure calculations have been used to construct portions of the potential energy surfaces related to the reaction of diborane with ammonia and ammonia borane (B2H6 + NH3 and B2H6 + BH3NH3)to probe the molecular mechanism of H2 release. Geometries of stationary points were optimized at the MP2/aug-cc-pVTZ level. Total energies were computed at the coupled-cluster CCSD(T) theory level with the correlation-consistent basis sets. The results show a wide range of reaction pathways for H2 elimination. The initial interaction of B2H6 + NH3 leads to a weak preassociation complex, from which a B-H-B bridge bond is broken giving rise to a more stable H3BHBH2NH3 adduct. This intermediate, which is also formed from BH3NH3 + BH3, is connected with at least six transition states for H2 release with energies 18-93 kal/mol above the separated reactants. The lowest-lying transition state is a six-member cycle, in which BH3exerts a bifunctional catalytic effect accelerating H2 generation within a B-H-H-N framework. Diborane also induces a catalytic effect for H2 elimination from BH3NH3 via a three-step pathway with cyclic transition states. Following conformational changes, the rate-determining transition state for H2 release is approximately 27 kcal/mol above the B2H6 + BH3NH3 reactants, as compared with an energy barrier of approximately 37 kcal/mol for H2 release from BH3NH3. The behavior of two separated BH3 molecules is more complex and involves multiple reaction pathways. Channels from diborane or borane initially converge to a complex comprising the H3BHBH2NH3adduct plus BH3. The interaction of free BH3 with the BH3 moiety of BH3NH3 via a six-member transition state with diborane type of bonding leads to a lower-energy transition state. The corresponding energy barrier is approximately 8 kcal/mol, relative to the reference point H3BHBH2NH3 adduct + BH3. These transition states are 27-36 kcal/mol above BH3NH3 + B2H6, but 1-9 kcal/mol below the

  17. Curcumin Relaxes Precontracted Guinea Pig Gallbladder Strips via Multiple Signaling Pathways

    PubMed Central

    Kline, Loren W.; Karpinski, Edward

    2015-01-01

    Background Curcumin (diferuloymethane) is the active ingredient of the dietary spice turmeric. Curcumin modulates various signalling molecules, including inflammatory agents, transcription factors, protein kinases and cell cycle regulatory proteins. The purpose of this study was to determine if curcumin had an effect on gallbladder motility. Methods A pharmacologic in vitro technique was used. Since curcumin relaxed both cholecystokinin octapeptide- (CCK) and KCl-induced tension of guinea pig gallbladder strips in a concentration dependent manner, an in vitro technique was used to determine which second messenger system(s) mediated the observed relaxation. Paired t-tests, t-tests and analysis of variance were used for statistical analysis. Differences between mean values of P < 0.05 were considered significant. Results To determine if protein kinase A (PKA) mediated the curcumin-induced relaxation, PKA inhibitor 14-22 amide myristolated (PKA-IM) was used. PKA-IM had no significant effect on the amount of curcumin-induced relaxation. When the protein kinase C (PKC) inhibitors bisindolymaleimide IV and chelerythrine Cl- were used together, a significant (P < 0.01) reduction in the curcumin-induced relaxation was observed. The use of tetraethylammonium chloride (TEA) caused a significant (P < 0.01) decrease in the amount of curcumin-induced relaxation. Adding curcumin prior to the KCl caused a significant (P < 0.001) decrease in the amount of KCl-induced tension. Conclusions The results suggested that the curcumin-induced relaxation is mediated by multiple signaling pathways including the PKC second messenger system, inhibiting extracellular Ca2+ entry and K+ channels.

  18. Anti-stromal treatment together with chemotherapy targets multiple signalling pathways in pancreatic adenocarcinoma.

    PubMed

    Carapuça, Elisabete F; Gemenetzidis, Emilios; Feig, Christine; Bapiro, Tashinga E; Williams, Michael D; Wilson, Abigail S; Delvecchio, Francesca R; Arumugam, Prabhu; Grose, Richard P; Lemoine, Nicholas R; Richards, Frances M; Kocher, Hemant M

    2016-07-01

    Stromal targeting for pancreatic ductal adenocarcinoma (PDAC) is rapidly becoming an attractive option, due to the lack of efficacy of standard chemotherapy and increased knowledge about PDAC stroma. We postulated that the addition of stromal therapy may enhance the anti-tumour efficacy of chemotherapy. Gemcitabine and all-trans retinoic acid (ATRA) were combined in a clinically applicable regimen, to target cancer cells and pancreatic stellate cells (PSCs) respectively, in 3D organotypic culture models and genetically engineered mice (LSL-Kras(G12D) (/+) ;LSL-Trp53(R172H) (/+) ;Pdx-1-Cre: KPC mice) representing the spectrum of PDAC. In two distinct sets of organotypic models as well as KPC mice, we demonstrate a reduction in cancer cell proliferation and invasion together with enhanced cancer cell apoptosis when ATRA is combined with gemcitabine, compared to vehicle or either agent alone. Simultaneously, PSC activity (as measured by deposition of extracellular matrix proteins such as collagen and fibronectin) and PSC invasive ability were both diminished in response to combination therapy. These effects were mediated through a range of signalling cascades (Wnt, hedgehog, retinoid, and FGF) in cancer as well as stellate cells, affecting epithelial cellular functions such as epithelial-mesenchymal transition, cellular polarity, and lumen formation. At the tissue level, this resulted in enhanced tumour necrosis, increased vascularity, and diminished hypoxia. Consequently, there was an overall reduction in tumour size. The enhanced effect of stromal co-targeting (ATRA) alongside chemotherapy (gemcitabine) appears to be mediated by dampening multiple signalling cascades in the tumour-stroma cross-talk, rather than ablating stroma or targeting a single pathway. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  19. Anti-stromal treatment together with chemotherapy targets multiple signalling pathways in pancreatic adenocarcinoma.

    PubMed

    Carapuça, Elisabete F; Gemenetzidis, Emilios; Feig, Christine; Bapiro, Tashinga E; Williams, Michael D; Wilson, Abigail S; Delvecchio, Francesca R; Arumugam, Prabhu; Grose, Richard P; Lemoine, Nicholas R; Richards, Frances M; Kocher, Hemant M

    2016-07-01

    Stromal targeting for pancreatic ductal adenocarcinoma (PDAC) is rapidly becoming an attractive option, due to the lack of efficacy of standard chemotherapy and increased knowledge about PDAC stroma. We postulated that the addition of stromal therapy may enhance the anti-tumour efficacy of chemotherapy. Gemcitabine and all-trans retinoic acid (ATRA) were combined in a clinically applicable regimen, to target cancer cells and pancreatic stellate cells (PSCs) respectively, in 3D organotypic culture models and genetically engineered mice (LSL-Kras(G12D) (/+) ;LSL-Trp53(R172H) (/+) ;Pdx-1-Cre: KPC mice) representing the spectrum of PDAC. In two distinct sets of organotypic models as well as KPC mice, we demonstrate a reduction in cancer cell proliferation and invasion together with enhanced cancer cell apoptosis when ATRA is combined with gemcitabine, compared to vehicle or either agent alone. Simultaneously, PSC activity (as measured by deposition of extracellular matrix proteins such as collagen and fibronectin) and PSC invasive ability were both diminished in response to combination therapy. These effects were mediated through a range of signalling cascades (Wnt, hedgehog, retinoid, and FGF) in cancer as well as stellate cells, affecting epithelial cellular functions such as epithelial-mesenchymal transition, cellular polarity, and lumen formation. At the tissue level, this resulted in enhanced tumour necrosis, increased vascularity, and diminished hypoxia. Consequently, there was an overall reduction in tumour size. The enhanced effect of stromal co-targeting (ATRA) alongside chemotherapy (gemcitabine) appears to be mediated by dampening multiple signalling cascades in the tumour-stroma cross-talk, rather than ablating stroma or targeting a single pathway. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:27061193

  20. Integrated QSAR study for inhibitors of hedgehog signal pathway against multiple cell lines:a collaborative filtering method

    PubMed Central

    2012-01-01

    Background The Hedgehog Signaling Pathway is one of signaling pathways that are very important to embryonic development. The participation of inhibitors in the Hedgehog Signal Pathway can control cell growth and death, and searching novel inhibitors to the functioning of the pathway are in a great demand. As the matter of fact, effective inhibitors could provide efficient therapies for a wide range of malignancies, and targeting such pathway in cells represents a promising new paradigm for cell growth and death control. Current research mainly focuses on the syntheses of the inhibitors of cyclopamine derivatives, which bind specifically to the Smo protein, and can be used for cancer therapy. While quantitatively structure-activity relationship (QSAR) studies have been performed for these compounds among different cell lines, none of them have achieved acceptable results in the prediction of activity values of new compounds. In this study, we proposed a novel collaborative QSAR model for inhibitors of the Hedgehog Signaling Pathway by integration the information from multiple cell lines. Such a model is expected to substantially improve the QSAR ability from single cell lines, and provide useful clues in developing clinically effective inhibitors and modifications of parent lead compounds for target on the Hedgehog Signaling Pathway. Results In this study, we have presented: (1) a collaborative QSAR model, which is used to integrate information among multiple cell lines to boost the QSAR results, rather than only a single cell line QSAR modeling. Our experiments have shown that the performance of our model is significantly better than single cell line QSAR methods; and (2) an efficient feature selection strategy under such collaborative environment, which can derive the commonly important features related to the entire given cell lines, while simultaneously showing their specific contributions to a specific cell-line. Based on feature selection results, we have

  1. Insulin receptor substrate 4 couples the leptin receptor to multiple signaling pathways.

    PubMed

    Wauman, Joris; De Smet, Anne-Sophie; Catteeuw, Dominiek; Belsham, Denise; Tavernier, Jan

    2008-04-01

    Leptin is an adipokine that regulates food intake and energy expenditure by activating its hypothalamic leptin receptor (LR). Members of the insulin receptor substrate (IRS) family serve as adaptor proteins in the signaling pathways of several cytokines and hormones and a role for IRS2 in central leptin physiology is well established. Using mammalian protein-protein interaction trap (MAPPIT), a cytokine receptor-based two-hybrid method, in the N38 hypothalamic cell line, we here demonstrate that also IRS4 interacts with the LR. This recruitment is leptin dependent and requires phosphorylation of the Y1077 motif of the LR. Domain mapping of IRS4 revealed the critical role of the pleckstrin homology domain for full interaction. In line with its function as an adaptor protein, IRS4 interacted with the regulatory p85 subunit of the phosphatidylinositol 3-kinase, phospholipase Cgamma, and the suppressor of cytokine signaling (SOCS) family members SOCS2, SOCS6, and SOCS7 and thus can modulate LR signaling. PMID:18165436

  2. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila

    PubMed Central

    Buchon, Nicolas; Broderick, Nichole A.; Chakrabarti, Sveta; Lemaitre, Bruno

    2009-01-01

    Gut homeostasis is controlled by both immune and developmental mechanisms, and its disruption can lead to inflammatory disorders or cancerous lesions of the intestine. While the impact of bacteria on the mucosal immune system is beginning to be precisely understood, little is known about the effects of bacteria on gut epithelium renewal. Here, we addressed how both infectious and indigenous bacteria modulate stem cell activity in Drosophila. We show that the increased epithelium renewal observed upon some bacterial infections is a consequence of the oxidative burst, a major defense of the Drosophila gut. Additionally, we provide evidence that the JAK–STAT (Janus kinase–signal transducers and activators of transcription) and JNK (c-Jun NH2 terminal kinase) pathways are both required for bacteria-induced stem cell proliferation. Similarly, we demonstrate that indigenous gut microbiota activate the same, albeit reduced, program at basal levels. Altered control of gut microbiota in immune-deficient or aged flies correlates with increased epithelium renewal. Finally, we show that epithelium renewal is an essential component of Drosophila defense against oral bacterial infection. Altogether, these results indicate that gut homeostasis is achieved by a complex interregulation of the immune response, gut microbiota, and stem cell activity. PMID:19797770

  3. Maintaining thermogenesis in cold exposed humans: relying on multiple metabolic pathways.

    PubMed

    Blondin, Denis P; Tingelstad, Hans Christian; Mantha, Olivier L; Gosselin, Chantal; Haman, François

    2014-10-01

    In cold exposed humans, increasing thermogenic rate is essential to prevent decreases in core temperature. This review describes the metabolic requirements of thermogenic pathways, mainly shivering thermogenesis, the largest contributor of heat. Research has shown that thermogenesis is sustained from a combination of carbohydrates, lipids, and proteins. The mixture of fuels is influenced by shivering intensity and pattern as well as by modifications in energy reserves and nutritional status. To date, there are no indications that differences in the types of fuel being used can alter shivering and overall heat production. We also bring forth the potential contribution of nonshivering thermogenesis in adult humans via the activation of brown adipose tissue (BAT) and explore some means to stimulate the activity of this highly thermogenic tissue. Clearly, the potential role of BAT, especially in young lean adults, can no longer be ignored. However, much work remains to clearly identify the quantitative nature of this tissue's contribution to total thermogenic rate and influence on shivering thermogenesis. Identifying ways to potentiate the effects of BAT via cold acclimation and/or the ingestion of compounds that stimulate the thermogenic process may have important implications in cold endurance and survival. PMID:25428848

  4. Pseudomonas aeruginosa fimL regulates multiple virulence functions by intersecting with Vfr-modulated pathways

    PubMed Central

    Whitchurch, Cynthia B.; Beatson, Scott A.; Comolli, James C.; Jakobsen, Thania; Sargent, Jennifer L.; Bertrand, Jacob J.; West, Joyce; Klausen, Mikkel; Waite, Leslie L.; Kang, Pil Jung; Tolker-Nielsen, Tim; Mattick, John S.; Engel, Joanne N.

    2005-01-01

    Virulence of Pseudomonas aeruginosa involves the co-ordinate expression of a range of factors including type IV pili (tfp), the type III secretion system (TTSS) and quorum sensing. Tfp are required for twitching motility, efficient biofilm formation, and for adhesion and type III secretion (TTS)-mediated damage to mammalian cells. We describe a novel gene (fimL) that is required for tfp biogenesis and function, for TTS and for normal biofilm development in P. aeruginosa. The predicted product of fimL is homologous to the N-terminal domain of ChpA, except that its putative histidine and threonine phosphotransfer sites have been replaced with glutamine. fimL mutants resemble vfr mutants in many aspects including increased autolysis, reduced levels of surface-assembled tfp and diminished production of type III secreted effectors. Expression of vfr in trans can complement fimL mutants. vfr transcription and production is reduced in fimL mutants whereas cAMP levels are unaffected. Deletion and insertion mutants of fimL frequently revert to wild-type phenotypes suggesting that an extragenic suppressor mutation is able to overcome the loss of fimL. vfr transcription and production, as well as cAMP levels, are elevated in these revertants, while Pseudomonas quinolone signal (PQS) production is reduced. These results suggest that the site(s) of spontaneous mutation is in a gene(s) which lies upstream of vfr transcription, cAMP, production, and PQS synthesis. Our studies indicate that Vfr and FimL are components of intersecting pathways that control twitching motility, TTSS and autolysis in P. aeruginosa. PMID:15720546

  5. Ancient and novel small RNA pathways compensate for the loss of piRNAs in multiple independent nematode lineages.

    PubMed

    Sarkies, Peter; Selkirk, Murray E; Jones, John T; Blok, Vivian; Boothby, Thomas; Goldstein, Bob; Hanelt, Ben; Ardila-Garcia, Alex; Fast, Naomi M; Schiffer, Phillip M; Kraus, Christopher; Taylor, Mark J; Koutsovoulos, Georgios; Blaxter, Mark L; Miska, Eric A

    2015-02-01

    Small RNA pathways act at the front line of defence against transposable elements across the Eukaryota. In animals, Piwi interacting small RNAs (piRNAs) are a crucial arm of this defence. However, the evolutionary relationships among piRNAs and other small RNA pathways targeting transposable elements are poorly resolved. To address this question we sequenced small RNAs from multiple, diverse nematode species, producing the first phylum-wide analysis of how small RNA pathways evolve. Surprisingly, despite their prominence in Caenorhabditis elegans and closely related nematodes, piRNAs are absent in all other nematode lineages. We found that there are at least two evolutionarily distinct mechanisms that compensate for the absence of piRNAs, both involving RNA-dependent RNA polymerases (RdRPs). Whilst one pathway is unique to nematodes, the second involves Dicer-dependent RNA-directed DNA methylation, hitherto unknown in animals, and bears striking similarity to transposon-control mechanisms in fungi and plants. Our results highlight the rapid, context-dependent evolution of small RNA pathways and suggest piRNAs in animals may have replaced an ancient eukaryotic RNA-dependent RNA polymerase pathway to control transposable elements.

  6. Multiple host-cell recombination pathways act in Agrobacterium-mediated transformation of plant cells.

    PubMed

    Mestiri, Imen; Norre, Frédéric; Gallego, Maria E; White, Charles I

    2014-02-01

    Using floral-dip, tumorigenesis and root callus transformation assays of both germline and somatic cells, we present here results implicating the four major non-homologous and homologous recombination pathways in Agrobacterium-mediated transformation of Arabidopsis thaliana. All four single mutant lines showed similar mild reductions in transformability, but knocking out three of four pathways severely compromised Agrobacterium-mediated transformation. Although integration of T-DNA into the plant genome is severely compromised in the absence of known DNA double-strand break repair pathways, it does still occur, suggesting the existence of other pathways involved in T-DNA integration. Our results highlight the functional redundancy of the four major plant recombination pathways in transformation, and provide an explanation for the lack of strong effects observed in previous studies on the roles of plant recombination functions in transformation.

  7. 29 CFR 1926.1432 - Multiple-crane/derrick lifts-supplemental requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction § 1926.1432 Multiple-crane/derrick lifts—supplemental requirements... qualified persons (lift director). (2) The lift director must review the plan in a meeting with all...

  8. 29 CFR 1926.1432 - Multiple-crane/derrick lifts-supplemental requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction § 1926.1432 Multiple-crane/derrick lifts—supplemental requirements... qualified persons (lift director). (2) The lift director must review the plan in a meeting with all...

  9. 24 CFR 1710.15 - Regulatory exemption-multiple site subdivision-determination required.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT (INTERSTATE LAND SALES REGISTRATION PROGRAM) LAND REGISTRATION General Requirements § 1710.15 Regulatory exemption—multiple site subdivision... prepared pursuant to the rules and regulations of the Interstate Land Sales Registration Division,...

  10. 24 CFR 1710.15 - Regulatory exemption-multiple site subdivision-determination required.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT (INTERSTATE LAND SALES REGISTRATION PROGRAM) LAND REGISTRATION General Requirements § 1710.15 Regulatory exemption—multiple site subdivision... prepared pursuant to the rules and regulations of the Interstate Land Sales Registration Division,...

  11. The role of the PI3K-Akt signal transduction pathway in Autographa californica multiple nucleopolyhedrovirus infection of Spodoptera frugiperda cells

    SciTech Connect

    Xiao Wei; Yang Yi; Weng Qingbei; Lin Tiehao; Yuan Meijin; Yang Kai; Pang Yi

    2009-08-15

    Many viruses activate the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, thereby modulating diverse downstream signaling pathways associated with antiapoptosis, proliferation, cell cycling, protein synthesis and glucose metabolism, in order to augment their replication. To date, the role of the PI3K-Akt pathway in Baculovirus replication has not been defined. In the present study, we demonstrate that infection of Sf9 cells with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) elevated cellular Akt phosphorylation at 1 h post-infection. The maximum Akt phosphorylation occurred at 6 h post-infection and remained unchanged until 18 h post-infection. The PI3K-specific inhibitor, LY294002, suppressed Akt phosphorylation in a dose-dependent manner, suggesting that AcMNPV-induced Akt phosphorylation is PI3K-dependent. The inhibition of PI3K-Akt activation by LY294002 significantly reduced the viral yield, including a reduction in budded viruses and occlusion bodies. The virus production was reduced only when the inhibitor was added within 24 h of infection, implying that activation of PI3K occurred early in infection. Correspondingly, both viral DNA replication and late (VP39) and very late (POLH) viral protein expression were impaired by LY294002 treatment; LY294002 had no effect on immediate-early (IE1) and early-late (GP64) protein expression. These results demonstrate that the PI3K-Akt pathway is required for efficient Baculovirus replication.

  12. Multiple pathways for steel regulation suggested by genomic and sequence analysis of the murine Steel gene

    SciTech Connect

    Bedell, M.A.; Copeland, N.G.; Jenkins, N.A.

    1996-03-01

    The Steel (Sl) locus encodes mast cell growth factor (Mgf) that is required for the development of germ cells, hematopoietic cells and melanocytes. Although the expression patterns of the Mgf gene are well characterized, little is known of the factors which regulate its expression. Here, we describe the cloning and sequence of the full-length transcription unit and the 5{prime} flanking region of the murine Mgf gene. The full-length Mgf mRNA consists of a short 5{prime} untranslated region (UTR), a 0.8-kb ORF and a long 3{prime} UTR. A single transcription initiation site is used in a number of mouse tissues and is located just downstream of binding sites for several known transcription factors. In the 5{prime} UTR, two ATGs were found upstream of the initiator methionine and are conserved among different species, suggesting that Mgf may be translationally regulated. At least two Mgf mRNAs are produced by alternative use of polyadenylation sites, but numerous other potential polyadenylation sites were found in the 3{prime} UTR. In addition, the 3{prime} UTR contains numerous sequence motifs that may regulate Mgf mRNA stability. These studies suggest multiple ways in which expression of Mgf may be regulated. 39 refs., 4 figs.

  13. Selective inhibitor of endosomal trafficking pathways exploited by multiple toxins and viruses.

    PubMed

    Gillespie, Eugene J; Ho, Chi-Lee C; Balaji, Kavitha; Clemens, Daniel L; Deng, Gang; Wang, Yao E; Elsaesser, Heidi J; Tamilselvam, Batcha; Gargi, Amandeep; Dixon, Shandee D; France, Bryan; Chamberlain, Brian T; Blanke, Steven R; Cheng, Genhong; de la Torre, Juan Carlos; Brooks, David G; Jung, Michael E; Colicelli, John; Damoiseaux, Robert; Bradley, Kenneth A

    2013-12-10

    Pathogenic microorganisms and toxins have evolved a variety of mechanisms to gain access to the host-cell cytosol and thereby exert virulent effects upon the host. One common mechanism of cellular entry requires trafficking to an acidified endosome, which promotes translocation across the host membrane. To identify small-molecule inhibitors that block this process, a library of 30,000 small molecules was screened for inhibitors of anthrax lethal toxin. Here we report that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone, the most active compound identified in the screen, inhibits intoxication by lethal toxin and blocks the entry of multiple other acid-dependent bacterial toxins and viruses into mammalian cells. This compound, which we named EGA, also delays lysosomal targeting and degradation of the EGF receptor, indicating that it targets host-membrane trafficking. In contrast, EGA does not block endosomal recycling of transferrin, retrograde trafficking of ricin, phagolysosomal trafficking, or phagosome permeabilization by Franciscella tularensis. Furthermore, EGA does not neutralize acidic organelles, demonstrating that its mechanism of action is distinct from pH-raising agents such as ammonium chloride and bafilomycin A1. EGA is a powerful tool for the study of membrane trafficking and represents a class of host-targeted compounds for therapeutic development to treat infectious disease.

  14. Multiple Pathways for Steel Regulation Suggested by Genomic and Sequence Analysis of the Murine Steel Gene

    PubMed Central

    Bedell, M. A.; Copeland, N. G.; Jenkins, N. A.

    1996-01-01

    The Steel (Sl) locus encodes mast cell growth factor (Mgf) that is required for the development of germ cells, hematopoietic cells and melanocytes. Although the expression patterns of the Mgf gene are well characterized, little is known of the factors which regulate its expression. Here, we describe the cloning and sequence of the full-length transcription unit and the 5' flanking region of the murine Mgf gene. The full-length Mgf mRNA consists of a short 5' untranslated region (UTR), a 0.8-kb ORF and a long 3' UTR. A single transcription initiation site is used in a number of mouse tissues and is located just downstream of binding sites for several known transcription factors. In the 5' UTR, two ATGs were found upstream of the initiator methionine and are conserved among different species, suggesting that Mgf may be translationally regulated. At least two Mgf mRNAs are produced by alternative use of polyadenylation sites, but numerous other potential polyadenylation sites were found in the 3' UTR. In addition, the 3' UTR contains numerous sequence motifs that may regulate Mgf mRNA stability. These studies suggest multiple ways in which expression of Mgf may be regulated. PMID:8849898

  15. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses.

    PubMed

    Zhang, Rong; Miner, Jonathan J; Gorman, Matthew J; Rausch, Keiko; Ramage, Holly; White, James P; Zuiani, Adam; Zhang, Ping; Fernandez, Estefania; Zhang, Qiang; Dowd, Kimberly A; Pierson, Theodore C; Cherry, Sara; Diamond, Michael S

    2016-07-01

    Flaviviruses infect hundreds of millions of people annually, and no antiviral therapy is available. We performed a genome-wide CRISPR/Cas9-based screen to identify host genes that, when edited, resulted in reduced flavivirus infection. Here, we validated nine human genes required for flavivirus infectivity, and these were associated with endoplasmic reticulum functions including translocation, protein degradation, and N-linked glycosylation. In particular, a subset of endoplasmic reticulum-associated signal peptidase complex (SPCS) proteins was necessary for proper cleavage of the flavivirus structural proteins (prM and E) and secretion of viral particles. Loss of SPCS1 expression resulted in markedly reduced yield of all Flaviviridae family members tested (West Nile, Dengue, Zika, yellow fever, Japanese encephalitis, and hepatitis C viruses), but had little impact on alphavirus, bunyavirus, or rhabdovirus infection or the surface expression or secretion of diverse host proteins. We found that SPCS1 dependence could be bypassed by replacing the native prM protein leader sequences with a class I major histocompatibility complex (MHC) antigen leader sequence. Thus, SPCS1, either directly or indirectly via its interactions with unknown host proteins, preferentially promotes the processing of specific protein cargo, and Flaviviridae have a unique dependence on this signal peptide processing pathway. SPCS1 and other signal processing pathway members could represent pharmacological targets for inhibiting infection by the expanding number of flaviviruses of medical concern.

  16. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses.

    PubMed

    Zhang, Rong; Miner, Jonathan J; Gorman, Matthew J; Rausch, Keiko; Ramage, Holly; White, James P; Zuiani, Adam; Zhang, Ping; Fernandez, Estefania; Zhang, Qiang; Dowd, Kimberly A; Pierson, Theodore C; Cherry, Sara; Diamond, Michael S

    2016-07-01

    Flaviviruses infect hundreds of millions of people annually, and no antiviral therapy is available. We performed a genome-wide CRISPR/Cas9-based screen to identify host genes that, when edited, resulted in reduced flavivirus infection. Here, we validated nine human genes required for flavivirus infectivity, and these were associated with endoplasmic reticulum functions including translocation, protein degradation, and N-linked glycosylation. In particular, a subset of endoplasmic reticulum-associated signal peptidase complex (SPCS) proteins was necessary for proper cleavage of the flavivirus structural proteins (prM and E) and secretion of viral particles. Loss of SPCS1 expression resulted in markedly reduced yield of all Flaviviridae family members tested (West Nile, Dengue, Zika, yellow fever, Japanese encephalitis, and hepatitis C viruses), but had little impact on alphavirus, bunyavirus, or rhabdovirus infection or the surface expression or secretion of diverse host proteins. We found that SPCS1 dependence could be bypassed by replacing the native prM protein leader sequences with a class I major histocompatibility complex (MHC) antigen leader sequence. Thus, SPCS1, either directly or indirectly via its interactions with unknown host proteins, preferentially promotes the processing of specific protein cargo, and Flaviviridae have a unique dependence on this signal peptide processing pathway. SPCS1 and other signal processing pathway members could represent pharmacological targets for inhibiting infection by the expanding number of flaviviruses of medical concern. PMID:27383988

  17. Transport through the yeast endocytic pathway occurs through morphologically distinct compartments and requires an active secretory pathway and Sec18p/N-ethylmaleimide-sensitive fusion protein.

    PubMed Central

    Hicke, L; Zanolari, B; Pypaert, M; Rohrer, J; Riezman, H

    1997-01-01

    Molecules travel through the yeast endocytic pathway from the cell surface to the lysosome-like vacuole by passing through two sequential intermediates. Immunofluorescent detection of an endocytosed pheromone receptor was used to morphologically identify these intermediates, the early and late endosomes. The early endosome is a peripheral organelle that is heterogeneous in appearance, whereas the late endosome is a large perivacuolar compartment that corresponds to the prevacuolar compartment previously shown to be an endocytic intermediate. We demonstrate that inhibiting transport through the early secretory pathway in sec mutants quickly impedes transport from the early endosome. Treatment of sensitive cells with brefeldin A also blocks transport from this compartment. We provide evidence that Sec18p/N-ethylmaleimide-sensitive fusion protein, a protein required for membrane fusion, is directly required in vivo for forward transport early in the endocytic pathway. Inhibiting protein synthesis does not affect transport from the early endosome but causes endocytosed proteins to accumulate in the late endosome. As newly synthesized proteins and the late steps of secretion are not required for early to late endosome transport, but endoplasmic reticulum through Golgi traffic is, we propose that efficient forward transport in the early endocytic pathway requires delivery of lipid from secretory organelles to endosomes. Images PMID:9017592

  18. ATP requirements and small interfering RNA structure in the RNA interference pathway.

    PubMed

    Nykänen, A; Haley, B; Zamore, P D

    2001-11-01

    We examined the role of ATP in the RNA interference (RNAi) pathway. Our data reveal two ATP-dependent steps and suggest that the RNAi reaction comprises at least four sequential steps: ATP-dependent processing of double-stranded RNA into small interfering RNAs (siRNAs), incorporation of siRNAs into an inactive approximately 360 kDa protein/RNA complex, ATP-dependent unwinding of the siRNA duplex to generate an active complex, and ATP-independent recognition and cleavage of the RNA target. Furthermore, ATP is used to maintain 5' phosphates on siRNAs. A 5' phosphate on the target-complementary strand of the siRNA duplex is required for siRNA function, suggesting that cells check the authenticity of siRNAs and license only bona fide siRNAs to direct target RNA destruction.

  19. Short-chain 3-hydroxyacyl-coenzyme A dehydrogenase associates with a protein super-complex integrating multiple metabolic pathways.

    PubMed

    Narayan, Srinivas B; Master, Stephen R; Sireci, Anthony N; Bierl, Charlene; Stanley, Paige E; Li, Changhong; Stanley, Charles A; Bennett, Michael J

    2012-01-01

    Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) and glutamate dehydrogenase (GDH) explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST) and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1) from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein.

  20. User Interface Requirements for Web-Based Integrated Care Pathways: Evidence from the Evaluation of an Online Care Pathway Investigation Tool.

    PubMed

    Balatsoukas, Panos; Williams, Richard; Davies, Colin; Ainsworth, John; Buchan, Iain

    2015-11-01

    Integrated care pathways (ICPs) define a chronological sequence of steps, most commonly diagnostic or treatment, to be followed in providing care for patients. Care pathways help to ensure quality standards are met and to reduce variation in practice. Although research on the computerisation of ICP progresses, there is still little knowledge on what are the requirements for designing user-friendly and usable electronic care pathways, or how users (normally health care professionals) interact with interfaces that support design, analysis and visualisation of ICPs. The purpose of the study reported in this paper was to address this gap by evaluating the usability of a novel web-based tool called COCPIT (Collaborative Online Care Pathway Investigation Tool). COCPIT supports the design, analysis and visualisation of ICPs at the population level. In order to address the aim of this study, an evaluation methodology was designed based on heuristic evaluations and a mixed method usability test. The results showed that modular visualisation and direct manipulation of information related to the design and analysis of ICPs is useful for engaging and stimulating users. However, designers should pay attention to issues related to the visibility of the system status and the match between the system and the real world, especially in relation to the display of statistical information about care pathways and the editing of clinical information within a care pathway. The paper concludes with recommendations for interface design.

  1. User Interface Requirements for Web-Based Integrated Care Pathways: Evidence from the Evaluation of an Online Care Pathway Investigation Tool.

    PubMed

    Balatsoukas, Panos; Williams, Richard; Davies, Colin; Ainsworth, John; Buchan, Iain

    2015-11-01

    Integrated care pathways (ICPs) define a chronological sequence of steps, most commonly diagnostic or treatment, to be followed in providing care for patients. Care pathways help to ensure quality standards are met and to reduce variation in practice. Although research on the computerisation of ICP progresses, there is still little knowledge on what are the requirements for designing user-friendly and usable electronic care pathways, or how users (normally health care professionals) interact with interfaces that support design, analysis and visualisation of ICPs. The purpose of the study reported in this paper was to address this gap by evaluating the usability of a novel web-based tool called COCPIT (Collaborative Online Care Pathway Investigation Tool). COCPIT supports the design, analysis and visualisation of ICPs at the population level. In order to address the aim of this study, an evaluation methodology was designed based on heuristic evaluations and a mixed method usability test. The results showed that modular visualisation and direct manipulation of information related to the design and analysis of ICPs is useful for engaging and stimulating users. However, designers should pay attention to issues related to the visibility of the system status and the match between the system and the real world, especially in relation to the display of statistical information about care pathways and the editing of clinical information within a care pathway. The paper concludes with recommendations for interface design. PMID:26446014

  2. Modular control of multiple pathways using engineered orthogonal T7 polymerases

    PubMed Central

    Temme, Karsten; Hill, Rena; Segall-Shapiro, Thomas H.; Moser, Felix; Voigt, Christopher A.

    2012-01-01

    Synthetic genetic sensors and circuits enable programmable control over the timing and conditions of gene expression. They are being increasingly incorporated into the control of complex, multigene pathways and cellular functions. Here, we propose a design strategy to genetically separate the sensing/circuitry functions from the pathway to be controlled. This separation is achieved by having the output of the circuit drive the expression of a polymerase, which then activates the pathway from polymerase-specific promoters. The sensors, circuits and polymerase are encoded together on a ‘controller’ plasmid. Variants of T7 RNA polymerase that reduce toxicity were constructed and used as scaffolds for the construction of four orthogonal polymerases identified via part mining that bind to unique promoter sequences. This set is highly orthogonal and induces cognate promoters by 8- to 75-fold more than off-target promoters. These orthogonal polymerases enable four independent channels linking the outputs of circuits to the control of different cellular functions. As a demonstration, we constructed a controller plasmid that integrates two inducible systems, implements an AND logic operation and toggles between metabolic pathways that change Escherichia coli green (deoxychromoviridans) and red (lycopene). The advantages of this organization are that (i) the regulation of the pathway can be changed simply by introducing a different controller plasmid, (ii) transcription is orthogonal to host machinery and (iii) the pathway genes are not transcribed in the absence of a controller and are thus more easily carried without invoking evolutionary pressure. PMID:22743271

  3. Helicobacter pylori virulence factor CagA promotes tumorigenesis of gastric cancer via multiple signaling pathways.

    PubMed

    Yong, Xin; Tang, Bo; Li, Bo-Sheng; Xie, Rui; Hu, Chang-Jiang; Luo, Gang; Qin, Yong; Dong, Hui; Yang, Shi-Ming

    2015-01-01

    Helicobacter pylori (H. pylori) infection is strongly associated with the development of gastric diseases but also with several extragastric diseases. The clinical outcomes caused by H. pylori infection are considered to be associated with a complex combination of host susceptibility, environmental factors and bacterial isolates. Infections involving H. pylori strains that possess the virulence factor CagA have a worse clinical outcome than those involving CagA-negative strains. It is remarkable that CagA-positive H. pylori increase the risk for gastric cancer over the risk associated with H. pylori infection alone. CagA behaves as a bacterial oncoprotein playing a key role in H. pylori-induced gastric cancer. Activation of oncogenic signaling pathways and inactivation of tumor suppressor pathways are two crucial events in the development of gastric cancer. CagA shows the ability to affect the expression or function of vital protein in oncogenic or tumor suppressor signaling pathways via several molecular mechanisms, such as direct binding or interaction, phosphorylation of vital signaling proteins and methylation of tumor suppressor genes. As a result, CagA continuously dysregulates of these signaling pathways and promotes tumorigenesis. Recent research has enriched our understanding of how CagA effects on these signaling pathways. This review summarizes the results of the most relevant studies, discusses the complex molecular mechanism involved and attempts to delineate the entire signaling pathway.

  4. Anode Biofilms of Geoalkalibacter ferrihydriticus Exhibit Electrochemical Signatures of Multiple Electron Transport Pathways.

    PubMed

    Yoho, Rachel A; Popat, Sudeep C; Rago, Laura; Guisasola, Albert; Torres, César I

    2015-11-17

    Thriving under alkaliphilic conditions, Geoalkalibacter ferrihydriticus (Glk. ferrihydriticus) provides new applications in treating alkaline waste streams as well as a possible new model organism for microbial electrochemistry. We investigated the electrochemical response of biofilms of the alkaliphilic anode-respiring bacterium (ARB) Glk. ferrihydriticus voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry. We observed there to be at least four dominant electron transfer pathways, with their contribution to the overall current produced dependent on the set anode potential. These pathways appear to be manifested at midpoint potentials of approximately -0.14 V, -0.2 V, -0.24 V, and -0.27 V vs standard hydrogen electrode. The individual contributions of the pathways change upon equilibration from a set anode potential to another anode potential. Additionally, the contribution of each pathway to the overall current produced is reversible when the anode potential is changed back to the original set potential. The pathways involved in anode respiration in Glk. ferrihydriticus biofilms follow a similar, but more complicated, pattern as compared to those in the model ARB, Geobacter sulfurreducens. This greater diversity of electron transport pathways in Glk. ferrihydriticus could be related to its wider metabolic capability (e.g., higher pH and larger set of possible substrates, among others). PMID:26488071

  5. Modular control of multiple pathways using engineered orthogonal T7 polymerases.

    PubMed

    Temme, Karsten; Hill, Rena; Segall-Shapiro, Thomas H; Moser, Felix; Voigt, Christopher A

    2012-09-01

    Synthetic genetic sensors and circuits enable programmable control over the timing and conditions of gene expression. They are being increasingly incorporated into the control of complex, multigene pathways and cellular functions. Here, we propose a design strategy to genetically separate the sensing/circuitry functions from the pathway to be controlled. This separation is achieved by having the output of the circuit drive the expression of a polymerase, which then activates the pathway from polymerase-specific promoters. The sensors, circuits and polymerase are encoded together on a 'controller' plasmid. Variants of T7 RNA polymerase that reduce toxicity were constructed and used as scaffolds for the construction of four orthogonal polymerases identified via part mining that bind to unique promoter sequences. This set is highly orthogonal and induces cognate promoters by 8- to 75-fold more than off-target promoters. These orthogonal polymerases enable four independent channels linking the outputs of circuits to the control of different cellular functions. As a demonstration, we constructed a controller plasmid that integrates two inducible systems, implements an AND logic operation and toggles between metabolic pathways that change Escherichia coli green (deoxychromoviridans) and red (lycopene). The advantages of this organization are that (i) the regulation of the pathway can be changed simply by introducing a different controller plasmid, (ii) transcription is orthogonal to host machinery and (iii) the pathway genes are not transcribed in the absence of a controller and are thus more easily carried without invoking evolutionary pressure. PMID:22743271

  6. Anode Biofilms of Geoalkalibacter ferrihydriticus Exhibit Electrochemical Signatures of Multiple Electron Transport Pathways.

    PubMed

    Yoho, Rachel A; Popat, Sudeep C; Rago, Laura; Guisasola, Albert; Torres, César I

    2015-11-17

    Thriving under alkaliphilic conditions, Geoalkalibacter ferrihydriticus (Glk. ferrihydriticus) provides new applications in treating alkaline waste streams as well as a possible new model organism for microbial electrochemistry. We investigated the electrochemical response of biofilms of the alkaliphilic anode-respiring bacterium (ARB) Glk. ferrihydriticus voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry. We observed there to be at least four dominant electron transfer pathways, with their contribution to the overall current produced dependent on the set anode potential. These pathways appear to be manifested at midpoint potentials of approximately -0.14 V, -0.2 V, -0.24 V, and -0.27 V vs standard hydrogen electrode. The individual contributions of the pathways change upon equilibration from a set anode potential to another anode potential. Additionally, the contribution of each pathway to the overall current produced is reversible when the anode potential is changed back to the original set potential. The pathways involved in anode respiration in Glk. ferrihydriticus biofilms follow a similar, but more complicated, pattern as compared to those in the model ARB, Geobacter sulfurreducens. This greater diversity of electron transport pathways in Glk. ferrihydriticus could be related to its wider metabolic capability (e.g., higher pH and larger set of possible substrates, among others).

  7. Pituitary Adenylate Cyclase-activating Polypeptide (PACAP)/PAC1HOP1 Receptor Activation Coordinates Multiple Neurotrophic Signaling Pathways

    PubMed Central

    May, Victor; Lutz, Eve; MacKenzie, Christopher; Schutz, Kristin C.; Dozark, Kate; Braas, Karen M.

    2010-01-01

    MAPK and Akt pathways are predominant mediators of trophic signaling for many neuronal systems. Among the vasoactive intestinal peptide/secretin/glucagon family of related peptides, pituitary adenylate cyclase-activating polypeptide (PACAP) binding to specific PAC1 receptor isoforms can engage multiple signaling pathways and promote neuroprotection through mechanisms that are not well understood. Using a primary sympathetic neuronal system, the current studies demonstrate that PACAP activation of PAC1HOP1 receptors engages both MAPK and Akt neurotrophic pathways in an integrated program to facilitate neuronal survival after growth factor withdrawal. PACAP not only stimulated prosurvival ERK1/2 and ERK5 activation but also abrogated SAPK/JNK and p38 MAPK signaling in parallel. In contrast to the potent and rapid effects of PACAP in ERK1/2 phosphorylation, PACAP stimulated Akt phosphorylation in a late phase of PAC1HOP1 receptor signaling. From inhibitor and immunoprecipitation analyses, the PACAP/PAC1HOP1 receptor-mediated Akt responses did not represent transactivation mechanisms but appeared to depend on Gαq/phosphatidylinositol 3-kinase γ activity and vesicular internalization pathways. Phosphatidylinositol 3-kinase γ-selective inhibitors blocked PACAP-stimulated Akt phosphorylation in primary neuronal cultures and in PAC1HOP1-overexpressing cell lines; RNA interference-mediated knockdown of the receptor effectors attenuated PACAP-mediated Akt activation. Similarly, perturbation of endocytic pathways also blocked Akt phosphorylation. Between ERK and Akt pathways, PACAP-stimulated Akt signaling was the primary cascade that attenuated cultured neuron apoptosis after growth factor withdrawal. The partitioning of PACAP-mediated Akt signaling in endosomes may be a key mechanism contributing to the high spatial and temporal specificity in signal transduction necessary for survival pathways. PMID:20093365

  8. mir-30d Regulates multiple genes in the autophagy pathway and impairs autophagy process in human cancer cells

    SciTech Connect

    Yang, Xiaojun; Zhong, Xiaomin; Tanyi, Janos L.; Shen, Jianfeng; Xu, Congjian; Gao, Peng; Zheng, Tim M.; DeMichele, Angela; Zhang, Lin

    2013-02-15

    Highlights: ► Gene set enrichment analysis indicated mir-30d might regulate the autophagy pathway. ► mir-30d represses the expression of BECN1, BNIP3L, ATG12, ATG5 and ATG2. ► BECN1, BNIP3L, ATG12, ATG5 and ATG2 are direct targets of mir-30d. ► mir-30d inhibits autophagosome formation and LC3B-I conversion to LC3B-II. ► mir-30d regulates the autophagy process. -- Abstract: In human epithelial cancers, the microRNA (miRNA) mir-30d is amplified with high frequency and serves as a critical oncomir by regulating metastasis, apoptosis, proliferation, and differentiation. Autophagy, a degradation pathway for long-lived protein and organelles, regulates the survival and death of many cell types. Increasing evidence suggests that autophagy plays an important function in epithelial tumor initiation and progression. Using a combined bioinformatics approach, gene set enrichment analysis, and miRNA target prediction, we found that mir-30d might regulate multiple genes in the autophagy pathway including BECN1, BNIP3L, ATG12, ATG5, and ATG2. Our further functional experiments demonstrated that the expression of these core proteins in the autophagy pathway was directly suppressed by mir-30d in cancer cells. Finally, we showed that mir-30d regulated the autophagy process by inhibiting autophagosome formation and LC3B-I conversion to LC3B-II. Taken together, our results provide evidence that the oncomir mir-30d impairs the autophagy process by targeting multiple genes in the autophagy pathway. This result will contribute to understanding the molecular mechanism of mir-30d in tumorigenesis and developing novel cancer therapy strategy.

  9. The golgin GMAP-210 is required for efficient membrane trafficking in the early secretory pathway

    PubMed Central

    Roboti, Peristera; Sato, Keisuke; Lowe, Martin

    2015-01-01

    Golgins are coiled-coil proteins that participate in membrane-tethering events at the Golgi complex. Golgin-mediated tethering is thought to be important for vesicular trafficking and Golgi organization. However, the degree to which individual golgins contribute to these processes is poorly defined, and it has been proposed that golgins act in a largely redundant manner. Previous studies on the golgin GMAP-210 (also known as TRIP11), which is mutated in the rare skeletal disorder achondrogenesis type 1A, have yielded conflicting results regarding its involvement in trafficking. Here, we re-investigated the trafficking role of GMAP-210, and found that it is indeed required for efficient trafficking in the secretory pathway. GMAP-210 acts at both the endoplasmic reticulum (ER)-to-Golgi intermediate compartment (ERGIC) and Golgi complex during anterograde trafficking, and is also required for retrograde trafficking to the ER. Using co-depletion experiments, we also found that GMAP-210 acts in a partially redundant manner with the golgin GM130 to ensure efficient anterograde cargo delivery to the cis-Golgi. In summary, our results indicate a role for GMAP-210 in several trafficking steps at the ER–Golgi interface, some of which are partially redundant with another golgin, namely GM130 (also known as GOLGA2). PMID:25717001

  10. The golgin GMAP-210 is required for efficient membrane trafficking in the early secretory pathway.

    PubMed

    Roboti, Peristera; Sato, Keisuke; Lowe, Martin

    2015-04-15

    Golgins are coiled-coil proteins that participate in membrane-tethering events at the Golgi complex. Golgin-mediated tethering is thought to be important for vesicular trafficking and Golgi organization. However, the degree to which individual golgins contribute to these processes is poorly defined, and it has been proposed that golgins act in a largely redundant manner. Previous studies on the golgin GMAP-210 (also known as TRIP11), which is mutated in the rare skeletal disorder achondrogenesis type 1A, have yielded conflicting results regarding its involvement in trafficking. Here, we re-investigated the trafficking role of GMAP-210, and found that it is indeed required for efficient trafficking in the secretory pathway. GMAP-210 acts at both the endoplasmic reticulum (ER)-to-Golgi intermediate compartment (ERGIC) and Golgi complex during anterograde trafficking, and is also required for retrograde trafficking to the ER. Using co-depletion experiments, we also found that GMAP-210 acts in a partially redundant manner with the golgin GM130 to ensure efficient anterograde cargo delivery to the cis-Golgi. In summary, our results indicate a role for GMAP-210 in several trafficking steps at the ER-Golgi interface, some of which are partially redundant with another golgin, namely GM130 (also known as GOLGA2). PMID:25717001

  11. The novel SAM domain protein Aveugle is required for Raf activation in the Drosophila EGF receptor signaling pathway

    PubMed Central

    Roignant, Jean-Yves; Hamel, Sophie; Janody, Florence; Treisman, Jessica E.

    2006-01-01

    Activation of the Raf kinase by GTP-bound Ras is a poorly understood step in receptor tyrosine kinase signaling pathways. One such pathway, the epidermal growth factor receptor (EGFR) pathway, is critical for cell differentiation, survival, and cell cycle regulation in many systems, including the Drosophila eye. We have identified a mutation in a novel gene, aveugle, based on its requirement for normal photoreceptor differentiation. The phenotypes of aveugle mutant cells in the eye and wing imaginal discs resemble those caused by reduction of EGFR pathway function. We show that aveugle is required between ras and raf for EGFR signaling in the eye and for mitogen-activated protein kinase phosphorylation in cell culture. aveugle encodes a small protein with a sterile α motif (SAM) domain that can physically interact with the scaffold protein connector enhancer of Ksr (Cnk). We propose that Aveugle acts together with Cnk to promote Raf activation, perhaps by recruiting an activating kinase. PMID:16600911

  12. The root hair assay facilitates the use of genetic and pharmacological tools in order to dissect multiple signalling pathways that lead to programmed cell death.

    PubMed

    Kacprzyk, Joanna; Devine, Aoife; McCabe, Paul F

    2014-01-01

    The activation of programmed cell death (PCD) is often a result of complex signalling pathways whose relationship and intersection are not well understood. We recently described a PCD root hair assay and proposed that it could be used to rapidly screen genetic or pharmacological modulators of PCD. To further assess the applicability of the root hair assay for studying multiple signalling pathways leading to PCD activation we have investigated the crosstalk between salicylic acid, autophagy and apoptosis-like PCD (AL-PCD) in Arabidopsis thaliana. The root hair assay was used to determine rates of AL-PCD induced by a panel of cell death inducing treatments in wild type plants treated with chemical modulators of salicylic acid synthesis or autophagy, and in genetic lines defective in autophagy or salicylic acid signalling. The assay demonstrated that PCD induced by exogenous salicylic acid or fumonisin B1 displayed a requirement for salicylic acid signalling and was partially dependent on the salicylic acid signal transducer NPR1. Autophagy deficiency resulted in an increase in the rates of AL-PCD induced by salicylic acid and fumonisin B1, but not by gibberellic acid or abiotic stress. The phenylalanine ammonia lyase-dependent salicylic acid synthesis pathway contributed only to death induced by salicylic acid and fumonisin B1. 3-Methyladenine, which is commonly used as an inhibitor of autophagy, appeared to influence PCD induction in all treatments suggesting a possible secondary, non-autophagic, effect on a core component of the plant PCD pathway. The results suggest that salicylic acid signalling is negatively regulated by autophagy during salicylic acid and mycotoxin-induced AL-PCD. However, this crosstalk does not appear to be directly involved in PCD induced by gibberellic acid or abiotic stress. This study demonstrates that the root hair assay is an effective tool for relatively rapid investigation of complex signalling pathways leading to the activation of

  13. The Root Hair Assay Facilitates the Use of Genetic and Pharmacological Tools in Order to Dissect Multiple Signalling Pathways That Lead to Programmed Cell Death

    PubMed Central

    Kacprzyk, Joanna; Devine, Aoife; McCabe, Paul F.

    2014-01-01

    The activation of programmed cell death (PCD) is often a result of complex signalling pathways whose relationship and intersection are not well understood. We recently described a PCD root hair assay and proposed that it could be used to rapidly screen genetic or pharmacological modulators of PCD. To further assess the applicability of the root hair assay for studying multiple signalling pathways leading to PCD activation we have investigated the crosstalk between salicylic acid, autophagy and apoptosis-like PCD (AL-PCD) in Arabidopsis thaliana. The root hair assay was used to determine rates of AL-PCD induced by a panel of cell death inducing treatments in wild type plants treated with chemical modulators of salicylic acid synthesis or autophagy, and in genetic lines defective in autophagy or salicylic acid signalling. The assay demonstrated that PCD induced by exogenous salicylic acid or fumonisin B1 displayed a requirement for salicylic acid signalling and was partially dependent on the salicylic acid signal transducer NPR1. Autophagy deficiency resulted in an increase in the rates of AL-PCD induced by salicylic acid and fumonisin B1, but not by gibberellic acid or abiotic stress. The phenylalanine ammonia lyase-dependent salicylic acid synthesis pathway contributed only to death induced by salicylic acid and fumonisin B1. 3-Methyladenine, which is commonly used as an inhibitor of autophagy, appeared to influence PCD induction in all treatments suggesting a possible secondary, non-autophagic, effect on a core component of the plant PCD pathway. The results suggest that salicylic acid signalling is negatively regulated by autophagy during salicylic acid and mycotoxin-induced AL-PCD. However, this crosstalk does not appear to be directly involved in PCD induced by gibberellic acid or abiotic stress. This study demonstrates that the root hair assay is an effective tool for relatively rapid investigation of complex signalling pathways leading to the activation of

  14. Permissivity of the biphenyl-specific aerobic bacterial metabolic pathway towards analogues with various steric requirements.

    PubMed

    Overwin, Heike; Standfuß-Gabisch, Christine; González, Myriam; Méndez, Valentina; Seeger, Michael; Reichelt, Joachim; Wray, Victor; Hofer, Bernd

    2015-09-01

    It has repeatedly been shown that aryl-hydroxylating dioxygenases do not possess a very high substrate specificity. To gain more insight into this phenomenon, we examined two powerful biphenyl dioxygenases, the well-known wild-type enzyme from Burkholderia xenovorans LB400 (BphA-LB400) and a hybrid enzyme, based on a dioxygenase from Pseudomonas sp. B4-Magdeburg (BphA-B4h), for their abilities to dioxygenate a selection of eight biphenyl analogues in which the second aromatic ring was replaced by aliphatic as well as aliphatic/aromatic moieties, reflecting a variety of steric requirements. Interestingly, both enzymes were able to catalyse transformation of almost all of these compounds. While the products formed were identical, major differences were observed in transformation rates. In most cases, BphA-B4h proved to be a significantly more powerful catalyst than BphA-LB400. NMR characterization of the reaction products showed that the metabolite obtained from biphenylene underwent angular dioxygenation, whereas all other compounds were subject to lateral dioxygenation at ortho and meta carbons. Subsequent growth studies revealed that both dioxygenase source strains were able to utilize several of the biphenyl analogues as sole sources of carbon and energy. Therefore, prototype BphBCD enzymes of the biphenyl degradative pathway were examined for their ability to further catabolize the lateral dioxygenation products. All of the ortho- and meta-hydroxylated compounds were converted to acids, showing that this pathway is quite permissive, enabling catalysis of the turnover of a fairly wide variety of metabolites. PMID:26297047

  15. Annexin II-dependent actin remodelling evoked by hydrogen peroxide requires the metalloproteinase/sphingolipid pathway

    PubMed Central

    Cinq-Frais, Christel; Coatrieux, Christelle; Savary, Aude; D’Angelo, Romina; Bernis, Corinne; Salvayre, Robert; Nègre-Salvayre, Anne; Augé, Nathalie

    2014-01-01

    Actin remodeling is a dynamic process associated with cell shape modification occurring during cell cycle and proliferation. Oxidative stress plays a role in actin reorganization via various systems including p38MAPK. Beside, the mitogenic response evoked by hydrogen peroxide (H2O2) in fibroblasts and smooth muscle cells (SMC) involves the metalloproteinase (MMPs)/sphingomyelinase 2 (nSMase2) signaling pathway. The aim of this work was to investigate whether this system plays a role in actin remodeling induced by H2O2. Low H2O2 dose (5 µM) rapidly triggered a signaling cascade leading to nSMase2 activation, src and annexin 2 (AnxA2) phosphorylation, and actin remodeling, in fibroblasts and SMC. These events were blocked by pharmacological inhibitors of MMPs (Ro28-2653) and p38MAPK (SB203580), and were lacking in MMP2−/− and in nSMase2-mutant (fro) fibroblasts. Likewise, H2O2 was unable to induce actin remodeling in fro and MMP2−/− fibroblasts or in cells pretreated with p38MAPK, or MMP inhibitors. Finally we show that nSMase2 activation by H2O2, depends on MMP2 and p38MAPK, and is required for the src-dependent phosphorylation of AnxA2, and actin remodeling. Taken together, these findings indicate for the first time that AnxA2 phosphorylation and actin remodeling evoked by oxidative stress depend on the sphingolipid pathway, via MMP2 and p38MAPK. PMID:25574848

  16. Permissivity of the biphenyl-specific aerobic bacterial metabolic pathway towards analogues with various steric requirements.

    PubMed

    Overwin, Heike; Standfuß-Gabisch, Christine; González, Myriam; Méndez, Valentina; Seeger, Michael; Reichelt, Joachim; Wray, Victor; Hofer, Bernd

    2015-09-01

    It has repeatedly been shown that aryl-hydroxylating dioxygenases do not possess a very high substrate specificity. To gain more insight into this phenomenon, we examined two powerful biphenyl dioxygenases, the well-known wild-type enzyme from Burkholderia xenovorans LB400 (BphA-LB400) and a hybrid enzyme, based on a dioxygenase from Pseudomonas sp. B4-Magdeburg (BphA-B4h), for their abilities to dioxygenate a selection of eight biphenyl analogues in which the second aromatic ring was replaced by aliphatic as well as aliphatic/aromatic moieties, reflecting a variety of steric requirements. Interestingly, both enzymes were able to catalyse transformation of almost all of these compounds. While the products formed were identical, major differences were observed in transformation rates. In most cases, BphA-B4h proved to be a significantly more powerful catalyst than BphA-LB400. NMR characterization of the reaction products showed that the metabolite obtained from biphenylene underwent angular dioxygenation, whereas all other compounds were subject to lateral dioxygenation at ortho and meta carbons. Subsequent growth studies revealed that both dioxygenase source strains were able to utilize several of the biphenyl analogues as sole sources of carbon and energy. Therefore, prototype BphBCD enzymes of the biphenyl degradative pathway were examined for their ability to further catabolize the lateral dioxygenation products. All of the ortho- and meta-hydroxylated compounds were converted to acids, showing that this pathway is quite permissive, enabling catalysis of the turnover of a fairly wide variety of metabolites.

  17. Ten-m3 Is Required for the Development of Topography in the Ipsilateral Retinocollicular Pathway

    PubMed Central

    Dharmaratne, Nuwan; Glendining, Kelly A.; Young, Timothy R.; Tran, Heidi; Sawatari, Atomu; Leamey, Catherine A.

    2012-01-01

    Background The alignment of ipsilaterally and contralaterally projecting retinal axons that view the same part of visual space is fundamental to binocular vision. While much progress has been made regarding the mechanisms which regulate contralateral topography, very little is known of the mechanisms which regulate the mapping of ipsilateral axons such that they align with their contralateral counterparts. Results Using the advantageous model provided by the mouse retinocollicular pathway, we have performed anterograde tracing experiments which demonstrate that ipsilateral retinal axons begin to form terminal zones (TZs) in the superior colliculus (SC), within the first few postnatal days. These appear mature by postnatal day 11. Importantly, TZs formed by ipsilaterally-projecting retinal axons are spatially offset from those of contralaterally-projecting axons arising from the same retinotopic location from the outset. This pattern is consistent with that required for adult visuotopy. We further demonstrate that a member of the Ten-m/Odz/Teneurin family of homophilic transmembrane glycoproteins, Ten-m3, is an essential regulator of ipsilateral retinocollicular topography. Ten-m3 mRNA is expressed in a high-medial to low-lateral gradient in the developing SC. This corresponds topographically with its high-ventral to low-dorsal retinal gradient. In Ten-m3 knockout mice, contralateral ventrotemporal axons appropriately target rostromedial SC, whereas ipsilateral axons exhibit dramatic targeting errors along both the mediolateral and rostrocaudal axes of the SC, with a caudal shift of the primary TZ, as well as the formation of secondary, caudolaterally displaced TZs. In addition to these dramatic ipsilateral-specific mapping errors, both contralateral and ipsilateral retinocollicular TZs exhibit more subtle changes in morphology. Conclusions We conclude that important aspects of adult visuotopy are established via the differential sensitivity of ipsilateral and

  18. Involvement of the arachidonic acid cytochrome P450 epoxygenase pathway in the proliferation and invasion of human multiple myeloma cells

    PubMed Central

    Shao, Jing; Wang, Hongxiang; Yuan, Guolin; Chen, Zhichao

    2016-01-01

    Cytochrome P450 (CYP) epoxygenases and the metabolites epoxyeicosatrienoic acids (EETs) exert multiple biological effects in various malignancies. We have previously found EETs to be secreted by multiple myeloma (MM) cells and to be involved in MM angiogenesis, but the role of the arachidonic acid cytochrome P450 epoxygenase pathway in the proliferation and mobility of MM cells remains unknown. In the present study, we found that MM cell lines generated detectable levels of 11,12-EET/14,15-EET and that increased levels of EETs were found in the serum of MM patients compared to healthy donors. The addition of exogenous EETs induced significantly enhanced proliferation of MM cells, whereas 17-octadecynoic acid (17-ODYA), an inhibitor of the CYP epoxygenase pathway, inhibited the viability and proliferation of MM cells. Moreover, this inhibitory effect could be successfully reversed by exogenous EETs. 17-ODYA also inhibited the motility of MM cells in a time-dependent manner, with a reduction of the gelatinolytic activity and protein expression of the matrix metalloproteinases (MMP)-2 and MMP-9. These results suggest the CYP epoxygenase pathway to be involved in the proliferation and invasion of MM cells, for which 17-ODYA could be a promising therapeutic drug. PMID:27077015

  19. miR-150 exerts antileukemia activity in vitro and in vivo through regulating genes in multiple pathways

    PubMed Central

    Fang, Zhi Hong; Wang, Si Li; Zhao, Jin Tao; Lin, Zhi Juan; Chen, Lin Yan; Su, Rui; Xie, Si Ting; Carter, Bing Z; Xu, Bing

    2016-01-01

    MicroRNAs, a class of small noncoding RNAs, have been implicated to regulate gene expression in virtually all important biological processes. Although accumulating evidence demonstrates that miR-150, an important regulator in hematopoiesis, is deregulated in various types of hematopoietic malignancies, the precise mechanisms of miR-150 action are largely unknown. In this study, we found that miR-150 is downregulated in samples from patients with acute lymphoblastic leukemia, acute myeloid leukemia, and chronic myeloid leukemia, and normalized after patients achieved complete remission. Restoration of miR-150 markedly inhibited growth and induced apoptosis of leukemia cells, and reduced tumorigenicity in a xenograft leukemia murine model. Microarray analysis identified multiple novel targets of miR-150, which were validated by quantitative real-time PCR and luciferase reporter assay. Gene ontology and pathway analysis illustrated potential roles of these targets in small-molecule metabolism, transcriptional regulation, RNA metabolism, proteoglycan synthesis in cancer, mTOR signaling pathway, or Wnt signaling pathway. Interestingly, knockdown one of four miR-150 targets (EIF4B, FOXO4B, PRKCA, and TET3) showed an antileukemia activity similar to that of miR-150 restoration. Collectively, our study demonstrates that miR-150 functions as a tumor suppressor through multiple mechanisms in human leukemia and provides a rationale for utilizing miR-150 as a novel therapeutic agent for leukemia treatment.

  20. Autonomous basin climbing method with sampling of multiple transition pathways: application to anisotropic diffusion of point defects in hcp Zr

    NASA Astrophysics Data System (ADS)

    Fan, Yue; Yip, Sidney; Yildiz, Bilge

    2014-09-01

    This paper presents an extension of the autonomous basin climbing (ABC) method, an atomistic activation-relaxation technique for sampling transition-state pathways. The extended algorithm (ABC-E) allows the sampling of multiple transition pathways from a given minimum, with the additional feature of identifying the pathways in the order of increasing activation barriers, thereby prioritizing them according to their importance in the kinetics. Combined with on-the-fly kinetic Monte Carlo calculations, the method is applied to simulate the anisotropic diffusion of point defects in hcp Zr. Multiple migration mechanisms are identified for both the interstitials and vacancies, and benchmarked against results from other methods in the literature. The self-interstitial atom (SIA) diffusion kinetics shows a maximum anisotropy at intermediate temperatures (400~700 K), a non-monotonic behavior that we explain to originate from the stabilities and migration mechanisms associated with different SIA sites. The accuracy of the ABC-E calculations is validated, in part, by the existing results in the literature for point defect diffusion in hcp Zr, and by benchmarking against analytical results on a hypothetical rough-energy landscape. Lastly, sampling prioritization and computational efficiency are demonstrated through a direct comparison between the ABC-E and the activation relaxation technique.

  1. Dissection of Biological Property of Chinese Acupuncture Point Zusanli Based on Long-Term Treatment via Modulating Multiple Metabolic Pathways

    PubMed Central

    Yan, Guangli; Zhang, Aihua; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Zhang, Yingzhi; Xie, Ning; Wang, Xijun

    2013-01-01

    Acupuncture has a history of over 3000 years and is a traditional Chinese medical therapy that uses hair-thin metal needles to puncture the skin at specific points on the body to promote wellbeing, while its molecular mechanism and ideal biological pathways are still not clear. High-throughput metabolomics is the global assessment of endogenous metabolites within a biologic system and can potentially provide a more accurate snap shot of the actual physiological state. We hypothesize that acupuncture-treated human would produce unique characterization of metabolic phenotypes. In this study, UPLC/ESI-HDMS coupled with pattern recognition methods and system analysis were carried out to investigate the mechanism and metabolite biomarkers for acupuncture treatment at “Zusanli” acupoint (ST-36) as a case study. The top 5 canonical pathways including alpha-linolenic acid metabolism, d-glutamine and d-glutamate metabolism, citrate cycle, alanine, aspartate, and glutamate metabolism, and vitamin B6 metabolism pathways were acutely perturbed, and 53 differential metabolites were identified by chemical profiling and may be useful to clarify the physiological basis and mechanism of ST-36. More importantly, network construction has led to the integration of metabolites associated with the multiple perturbation pathways. Urine metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture. PMID:24073005

  2. Multiple ß-defensin genes are upregulated by the vitamin D pathway in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experimental models of bacterial and viral infections in cattle have suggested vitamin D has a role in innate immunity of cattle. The intracrine vitamin D pathway of bovine macrophages, however, has only been shown to activate a nitric oxide-mediated defense mechanism, as opposed to cathelicidin and...

  3. Comparison of Investment and Related Requirements for Selected Hydrogen Vehicle System Pathways

    NASA Astrophysics Data System (ADS)

    Bogart, S. Locke

    2002-12-01

    A model was developed for production, transmission, delivery, and consumption of hydrogen for large-scale systems ultimately providing shaft-work for hydrogen-based vehicles. (See Glossary, after References). Presently, the supply technologies are limited to solar photovoltaic, wind, nuclear, and nuclear thermochemical sources. Transmission technologies include electric power, hydrogen pipeline, and liquid hydrocarbon pipeline. Delivery technologies include both liquid and gaseous hydrogen and liquid hydrocarbon. Storage modes were selected as appropriate for the pathway transmission and delivery modes. Finally, consumption technologies are fuel-cell based, with and without a fuel processor (reformer). Overall, there were 39 separate pathways in this initial analysis. Subsystem efficiencies, capital costs, and capacity factors were derived from a literature search and supported by calculations where necessary. Overall systems efficiency, system peak power capital costs, and systems average power capital costs were calculated to indicate the potential capital investment requirements. The model was exercised to assess the capital cost (and related aspects) requirements to provide the equivalent automobile shaftwork of eleven million barrels of oil per day by the year 2040 (the Administration's objective). These costs range from 650 billion to 11.7 trillion and primarily depend on the selected energy source. The results reveal that nuclear thermochemical systems based on liquid hydrocarbon transmission and delivery lie at the low-cost end of the range, followed by nuclear or wind electric, then nuclear or wind hydrogen pipeline, and finally by solar electric and solar hydrogen pipeline. It is noted that thermochemical systems based on liquid hydrocarbons was the least-cost option for all of the energy sources. One vehicle storage technology, chemical hydride, was determined to be too costly to be included for later analysis. The results were compared against what

  4. Combined biosynthetic pathway for de novo production of UDP-galactose: catalysis with multiple enzymes immobilized on agarose beads.

    PubMed

    Liu, Ziye; Zhang, Jianbo; Chen, Xi; Wang, Peng G

    2002-04-01

    Regeneration of sugar nucleotides is a critical step in the biosynthetic pathway for the formation of oligosaccharides. To alleviate the difficulties in the production of sugar nucleotides, we have developed a method to produce uridine diphosphate galactose (UDP-galactose). The combined biosynthetic pathway, which involves seven enzymes, is composed of three parts: i) the main pathway to form UDP-galactose from galactose, with the enzymes galactokinase, galactose-1-phosphate uridyltransferase, UDP-glucose pyrophosphorylase, and inorganic pyrophosphatase, ii) the uridine triphosphate supply pathway catalyzed by uridine monophosphate (UMP) kinase and nucleotide diphosphate kinase, and iii) the adenosine triphosphate (ATP) regeneration pathway catalyzed by polyphosphate kinase with polyphosphate added as an energy resource. All of the enzymes were expressed individually and immobilized through their hexahistidine tags onto nickel agarose beads ("super beads"). The reaction requires a stoichiometric amount of UMP and galactose, and catalytic amounts of ATP and glucose 1-phosphate, all inexpensive starting materials. After continuous circulation of the reaction mixture through the super-bead column for 48 h, 50 % of the UMP was converted into UDP-galactose. The results show that de novo production of UDP-galactose on the super-bead column is more efficient than in solution because of the stability of the immobilized enzymes.

  5. Single-target RNA interference for the blockade of multiple interacting proinflammatory and profibrotic pathways in cardiac fibroblasts.

    PubMed

    Tank, Juliane; Lindner, Diana; Wang, Xiaomin; Stroux, Andrea; Gilke, Leona; Gast, Martina; Zietsch, Christin; Skurk, Carsten; Scheibenbogen, Carmen; Klingel, Karin; Lassner, Dirk; Kühl, Uwe; Schultheiss, Heinz-Peter; Westermann, Dirk; Poller, Wolfgang

    2014-01-01

    Therapeutic targets of broad relevance are likely located in pathogenic pathways common to disorders of various etiologies. Screening for targets of this type revealed CCN genes to be consistently upregulated in multiple cardiomyopathies. We developed RNA interference (RNAi) to silence CCN2 and found this single-target approach to block multiple proinflammatory and profibrotic pathways in activated primary cardiac fibroblasts (PCFBs). The RNAi-strategy was developed in murine PCFBs and then investigated in "individual" human PCFBs grown from human endomyocardial biopsies (EMBs). Screening of short hairpin RNA (shRNA) sequences for high silencing efficacy and specificity yielded RNAi adenovectors silencing CCN2 in murine or human PCFBs, respectively. Comparison of RNAi with CCN2-modulating microRNA (miR) vectors expressing miR-30c or miR-133b showed higher efficacy of RNAi. In murine PCFBs, CCN2 silencing resulted in strongly reduced expression of stretch-induced chemokines (Ccl2, Ccl7, Ccl8), matrix metalloproteinases (MMP2, MMP9), extracellular matrix (Col3a1), and a cell-to-cell contact protein (Cx43), suggesting multiple signal pathways to be linked to CCN2. Immune cell chemotaxis towards CCN2-depleted PCFBs was significantly reduced. We demonstrate here that this RNAi strategy is technically applicable to "individual" human PCFBs, too, but that these display individually strikingly different responses to CCN2 depletion. Either genomically encoded factors or stable epigenetic modification may explain different responses between individual PCFBs. The new RNAi approach addresses a key regulator protein induced in cardiomyopathies. Investigation of this and other molecular therapies in individual human PCBFs may help to dissect differential pathogenic processes between otherwise similar disease entities and individuals. PMID:24239602

  6. Multiple preprosomatostatin sorting signals mediate secretion via discrete cAMP- and tetradecanoylphorbolacetate-responsive pathways.

    PubMed

    Sevarino, K A; Stork, P

    1991-10-01

    We have previously detected a sorting signal in the amino-terminal 78 residues of rat preprosomatostatin (rPPSS) that targets the precursor into a regulated secretory pathway or pathways allowing proteolytic maturation (Sevarino, K. A., Stork, P., Ventimiglia, R., Mandel, G., and Goodman, R. H. (1989) Cell 57, 11-19). To further localize this signal, we constructed three rPPSS expression vectors that code for substitutions or mutations spanning that portion of rPPSS implicated in sorting, and the precursors were expressed in RIN 5F cells. Fractionation of the intracellular products revealed that accurate processing to somatostatin-14 (SS-14) was not affected by any of the mutations. Examination of the secreted products showed no reduction in processing efficiency, indicating that none of the mutations blocked sorting from constitutive into regulated secretion. Finally, we examined the response to two separate secretogogues, cAMP and 12-O-tetradecanoylphorbol-13-acetate (TPA). Clones expressing two of the three mutant precursors displayed the same stimulation of SS-14 secretion by exogenously administered cAMP and TPA as cells expressing wild-type rPPSS, indicating that targeting specifically to the secretory pathway, or pathways, responsive to cAMP and TPA was not disrupted. However, cells expressing the mutant precursor containing a substitution of the amino-terminal 34 residues of rPPSS by the amino terminus of the vesicular stomatitis virus G protein displayed greatly reduced stimulation of SS-14 secretion by TPA, with a less than compensatory increase in response to cAMP, when compared to cells expressing wild-type rPPSS. In conjunction with our previous studies with anglerfish preprosomatostatins, we conclude that 1) the sorting signal(s) in rPPSS necessary for cAMP-responsive secretion are redundant and probably reside within both mature peptide regions and extrapeptide regions; 2) two or more distinct regulated secretory pathways utilized by secreted

  7. Structural Requirements for Yersinia YopJ Inhibition of MAP Kinase Pathways

    PubMed Central

    Burdette, Dara; Mukherjee, Sohini; Keitany, Gladys; Goldsmith, Elizabeth; Orth, Kim

    2008-01-01

    MAPK signaling cascades are evolutionally conserved. The bacterial effector, YopJ, uses the unique activity of Ser/Thr acetylation to inhibit the activation of the MAPK kinase (MKK) and prevent activation by phosphorylation. YopJ is also able to block yeast MAPK signaling pathways using this mechanism. Based on these observations, we performed a genetic screen to isolate mutants in the yeast MKK, Pbs2, that suppress YopJ inhibition. One suppressor contains a mutation in a conserved tyrosine residue and bypasses YopJ inhibition by increasing the basal activity of Pbs2. Mutations on the hydrophobic face of the conserved G α-helix in the kinase domain prevent both binding and acetylation by YopJ. Corresponding mutants in human MKKs showed that they are conserved not only structurally, but also functionally. These studies reveal a conserved binding site found on the superfamily of MAPK kinases while providing insight into the molecular interactions required for YopJ inhibition. PMID:18167536

  8. The Rab11 Pathway Is Required for Influenza A Virus Budding and Filament Formation▿

    PubMed Central

    Bruce, Emily A.; Digard, Paul; Stuart, Amanda D.

    2010-01-01

    Influenza A virus buds through the apical plasma membrane, forming enveloped virus particles that can take the shape of pleomorphic spheres or vastly elongated filaments. For either type of virion, the factors responsible for separation of viral and cell membranes are not known. We find that cellular Rab11 (a small GTP-binding protein involved in endocytic recycling) and Rab11-family interacting protein 3 ([FIP3] which plays a role in membrane trafficking and regulation of actin dynamics) are both required to support the formation of filamentous virions, while Rab11 is additionally involved in the final budding step of spherical particles. Cells transfected with Rab11 GTP-cycling mutants or depleted of Rab11 or FIP3 content by small interfering RNA treatment lost the ability to form virus filaments. Depletion of Rab11 resulted in up to a 100-fold decrease in titer of spherical virus released from cells. Scanning electron microscopy of Rab11-depleted cells showed high densities of virus particles apparently stalled in the process of budding. Transmission electron microscopy of thin sections confirmed that Rab11 depletion resulted in significant numbers of abnormally formed virus particles that had failed to pinch off from the plasma membrane. Based on these findings, we see a clear role for a Rab11-mediated pathway in influenza virus morphogenesis and budding. PMID:20357086

  9. Lhx9 gene expression during early limb development in mice requires the FGF signalling pathway.

    PubMed

    Yang, Yisheng; Wilson, Megan J

    2015-01-01

    Lhx9 is a member of the LIM-homeodomain gene family necessary for the correct development of many organs including gonads, limbs, heart and the nervous system. In the context of limb development, Lhx9 has been implicated as an integrator for Fibroblast growth factor (FGF) and Sonic hedgehog (Shh) signalling required for proximal-distal (PD) and anterior-posterior (AP) development of the limb. Three splice variants of the Lhx9 transcript are expressed during development, two of which are predicted to act in a dominant negative fashion, competing with the DNA binding version of Lhx9 for binding to cofactors via the LIM-domain. We examined the expression pattern for the three alternative splice forms of Lhx9; Lhx9α, Lhx9β and Lhx9c during early limb development. We have found that of the three Lhx9 isoforms, only Lhx9α and Lhx9c (intact homeodomain) are expressed during early limb development, each with their own distinct expression pattern. Additionally we determined that Lhx9 expression overlaps with FGF10 expression in the developing limb bud mesenchyme. Limb bud explant cultures, in the presence of signalling pathway inhibitors, also indicated that Lhx9 mRNA expression in the limb bud was dependent on FGF signalling. PMID:26220830

  10. Microbial effectors target multiple steps in the salicylic acid production and signaling pathway

    PubMed Central

    Tanaka, Shigeyuki; Han, Xiaowei; Kahmann, Regine

    2015-01-01

    Microbes attempting to colonize plants are recognized through the plant immune surveillance system. This leads to a complex array of global as well as specific defense responses, which are often associated with plant cell death and subsequent arrest of the invader. The responses also entail complex changes in phytohormone signaling pathways. Among these, salicylic acid (SA) signaling is an important pathway because of its ability to trigger plant cell death. As biotrophic and hemibiotrophic pathogens need to invade living plant tissue to cause disease, they have evolved efficient strategies to downregulate SA signaling by virulence effectors, which can be proteins or secondary metabolites. Here we review the strategies prokaryotic pathogens have developed to target SA biosynthesis and signaling, and contrast this with recent insights into how plant pathogenic eukaryotic fungi and oomycetes accomplish the same goal. PMID:26042138

  11. Mammalian apoptotic signalling pathways: multiple targets of protozoan parasites to activate or deactivate host cell death.

    PubMed

    Graumann, Kristin; Hippe, Diana; Gross, Uwe; Lüder, Carsten G K

    2009-11-01

    Programmed cell death is an essential mechanism of the host to combat infectious agents and to regulate immunity during infection. Consequently, activation and deactivation of the hosts' cell death pathways by protozoan parasites play critical roles in parasite control, pathogenesis, immune evasion and parasite dissemination within the host. Here, we discuss advances in the understanding of these fascinating host-parasite interactions with special emphasis on how protozoa can modulate the cell death apparatus of its host.

  12. Multiple Transcriptome Data Analysis Reveals Biologically Relevant Atopic Dermatitis Signature Genes and Pathways

    PubMed Central

    Ghosh, Debajyoti; Ding, Lili; Sivaprasad, Umasundari; Geh, Esmond; Biagini Myers, Jocelyn; Bernstein, Jonathan A.; Khurana Hershey, Gurjit K; Mersha, Tesfaye B.

    2015-01-01

    Several studies have identified genes that are differentially expressed in atopic dermatitis (AD) compared to normal skin. However, there is also considerable variation in the list of differentially expressed genes (DEGs) reported by different groups and the exact cause of AD is still not fully understood. Using a rank-based approach, we analyzed gene expression data from five different microarray studies, comprising a total of 127 samples and more than 250,000 transcripts. A total of 89 AD gene expression signatures ‘89ADGES’, including FLG gene, were identified to show dysregulation consistently across these studies. Using a Support Vector Machine, we showed that the ‘89ADGES’ discriminates AD from normal skin with 98% predictive accuracy. Functional annotation of these genes implicated their roles in immune responses (e.g., betadefensin, microseminoprotein), keratinocyte differentiation/epidermal development (e.g., FLG, CORIN, AQP, LOR, KRT16), inflammation (e.g., IL37, IL27RA, CCL18) and lipid metabolism (e.g., AKR1B10, FAD7, FAR2). Subsequently, we validated a subset of signature genes using quantitative PCR in a mouse model. Using a bioinformatic approach, we identified keratinocyte pathway over-represented (P = <0.0006) among the 89 signature genes. Keratinocytes are known to play a major role in barrier function due to their location in the epidermis. Our result suggests that besides immune- mediated pathway, skin barrier pathways such as the keratinocyte differentiation pathway play a key role in AD pathogenesis. A better understanding of the role of keratinocytes in AD will be important for developing novel “barrier therapy” for this disease. PMID:26717000

  13. Multispecific Drug Transporter Slc22a8 (Oat3) Regulates Multiple Metabolic and Signaling Pathways

    PubMed Central

    Wu, Wei; Jamshidi, Neema; Eraly, Satish A.; Liu, Henry C.; Bush, Kevin T.; Palsson, Bernhard O.

    2013-01-01

    Multispecific drug transporters of the solute carrier and ATP-binding cassette families are highly conserved through evolution, but their true physiologic role remains unclear. Analyses of the organic anion transporter 3 (OAT3; encoded by Slc22a8/Oat3, originally Roct) knockout mouse have confirmed its critical role in the renal handling of common drugs (e.g., antibiotics, antivirals, diuretics) and toxins. Previous targeted metabolomics of the knockout of the closely related Oat1 have demonstrated a central metabolic role, but the same approach with Oat3 failed to reveal a similar set of endogenous substrates. Nevertheless, the Oat3 knockout is the only Oat described so far with a physiologically significant phenotype, suggesting the disturbance of metabolic or signaling pathways. Here we analyzed global gene expression in Oat3 knockout tissue, which implicated OAT3 in phase I and phase II metabolism (drug metabolizing enzymes or DMEs), as well as signaling pathways. Metabolic reconstruction with the recently developed “mouse Recon1” supported the involvement of Oat3 in the aforementioned pathways. Untargeted metabolomics were used to determine whether the predicted metabolic alterations could be confirmed. Many significant changes were observed; several metabolites were tested for direct interaction with mOAT3, whereas others were supported by published data. Oat3 thus appears critical for the handling of phase I (hydroxylation) and phase II (glucuronidation) metabolites. Oat3 also plays a role in bioenergetic pathways (e.g., the tricarboxylic acid cycle), as well as those involving vitamins (e.g., folate), steroids, prostaglandins, gut microbiome products, uremic toxins, cyclic nucleotides, amino acids, glycans, and possibly hyaluronic acid. The data seemingly consistent with the Remote Sensing and Signaling Hypothesis (Ahn and Nigam, 2009; Wu et al., 2011), also suggests that Oat3 is essential for the handling of dietary flavonoids and antioxidants. PMID

  14. Multiple Targets on the Gln3 Transcription Activator Are Cumulatively Required for Control of Its Cytoplasmic Sequestration

    PubMed Central

    Rai, Rajendra; Tate, Jennifer J.; Cooper, Terrance G.

    2016-01-01

    A remarkable characteristic of nutritional homeostatic mechanisms is the breadth of metabolite concentrations to which they respond, and the resolution of those responses; adequate but rarely excessive. Two general ways of achieving such exquisite control are known: stoichiometric mechanisms where increasing metabolite concentrations elicit proportionally increasing responses, and the actions of multiple independent metabolic signals that cumulatively generate appropriately measured responses. Intracellular localization of the nitrogen-responsive transcription activator, Gln3, responds to four distinct nitrogen environments: nitrogen limitation or short-term starvation, i.e., nitrogen catabolite repression (NCR), long-term starvation, glutamine starvation, and rapamycin inhibition of mTorC1. We have previously identified unique sites in Gln3 required for rapamycin-responsiveness, and Gln3-mTor1 interaction. Alteration of the latter results in loss of about 50% of cytoplasmic Gln3 sequestration. However, except for the Ure2-binding domain, no evidence exists for a Gln3 site responsible for the remaining cytoplasmic Gln3-Myc13 sequestration in nitrogen excess. Here, we identify a serine/threonine-rich (Gln3477–493) region required for effective cytoplasmic Gln3-Myc13 sequestration in excess nitrogen. Substitutions of alanine but not aspartate for serines in this peptide partially abolish cytoplasmic Gln3 sequestration. Importantly, these alterations have no effect on the responses of Gln3-Myc13 to rapamycin, methionine sulfoximine, or limiting nitrogen. However, cytoplasmic Gln3-Myc13 sequestration is additively, and almost completely, abolished when mutations in the Gln3-Tor1 interaction site are combined with those in Gln3477–493 cytoplasmic sequestration site. These findings clearly demonstrate that multiple individual regulatory pathways cumulatively control cytoplasmic Gln3 sequestration. PMID:26976442

  15. Defining the volume dependence of multiple K flux pathways of trout red blood cells.

    PubMed

    Berenbrink, M; Weaver, Y R; Cossins, A R

    1997-04-01

    The volume sensitivity of different K flux pathways has been determined in trout red blood cells subjected to volume perturbation. Gentle hyposmotic swelling induced a K influx in a Cl-containing saline but not in NO3- or methanesulfonate (MeSF)-containing salines, consistent with the activation of a Cl-dependent flux. Extreme hyposmotic swelling led to larger K fluxes in all salines but with reduced anion discrimination of the Cl-dependent flux. In contrast to these graded responses, isosmotic swelling using ammonium chloride or beta-adrenergic stimulation activated only Cl-dependent fluxes in an all-or-none fashion. The relationship between the hyposmotically and isosmotically induced pathways was studied by coactivation using either ammonium chloride or isoproterenol with anisosmotic treatment. Cells in ammonium chloride-containing hyposmotic salines showed no additive K flux over that induced by hyposmotic treatment alone, indicating that the isosmotically induced Cl-dependent flux was identical to the hyposmotically induced Cl-dependent flux. However, cells coactivated by hyposmotic and beta-adrenergic treatment showed a small Cl-dependent flux in addition to that induced by hyposmotic treatment alone. This small third component was unaffected by anisosmotic treatment. We conclude that the major Cl-dependent and Cl-independent K flux pathways are distinct and separate and that the former has an anion dependence that varies with cell volume and a volume sensitivity that varies with ionic strength. PMID:9142834

  16. Evaluations of the trans-sulfuration pathway in multiple liver toxicity studies

    SciTech Connect

    Schnackenberg, Laura K. Chen Minjun; Sun, Jinchun; Holland, Ricky D.; Dragan, Yvonne; Tong Weida; Welsh, William; Beger, Richard D.

    2009-02-15

    Drug-induced liver injury has been associated with the generation of reactive metabolites, which are primarily detoxified via glutathione conjugation. In this study, it was hypothesized that molecules involved in the synthesis of glutathione would be diminished to replenish the glutathione depleted through conjugation reactions. Since S-adenosylmethionine (SAMe) is the primary source of the sulfur atom in glutathione, UPLC/MS and NMR were used to evaluate metabolites involved with the transulfuration pathway in urine samples collected during studies of eight liver toxic compounds in Sprague-Dawley rats. Urinary levels of creatine were increased on day 1 or day 2 in 8 high dose liver toxicity studies. Taurine concentration in urine was increased in only 3 of 8 liver toxicity studies while SAMe was found to be reduced in 4 of 5 liver toxicity studies. To further validate the results from the metabonomic studies, microarray data from rat liver samples following treatment with acetaminophen was obtained from the Gene Expression Omnibus (GEO) database. Some genes involved in the trans-sulfuration pathway, including guanidinoacetate N-methyltransferase, glycine N-methyltransferase, betaine-homocysteine methyltransferase and cysteine dioxygenase were found to be significantly decreased while methionine adenosyl transferase II, alpha increased at 24 h post-dosing, which is consistent with the SAMe and creatine findings. The metabolic and transcriptomic results show that the trans-sulfuration pathway from SAMe to glutathione was disturbed due to the administration of heptatotoxicants.

  17. Crosstalk between signaling pathways provided by single and multiple protein phosphorylation sites.

    PubMed

    Nishi, Hafumi; Demir, Emek; Panchenko, Anna R

    2015-01-30

    Cellular fate depends on the spatiotemporal separation and integration of signaling processes that can be provided by phosphorylation events. In this study, we identify the crucial points in signaling crosstalk that can be triggered by discrete phosphorylation events on a single target protein. We integrated the data on individual human phosphosites with the evidence on their corresponding kinases, the functional consequences of phosphorylation on activity of the target protein and corresponding pathways. Our results show that there is a substantial fraction of phosphosites that can play critical roles in crosstalk between alternative and redundant pathways and regulatory outcome of phosphorylation can be linked to a type of phosphorylated residue. These regulatory phosphosites can serve as hubs in the signal flow and their functional roles are directly connected to their specific properties. Namely, phosphosites with similar regulatory functions are phosphorylated by the same kinases and participate in regulation of similar biochemical pathways. Such sites are more likely to cluster in sequence and space unlike sites with antagonistic outcomes of their phosphorylation on a target protein. In addition, we found that in silico phosphorylation of sites with similar functional consequences has comparable outcomes on a target protein stability. An important role of phosphorylation sites in biological crosstalk is evident from the analysis of their evolutionary conservation.

  18. Evaluations of the trans-sulfuration pathway in multiple liver toxicity studies.

    PubMed

    Schnackenberg, Laura K; Chen, Minjun; Sun, Jinchun; Holland, Ricky D; Dragan, Yvonne; Tong, Weida; Welsh, William; Beger, Richard D

    2009-02-15

    Drug-induced liver injury has been associated with the generation of reactive metabolites, which are primarily detoxified via glutathione conjugation. In this study, it was hypothesized that molecules involved in the synthesis of glutathione would be diminished to replenish the glutathione depleted through conjugation reactions. Since S-adenosylmethionine (SAMe) is the primary source of the sulfur atom in glutathione, UPLC/MS and NMR were used to evaluate metabolites involved with the transulfuration pathway in urine samples collected during studies of eight liver toxic compounds in Sprague-Dawley rats. Urinary levels of creatine were increased on day 1 or day 2 in 8 high dose liver toxicity studies. Taurine concentration in urine was increased in only 3 of 8 liver toxicity studies while SAMe was found to be reduced in 4 of 5 liver toxicity studies. To further validate the results from the metabonomic studies, microarray data from rat liver samples following treatment with acetaminophen was obtained from the Gene Expression Omnibus (GEO) database. Some genes involved in the trans-sulfuration pathway, including guanidinoacetate N-methyltransferase, glycine N-methyltransferase, betaine-homocysteine methyltransferase and cysteine dioxygenase were found to be significantly decreased while methionine adenosyl transferase II, alpha increased at 24 h post-dosing, which is consistent with the SAMe and creatine findings. The metabolic and transcriptomic results show that the trans-sulfuration pathway from SAMe to glutathione was disturbed due to the administration of heptatotoxicants.

  19. Crosstalk between signaling pathways provided by single and multiple protein phosphorylation sites

    PubMed Central

    Nishi, Hafumi; Demir, Emek; Panchenko, Anna R.

    2014-01-01

    Cellular fate depends on the spatio-temporal separation and integration of signaling processes which can be provided by phosphorylation events. In this study we identify the crucial points in signaling crosstalk which can be triggered by discrete phosphorylation events on a single target protein. We integrated the data on individual human phosphosites with the evidence on their corresponding kinases, the functional consequences on phosphorylation on activity of the target protein and corresponding pathways. Our results show that there is a substantial fraction of phosphosites that can play critical roles in crosstalk between alternative or redundant pathways and regulatory outcome of phosphorylation can be linked to a type of phosphorylated residue. These regulatory phosphosites can serve as hubs in the signal flow and their functional roles are directly connected to their specific properties. Namely, phosphosites with similar regulatory functions are phosphorylated by the same kinases and participate in regulation of similar biochemical pathways. Such sites are more likely to cluster in sequence and space unlike sites with antagonistic outcomes of their phosphorylation on a target protein. In addition we found that in silico phosphorylation of sites with similar functional consequences have comparable outcomes on a target protein stability. An important role of phosphorylation sites in biological crosstalk is evident from the analysis of their evolutionary conservation. PMID:25451034

  20. Exome capture sequencing of adenoma reveals genetic alterations in multiple cellular pathways at the early stage of colorectal tumorigenesis.

    PubMed

    Zhou, Donger; Yang, Liu; Zheng, Liangtao; Ge, Weiting; Li, Dan; Zhang, Yong; Hu, Xueda; Gao, Zhibo; Xu, Jinghong; Huang, Yanqin; Hu, Hanguang; Zhang, Hang; Zhang, Hao; Liu, Mingming; Yang, Huanming; Zheng, Lei; Zheng, Shu

    2013-01-01

    Most of colorectal adenocarcinomas are believed to arise from adenomas, which are premalignant lesions. Sequencing the whole exome of the adenoma will help identifying molecular biomarkers that can predict the occurrence of adenocarcinoma more precisely and help understanding the molecular pathways underlying the initial stage of colorectal tumorigenesis. We performed the exome capture sequencing of the normal mucosa, adenoma and adenocarcinoma tissues from the same patient and sequenced the identified mutations in additional 73 adenomas and 288 adenocarcinomas. Somatic single nucleotide variations (SNVs) were identified in both the adenoma and adenocarcinoma by comparing with the normal control from the same patient. We identified 12 nonsynonymous somatic SNVs in the adenoma and 42 nonsynonymous somatic SNVs in the adenocarcinoma. Most of these mutations including OR6X1, SLC15A3, KRTHB4, RBFOX1, LAMA3, CDH20, BIRC6, NMBR, GLCCI1, EFR3A, and FTHL17 were newly reported in colorectal adenomas. Functional annotation of these mutated genes showed that multiple cellular pathways including Wnt, cell adhesion and ubiquitin mediated proteolysis pathways were altered genetically in the adenoma and that the genetic alterations in the same pathways persist in the adenocarcinoma. CDH20 and LAMA3 were mutated in the adenoma while NRXN3 and COL4A6 were mutated in the adenocarcinoma from the same patient, suggesting for the first time that genetic alterations in the cell adhesion pathway occur as early as in the adenoma. Thus, the comparison of genomic mutations between adenoma and adenocarcinoma provides us a new insight into the molecular events governing the early step of colorectal tumorigenesis. PMID:23301059

  1. Zebrafish con/disp1 reveals multiple spatiotemporal requirements for Hedgehog-signaling in craniofacial development

    PubMed Central

    2009-01-01

    Background The vertebrate head skeleton is derived largely from cranial neural crest cells (CNCC). Genetic studies in zebrafish and mice have established that the Hedgehog (Hh)-signaling pathway plays a critical role in craniofacial development, partly due to the pathway's role in CNCC development. Disruption of the Hh-signaling pathway in humans can lead to the spectral disorder of Holoprosencephaly (HPE), which is often characterized by a variety of craniofacial defects including midline facial clefting and cyclopia [1,2]. Previous work has uncovered a role for Hh-signaling in zebrafish dorsal neurocranium patterning and chondrogenesis, however Hh-signaling mutants have not been described with respect to the ventral pharyngeal arch (PA) skeleton. Lipid-modified Hh-ligands require the transmembrane-spanning receptor Dispatched 1 (Disp1) for proper secretion from Hh-synthesizing cells to the extracellular field where they act on target cells. Here we study chameleon mutants, lacking a functional disp1(con/disp1). Results con/disp1 mutants display reduced and dysmorphic mandibular and hyoid arch cartilages and lack all ceratobranchial cartilage elements. CNCC specification and migration into the PA primorida occurs normally in con/disp1 mutants, however disp1 is necessary for post-migratory CNCC patterning and differentiation. We show that disp1 is required for post-migratory CNCC to become properly patterned within the first arch, while the gene is dispensable for CNCC condensation and patterning in more posterior arches. Upon residing in well-formed pharyngeal epithelium, neural crest condensations in the posterior PA fail to maintain expression of two transcription factors essential for chondrogenesis, sox9a and dlx2a, yet continue to robustly express other neural crest markers. Histology reveals that posterior arch residing-CNCC differentiate into fibrous-connective tissue, rather than becoming chondrocytes. Treatments with Cyclopamine, to inhibit Hh

  2. The insulator protein BEAF-32 is required for Hippo pathway activity in the terminal differentiation of neuronal subtypes.

    PubMed

    Jukam, David; Viets, Kayla; Anderson, Caitlin; Zhou, Cyrus; DeFord, Peter; Yan, Jenny; Cao, Jinshuai; Johnston, Robert J

    2016-07-01

    The Hippo pathway is crucial for not only normal growth and apoptosis but also cell fate specification during development. What controls Hippo pathway activity during cell fate specification is incompletely understood. In this article, we identify the insulator protein BEAF-32 as a regulator of Hippo pathway activity in Drosophila photoreceptor differentiation. Though morphologically uniform, the fly eye is composed of two subtypes of R8 photoreceptor neurons defined by expression of light-detecting Rhodopsin proteins. In one R8 subtype, active Hippo signaling induces Rhodopsin 6 (Rh6) and represses Rhodopsin 5 (Rh5), whereas in the other subtype, inactive Hippo signaling induces Rh5 and represses Rh6. The activity state of the Hippo pathway in R8 cells is determined by the expression of warts, a core pathway kinase, which interacts with the growth regulator melted in a double-negative feedback loop. We show that BEAF-32 is required for expression of warts and repression of melted Furthermore, BEAF-32 plays a second role downstream of Warts to induce Rh6 and prevent Rh5 fate. BEAF-32 is dispensable for Warts feedback, indicating that BEAF-32 differentially regulates warts and Rhodopsins. Loss of BEAF-32 does not noticeably impair the functions of the Hippo pathway in eye growth regulation. Our study identifies a context-specific regulator of Hippo pathway activity in post-mitotic neuronal fate, and reveals a developmentally specific role for a broadly expressed insulator protein. PMID:27226322

  3. In Silico Reconstruction of the Metabolic Pathways of Lactobacillus plantarum: Comparing Predictions of Nutrient Requirements with Those from Growth Experiments

    PubMed Central

    Teusink, Bas; van Enckevort, Frank H. J.; Francke, Christof; Wiersma, Anne; Wegkamp, Arno; Smid, Eddy J.; Siezen, Roland J.

    2005-01-01

    On the basis of the annotated genome we reconstructed the metabolic pathways of the lactic acid bacterium Lactobacillus plantarum WCFS1. After automatic reconstruction by the Pathologic tool of Pathway Tools (http://bioinformatics.ai.sri.com/ptools/), the resulting pathway-genome database, LacplantCyc, was manually curated extensively. The current database contains refinements to existing routes and new gram-positive bacterium-specific reactions that were not present in the MetaCyc database. These reactions include, for example, reactions related to cell wall biosynthesis, molybdopterin biosynthesis, and transport. At present, LacplantCyc includes 129 pathways and 704 predicted reactions involving some 670 chemical species and 710 enzymes. We tested vitamin and amino acid requirements of L. plantarum experimentally and compared the results with the pathways present in LacplantCyc. In the majority of cases (32 of 37 cases) the experimental results agreed with the final reconstruction. LacplantCyc is the most extensively curated pathway-genome database for gram-positive bacteria and is open to the microbiology community via the World Wide Web (www.lacplantcyc.nl). It can be used as a reference pathway-genome database for gram-positive microbes in general and lactic acid bacteria in particular. PMID:16269766

  4. A Type II Protein Secretory Pathway Required for Levansucrase Secretion by Gluconacetobacter diazotrophicus

    PubMed Central

    Arrieta, Juan G.; Sotolongo, Mailin; Menéndez, Carmen; Alfonso, Dubiel; Trujillo, Luis E.; Soto, Melvis; Ramírez, Ricardo; Hernández, Lázaro

    2004-01-01

    The endophytic diazotroph Gluconacetobacter diazotrophicus secretes a constitutively expressed levansucrase (LsdA, EC 2.4.1.10) to utilize plant sucrose. LsdA, unlike other extracellular levansucrases from gram-negative bacteria, is transported to the periplasm by a signal-peptide-dependent pathway. We identified an unusually organized gene cluster encoding at least the components LsdG, -O, -E, -F, -H, -I, -J, -L, -M, -N, and -D of a type II secretory system required for LsdA translocation across the outer membrane. Another open reading frame, designated lsdX, is located between the operon promoter and lsdG, but it was not identified in BLASTX searches of the DDBJ/EMBL/GenBank databases. The lsdX, -G, and -O genes were isolated from a cosmid library of strain SRT4 by complementation of an ethyl methanesulfonate mutant unable to transport LsdA across the outer membrane. The downstream genes lsdE, -F, -H, -I, -J, -L, -M, -N, and -D were isolated through chromosomal walking. The high G+C content (64 to 74%) and the codon usage of the genes identified are consistent with the G+C content and codon usage of the standard G. diazotrophicus structural gene. Sequence analysis of the gene cluster indicated that a polycistronic transcript is synthesized. Targeted disruption of lsdG, lsdO, or lsdF blocked LsdA secretion, and the bacterium failed to grow on sucrose. Replacement of Cys162 by Gly at the C terminus of the pseudopilin LsdG abolished the protein functionality, suggesting that there is a relationship with type IV pilins. Restriction fragment length polymorphism analysis revealed conservation of the type II secretion operon downstream of the levansucrase-levanase (lsdA-lsdB) locus in 14 G. diazotrophicus strains representing 11 genotypes recovered from four different host plants in diverse geographical regions. To our knowledge, this is the first report of a type II pathway for protein secretion in the Acetobacteraceae. PMID:15262940

  5. TCR ITAM multiplicity is required for the generation of follicular helper T-cells.

    PubMed

    Hwang, SuJin; Palin, Amy C; Li, LiQi; Song, Ki-Duk; Lee, Jan; Herz, Jasmin; Tubo, Noah; Chu, Hamlet; Pepper, Marion; Lesourne, Renaud; Zvezdova, Ekaterina; Pinkhasov, Julia; Jenkins, Marc K; McGavern, Dorian; Love, Paul E

    2015-01-01

    The T-cell antigen receptor (TCR) complex contains 10 copies of a di-tyrosine Immunoreceptor-Tyrosine-based-Activation-Motif (ITAM) that initiates TCR signalling by recruiting protein tyrosine kinases. ITAM multiplicity amplifies TCR signals, but the importance of this capability for T-cell responses remains undefined. Most TCR ITAMs (6 of 10) are contributed by the CD3ζ subunits. We generated 'knock-in' mice that express non-signalling CD3ζ chains in lieu of wild-type CD3ζ. Here we demonstrate that ITAM multiplicity is important for the development of innate-like T-cells and follicular helper T-cells, events that are known to require strong/sustained TCR-ligand interactions, but is not essential for 'general' T-cell responses including proliferation and cytokine production or for the generation of a diverse antigen-reactive TCR repertoire. PMID:25959494

  6. TCR ITAM multiplicity is required for the generation of follicular helper T-cells.

    PubMed

    Hwang, SuJin; Palin, Amy C; Li, LiQi; Song, Ki-Duk; Lee, Jan; Herz, Jasmin; Tubo, Noah; Chu, Hamlet; Pepper, Marion; Lesourne, Renaud; Zvezdova, Ekaterina; Pinkhasov, Julia; Jenkins, Marc K; McGavern, Dorian; Love, Paul E

    2015-05-11

    The T-cell antigen receptor (TCR) complex contains 10 copies of a di-tyrosine Immunoreceptor-Tyrosine-based-Activation-Motif (ITAM) that initiates TCR signalling by recruiting protein tyrosine kinases. ITAM multiplicity amplifies TCR signals, but the importance of this capability for T-cell responses remains undefined. Most TCR ITAMs (6 of 10) are contributed by the CD3ζ subunits. We generated 'knock-in' mice that express non-signalling CD3ζ chains in lieu of wild-type CD3ζ. Here we demonstrate that ITAM multiplicity is important for the development of innate-like T-cells and follicular helper T-cells, events that are known to require strong/sustained TCR-ligand interactions, but is not essential for 'general' T-cell responses including proliferation and cytokine production or for the generation of a diverse antigen-reactive TCR repertoire.

  7. Tumor responsiveness to statins requires overexpression of the ARF6 pathway.

    PubMed

    Sabe, Hisataka; Hashimoto, Ari; Hashimoto, Shigeru; Oikawa, Tsukasa

    2016-07-01

    The mevalonate pathway results in the prenylation of small GTPases, which are pivotal for oncogenesis and cancer malignancies. However, inhibitors of this pathway, such as statins, have not necessarily produced favorable results in clinical trials. We recently identified properties of statin responders, together with the underlying molecular mechanisms and simple biomarkers to predict these responders. PMID:27652329

  8. The 3-Hydroxy-2-Butanone Pathway Is Required for Pectobacterium carotovorum Pathogenesis

    PubMed Central

    Marquez-Villavicencio, Maria del Pilar; Weber, Brooke; Witherell, R. Andrews; Willis, David K.; Charkowski, Amy O.

    2011-01-01

    Pectobacterium species are necrotrophic bacterial pathogens that cause soft rot diseases in potatoes and several other crops worldwide. Gene expression data identified Pectobacterium carotovorum subsp. carotovorum budB, which encodes the α-acetolactate synthase enzyme in the 2,3-butanediol pathway, as more highly expressed in potato tubers than potato stems. This pathway is of interest because volatiles produced by the 2,3-butanediol pathway have been shown to act as plant growth promoting molecules, insect attractants, and, in other bacterial species, affect virulence and fitness. Disruption of the 2,3-butanediol pathway reduced virulence of P. c. subsp. carotovorum WPP14 on potato tubers and impaired alkalinization of growth medium and potato tubers under anaerobic conditions. Alkalinization of the milieu via this pathway may aid in plant cell maceration since Pectobacterium pectate lyases are most active at alkaline pH. PMID:21876734

  9. Ginseng saponin metabolite 20(S)-protopanaxadiol inhibits tumor growth by targeting multiple cancer signaling pathways

    PubMed Central

    GAO, JIAN-LI; LV, GUI-YUAN; HE, BAI-CHENG; ZHANG, BING-QIANG; ZHANG, HONGYU; WANG, NING; WANG, CHONG-ZHI; DU, WEI; YUAN, CHUN-SU; HE, TONG-CHUAN

    2013-01-01

    Plant-derived active constituents and their semi-synthetic or synthetic analogs have served as major sources of anticancer drugs. 20(S)-protopanaxadiol (PPD) is a metabolite of ginseng saponin of both American ginseng (Panax quinquefolius L.) and Asian ginseng (Panax ginseng C.A. Meyer). We previously demonstrated that ginsenoside Rg3, a glucoside precursor of PPD, exhibits anti-proliferative effects on HCT116 cells and reduces tumor size in a xenograft model. Our subsequent study indicated that PPD has more potent antitumor activity than that of Rg3 in vitro although the mechanism underlying the anticancer activity of PPD remains to be defined. Here, we investigated the mechanism underlying the anticancer activity of PPD in human cancer cells in vitro and in vivo. PPD was shown to inhibit growth and induce cell cycle arrest in HCT116 cells. The in vivo studies indicate that PPD inhibits xenograft tumor growth in athymic nude mice bearing HCT116 cells. The xenograft tumor size was significantly reduced when the animals were treated with PPD (30 mg/kg body weight) for 3 weeks. When the expression of previously identified Rg3 targets, A kinase (PRKA) anchor protein 8 (AKAP8L) and phosphatidylinositol transfer protein α (PITPNA), was analyzed, PPD was shown to inhibit the expression of PITPNA while upregulating AKAP8L expression in HCT116 cells. Pathway-specific reporter assays indicated that PPD effectively suppressed the NF-κB, JNK and MAPK/ERK signaling pathways. Taken together, our results suggest that the anticancer activity of PPD in colon cancer cells may be mediated through targeting NF-κB, JNK and MAPK/ERK signaling pathways, although the detailed mechanisms underlying the anticancer mode of PPD action need to be fully elucidated. PMID:23633038

  10. Migration of Beryllium via Multiple Exposure Pathways among Work Processes in Four Different Facilities.

    PubMed

    Armstrong, Jenna L; Day, Gregory A; Park, Ji Young; Stefaniak, Aleksandr B; Stanton, Marcia L; Deubner, David C; Kent, Michael S; Schuler, Christine R; Virji, M Abbas

    2014-01-01

    Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk. Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures. The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ≥ 0.77), glove-surface (rp ≥ 0.76), and air-glove measurements (rp ≥ 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels. Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures

  11. Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site

    NASA Astrophysics Data System (ADS)

    Hodshire, Anna L.; Lawler, Michael J.; Zhao, Jun; Ortega, John; Jen, Coty; Yli-Juuti, Taina; Brewer, Jared F.; Kodros, Jack K.; Barsanti, Kelley C.; Hanson, Dave R.; McMurry, Peter H.; Smith, James N.; Pierce, Jeffery R.

    2016-07-01

    New-particle formation (NPF) is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low-volatility species, from diameters ˜ 1 to 30-100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available), condensation of organic vapors, uptake of organic acids through acid-base chemistry in the particle phase, and accretion of organic molecules in the particle phase to create a lower-volatility compound that then contributes to the aerosol mass. The relative importance of each pathway is uncertain and is the focus of this work. The 2013 New Particle Formation Study (NPFS) measurement campaign took place at the DOE Southern Great Plains (SGP) facility in Lamont, Oklahoma, during spring 2013. Measured gas- and particle-phase compositions during these new-particle growth events suggest three distinct growth pathways: (1) growth by primarily organics, (2) growth by primarily sulfuric acid and ammonia, and (3) growth by primarily sulfuric acid and associated bases and organics. To supplement the measurements, we used the particle growth model MABNAG (Model for Acid-Base chemistry in NAnoparticle Growth) to gain further insight into the growth processes on these 3 days at SGP. MABNAG simulates growth from (1) sulfuric-acid condensation (and subsequent salt formation with ammonia or amines), (2) near-irreversible condensation from nonreactive extremely low-volatility organic compounds (ELVOCs), and (3) organic-acid condensation and subsequent salt formation with ammonia or amines. MABNAG is able to corroborate the observed differing growth

  12. Migration of Beryllium via Multiple Exposure Pathways among Work Processes in Four Different Facilities

    PubMed Central

    Armstrong, Jenna L.; Day, Gregory A.; Park, Ji Young; Stefaniak, Aleksandr B.; Stanton, Marcia L.; Deubner, David C.; Kent, Michael S.; Schuler, Christine R.; Virji, M. Abbas

    2016-01-01

    Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk. Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures. The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ≥ 0.77), glove-surface (rp ≥ 0.76), and air-glove measurements (rp ≥ 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels. Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures

  13. Aberrant over-expression of COX-1 intersects multiple pro-tumorigenic pathways in high-grade serous ovarian cancer

    PubMed Central

    Wilson, Andrew J.; Fadare, Oluwole; Beeghly-Fadiel, Alicia; Son, Deok-Soo; Liu, Qi; Zhao, Shilin; Saskowski, Jeanette; Uddin, Md. Jashim; Daniel, Cristina; Crews, Brenda; Lehmann, Brian D.; Pietenpol, Jennifer A.; Crispens, Marta A.; Marnett, Lawrence J.; Khabele, Dineo

    2015-01-01

    Cyclooxygenase-1 (COX-1) is implicated in ovarian cancer. However, patterns of COX expression and function have been unclear and controversial. In this report, patterns of COX-1 and COX-2 gene expression were obtained from RNA-seq data through The Cancer Genome Atlas. Our analysis revealed markedly higher COX-1 mRNA expression than COX-2 in high-grade serous ovarian cancers (HGSOC) and higher COX-1 expression in HGSOC tumors than 10 other tumor types. High expression of COX-1 in HGSOC tumors was confirmed in an independent tissue microarray. In contrast, lower or similar expression of COX-1 compared to COX-2 was observed in endometrioid, mucinous and clear cell tumors. Stable COX-1 knockdown in HGSOC-representative OVCAR-3 ovarian cancer cells reduced gene expression in multiple pro-tumorigenic pathways. Functional cell viability, clonogenicity, and migration/invasion assays were consistent with transcriptomic changes. These effects were reversed by stable over-expression of COX-1 in SKOV-3 cells. Our results demonstrate a distinct pattern of COX-1 over-expression in HGSOC tumors and strong association of COX-1 with multiple pro-tumorigenic pathways in ovarian cancer cells. These findings provide additional insight into the role of COX-1 in human ovarian cancer and support further development of methods to selectively target COX-1 in the management of HGSOC tumors. PMID:25972361

  14. Multiple signaling pathways regulate contractile activity‐mediated PGC‐1α gene expression and activity in skeletal muscle cells

    PubMed Central

    Zhang, Yuan; Uguccioni, Giulia; Ljubicic, Vladimir; Irrcher, Isabella; Iqbal, Sobia; Singh, Kaustabh; Ding, Shuzhe; Hood, David A.

    2014-01-01

    Abstract PGC‐1α is an important transcriptional coactivator that plays a key role in mediating mitochondrial biogenesis. Within seconds of the onset of contractile activity, a number of rapid cellular events occur that form part of the initial signaling processes involved in PGC‐1α gene regulation, such as elevations in cytoplasmic calcium, AMPK and p38 activation, and elevated ROS production. We observed that basal levels of PGC‐1α promoter activity were more sensitive to resting Ca2+ levels, compared to ROS, p38 or, AMPK signaling. Moreover, enhanced PGC‐1α transcription and post‐translational activity on DNA were a result of the activation of multiple signal transduction pathways during contractile activity of myotubes. AMPK, ROS, and Ca2+ appear to be necessary for the regulation of contractile activity‐induced PGC‐1α gene expression, governed partly through p38 MAPK and CaMKII activity. Whether these signaling pathways are arranged as a linear sequence of events, or as largely independent pathways during contractile activity, remains to be determined. PMID:24843073

  15. Plasma proteomic profiles from disease-discordant monozygotic twins suggest that molecular pathways are shared in multiple systemic autoimmune diseases*

    PubMed Central

    2011-01-01

    Introduction Although systemic autoimmune diseases (SAID) share many clinical and laboratory features, whether they also share some common features of pathogenesis remains unclear. We assessed plasma proteomic profiles among different SAID for evidence of common molecular pathways that could provide insights into pathogenic mechanisms shared by these diseases. Methods Differential quantitative proteomic analyses (one-dimensional reverse-phase liquid chromatography-mass spectrometry) were performed to assess patterns of plasma protein expression. Monozygotic twins (four pairs discordant for systemic lupus erythematosus, four pairs discordant for juvenile idiopathic arthritis and two pairs discordant for juvenile dermatomyositis) were studied to minimize polymorphic gene effects. Comparisons were also made to 10 unrelated, matched controls. Results Multiple plasma proteins, including acute phase reactants, structural proteins, immune response proteins, coagulation and transcriptional factors, were differentially expressed similarly among the different SAID studied. Multivariate Random Forest modeling identified seven proteins whose combined altered expression levels effectively segregated affected vs. unaffected twins. Among these seven proteins, four were also identified in univariate analyses of proteomic data (syntaxin 17, α-glucosidase, paraoxonase 1, and the sixth component of complement). Molecular pathway modeling indicated that these factors may be integrated through interactions with a candidate plasma biomarker, PON1 and the pro-inflammatory cytokine IL-6. Conclusions Together, these data suggest that different SAID may share common alterations of plasma protein expression and molecular pathways. An understanding of the mechanisms leading to the altered plasma proteomes common among these SAID may provide useful insights into their pathogeneses. PMID:22044644

  16. Effect of multiple mutations in tricarboxylic acid cycle and one-carbon metabolism pathways on Edwardsiella ictaluri pathogenesis.

    PubMed

    Dahal, N; Abdelhamed, H; Lu, J; Karsi, A; Lawrence, M L

    2014-02-21

    Edwardsiella ictaluri is a Gram-negative facultative intracellular pathogen causing enteric septicemia of catfish (ESC). We have shown recently that tricarboxylic acid cycle (TCA) and one-carbon (C1) metabolism are involved in E. ictaluri pathogenesis. However, the effect of multiple mutations in these pathways is unknown. Here, we report four novel E. ictaluri mutants carrying double gene mutations in TCA cycle (EiΔmdhΔsdhC, EiΔfrdAΔsdhC), C1 metabolism (EiΔglyAΔgcvP), and both TCA and C1 metabolism pathways (EiΔgcvPΔsdhC). In-frame gene deletions were constructed by allelic exchange and mutants' virulence and vaccine efficacy were evaluated using in vivo bioluminescence imaging (BLI) as well as end point mortality counts in catfish fingerlings. Results indicated that all the double gene mutants were attenuated compared to wild-type (wt) E. ictaluri. There was a 1.39-fold average reduction in bioluminescence, and hence bacterial numbers, from all the mutants except for EiΔfrdAΔsdhC at 144 h post-infection. Vaccination with mutants was very effective in protecting channel catfish against subsequent infection with virulent E. ictaluri 93-146 strain. In particular, immersion vaccination resulted in complete protection. Our results provide further evidence on the importance of TCA and C1 metabolism pathways in bacterial pathogenesis.

  17. BMP5 activates multiple signaling pathways and promotes chondrogenic differentiation in the ATDC5 growth plate model.

    PubMed

    Snelling, Sarah J B; Hulley, Philippa A; Loughlin, John

    2010-08-01

    The bone morphogenetic protein 5 (BMP5) participates in skeletal development but its direct effects on the function of growth plate chondrocytes during chondrogenesis have not been explored. We have investigated the signaling pathways activated by BMP5 and its effect on chondrogenic differentiation in the ATDC5 growth plate chondrocyte model. BMP5 transiently activated p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase signaling after 10 days of differentiation; sustained Smad and p38 MAPK signaling were seen after 15 days differentiation. All three pathways were activated by BMP5 in human adult articular chondrocytes. BMP5 alone and in combination with the chondrogenic enhancer, insulin, induced proteoglycan synthesis, aggrecan core protein 1 expression, and alkaline phosphatase activity. Upregulation of hypertrophic markers parathyroid receptor 1 and collagen type X alpha 1 occurred in BMP5-treated ATDC5 cultures. BMP5 is clearly chondrogenic and exhibits stage-specific regulation of multiple signaling pathways in this growth plate model. In particular, BMP5 accelerates expression of hypertrophy markers which is of relevance in both development and diseases such as osteoarthritis.

  18. Methoxychlor affects multiple hormone signaling pathways in the largemouth bass (Micropterus salmoides) liver.

    PubMed

    Martyniuk, Christopher J; Spade, Daniel J; Blum, Jason L; Kroll, Kevin J; Denslow, Nancy D

    2011-02-01

    Methoxychlor (MXC) is an organochlorine pesticide that has been shown to have estrogenic activity by activating estrogen receptors and inducing vitellogenin production in male fish. Previous studies report that exposure to MXC induces changes in mRNA abundance of reproductive genes in the liver and testes of largemouth bass (Micropterus salmoides). The objective of the present study was to better characterize the mode of action of MXC by measuring the global transcriptomic response in the male largemouth liver using an oligonucleotide microarray. Microarray analysis identified highly significant changes in the expression of 37 transcripts (p<0.001) (20 induced and 17 decreased) in the liver after MXC injection and a total of 900 expression changes (p<0.05) in transcripts with high homology to known genes. Largemouth bass estrogen receptor alpha (esr1) and androgen receptor (ar) were among the transcripts that were increased in the liver after MXC treatment. Functional enrichment analysis identified the molecular functions of steroid binding and androgen receptor activity as well as steroid hormone receptor activity as being significantly over-represented gene ontology terms. Pathway analysis identified c-fos signaling as being putatively affected through both estrogen and androgen signaling. This study provides evidence that MXC elicits transcriptional effects through the estrogen receptor as well as androgen receptor-mediated pathways in the liver.

  19. Multiple cone pathways are involved in photic regulation of retinal dopamine

    PubMed Central

    Qiao, Sheng-Nan; Zhang, Zhijing; Ribelayga, Christophe P.; Zhong, Yong-Mei; Zhang, Dao-Qi

    2016-01-01

    Dopamine is a key neurotransmitter in the retina and plays a central role in the light adaptive processes of the visual system. The sole source of retinal dopamine is dopaminergic amacrine cells (DACs). We and others have previously demonstrated that DACs are activated by rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) upon illumination. However, it is still not clear how each class of photosensitive cells generates light responses in DACs. We genetically isolated cone function in mice to specifically examine the cone-mediated responses of DACs and their neural pathways. In addition to the reported excitatory input to DACs from light-increment (ON) bipolar cells, we found that cones alternatively signal to DACs via a retrograde signalling pathway from ipRGCs. Cones also produce ON and light-decrement (OFF) inhibitory responses in DACs, which are mediated by other amacrine cells, likely driven by type 1 and type 2/3a OFF bipolar cells, respectively. Dye injections indicated that DACs had similar morphological profiles with or without ON/OFF inhibition. Our data demonstrate that cones utilize specific parallel excitatory and inhibitory circuits to modulate DAC activity and efficiently regulate dopamine release and the light-adaptive state of the retina. PMID:27356880

  20. The proinflammatory cytokine interleukin-18 alters multiple signaling pathways to inhibit natural killer cell death

    USGS Publications Warehouse

    Hodge, D.L.; Subleski, J.J.; Reynolds, D.A.; Buschman, M.D.; Schill, W.B.; Burkett, M.W.; Malyguine, A.M.; Young, H.A.

    2006-01-01

    The proinflammatory cytokine, interleukin-18 (IL-18), is a natural killer (NK) cell activator that induces NK cell cytotoxicity and interferon-?? (IFN-??) expression. In this report, we define a novel role for IL-18 as an NK cell protective agent. Specifically, IL-18 prevents NK cell death initiated by different and distinct stress mechanisms. IL-18 reduces NK cell self-destruction during NK-targeted cell killing, and in the presence of staurosporin, a potent apoptotic inducer, IL-18 reduces caspase-3 activity. The critical regulatory step in this process is downstream of the mitochondrion and involves reduced cleavage and activation of caspase-9 and caspase-3. The ability of IL-18 to regulate cell survival is not limited to a caspase death pathway in that IL-18 augments tumor necrosis factor (TNF) signaling, resulting in increased and prolonged mRNA expression of c-apoptosis inhibitor 2 (cIAP2), a prosurvival factor and caspase-3 inhibitor, and TNF receptor-associated factor 1 (TRAF1), a prosurvival protein. The cumulative effects of IL-18 define a novel role for this cytokine as a molecular survival switch that functions to both decrease cell death through inhibition of the mitochondrial apoptotic pathway and enhance TNF induction of prosurvival factors. ?? Mary Ann Liebert, Inc.

  1. Methoxychlor affects multiple hormone signaling pathways in the largemouth bass (Micropterus salmoides) liver

    PubMed Central

    Martyniuk, Christopher J.; Spade, Daniel J.; Blum, Jason L.; Kroll, Kevin J.; Denslow, Nancy D.

    2011-01-01

    Methoxychlor (MXC) is an organochlorine pesticide that has been shown to have estrogenic activity by activating estrogen receptors and inducing vitellogenin production in male fish. Previous studies report that exposure to MXC induces changes in mRNA abundance of reproductive genes in the liver and testes of largemouth bass (Micropterus salmoides). The objective of the present study was to better characterize the mode of action of MXC by measuring the global transcriptomic response in the male largemouth liver using an oligonucleotide microarray. Microarray analysis identified highly significant changes in the expression of 37 transcripts (p<0.001) (20 induced and 17 decreased) in the liver after MXC injection and a total of 900 expression changes (p<0.05) in transcripts with high homology to known genes. Largemouth bass estrogen receptor alpha (esr1) and androgen receptor (ar) were among the transcripts that were increased in the liver after MXC treatment. Functional enrichment analysis identified the molecular functions of steroid binding and androgen receptor activity as well as steroid hormone receptor activity as being significantly over-represented gene ontology terms. Pathway analysis identified c-fos signaling as being putatively affected through both estrogen and androgen signaling. This study provides evidence that MXC elicits transcriptional effects through the estrogen receptor as well as androgen receptor-mediated pathways in the liver. PMID:21276474

  2. Requirement for the plastidial oxidative pentose phosphate pathway for nitrate assimilation in Arabidopsis.

    PubMed

    Bussell, John D; Keech, Olivier; Fenske, Ricarda; Smith, Steven M

    2013-08-01

    Sugar metabolism and the oxidative pentose phosphate pathway (OPPP) are strongly implicated in N assimilation, although the relationship between them and the roles of the plastidial and cytosolic OPPP have not been established genetically. We studied a knock-down mutant of the plastid-localized OPPP enzyme 6-phosphogluconolactonase 3 (PGL3). pgl3-1 plants exhibited relatively greater resource allocation to roots but were smaller than the wild type. They had a lower content of amino acids and free NO3 - in leaves than the wild type, despite exhibiting comparable photosynthetic rates and efficiency, and normal levels of many other primary metabolites. When N-deprived plants were fed via the roots with 15NO3 -, pgl3-1 exhibited normal induction of OPPP and nitrate assimilation genes in roots, and amino acids in roots and shoots were labeled with (15) N at least as rapidly as in the wild type. However, when N-replete plants were fed via the roots with sucrose, expression of specific OPPP and N assimilation genes in roots increased in the wild type but not in pgl3-1. Thus, sugar-dependent expression of N assimilation genes requires OPPP activity and the specificity of the effect of the pgl3-1 mutation on N assimilation genes establishes that it is not the result of general energy deficiency or accumulation of toxic intermediates. We conclude that expression of specific nitrate assimilation genes in the nucleus of root cells is positively regulated by a signal emanating from OPPP activity in the plastid.

  3. Yeast Pescadillo is required for multiple activities during 60S ribosomal subunit synthesis.

    PubMed Central

    Oeffinger, Marlene; Leung, Anthony; Lamond, Angus; Tollervey, David; Lueng, Anthony

    2002-01-01

    The Pescadillo protein was identified via a developmental defect and implicated in cell cycle progression. Here we report that human Pescadillo and its yeast homolog (Yph1p or Nop7p) are localized to the nucleolus. Depletion of Nop7p leads to nuclear accumulation of pre-60S particles, indicating a defect in subunit export, and it interacts genetically with a tagged form of the ribosomal protein Rpl25p, consistent with a role in subunit assembly. Two pre-rRNA processing pathways generate alternative forms of the 5.8S rRNA, designated 5.8S(L) and 5.8Ss. In cells depleted for Nop7p, the 27SA3 pre-rRNA accumulated, whereas later processing intermediates and the mature 5.8Ss rRNA were depleted. Less depletion was seen for the 5.8S(L) pathway. TAP-tagged Nop7p coprecipitated precursors to both 5.8S(L) and 5.8Ss but not the mature rRNAs. We conclude that Nop7p is required for efficient exonucleolytic processing of the 27SA3 pre-rRNA and has additional functions in 60S subunit assembly and transport. Nop7p is a component of at least three different pre-60S particles, and we propose that it carries out distinct functions in each of these complexes. PMID:12022229

  4. Influenza A Viral Replication Is Blocked by Inhibition of the Inositol-requiring Enzyme 1 (IRE1) Stress Pathway*

    PubMed Central

    Hassan, Ihab H.; Zhang, Michael S.; Powers, Linda S.; Shao, Jian Q.; Baltrusaitis, Jonas; Rutkowski, D. Thomas; Legge, Kevin; Monick, Martha M.

    2012-01-01

    Known therapies for influenza A virus infection are complicated by the frequent emergence of resistance. A therapeutic strategy that may escape viral resistance is targeting host cellular mechanisms involved in viral replication and pathogenesis. The endoplasmic reticulum (ER) stress response, also known as the unfolded protein response (UPR), is a primitive, evolutionary conserved molecular signaling cascade that has been implicated in multiple biological phenomena including innate immunity and the pathogenesis of certain viral infections. We investigated the effect of influenza A viral infection on ER stress pathways in lung epithelial cells. Influenza A virus induced ER stress in a pathway-specific manner. We showed that the virus activates the IRE1 pathway with little or no concomitant activation of the PERK and the ATF6 pathways. When we examined the effects of modulating the ER stress response on the virus, we found that the molecular chaperone tauroursodeoxycholic acid (TUDCA) significantly inhibits influenza A viral replication. In addition, a specific inhibitor of the IRE1 pathway also blocked viral replication. Our findings constitute the first evidence that ER stress plays a role in the pathogenesis of influenza A viral infection. Decreasing viral replication by modulating the host ER stress response is a novel strategy that has important therapeutic implications. PMID:22194594

  5. Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein

    SciTech Connect

    Yang, Jinhua; Lv, Jun; Wang, Yuyan; Gao, Shuang; Yao, Qianqian; Qu, Di; Ye, Rong

    2012-06-05

    A conserved cysteine-rich motif located between the transmembrane domain and the endodomain is essential for membrane fusion and assembly of coronavirus spike (S) protein. Here, we proved that three cysteines within the motif, but not dependent on position, are minimally required for the survival of the recombinant mouse hepatitis virus. When the carboxy termini with these mutated motifs of S proteins were respectively introduced into a heterogeneous protein, both incorporation into lipid rafts and S-palmitoylation of these recombinant proteins showed a similar quantity requirement to cysteine residues. Meanwhile, the redistribution of these proteins on cellular surface indicated that the absence of the positively charged rather than cysteine residues in the motif might lead the dramatic reduction in syncytial formation of some mutants with the deleted motifs. These results suggest that multiple cysteine as well as charged residues concurrently improves the membrane-associated functions of S protein in viral replication and cytopathogenesis.

  6. Multiple Requirements of the Focal Dermal Hypoplasia Gene Porcupine during Ocular Morphogenesis

    PubMed Central

    Bankhead, Elizabeth J.; Colasanto, Mary P.; Dyorich, Kayla M.; Jamrich, Milan; Murtaugh, L. Charles; Fuhrmann, Sabine

    2016-01-01

    Wnt glycoproteins control key processes during development and disease by activating various downstream pathways. Wnt secretion requires post-translational modification mediated by the O-acyltransferase encoded by the Drosophila porcupine homolog gene (PORCN). In humans, PORCN mutations cause focal dermal hypoplasia (FDH, or Goltz syndrome), an X-linked dominant multisystem birth defect that is frequently accompanied by ocular abnormalities such as coloboma, microphthalmia, or even anophthalmia. Although genetic ablation of Porcn in mouse has provided insight into the etiology of defects caused by ectomesodermal dysplasia in FDH, the requirement for Porcn and the actual Wnt ligands during eye development have been unknown. In this study, Porcn hemizygosity occasionally caused ocular defects reminiscent of FDH. Conditional inactivation of Porcn in periocular mesenchyme led to defects in mid- and hindbrain and in craniofacial development, but was insufficient to cause ocular abnormalities. However, a combination of conditional Porcn depletion in optic vesicle neuroectoderm, lens, and neural crest–derived periocular mesenchyme induced severe eye abnormalities with high penetrance. In particular, we observed coloboma, transdifferentiation of the dorsal and ventral retinal pigment epithelium, defective optic cup periphery, and closure defects of the eyelid, as well as defective corneal morphogenesis. Thus, Porcn is required in both extraocular and neuroectodermal tissues to regulate distinct Wnt-dependent processes during morphogenesis of the posterior and anterior segments of the eye. PMID:25451153

  7. BDNF-mediated regulation of ethanol consumption requires the activation of the MAP kinase pathway and protein synthesis.

    PubMed

    Jeanblanc, Jerome; Logrip, Marian L; Janak, Patricia H; Ron, Dorit

    2013-02-01

    We previously found that the brain-derived neurotrophic factor (BDNF) in the dorsolateral striatum (DLS) is part of a homeostatic pathway that gates ethanol self-administration [Jeanblanc et al. (2009). J Neurosci, 29, 13494-13502)]. Specifically, we showed that moderate levels (10%) of ethanol consumption increase BDNF expression within the DLS, and that direct infusion of BDNF into the DLS decreases operant self-administration of a 10% ethanol solution. BDNF binding to its receptor, TrkB, activates the mitogen-activated protein kinase (MAPK), phospholipase C-γ (PLC-γ) and phosphatidylinositol 3-kinase (PI3K) pathways. Thus, here, we set out to identify which of these intracellular pathway(s) plays a role in the regulation of ethanol consumption by BDNF. We found that inhibition of the MAPK, but not PLC-γ or PI3K, activity blocks the BDNF-mediated reduction of ethanol consumption. As activation of the MAPK pathway leads to the initiation of transcription and/or translation events, we tested whether the BDNF-mediated reduction of ethanol self-administration requires de novo protein synthesis. We found that the inhibitory effect of BDNF on ethanol intake is blocked by the protein synthesis inhibitor cycloheximide. Together, our results show that BDNF attenuates ethanol drinking via activation of the MAPK pathway in a protein synthesis-dependent manner within the DLS.

  8. BDNF-mediated regulation of ethanol consumption requires the activation of the MAP kinase pathway and protein synthesis

    PubMed Central

    Jeanblanc, Jerome; Logrip, Marian L.; Janak, Patricia H.; Ron, Dorit

    2013-01-01

    We previously found that the brain-derived neurotrophic factor (BDNF) in the dorsolateral striatum (DLS) is part of a homeostatic pathway that gates ethanol self-administration [Jeanblanc et al. (2009). J Neurosci, 29, 13494–13502)]. Specifically, we showed that moderate levels (10%) of ethanol consumption increase BDNF expression within the DLS, and that direct infusion of BDNF into the DLS decreases operant self-administration of a 10% ethanol solution. BDNF binding to its receptor, TrkB, activates the mitogen-activated protein kinase (MAPK), phospholipase C-γ (PLC-γ) and phosphatidylinositol 3-kinase (PI3K) pathways. Thus, here, we set out to identify which of these intracellular pathway(s) plays a role in the regulation of ethanol consumption by BDNF. We found that inhibition of the MAPK, but not PLC-γ or PI3K, activity blocks the BDNF-mediated reduction of ethanol consumption. As activation of the MAPK pathway leads to the initiation of transcription and/or translation events, we tested whether the BDNF-mediated reduction of ethanol self-administration requires de novo protein synthesis. We found that the inhibitory effect of BDNF on ethanol intake is blocked by the protein synthesis inhibitor cycloheximide. Together, our results show that BDNF attenuates ethanol drinking via activation of the MAPK pathway in a protein synthesis-dependent manner within the DLS. PMID:23189980

  9. Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site

    DOE PAGES

    Hodshire, Anna L.; Lawler, Michael J.; Zhao, Jun; Ortega, John; Jen, Coty; Yli-Juuti, Taina; Brewer, Jared F.; Kodros, Jack K.; Barsanti, Kelley C.; Hanson, Dave R.; et al

    2016-07-28

    New-particle formation (NPF) is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low-volatility species, from diameters  ∼  1 to 30–100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available), condensation of organic vapors, uptake of organic acids through acid–base chemistrymore » in the particle phase, and accretion of organic molecules in the particle phase to create a lower-volatility compound that then contributes to the aerosol mass. The relative importance of each pathway is uncertain and is the focus of this work. The 2013 New Particle Formation Study (NPFS) measurement campaign took place at the DOE Southern Great Plains (SGP) facility in Lamont, Oklahoma, during spring 2013. Measured gas- and particle-phase compositions during these new-particle growth events suggest three distinct growth pathways: (1) growth by primarily organics, (2) growth by primarily sulfuric acid and ammonia, and (3) growth by primarily sulfuric acid and associated bases and organics. To supplement the measurements, we used the particle growth model MABNAG (Model for Acid–Base chemistry in NAnoparticle Growth) to gain further insight into the growth processes on these 3 days at SGP. MABNAG simulates growth from (1) sulfuric-acid condensation (and subsequent salt formation with ammonia or amines), (2) near-irreversible condensation from nonreactive extremely low-volatility organic compounds (ELVOCs), and (3) organic-acid condensation and subsequent salt formation with ammonia or amines. MABNAG is able to corroborate the

  10. Capping protein integrates multiple MAMP signalling pathways to modulate actin dynamics during plant innate immunity.

    PubMed

    Li, Jiejie; Henty-Ridilla, Jessica L; Staiger, Benjamin H; Day, Brad; Staiger, Christopher J

    2015-01-01

    Plants and animals perceive diverse microbe-associated molecular patterns (MAMPs) via pattern recognition receptors and activate innate immune signalling. The actin cytoskeleton has been suggested as a target for innate immune signalling and a key transducer of cellular responses. However, the molecular mechanisms underlying actin remodelling and the precise functions of these rearrangements during innate immunity remain largely unknown. Here we demonstrate rapid actin remodelling in response to several distinct MAMP signalling pathways in plant epidermal cells. The regulation of actin dynamics is a convergence point for basal defence machinery, such as cell wall fortification and transcriptional reprogramming. Our quantitative analyses of actin dynamics and genetic studies reveal that MAMP-stimulated actin remodelling is due to the inhibition of capping protein (CP) by the signalling lipid, phosphatidic acid. In addition, CP promotes resistance against bacterial and fungal phytopathogens. These findings demonstrate that CP is a central target for the plant innate immune response. PMID:26018794

  11. A simple procedure eliminating multiple optimization steps required in developing multiplex PCR reactions

    SciTech Connect

    Grondin, V.; Roskey, M.; Klinger, K.; Shuber, T.

    1994-09-01

    The PCR technique is one of the most powerful tools in modern molecular genetics and has achieved widespread use in the analysis of genetic diseases. Typically, a region of interest is amplified from genomic DNA or cDNA and examined by various methods of analysis for mutations or polymorphisms. In cases of small genes and transcripts, amplification of single, small regions of DNA are sufficient for analysis. However, when analyzing large genes and transcripts, multiple PCRs may be required to identify the specific mutation or polymorphism of interest. Ever since it has been shown that PCR could simultaneously amplify multiple loci in the human dystrophin gene, multiplex PCR has been established as a general technique. The properities of multiplex PCR make it a useful tool and preferable to simultaneous uniplex PCR in many instances. However, the steps for developing a multiplex PCR can be laborious, with significant difficulty in achieving equimolar amounts of several different amplicons. We have developed a simple method of primer design that has enabled us to eliminate a number of the standard optimization steps required in developing a multiplex PCR. Sequence-specific oligonucleotide pairs were synthesized for the simultaneous amplification of multiple exons within the CFTR gene. A common non-complementary 20 nucleotide sequence was attached to each primer, thus creating a mixture of primer pairs all containing a universal primer sequence. Multiplex PCR reactions were carried out containing target DNA, a mixture of several chimeric primer pairs and primers complementary to only the universal portion of the chimeric primers. Following optimization of conditions for the universal primer, limited optimization was needed for successful multiplex PCR. In contrast, significant optimization of the PCR conditions were needed when pairs of sequence specific primers were used together without the universal sequence.

  12. Antiapoptotic effects of erythropoietin in differentiated neuroblastoma SH-SY5Y cells require activation of both the STAT5 and AKT signaling pathways.

    PubMed

    Um, Moonkyoung; Lodish, Harvey F

    2006-03-01

    The hematopoietic cytokine erythropoietin (Epo) prevents neuronal death during ischemic events in the brain and in neurodegenerative diseases, presumably through its antiapoptotic effects. To explore the role of different signaling pathways in Epo-mediated antiapoptotic effects in differentiated human neuroblastoma SH-SY5Y cells, we employed a prolactin receptor (PrlR)/erythropoietin receptor (EpoR) chimera system, in which binding of prolactin (Prl) to the extracellular domain activates EpoR signaling in the cytosol. On induction of apoptosis by staurosporine, Prl supports survival of the SH-SY5Y cells expressing the wild-type PrlR/EpoR chimera. In these cells Prl treatment strongly activates the STAT5, AKT, and MAPK signaling pathways and induces weak activation of the p65 NF-kappaB factor. Selective mutation of the eight tyrosine residues of the EpoR cytoplasmic domain results in impaired or absent activation of either STAT5 (mutation of Tyr(343)) or AKT (mutation of Tyr(479)) or both (mutation of all eight tyrosine residues). Most interestingly, Prl treatment does not prevent apoptosis in cells expressing mutant PrlR/EpoR chimeras in which either the STAT5 or the AKT signaling pathways are not activated. In contrast, ERK 1/2 is fully activated by all mutant PrlR/EpoR chimeras, comparable with the level seen with the wild-type PrlR/EpoR chimera, implying that activation of the MAPK signaling pathway per se is not sufficient for antiapoptotic activity. Therefore, the antiapoptotic effects of Epo in neuronal cells require the combinatorial activation of multiple signaling pathways, including STAT5, AKT, and potentially MAPK as well, in a manner similar to that observed in hematopoietic cells.

  13. A novel L-type lectin was required for the multiplication of WSSV in red swamp crayfish (Procambarus clakii).

    PubMed

    Dai, Yunjia; Wang, Yuqing; Zhao, Lingling; Qin, Zhendong; Yuan, Junfa; Qin, Qiwei; Lin, Li; Lan, Jiangfeng

    2016-08-01

    L-type lectins are involved in glycoproteins secretory pathways and are associated with many immune responses. There is growing evidence that L-type lectins are also involved in viral replication. In this study, a novel L-type lectin (named as PcL-lectin) was identified from red swamp crayfish (Procambarus clakii). Gene sequencing and phylogenetic tree analysis results showed that the PcL-lectin was a kind of endoplasmic reticulum Golgi intermediate compartment-53 (ERGIC-53). The expression level of PcL-lectin was significantly down regulated in crayfish after challenged with white spot syndrome virus (WSSV). Recombinant PcL-lectin protein facilitated the replication of WSSV in crayfish. In addition, WSSV replication was decreased when endogenous PcL-lectin was knocked down by RNA interference in crayfish. Furthermore, PcL-lectin may interact with VP24, an envelope protein of WSSV. Our results suggest that PcL-lectin may be required for the multiplication of WSSV, and will pave a new way for the developing of strategies against WSSV infection. PMID:27208793

  14. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells.

    PubMed

    Zub, Kamila Anna; Sousa, Mirta Mittelstedt Leal de; Sarno, Antonio; Sharma, Animesh; Demirovic, Aida; Rao, Shalini; Young, Clifford; Aas, Per Arne; Ericsson, Ida; Sundan, Anders; Jensen, Ole Nørregaard; Slupphaug, Geir

    2015-01-01

    Alkylating agents are widely used chemotherapeutics in the treatment of many cancers, including leukemia, lymphoma, multiple myeloma, sarcoma, lung, breast and ovarian cancer. Melphalan is the most commonly used chemotherapeutic agent against multiple myeloma. However, despite a 70-80% initial response rate, virtually all patients eventually relapse due to the emergence of drug-resistant tumour cells. By using global proteomic and transcriptomic profiling on melphalan sensitive and resistant RPMI8226 cell lines followed by functional assays, we discovered changes in cellular processes and pathways not previously associated with melphalan resistance in multiple myeloma cells, including a metabolic switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto reductase levels of the AKR1C family involved in prostaglandin synthesis contribute to the resistant phenotype. Finally, selected metabolic and oxidative stress response enzymes were targeted by inhibitors, several of which displayed a selective cytotoxicity against the melphalan-resistant cells and should be further explored to elucidate their potential to overcome melphalan resistance.

  15. Multiple Smaller Missions as a Direct Pathway to Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Draper, D. S.; Evans, C. A.; Gibson, E. K.; Graham, L. D.; Jones, J. H.; Lederer, S. M.; Ming, D.; Seaman, C. H.; Archer, P. D.; Andrews-Hanna, J.; Baldridge, A. M.; Bourke, M. C.; Crown, D. A.; Fries, M.; Knudson, A. T.; Michalski, J.; Dobrea, E. Noe; Vaniman, D.; Weitz, C. M.; Williams, R. M. E.; Bell, J. F., III; Knauth, L. P.

    2012-01-01

    Recent discoveries by the Mars Exploration Rovers, Mars Express, Mars Odyssey, and Mars Reconnaissance Orbiter spacecraft include multiple, tantalizing astrobiological targets representing both past and present environments on Mars. The most desirable path to Mars Sample Return (MSR) would be to collect and return samples from that site which provides the clearest examples of the variety of rock types considered a high priority for sample return (pristine igneous, sedimentary, and hydrothermal). Here we propose an MSR architecture in which the next steps (potentially launched in 2018) would entail a series of smaller missions, including caching, to multiple landing sites to verify the presence of high priority sample return targets through in situ analyses. This alternative architecture to one flagship-class sample caching mission to a single site would preserve a direct path to MSR as stipulated by the Planetary Decadal Survey, while permitting investigation of diverse deposit types and providing comparison of the site of returned samples to other aqueous environments on early Mars

  16. RAB5 activation is required for multiple steps in Arabidopsis thaliana root development.

    PubMed

    Inoue, Takeshi; Kondo, Yuki; Naramoto, Satoshi; Nakano, Akihiko; Ueda, Takashi

    2013-10-01

    Rab GTPases regulate the tethering and fusion of transport vesicles to target membranes in membrane trafficking by acting as a molecular switch, cycling between GDP- and GTP-bound states. RAB5 is a member of the Rab GTPase family, the members of which have been shown to perform various functions in the endocytic pathway, including the regulation of endosomal fusion and motility in animal cells. RAB5-mediated endosomal trafficking has also been found to play important roles in various higher order plant functions, which include the regulation of the polar transport of auxin and responses to environmental conditions. The regulatory mechanisms and functions of plant RAB5 have also been investigated at the molecular and cellular levels. However, the significance of RAB5 activity at the tissue and organ levels has hardly been investigated thus far. In the present study, we examined the effect of a mutation in VPS9a, which encodes the sole guanine nucleotide exchange factor for all RAB5s in the vegetative stages of Arabidopsis thaliana. We found that multiple developmental processes were impaired in the mutant plants, including the growth and pattern formation of the roots and establishment of auxin maxima. Our results indicate that RAB5 plays distinctive pivotal roles in the development of plants.

  17. Hepatitis C virus core protein triggers hepatic angiogenesis by a mechanism including multiple pathways.

    PubMed

    Hassan, Mohamed; Selimovic, Denis; Ghozlan, Hanan; Abdel-kader, Ola

    2009-05-01

    Chronic hepatitis C virus (HCV) infection is associated with the production of serum cytokines, including transforming growth factor (TGF)-beta2. Despite the occurrence of hepatic angiogenesis in liver conditions, the role of HCV proteins in this context is currently unknown. We demonstrated that the development of hepatic neoangiogenesis in patients infected with HCV is associated with the expression of TGF-beta2 and vascular endothelial growth factor (VEGF) and with activation of endothelial cells, as evidenced by CD34 expression. The analysis of liver biopsies of HCV-positive and HCV-negative patients using immunostaining showed significant elevation of TGF-beta2, VEGF, and CD34 expression in patients who were HCV-positive. Using an HCV established culture system, we confirmed further the production of both TGF-beta2 and VEGF proteins, in the hepatoma cell lines HepG2 and Huh7 by transfection with full-length HCV RNA (JFH1) or by the regulated expression of core. In addition, regulated expression of core protein in HepG2 or Huh7 cells was found to induce expression and activation of the transcription factor E2F1 and apoptosis signal-regulating kinase 1 (ASK1), activation of c-jun-N-terminal kinase (JNK) and p38, and extracellular-regulated kinase (ERK), and transcription factors activator protein 1 (AP-1), activating transcription factor 2 (ATF-2), cyclic adenosine monophosphate response element binding (CREB), E2F1, hypoxia inducing factor 1 alpha (HIF-1alpha), and specificity protein 1. Furthermore, data obtained from inhibitor experiments revealed the importance of E2F1 and ASK1 in the modulation of core-induced activation of JNK and p38 pathways and suggested an essential role for JNK, p38, and ERK pathways in the regulation of core-induced production of TGF-beta2 and VEGF proteins. Thus, our data provide insight into the molecular mechanisms whereby core protein mediates the development of hepatic angiogenesis in patients with chronic HCV infection.

  18. Signaling of chloroquine-induced stress in the yeast Saccharomyces cerevisiae requires the Hog1 and Slt2 mitogen-activated protein kinase pathways.

    PubMed

    Baranwal, Shivani; Azad, Gajendra Kumar; Singh, Vikash; Tomar, Raghuvir S

    2014-09-01

    Chloroquine (CQ) has been under clinical use for several decades, and yet little is known about CQ sensing and signaling mechanisms or about their impact on various biological pathways. We employed the budding yeast Saccharomyces cerevisiae as a model organism to study the pathways targeted by CQ. Our screening with yeast mutants revealed that it targets histone proteins and histone deacetylases (HDACs). Here, we also describe the novel role of mitogen-activated protein kinases Hog1 and Slt2, which aid in survival in the presence of CQ. Cells deficient in Hog1 or Slt2 are found to be CQ hypersensitive, and both proteins were phosphorylated in response to CQ exposure. CQ-activated Hog1p is translocated to the nucleus and facilitates the expression of GPD1 (glycerol-3-phosphate dehydrogenase), which is required for the synthesis of glycerol (one of the major osmolytes). Moreover, cells treated with CQ exhibited an increase in intracellular reactive oxygen species (ROS) levels and the effects were rescued by addition of reduced glutathione to the medium. The deletion of SOD1, the superoxide dismutase in yeast, resulted in hypersensitivity to CQ. We have also observed P38 as well as P42/44 phosphorylation in HEK293T human cells upon exposure to CQ, indicating that the kinds of responses generated in yeast and human cells are similar. In summary, our findings define the multiple biological pathways targeted by CQ that might be useful for understanding the toxicity modulated by this pharmacologically important molecule.

  19. Docosahexaenoic Acid Modulates Invasion and Metastasis of Human Ovarian Cancer via Multiple Molecular Pathways

    PubMed Central

    Wang, Ying-Chun; Wu, Yi-Nan; Wang, Su-Li; Lin, Qing-Hua; He, Ming-Fang; Liu, Qiao-lin; Wang, Jin-Hua

    2016-01-01

    Objective We investigated the effect of docosahexaenoic acid (DHA) on the invasion and metastasis of ovarian cancer cells (A2780, HO8910, and SKOV-3). Methods Cytotoxicity assay was performed to determine the optimal doses of DHA in this experiment. The effects of DHA on invasion ability were assessed by invasion assay. The expressions of messenger RNA and/or proteins associated with invasion or metastasis were detected by quantitative Real Time-Polymerase Chain Reaction or Western blot. The effect of DHA on cell metastasis was assessed in xenograft model of zebrafish. Results Docosahexaenoic acid and α-linolenic acid could reduce the cell vitalities in dose-dependent manner. However, DHA inhibited the invasion and metastasis of ovarian cancer cells, but α-linolenic acid did not (**P < 0.01). Docosahexaenoic acid could downregulate the expressions of WAVE3, vascular endothelial cell growth factor, and MMP-9, and upregulate KISS-1, TIMP-1, and PPAR-γ, which negatively correlated with cell invasion and metastasis (*P < 0.05). Docosahexaenoic acid restrained the development of subintestinal vessels and cancer cell metastasis in xenograft model of zebrafish (**P < 0.01). Conclusions Docosahexaenoic acid inhibited the invasion and metastasis of ovarian cancer cells in vitro and in vivo through the modulation of NF-κB signaling pathway, suggesting that DHA is a promising candidate for ovarian cancer therapy. PMID:27258728

  20. Estrogen receptor-mediated transcription involves the activation of multiple kinase pathways in neuroblastoma cells.

    PubMed

    Clark, Sara; Rainville, Jennifer; Zhao, Xing; Katzenellenbogen, Benita S; Pfaff, Donald; Vasudevan, Nandini

    2014-01-01

    While many physiological effects of estrogens (E) are due to regulation of gene transcription by liganded estrogen receptors (ERs), several effects are also mediated, at least in part, by rapid non-genomic actions of E. Though the relative importance of rapid versus genomic effects in the central nervous system is controversial, we showed previously that membrane-limited effects of E, initiated by an estradiol bovine serum albumin conjugate (E2-BSA), could potentiate transcriptional effects of 17β-estradiol from an estrogen response element (ERE)-reporter in neuroblastoma cells. Here, using specific inhibitors and activators in a pharmacological approach, we show that activation of phosphatidylinositol-3-phosphate kinase (PI3K) and mitogen activated protein kinase (MAPK) pathways, dependent on a Gαq coupled receptor signaling are important in this transcriptional potentiation. We further demonstrate, using ERα phospho-deficient mutants, that E2-BSA mediated phosphorylation of ERα is one mechanism to potentiate transcription from an ERE reporter construct. This study provides a possible mechanism by which signaling from the membrane is coupled to transcription in the nucleus, providing an integrated view of hormone signaling in the brain.

  1. Cell differentiation along multiple pathways accompanied by changes in histone acetylation status.

    PubMed

    Legartová, Soňa; Kozubek, Stanislav; Franek, Michal; Zdráhal, Zbyněk; Lochmanová, Gabriela; Martinet, Nadine; Bártová, Eva

    2014-04-01

    Post-translational modification of histones is fundamental to the regulation of basic nuclear processes and subsequent cellular events, including differentiation. In this study, we analyzed acetylated forms of histones H2A, H2B, and H4 during induced differentiation in mouse (mESCs) and human (hESCs) embryonic stem cells and during induced enterocytic differentiation of colon cancer cells in vitro. Endoderm-like differentiation of mESCs induced by retinoic acid and enterocytic differentiation induced by histone deacetylase inhibitor sodium butyrate were accompanied by increased mono-, di-, and tri-acetylation of histone H2B and a pronounced increase in di- and tri-acetylation of histone H4. In enterocytes, mono-acetylation of histone H2A also increased and tetra-acetylation of histone H4 appeared only after induction of this differentiation pathway. During differentiation of hESCs, we observed increased mono-acetylation and decreased tri-acetylation of H2B. Mono-, di-, and tri-acetylation of H4 were reduced, manifested by a significant increase in nonacetylated H4 histones. Levels of acetylated histones increased during induced differentiation in mESCs and during histone deacetylase (HDAC) inhibitor-induced enterocytic differentiation, whereas differentiation of human ESCs was associated with reduced acetylation of histones H2B and H4.

  2. Tissue Factor Pathway Inhibitor: Multiple Anticoagulant Activities for a Single Protein.

    PubMed

    Mast, Alan E

    2016-01-01

    Tissue factor (TF) pathway inhibitor (TFPI) is an anticoagulant protein that inhibits early phases of the procoagulant response. Alternatively spliced isoforms of TFPI are differentially expressed by endothelial cells and human platelets and plasma. The TFPIβ isoform localizes to the endothelium surface where it is a potent inhibitor of TF-factor VIIa complexes that initiate blood coagulation. The TFPIα isoform is present in platelets. TFPIα contains a stretch of 9 amino acids nearly identical to those found in the B-domain of factor V that are well conserved in mammals. These amino acids provide exosite binding to activated factor V, which allows for TFPIα to inhibit prothrombinase during the initiation phase of blood coagulation. Endogenous inhibition at this point in the coagulation cascade was only recently recognized and has provided a biochemical rationale to explain the pathophysiological mechanisms underlying several clinical disorders. These include the east Texas bleeding disorder that is caused by production of an altered form of factor V with high affinity for TFPI and a paradoxical procoagulant effect of heparins. In addition, these findings have led to ideas for pharmacological targeting of TFPI that may reduce bleeding in hemophilia patients.

  3. Plasma Membrane Abundance of Human Aquaporin 5 Is Dynamically Regulated by Multiple Pathways.

    PubMed

    Kitchen, Philip; Öberg, Fredrik; Sjöhamn, Jennie; Hedfalk, Kristina; Bill, Roslyn M; Conner, Alex C; Conner, Matthew T; Törnroth-Horsefield, Susanna

    2015-01-01

    Aquaporin membrane protein channels mediate cellular water flow. Human aquaporin 5 (AQP5) is highly expressed in the respiratory system and secretory glands where it facilitates the osmotically-driven generation of pulmonary secretions, saliva, sweat and tears. Dysfunctional trafficking of AQP5 has been implicated in several human disease states, including Sjögren's syndrome, bronchitis and cystic fibrosis. In order to investigate how the plasma membrane expression levels of AQP5 are regulated, we studied real-time translocation of GFP-tagged AQP5 in HEK293 cells. We show that AQP5 plasma membrane abundance in transfected HEK293 cells is rapidly and reversibly regulated by at least three independent mechanisms involving phosphorylation at Ser156, protein kinase A activity and extracellular tonicity. The crystal structure of a Ser156 phosphomimetic mutant indicates that its involvement in regulating AQP5 membrane abundance is not mediated by a conformational change of the carboxy-terminus. We suggest that together these pathways regulate cellular water flow. PMID:26569106

  4. Plasma Membrane Abundance of Human Aquaporin 5 Is Dynamically Regulated by Multiple Pathways

    PubMed Central

    Kitchen, Philip; Öberg, Fredrik; Sjöhamn, Jennie; Hedfalk, Kristina; Bill, Roslyn M.; Conner, Alex C.; Conner, Matthew T.; Törnroth-Horsefield, Susanna

    2015-01-01

    Aquaporin membrane protein channels mediate cellular water flow. Human aquaporin 5 (AQP5) is highly expressed in the respiratory system and secretory glands where it facilitates the osmotically-driven generation of pulmonary secretions, saliva, sweat and tears. Dysfunctional trafficking of AQP5 has been implicated in several human disease states, including Sjögren’s syndrome, bronchitis and cystic fibrosis. In order to investigate how the plasma membrane expression levels of AQP5 are regulated, we studied real-time translocation of GFP-tagged AQP5 in HEK293 cells. We show that AQP5 plasma membrane abundance in transfected HEK293 cells is rapidly and reversibly regulated by at least three independent mechanisms involving phosphorylation at Ser156, protein kinase A activity and extracellular tonicity. The crystal structure of a Ser156 phosphomimetic mutant indicates that its involvement in regulating AQP5 membrane abundance is not mediated by a conformational change of the carboxy-terminus. We suggest that together these pathways regulate cellular water flow. PMID:26569106

  5. Multiple pathways of DNA double-strand break processing in a mutant Indian muntjac cell line

    SciTech Connect

    Bouffler, S.D.; Jha, B.; Johnson, R.T. )

    1990-09-01

    DNA break processing is compared in the Indian muntjac cell lines, SVM and DM. The initial frequencies and resealing of X-ray generated single- and double-strand breaks are similar in the two cell lines. Inhibiting the repair of UV damage leads to greater double-strand breakage in SVM than in DM, and some of these breaks are not repaired; however, repair-associated single-strand breakage and resealing are normal. Dimethylsulfate also induces excess double-strand breakage in SVM, and these breaks are irreparable. Restricted plasmids are reconstituted correctly in SVM at approximately 30% of the frequency observed in DM. Thus SVM has a reduced capacity to repair certain types of double-strand break. This defect is not due to a DNA ligase deficiency. We conclude that DNA double-strand breaks are repaired by a variety of pathways within mammalian cells and that the structure of the break or its mode of formation determines its subsequent fate.

  6. Evidence for multiple pathways of sup 125 I-insulin internalization in isolated rat hepatocytes

    SciTech Connect

    Moss, A.L.

    1988-01-01

    Insulin internalization has been characterized frequently as occurring by the coated pit pathway of receptor-mediated endocytosis. The present study in rat hepatocytes demonstrates that insulin internalization is, in part, receptor-mediated, but also occurs by nonreceptor-mediated or fluid-phase endocytosis. Endocytosis was probed with four perturbations: depletion of metabolic energy with anoxia, inhibition of endocytosis with phenylarsine oxide, disruption of coated pits with hyperosmolar sucrose, and inhibition of receptor recycling or ligand-receptor dissociation with monensin. Internalization of {sup 125}I-epidermal growth factor and {sup 125}I-asialofetuin was compared to {sup 125}I-insulin internalization. Pretreatment of cells with anoxia or hyperosmolarity inhibited {sup 125}I-insulin internalization by 40%; pretreatment with phenylarsine oxide resulted in inhibition by 54%. Monensin has no effect on uptake or degradation of a high insulin concentration, but inhibited degradation of a low insulin concentration resulting in intracellular accumulation of insulin. In contract, all four perturbations inhibited {sup 125}I-asialofetuin internalization by greater than 90%. Phenylarsine oxide almost completely abolished {sup 125}I-epidermal growth factor uptake; the other perturbations caused partial inhibition. Competition studies demonstrated that insulin internalization was receptor-mediated over a wide concentration range.

  7. Multiple sites of adaptive plasticity in the owl's auditory localization pathway.

    PubMed

    DeBello, William M; Knudsen, Eric I

    2004-08-01

    In the midbrain auditory localization pathway of the barn owl, a map of auditory space is relayed from the external nucleus of the inferior colliculus (ICX) to the deep and intermediate layers of the optic tectum (OT) and from these layers to the superficial layers. Within the OT, the auditory space map aligns with a visual map of space. Raising young barn owls with a prismatic displacement of the visual field leads to progressive changes in auditory tuning in the OT that tend to realign the auditory space map with the prismatically displaced visual space map. The only known site of this adaptive plasticity is in the ICX, in which the auditory system first creates a map of space. In this study, we identified an additional site of plasticity in the OT. In owls that experienced prisms beginning late in the juvenile period, adaptive shifts in auditory tuning in the superficial layers of the OT exceeded the adaptive shifts that occurred in the deep layers of the OT or in the ICX. Anatomical results from these owls demonstrated that the topography of intrinsic OT connections was systematically altered in the adaptive direction. In juvenile owls, plasticity in the OT increased as plasticity in the ICX decreased. Because plasticity at both sites has been shown to decline substantially in adults, these results suggest that an age-dependent decrease in auditory map plasticity occurs first in the ICX and later at the higher level, in the OT. PMID:15295019

  8. Chemical modification and degradation of atrazine in Medicago sativa through multiple pathways.

    PubMed

    Zhang, Jing Jing; Lu, Yi Chen; Yang, Hong

    2014-10-01

    Atrazine is a member of the triazine herbicide family intensively used to control weeds for crop production. In this study, atrazine residues and its degraded products in alfalfa (Medicago sativa) were characterized using UPLC-TOF-MS/MS. Most of atrazine absorbed in plants was found as chemically modified derivatives like deisopropylated atrazine (DIA), dehydrogenated atrazine (DHA), or methylated atrazine (MEA), and some atrazine derivatives were conjugated through different functional groups such as sugar, glutathione, and amino acids. Interestingly, the specific conjugates DHA+hGSH (homoglutathione) and MEA-HCl+hGSH in alfalfa were detected. These results suggest that atrazine in alfalfa can be degraded through different pathways. The increased activities of glycosyltransferase and glutathione S-transferase were determined to support the atrazine degradation models. The outcome of the work uncovered the detailed mechanism for the residual atrazine accumulation and degradation in alfalfa and will help to evaluate whether the crop is suitable to be cultivated in the atrazine-polluted soil.

  9. Multiple Pathways Suppress Telomere Addition to DNA Breaks in the Drosophila Germline

    PubMed Central

    Beaucher, Michelle; Zheng, Xiao-Feng; Amariei, Flavia; Rong, Yikang S.

    2012-01-01

    Telomeres protect chromosome ends from being repaired as double-strand breaks (DSBs). Just as DSB repair is suppressed at telomeres, de novo telomere addition is suppressed at the site of DSBs. To identify factors responsible for this suppression, we developed an assay to monitor de novo telomere formation in Drosophila, an organism in which telomeres can be established on chromosome ends with essentially any sequence. Germline expression of the I-SceI endonuclease resulted in precise telomere formation at its cut site with high efficiency. Using this assay, we quantified the frequency of telomere formation in different genetic backgrounds with known or possible defects in DNA damage repair. We showed that disruption of DSB repair factors (Rad51 or DNA ligase IV) or DSB sensing factors (ATRIP or MDC1) resulted in more efficient telomere formation. Interestingly, partial disruption of factors that normally regulate telomere protection (ATM or NBS) also led to higher frequencies of telomere formation, suggesting that these proteins have opposing roles in telomere maintenance vs. establishment. In the ku70 mutant background, telomere establishment was preceded by excessive degradation of DSB ends, which were stabilized upon telomere formation. Most strikingly, the removal of ATRIP caused a dramatic increase in telomeric retrotransposon attachment to broken ends. Our study identifies several pathways thatsuppress telomere addition at DSBs, paving the way for future mechanistic studies. PMID:22446318

  10. Multiple propionyl coenzyme A-supplying pathways for production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Haloferax mediterranei.

    PubMed

    Han, Jing; Hou, Jing; Zhang, Fan; Ai, Guomin; Li, Ming; Cai, Shuangfeng; Liu, Hailong; Wang, Lei; Wang, Zejian; Zhang, Siliang; Cai, Lei; Zhao, Dahe; Zhou, Jian; Xiang, Hua

    2013-05-01

    Haloferax mediterranei is able to accumulate the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with more than 10 mol% 3-hydroxyvalerate (3HV) from unrelated carbon sources. However, the pathways that produce propionyl coenzyme A (propionyl-CoA), an important precursor of 3HV monomer, have not yet been determined. Bioinformatic analysis of H. mediterranei genome indicated that this strain uses multiple pathways for propionyl-CoA biosynthesis, including the citramalate/2-oxobutyrate pathway, the aspartate/2-oxobutyrate pathway, the methylmalonyl-CoA pathway, and a novel 3-hydroxypropionate pathway. Cofeeding of pathway intermediates and inactivating pathway-specific genes supported that these four pathways were indeed involved in the biosynthesis of 3HV monomer. The novel 3-hydroxypropionate pathway that couples CO2 assimilation with PHBV biosynthesis was further confirmed by analysis of (13)C positional enrichment in 3HV. Notably, (13)C metabolic flux analysis showed that the citramalate/2-oxobutyrate pathway (53.0% flux) and the 3-hydroxypropionate pathway (30.6% flux) were the two main generators of propionyl-CoA from glucose. In addition, genetic perturbation on the transcriptome of the ΔphaEC mutant (deficient in PHBV accumulation) revealed that a considerable number of genes in the four propionyl-CoA synthetic pathways were significantly downregulated. We determined for the first time four propionyl-CoA-supplying pathways for PHBV production in haloarchaea, particularly including a new 3-hydroxypropionate pathway. These results would provide novel strategies for the production of PHBV with controllable 3HV molar fraction.

  11. Multiple Propionyl Coenzyme A-Supplying Pathways for Production of the Bioplastic Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) in Haloferax mediterranei

    PubMed Central

    Han, Jing; Hou, Jing; Zhang, Fan; Ai, Guomin; Li, Ming; Cai, Shuangfeng; Liu, Hailong; Wang, Lei; Wang, Zejian; Zhang, Siliang; Cai, Lei; Zhao, Dahe; Zhou, Jian

    2013-01-01

    Haloferax mediterranei is able to accumulate the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with more than 10 mol% 3-hydroxyvalerate (3HV) from unrelated carbon sources. However, the pathways that produce propionyl coenzyme A (propionyl-CoA), an important precursor of 3HV monomer, have not yet been determined. Bioinformatic analysis of H. mediterranei genome indicated that this strain uses multiple pathways for propionyl-CoA biosynthesis, including the citramalate/2-oxobutyrate pathway, the aspartate/2-oxobutyrate pathway, the methylmalonyl-CoA pathway, and a novel 3-hydroxypropionate pathway. Cofeeding of pathway intermediates and inactivating pathway-specific genes supported that these four pathways were indeed involved in the biosynthesis of 3HV monomer. The novel 3-hydroxypropionate pathway that couples CO2 assimilation with PHBV biosynthesis was further confirmed by analysis of 13C positional enrichment in 3HV. Notably, 13C metabolic flux analysis showed that the citramalate/2-oxobutyrate pathway (53.0% flux) and the 3-hydroxypropionate pathway (30.6% flux) were the two main generators of propionyl-CoA from glucose. In addition, genetic perturbation on the transcriptome of the ΔphaEC mutant (deficient in PHBV accumulation) revealed that a considerable number of genes in the four propionyl-CoA synthetic pathways were significantly downregulated. We determined for the first time four propionyl-CoA-supplying pathways for PHBV production in haloarchaea, particularly including a new 3-hydroxypropionate pathway. These results would provide novel strategies for the production of PHBV with controllable 3HV molar fraction. PMID:23435886

  12. Multiple propionyl coenzyme A-supplying pathways for production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Haloferax mediterranei.

    PubMed

    Han, Jing; Hou, Jing; Zhang, Fan; Ai, Guomin; Li, Ming; Cai, Shuangfeng; Liu, Hailong; Wang, Lei; Wang, Zejian; Zhang, Siliang; Cai, Lei; Zhao, Dahe; Zhou, Jian; Xiang, Hua

    2013-05-01

    Haloferax mediterranei is able to accumulate the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with more than 10 mol% 3-hydroxyvalerate (3HV) from unrelated carbon sources. However, the pathways that produce propionyl coenzyme A (propionyl-CoA), an important precursor of 3HV monomer, have not yet been determined. Bioinformatic analysis of H. mediterranei genome indicated that this strain uses multiple pathways for propionyl-CoA biosynthesis, including the citramalate/2-oxobutyrate pathway, the aspartate/2-oxobutyrate pathway, the methylmalonyl-CoA pathway, and a novel 3-hydroxypropionate pathway. Cofeeding of pathway intermediates and inactivating pathway-specific genes supported that these four pathways were indeed involved in the biosynthesis of 3HV monomer. The novel 3-hydroxypropionate pathway that couples CO2 assimilation with PHBV biosynthesis was further confirmed by analysis of (13)C positional enrichment in 3HV. Notably, (13)C metabolic flux analysis showed that the citramalate/2-oxobutyrate pathway (53.0% flux) and the 3-hydroxypropionate pathway (30.6% flux) were the two main generators of propionyl-CoA from glucose. In addition, genetic perturbation on the transcriptome of the ΔphaEC mutant (deficient in PHBV accumulation) revealed that a considerable number of genes in the four propionyl-CoA synthetic pathways were significantly downregulated. We determined for the first time four propionyl-CoA-supplying pathways for PHBV production in haloarchaea, particularly including a new 3-hydroxypropionate pathway. These results would provide novel strategies for the production of PHBV with controllable 3HV molar fraction. PMID:23435886

  13. A conserved mitogen-activated protein kinase pathway is required for mating in Candida albicans.

    PubMed

    Chen, Jiangye; Chen, Jing; Lane, Shelley; Liu, Haoping

    2002-12-01

    Candida albicans had been thought to lack a mating process until the recent discovery of a mating type-like locus and mating between MTLa and MTL(alpha) strains. To elucidate the molecular mechanisms that regulate mating in C. albicans, we examined the function of Cph1 and its upstream mitogen-activated protein (MAP) kinase pathway in mating, as they are homologues of the pheromone-responsive MAP kinase pathway in Saccharomyces cerevisiae. We found that overexpressing CPH1 in MTLa, but not in MTLa/alpha strains, induced the transcription of orthologues of S. cerevisiae pheromone-induced genes and also increased mating efficiency. Furthermore, cph1 and hst7 mutants were completely defective in mating, and cst20 and cek1 mutants showed reduced mating efficiency, as in S. cerevisiae. The partial mating defect in cek1 results from the presence of a functionally redundant MAP kinase, Cek2. CEK2 complemented the mating defect of a fus3 kss1 mutant of S. cerevisiae and was expressed only in MTLa or MTL(alpha), but not in MTLa/alpha cell types. Moreover, a cek1 cek2 double mutant was completely defective in mating. Our data suggest that the conserved MAP kinase pathway regulates mating in C. albicans. We also observed that C. albicans mating efficiency was greatly affected by medium composition, indicating the potential involvement of nutrient-sensing pathways in mating in addition to the MAP kinase pathway. PMID:12453219

  14. Simulating multiple merger pathways to the central kinematics of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Moody, Christopher E.; Romanowsky, Aaron J.; Cox, Thomas J.; Novak, G. S.; Primack, Joel R.

    2014-10-01

    Two-dimensional integral field surveys such as ATLAS3D are producing rich observational data sets yielding insights into galaxy formation. These new kinematic observations have highlighted the need to understand the evolutionary mechanisms leading to a spectrum of fast rotators and slow rotators in early-type galaxies. We address the formation of slow and fast rotators through a series of controlled, comprehensive hydrodynamical simulations, sampling idealized galaxy merger scenarios constructed from model spiral galaxies. Idealized and controlled simulations of this sort complement the more `realistic' cosmological simulations by isolating and analysing the effects of specific parameters, as we do in this paper. We recreate minor and major binary mergers, binary merger trees with multiple progenitors, and multiple sequential mergers. Within each of these categories of formation history, we correlate progenitor gas fraction, mass ratio, orbital pericentre, orbital ellipticity, and spin with remnant kinematic properties. We create kinematic profiles of these 95 simulations comparable to ATLAS3D data. By constructing remnant profiles of the projected specific angular momentum (λ _R= < R|V|rangle / < R √{V^2+σ ^2}rangle), triaxiality, and measuring the incidences of kinematic twists and kinematically decoupled cores, we distinguish between varying formation scenarios. We find that binary mergers nearly always form fast rotators. Slow rotators can be formed from zero initial angular momentum configurations and gas-poor mergers, but are not as round as the ATLAS3D galaxies. Remnants of binary merger trees are triaxial slow rotators. Sequential mergers form round slow rotators that most resemble the ATLAS3D rotators.

  15. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process

    PubMed Central

    Chandran, Uma R; Ma, Changqing; Dhir, Rajiv; Bisceglia, Michelle; Lyons-Weiler, Maureen; Liang, Wenjing; Michalopoulos, George; Becich, Michael; Monzon, Federico A

    2007-01-01

    Background Prostate cancer is characterized by heterogeneity in the clinical course that often does not correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. Methods Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. Results The metastatic samples are highly heterogenous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodelling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). Conclusion We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer. PMID:17430594

  16. PPARα inhibition modulates multiple reprogrammed metabolic pathways in kidney cancer and attenuates tumor growth.

    PubMed

    Abu Aboud, Omran; Donohoe, Dallas; Bultman, Scott; Fitch, Mark; Riiff, Tim; Hellerstein, Marc; Weiss, Robert H

    2015-06-01

    Kidney cancer [renal cell carcinoma (RCC)] is the sixth-most-common cancer in the United States, and its incidence is increasing. The current progression-free survival for patients with advanced RCC rarely extends beyond 1-2 yr due to the development of therapeutic resistance. We previously identified peroxisome proliferator-activating receptor-α (PPARα) as a potential therapeutic target for this disease and showed that a specific PPARα antagonist, GW6471, induced apoptosis and cell cycle arrest at G0/G1 in RCC cell lines associated with attenuation of cell cycle regulatory proteins. We now extend that work and show that PPARα inhibition attenuates components of RCC metabolic reprogramming, capitalizing on the Warburg effect. The specific PPARα inhibitor GW6471, as well as a siRNA specific to PPARα, attenuates the enhanced fatty acid oxidation and oxidative phosphorylation associated with glycolysis inhibition, and PPARα antagonism also blocks the enhanced glycolysis that has been observed in RCC cells; this effect did not occur in normal human kidney epithelial cells. Such cell type-specific inhibition of glycolysis corresponds with changes in protein levels of the oncogene c-Myc and has promising clinical implications. Furthermore, we show that treatment with GW6471 results in RCC tumor growth attenuation in a xenograft mouse model, with minimal obvious toxicity, a finding associated with the expected on-target effects on c-Myc. These studies demonstrate that several pivotal cancer-relevant metabolic pathways are inhibited by PPARα antagonism. Our data support the concept that targeting PPARα, with or without concurrent inhibition of glycolysis, is a potential novel and effective therapeutic approach for RCC that targets metabolic reprogramming in this tumor.

  17. Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways

    PubMed Central

    Willett, Julia L. E.; Gucinski, Grant C.; Fatherree, Jackson P.; Low, David A.; Hayes, Christopher S.

    2015-01-01

    Contact-dependent growth inhibition (CDI) systems function to deliver toxins into neighboring bacterial cells. CDI+ bacteria export filamentous CdiA effector proteins, which extend from the inhibitor-cell surface to interact with receptors on neighboring target bacteria. Upon binding its receptor, CdiA delivers a toxin derived from its C-terminal region. CdiA C-terminal (CdiA-CT) sequences are highly variable between bacteria, reflecting the multitude of CDI toxin activities. Here, we show that several CdiA-CT regions are composed of two domains, each with a distinct function during CDI. The C-terminal domain typically possesses toxic nuclease activity, whereas the N-terminal domain appears to control toxin transport into target bacteria. Using genetic approaches, we identified ptsG, metI, rbsC, gltK/gltJ, yciB, and ftsH mutations that confer resistance to specific CdiA-CTs. The resistance mutations all disrupt expression of inner-membrane proteins, suggesting that these proteins are exploited for toxin entry into target cells. Moreover, each mutation only protects against inhibition by a subset of CdiA-CTs that share similar N-terminal domains. We propose that, following delivery of CdiA-CTs into the periplasm, the N-terminal domains bind specific inner-membrane receptors for subsequent translocation into the cytoplasm. In accord with this model, we find that CDI nuclease domains are modular payloads that can be redirected through different import pathways when fused to heterologous N-terminal “translocation domains.” These results highlight the plasticity of CDI toxin delivery and suggest that the underlying translocation mechanisms could be harnessed to deliver other antimicrobial agents into Gram-negative bacteria. PMID:26305955

  18. Nitric Oxide Mediated Transcriptome Profiling Reveals Activation of Multiple Regulatory Pathways in Arabidopsis thaliana.

    PubMed

    Hussain, Adil; Mun, Bong-Gyu; Imran, Qari M; Lee, Sang-Uk; Adamu, Teferi A; Shahid, Muhammad; Kim, Kyung-Min; Yun, Byung-Wook

    2016-01-01

    Imbalance between the accumulation and removal of nitric oxide and its derivatives is a challenge faced by all plants at the cellular level, and is especially important under stress conditions. Exposure of plants to various biotic and abiotic stresses causes rapid changes in cellular redox tone potentiated by the rise in reactive nitrogen species that serve as signaling molecules in mediating defensive responses. To understand mechanisms mediated by these signaling molecules, we performed a large-scale analysis of the Arabidopsis transcriptome induced by nitrosative stress. We generated an average of 84 and 91 million reads from three replicates each of control and 1 mM S-nitrosocysteine (CysNO)-infiltrated Arabidopsis leaf samples, respectively. After alignment, more than 95% of all reads successfully mapped to the reference and 32,535 genes and 55,682 transcripts were obtained. CysNO infiltration caused differential expression of 6436 genes (3448 up-regulated and 2988 down-regulated) and 6214 transcripts (3335 up-regulated and 2879 down-regulated) 6 h post-infiltration. These differentially expressed genes were found to be involved in key physiological processes, including plant defense against various biotic and abiotic stresses, hormone signaling, and other developmental processes. After quantile normalization of the FPKM values followed by student's T-test (P < 0.05) we identified 1165 DEGs (463 up-regulated and 702 down-regulated) with at least 2-folds change in expression after CysNO treatment. Expression patterns of selected genes involved in various biological pathways were verified using quantitative real-time PCR. This study provides comprehensive information about plant responses to nitrosative stress at transcript level and would prove helpful in understanding and incorporating mechanisms associated with nitrosative stress responses in plants.

  19. Nitric Oxide Mediated Transcriptome Profiling Reveals Activation of Multiple Regulatory Pathways in Arabidopsis thaliana

    PubMed Central

    Hussain, Adil; Mun, Bong-Gyu; Imran, Qari M.; Lee, Sang-Uk; Adamu, Teferi A.; Shahid, Muhammad; Kim, Kyung-Min; Yun, Byung-Wook

    2016-01-01

    Imbalance between the accumulation and removal of nitric oxide and its derivatives is a challenge faced by all plants at the cellular level, and is especially important under stress conditions. Exposure of plants to various biotic and abiotic stresses causes rapid changes in cellular redox tone potentiated by the rise in reactive nitrogen species that serve as signaling molecules in mediating defensive responses. To understand mechanisms mediated by these signaling molecules, we performed a large-scale analysis of the Arabidopsis transcriptome induced by nitrosative stress. We generated an average of 84 and 91 million reads from three replicates each of control and 1 mM S-nitrosocysteine (CysNO)-infiltrated Arabidopsis leaf samples, respectively. After alignment, more than 95% of all reads successfully mapped to the reference and 32,535 genes and 55,682 transcripts were obtained. CysNO infiltration caused differential expression of 6436 genes (3448 up-regulated and 2988 down-regulated) and 6214 transcripts (3335 up-regulated and 2879 down-regulated) 6 h post-infiltration. These differentially expressed genes were found to be involved in key physiological processes, including plant defense against various biotic and abiotic stresses, hormone signaling, and other developmental processes. After quantile normalization of the FPKM values followed by student's T-test (P < 0.05) we identified 1165 DEGs (463 up-regulated and 702 down-regulated) with at least 2-folds change in expression after CysNO treatment. Expression patterns of selected genes involved in various biological pathways were verified using quantitative real-time PCR. This study provides comprehensive information about plant responses to nitrosative stress at transcript level and would prove helpful in understanding and incorporating mechanisms associated with nitrosative stress responses in plants. PMID:27446194

  20. Nitric Oxide Mediated Transcriptome Profiling Reveals Activation of Multiple Regulatory Pathways in Arabidopsis thaliana.

    PubMed

    Hussain, Adil; Mun, Bong-Gyu; Imran, Qari M; Lee, Sang-Uk; Adamu, Teferi A; Shahid, Muhammad; Kim, Kyung-Min; Yun, Byung-Wook

    2016-01-01

    Imbalance between the accumulation and removal of nitric oxide and its derivatives is a challenge faced by all plants at the cellular level, and is especially important under stress conditions. Exposure of plants to various biotic and abiotic stresses causes rapid changes in cellular redox tone potentiated by the rise in reactive nitrogen species that serve as signaling molecules in mediating defensive responses. To understand mechanisms mediated by these signaling molecules, we performed a large-scale analysis of the Arabidopsis transcriptome induced by nitrosative stress. We generated an average of 84 and 91 million reads from three replicates each of control and 1 mM S-nitrosocysteine (CysNO)-infiltrated Arabidopsis leaf samples, respectively. After alignment, more than 95% of all reads successfully mapped to the reference and 32,535 genes and 55,682 transcripts were obtained. CysNO infiltration caused differential expression of 6436 genes (3448 up-regulated and 2988 down-regulated) and 6214 transcripts (3335 up-regulated and 2879 down-regulated) 6 h post-infiltration. These differentially expressed genes were found to be involved in key physiological processes, including plant defense against various biotic and abiotic stresses, hormone signaling, and other developmental processes. After quantile normalization of the FPKM values followed by student's T-test (P < 0.05) we identified 1165 DEGs (463 up-regulated and 702 down-regulated) with at least 2-folds change in expression after CysNO treatment. Expression patterns of selected genes involved in various biological pathways were verified using quantitative real-time PCR. This study provides comprehensive information about plant responses to nitrosative stress at transcript level and would prove helpful in understanding and incorporating mechanisms associated with nitrosative stress responses in plants. PMID:27446194

  1. Localization of the Rsp5p Ubiquitin-Protein Ligase at Multiple Sites within the Endocytic Pathway

    PubMed Central

    Wang, Guangli; McCaffery, J. Michael; Wendland, Beverly; Dupré, Sophie; Haguenauer-Tsapis, Rosine; Huibregtse, Jon M.

    2001-01-01

    The Saccharomyces cerevisiae RSP5 gene encodes an essential HECT E3 ubiquitin-protein ligase. Rsp5p contains an N-terminal C2 domain, three WW domains in the central portion of the molecule, and a C-terminal catalytic HECT domain. A diverse group of substrates of Rsp5p and vertebrate C2 WW-domain-containing HECT E3s have been identified, including both nuclear and membrane-associated proteins. We determined the intracellular localization of Rsp5p and the determinants necessary for localization, in order to better understand how Rsp5p activities are coordinated. Using both green fluorescent protein fusions to Rsp5p and immunogold electron microscopy, we found that Rsp5p was distributed in a punctate pattern at the plasma membrane, corresponding to membrane invaginations that are likely sites of endosome formation, as well as at perivacuolar sites. The latter appeared to correspond to endocytic intermediates, as these structures were not seen in a sla2/end4-1 mutant, and double-immunogold labeling demonstrated colocalization of Rsp5p with the endosomal markers Pep12p and Vps32p. The C2 domain was an important determinant of localization; however, mutations that disrupted HECT domain function also caused mislocalization of Rsp5p, indicating that enzymatic activity is linked to localization. Deletion of the C2 domain partially stabilized Fur4p, a protein previously shown to undergo Rsp5p- and ubiquitin-mediated endocytosis; however, Fur4p was still ubiquitinated at the plasma membrane when the C2 domain was deleted from the protein. Together, these results indicate that Rsp5p is located at multiple sites within the endocytic pathway and suggest that Rsp5p may function at multiple steps in the ubiquitin-mediated endocytosis pathway. PMID:11313482

  2. Compound K, a Ginsenoside Metabolite, Inhibits Colon Cancer Growth via Multiple Pathways Including p53-p21 Interactions

    PubMed Central

    Zhang, Zhiyu; Du, Guang-Jian; Wang, Chong-Zhi; Wen, Xiao-Dong; Calway, Tyler; Li, Zejuan; He, Tong-Chuan; Du, Wei; Bissonnette, Marc; Musch, Mark W.; Chang, Eugene B.; Yuan, Chun-Su

    2013-01-01

    Compound K (20-O-beta-d-glucopyranosyl-20(S)-protopanaxadiol, CK), an intestinal bacterial metabolite of ginseng protopanaxadiol saponins, has been shown to inhibit cell growth in a variety of cancers. However, the mechanisms are not completely understood, especially in colorectal cancer (CRC). A xenograft tumor model was used first to examine the anti-CRC effect of CK in vivo. Then, multiple in vitro assays were applied to investigate the anticancer effects of CK including antiproliferation, apoptosis and cell cycle distribution. In addition, a qPCR array and western blot analysis were executed to screen and validate the molecules and pathways involved. We observed that CK significantly inhibited the growth of HCT-116 tumors in an athymic nude mouse xenograft model. CK significantly inhibited the proliferation of human CRC cell lines HCT-116, SW-480, and HT-29 in a dose- and time-dependent manner. We also observed that CK induced cell apoptosis and arrested the cell cycle in the G1 phase in HCT-116 cells. The processes were related to the upregulation of p53/p21, FoxO3a-p27/p15 and Smad3, and downregulation of cdc25A, CDK4/6 and cyclin D1/3. The major regulated targets of CK were cyclin dependent inhibitors, including p21, p27, and p15. These results indicate that CK inhibits transcriptional activation of multiple tumor-promoting pathways in CRC, suggesting that CK could be an active compound in the prevention or treatment of CRC. PMID:23434653

  3. Multiple requirements for SHPTP2 in epidermal growth factor-mediated cell cycle progression.

    PubMed Central

    Bennett, A M; Hausdorff, S F; O'Reilly, A M; Freeman, R M; Neel, B G

    1996-01-01

    Using transient overexpression and microinjection approaches, we examined SHPTP2's function in growth factor signaling. Overexpression of catalytically inactive SHPTP2 (PTP2CS) but not catalytically inactive SHPTP1, inhibited mitogen-activated protein (MAP) kinase activation and Elk-1 transactivation following epidermal growth factor (EGF) stimulation of 293 cells. An SHPTP2 mutant with both C-terminal tyrosyl phosphorylation sites converted to phenylalanine (PTP2YF) was also without effect; moreover, PTP2YF rescued PTP2CS-induced inhibition of EGF-induced Elk-1 transactivation. PTP2CS did not inhibit transactivation by activated Ras, suggesting that SHPTP2 acts upstream of or parallel to Ras. Neither PTP2CS nor PTP2YF inhibited platelet-derived growth factor (PDGF)-induced Elk-1 transactivation. Thus, protein-tyrosine phosphatase activity, but not tyrosyl phosphorylation of SHPTP2, is required for the immediate-early responses to EGF but not to PDGF. To determine whether SHPTP2 is required later in the cell cycle, we assessed S-phase entry in NIH 3T3 cells microinjected with anti-SHPTP2 antibodies or with a glutathione S-transferase (GST) fusion protein encoding both SH2 domains (GST-SH2). Microinjection of anti-SHPTP2 antibodies prior to stimulation inhibited EGF- but no PDGF- or serum-induced S-phase entry. Anti-SHPTP2 antibodies or GST-SH2 fusion protein could inhibit EGF-induced S-phase entry for up to 8 h after EGF addition. Although MAP kinase activation was detected shortly after EGF stimulation, no MAP kinase activation was detected around the restriction point. Therefore, SHPTP2 is absolutely required for immediate-early and late events induced by some, but not all, growth factors, and the immediate-early and late signal transduction pathways regulated by SHPTP2 are distinguishable. PMID:8622663

  4. Mild depletion of dietary folate combined with other B vitamins alters multiple components of the Wnt pathway in mouse colon.

    PubMed

    Liu, Zhenhua; Choi, Sang-Woon; Crott, Jimmy W; Keyes, Mary K; Jang, Hyeran; Smith, Donald E; Kim, Myungjin; Laird, Peter W; Bronson, Roderick; Mason, Joel B

    2007-12-01

    Preclinical and clinical studies suggest that diminished folate status increases the risk of colorectal carcinogenesis. However, many biochemical functions of folate are dependent on the adequate availability of other 1-carbon nutrients, including riboflavin, vitamin B-6, and vitamin B-12. Aberrations in the Wnt pathway are thought to play an important role in human colorectal cancers. This study therefore investigated if mild depletion of folate combined with depletion of riboflavin, vitamin B-6, and vitamin B-12 could induce alterations in the Wnt pathway in the colonic mucosa. Ninety-six mice were pair-fed diets with different combinations of B vitamin depletion for 10 wk. Genomic DNA methylation and uracil misincorporation were measured by LC/MS and GC/MS. Gene-specific methylation, strand breaks, and expressions were measured by real-time PCR and immunoblotting. Proliferation and apoptosis were determined by immunohistochemistry. DNA strand breaks within the Apc mutation cluster region were induced by folate depletion combined with inadequacies of riboflavin, vitamin B-6, and vitamin B-12 (P < 0.05), but such effects were not induced by folate depletion alone. Similarly, minor changes in the expression of Apc, beta-catenin, and cyclin D1 produced by mild folate depletion were significantly magnified by multiple vitamin depletion. Apoptosis, which can be suppressed by increased Wnt-signaling, was attenuated by the combined deficiency state (P < 0.05) but not by singlet or doublet deficiencies. These findings indicate that a mild depletion of folate that is of insufficient magnitude by itself to induce alterations in components of the Wnt pathway may produce such effects when present in conjunction with mild inadequacies of other 1-carbon nutrients.

  5. Overcoming inherent resistance to histone deacetylase inhibitors in multiple myeloma cells by targeting pathways integral to the actin cytoskeleton

    PubMed Central

    Mithraprabhu, S; Khong, T; Spencer, A

    2014-01-01

    Histone deacetylase inhibitors (HDACi) are novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with multiple myeloma (MM). Although HDACi have demonstrable synergy when combined with proteasome inhibitors (PIs), recent evidence indicates that combination of HDACi and PI is beneficial only in a subset of patients with advanced MM, clearly indicating that other rational combinations should be explored. In this context we hypothesized that understanding the molecular signature associated with inherent resistance to HDACi would provide a basis for the identification of therapeutic combinations with improved clinical efficacy. Using human myeloma cell lines (HMCL) categorized as sensitive, intermediate or resistant to HDACi, gene expression profiling (GEP) and gene ontology enrichment analyses were performed to determine if a genetic signature associated with inherent resistance to HDACi-resistance could be identified. Correlation of GEP to increasing or decreasing sensitivity to HDACi indicated a unique 35-gene signature that was significantly enriched for two pathways – regulation of actin cytoskeleton and protein processing in endoplasmic reticulum. When HMCL and primary MM samples were treated with a combination of HDACi and agents targeting the signaling pathways integral to the actin cytoskeleton, synergistic cell death was observed in all instances, thus providing a rationale for combining these agents with HDACi for the treatment of MM to overcome resistance. This report validates a molecular approach for the identification of HDACi partner drugs and provides an experimental framework for the identification of novel therapeutic combinations for anti-MM treatment. PMID:24651437

  6. O-GlcNAcylation of master growth repressor DELLA by SECRET AGENT modulates multiple signaling pathways in Arabidopsis

    PubMed Central

    Zentella, Rodolfo; Hu, Jianhong; Hsieh, Wen-Ping; Matsumoto, Peter A.; Dawdy, Andrew; Barnhill, Benjamin; Oldenhof, Harriëtte; Hartweck, Lynn M.; Maitra, Sushmit; Thomas, Stephen G.; Cockrell, Shelley; Boyce, Michael; Shabanowitz, Jeffrey; Hunt, Donald F.; Olszewski, Neil E.; Sun, Tai-ping

    2016-01-01

    The DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein–protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors—PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)—that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development. PMID:26773002

  7. Hypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway

    PubMed Central

    Wan, Gang; Xie, Weidong; Liu, Zhenyan; Xu, Wei; Lao, Yuanzhi; Huang, Nunu; Cui, Kai; Liao, Meijian; He, Jie; Jiang, Yuyang; Yang, Burton B; Xu, Hongxi; Xu, Naihan; Zhang, Yaou

    2014-01-01

    Hypoxia activates autophagy, an evolutionarily conserved cellular catabolic process. Dysfunction in the autophagy pathway has been implicated in an increasing number of human diseases, including cancer. Hypoxia induces upregulation of a specific set of microRNAs (miRNAs) in a variety of cell types. Here, we describe hypoxia-induced MIR155 as a potent inducer of autophagy. Enforced expression of MIR155 increases autophagic activity in human nasopharyngeal cancer and cervical cancer cells. Knocking down endogenous MIR155 inhibits hypoxia-induced autophagy. We demonstrated that MIR155 targets multiple players in MTOR signaling, including RHEB, RICTOR, and RPS6KB2. MIR155 suppresses target-gene expression by directly interacting with their 3′ untranslated regions (UTRs), mutations of the binding sites abolish their MIR155 responsiveness. Furthermore, by downregulating MTOR signaling, MIR155 also attenuates cell proliferation and induces G1/S cell cycle arrest. Collectively, these data present a new role for MIR155 as a key regulator of autophagy via dysregulation of MTOR pathway. PMID:24262949

  8. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways

    PubMed Central

    Afsar, Tayyaba; Trembley, Janeen H.; Salomon, Christine E.; Razak, Suhail; Khan, Muhammad Rashid; Ahmed, Khalil

    2016-01-01

    Acacia hydaspica R. Parker is known for its medicinal uses in multiple ailments. In this study, we performed bioassay-guided fractionation of cytotoxic compounds from A. hydaspica and investigated their effects on growth and signaling activity in prostate and breast cancer cell lines. Four active polyphenolic compounds were identified as 7-O-galloyl catechin (GC), catechin (C), methyl gallate (MG), and catechin-3-O-gallate (CG). The four compounds inhibited prostate cancer PC-3 cell growth in a dose-dependent manner, whereas CG and MG inhibited breast cancer MDA-MB-231 cell growth. All tested compounds inhibited cell survival and colony growth in both cell lines, and there was evidence of chromatin condensation, cell shrinkage and apoptotic bodies. Further, acridine orange, ethidium bromide, propidium iodide and DAPI staining demonstrated that cell death occurred partly via apoptosis in both PC-3 and MDA-MB-231 cells. In PC-3 cells treatment repressed the expression of anti-apoptotic molecules Bcl-2, Bcl-xL and survivin, coupled with down-regulation of signaling pathways AKT, NFκB, ERK1/2 and JAK/STAT. In MDA-MB-231 cells, treatment induced reduction of CK2α, Bcl-xL, survivin and xIAP protein expression along with suppression of NFκB, JAK/STAT and PI3K pathways. Our findings suggest that certain polyphenolic compounds derived from A. hydaspica may be promising chemopreventive/therapeutic candidates against cancer. PMID:26975752

  9. Hypoxia converts the myogenic action of insulin-like growth factors into mitogenic action by differentially regulating multiple signaling pathways

    PubMed Central

    Ren, Hongxia; Accili, Domenico; Duan, Cunming

    2010-01-01

    Insulin-like growth factors (IGFs) stimulate myoblast proliferation and differentiation. It remains elusive how these mutually exclusive cellular responses are elicited by the same growth factor. Here we report that whereas IGF promotes myoblast differentiation under normoxia, it stimulates proliferation under hypoxia. Hypoxia activates the HIF-1 transcriptional program and knockdown of HIF-1α changes the mitogenic action of IGF into myogenic action under hypoxia. Conversely, overexpression of HIF-1α abolishes the myogenic effect of IGF under normoxia. Under normoxia, IGF activates the Akt-mTOR, p38, and Erk1/2 MAPK pathways. Hypoxia suppresses basal and IGF-induced Akt-mTOR and p38 activity, whereas it enhances and prolongs IGF-induced Erk1/2 activation in a HIF-1–dependent fashion. Activation of Akt-mTOR and p38 promotes myogenesis, and p38 also inhibits proliferation. Activation of Erk stimulates myoblast proliferation but inhibits differentiation. These results suggest that hypoxia converts the myogenic action of IGFs into mitogenic action by differentially regulating multiple signaling pathways via HIF-1-dependent mechanisms. Our findings provide a mechanistic explanation for the paradoxical actions of IGFs during myogenesis and reveal a novel mechanism by which cells sense and integrate growth factor signals and oxygen availability in their microenvironments. PMID:20231451

  10. Serglycin inhibits the classical and lectin pathways of complement via its glycosaminoglycan chains: implications for multiple myeloma.

    PubMed

    Skliris, Antonis; Happonen, Kaisa E; Terpos, Evangelos; Labropoulou, Vassiliki; Børset, Magne; Heinegård, Dick; Blom, Anna M; Theocharis, Achilleas D

    2011-02-01

    Serglycin (SG) is a proteoglycan expressed by hematopoietic cells and is constitutively secreted by multiple myeloma (MM) cells. SG participates in the regulation of various inflammatory events. We found that SG secreted by human MM cell lines inhibits both the classical and lectin pathways of complement, without influencing alternative pathway activity. The inhibitory effect of SG is due to direct interactions with C1q and mannose-binding lectin (MBL). C1q-binding is mediated through the glycosaminoglycan moieties of SG, whereas MBL binds additionally to SG protein core. Interactions between SG and C1q as well as MBL are diminished in the presence of chondroitin sulfate type E. In addition, we localized the SG-binding site to the collagen-like stalk of C1q. Interactions between SG and C1q as well as MBL are ionic in character and only the interaction with MBL was found to be partially dependent on the presence of calcium. We found the serum levels of SG to be elevated in patients with MM compared to healthy controls. Moreover, we found that SG expressed from myeloma plasma cells protects these cells from complement activation induced by treatment with anti-thymocyte immunoglobulins. This might protect myeloma cells during immunotherapy and promote survival of malignant cells.

  11. O-GlcNAcylation of master growth repressor DELLA by SECRET AGENT modulates multiple signaling pathways in Arabidopsis.

    PubMed

    Zentella, Rodolfo; Hu, Jianhong; Hsieh, Wen-Ping; Matsumoto, Peter A; Dawdy, Andrew; Barnhill, Benjamin; Oldenhof, Harriëtte; Hartweck, Lynn M; Maitra, Sushmit; Thomas, Stephen G; Cockrell, Shelley; Boyce, Michael; Shabanowitz, Jeffrey; Hunt, Donald F; Olszewski, Neil E; Sun, Tai-Ping

    2016-01-15

    The DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein-protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors-PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)-that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development.

  12. Network-Based Multiple Sclerosis Pathway Analysis with GWAS Data from 15,000 Cases and 30,000 Controls

    PubMed Central

    Baranzini, Sergio E.; Khankhanian, Pouya; Patsopoulos, Nikolaos A.; Li, Michael; Stankovich, Jim; Cotsapas, Chris; Søndergaard, Helle Bach; Ban, Maria; Barizzone, Nadia; Bergamaschi, Laura; Booth, David; Buck, Dorothea; Cavalla, Paola; Celius, Elisabeth G.; Comabella, Manuel; Comi, Giancarlo; Compston, Alastair; Cournu-Rebeix, Isabelle; D’alfonso, Sandra; Damotte, Vincent; Din, Lennox; Dubois, Bénédicte; Elovaara, Irina; Esposito, Federica; Fontaine, Bertrand; Franke, Andre; Goris, An; Gourraud, Pierre-Antoine; Graetz, Christiane; Guerini, Franca R.; Guillot-Noel, Léna; Hafler, David; Hakonarson, Hakon; Hall, Per; Hamsten, Anders; Harbo, Hanne F.; Hemmer, Bernhard; Hillert, Jan; Kemppinen, Anu; Kockum, Ingrid; Koivisto, Keijo; Larsson, Malin; Lathrop, Mark; Leone, Maurizio; Lill, Christina M.; Macciardi, Fabio; Martin, Roland; Martinelli, Vittorio; Martinelli-Boneschi, Filippo; McCauley, Jacob L.; Myhr, Kjell-Morten; Naldi, Paola; Olsson, Tomas; Oturai, Annette; Pericak-Vance, Margaret A.; Perla, Franco; Reunanen, Mauri; Saarela, Janna; Saker-Delye, Safa; Salvetti, Marco; Sellebjerg, Finn; Sørensen, Per Soelberg; Spurkland, Anne; Stewart, Graeme; Taylor, Bruce; Tienari, Pentti; Winkelmann, Juliane; Zipp, Frauke; Ivinson, Adrian J.; Haines, Jonathan L.; Sawcer, Stephen; DeJager, Philip; Hauser, Stephen L.; Oksenberg, Jorge R.

    2013-01-01

    Multiple sclerosis (MS) is an inflammatory CNS disease with a substantial genetic component, originally mapped to only the human leukocyte antigen (HLA) region. In the last 5 years, a total of seven genome-wide association studies and one meta-analysis successfully identified 57 non-HLA susceptibility loci. Here, we merged nominal statistical evidence of association and physical evidence of interaction to conduct a protein-interaction-network-based pathway analysis (PINBPA) on two large genetic MS studies comprising a total of 15,317 cases and 29,529 controls. The distribution of nominally significant loci at the gene level matched the patterns of extended linkage disequilibrium in regions of interest. We found that products of genome-wide significantly associated genes are more likely to interact physically and belong to the same or related pathways. We next searched for subnetworks (modules) of genes (and their encoded proteins) enriched with nominally associated loci within each study and identified those modules in common between the two studies. We demonstrate that these modules are more likely to contain genes with bona fide susceptibility variants and, in addition, identify several high-confidence candidates (including BCL10, CD48, REL, TRAF3, and TEC). PINBPA is a powerful approach to gaining further insights into the biology of associated genes and to prioritizing candidates for subsequent genetic studies of complex traits. PMID:23731539

  13. Piper cubeba targets multiple aspects of the androgen-signalling pathway. A potential phytotherapy against prostate cancer growth?

    PubMed

    Yam, Jianying; Kreuter, Matthias; Drewe, Juergen

    2008-01-01

    Despite the high prevalence of prostate cancer (PC) in the Western world, there is a dearth of effective medication. Since the androgen-signalling pathway is very much involved in PC growth and development, we investigated the potential of Piper cubeba L. extract, P9605, in targeting multiple events simultaneously within this pathway. This may be more effective compared to an antiandrogen monotherapy. Our results indicated that P9605 inhibited proliferation in androgen-dependent LNCaP human prostate cancer cells by reducing DNA synthesis and inducing apoptosis. This antigrowth effect was less pronounced in androgen-independent PC-3 prostate cancer cell lines. P9605 potently inhibited 5 alpha-reductase II activity, which is responsible for converting testosterone to its active form, dihydrotestosterone (DHT), in the prostate. It also acted as an antagonist at recombinant wild-type androgen receptors (AR). P9605 suppressed cell growth and prostate-specific antigen (PSA) secretion stimulated by physiological concentrations of DHT in LNCaP cells. Interestingly, it down-regulated AR levels. In conclusion, our findings suggest that P9605 may potentially retard the growth of androgen-dependent PC via several mechanisms.

  14. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways.

    PubMed

    Afsar, Tayyaba; Trembley, Janeen H; Salomon, Christine E; Razak, Suhail; Khan, Muhammad Rashid; Ahmed, Khalil

    2016-01-01

    Acacia hydaspica R. Parker is known for its medicinal uses in multiple ailments. In this study, we performed bioassay-guided fractionation of cytotoxic compounds from A. hydaspica and investigated their effects on growth and signaling activity in prostate and breast cancer cell lines. Four active polyphenolic compounds were identified as 7-O-galloyl catechin (GC), catechin (C), methyl gallate (MG), and catechin-3-O-gallate (CG). The four compounds inhibited prostate cancer PC-3 cell growth in a dose-dependent manner, whereas CG and MG inhibited breast cancer MDA-MB-231 cell growth. All tested compounds inhibited cell survival and colony growth in both cell lines, and there was evidence of chromatin condensation, cell shrinkage and apoptotic bodies. Further, acridine orange, ethidium bromide, propidium iodide and DAPI staining demonstrated that cell death occurred partly via apoptosis in both PC-3 and MDA-MB-231 cells. In PC-3 cells treatment repressed the expression of anti-apoptotic molecules Bcl-2, Bcl-xL and survivin, coupled with down-regulation of signaling pathways AKT, NFκB, ERK1/2 and JAK/STAT. In MDA-MB-231 cells, treatment induced reduction of CK2α, Bcl-xL, survivin and xIAP protein expression along with suppression of NFκB, JAK/STAT and PI3K pathways. Our findings suggest that certain polyphenolic compounds derived from A. hydaspica may be promising chemopreventive/therapeutic candidates against cancer. PMID:26975752

  15. Multiple Lytic Origins of Replication Are Required for Optimal Gammaherpesvirus Fitness In Vitro and In Vivo

    PubMed Central

    Sattler, Christine; Steer, Beatrix; Adler, Heiko

    2016-01-01

    An unresolved question in herpesvirus biology is why some herpesviruses contain more than one lytic origin of replication (oriLyt). Using murine gammaherpesvirus 68 (MHV-68) as model virus containing two oriLyts, we demonstrate that loss of either of the two oriLyts was well tolerated in some situations but not in others both in vitro and in vivo. This was related to the cell type, the organ or the route of inoculation. Depending on the cell type, different cellular proteins, for example Hexim1 and Rbbp4, were found to be associated with oriLyt DNA. Overexpression or downregulation of these proteins differentially affected the growth of mutants lacking either the left or the right oriLyt. Thus, multiple oriLyts are required to ensure optimal fitness in different cell types and tissues. PMID:27007137

  16. Multiple Lytic Origins of Replication Are Required for Optimal Gammaherpesvirus Fitness In Vitro and In Vivo.

    PubMed

    Sattler, Christine; Steer, Beatrix; Adler, Heiko

    2016-03-01

    An unresolved question in herpesvirus biology is why some herpesviruses contain more than one lytic origin of replication (oriLyt). Using murine gammaherpesvirus 68 (MHV-68) as model virus containing two oriLyts, we demonstrate that loss of either of the two oriLyts was well tolerated in some situations but not in others both in vitro and in vivo. This was related to the cell type, the organ or the route of inoculation. Depending on the cell type, different cellular proteins, for example Hexim1 and Rbbp4, were found to be associated with oriLyt DNA. Overexpression or downregulation of these proteins differentially affected the growth of mutants lacking either the left or the right oriLyt. Thus, multiple oriLyts are required to ensure optimal fitness in different cell types and tissues. PMID:27007137

  17. T cell-specific inhibition of multiple apoptotic pathways blocks negative selection and causes autoimmunity

    PubMed Central

    Burger, Megan L; Leung, Kenneth K; Bennett, Margaux J; Winoto, Astar

    2014-01-01

    T cell self-tolerance is thought to involve peripheral tolerance and negative selection, involving apoptosis of autoreactive thymocytes. However, evidence supporting an essential role for negative selection is limited. Loss of Bim, a Bcl-2 BH3-only protein essential for thymocyte apoptosis, rarely results in autoimmunity on the C57BL/6 background. Mice with T cell-specific over-expression of Bcl-2, that blocks multiple BH3-only proteins, are also largely normal. The nuclear receptor Nur77, also implicated in negative selection, might function redundantly to promote apoptosis by associating with Bcl-2 and exposing its potentially pro-apoptotic BH3 domain. Here, we report that T cell-specific expression of a Bcl2 BH3 mutant transgene results in enhanced rescue of thymocytes from negative selection. Concomitantly, Treg development is increased. However, aged BH3 mutant mice progressively accumulate activated, autoreactive T cells, culminating in development of multi-organ autoimmunity and lethality. These data provide strong evidence that negative selection is crucial for establishing T cell tolerance. DOI: http://dx.doi.org/10.7554/eLife.03468.001 PMID:25182415

  18. Endocannabinoid pathways and their role in multiple sclerosis-related muscular dysfunction.

    PubMed

    Di Marzo, Vincenzo

    2011-04-01

    Endocannabinoids are endogenous agonists of the mammalian cannabinoid receptors CB(1) and CB(2), and they appear to be produced in tissues as an adaptive reaction to re-establish normal homeostasis when this is acutely altered. However, the production of endocannabinoids can be altered pathologically. The two most widely studied endocannabinoids are anandamide and 2-arachidonoyl glycerol. The levels of these endogenous modulators are regulated in different and sometimes opposing ways, and alterations in cerebrospinal fluid and/or spinal cord levels have been documented in animal models of neurodegenerative diseases and in samples from patients with multiple sclerosis (MS). Modulation of the endocannabinoid system has been shown to have therapeutic potential in a number of disease states. Sativex(®) (nabiximols, USAN name) contains the two main phytocannabinoids from Cannabis sativa, tetrahydrocannabinol and cannabidiol in a 1:1 ratio, and it acts as an endocannabinoid system modulator. In an experimental mouse model of MS-related spasticity, Sativex dose-dependently improved hind limb flexion/stiffness and a dosage of 10 mg/kg was shown to be as effective as the most widely established anti-spasticity treatment baclofen (5 mg/kg). These findings with Sativex are very promising and offer encouragement for MS patients, the majority of whom will develop spasticity-related disabling and recalcitrant symptoms. Furthermore, research into the endocannabinoid system may offer potential in other neurodegenerative, inflammatory and pain disorders. PMID:21449854

  19. Multiple pathways for uptake of paraquat, methylglyoxal bis(guanylhydrazone), and polyamines

    SciTech Connect

    Byers, T.L.; Kameji, R.; Rannels, D.E.; Pegg, A.E.

    1987-06-01

    The uptake of polyamines, methylglyoxal bis(guanylhydrazone) (MGBG), and paraquat (N,N-dimethyl-4,4'-bipyridylium) into control Chinese hamster ovary (CHO) cells and a mutant CHO cell line selected for resistance to the toxicity of MGBG was examined. In contrast to control CHO cells, the mutant cells had no detectable uptake of (/sup 14/C)-MGBG or any of the polyamines. There was no difference between the two cell lines in the uptake of ..cap alpha..-aminoisobutyric (/sup 3/H-AIB), which indicates that there was no general change in membrane transport processes. The mutant cells were also found to be resistant to the toxicity of paraquat and to have a reduced capability to take up the herbicide. This finding confirms that the uptake of paraquat is necessary for the toxicity of this compound and that the paraquat is taken up by a transport system that also transports MGBG. Competition experiments showed that an excess of unlabeled paraquat inhibited uptake of MGBG and, to a lesser extent, uptake of putrescine and spermidine, but no inhibitory action on spermine uptake could be detected. Studies with type II cells isolated from rat lung also demonstrated uptake of paraquat and spermidine, but paraquat was only a weak inhibitor of spermidine uptake in this system. These results suggest that there may be multiple systems for the uptake of MGBG and polyamines and that paraquat is taken up by at least one but not by all of these systems.

  20. Understanding the role of adjunctive nonpharmacological therapies in management of the multiple pathways to depression.

    PubMed

    Velehorschi, Corina; Bleau, Pierre; Vermani, Monica; Furtado, Melissa; Klassen, Larry J

    2014-12-01

    Major depressive disorder (MDD) is a common disorder with a lifetime prevalence of 16.2% and the fourth highest cause of disability globally. It is hypothesized to be a syndromatic manifestation of multiple pathological processes leading to similar clinical manifestation. MDD is associated with at least three categories of peripheral hormone-type factors including neurotrophic factors, proinflammatory cytokines, and processes that impair regulation of the hypothalamic-pituitary-adrenocortical axis. Neuroimaging studies have identified functional abnormalities including subcortical systems associated with reward and emotion processing, medial prefrontal and anterior cingulate cortical regions and the lateral prefrontal cortical systems involved in cognitive control and voluntary emotion regulation. Studies investigating the effects of psychotherapy and pharmacotherapy on functional brain measures show normalization of brain function with return to euthymia. Nevertheless, approximately 50% of patients with MDD will not respond sufficiently and 60 to 70% will not achieve full remission with first-line pharmacotherapy, therefore clinicians strive to improve patient responses through the use of adjunct therapies. This review discusses recent research in the various biological processes associated with MDD as well as recent data in support of the use of adjunctive non-pharmacological therapies including psychotherapy, bibliotherapy, Internet therapy, "natural" or herbal approaches, exercise therapy, and somatic therapies.

  1. piRNA pathway is not required for antiviral defense in Drosophila melanogaster.

    PubMed

    Petit, Marine; Mongelli, Vanesa; Frangeul, Lionel; Blanc, Hervé; Jiggins, Francis; Saleh, Maria-Carla

    2016-07-19

    Since its discovery, RNA interference has been identified as involved in many different cellular processes, and as a natural antiviral response in plants, nematodes, and insects. In insects, the small interfering RNA (siRNA) pathway is the major antiviral response. In recent years, the Piwi-interacting RNA (piRNA) pathway also has been implicated in antiviral defense in mosquitoes infected with arboviruses. Using Drosophila melanogaster and an array of viruses that infect the fruit fly acutely or persistently or are vertically transmitted through the germ line, we investigated in detail the extent to which the piRNA pathway contributes to antiviral defense in adult flies. Following virus infection, the survival and viral titers of Piwi, Aubergine, Argonaute-3, and Zucchini mutant flies were similar to those of wild type flies. Using next-generation sequencing of small RNAs from wild type and siRNA mutant flies, we showed that no viral-derived piRNAs were produced in fruit flies during different types of viral infection. Our study provides the first evidence, to our knowledge, that the piRNA pathway does not play a major role in antiviral defense in adult Drosophila and demonstrates that viral-derived piRNA production depends on the biology of the host-virus combination rather than being part of a general antiviral process in insects. PMID:27357659

  2. piRNA pathway is not required for antiviral defense in Drosophila melanogaster.

    PubMed

    Petit, Marine; Mongelli, Vanesa; Frangeul, Lionel; Blanc, Hervé; Jiggins, Francis; Saleh, Maria-Carla

    2016-07-19

    Since its discovery, RNA interference has been identified as involved in many different cellular processes, and as a natural antiviral response in plants, nematodes, and insects. In insects, the small interfering RNA (siRNA) pathway is the major antiviral response. In recent years, the Piwi-interacting RNA (piRNA) pathway also has been implicated in antiviral defense in mosquitoes infected with arboviruses. Using Drosophila melanogaster and an array of viruses that infect the fruit fly acutely or persistently or are vertically transmitted through the germ line, we investigated in detail the extent to which the piRNA pathway contributes to antiviral defense in adult flies. Following virus infection, the survival and viral titers of Piwi, Aubergine, Argonaute-3, and Zucchini mutant flies were similar to those of wild type flies. Using next-generation sequencing of small RNAs from wild type and siRNA mutant flies, we showed that no viral-derived piRNAs were produced in fruit flies during different types of viral infection. Our study provides the first evidence, to our knowledge, that the piRNA pathway does not play a major role in antiviral defense in adult Drosophila and demonstrates that viral-derived piRNA production depends on the biology of the host-virus combination rather than being part of a general antiviral process in insects.

  3. piRNA pathway is not required for antiviral defense in Drosophila melanogaster

    PubMed Central

    Petit, Marine; Mongelli, Vanesa; Frangeul, Lionel; Blanc, Hervé; Jiggins, Francis; Saleh, Maria-Carla

    2016-01-01

    Since its discovery, RNA interference has been identified as involved in many different cellular processes, and as a natural antiviral response in plants, nematodes, and insects. In insects, the small interfering RNA (siRNA) pathway is the major antiviral response. In recent years, the Piwi-interacting RNA (piRNA) pathway also has been implicated in antiviral defense in mosquitoes infected with arboviruses. Using Drosophila melanogaster and an array of viruses that infect the fruit fly acutely or persistently or are vertically transmitted through the germ line, we investigated in detail the extent to which the piRNA pathway contributes to antiviral defense in adult flies. Following virus infection, the survival and viral titers of Piwi, Aubergine, Argonaute-3, and Zucchini mutant flies were similar to those of wild type flies. Using next-generation sequencing of small RNAs from wild type and siRNA mutant flies, we showed that no viral-derived piRNAs were produced in fruit flies during different types of viral infection. Our study provides the first evidence, to our knowledge, that the piRNA pathway does not play a major role in antiviral defense in adult Drosophila and demonstrates that viral-derived piRNA production depends on the biology of the host–virus combination rather than being part of a general antiviral process in insects. PMID:27357659

  4. Analysis of Signal Transducer and Activator of Transcription 3 (Stat 3) Pathway in Multiple Myeloma

    PubMed Central

    Quintanilla-Martinez, Leticia; Kremer, Marcus; Specht, Katja; Calzada-Wack, Julia; Nathrath, Michaela; Schaich, Robert; Höfler, Heinz; Fend, Falko

    2003-01-01

    The signal transducer and activator of transcription molecules (Stats) play key roles in cytokine-induced signal transduction. Recently, it was proposed that constitutively activated Stat 3 (Stat 3 phosphorylated) contributes to the pathogenesis of multiple myeloma (MM) by preventing apoptosis and inducing proliferation. The study aim was to investigate Stat 3 activation in a series of multiple myeloma (MM) cases and its effect on downstream targets such as the anti-apoptotic proteins Bcl-xL, Mcl-1, and Bcl-2, and the cell-cycle protein cyclin D1. Forty-eight cases of MM were analyzed. Immunohistochemistry was performed on paraffin sections using antibodies against cyclin D1, Bcl-2, Bcl-xL, Mcl-1, p21, Stat 3, and Stat 3 phosphorylated (P). Their specificity was corroborated by Western blot analysis using eight human MM cell lines as control. The proliferation rate was assessed with the antibody MiB1. In addition, the mRNA levels of cyclin D1 and Stat 3 were determined by quantitative real-time reverse transcriptase-polymerase chain reaction of paraffin-embedded microdissected tissue. Three different groups determined by the expression of Stat 3P and cyclin D1 (protein and mRNA) were identified: group 1, Stat 3-activated (23 cases, 48%). All cases revealed nuclear expression of Stat 3P. No elevation of Stat 3 mRNA was identified in any of the cases. Three cases in this group showed intermediate to low cyclin D1 protein and mRNA expression. Group 2 included 15 (31%) cases with cyclin D1 staining and lack of Stat 3P. All cases showed intermediate to high levels of cyclin D1 mRNA expression. Group 3 included 10 (21%) cases with no expression of either cyclin D1 or Stat 3P. High levels of anti-apoptotic proteins Bcl-xL and Mcl-1 were identified in 89% and 100% of all cases, respectively. In contrast to Bcl-xL and Mcl-1, the expression of Bcl-2 showed an inverse correlation with proliferation rate (P: 0.0003). No significant differences were found between the three

  5. DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways

    PubMed Central

    Nardone, S; Sharan Sams, D; Reuveni, E; Getselter, D; Oron, O; Karpuj, M; Elliott, E

    2014-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions characterized by dysfunction in social interaction, communication and stereotypic behavior. Genetic and environmental factors have been implicated in the development of ASD, but the molecular mechanisms underlying their interaction are not clear. Epigenetic modifications have been suggested as molecular mechanism that can mediate the interaction between the environment and the genome to produce adaptive or maladaptive behaviors. Here, using the Illumina 450 K methylation array we have determined the existence of many dysregulated CpGs in two cortical regions, Brodmann area 10 (BA10) and Brodmann area 24 (BA24), of individuals who had ASD. In BA10 we found a very significant enrichment for genomic areas responsible for immune functions among the hypomethylated CpGs, whereas genes related to synaptic membrane were enriched among hypermethylated CpGs. By comparing our methylome data with previously published transcriptome data, and by performing real-time PCR on selected genes that were dysregulated in our study, we show that hypomethylated genes are often overexpressed, and that there is an inverse correlation between gene expression and DNA methylation within the individuals. Among these genes there were C1Q, C3, ITGB2 (C3R), TNF-α, IRF8 and SPI1, which have recently been implicated in synaptic pruning and microglial cell specification. Finally, we determined the epigenetic dysregulation of the gene HDAC4, and we confirm that the locus encompassing C11orf21/TSPAN32 has multiple hypomethylated CpGs in the autistic brain, as previously demonstrated. Our data suggest a possible role for epigenetic processes in the etiology of ASD. PMID:25180572

  6. Continuous inhibitory signaling by both SHP-1 and SHIP-1 pathways is required to maintain unresponsiveness of anergic B cells

    PubMed Central

    Getahun, Andrew; Beavers, Nicole A.; Larson, Sandy R.; Shlomchik, Mark J.

    2016-01-01

    Many autoreactive B cells persist in the periphery in a state of unresponsiveness called anergy. This unresponsiveness is rapidly reversible, requiring continuous BCR interaction with self-antigen and resultant regulatory signaling for its maintenance. Using adoptive transfer of anergic B cells with subsequent acute induction of gene deletion or expression, we demonstrate that the continuous activities of independent inhibitory signaling pathways involving the tyrosine phosphatase SHP-1 and the inositol phosphatase SHIP-1 are required to maintain anergy. Acute breach of anergy by compromise of either of these pathways leads to rapid cell activation, proliferation, and generation of short-lived plasma cells that reside in extrafollicular foci. Results are consistent with predicted/observed reduction in the Lyn–SHIP-1–PTEN–SHP-1 axis function in B cells from systemic lupus erythematosus patients. PMID:27114609

  7. Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes.

    PubMed

    Perkins, Daniel M; Bailey, R A; Dossena, Matteo; Gamfeldt, Lars; Reiss, Julia; Trimmer, Mark; Woodward, Guy

    2015-01-01

    Biodiversity loss is occurring rapidly worldwide, yet it is uncertain whether few or many species are required to sustain ecosystem functioning in the face of environmental change. The importance of biodiversity might be enhanced when multiple ecosystem processes (termed multifunctionality) and environmental contexts are considered, yet no studies have quantified this explicitly to date. We measured five key processes and their combined multifunctionality at three temperatures (5, 10 and 15 °C) in freshwater aquaria containing different animal assemblages (1-4 benthic macroinvertebrate species). For single processes, biodiversity effects were weak and were best predicted by additive-based models, i.e. polyculture performances represented the sum of their monoculture parts. There were, however, significant effects of biodiversity on multifunctionality at the low and the high (but not the intermediate) temperature. Variation in the contribution of species to processes across temperatures meant that greater biodiversity was required to sustain multifunctionality across different temperatures than was the case for single processes. This suggests that previous studies might have underestimated the importance of biodiversity in sustaining ecosystem functioning in a changing environment.

  8. Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes

    PubMed Central

    Perkins, Daniel M; Bailey, R A; Dossena, Matteo; Gamfeldt, Lars; Reiss, Julia; Trimmer, Mark; Woodward, Guy

    2015-01-01

    Biodiversity loss is occurring rapidly worldwide, yet it is uncertain whether few or many species are required to sustain ecosystem functioning in the face of environmental change. The importance of biodiversity might be enhanced when multiple ecosystem processes (termed multifunctionality) and environmental contexts are considered, yet no studies have quantified this explicitly to date. We measured five key processes and their combined multifunctionality at three temperatures (5, 10 and 15 °C) in freshwater aquaria containing different animal assemblages (1–4 benthic macroinvertebrate species). For single processes, biodiversity effects were weak and were best predicted by additive-based models, i.e. polyculture performances represented the sum of their monoculture parts. There were, however, significant effects of biodiversity on multifunctionality at the low and the high (but not the intermediate) temperature. Variation in the contribution of species to processes across temperatures meant that greater biodiversity was required to sustain multifunctionality across different temperatures than was the case for single processes. This suggests that previous studies might have underestimated the importance of biodiversity in sustaining ecosystem functioning in a changing environment. PMID:25131335

  9. Multiple regulation pathways and pivotal biological functions of STAT3 in cancer

    PubMed Central

    Yuan, Jie; Zhang, Fei; Niu, Ruifang

    2015-01-01

    STAT3 is both a transcription activator and an oncogene that is tightly regulated under normal physiological conditions. However, abundant evidence indicates that STAT3 is persistently activated in several cancers, with a crucial position in tumor onset and progression. In addition to its traditional role in cancer cell proliferation, invasion, and migration, STAT3 also promotes cancer through altering gene expression via epigenetic modification, inducing epithelial–mesenchymal transition (EMT) phenotypes in cancer cells, regulating the tumor microenvironment, and promoting cancer stem cells (CSCs) self-renewal and differentiation. STAT3 is regulated not only by the canonical cytokines and growth factors, but also by the G-protein-coupled receptors, cadherin engagement, Toll-like receptors (TLRs), and microRNA (miRNA). Despite the presence of diverse regulators and pivotal biological functions in cancer, no effective therapeutic inventions are available for inhibiting STAT3 and acquiring potent antitumor effects in the clinic. An improved understanding of the complex roles of STAT3 in cancer is required to achieve optimal therapeutic effects. PMID:26631279

  10. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota.

    PubMed

    Kozlowski, Jessica A; Stieglmeier, Michaela; Schleper, Christa; Klotz, Martin G; Stein, Lisa Y

    2016-08-01

    Chemolithotrophic ammonia-oxidizing bacteria and Thaumarchaeota are central players in the global nitrogen cycle. Obligate ammonia chemolithotrophy has been characterized for bacteria; however, large gaps remain in the Thaumarchaeotal pathway. Using batch growth experiments and instantaneous microrespirometry measurements of resting biomass, we show that the terrestrial Thaumarchaeon Nitrososphaera viennensis EN76(T) exhibits tight control over production and consumption of nitric oxide (NO) during ammonia catabolism, unlike the ammonia-oxidizing bacterium Nitrosospira multiformis ATCC 25196(T). In particular, pulses of hydroxylamine into a microelectrode chamber as the sole substrate for N. viennensis resulted in iterative production and consumption of NO followed by conversion of hydroxylamine to nitrite. In support of these observations, oxidation of ammonia in growing cultures of N. viennensis, but not of N. multiformis, was inhibited by the NO-scavenger PTIO. When based on the marginal nitrous oxide (N2O) levels detected in cell-free media controls, the higher levels produced by N. multiformis were explained by enzyme activity, whereas N2O in N. viennensis cultures was attributed to abiotic reactions of released N-oxide intermediates with media components. Our results are conceptualized in a pathway for ammonia-dependent chemolithotrophy in Thaumarchaea, which identifies NO as an essential intermediate in the pathway and implements known biochemistry to be executed by a proposed but still elusive copper enzyme. Taken together, this work identifies differences in ammonia-dependent chemolithotrophy between bacteria and the Thaumarchaeota, advances a central catabolic role of NO only in the Thaumarchaeotal pathway and reveals stark differences in how the two microbial cohorts contribute to N2O emissions.

  11. Pathways of Methylmercury Transfer to the Water Column Across Multiple Estuaries

    NASA Astrophysics Data System (ADS)

    Schartup, A. T.; Balcom, P. H.; Mason, R. P.; Chen, C.

    2014-12-01

    Estuarine water column methylmercury (MeHg) is an important driver of bioaccumulation in pelagic organisms so it is important to understand the sources and cycling of MeHg. As MeHg biomagnifies in food webs, increased water column concentrations can be transferred to fish consumed by humans. Few studies have taken a multi-estuary approach to look at MeHg cycling in the water column of these important MeHg producing areas. We examined the distributions and partitioning of sediment and water column MeHg across a geographic range of estuaries. In 2008 we sampled 10 shallow-water estuarine sites from Maine to New Jersey, sampled 11 sites in 4 estuaries in 2009, and sampled at 3 estuarine turbidity maximum (ETM) sites in 1 estuary in 2012. Sediment measurements included both solid phase and pore water MeHg and total mercury (HgT). Water column parameters included dissolved and particulate MeHg and HgT, total suspended solids, nutrients, and dissolved organic carbon. Average suspended particle MeHg was highest at Wells (ME; 6 to 11.5 pmol/g; 4.5 to 7% of HgT) and lowest at Portsmouth (NH) and in Long Island Sound (CT-NY; 0.2 to 5.5 pmol/g; 0.25 to 3.75% of HgT). Average water column dissolved MeHg was highest in the Delaware River ETM (0.5 to 0.7 pM; 16 to 24% of HgT) and lowest at Portsmouth (0.06 to 0.12 pM; 1 to 2% of HgT). Significant positive correlations were found between MeHg and HgT across multiple estuaries in both sediment and the water column in 2008 and 2009. In contrast, water column dissolved and suspended particle MeHg do not correlate well with sediment MeHg or HgT, pore water MeHg or methylation rates in sediment across estuaries, indicating that sediment is often not a good predictor of water MeHg levels. However, ratios of average dissolved:pore water MeHg and suspended particle:sediment MeHg are close to 1 in the Delaware River ETM, suggesting that sediment supplies MeHg to the water column in this turbulent region, but average pore water MeHg was

  12. Maternal and Perinatal Outcome of Life Threatening Obstetrical Complications Requiring Multiple Transfusions

    PubMed Central

    Khatuja, Ritu; Radhakrishnan, Gita; Radhika, AG; Juneja, Atul; Singh, Bharat

    2015-01-01

    Introduction Obstetrical haemorrhage is the direct cause of maternal mortality, which can be prevented by timely recognition followed by quick and adequate treatment. Aim To evaluate maternal and perinatal outcome of life threatening obstetric complications requiring multiple transfusions. Materials and Methods It is an observational study conducted on 112 antenatal and postnatal women admitted in a tertiary level hospital, requiring blood and blood products transfusion of >1.5 liters in 24 hours, over a period of 15 months (Aug 2011 to Oct 2012). The demographic and obstetrical profile, amount transfused, mode of delivery, duration of hospital stay, maternal and neonatal morbidity and mortality was evaluated. Statistical Analysis Statistical analysis of the data was performed using chi-squared test. Results There were 95 women who presented in antepartum period and 17 in the postpartum. Multigravidas comprised of 70 women, 81 had unsupervised pregnancies and 33 women presented in shock. At admission, 76 peripartum women had severe anaemia and 62 had coagulopathy. Obstetrical hysterectomy was done for 33 women and total 17 women expired. Haemorrhage was the most common indication for transfusion. The mean blood transfusion and volume replacement in 24 hours was 4.2 units & 2.25 liters respectively. The mean hospital stay was 10-15 days. Intra-uterine death at the time of admission was present in 40 women and 72 had live births. After birth, 21 babies required neonatal intensive care, of which 6 expired. Conclusion Antenatal care is important to prevent complications though pregnancy is always unpredictable. Patients’ condition at admission is single most important factor often influencing the maternal and perinatal outcome. PMID:26673661

  13. A neurofibromatosis-1-regulated pathway is required for learning in Drosophila.

    PubMed

    Guo, H F; Tong, J; Hannan, F; Luo, L; Zhong, Y

    2000-02-24

    The tumour-suppressor gene Neurofibromatosis 1 (Nf1) encodes a Ras-specific GTPase activating protein (Ras-GAP). In addition to being involved in tumour formation, NF1 has been reported to cause learning defects in humans and Nf1 knockout mice. However, it remains to be determined whether the observed learning defect is secondary to abnormal development. The Drosophila NF1 protein is highly conserved, showing 60% identity of its 2,803 amino acids with human NF1 (ref. 12). Previous studies have suggested that Drosophila NF1 acts not only as a Ras-GAP but also as a possible regulator of the cAMP pathway that involves the rutabaga (rut)-encoded adenylyl cyclase. Because rut was isolated as a learning and short-term memory mutant, we have pursued the hypothesis that NF1 may affect learning through its control of the Rut-adenylyl cyclase/cAMP pathway. Here we show that NF1 affects learning and short-term memory independently of its developmental effects. We show that G-protein-activated adenylyl cyclase activity consists of NF1-independent and NF1-dependent components, and that the mechanism of the NF1-dependent activation of the Rut-adenylyl cyclase pathway is essential for mediating Drosophila learning and memory. PMID:10706287

  14. The SUMO pathway is developmentally regulated and required for programmed DNA elimination in Paramecium tetraurelia.

    PubMed

    Matsuda, Atsushi; Forney, James D

    2006-05-01

    Extensive genome-wide remodeling occurs during the formation of the somatic macronuclei from the germ line micronuclei in ciliated protozoa. This process is limited to sexual reproduction and includes DNA amplification, chromosome fragmentation, and the elimination of internal segments of DNA. Our efforts to define the pathways regulating these events revealed a gene encoding a homologue of ubiquitin activating enzyme 2 (UBA2) that is upregulated at the onset of macronuclear development in Paramecium tetraurelia. Uba2 enzymes are known to activate the protein called small ubiquitin-related modifier (SUMO) that is covalently attached to target proteins. Consistent with this relationship, Northern analysis showed increased abundance of SUMO transcripts during sexual reproduction in Paramecium. RNA interference (RNAi) against UBA2 or SUMO during vegetative growth had little effect on cell survival or fission rates. In contrast, RNAi of mating cells resulted in failure to form a functional macronucleus. Despite normal amplification of the genome, excision of internal eliminated sequences was completely blocked. Additional experiments showed that the homologous UBA2 and SUMO genes in Tetrahymena thermophila are also upregulated during conjugation. These results provide evidence for the developmental regulation of the SUMO pathway in ciliates and suggest a key role for the pathway in controlling genome remodeling. PMID:16682458

  15. A Functional Slow Recycling Pathway of Transferrin is Required for Growth of Chlamydia

    PubMed Central

    Ouellette, Scot P.; Carabeo, Rey A.

    2010-01-01

    An inhibitor of host cell lysophospholipid acyltransferase, an enzyme involved in lipid metabolism blocked growth of the obligate intracellular pathogen Chlamydia through its action on the transport of transferrin (Tf) via the slow pathway of recycling. A detailed characterization of this inhibition revealed that Tf accumulated in vesicles positive for Rab11, with a concomitant reduction in the level of Tf found within the transport intermediate Rab4/11 hybrid vesicles. The net result was the failure to be recycled to the plasma membrane. In chlamydiae-infected cells, the Tf-containing Rab11-positive vesicles were typically found intimately associated with the inclusion, and treatment with the inhibitor caused their accumulation, suggesting that the timely progression and completion of Tf recycling was necessary for proper chlamydial growth. Growth inhibition by the compound could be negated by the simple removal of the Tf-containing fraction of the serum, a further indication that accumulation of Tf around the chlamydial inclusion was deleterious to the pathogen. Thus, it appears that manipulating the slow recycling pathway can have biological consequences for Chlamydia and implies the need to regulate carefully the interaction of the inclusion with this host trafficking pathway. PMID:21607082

  16. Model-Derived Dispersal Pathways from Multiple Source Populations Explain Variability of Invertebrate Larval Supply

    PubMed Central

    Domingues, Carla P.; Nolasco, Rita; Dubert, Jesus; Queiroga, Henrique

    2012-01-01

    Background Predicting the spatial and temporal patterns of marine larval dispersal and supply is a challenging task due to the small size of the larvae and the variability of oceanographic processes. Addressing this problem requires the use of novel approaches capable of capturing the inherent variability in the mechanisms involved. Methodology/Principal Findings In this study we test whether dispersal and connectivity patterns generated from a bio-physical model of larval dispersal of the crab Carcinus maenas, along the west coast of the Iberian Peninsula, can predict the highly variable daily pattern of wind-driven larval supply to an estuary observed during the peak reproductive season (March–June) in 2006 and 2007. Cross-correlations between observed and predicted supply were significant (p<0.05) and strong, ranging from 0.34 to 0.81 at time lags of −6 to +5 d. Importantly, the model correctly predicted observed cross-shelf distributions (Pearson r = 0.82, p<0.001, and r = 0.79, p<0.01, in 2006 and 2007) and indicated that all supply events were comprised of larvae that had been retained within the inner shelf; larvae transported to the outer shelf and beyond never recruited. Estimated average dispersal distances ranged from 57 to 198 km and were only marginally affected by mortality. Conclusions/Significance The high degree of predicted demographic connectivity over relatively large geographic scales is consistent with the lack of genetic structuring in C. maenas along the Iberian Peninsula. These findings indicate that the dynamic nature of larval dispersal can be captured by mechanistic biophysical models, which can be used to provide meaningful predictions of the patterns and causes of fine-scale variability in larval supply to marine populations. PMID:22558225

  17. A decision analysis approach to climate adaptation: comparing multiple pathways for multi-decadal decision making

    NASA Astrophysics Data System (ADS)

    Lin, B. B.; Little, L.

    2013-12-01

    Policy planners around the world are required to consider the implications of adapting to climatic change across spatial contexts and decadal timeframes. However, local level information for planning is often poorly defined, even though climate adaptation decision-making is made at this scale. This is especially true when considering sea level rise and coastal impacts of climate change. We present a simple approach using sea level rise simulations paired with adaptation scenarios to assess a range of adaptation options available to local councils dealing with issues of beach recession under present and future sea level rise and storm surge. Erosion and beach recession pose a large socioeconomic risk to coastal communities because of the loss of key coastal infrastructure. We examine the well-known adaptation technique of beach nourishment and assess various timings and amounts of beach nourishment at decadal time spans in relation to beach recession impacts. The objective was to identify an adaptation strategy that would allow for a low frequency of management interventions, the maintenance of beach width, and the ability to minimize variation in beach width over the 2010 to 2100 simulation period. 1000 replications of each adaptation option were produced against the 90 year simulation in order to model the ability each adaptation option to achieve the three key objectives. Three sets of adaptation scenarios were identified. Within each scenario, a number of adaptation options were tested. The three scenarios were: 1) Fixed periodic beach replenishment of specific amounts at 20 and 50 year intervals, 2) Beach replenishment to the initial beach width based on trigger levels of recession (5m, 10m, 20m), and 3) Fixed period beach replenishment of a variable amount at decadal intervals (every 10, 20, 30, 40, 50 years). For each adaptation option, we show the effectiveness of each beach replenishment scenario to maintain beach width and consider the implications of more

  18. Differential Activation of Multiple Signaling Pathways Dictates eNOS Upregulation by FGF2 but not VEGF in Placental Artery Endothelial Cells1

    PubMed Central

    Mata-Greenwood, Eugenia; Liao, Wu-Xiang; Zheng, Jing; Chen, Dong-Bao

    2008-01-01

    Fibroblast growth factor (FGF2), but not vascular endothelial growth factor (VEGF), upregulates endothelial nitric oxide synthase (eNOS) protein expression, at least in part, via activation of extracellular signal-regulated kinase 2/1 (ERK2/1) in ovine fetoplacental artery endothelial (oFPAE) cells. Herein we further investigated the temporal effects of FGF2 and VEGF on other signaling pathways including members (Jun N-terminal kinase JNK1/2 and p38MAPK) of mitogen-activated protein kinases (MAPK), phosphatidylinositol 3 kinase/v-akt murine thymoma viral oncogene homolog 1 (PI3K/AKT1), and the tyrosine kinase c-SRC, and examined if either one or more of these pathways play a role in the differential regulation of eNOS by FGF2 and VEGF. We first confirmed that in oFPAE cells, FGF2, but not VEGF, increased eNOS protein. FGF2 stimulated eNOS protein in a time and concentration dependent manner, which also depended on cell density. FGF2 provoked sustained (5 min to 12 h) whereas VEGF only stimulated transient (5 min) ERK2/1 phosphorylation. FGF2 was 1.7-fold more potent in stimulating ERK2/1 phosphorylation than VEGF. FGF2 and VEGF only transiently activated JNK1/2 and AKT1 within 5 min; however, FGF2 was a stronger stimulus than VEGF. FGF2 and VEGF did not significantly activate p38MAPK at 5 min; however, VEGF stimulated p38MAPK phosphorylation at 60 min. VEGF but not FGF2 significantly stimulated c-SRC phosphorylation. Inhibitors of MEK-ERK2/1 (PD98059), JNK1/2 (SP600125) and PI3K (wortmannin), but not p38MAPK (SB203580) and SRC (PP2), decreased the FGF2-increased eNOS protein expression. Thus, the FGF2-induced eNOS protein expression requires activation of multiple signaling pathways including ERK2/1, JNK1/2 and PI3K/AKT1. Differences in intensity and temporal patterns of activation of these pathways by FGF2 and VEGF may account for their differential effects on eNOS expression in OFPAE cells. PMID:18571718

  19. Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice

    PubMed Central

    2010-01-01

    Background Grain endosperm chalkiness of rice is a varietal characteristic that negatively affects not only the appearance and milling properties but also the cooking texture and palatability of cooked rice. However, grain chalkiness is a complex quantitative genetic trait and the molecular mechanisms underlying its formation are poorly understood. Results A near-isogenic line CSSL50-1 with high chalkiness was compared with its normal parental line Asominori for grain endosperm chalkiness. Physico-biochemical analyses of ripened grains showed that, compared with Asominori, CSSL50-1 contains higher levels of amylose and 8 DP (degree of polymerization) short-chain amylopectin, but lower medium length 12 DP amylopectin. Transcriptome analysis of 15 DAF (day after flowering) caryopses of the isogenic lines identified 623 differential expressed genes (P < 0.01), among which 324 genes are up-regulated and 299 down-regulated. These genes were classified into 18 major categories, with 65.3% of them belong to six major functional groups: signal transduction, cell rescue/defense, transcription, protein degradation, carbohydrate metabolism and redox homeostasis. Detailed pathway dissection demonstrated that genes involved in sucrose and starch synthesis are up-regulated, whereas those involved in non-starch polysaccharides are down regulated. Several genes involved in oxidoreductive homeostasis were found to have higher expression levels in CSSL50-1 as well, suggesting potential roles of ROS in grain chalkiness formation. Conclusion Extensive gene expression changes were detected during rice grain chalkiness formation. Over half of these differentially expressed genes are implicated in several important categories of genes, including signal transduction, transcription, carbohydrate metabolism and redox homeostasis, suggesting that chalkiness formation involves multiple metabolic and regulatory pathways. PMID:21192807

  20. Folic Acid Is Able to Polarize the Inflammatory Response in LPS Activated Microglia by Regulating Multiple Signaling Pathways

    PubMed Central

    Salvatore, Rosaria; Porro, Chiara; Trotta, Teresa

    2016-01-01

    We investigated the ability of folic acid to modulate the inflammatory responses of LPS activated BV-2 microglia cells and the signal transduction pathways involved. To this aim, the BV-2 cell line was exposed to LPS as a proinflammatory response inducer, in presence or absence of various concentrations of folic acid. The production of nitric oxide (NO) was determined by the Griess test. The levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-10 were determined by ELISA. Inducible NO synthase (iNOS), nuclear transcription factor-kappa B (NF-κB) p65, MAPKs protein, and suppressors of cytokine signaling (SOCS)1 and SOCS3 were analyzed by western blotting. TNF-α and IL-1β, as well as iNOS dependent NO production, resulted significantly inhibited by folic acid pretreatment in LPS-activated BV-2 cells. We also observed that folic acid dose-dependently upregulated both SOCS1 and SOCS3 expression in BV-2 cells, leading to an increased expression of the anti-inflammatory cytokine IL-10. Finally, p-IκBα, which indirectly reflects NF-κB complex activation, and JNK phosphorylation resulted dose-dependently downregulated by folic acid pretreatment of LPS-activated cells, whereas p38 MAPK phosphorylation resulted significantly upregulated by folic acid treatment. Overall, these results demonstrated that folic acid was able to modulate the inflammatory response in microglia cells, shifting proinflammatory versus anti-inflammatory responses through regulating multiple signaling pathways. PMID:27738387

  1. Identification and Analyses of AUX-IAA target genes controlling multiple pathways in developing fiber cells of Gossypium hirsutum L.

    PubMed

    Nigam, Deepti; Sawant, Samir V

    2013-01-01

    Technological development led to an increased interest in systems biological approaches in plants to characterize developmental mechanism and candidate genes relevant to specific tissue or cell morphology. AUX-IAA proteins are important plant-specific putative transcription factors. There are several reports on physiological response of this family in Arabidopsis but in cotton fiber the transcriptional network through which AUX-IAA regulated its target genes is still unknown. in-silico modelling of cotton fiber development specific gene expression data (108 microarrays and 22,737 genes) using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals 3690 putative AUX-IAA target genes of which 139 genes were known to be AUX-IAA co-regulated within Arabidopsis. Further AUX-IAA targeted gene regulatory network (GRN) had substantial impact on the transcriptional dynamics of cotton fiber, as showed by, altered TF networks, and Gene Ontology (GO) biological processes and metabolic pathway associated with its target genes. Analysis of the AUX-IAA-correlated gene network reveals multiple functions for AUX-IAA target genes such as unidimensional cell growth, cellular nitrogen compound metabolic process, nucleosome organization, DNA-protein complex and process related to cell wall. These candidate networks/pathways have a variety of profound impacts on such cellular functions as stress response, cell proliferation, and cell differentiation. While these functions are fairly broad, their underlying TF networks may provide a global view of AUX-IAA regulated gene expression and a GRN that guides future studies in understanding role of AUX-IAA box protein and its targets regulating fiber development.

  2. A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells

    PubMed Central

    Cao, Lili; Zhang, Lijun; Zhao, Xiang; Zhang, Ye

    2016-01-01

    Small molecule inhibitors that can simultaneously inhibit multiple oncogenic proteins in essential pathways are promising therapeutic chemicals for hepatocellular carcinoma (HCC). To combine the anticancer effects of combretastatins, chalcones and isatins, we synthesized a novel hybrid molecule 3’,4’,5’-trimethoxy-5-chloro-isatinylchalcone (3MCIC). 3MCIC inhibited proliferation of cultured HepG2 cells, causing rounding-up of the cells and massive vacuole accumulation in the cytoplasm. Paxillin and focal adhesion plaques were downregulated by 3MCIC. Surprisingly, unlike the microtubule (MT)-targeting agent CA-4 that inhibits tubulin polymerization, 3MCIC stabilized tubulin polymers both in living cells and in cell lysates. 3MCIC treatment reduced cyclin B1, CDK1, p-CDK1/2, and Rb, but increased p53 and p21. Moreover, 3MCIC caused GSK3β degradation by promoting GSK3β-Ser9 phosphorylation. Nevertheless, 3MCIC inhibited the Wnt/β-catenin pathway by downregulating β-catenin, c-Myc, cyclin D1 and E2F1. 3MCIC treatment not only activated the caspase-3-dependent apoptotic pathway, but also caused massive autophagy evidenced by rapid and drastic changes of LC3 and p62. 3MCIC also promoted cleavage and maturation of the lysosomal protease cathepsin D. Using ligand-affinity chromatography (LAC), target proteins captured onto the Sephacryl S1000-C12-3MCIC resins were isolated and analyzed by mass spectrometry (MS). Some of the LAC-MS identified targets, i.e., septin-2, vimentin, pan-cytokeratin, nucleolin, EF1α1/2, EBP1 (PA2G4), cyclin B1 and GSK3β, were further detected by Western blotting. Moreover, both septin-2 and HIF-1α decreased drastically in 3MCIC-treated HepG2 cells. Our data suggest that 3MCIC is a promising anticancer lead compound with novel targeting mechanisms, and also demonstrate the efficiency of LAC-MS based target identification in anticancer drug development. PMID:27525972

  3. A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells.

    PubMed

    Cao, Lili; Zhang, Lijun; Zhao, Xiang; Zhang, Ye

    2016-01-01

    Small molecule inhibitors that can simultaneously inhibit multiple oncogenic proteins in essential pathways are promising therapeutic chemicals for hepatocellular carcinoma (HCC). To combine the anticancer effects of combretastatins, chalcones and isatins, we synthesized a novel hybrid molecule 3',4',5'-trimethoxy-5-chloro-isatinylchalcone (3MCIC). 3MCIC inhibited proliferation of cultured HepG2 cells, causing rounding-up of the cells and massive vacuole accumulation in the cytoplasm. Paxillin and focal adhesion plaques were downregulated by 3MCIC. Surprisingly, unlike the microtubule (MT)-targeting agent CA-4 that inhibits tubulin polymerization, 3MCIC stabilized tubulin polymers both in living cells and in cell lysates. 3MCIC treatment reduced cyclin B1, CDK1, p-CDK1/2, and Rb, but increased p53 and p21. Moreover, 3MCIC caused GSK3β degradation by promoting GSK3β-Ser9 phosphorylation. Nevertheless, 3MCIC inhibited the Wnt/β-catenin pathway by downregulating β-catenin, c-Myc, cyclin D1 and E2F1. 3MCIC treatment not only activated the caspase-3-dependent apoptotic pathway, but also caused massive autophagy evidenced by rapid and drastic changes of LC3 and p62. 3MCIC also promoted cleavage and maturation of the lysosomal protease cathepsin D. Using ligand-affinity chromatography (LAC), target proteins captured onto the Sephacryl S1000-C12-3MCIC resins were isolated and analyzed by mass spectrometry (MS). Some of the LAC-MS identified targets, i.e., septin-2, vimentin, pan-cytokeratin, nucleolin, EF1α1/2, EBP1 (PA2G4), cyclin B1 and GSK3β, were further detected by Western blotting. Moreover, both septin-2 and HIF-1α decreased drastically in 3MCIC-treated HepG2 cells. Our data suggest that 3MCIC is a promising anticancer lead compound with novel targeting mechanisms, and also demonstrate the efficiency of LAC-MS based target identification in anticancer drug development. PMID:27525972

  4. Optimization-based manufacturing scheduling with multiple resources and setup requirements

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Luh, Peter B.; Thakur, Lakshman S.; Moreno, Jack, Jr.

    1998-10-01

    The increasing demand for on-time delivery and low price forces manufacturer to seek effective schedules to improve coordination of multiple resources and to reduce product internal costs associated with labor, setup and inventory. This study describes the design and implementation of a scheduling system for J. M. Product Inc. whose manufacturing is characterized by the need to simultaneously consider machines and operators while an operator may attend several operations at the same time, and the presence of machines requiring significant setup times. The scheduling problem with these characteristics are typical for many manufacturers, very difficult to be handled, and have not been adequately addressed in the literature. In this study, both machine and operators are modeled as resources with finite capacities to obtain efficient coordination between them, and an operator's time can be shared by several operations at the same time to make full use of the operator. Setups are explicitly modeled following our previous work, with additional penalties on excessive setups to reduce setup costs and avoid possible scraps. An integer formulation with a separable structure is developed to maximize on-time delivery of products, low inventory and small number of setups. Within the Lagrangian relaxation framework, the problem is decomposed into individual subproblems that are effectively solved by using dynamic programming with additional penalties embedded in state transitions. Heuristics is then developed to obtain a feasible schedule following on our previous work with new mechanism to satisfy operator capacity constraints. The method has been implemented using the object-oriented programming language C++ with a user-friendly interface, and numerical testing shows that the method generates high quality schedules in a timely fashion. Through simultaneous consideration of machines and operators, machines and operators are well coordinated to facilitate the smooth flow of

  5. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption

    PubMed Central

    van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.

    2000-01-01

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFκB and in NFκB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFκB in osteoclast precursors. PMID:10869429

  6. The hedgehog processing pathway is required for NSCLC growth and survival.

    PubMed

    Rodriguez-Blanco, J; Schilling, N S; Tokhunts, R; Giambelli, C; Long, J; Liang Fei, D; Singh, S; Black, K E; Wang, Z; Galimberti, F; Bejarano, P A; Elliot, S; Glassberg, M K; Nguyen, D M; Lockwood, W W; Lam, W L; Dmitrovsky, E; Capobianco, A J; Robbins, D J

    2013-05-01

    Considerable interest has been generated from the results of recent clinical trials using smoothened (SMO) antagonists to inhibit the growth of hedgehog (HH) signaling-dependent tumors. This interest is tempered by the discovery of SMO mutations mediating resistance, underscoring the rationale for developing therapeutic strategies that interrupt HH signaling at levels distinct from those inhibiting SMO function. Here, we demonstrate that HH-dependent non-small cell lung carcinoma (NSCLC) growth is sensitive to blockade of the HH pathway upstream of SMO, at the level of HH ligand processing. Individually, the use of different lentivirally delivered shRNA constructs targeting two functionally distinct HH-processing proteins, skinny hedgehog (SKN) or dispatched-1 (DISP-1), in NSCLC cell lines produced similar decreases in cell proliferation and increased cell death. Further, providing either an exogenous source of processed HH or a SMO agonist reverses these effects. The attenuation of HH processing, by knocking down either of these gene products, also abrogated tumor growth in mouse xenografts. Finally, we extended these findings to primary clinical specimens, showing that SKN is frequently overexpressed in NSCLC and that higher DISP-1 expression is associated with an unfavorable clinical outcome. Our results show a critical role for HH processing in HH-dependent tumors, identifies two potential druggable targets in the HH pathway, and suggest that similar therapeutic strategies could be explored to treat patients harboring HH ligand-dependent cancers.

  7. Mesenchymal chemotaxis requires selective inactivation of myosin II at the leading edge via a noncanonical PLCγ/PKCα pathway.

    PubMed

    Asokan, Sreeja B; Johnson, Heath E; Rahman, Anisur; King, Samantha J; Rotty, Jeremy D; Lebedeva, Irina P; Haugh, Jason M; Bear, James E

    2014-12-22

    Chemotaxis, migration toward soluble chemical cues, is critical for processes such as wound healing and immune surveillance and is exhibited by various cell types, from rapidly migrating leukocytes to slow-moving mesenchymal cells. To study mesenchymal chemotaxis, we observed cell migration in microfluidic chambers that generate stable gradients of platelet-derived growth factor (PDGF). Surprisingly, we found that pathways implicated in amoeboid chemotaxis, such as PI3K and mammalian target of rapamycin signaling, are dispensable for PDGF chemotaxis. Instead, we find that local inactivation of Myosin IIA, through a noncanonical Ser1/2 phosphorylation of the regulatory light chain, is essential. This site is phosphorylated by PKCα, which is activated by an intracellular gradient of diacylglycerol generated by PLCγ. Using a combination of live imaging and gradients of activators/inhibitors in the microfluidic chambers, we demonstrate that this signaling pathway and subsequent inhibition of Myosin II activity at the leading edge are required for mesenchymal chemotaxis.

  8. New Alleles of the Yeast MPS1 Gene Reveal Multiple Requirements in Spindle Pole Body Duplication

    PubMed Central

    Schutz, Amy R.; Winey, Mark

    1998-01-01

    In Saccharomyces cerevisiae, the Mps1p protein kinase is critical for both spindle pole body (SPB) duplication and the mitotic spindle assembly checkpoint. The mps1–1 mutation causes failure early in SPB duplication, and because the spindle assembly checkpoint is also compromised, mps1–1 cells proceed with a monopolar mitosis and rapidly lose viability. Here we report the genetic and molecular characterization of mps1–1 and five new temperature-sensitive alleles of MPS1. Each of the six alleles contains a single point mutation in the region of the gene encoding the protein kinase domain. The mutations affect several residues conserved among protein kinases, most notably the invariant glutamate in subdomain III. In vivo and in vitro kinase activity of the six epitope-tagged mutant proteins varies widely. Only two display appreciable in vitro activity, and interestingly, this activity is not thermolabile under the assay conditions used. While five of the six alleles cause SPB duplication to fail early, yielding cells with a single SPB, mps1–737 cells proceed into SPB duplication and assemble a second SPB that is structurally defective. This phenotype, together with the observation of intragenic complementation between this unique allele and two others, suggests that Mps1p is required for multiple events in SPB duplication. PMID:9529376

  9. RNase MRP is required for entry of 35S precursor rRNA into the canonical processing pathway.

    PubMed

    Lindahl, Lasse; Bommankanti, Ananth; Li, Xing; Hayden, Lauren; Jones, Adrienne; Khan, Miriam; Oni, Tolulope; Zengel, Janice M

    2009-07-01

    RNase MRP is a nucleolar RNA-protein enzyme that participates in the processing of rRNA during ribosome biogenesis. Previous experiments suggested that RNase MRP makes a nonessential cleavage in the first internal transcribed spacer. Here we report experiments with new temperature-sensitive RNase MRP mutants in Saccharomyces cerevisiae that show that the abundance of all early intermediates in the processing pathway is severely reduced upon inactivation of RNase MRP. Transcription of rRNA continues unabated as determined by RNA polymerase run-on transcription, but the precursor rRNA transcript does not accumulate, and appears to be unstable. Taken together, these observations suggest that inactivation of RNase MRP blocks cleavage at sites A0, A1, A2, and A3, which in turn, prevents precursor rRNA from entering the canonical processing pathway (35S > 20S + 27S > 18S + 25S + 5.8S rRNA). Nevertheless, at least some cleavage at the processing site in the second internal transcribed spacer takes place to form an unusual 24S intermediate, suggesting that cleavage at C2 is not blocked. Furthermore, the long form of 5.8S rRNA is made in the absence of RNase MRP activity, but only in the presence of Xrn1p (exonuclease 1), an enzyme not required for the canonical pathway. We conclude that RNase MRP is a key enzyme for initiating the canonical processing of precursor rRNA transcripts, but alternative pathway(s) might provide a backup for production of small amounts of rRNA.

  10. VdNUC-2, the Key Regulator of Phosphate Responsive Signaling Pathway, Is Required for Verticillium dahliae Infection.

    PubMed

    Deng, Sheng; Wang, Cai-yue; Zhang, Xin; Wang, Qing; Lin, Ling

    2015-01-01

    In fungal cells, a phosphate (Pi) responsive signaling and metabolism (PHO) pathway regulates Pi-homeostasis. NUC-2/PHO81 and its homologs are one of the most important components in the regulation pathway. In soil-borne phytopathogenic fungus Verticillium dahliae, we identified a Neurospora crassa nuc-2 homolog gene VdNUC-2. VdNUC-2 is composed of 1,018 amino acids, and is highly conserved in tested filamentous fungi. Under conditions of Pi-starvation, compared with the wild-type strain and ectopic complementation strains, the VdNUC-2 knocked out mutants exhibited reduced radial growth, decreased production of conidia and microsclerotia, and were more sensitive to hydrogen peroxide stress. The virulence of VdNUC-2 defective mutants was significantly compromised, and that was unable to be restored by exogenous application of extra Pi. Additionally, the deletion mutants of VdNUC-1, a key transcription factor gene positively controlled by VdNUC-2 in the PHO pathway, showed the similar cultural phenotypes as VdNUC-2 mutants when both of them grew in Pi-limited conditions. However, the virulence of VdNUC-1 mutants was comparable to the wild-type strain. These evidences indicated that the virulence reduction in VdNUC-2 mutants is not due to the interruptions in the PHO pathway or the disturbance of Pi-homeostasis in V. dahliae cytoplasm. VdNUC-2 is not only a crucial gene in the PHO pathway in V. dahliae, but also is required for the full virulence during host-infection.

  11. VdNUC-2, the Key Regulator of Phosphate Responsive Signaling Pathway, Is Required for Verticillium dahliae Infection

    PubMed Central

    Deng, Sheng; Wang, Cai-yue; Zhang, Xin; Wang, Qing; Lin, Ling

    2015-01-01

    In fungal cells, a phosphate (Pi) responsive signaling and metabolism (PHO) pathway regulates Pi-homeostasis. NUC-2/PHO81 and its homologs are one of the most important components in the regulation pathway. In soil-borne phytopathogenic fungus Verticillium dahliae, we identified a Neurospora crassa nuc-2 homolog gene VdNUC-2. VdNUC-2 is composed of 1,018 amino acids, and is highly conserved in tested filamentous fungi. Under conditions of Pi-starvation, compared with the wild-type strain and ectopic complementation strains, the VdNUC-2 knocked out mutants exhibited reduced radial growth, decreased production of conidia and microsclerotia, and were more sensitive to hydrogen peroxide stress. The virulence of VdNUC-2 defective mutants was significantly compromised, and that was unable to be restored by exogenous application of extra Pi. Additionally, the deletion mutants of VdNUC-1, a key transcription factor gene positively controlled by VdNUC-2 in the PHO pathway, showed the similar cultural phenotypes as VdNUC-2 mutants when both of them grew in Pi-limited conditions. However, the virulence of VdNUC-1 mutants was comparable to the wild-type strain. These evidences indicated that the virulence reduction in VdNUC-2 mutants is not due to the interruptions in the PHO pathway or the disturbance of Pi-homeostasis in V. dahliae cytoplasm. VdNUC-2 is not only a crucial gene in the PHO pathway in V. dahliae, but also is required for the full virulence during host-infection. PMID:26670613

  12. VdNUC-2, the Key Regulator of Phosphate Responsive Signaling Pathway, Is Required for Verticillium dahliae Infection.

    PubMed

    Deng, Sheng; Wang, Cai-yue; Zhang, Xin; Wang, Qing; Lin, Ling

    2015-01-01

    In fungal cells, a phosphate (Pi) responsive signaling and metabolism (PHO) pathway regulates Pi-homeostasis. NUC-2/PHO81 and its homologs are one of the most important components in the regulation pathway. In soil-borne phytopathogenic fungus Verticillium dahliae, we identified a Neurospora crassa nuc-2 homolog gene VdNUC-2. VdNUC-2 is composed of 1,018 amino acids, and is highly conserved in tested filamentous fungi. Under conditions of Pi-starvation, compared with the wild-type strain and ectopic complementation strains, the VdNUC-2 knocked out mutants exhibited reduced radial growth, decreased production of conidia and microsclerotia, and were more sensitive to hydrogen peroxide stress. The virulence of VdNUC-2 defective mutants was significantly compromised, and that was unable to be restored by exogenous application of extra Pi. Additionally, the deletion mutants of VdNUC-1, a key transcription factor gene positively controlled by VdNUC-2 in the PHO pathway, showed the similar cultural phenotypes as VdNUC-2 mutants when both of them grew in Pi-limited conditions. However, the virulence of VdNUC-1 mutants was comparable to the wild-type strain. These evidences indicated that the virulence reduction in VdNUC-2 mutants is not due to the interruptions in the PHO pathway or the disturbance of Pi-homeostasis in V. dahliae cytoplasm. VdNUC-2 is not only a crucial gene in the PHO pathway in V. dahliae, but also is required for the full virulence during host-infection. PMID:26670613

  13. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    NASA Technical Reports Server (NTRS)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  14. Klf5 Deletion Promotes Pten Deletion–Initiated Luminal-Type Mouse Prostate Tumors through Multiple Oncogenic Signaling Pathways12

    PubMed Central

    Xing, Changsheng; Ci, Xinpei; Sun, Xiaodong; Fu, Xiaoying; Zhang, Zhiqian; Dong, Eric N.; Hao, Zhao-Zhe; Dong, Jin-Tang

    2014-01-01

    Krüppel-like factor 5 (KLF5) regulates multiple biologic processes. Its function in tumorigenesis appears contradictory though, showing both tumor suppressor and tumor promoting activities. In this study, we examined whether and how Klf5 functions in prostatic tumorigenesis using mice with prostate-specific deletion of Klf5 and phosphatase and tensin homolog (Pten), both of which are frequently inactivated in human prostate cancer. Histologic analysis demonstrated that when one Pten allele was deleted, which causes mouse prostatic intraepithelial neoplasia (mPIN), Klf5 deletion accelerated the emergence and progression of mPIN. When both Pten alleles were deleted, which causes prostate cancer, Klf5 deletion promoted tumor growth, increased cell proliferation, and caused more severe morphologic and molecular alterations. Homozygous deletion of Klf5 was more effective than hemizygous deletion. Unexpectedly, while Pten deletion alone expanded basal cell population in a tumor as reported, Klf5 deletion in the Pten-null background clearly reduced basal cell population while expanding luminal cell population. Global gene expression profiling, pathway analysis, and experimental validation indicate that multiple mechanisms could mediate the tumor-promoting effect of Klf5 deletion, including the up-regulation of epidermal growth factor and its downstream signaling molecules AKT and ERK and the inactivation of the p15 cell cycle inhibitor. KLF5 also appears to cooperate with several transcription factors, including CREB1, Sp1, Myc, ER and AR, to regulate gene expression. These findings validate the tumor suppressor function of KLF5. They also yield a mouse model that shares two common genetic alterations with human prostate cancer—mutation/deletion of Pten and deletion of Klf5. PMID:25425963

  15. The wheat resistance gene Lr34 results in the constitutive induction of multiple defense pathways in transgenic barley.

    PubMed

    Chauhan, Harsh; Boni, Rainer; Bucher, Rahel; Kuhn, Benjamin; Buchmann, Gabriele; Sucher, Justine; Selter, Liselotte L; Hensel, Goetz; Kumlehn, Jochen; Bigler, Laurent; Glauser, Gaëtan; Wicker, Thomas; Krattinger, Simon G; Keller, Beat

    2015-10-01

    The wheat gene Lr34 encodes an ABCG-type transporter which provides durable resistance against multiple pathogens. Lr34 is functional as a transgene in barley, but its mode of action has remained largely unknown both in wheat and barley. Here we studied gene expression in uninfected barley lines transgenic for Lr34. Genes from multiple defense pathways contributing to basal and inducible disease resistance were constitutively active in seedlings and mature leaves. In addition, the hormones jasmonic acid and salicylic acid were induced to high levels, and increased levels of lignin as well as hordatines were observed. These results demonstrate a strong, constitutive re-programming of metabolism by Lr34. The resistant Lr34 allele (Lr34res) encodes a protein that differs by two amino acid polymorphisms from the susceptible Lr34sus allele. The deletion of a single phenylalanine residue in Lr34sus was sufficient to induce the characteristic Lr34-based responses. Combination of Lr34res and Lr34sus in the same plant resulted in a reduction of Lr34res expression by 8- to 20-fold when the low-expressing Lr34res line BG8 was used as a parent. Crosses with the high-expressing Lr34res line BG9 resulted in an increase of Lr34sus expression by 13- to 16-fold in progenies that inherited both alleles. These results indicate an interaction of the two Lr34 alleles on the transcriptional level. Reduction of Lr34res expression in BG8 crosses reduced the negative pleiotropic effects of Lr34res on barley growth and vigor without compromising disease resistance, suggesting that transgenic combination of Lr34res and Lr34sus can result in agronomically useful resistance.

  16. MASM, a Matrine Derivative, Offers Radioprotection by Modulating Lethal Total-Body Irradiation-Induced Multiple Signaling Pathways in Wistar Rats.

    PubMed

    Li, Jianzhong; Xu, Jing; Lu, Yiming; Qiu, Lei; Xu, Weiheng; Lu, Bin; Hu, Zhenlin; Chu, Zhiyong; Chai, Yifeng; Zhang, Junping

    2016-05-17

    Matrine is an alkaloid extracted from Sophora flavescens Ait and has many biological activities, such as anti-inflammatory, antitumor, anti-fibrosis, and immunosuppressive properties. In our previous studies, the matrine derivative MASM was synthesized and exhibited potent inhibitory activity against liver fibrosis. In this study, we mainly investigated its protection against lethal total-body irradiation (TBI) in rats. Administration of MASM reduced the radiation sickness characteristics and increased the 30-day survival of rats before or after lethal TBI. Ultrastructural observation illustrated that pretreatment of rats with MASM significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed that pretreatment with MASM had a dramatic effect on gene expression changes caused by TBI. Pretreatment with MASM prevented differential expression of 53% (765 genes) of 1445 differentially expressed genes induced by TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 21 pathways, such as metabolic pathways, pathways in cancer, and mitogen-activated protein kinase (MAPK) pathways. Our data indicated that pretreatment of rats with MASM modulated these pathways induced by TBI, suggesting that the pretreatment with MASM might provide the protective effects on lethal TBI mainly or partially through the modulation of these pathways, such as multiple MAPK pathways. Therefore, MASM has the potential to be used as an effective therapeutic or radioprotective agent to minimize irradiation damages and in combination with radiotherapy to improve the efficacy of cancer therapy.

  17. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair.

    PubMed

    Petermann, Eva; Orta, Manuel Luís; Issaeva, Natalia; Schultz, Niklas; Helleday, Thomas

    2010-02-26

    Faithful DNA replication is essential to all life. Hydroxyurea (HU) depletes the cells of dNTPs, which initially results in stalled replication forks that, after prolonged treatment, collapse into DSBs. Here, we report that stalled replication forks are efficiently restarted in a RAD51-dependent process that does not trigger homologous recombination (HR). The XRCC3 protein, which is required for RAD51 foci formation, is also required for replication restart of HU-stalled forks, suggesting that RAD51-mediated strand invasion supports fork restart. In contrast, replication forks collapsed by prolonged replication blocks do not restart, and global replication is rescued by new origin firing. We find that RAD51-dependent HR is triggered for repair of collapsed replication forks, without apparent restart. In conclusion, our data suggest that restart of stalled replication forks and HR repair of collapsed replication forks require two distinct RAD51-mediated pathways.

  18. Ablation of Vacuole Protein Sorting 18 (Vps18) Gene Leads to Neurodegeneration and Impaired Neuronal Migration by Disrupting Multiple Vesicle Transport Pathways to Lysosomes*♦

    PubMed Central

    Peng, Chao; Ye, Jian; Yan, Shunfei; Kong, Shanshan; Shen, Ye; Li, Chenyu; Li, Qinyu; Zheng, Yufang; Deng, Kejing; Xu, Tian; Tao, Wufan

    2012-01-01

    Intracellular vesicle transport pathways are critical for neuronal survival and central nervous system development. The Vps-C complex regulates multiple vesicle transport pathways to the lysosome in lower organisms. However, little is known regarding its physiological function in mammals. We deleted Vps18, a central member of Vps-C core complex, in neural cells by generating Vps18F/F; Nestin-Cre mice (Vps18 conditional knock-out mice). These mice displayed severe neurodegeneration and neuronal migration defects. Mechanistic studies revealed that Vps18 deficiency caused neurodegeneration by blocking multiple vesicle transport pathways to the lysosome, including autophagy, endocytosis, and biosynthetic pathways. Our study also showed that ablation of Vps18 resulted in up-regulation of β1 integrin in mouse brain probably due to lysosome dysfunction but had no effects on the reelin pathway, expression of N-cadherin, or activation of JNK, which are implicated in the regulation of neuronal migration. Finally, we demonstrated that knocking down β1 integrin partially rescued the migration defects, suggesting that Vps18 deficiency-mediated up-regulation of β1 integrin may contribute to the defect of neuronal migration in the Vps18-deficient brain. Our results demonstrate important roles of Vps18 in neuron survival and migration, which are disrupted in multiple neural disorders. PMID:22854957

  19. Process and utility water requirements for cellulosic ethanol production processes via fermentation pathway

    EPA Science Inventory

    The increasing need of additional water resources for energy production is a growing concern for future economic development. In technology development for ethanol production from cellulosic feedstocks, a detailed assessment of the quantity and quality of water required, and the ...

  20. STAT2 Is a Pervasive Cytokine Regulator due to Its Inhibition of STAT1 in Multiple Signaling Pathways

    PubMed Central

    Ho, Johnathan; Pelzel, Christin; Begitt, Andreas; Mee, Maureen; Elsheikha, Hany M.; Scott, David J.; Vinkemeier, Uwe

    2016-01-01

    STAT2 is the quintessential transcription factor for type 1 interferons (IFNs), where it functions as a heterodimer with STAT1. However, the human and murine STAT2-deficient phenotypes suggest important additional and currently unidentified type 1 IFN-independent activities. Here, we show that STAT2 constitutively bound to STAT1, but not STAT3, via a conserved interface. While this interaction was irrelevant for type 1 interferon signaling and STAT1 activation, it precluded the nuclear translocation specifically of STAT1 in response to IFN-γ, interleukin-6 (IL-6), and IL-27. This is explained by the dimerization between activated STAT1 and unphosphorylated STAT2, whereby the semiphosphorylated dimers adopted a conformation incapable of importin-α binding. This, in turn, substantially attenuated cardinal IFN-γ responses, including MHC expression, senescence, and antiparasitic immunity, and shifted the transcriptional output of IL-27 from STAT1 to STAT3. Our results uncover STAT2 as a pervasive cytokine regulator due to its inhibition of STAT1 in multiple signaling pathways and provide an understanding of the type 1 interferon-independent activities of this protein. PMID:27780205

  1. Multiple early victimization experiences as a pathway to explain physical health disparities among sexual minority and heterosexual individuals.

    PubMed

    Andersen, Judith P; Zou, Christopher; Blosnich, John

    2015-05-01

    Prior research shows that health disparities exist between sexual minority and heterosexual individuals. We extend the literature by testing if the higher prevalence of childhood victimization experienced by sexual minority individuals accounts for lifetime health disparities. Heterosexual (n = 422) and sexual minority (n = 681) participants were recruited on-line in North America. Respondents completed surveys about their childhood victimization experiences (i.e., maltreatment by adults and peer victimization) and lifetime physician-diagnosed physical health conditions. Results showed that sexual minority individuals experienced higher prevalence of childhood victimization and lifetime physical health problems than heterosexuals. Mediation analyses indicated that maltreatment by adults and peer bullying explained the health disparities between sexual minority individuals and heterosexuals. This study is the first to show that multiple childhood victimization experiences may be one pathway to explain lifetime physical health disparities. Intervention programs reducing the perpetration of violence against sexual minority individuals are critical to reduce health care needs related to victimization experiences. PMID:25864147

  2. A simple two-state protein unfolds mechanically via multiple heterogeneous pathways at single-molecule resolution

    PubMed Central

    Schönfelder, Jörg; Perez-Jimenez, Raul; Muñoz, Victor

    2016-01-01

    A major drive in protein folding has been to develop experimental technologies to resolve the myriads of microscopic pathways and complex mechanisms that purportedly underlie simple two-state folding behaviour. This is key for cross-validating predictions from theory and modern computer simulations. Detecting such complexity experimentally has remained elusive even using methods with improved time, structural or single-molecule resolution. Here, we investigate the mechanical unfolding of cold shock protein B (Csp), a showcase two-state folder, using single-molecule force-spectroscopy. Under controlled-moderate pulling forces, the unfolding of Csp emerges as highly heterogeneous with trajectories ranging from single sweeps to different combinations of multiple long-lived mechanical intermediates that also vary in order of appearance. Steered molecular dynamics simulations closely reproduce the experimental observations, thus matching unfolding patterns with structural events. Our results provide a direct glimpse at the nanoscale complexity underlying two-state folding, and postulate these combined methods as unique tools for dissecting the mechanical unfolding mechanisms of such proteins. PMID:27248054

  3. Tracking multiple pathways of waste from a northern bluefin tuna farm in a marine-coastal area.

    PubMed

    Vizzini, Salvatrice; Mazzola, Antonio

    2012-06-01

    Aquaculture of bluefin tuna in Mediterranean coastal waters has generated growing concern about the negative environmental effects. In the present isotopic study we examined the dispersal and fate of organic matter derived from a Mediterranean tuna farm in the surrounding environment. An overall enrichment in the heavy nitrogen isotope was found in the feed and in farmed tunas, indicating the input of isotopically traceable organic matter in the system. Waste was clearly traceable in the water column up to 1000 m from the cages, while only slight accumulation occurred in the sediment just below the cages. Waste was isotopically shown also to contribute to the diet of demersal and benthopelagic wild fish collected around the cages. As a result, waste undertook multiple pathways. In the water column its was diluted and dispersed due to hydrodynamism, which prevented great accumulation of aquaculture-derived organic matter in sediments. In addition, biological constraints such as benthopelagic and demersal fish further prevented organic matter accumulation through the benthic trophic route. PMID:22464398

  4. A simple two-state protein unfolds mechanically via multiple heterogeneous pathways at single-molecule resolution

    NASA Astrophysics Data System (ADS)

    Schönfelder, Jörg; Perez-Jimenez, Raul; Muñoz, Victor

    2016-06-01

    A major drive in protein folding has been to develop experimental technologies to resolve the myriads of microscopic pathways and complex mechanisms that purportedly underlie simple two-state folding behaviour. This is key for cross-validating predictions from theory and modern computer simulations. Detecting such complexity experimentally has remained elusive even using methods with improved time, structural or single-molecule resolution. Here, we investigate the mechanical unfolding of cold shock protein B (Csp), a showcase two-state folder, using single-molecule force-spectroscopy. Under controlled-moderate pulling forces, the unfolding of Csp emerges as highly heterogeneous with trajectories ranging from single sweeps to different combinations of multiple long-lived mechanical intermediates that also vary in order of appearance. Steered molecular dynamics simulations closely reproduce the experimental observations, thus matching unfolding patterns with structural events. Our results provide a direct glimpse at the nanoscale complexity underlying two-state folding, and postulate these combined methods as unique tools for dissecting the mechanical unfolding mechanisms of such proteins.

  5. Butyrate induces profound changes in gene expression related to multiple signal pathways in bovine kidney epithelial cells

    PubMed Central

    Li, Robert W; Li, CongJun

    2006-01-01

    Background Global gene expression profiles of bovine kidney epithelial cells regulated by sodium butyrate were investigated with high-density oligonucleotide microarrays. The bovine microarray with 86,191 distinct 60mer oligonucleotides, each with 4 replicates, was designed and produced with Maskless Array Synthesizer technology. These oligonucleotides represent approximately 45,383 unique cattle sequences. Results 450 genes significantly regulated by butyrate with a median False Discovery Rate (FDR) = 0 % were identified. The majority of these genes were repressed by butyrate and associated with cell cycle control. The expression levels of 30 selected genes identified by the microarray were confirmed using real-time PCR. The results from real-time PCR positively correlated (R = 0.867) with the results from the microarray. Conclusion This study presented the genes related to multiple signal pathways such as cell cycle control and apoptosis. The profound changes in gene expression elucidate the molecular basis for the pleiotropic effects of butyrate on biological processes. These findings enable better recognition of the full range of beneficial roles butyrate may play during cattle energy metabolism, cell growth and proliferation, and possibly in fighting gastrointestinal pathogens. PMID:16972989

  6. A simple two-state protein unfolds mechanically via multiple heterogeneous pathways at single-molecule resolution.

    PubMed

    Schönfelder, Jörg; Perez-Jimenez, Raul; Muñoz, Victor

    2016-01-01

    A major drive in protein folding has been to develop experimental technologies to resolve the myriads of microscopic pathways and complex mechanisms that purportedly underlie simple two-state folding behaviour. This is key for cross-validating predictions from theory and modern computer simulations. Detecting such complexity experimentally has remained elusive even using methods with improved time, structural or single-molecule resolution. Here, we investigate the mechanical unfolding of cold shock protein B (Csp), a showcase two-state folder, using single-molecule force-spectroscopy. Under controlled-moderate pulling forces, the unfolding of Csp emerges as highly heterogeneous with trajectories ranging from single sweeps to different combinations of multiple long-lived mechanical intermediates that also vary in order of appearance. Steered molecular dynamics simulations closely reproduce the experimental observations, thus matching unfolding patterns with structural events. Our results provide a direct glimpse at the nanoscale complexity underlying two-state folding, and postulate these combined methods as unique tools for dissecting the mechanical unfolding mechanisms of such proteins. PMID:27248054

  7. Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections.

    PubMed

    Dunoyer, Patrice; Himber, Christophe; Voinnet, Olivier

    2006-02-01

    Regulation of gene expression through microRNAs (miRNAs) and antiviral defense through small interfering RNAs (siRNAs) are aspects of RNA silencing, a process originally discovered as an unintended consequence of plant transformation by disarmed Agrobacterium tumefaciens strains. Although RNA silencing protects cells against foreign genetic elements, its defensive role against virulent, tumor-inducing bacteria has remained unexplored. Here, we show that siRNAs corresponding to transferred-DNA oncogenes initially accumulate in virulent A. tumefaciens-infected tissues and that RNA interference-deficient plants are hypersusceptible to the pathogen. Successful infection relies on a potent antisilencing state established in tumors whereby siRNA synthesis is specifically inhibited. This inhibition has only modest side effects on the miRNA pathway, shown here to be essential for disease development. The similarities and specificities of the A. tumefaciens RNA silencing interaction are discussed and contrasted with the situation encountered with plant viruses. PMID:16429161

  8. Phospholipid transfer protein Sec14 is required for trafficking from endosomes and regulates distinct trans-Golgi export pathways.

    PubMed

    Curwin, Amy J; Fairn, Gregory D; McMaster, Christopher R

    2009-03-13

    A protein known to regulate both lipid metabolism and vesicular transport is the phosphatidylcholine/phosphatidylinositol transfer protein Sec14 of Saccharomyces cerevisiae. Sec14 is thought to globally affect secretion from the trans-Golgi. The results from a synthetic genetic array screen for genes whose inactivation impaired growth of cells with a temperature-sensitive SEC14 allele implied Sec14 regulates transport into and out of the Golgi. This prompted us to examine the role of Sec14 in various vesicular transport pathways. We determined that Sec14 function was required for the route followed by Bgl2, whereas trafficking of other secreted proteins, including Hsp150, Cts1, Scw4, Scw10, Exg1, Cis3, and Ygp1, still occurred, indicating Sec14 regulates specific trans-Golgi export pathways. Upon diminution of Sec14 function, the v-SNARE Snc1 accumulated in endosomes and the trans-Golgi. Its accumulation in endosomes is consistent with Sec14 being required for transport from endosomes to the trans-Golgi. Sec14 was also required for trafficking of Ste3 and the lipophilic dye FM4-64 from the plasma membrane to the vacuole at the level of the endosome. The combined genetic and cell biology data are consistent with regulation of endosome trafficking being a major role for Sec14. We further determined that lipid ligand occupancy differentially regulates Sec14 functions.

  9. Proper Actin Ring Formation and Septum Constriction Requires Coordinated Regulation of SIN and MOR Pathways through the Germinal Centre Kinase MST-1

    PubMed Central

    Heilig, Yvonne; Dettmann, Anne; Mouriño-Pérez, Rosa R.; Schmitt, Kerstin; Valerius, Oliver; Seiler, Stephan

    2014-01-01

    Nuclear DBF2p-related (NDR) kinases constitute a functionally conserved protein family of eukaryotic regulators that control cell division and polarity. In fungi, they function as effector kinases of the morphogenesis (MOR) and septation initiation (SIN) networks and are activated by pathway-specific germinal centre (GC) kinases. We characterized a third GC kinase, MST-1, that connects both kinase cascades. Genetic and biochemical interactions with SIN components and life cell imaging identify MST-1 as SIN-associated kinase that functions in parallel with the GC kinase SID-1 to activate the SIN-effector kinase DBF-2. SID-1 and MST-1 are both regulated by the upstream SIN kinase CDC-7, yet in an opposite manner. Aberrant cortical actomyosin rings are formed in Δmst-1, which resulted in mis-positioned septa and irregular spirals, indicating that MST-1-dependent regulation of the SIN is required for proper formation and constriction of the septal actomyosin ring. However, MST-1 also interacts with several components of the MOR network and modulates MOR activity at multiple levels. MST-1 functions as promiscuous enzyme and also activates the MOR effector kinase COT-1 through hydrophobic motif phosphorylation. In addition, MST-1 physically interacts with the MOR kinase POD-6, and dimerization of both proteins inactivates the GC kinase hetero-complex. These data specify an antagonistic relationship between the SIN and MOR during septum formation in the filamentous ascomycete model Neurospora crassa that is, at least in part, coordinated through the GC kinase MST-1. The similarity of the SIN and MOR pathways to the animal Hippo and Ndr pathways, respectively, suggests that intensive cross-communication between distinct NDR kinase modules may also be relevant for the homologous NDR kinases of higher eukaryotes. PMID:24762679

  10. The MRX Complex Ensures NHEJ Fidelity through Multiple Pathways Including Xrs2-FHA–Dependent Tel1 Activation

    PubMed Central

    Iwasaki, Daichi; Hayashihara, Kayoko; Shima, Hiroki; Higashide, Mika; Terasawa, Masahiro; Gasser, Susan M.; Shinohara, Miki

    2016-01-01

    Because DNA double-strand breaks (DSBs) are one of the most cytotoxic DNA lesions and often cause genomic instability, precise repair of DSBs is vital for the maintenance of genomic stability. Xrs2/Nbs1 is a multi-functional regulatory subunit of the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex, and its function is critical for the primary step of DSB repair, whether by homologous recombination (HR) or non-homologous end joining. In human NBS1, mutations result truncation of the N-terminus region, which contains a forkhead-associated (FHA) domain, cause Nijmegen breakage syndrome. Here we show that the Xrs2 FHA domain of budding yeast is required both to suppress the imprecise repair of DSBs and to promote the robust activation of Tel1 in the DNA damage response pathway. The role of the Xrs2 FHA domain in Tel1 activation was independent of the Tel1-binding activity of the Xrs2 C terminus, which mediates Tel1 recruitment to DSB ends. Both the Xrs2 FHA domain and Tel1 were required for the timely removal of the Ku complex from DSB ends, which correlates with a reduced frequency of imprecise end-joining. Thus, the Xrs2 FHA domain and Tel1 kinase work in a coordinated manner to maintain DSB repair fidelity. PMID:26990569

  11. Pseudomonas fluorescens: fur is required for multiple biological properties associated with pathogenesis.

    PubMed

    Zhou, Ze-jun; Zhang, Lu; Sun, Li

    2015-01-30

    Pseudomonas fluorescens, a Gram-negative bacterium, is an aquaculture pathogen with a broad host range. In a previous study, we had demonstrated that knockout of the fur gene of a pathogenic P. fluorescens strain, TSS, resulted in profound virulence attenuation. In this work, we studied the properties of the fur knockout mutant, TFM, in comparison with the wild type strain TSS. We found that compared to TSS, TFM (i) was impaired in siderophore production and extracellular enzyme activities, (ii) exhibited altered global polarity, (iii) was dramatically reduced in the ability to resist oxidative stress, (iv) showed higher tolerance to manganese, and (v) exhibited significantly reduced cytotoxicity. When incubated with cultured host cells, TFM displayed a cellular binding index much lower than that of TSS. Neither TFM nor TSS was able to survive and replicate in host cells. Following inoculation into Japanese flounder (Paralichthys olivaceus), TSS upregulated the expression of a wide range of genes involved in innate immunity, notably IL-1β and two CC chemokines. In contrast, TFM caused significant inductions of only a few genes and to much lower magnitudes than TSS. Given the strong inductions of IL-1β and the two chemokines by TSS, the effect of these three genes on P. fluorescens invasion was examined. The results showed that overexpression of these genes in flounder significantly inhibited TSS dissemination into and colonization of host tissues. Taken together, these results indicate that Fur is required for multiple processes associated with virulence, and that proinflammatory cytokines and chemokines likely play important roles in the clearance of P. fluorescens infection.

  12. Pseudomonas fluorescens: fur is required for multiple biological properties associated with pathogenesis.

    PubMed

    Zhou, Ze-jun; Zhang, Lu; Sun, Li

    2015-01-30

    Pseudomonas fluorescens, a Gram-negative bacterium, is an aquaculture pathogen with a broad host range. In a previous study, we had demonstrated that knockout of the fur gene of a pathogenic P. fluorescens strain, TSS, resulted in profound virulence attenuation. In this work, we studied the properties of the fur knockout mutant, TFM, in comparison with the wild type strain TSS. We found that compared to TSS, TFM (i) was impaired in siderophore production and extracellular enzyme activities, (ii) exhibited altered global polarity, (iii) was dramatically reduced in the ability to resist oxidative stress, (iv) showed higher tolerance to manganese, and (v) exhibited significantly reduced cytotoxicity. When incubated with cultured host cells, TFM displayed a cellular binding index much lower than that of TSS. Neither TFM nor TSS was able to survive and replicate in host cells. Following inoculation into Japanese flounder (Paralichthys olivaceus), TSS upregulated the expression of a wide range of genes involved in innate immunity, notably IL-1β and two CC chemokines. In contrast, TFM caused significant inductions of only a few genes and to much lower magnitudes than TSS. Given the strong inductions of IL-1β and the two chemokines by TSS, the effect of these three genes on P. fluorescens invasion was examined. The results showed that overexpression of these genes in flounder significantly inhibited TSS dissemination into and colonization of host tissues. Taken together, these results indicate that Fur is required for multiple processes associated with virulence, and that proinflammatory cytokines and chemokines likely play important roles in the clearance of P. fluorescens infection. PMID:25465175

  13. The Persistence of Asthma requires Multiple Feedback Circuits Involving ILC2 and IL33

    PubMed Central

    Christianson, Christina A.; Goplen, Nicholas P.; Zafar, Iram; Irvin, Chaoyu; Good, James T.; Rollins, Donald R.; Gorentla, Balachandra; Liu, Weimin; Gorska, Magdalena M.; Chu, HongWei; Martin, Richard J.; Alam, Rafeul

    2015-01-01

    Background Asthma in the mouse model spontaneously resolves after cessation of allergen exposure. We developed a mouse model where asthma features persisted for 6 months after cessation of allergen exposure. Objective To elucidate factors contributing to the persistence of asthma. Methods We utilized a combination of immunologic, genetic, microarray and pharmacologic approaches to dissect the mechanism of persistence of asthma. Results Elimination of T cells though antibody-mediated depletion or lethal irradiation and transplantation of Rag1−/− bone marrow in mice with chronic asthma resulted in resolution of airway inflammation but not airway hyperreactivity or remodeling. Elimination of T cells and ILC2 through lethal irradiation and transplantation of Rag2−/−γc−/− bone marrow or blockade of IL33 resulted in resolution of airway inflammation and hyperreactivity. Persistence of asthma required multiple interconnected feedback and feed forward circuits between ILC2 and epithelial cells. Epithelial IL33 induced ILC2, a rich source of IL13. The latter directly induced epithelial IL33 establishing a positive feedback circuit. IL33 auto-induced, generating another feedback circuit. IL13 upregulated IL33 receptors and facilitated IL33 auto-induction, thus establishing a feed forward circuit. Elimination of any component of these circuits resulted in resolution of chronic asthma. In agreement with the foregoing, IL33 and ILC2 were increased in the airways from asthmatic patients. IL33 correlated with disease severity. Conclusions We present a critical network of feedback and feed forward interactions between epithelial cells and ILC2 involved in maintaining chronic asthma. Although T cells contributed to the severity of chronic asthma they were redundant in maintaining airway hyperreactivity and remodeling. PMID:25617223

  14. Pancreatic cancer cells require an EGF receptor-mediated autocrine pathway for proliferation in serum-free conditions

    PubMed Central

    Murphy, L O; Cluck, M W; Lovas, S; Ötvös, F; Murphy, R F; Schally, A V; Permert, J; Larsson, J; Knezetic, J A; Adrian, T E

    2001-01-01

    In-vitro and in-vivo studies have shown that autocrine growth factors and receptors are frequently expressed in human malignancies. Few of these studies, however, provide evidence that the identified autocrine pathway is functional. In this study, a functional autocrine growth pathway in pancreatic cancer has been identified using an in-vitro cell culture system. When pancreatic cancer cells were grown without change of medium, proliferation was greater than when either medium was replaced frequently (HPAF, CAPAN-2, PANC-1 or SW1990) or cells were grown in the presence of the EGF receptor tyrosine kinase inhibitor AG1478 or the MEK inhibitor PD098059 (HPAF or CAPAN-2). Activity of extracellular-regulated kinases (ERK) 1 and 2 and c- jun and c- fos mRNA levels were significantly elevated in CAPAN-2 cells cultured continuously in serum-free medium. Collectively, the observations indicate that the EGF receptor and the ERK MAP kinase pathway mediate autocrine signals. In contrast to previous reports, the GRP and IGF-I receptors were shown not to be required for autocrine effects on pancreatic cancer cell proliferation. Autocrine stimulation of the EGF receptor can contribute to sustained mitogenic activity and proliferation of pancreatic cancer cells. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11286473

  15. Adenovirus RIDα uncovers a novel pathway requiring ORP1L for lipid droplet formation independent of NPC1.

    PubMed

    Cianciola, Nicholas L; Greene, Diane J; Morton, Richard E; Carlin, Cathleen R

    2013-11-01

    Niemann-Pick disease type C (NPC) is caused by mutations in NPC1 or NPC2, which coordinate egress of low-density-lipoprotein (LDL)-cholesterol from late endosomes. We previously reported that the adenovirus-encoded protein RIDα rescues the cholesterol storage phenotype in NPC1-mutant fibroblasts. We show here that RIDα reconstitutes deficient endosome-to-endoplasmic reticulum (ER) transport, allowing excess LDL-cholesterol to be esterified by acyl-CoA:cholesterol acyltransferase and stored in lipid droplets (LDs) in NPC1-deficient cells. Furthermore, the RIDα pathway is regulated by the oxysterol-binding protein ORP1L. Studies have classified ORP1L as a sterol sensor involved in LE positioning downstream of GTP-Rab7. Our data, however, suggest that ORP1L may play a role in transport of LDL-cholesterol to a specific ER pool designated for LD formation. In contrast to NPC1, which is dispensable, the RIDα/ORP1L-dependent route requires functional NPC2. Although NPC1/NPC2 constitutes the major pathway, therapies that amplify minor egress routes for LDL-cholesterol could significantly improve clinical management of patients with loss-of-function NPC1 mutations. The molecular identity of putative alternative pathways, however, is poorly characterized. We propose RIDα as a model system for understanding physiological egress routes that use ORP1L to activate ER feedback responses involved in LD formation.

  16. Major Histocompatibility Class II Pathway Is Not Required for the Development of Nonalcoholic Fatty Liver Disease in Mice.

    PubMed

    Willemin, Gilles; Roger, Catherine; Bauduret, Armelle; Minehira, Kaori

    2013-01-01

    Single-nucleotide polymorphisms within major histocompatibility class II (MHC II) genes have been associated with an increased risk of drug-induced liver injury. However, it has never been addressed whether the MHC II pathway plays an important role in the development of nonalcoholic fatty liver disease, the most common form of liver disease. We used a mouse model that has a complete knockdown of genes in the MHC II pathway (MHCII(Δ/Δ)). Firstly we studied the effect of high-fat diet-induced hepatic inflammation in these mice. Secondly we studied the development of carbon-tetra-chloride- (CCl4-) induced hepatic cirrhosis. After the high-fat diet, both groups developed obesity and hepatic steatosis with a similar degree of hepatic inflammation, suggesting no impact of the knockdown of MHC II on high-fat diet-induced inflammation in mice. In the second study, we confirmed that the CCl4 injection significantly upregulated the MHC II genes in wild-type mice. The CCl4 treatment significantly induced genes related to the fibrosis formation in wild-type mice, whereas this was lower in MHCII(Δ/Δ) mice. The liver histology, however, showed no detectable difference between groups, suggesting that the MHC II pathway is not required for the development of hepatic fibrosis induced by CCl4.

  17. Drosophila p53-related protein kinase is required for PI3K/TOR pathway-dependent growth.

    PubMed

    Ibar, Consuelo; Cataldo, Vicente F; Vásquez-Doorman, Constanza; Olguín, Patricio; Glavic, Alvaro

    2013-03-01

    Cell growth and proliferation are pivotal for final organ and body size definition. p53-related protein kinase (Bud32/PRPK) has been identified as a protein involved in proliferation through its effects on transcription in yeast and p53 stabilization in human cell culture. However, the physiological function of Bud32/PRPK in metazoans is not well understood. In this work, we have analyzed the role of PRPK in Drosophila development. Drosophila PRPK is expressed in every tissue analyzed and is required to support proliferation and cell growth. The Prpk knockdown animals show phenotypes similar to those found in mutants for positive regulators of the PI3K/TOR pathway. This pathway has been shown to be fundamental for animal growth, transducing the hormonal and nutritional status into the protein translation machinery. Functional interactions have established that Prpk operates as a transducer of the PI3K/TOR pathway, being essential for TOR kinase activation and for the regulation of its targets (S6K and 4E-BP, autophagy and bulk endocytosis). This suggests that Prpk is crucial for stimulating the basal protein biosynthetic machinery in response to insulin signaling and to changes in nutrient availability.

  18. H2O2 is required for UVB-induced EGF receptor and downstream signaling pathway activation.

    PubMed

    Peus, D; Meves, A; Vasa, R A; Beyerle, A; O'Brien, T; Pittelkow, M R

    1999-12-01

    Ultraviolet radiation (UVR)-induced receptor phosphorylation is increasingly recognized as a widely occurring phenomenon. However, the mechanisms, mediators, and sequence of events involved in this process remain ill-defined. We have recently shown that exposure of human keratinocytes to physiologic doses of ultraviolet B radiation (UVB) activates epidermal growth factor receptor (EGFR)/extracellular-regulated kinase 1 and 2 (ERK1/2), and p38 signaling pathways via reactive oxygen species. Here we demonstrate that UVB exposure increased intra- and extracellular H2O2 production rapidly in a time-dependent manner. An EGFR-specific monoclonal antibody abrogated EGFR autophosphorylation and markedly decreased the phosphorylation of ERK1/2 whereas p38 activation was unaffected. Overexpression of catalase strongly inhibited UVB-induced EGFR/ERK1/2 pathway activation. These findings establish the sequence of events after UVB irradiation: (i) H2O2 generation, (ii) EGFR phosphorylation, and (iii) ERK activation. Our results identify UVB-induced H2O2 as a second messenger that is required for EGFR and dependent downstream signaling pathways activation.

  19. DREF is required for cell and organismal growth in Drosophila and functions downstream of the nutrition/TOR pathway.

    PubMed

    Killip, L E; Grewal, S S

    2012-11-15

    Nutrient availability is a key determinant of animal growth. The conserved insulin/PI3 kinase and TOR kinase signaling pathways are two of the best characterized regulators of cell and tissue growth in response to nutritional conditions. Studies in Drosophila larvae show that one mechanism by which these pathways drive growth is by regulating the expression of metabolic genes, especially those genes required for protein synthesis. Here we examine a role for the transcription factor DREF in mediating some of these transcriptional and growth responses. We find that loss of DREF leads to a decrease in organismal growth. These effects are in part due to a requirement for DREF function in cell-autonomous growth. We also uncover a non-autonomous role for DREF activity in the larval fat body. Previous studies show that activation of TOR in the fat body couples nutrition to insulin release from the brain; we find that inhibition of DREF in the fat body can phenocopy effects of nutrient deprivation and fat-specific TOR inhibition, leading to a reduction in systemic insulin signaling, delayed larval growth and smaller final size. Using genetic epistasis, we find that DREF is required for growth downstream of TOR, but not insulin/PI3K signaling. Moreover, we show that TOR can control DREF mRNA levels, in part via the transcription factor dMyc. Finally we show that DREF is required for normal expression of many ribosome biogenesis genes, suggesting that one mechanism by which DREF is required for growth is through the control of protein synthetic capacity. Together these findings suggest DREF is an essential transcription factor in the nutritional control of cell and tissue growth during Drosophila development. Given that DREF is conserved, this role may also be important in the control of growth in other animals.

  20. PDK1 is required for the hormonal signaling pathway leading to meiotic resumption in starfish oocytes.

    PubMed

    Hiraoka, Daisaku; Hori-Oshima, Sawako; Fukuhara, Takeshi; Tachibana, Kazunori; Okumura, Eiichi; Kishimoto, Takeo

    2004-12-15

    Meiotic resumption is generally under the control of an extracellular maturation-inducing hormone. It is equivalent to the G2-M phase transition in somatic cell mitosis and is regulated by cyclin B-Cdc2 kinase. However, the complete signaling pathway from the hormone to cyclin B-Cdc2 is yet unclear in any organism. A model system to analyze meiotic resumption is the starfish oocyte, in which Akt/protein kinase B (PKB) plays a key mediator in hormonal signaling that leads to cyclin B-Cdc2 activation. Here we show in starfish oocytes that when PDK1 activity is inhibited by a neutralizing antibody, maturation-inducing hormone fails to induce cyclin B-Cdc2 activation at the meiotic G2-M phase transition, even though PDK2 activity becomes detectable. These observations assign a novel role to PDK1 for a hormonal signaling intermediate toward meiotic resumption. They further support that PDK2 is a molecule distinct from PDK1 and Akt, and that PDK2 activity is not sufficient for the full activation of Akt in the absence of PDK1 activity. PMID:15581868

  1. CAP defines a second signalling pathway required for insulin-stimulated glucose transport

    NASA Astrophysics Data System (ADS)

    Baumann, Christian A.; Ribon, Vered; Kanzaki, Makoto; Thurmond, Debbie C.; Mora, Silvia; Shigematsu, Satoshi; Bickel, Perry E.; Pessin, Jeffrey E.; Saltiel, Alan R.

    2000-09-01

    Insulin stimulates the transport of glucose into fat and muscle cells. Although the precise molecular mechanisms involved in this process remain uncertain, insulin initiates its actions by binding to its tyrosine kinase receptor, leading to the phosphorylation of intracellular substrates. One such substrate is the Cbl protooncogene product. Cbl is recruited to the insulin receptor by interaction with the adapter protein CAP, through one of three adjacent SH3 domains in the carboxy terminus of CAP. Upon phosphorylation of Cbl, the CAP-Cbl complex dissociates from the insulin receptor and moves to a caveolin-enriched, triton-insoluble membrane fraction. Here, to identify a molecular mechanism underlying this subcellular redistribution, we screened a yeast two-hybrid library using the amino-terminal region of CAP and identified the caveolar protein flotillin. Flotillin forms a ternary complex with CAP and Cbl, directing the localization of the CAP-Cbl complex to a lipid raft subdomain of the plasma membrane. Expression of the N-terminal domain of CAP in 3T3-L1 adipocytes blocks the stimulation of glucose transport by insulin, without affecting signalling events that depend on phosphatidylinositol-3-OH kinase. Thus, localization of the Cbl-CAP complex to lipid rafts generates a pathway that is crucial in the regulation of glucose uptake.

  2. Antigen Processing and Remodeling of the Endosomal Pathway: Requirements for Antigen Cross-Presentation

    PubMed Central

    Compeer, Ewoud Bernardus; Flinsenberg, Thijs Willem Hendrik; van der Grein, Susanna Geertje; Boes, Marianne

    2012-01-01

    Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation. PMID:22566920

  3. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation

    PubMed Central

    Datan, E; Roy, S G; Germain, G; Zali, N; McLean, J E; Golshan, G; Harbajan, S; Lockshin, R A; Zakeri, Z

    2016-01-01

    A virus that reproduces in a host without killing cells can easily establish a successful infection. Previously, we showed that dengue-2, a virus that threatens 40% of the world, induces autophagy, enabling dengue to reproduce in cells without triggering cell death. Autophagy further protects the virus-laden cells from further insults. In this study, we evaluate how it does so; we show that dengue upregulates host pathways that increase autophagy, namely endoplasmic reticulum (ER) stress and ataxia telangiectasia mutated (ATM) signaling followed by production of reactive oxygen species (ROS). Inhibition of ER stress or ATM signaling abrogates the dengue-conferred protection against other cell stressors. Direct inhibition of ER stress response in infected cells decreases autophagosome turnover, reduces ROS production and limits reproduction of dengue virus. Blocking ATM activation, which is an early response to infection, decreases transcription of ER stress response proteins, but ATM has limited impact on production of ROS and virus titers. Production of ROS determines only late-onset autophagy in infected cells and is not necessary for dengue-induced protection from stressors. Collectively, these results demonstrate that among the multiple autophagy-inducing pathways during infection, ER stress signaling is more important to viral replication and protection of cells than either ATM or ROS-mediated signaling. To limit virus production and survival of dengue-infected cells, one must address the earliest phase of autophagy, induced by ER stress. PMID:26938301

  4. Fumonisin B1-induced cell death in arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways.

    PubMed

    Asai, T; Stone, J M; Heard, J E; Kovtun, Y; Yorgey, P; Sheen, J; Ausubel, F M

    2000-10-01

    We have established an Arabidopsis protoplast model system to study plant cell death signaling. The fungal toxin fumonisin B1 (FB1) induces apoptosis-like programmed cell death (PCD) in wild-type protoplasts. FB1, however, only marginally affects the viability of protoplasts isolated from transgenic NahG plants, in which salicylic acid (SA) is metabolically degraded; from pad4-1 mutant plants, in which an SA amplification mechanism is thought to be impaired; or from jar1-1 or etr1-1 mutant plants, which are insensitive to jasmonate (JA) or ethylene (ET), respectively. FB1 susceptibility of wild-type protoplasts decreases in the dark, as does the cellular content of phenylalanine ammonia-lyase, a light-inducible enzyme involved in SA biosynthesis. Interestingly, however, FB1-induced PCD does not require the SA signal transmitter NPR1, given that npr1-1 protoplasts display wild-type FB1 susceptibility. Arabidopsis cpr1-1, cpr6-1, and acd2-2 protoplasts, in which the SA signaling pathway is constitutively activated, exhibit increased susceptibility to FB1. The cpr6-1 and acd2-2 mutants also constitutively express the JA and ET signaling pathways, but only the acd2-2 protoplasts undergo PCD in the absence of FB1. These results demonstrate that FB1 killing of Arabidopsis is light dependent and requires SA-, JA-, and ET-mediated signaling pathways as well as one or more unidentified factors activated by FB1 and the acd2-2 mutation.

  5. Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways.

    PubMed

    Hirota, Yuko; Yamashita, Shun-ichi; Kurihara, Yusuke; Jin, Xiulian; Aihara, Masamune; Saigusa, Tetsu; Kang, Dongchon; Kanki, Tomotake

    2015-01-01

    In cultured cells, not many mitochondria are degraded by mitophagy induced by physiological cellular stress. We observed mitophagy in HeLa cells using a method that relies on the pH-sensitive fluorescent protein Keima. With this approach, we found that mitophagy was barely induced by carbonyl cyanide m-chlorophenyl hydrazone treatment, which is widely used as an inducer of PARK2/Parkin-related mitophagy, whereas a small but modest amount of mitochondria were degraded by mitophagy under conditions of starvation or hypoxia. Mitophagy induced by starvation or hypoxia was marginally suppressed by knockdown of ATG7 and ATG12, or MAP1LC3B, which are essential for conventional macroautophagy. In addition, mitophagy was efficiently induced in Atg5 knockout mouse embryonic fibroblasts. However, knockdown of RAB9A and RAB9B, which are essential for alternative autophagy, but not conventional macroautophagy, severely suppressed mitophagy. Finally, we found that the MAPKs MAPK1/ERK2 and MAPK14/p38 were required for mitophagy. Based on these findings, we conclude that mitophagy in mammalian cells predominantly occurs through an alternative autophagy pathway, requiring the MAPK1 and MAPK14 signaling pathways.

  6. Autocrine IL-10 activation of the STAT3 pathway is required for pathological macrophage differentiation in polycystic kidney disease

    PubMed Central

    Peda, Jacqueline D.; Salah, Sally M.; Wallace, Darren P.; Fields, Patrick E.; Grantham, Connor J.; Fields, Timothy A.

    2016-01-01

    ABSTRACT Polycystic kidney disease (PKD) is characterized by slow expansion of fluid-filled cysts derived from tubules within the kidney. Cystic expansion results in injury to surrounding parenchyma and leads to inflammation, scarring and ultimately loss of renal function. Macrophages are a key element in this process, promoting cyst epithelial cell proliferation, cyst expansion and disease progression. Previously, we have shown that the microenvironment established by cystic epithelial cells can ‘program’ macrophages, inducing M2-like macrophage polarization that is characterized by expression of markers that include Arg1 and Il10. Here, we functionally characterize these macrophages, demonstrating that their differentiation enhances their ability to promote cyst cell proliferation. This observation indicates a model of reciprocal pathological interactions between cysts and the innate immune system: cyst epithelial cells promote macrophage polarization to a phenotype that, in turn, is especially efficient in promoting cyst cell proliferation and cyst growth. To better understand the genesis of this macrophage phenotype, we examined the role of IL-10, a regulatory cytokine shown to be important for macrophage-stimulated tissue repair in other settings. Herein, we show that the acquisition of the pathological macrophage phenotype requires IL-10 secretion by the macrophages. Further, we demonstrate a requirement for IL-10-dependent autocrine activation of the STAT3 pathway. These data suggest that the IL-10 pathway in macrophages plays an essential role in the pathological relationship between cysts and the innate immune system in PKD, and thus could be a potential therapeutic target. PMID:27491076

  7. Nonspecific cytotoxic cells of teleosts are armed with multiple granzymes and other components of the granule exocytosis pathway.

    PubMed

    Praveen, Kesavannair; Leary, John H; Evans, Donald L; Jaso-Friedmann, Liliana

    2006-03-01

    Granzymes are members of the serine protease family and major components of cytotoxic granules of professional killer cells. Multiple granzymes have been identified from human and rodents with different substrate specificities. Although the significance of granzymes A and B in cell-mediated cytotoxicity has been extensively investigated, recent reports suggest that other granzymes may have either equal or greater importance in mediating cell death. Studies on the evolution of these closely related proteases were hindered by the lack of sequence and biochemical information of granzymes from "lower vertebrates." Here we report the generation of a catalytically active recombinant granzyme identified in the cytotoxic cells of an ectothermic vertebrate. Fully active, soluble recombinant catfish granzyme-1 (CFGR-1) was generated using a yeast-based expression system. In vitro enzyme kinetic assays using various thiobenzyl ester substrates verified its tryptase activity in full agreement with previous observations by sequence comparison and molecular modeling. The tryptase activity that was secreted from catfish NCC during an in vitro cytotoxicity assay strongly correlated with the cytotoxicity induced by these cells. Evidence for additional granzymes with different substrate specificities in NCC was obtained by analysis of the protease activity of supernatants collected from in vitro cytotoxicity assays. Searches of the catfish EST database further confirmed the presence of teleost granzymes with different substrate specificities. Granzyme activity measurements suggested a predominance of chymase and tryptase activities in NCC. Further proof that the granule exocytosis pathway is one of the cytotoxic mechanisms in NCC was provided by the expression of granule components perforin, granulysin and serglycin detected by RT-PCR analysis. These results demonstrate the evidence for a parallel evolution of effector molecules of cell-mediated cytotoxicity in teleosts. PMID

  8. Retinol induces morphological alterations and proliferative focus formation through free radical-mediated activation of multiple signaling pathways

    PubMed Central

    Gelain, Daniel Pens; Pasquali, Matheus Augusto de Bittencourt; Caregnato, Fernanda Freitas; Castro, Mauro Antonio Alves; Moreira, José Claudio Fonseca

    2012-01-01

    Aim: Toxicity of retinol (vitamin A) has been previously associated with apoptosis and/or cell malignant transformation. Thus, we investigated the pathways involved in the induction of proliferation, deformation and proliferative focus formation by retinol in cultured Sertoli cells of rats. Methods: Sertoli cells were isolated from immature rats and cultured. The cells were subjected to a 24-h treatment with different concentrations of retinol. Parameters of oxidative stress and cytotoxicity were analyzed. The effects of the p38 inhibitor SB203580 (10 μmol/L), the JNK inhibitor SP600125 (10 μmol/L), the Akt inhibitor LY294002 (10 μmol/L), the ERK inhibitor U0126 (10 μmol/L) the pan-PKC inhibitor Gö6983 (10 μmol/L) and the PKA inhibitor H89 (1 μmol/L) on morphological and proliferative/transformation-associated modifications were studied. Results: Retinol (7 and 14 μmol/L) significantly increases the reactive species production in Sertoli cells. Inhibition of p38, JNK, ERK1/2, Akt, and PKA suppressed retinol-induced [3H]dT incorporation into the cells, while PKC inhibition had no effect. ERK1/2 and p38 inhibition also blocked retinol-induced proliferative focus formation in the cells, while Akt and JNK inhibition partially decreased focus formation. ERK1/2 and p38 inhibition hindered transformation-associated deformation in retinol-treated cells, while other treatments had no effect. Conclusion: Our results suggest that activation of multiple kinases is responsible for morphological and proliferative changes associated to malignancy development in Sertoli cells by retinol at the concentrations higher than physiological level. PMID:22426700

  9. Multiple-probe analysis of folding and unfolding pathways of human serum albumin. Evidence for a framework mechanism of folding.

    PubMed

    Santra, Manas Kumar; Banerjee, Abhijit; Krishnakumar, Shyam Sundar; Rahaman, Obaidur; Panda, Dulal

    2004-05-01

    The changes in the far-UV CD signal, intrinsic tryptophan fluorescence and bilirubin absorbance showed that the guanidine hydrochloride (GdnHCl)-induced unfolding of a multidomain protein, human serum albumin (HSA), followed a two-state process. However, using environment sensitive Nile red fluorescence, the unfolding and folding pathways of HSA were found to follow a three-state process and an intermediate was detected in the range 0.25-1.5 m GdnHCl. The intermediate state displayed 45% higher fluorescence intensity than that of the native state. The increase in the Nile red fluorescence was found to be due to an increase in the quantum yield of the HSA-bound Nile red. Low concentrations of GdnHCl neither altered the binding affinity of Nile red to HSA nor induced the aggregation of HSA. In addition, the secondary structure of HSA was not perturbed during the first unfolding transition (<1.5 m GdnHCl); however, the secondary structure was completely lost during the second transition. The data together showed that the half maximal loss of the tertiary structure occurred at a lower GdnHCl concentration than the loss of the secondary structure. Further kinetic studies of the refolding process of HSA using multiple spectroscopic techniques showed that the folding occurred in two phases, a burst phase followed by a slow phase. An intermediate with native-like secondary structure but only a partial tertiary structure was found to form in the burst phase of refolding. Then, the intermediate slowly folded into the native state. An analysis of the refolding data suggested that the folding of HSA could be best explained by the framework model.

  10. Multiple IMU system test plan, volume 4. [subroutines for space shuttle requirements

    NASA Technical Reports Server (NTRS)

    Landey, M.; Vincent, K. T., Jr.; Whittredge, R. S.

    1974-01-01

    Operating procedures for this redundant system are described. A test plan is developed with two objectives. First, performance of the hardware and software delivered is demonstrated. Second, applicability of multiple IMU systems to the space shuttle mission is shown through detailed experiments with FDI algorithms and other multiple IMU software: gyrocompassing, calibration, and navigation. Gimbal flip is examined in light of its possible detrimental effects on FDI and navigation. For Vol. 3, see N74-10296.

  11. Optimization of photosynthesis by multiple metabolic pathways involving interorganelle interactions: resource sharing and ROS maintenance as the bases.

    PubMed

    Sunil, Bobba; Talla, Sai K; Aswani, Vetcha; Raghavendra, Agepati S

    2013-11-01

    The bioenergetic processes of photosynthesis and respiration are mutually beneficial. Their interaction extends to photorespiration, which is linked to optimize photosynthesis. The interplay of these three pathways is facilitated by two major phenomena: sharing of energy/metabolite resources and maintenance of optimal levels of reactive oxygen species (ROS). The resource sharing among different compartments of plant cells is based on the production/utilization of reducing equivalents (NADPH, NADH) and ATP as well as on the metabolite exchange. The responsibility of generating the cellular requirements of ATP and NAD(P)H is mostly by the chloroplasts and mitochondria. In turn, besides the chloroplasts, the mitochondria, cytosol and peroxisomes are common sinks for reduced equivalents. Transporters located in membranes ensure the coordinated movement of metabolites across the cellular compartments. The present review emphasizes the beneficial interactions among photosynthesis, dark respiration and photorespiration, in relation to metabolism of C, N and S. Since the bioenergetic reactions tend to generate ROS, the cells modulate chloroplast and mitochondrial reactions, so as to ensure that the ROS levels do not rise to toxic levels. The patterns of minimization of ROS production and scavenging of excess ROS in intracellular compartments are highlighted. Some of the emerging developments are pointed out, such as model plants, orientation/movement of organelles and metabolomics.

  12. Processing requirements of secure C3/I and battle management systems - Development of Gemini trusted multiple microcomputer base

    NASA Astrophysics Data System (ADS)

    Tao, T. F.; Schell, R. R.

    The present investigation is concerned with the potential applications of trusted computer system technologies in space. It is suggested that the rapidly expanding roles of new space defense missions will require space-borne command, control, communication, intelligence, and battle management (C2/I-BM) systems. The trusted computer system technology can be extended to develop new computer architectures which are able to support the broader requirements of C3/I-BM processing. The Gemini Trusted Multiple Microcomputer Base product is being developed to meet the demanding requirements and to support simultaneously the multiple capabilities. Attention is given to recent important events of trusted computer system developments, and to the Gemini system architecture.

  13. Cell-intrinsic in vivo requirement for the E47-p21 pathway in long-term hematopoietic stem cells.

    PubMed

    Santos, Patricia M; Ding, Ying; Borghesi, Lisa

    2014-01-01

    Major regulators of long-term hematopoietic stem cell (LT-HSC) self-renewal and proliferation have been identified, but knowledge of their in vivo interaction in a linear pathway is lacking. In this study, we show a direct genetic link between the transcription factor E47 and the major cell cycle regulator p21 in controlling LT-HSC integrity in vivo under repopulation stress. Numerous studies have shown that E47 activates p21 transcription in hematopoietic subsets in vitro, and we now reveal the in vivo relevance of the E47-p21 pathway by reducing the gene dose of each factor individually (E47(het) or p21(het)) versus in tandem (E47(het)p21(het)). E47(het)p21(het) LT-HSCs and downstream short-term hematopoietic stem cells exhibit hyperproliferation and preferential susceptibility to mitotoxin compared to wild-type or single haploinsufficient controls. In serial adoptive transfers that rigorously challenge self-renewal, E47(het)p21(het) LT-HSCs dramatically and progressively decline, indicating the importance of cell-intrinsic E47-p21 in preserving LT-HSCs under stress. Transient numeric recovery of downstream short-term hematopoietic stem cells enabled the production of functionally competent myeloid but not lymphoid cells, as common lymphoid progenitors were decreased, and peripheral lymphocytes were virtually ablated. Thus, we demonstrate a developmental compartment-specific and lineage-specific requirement for the E47-p21 pathway in maintaining LT-HSCs, B cells, and T cells under hematopoietic repopulation stress in vivo.

  14. The Aids' Requirements of Children with Severe Multiple Handicaps and the People Looking after Them.

    ERIC Educational Resources Information Center

    Anden, Gerd

    The report presents findings from interviews with 10 families with children (4-19 years old) with severe mental retardation and multiple disabilities regarding the need for technical aids and adaptations in their homes. The following areas are addressed and examples of solutions proposed: hygienic aids (hot water adaptations, travel adaptations,…

  15. Cadmium Activates Multiple Signaling Pathways That Coordinately Stimulate Akt Activity to Enhance c-Myc mRNA Stability

    PubMed Central

    Tsai, Jia-Shiuan; Chao, Cheng-Han; Lin, Lih-Yuan

    2016-01-01

    Cadmium is a known environmental carcinogen. Exposure of Cd leads to the activation of several proto-oncogenes in cells. We investigated here the mechanism of c-Myc expression in hepatic cells under Cd treatment. The c-Myc protein and mRNA levels increased in dose- and time-dependent manners in HepG2 cells with Cd treatment. This increase was due to an increase in c-Myc mRNA stability. To explore the mechanism involved in enhancing the mRNA stability, several cellular signaling factors that evoked by Cd treatment were analyzed. PI3K, p38, ERK and JNK were activated by Cd. However, ERK did not participate in the Cd-induced c-Myc expression. Further analysis revealed that mTORC2 was a downstream factor of p38. PI3K, JNK and mTORC2 coordinately activated Akt. Akt was phosphorylated at Thr450 in the untreated cells. Cd treatment led to additional phosphorylation at Thr308 and Ser473. Blocking any of the three signaling factors resulted in the reduction of phosphorylation level at all three Akt sites. The activated Akt phosphorylated Foxo1 and allowed the modified protein to translocate into the cytoplasm. We conclude that Cd-induced accumulation of c-Myc requires the activation of several signaling pathways. The signals act coordinately for Akt activation and drive the Foxo1 from the nucleus to the cytoplasm. Reduction of Foxo1 in the nucleus reduces the transcription of its target genes that may affect c-Myc mRNA stability, resulting in a higher accumulation of the c-Myc proteins. PMID:26751215

  16. P38 AND EGF RECEPTOR KINASE-MEDIATED ACTIVATION OF THE PHOSPHATIDYLINOSITOL 3-KINASE/AKT PATHWAY IS REQUIRED FOR ZN2+INDUCED CYCLOOXYGENASE-2 EXPRESSION

    EPA Science Inventory

    Cyclooxygenase 2 (COX-2) expression is induced by physiological and inflammatory stimuli. Regulation of COX-2 expression is stimulus- and cell type-specific. Exposure to Zn2+ has been associated with activation of multiple intracellular signaling pathways as well as the induction...

  17. AKT/mTOR and c-Jun N-terminal kinase signaling pathways are required for chrysotile asbestos-induced autophagy.

    PubMed

    Lin, Ziying; Liu, Tie; Kamp, David W; Wang, Yahong; He, Huijuan; Zhou, Xu; Li, Donghong; Yang, Lawei; Zhao, Bin; Liu, Gang

    2014-07-01

    Chrysotile asbestos is closely associated with excess mortality from pulmonary diseases such as lung cancer, mesothelioma, and asbestosis. Although multiple mechanisms in which chrysotile asbestos fibers induce pulmonary disease have been identified, the role of autophagy in human lung epithelial cells has not been examined. In this study, we evaluated whether chrysotile asbestos induces autophagy in A549 human lung epithelial cells and then analyzed the possible underlying molecular mechanism. Chrysotile asbestos induced autophagy in A549 cells based on a series of biochemical and microscopic autophagy markers. We observed that asbestos increased expression of A549 cell microtubule-associated protein 1 light chain 3 (LC3-II), an autophagy marker, in conjunction with dephosphorylation of phospho-AKT, phospho-mTOR, and phospho-p70S6K. Notably, AKT1/AKT2 double-knockout murine embryonic fibroblasts (MEFs) had negligible asbestos-induced LC3-II expression, supporting a crucial role for AKT signaling. Chrysotile asbestos also led to the phosphorylation/activation of Jun N-terminal kinase (JNK) and p38 MAPK. Pharmacologic inhibition of JNK, but not p38 MAPK, dramatically inhibited the protein expression of LC3-II. Moreover, JNK2(-/-) MEFs but not JNK1(-/-) MEFs blocked LC3-II levels induced by chrysotile asbestos. In addition, N-acetylcysteine, an antioxidant, attenuated chrysotile asbestos-induced dephosphorylation of P-AKT and completely abolished phosphorylation/activation of JNK. Finally, we demonstrated that chrysotile asbestos-induced apoptosis was not affected by the presence of the autophagy inhibitor 3-methyladenine or autophagy-related gene 5 siRNA, indicating that the chrysotile asbestos-induced autophagy may be adaptive rather than prosurvival. Our findings demonstrate that AKT/mTOR and JNK2 signaling pathways are required for chrysotile asbestos-induced autophagy. These data provide a mechanistic basis for possible future clinical applications targeting

  18. OAS/PKR Pathways and α/β TCR+ T Cells are Required for Ad: IFN-γ Inhibition of HSV-1 in Cornea1

    PubMed Central

    Austin, Bobbie Ann; Halford, William P.; Williams, Bryan R. G.; Carr, Daniel J. J.

    2007-01-01

    An adenoviral vector containing the muIFN-γ transgene (Ad:IFN-γ) was evaluated for its capacity to inhibit HSV-1. To measure effectiveness, viral titers were analyzed in cornea and trigeminal ganglia (TG) during acute ocular HSV-1 infection. Ad: IFN-γ potently suppressed HSV-1 replication in a dose-dependent fashion, requiring IFN-γ R. Moreover, Ad:IFN-γ was effective when delivered -72 and -24 h prior to infection as well as 24 h post infection. Associated with anti-viral opposition, TG from Ad: IFN-γ transduced mice harbored fewer T cells. Also related to T cell involvement, Ad:IFN-γ was effective but attenuated in TG from α/β TCR deficient mice. In corneas, α/β TCR+ T cells were obligatory for protection against viral multiplication. Type I IFN involvement amid anti-viral efficacy of Ad: IFN-γ was further investigated because type I and II IFN pathways have synergistic anti-HSV-1 activity. Ad:IFN-γ inhibited viral reproduction in corneas and TG from IFN-α/β R deficient (CD118 −/−) mice, although viral titers were 2–3 fold higher in cornea and TG, compared to wild type. The absence of IFN-stimulated anti-viral proteins, 2’-5’ oligoadenylate synthetase/RNase L and ds RNA dependent protein kinase R, completely eliminated the anti-viral effectiveness of Ad:IFN-γ. Collectively, the results demonstrate: (1) nonexistence of type I IFN R does not abolish defense of Ad:IFN-γ against HSV-1; (2) anti-viral pathways, OAS/RNase L and PKR are mandatory; and (3) α/β TCR+ T cells are compulsory for Ad: IFN-γ effectiveness against HSV-1 in cornea but not in TG. PMID:17404299

  19. A melanin-independent interaction between Mc1r and Met signaling pathways is required for HGF-dependent melanoma.

    PubMed

    Wolnicka-Glubisz, Agnieszka; Strickland, Faith M; Wielgus, Albert; Anver, Miriam; Merlino, Glenn; De Fabo, Edward C; Noonan, Frances P

    2015-02-15

    Melanocortin 1 receptor (MC1R) signaling stimulates black eumelanin production through a cAMP-dependent pathway. MC1R polymorphisms can impair this process, resulting in a predominance of red phaeomelanin. The red hair, fair skin and UV sensitive phenotype is a well-described melanoma risk factor. MC1R polymorphisms also confer melanoma risk independent of pigment. We investigated the effect of Mc1r deficiency in a mouse model of UV-induced melanoma. C57BL/6-Mc1r+/+-HGF transgenic mice have a characteristic hyperpigmented black phenotype with extra-follicular dermal melanocytes located at the dermal/epidermal junction. UVB induces melanoma, independent of melanin pigmentation, but UVA-induced and spontaneous melanomas are dependent on black eumelanin. We crossed these mice with yellow C57BL/6-Mc1re/e animals which have a non-functional Mc1r and produce predominantly yellow phaeomelanin. Yellow C57BL/6-Mc1re/e-HGF mice produced no melanoma in response to UVR or spontaneously even though the HGF transgene and its receptor Met were expressed. Total melanin was less than in C57BL/6-Mc1r+/+-HGF mice, hyperpigmentation was not observed and there were few extra-follicular melanocytes. Thus, functional Mc1r was required for expression of the transgenic HGF phenotype. Heterozygous C57BL/6-Mc1re/+-HGF mice were black and hyperpigmented and, although extra-follicular melanocytes and skin melanin content were similar to C57BL/6-Mc1r+/+-HGF animals, they developed UV-induced and spontaneous melanomas with significantly less efficiency by all criteria. Thus, heterozygosity for Mc1r was sufficient to restore the transgenic HGF phenotype but insufficient to fully restore melanoma. We conclude that a previously unsuspected melanin-independent interaction between Mc1r and Met signaling pathways is required for HGF-dependent melanoma and postulate that this pathway is involved in human melanoma.

  20. 77 FR 12927 - Federal Acquisition Regulation: Requirements for Acquisitions Pursuant to Multiple-Award Contracts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    .... Background DoD, GSA, and NASA published an interim rule in the Federal Register at 76 FR 14548 on March 16... Register at 76 FR 14548 on March 16, 2011, is adopted as final with the following changes: PART 8--REQUIRED...; (5) Competition requirements for establishing BPAs and allowing flexibility in establishing...

  1. Multiple Wnt genes are required for segmentation in the short-germ embryo of Tribolium castaneum.

    PubMed

    Bolognesi, Renata; Farzana, Laila; Fischer, Tamara D; Brown, Susan J

    2008-10-28

    wingless (wg)/Wnt family are essential to development in virtually all metazoans. In short-germ insects, including the red flour beetle (Tribolium castaneum), the segment-polarity function of wg is conserved [1]. Wnt signaling is also implicated in posterior patterning and germband elongation [2-4], but despite its expression in the posterior growth zone, Wnt1/wg alone is not responsible for these functions [1-3]. Tribolium contains additional Wnt family genes that are also expressed in the growth zone [5]. After depleting Tc-WntD/8 we found a small percentage of embryos lacking abdominal segments. Additional removal of Tc-Wnt1 significantly enhanced the penetrance of this phenotype. Seeking alternative methods to deplete Wnt signal, we performed RNAi with other components of the Wnt pathway including wntless (wls), porcupine (porc), and pangolin (pan). Tc-wls RNAi caused segmentation defects similar to Tc-Wnt1 RNAi, but not Tc-WntD/8 RNAi, indicating that Tc-WntD/8 function is Tc-wls independent. Depletion of Tc-porc and Tc-pan produced embryos resembling double Tc-Wnt1,Tc-WntD/8 RNAi embryos, suggesting that Tc-porc is essential for the function of both ligands, which signal through the canonical pathway. This is the first evidence of functional redundancy between Wnt ligands in posterior patterning in short-germ insects. This Wnt function appears to be conserved in other arthropods [6] and vertebrates [7-9].

  2. Lordosis facilitation by leptin in ovariectomized, estrogen-primed rats requires simultaneous or sequential activation of several protein kinase pathways.

    PubMed

    García-Juárez, Marcos; Beyer, Carlos; Gómora-Arrati, Porfirio; Domínguez-Ordoñez, Raymundo; Lima-Hernández, Francisco J; Eguibar, José R; Galicia-Aguas, Yadira L; Etgen, Anne M; González-Flores, Oscar

    2013-09-01

    The present study tested the hypothesis that the Janus kinase 2, Src tyrosine kinases, and mitogen-activated protein kinase interact to regulate lordosis behavior induced by leptin in ovariectomized, estrogen-primed rats. The role of protein kinase A and protein kinase C in lordosis facilitation by leptin was also assessed. In experiment 1, the intracerebroventricular administration of leptin to ovariectomized, estradiol-primed rats significantly stimulated lordosis behavior at 1, 2 and 4 h post-injection tests. In experiment 2, the Janus kinase 2 inhibitor AG490, the Src tyrosine kinase inhibitor PP2 and the mitogen-activated protein kinase inhibitor PD98059 were administered into the right lateral ventricle before leptin. The lordosis quotient and the lordosis score induced by leptin were significantly decreased by each of these kinase inhibitors. In experiment 3, we examined the effects of RpcAMPS and bisindolylmaleimide, protein kinase A and protein kinase C inhibitors on the lordosis elicited by leptin administration. Lordosis behavior induced by leptin was significantly decreased by both the protein kinase A and protein kinase C inhibitors at 1 h post-leptin injection. The results confirm that multiple intracellular pathways participate in the expression of lordosis behavior in estrogen-primed rats elicited by leptin.

  3. KeyPathwayMiner 4.0: condition-specific pathway analysis by combining multiple omics studies and networks with Cytoscape

    PubMed Central

    2014-01-01

    Background Over the last decade network enrichment analysis has become popular in computational systems biology to elucidate aberrant network modules. Traditionally, these approaches focus on combining gene expression data with protein-protein interaction (PPI) networks. Nowadays, the so-called omics technologies allow for inclusion of many more data sets, e.g. protein phosphorylation or epigenetic modifications. This creates a need for analysis methods that can combine these various sources of data to obtain a systems-level view on aberrant biological networks. Results We present a new release of KeyPathwayMiner (version 4.0) that is not limited to analyses of single omics data sets, e.g. gene expression, but is able to directly combine several different omics data types. Version 4.0 can further integrate existing knowledge by adding a search bias towards sub-networks that contain (avoid) genes provided in a positive (negative) list. Finally the new release now also provides a set of novel visualization features and has been implemented as an app for the standard bioinformatics network analysis tool: Cytoscape. Conclusion With KeyPathwayMiner 4.0, we publish a Cytoscape app for multi-omics based sub-network extraction. It is available in Cytoscape’s app store http://apps.cytoscape.org/apps/keypathwayminer or via http://keypathwayminer.mpi-inf.mpg.de. PMID:25134827

  4. Death by a thousand knives: Multiple BH3-only proteins are required for maximal apoptosis triggered through the BCR.

    PubMed

    Carter, Matthew J; Cragg, Mark S

    2016-03-01

    The B-cell receptor (BCR) represents a key driver of B-cell development. Consequently, multiple mechanisms link inappropriate BCR signaling to apoptosis. Recently, we characterized the molecular regulators involved in lymphoma cells, confirming a major role for Bcl-2 interacting mediator of cell death (Bim) and supplementary roles for Bcl-2 interacting killer (Bik) and Noxa, and showing that all 3 proteins are required for maximal apoptosis. PMID:27308607

  5. Multiple Wnt genes are required for segmentation in the short-germ embryo of Tribolium castaneum.

    PubMed

    Bolognesi, Renata; Farzana, Laila; Fischer, Tamara D; Brown, Susan J

    2008-10-28

    wingless (wg)/Wnt family are essential to development in virtually all metazoans. In short-germ insects, including the red flour beetle (Tribolium castaneum), the segment-polarity function of wg is conserved [1]. Wnt signaling is also implicated in posterior patterning and germband elongation [2-4], but despite its expression in the posterior growth zone, Wnt1/wg alone is not responsible for these functions [1-3]. Tribolium contains additional Wnt family genes that are also expressed in the growth zone [5]. After depleting Tc-WntD/8 we found a small percentage of embryos lacking abdominal segments. Additional removal of Tc-Wnt1 significantly enhanced the penetrance of this phenotype. Seeking alternative methods to deplete Wnt signal, we performed RNAi with other components of the Wnt pathway including wntless (wls), porcupine (porc), and pangolin (pan). Tc-wls RNAi caused segmentation defects similar to Tc-Wnt1 RNAi, but not Tc-WntD/8 RNAi, indicating that Tc-WntD/8 function is Tc-wls independent. Depletion of Tc-porc and Tc-pan produced embryos resembling double Tc-Wnt1,Tc-WntD/8 RNAi embryos, suggesting that Tc-porc is essential for the function of both ligands, which signal through the canonical pathway. This is the first evidence of functional redundancy between Wnt ligands in posterior patterning in short-germ insects. This Wnt function appears to be conserved in other arthropods [6] and vertebrates [7-9]. PMID:18926702

  6. The TRIF-dependent signaling pathway is not required for acute cerebral ischemia/reperfusion injury in mice

    SciTech Connect

    Hua, Fang; Wang, Jun; Sayeed, Iqbal; Ishrat, Tauheed; Atif, Fahim; Stein, Donald G.

    2009-12-18

    TIR domain-containing adaptor protein (TRIF) is an adaptor protein in Toll-like receptor (TLR) signaling pathways. Activation of TRIF leads to the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-{kappa}B). While studies have shown that TLRs are implicated in cerebral ischemia/reperfusion (I/R) injury and in neuroprotection against ischemia afforded by preconditioning, little is known about TRIF's role in the pathological process following cerebral I/R. The present study investigated the role that TRIF may play in acute cerebral I/R injury. In a mouse model of cerebral I/R induced by transient middle cerebral artery occlusion, we examined the activation of NF-{kappa}B and IRF3 signaling in ischemic cerebral tissue using ELISA and Western blots. Neurological function and cerebral infarct size were also evaluated 24 h after cerebral I/R. NF-{kappa}B activity and phosphorylation of the inhibitor of kappa B (I{kappa}B{alpha}) increased in ischemic brains, but IRF3, inhibitor of {kappa}B kinase complex-{epsilon} (IKK{epsilon}), and TANK-binding kinase1 (TBK1) were not activated after cerebral I/R in wild-type (WT) mice. Interestingly, TRIF deficit did not inhibit NF-{kappa}B activity or p-I{kappa}B{alpha} induced by cerebral I/R. Moreover, although cerebral I/R induced neurological and functional impairments and brain infarction in WT mice, the deficits were not improved and brain infarct size was not reduced in TRIF knockout mice compared to WT mice. Our results demonstrate that the TRIF-dependent signaling pathway is not required for the activation of NF-{kappa}B signaling and brain injury after acute cerebral I/R.

  7. Multiple BiP genes of Arabidopsis thaliana are required for male gametogenesis and pollen competitiveness.

    PubMed

    Maruyama, Daisuke; Sugiyama, Tomoyuki; Endo, Toshiya; Nishikawa, Shuh-Ichi

    2014-04-01

    Immunoglobulin-binding protein (BiP) is a molecular chaperone of the heat shock protein 70 (Hsp70) family. BiP is localized in the endoplasmic reticulum (ER) and plays key roles in protein translocation, protein folding and quality control in the ER. The genomes of flowering plants contain multiple BiP genes. Arabidopsis thaliana has three BiP genes. BIP1 and BIP2 are ubiquitously expressed. BIP3 encodes a less well conserved BiP paralog, and it is expressed only under ER stress conditions in the majority of organs. Here, we report that all BiP genes are expressed and functional in pollen and pollen tubes. Although the bip1 bip2 double mutation does not affect pollen viability, the bip1 bip2 bip3 triple mutation is lethal in pollen. This result indicates that lethality of the bip1 bip2 double mutation is rescued by BiP3 expression. A decrease in the copy number of the ubiquitously expressed BiP genes correlates well with a decrease in pollen tube growth, which leads to reduced fitness of mutant pollen during fertilization. Because an increased protein secretion activity is expected to increase the protein folding demand in the ER, the multiple BiP genes probably cooperate with each other to ensure ER homeostasis in cells with active secretion such as rapidly growing pollen tubes.

  8. Somitogenesis clock-wave initiation requires differential decay and multiple binding sites for clock protein.

    PubMed

    Campanelli, Mark; Gedeon, Tomás

    2010-04-01

    Somitogenesis is a process common to all vertebrate embryos in which repeated blocks of cells arise from the presomitic mesoderm (PSM) to lay a foundational pattern for trunk and tail development. Somites form in the wake of passing waves of periodic gene expression that originate in the tailbud and sweep posteriorly across the PSM. Previous work has suggested that the waves result from a spatiotemporally graded control protein that affects the oscillation rate of clock-gene expression. With a minimally constructed mathematical model, we study the contribution of two control mechanisms to the initial formation of this gene-expression wave. We test four biologically motivated model scenarios with either one or two clock protein transcription binding sites, and with or without differential decay rates for clock protein monomers and dimers. We examine the sensitivity of wave formation with respect to multiple model parameters and robustness to heterogeneity in cell population. We find that only a model with both multiple binding sites and differential decay rates is able to reproduce experimentally observed waveforms. Our results show that the experimentally observed characteristics of somitogenesis wave initiation constrain the underlying genetic control mechanisms.

  9. 12 CFR 1010.15 - Regulatory exemption-multiple site subdivision-determination required.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., pick-up truck or equivalent “on-road” vehicle. (4) At the time of closing, a title insurance binder or... specific type of notice or by requiring that notice be given at a specified place. (ii) Obligate the... provisions of 12 CFR 1010.4(b) and (c) and the sales practices and standards in §§ 1011.10 through...

  10. FCAT Retakes: Trends in Multiple Attempts at Satisfying FCAT Graduation Requirements. Research Brief. Volume 0805

    ERIC Educational Resources Information Center

    Froman, Terry; Brown, Shelly

    2009-01-01

    According to Florida Law, students must pass the Grade 10 FCAT, among other academic requirements, in order to receive a standard high school diploma. Specifically, students must achieve a "passing" score of 300 or above on both the FCAT SSS Reading and the FCAT SSS Mathematics tests. Technically, students can retake the FCAT as many times as they…

  11. 76 FR 14548 - Federal Acquisition Regulation; Requirements for Acquisitions Pursuant to Multiple-Award Contracts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... documented in the acquisition plan and contract file, (ii) the estimated value of the BPA does not exceed... the ordering activity to (i) provide a Request for Quotation (RFQ) to all BPA holders offering the required supplies or services under the BPA for orders over the SAT that includes a description of...

  12. 12 CFR 1010.15 - Regulatory exemption-multiple site subdivision-determination required.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... would or could provide the foregoing services. (10) The lot sale must comply with the anti-fraud provisions of 12 CFR 1010.4(b) and (c) and the sales practices and standards in §§ 1011.10 through 1011.28...-determination required. 1010.15 Section 1010.15 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION...

  13. Multiple PLDs required for high salinity and water deficit tolerance in plants.

    PubMed

    Bargmann, Bastiaan O R; Laxalt, Ana M; ter Riet, Bas; van Schooten, Bas; Merquiol, Emmanuelle; Testerink, Christa; Haring, Michel A; Bartels, Dorothea; Munnik, Teun

    2009-01-01

    High salinity and drought have received much attention because they severely affect crop production worldwide. Analysis and comprehension of the plant's response to excessive salt and dehydration will aid in the development of stress-tolerant crop varieties. Signal transduction lies at the basis of the response to these stresses, and numerous signaling pathways have been implicated. Here, we provide further evidence for the involvement of phospholipase D (PLD) in the plant's response to high salinity and dehydration. A tomato (Lycopersicon esculentum) alpha-class PLD, LePLDalpha1, is transcriptionally up-regulated and activated in cell suspension cultures treated with salt. Gene silencing revealed that this PLD is indeed involved in the salt-induced phosphatidic acid production, but not exclusively. Genetically modified tomato plants with reduced LePLDalpha1 protein levels did not reveal altered salt tolerance. In Arabidopsis (Arabidopsis thaliana), both AtPLDalpha1 and AtPLDdelta were found to be activated in response to salt stress. Moreover, pldalpha1 and plddelta single and double knock-out mutants exhibited enhanced sensitivity to high salinity stress in a plate assay. Furthermore, we show that both PLDs are activated upon dehydration and the knock-out mutants are hypersensitive to hyperosmotic stress, displaying strongly reduced growth.

  14. Central Giant Cell Granuloma of the Mandible Requiring Multiple Treatment Modalities: A Case Report.

    PubMed

    Jerkins, David; Malotky, Maximilian; Miremadi, Reza; Dole, Mukund

    2016-08-01

    Central giant cell granuloma (CGCG) is a relatively rare non-neoplastic, intraosseous lesion that exhibits a wide spectrum of clinical behavior, and its management can be particularly challenging even for experienced clinicians. The etiopathogenesis of this disease process remains unclear, although factors such as trauma, inflammatory foci, and a genetic predisposition have been implicated. Although multiple treatment modalities have been used with varying degrees of success, there is no accepted algorithm for therapeutic intervention and little is known about the reasons for success or failure of a given treatment. This article reviews the epidemiology, presentation, classification, and currently used therapies for CGCG while describing the clinical course and successful therapeutic outcome of a young female patient with an aggressive CGCG of the mandible.

  15. Retinal Axon Guidance Requires Integration of Eya and the Jak/Stat Pathway into Phosphotyrosine-Based Signaling Circuitries in Drosophila.

    PubMed

    Hoi, Charlene S L; Xiong, Wenjun; Rebay, Ilaria

    2016-07-01

    The transcriptional coactivator and phosphatase eyes absent (Eya) is dynamically compartmentalized between the nucleus and cytoplasm. Although the nuclear transcriptional circuits within which Eya operates have been extensively characterized, understanding of its cytoplasmic functions and interactions remains limited. Our previous work showed that phosphorylation of Drosophila Eya by the Abelson tyrosine kinase can recruit Eya to the cytoplasm and that eya-abelson interactions are required for photoreceptor axons to project to correct layers in the brain. Based on these observations, we postulated that photoreceptor axon targeting might provide a suitable context for identifying the cytoplasmic signaling cascades with which Eya interacts. Using a dose-sensitive eya misexpression background, we performed an RNA interference-based genetic screen to identify suppressors. Included among the top 10 hits were nonreceptor tyrosine kinases and multiple members of the Jak/Stat signaling network (hop, Stat92E, Socs36E, and Socs44A), a pathway not previously implicated in axon targeting. Individual loss-of-function phenotypes combined with analysis of axonal projections in Stat92E null clones confirmed the importance of photoreceptor autonomous Jak/Stat signaling. Experiments in cultured cells detected cytoplasmic complexes between Eya and Hop, Socs36E and Socs44A; the latter interaction required both the Src homology 2 motif in Socs44A and tyrosine phosphorylated Eya, suggesting direct binding and validating the premise of the screen. Taken together, our data provide new insight into the cytoplasmic phosphotyrosine signaling networks that operate during photoreceptor axon guidance and suggest specific points of interaction with Eya. PMID:27194748

  16. The yeast prion [SWI+] abolishes multicellular growth by triggering conformational changes of multiple regulators required for flocculin gene expression

    PubMed Central

    Du, Zhiqiang; Zhang, Ying; Li, Liming

    2016-01-01

    Summary While transcription factors are prevalent among yeast prion proteins, the role of prion-mediated transcriptional regulation remains elusive. We show here that the yeast prion [SWI+] abolishes flocculin (FLO) gene expression and results in a complete loss of multicellularity. Further investigation demonstrates that besides Swi1, multiple other proteins essential for FLO expression, including Mss11, Sap30, and Msn1 also undergo conformational changes, and become inactivated in [SWI+] cells. Moreover, the asparagine-rich region of Mss11 can exist as prion-like aggregates specifically in [SWI+] cells, which are SDS-resistant, heritable, and curable, but become metastable after separation from [SWI+]. Our findings thus reveal a prion-mediated mechanism through which multiple regulators in a biological pathway can be inactivated. In combination with the partial loss-of-function phenotypes of [SWI+] cells on non-glucose sugar utilization, our data therefore demonstrate that a prion can influence differently on distinct traits through multi-level regulations, providing insights into the biological roles of prions. PMID:26711350

  17. Endocytosis-dependent coordination of multiple actin regulators is required for wound healing.

    PubMed

    Matsubayashi, Yutaka; Coulson-Gilmer, Camilla; Millard, Tom H

    2015-08-01

    The ability to heal wounds efficiently is essential for life. After wounding of an epithelium, the cells bordering the wound form dynamic actin protrusions and/or a contractile actomyosin cable, and these actin structures drive wound closure. Despite their importance in wound healing, the molecular mechanisms that regulate the assembly of these actin structures at wound edges are not well understood. In this paper, using Drosophila melanogaster embryos, we demonstrate that Diaphanous, SCAR, and WASp play distinct but overlapping roles in regulating actin assembly during wound healing. Moreover, we show that endocytosis is essential for wound edge actin assembly and wound closure. We identify adherens junctions (AJs) as a key target of endocytosis during wound healing and propose that endocytic remodeling of AJs is required to form "signaling centers" along the wound edge that control actin assembly. We conclude that coordination of actin assembly, AJ remodeling, and membrane traffic is required for the construction of a motile leading edge during wound healing.

  18. Proteomic-based identification of multiple pathways underlying n-butylidenephthalide-induced apoptosis in LNCaP human prostate cancer cells.

    PubMed

    Pang, Cheng-Yoong; Chiu, Sheng-Chun; Harn, Horng-Jyh; Zhai, Wei-Jun; Lin, Shinn-Zong; Yang, Hsueh-Hui

    2013-09-01

    Although numerous studies have shown the cancer-preventive properties of butylidenephthalide (BP), there is little report of BP affecting human prostate cancer cells. In the present study, proteomic-based approaches were used to elucidate the anticancer mechanism of BP in LNCaP human prostate cancer cells. BP treatment decreased the viability of LNCaP human prostate cancer cells in a concentration- and time-dependent manner, which was correlated with G0/G1 phase cell cycle arrest. Increased cell cycle arrest was associated with a decrease in the level of CCND1, CDK2, and PCNA proteins and an increase in the level of CDKN2A, CDKN1A, and SFN proteins. Proteomic studies revealed that among 48 differentially expressed proteins, 25 proteins were down-regulated and 23 proteins were up-regulated and these proteins fall into one large protein protein interaction network. Among these proteins, FAS, AIFM1, BIK, CYCS, SFN, PPP2R1A, CALR, HSPA5, DDIT3, and ERN1 are apoptosis and endoplasmic reticulum (ER) stress associated proteins. Proteomic data suggested that multiple signaling pathways including FAS-dependent pathway, mitochondrial pathway, and ER stress pathway are involved in the apoptosis induced by BP. PMID:23770345

  19. Proteomic profiling of naïve multiple myeloma patient plasma cells identifies pathways associated with favourable response to bortezomib-based treatment regimens.

    PubMed

    Dytfeld, Dominik; Rosebeck, Shaun; Kandarpa, Malathi; Mayampurath, Anoop; Mellacheruvu, Dattatreya; Alonge, Mattina M; Ngoka, Lambert; Jasielec, Jagoda; Richardson, Paul G; Volchenboum, Samuel; Nesvizhskii, Alexey I; Sreekumar, Arun; Jakubowiak, Andrzej J

    2015-07-01

    Toward our goal of personalized medicine, we comprehensively profiled pre-treatment malignant plasma cells from multiple myeloma patients and prospectively identified pathways predictive of favourable response to bortezomib-based treatment regimens. We utilized two complementary quantitative proteomics platforms to identify differentially-regulated proteins indicative of at least a very good partial response (VGPR) or complete response/near complete response (CR/nCR) to two treatment regimens containing either bortezomib, liposomal doxorubicin and dexamethasone (VDD), or lenalidomide, bortezomib and dexamethasone (RVD). Our results suggest enrichment of 'universal response' pathways that are common to both treatment regimens and are probable predictors of favourable response to bortezomib, including a subset of endoplasmic reticulum stress pathways. The data also implicate pathways unique to each regimen that may predict sensitivity to DNA-damaging agents, such as mitochondrial dysfunction, and immunomodulatory drugs, which was associated with acute phase response signalling. Overall, we identified patterns of tumour characteristics that may predict response to bortezomib-based regimens and their components. These results provide a rationale for further evaluation of the protein profiles identified herein for targeted selection of anti-myeloma therapy to increase the likelihood of improved treatment outcome of patients with newly-diagnosed myeloma. PMID:25824111

  20. Proteomic profiling of naïve multiple myeloma patient plasma cells identifies pathways associated with favourable response to bortezomib-based treatment regimens.

    PubMed

    Dytfeld, Dominik; Rosebeck, Shaun; Kandarpa, Malathi; Mayampurath, Anoop; Mellacheruvu, Dattatreya; Alonge, Mattina M; Ngoka, Lambert; Jasielec, Jagoda; Richardson, Paul G; Volchenboum, Samuel; Nesvizhskii, Alexey I; Sreekumar, Arun; Jakubowiak, Andrzej J

    2015-07-01

    Toward our goal of personalized medicine, we comprehensively profiled pre-treatment malignant plasma cells from multiple myeloma patients and prospectively identified pathways predictive of favourable response to bortezomib-based treatment regimens. We utilized two complementary quantitative proteomics platforms to identify differentially-regulated proteins indicative of at least a very good partial response (VGPR) or complete response/near complete response (CR/nCR) to two treatment regimens containing either bortezomib, liposomal doxorubicin and dexamethasone (VDD), or lenalidomide, bortezomib and dexamethasone (RVD). Our results suggest enrichment of 'universal response' pathways that are common to both treatment regimens and are probable predictors of favourable response to bortezomib, including a subset of endoplasmic reticulum stress pathways. The data also implicate pathways unique to each regimen that may predict sensitivity to DNA-damaging agents, such as mitochondrial dysfunction, and immunomodulatory drugs, which was associated with acute phase response signalling. Overall, we identified patterns of tumour characteristics that may predict response to bortezomib-based regimens and their components. These results provide a rationale for further evaluation of the protein profiles identified herein for targeted selection of anti-myeloma therapy to increase the likelihood of improved treatment outcome of patients with newly-diagnosed myeloma.

  1. From a Subtractive to Multiplicative Approach: A Concept-Driven Interactive Pathway on the Selective Absorption of Light

    ERIC Educational Resources Information Center

    Viennot, Laurence; de Hosson, Cécile

    2015-01-01

    This research documents the aims and the impact of a teaching experiment on how the absorption of light depends on the thickness of the absorbing medium. This teaching experiment is more specifically characterized as bringing to bear a "concept-driven interactive pathway". It is designed to make students analyse the absorption of light…

  2. Requirements for Forming Efficient 3-D Charge Transport Pathway in Diketopyrrolopyrrole-Based Copolymers: Film Morphology vs Molecular Packing.

    PubMed

    Lee, Gang-Young; Han, A-Reum; Kim, Taewan; Lee, Hae Rang; Oh, Joon Hak; Park, Taiho

    2016-05-18

    To achieve extremely high planarity and processability simultaneously, we have newly designed and synthesized copolymers composed of donor units of 2,2'-(2,5-dialkoxy-1,4-phenylene)dithieno[3,2-b]thiophene (TT-P-TT) and acceptor units of diketopyrrolopyrrole (DPP). These copolymers consist of a highly planar backbone due to intramolecular interactions. We have systematically investigated the effects of intermolecular interactions by controlling the side chain bulkiness on the polymer thin-film morphologies, packing structures, and charge transport. The thin-film microstructures of the copolymers are found to be critically dependent upon subtle changes in the intermolecular interactions, and charge transport dynamics of the copolymer based field-effect transistors (FETs) has been investigated by in-depth structure-property relationship study. Although the size of the fibrillar structures increases as the bulkiness of the side chains in the copolymer increases, the copolymer with the smallest side chain shows remarkably high charge carrier mobility. Our findings reveal the requirement for forming efficient 3-D charge transport pathway and highlight the importance of the molecular packing and interdomain connectivity, rather than the crystalline domain size. The results obtained herein demonstrate the importance of tailoring the side chain bulkiness and provide new insights into the molecular design for high-performance polymer semiconductors. PMID:27117671

  3. Delivery of endocytosed proteins to the cell–division plane requires change of pathway from recycling to secretion

    PubMed Central

    Richter, Sandra; Kientz, Marika; Brumm, Sabine; Nielsen, Mads Eggert; Park, Misoon; Gavidia, Richard; Krause, Cornelia; Voss, Ute; Beckmann, Hauke; Mayer, Ulrike; Stierhof, York-Dieter; Jürgens, Gerd

    2014-01-01

    Membrane trafficking is essential to fundamental processes in eukaryotic life, including cell growth and division. In plant cytokinesis, post-Golgi trafficking mediates a massive flow of vesicles that form the partitioning membrane but its regulation remains poorly understood. Here, we identify functionally redundant Arabidopsis ARF guanine-nucleotide exchange factors (ARF-GEFs) BIG1–BIG4 as regulators of post-Golgi trafficking, mediating late secretion from the trans-Golgi network but not recycling of endocytosed proteins to the plasma membrane, although the TGN also functions as an early endosome in plants. In contrast, BIG1-4 are absolutely required for trafficking of both endocytosed and newly synthesized proteins to the cell–division plane during cytokinesis, counteracting recycling to the plasma membrane. This change from recycling to secretory trafficking pathway mediated by ARF-GEFs confers specificity of cargo delivery to the division plane and might thus ensure that the partitioning membrane is completed on time in the absence of a cytokinesis-interphase checkpoint. DOI: http://dx.doi.org/10.7554/eLife.02131.001 PMID:24714496

  4. CCAAT/enhancer-binding protein α is required for hepatic outgrowth via the p53 pathway in zebrafish.

    PubMed

    Yuan, Hao; Wen, Bin; Liu, Xiaohui; Gao, Ce; Yang, Ruimeng; Wang, Luxiang; Chen, Saijuan; Chen, Zhu; de The, Hugues; Zhou, Jun; Zhu, Jun

    2015-01-01

    CCAAT/enhancer-binding protein α (C/ebpα) is a transcription factor that plays important roles in the regulation of hepatogenesis, adipogenesis and hematopoiesis. Disruption of the C/EBPα gene in mice leads to disturbed liver architecture and neonatal death due to hypoglycemia. However, the precise stages of liver development affected by C/ebpα loss are poorly studied. Using the zebrafish embryo as a model organism, we show that inactivation of the cebpa gene by TALENs results in a small liver phenotype. Further studies reveal that C/ebpα is distinctively required for hepatic outgrowth but not for hepatoblast specification. Lack of C/ebpα leads to enhanced hepatic cell proliferation and subsequent increased cell apoptosis. Additional loss of p53 can largely rescue the hepatic defect in cebpa mutants, suggesting that C/ebpα plays a role in liver growth regulation via the p53 pathway. Thus, our findings for the first time demonstrate a stage-specific role for C/ebpα during liver organogenesis.

  5. Phosphatase and tensin homolog deleted on chromosome 10 contributes to phenotype transformation of fibroblasts in idiopathic pulmonary fibrosis via multiple pathways

    PubMed Central

    Geng, Jing; Huang, Xiaoxi; Li, Ying; Xu, Xuefeng; Li, Shuhong; Jiang, Dingyuan; Liu, Zheng

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease and considered as a cancer-like disease. The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor has drawn attention in the pathogenesis of IPF. However, the role of PTEN in phenotypic transformation of lung fibroblasts, particularly in the migratory and invasive phenotype, is still elusive. Our data showed that PTEN expression was markedly reduced in both fibroblasts and myofibroblasts from IPF patients. Furthermore, loss of PTEN led to the transformation of normal fibroblasts to myofibroblasts and increased proliferation, apoptosis resistance, and migration/invasion activities. PTEN deficiency upregulated hyaluronan synthase 2 expression and thereby enhanced the invasion ability of fibroblasts. Cross-talk between PTEN and the transforming growth factor β1 (TGF-β1) pathway and PTEN reduction by hypoxia were observed. These findings suggest that PTEN is implicated in multiple pathways and plays a crucial role in the pathogenesis of IPF. PMID:26264443

  6. Requirement for safety monitoring for approved multiple sclerosis therapies: an overview

    PubMed Central

    Rommer, P S; Zettl, U K; Kieseier, B; Hartung, H-P; Menge, T; Frohman, E; Greenberg, B M; Hemmer, B; Stüve, O

    2014-01-01

    During the last two decades, treatment options for patients with multiple sclerosis (MS) have broadened tremendously. All agents that are currently approved for clinical use have potential side effects, and a careful risk–benefit evaluation is part of a decision algorithm to identify the optimal treatment choice for an individual patient. Whereas glatiramer acetate and interferon beta preparations have been used in MS for decades and have a proven safety record, more recently approved drugs appear to be more effective, but potential risks might be more severe. The potential complications of some novel therapies might not even have been identified to their full extent. This review is aimed at the clinical neurologist in that it offers insights into potential adverse events of each of the approved MS therapeutics: interferon beta, glatiramer acetate, mitoxantrone, natalizumab, fingolimod and teriflunomide, as well as recently approved therapeutics such as dimethyl fumarate and alemtuzumab. It also provides recommendations for monitoring the different drugs during therapy in order to avoid common side effects. PMID:24102425

  7. Autographa californica multiple nucleopolyhedrovirus gene ac81 is required for nucleocapsid envelopment.

    PubMed

    Dong, Fang; Wang, Jinwen; Deng, Riqiang; Wang, Xunzhang

    2016-08-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a highly pathogenic Baculoviridae that targets insects, whose core gene, ac81, has an unknown function. To determine the role of ac81 in the life cycle of AcMNPV, an ac81-knockout (Ac-81KO-GP) was constructed through homologous recombination in Escherichia coli. We determined that no budded virions were produced in Ac-81KO-GP-transfected Sf9 cells, while there was no effect on viral DNA replication. Electron microscopy (EM) analysis revealed that occlusion-derived virions (ODVs) envelopment and the subsequent embedding of virions into occlusion bodies (OBs) were aborted due to ac81 deletion. Interestingly, confocal microscopy and immunofluorescence analysis revealed that Ac81 was predominantly localized to the ring zone of nuclei during the late phase of infection. In addition, Ac81 was localized to the mature and premature ODVs in virus-infected cells within the ring zone as revealed by immuno-electron microscopy (IEM) analysis. Furthermore, we determined that Ac81 contained a functional hydrophobic transmembrane (TM) domain, whose deletion resulted in a phenotype similar to that of Ac-81KO-GP. These results suggest that Ac81 might be a TM protein that played an important role in nucleocapsid envelopment. PMID:27212683

  8. Requirement for safety monitoring for approved multiple sclerosis therapies: an overview.

    PubMed

    Rommer, P S; Zettl, U K; Kieseier, B; Hartung, H-P; Menge, T; Frohman, E; Greenberg, B M; Hemmer, B; Stüve, O

    2014-03-01

    During the last two decades, treatment options for patients with multiple sclerosis (MS) have broadened tremendously. All agents that are currently approved for clinical use have potential side effects, and a careful risk-benefit evaluation is part of a decision algorithm to identify the optimal treatment choice for an individual patient. Whereas glatiramer acetate and interferon beta preparations have been used in MS for decades and have a proven safety record, more recently approved drugs appear to be more effective, but potential risks might be more severe. The potential complications of some novel therapies might not even have been identified to their full extent. This review is aimed at the clinical neurologist in that it offers insights into potential adverse events of each of the approved MS therapeutics: interferon beta, glatiramer acetate, mitoxantrone, natalizumab, fingolimod and teriflunomide, as well as recently approved therapeutics such as dimethyl fumarate and alemtuzumab. It also provides recommendations for monitoring the different drugs during therapy in order to avoid common side effects. PMID:24102425

  9. Roles of multiple-proton transfer pathways and proton-coupled electron transfer in the reactivity of the bis-FeIV state of MauG.

    PubMed

    Ma, Zhongxin; Williamson, Heather R; Davidson, Victor L

    2015-09-01

    The high-valent state of the diheme enzyme MauG exhibits charge-resonance (CR) stabilization in which the major species is a bis-Fe(IV) state with one heme present as Fe(IV)=O and the other as Fe(IV) with axial heme ligands provided by His and Tyr side chains. In the absence of its substrate, the high-valent state is relatively stable and returns to the diferric state over several minutes. It is shown that this process occurs in two phases. The first phase is redistribution of the resonance species that support the CR. The second phase is the loss of CR and reduction to the diferric state. Thermodynamic analysis revealed that the rates of the two phases exhibited different temperature dependencies and activation energies of 8.9 and 19.6 kcal/mol. The two phases exhibited kinetic solvent isotope effects of 2.5 and 2.3. Proton inventory plots of each reaction phase exhibited extreme curvature that could not be fit to models for one- or multiple-proton transfers in the transition state. Each did fit well to a model for two alternative pathways for proton transfer, each involving multiple protons. In each case the experimentally determined fractionation factors were consistent with one of the pathways involving tunneling. The percent of the reaction that involved the tunneling pathway differed for the two reaction phases. Using the crystal structure of MauG it was possible to propose proton-transfer pathways consistent with the experimental data using water molecules and amino acid side chains in the distal pocket of the high-spin heme.

  10. MytiLec, a Mussel R-Type Lectin, Interacts with Surface Glycan Gb3 on Burkitt’s Lymphoma Cells to Trigger Apoptosis through Multiple Pathways

    PubMed Central

    Hasan, Imtiaj; Sugawara, Shigeki; Fujii, Yuki; Koide, Yasuhiro; Terada, Daiki; Iimura, Naoya; Fujiwara, Toshiyuki; Takahashi, Keisuke G.; Kojima, Nobuhiko; Rajia, Sultana; Kawsar, Sarkar M. A.; Kanaly, Robert A.; Uchiyama, Hideho; Hosono, Masahiro; Ogawa, Yukiko; Fujita, Hideaki; Hamako, Jiharu; Matsui, Taei; Ozeki, Yasuhiro

    2015-01-01

    MytiLec; a novel lectin isolated from the Mediterranean mussel (Mytilus galloprovincialis); shows strong binding affinity to globotriose (Gb3: Galα1-4Galβ1-4Glc). MytiLec revealed β-trefoil folding as also found in the ricin B-subunit type (R-type) lectin family, although the amino acid sequences were quite different. Classification of R-type lectin family members therefore needs to be based on conformation as well as on primary structure. MytiLec specifically killed Burkitt's lymphoma Ramos cells, which express Gb3. Fluorescein-labeling assay revealed that MytiLec was incorporated inside the cells. MytiLec treatment of Ramos cells resulted in activation of both classical MAPK/ extracellular signal-regulated kinase and extracellular signal-regulated kinase (MEK-ERK) and stress-activated (p38 kinase and JNK) Mitogen-activated protein kinases (MAPK) pathways. In the cells, MytiLec treatment triggered expression of tumor necrosis factor (TNF)-α (a ligand of death receptor-dependent apoptosis) and activation of mitochondria-controlling caspase-9 (initiator caspase) and caspase-3 (activator caspase). Experiments using the specific MEK inhibitor U0126 showed that MytiLec-induced phosphorylation of the MEK-ERK pathway up-regulated expression of the cyclin-dependent kinase inhibitor p21, leading to cell cycle arrest and TNF-α production. Activation of caspase-3 by MytiLec appeared to be regulated by multiple different pathways. Our findings, taken together, indicate that the novel R-type lectin MytiLec initiates programmed cell death of Burkitt’s lymphoma cells through multiple pathways (MAPK cascade, death receptor signaling; caspase activation) based on interaction of the lectin with Gb3-containing glycosphingolipid-enriched microdomains on the cell surface. PMID:26694420

  11. Complementary transcriptomic and proteomic analyses of a chlorophyll-deficient tea plant cultivar reveal multiple metabolic pathway changes.

    PubMed

    Wang, Lu; Cao, Hongli; Chen, Changsong; Yue, Chuan; Hao, Xinyuan; Yang, Yajun; Wang, Xinchao

    2016-01-01

    To uncover the mechanisms that underlie the chlorina phenotype of the tea plant, this study employs morphological, biochemical, transcriptomic, and iTRAQ-based proteomic analyses to compare the green tea cultivar LJ43 and the yellow-leaf tea cultivar ZH1. ZH1 exhibited the chlorina phenotype, with significantly decreased chlorophyll content and abnormal chloroplast development compared with LJ43. ZH1 also displayed higher theanine and free amino acid content and lower carotenoid and catechin content. Microarray and iTRAQ analyses indicated that the differentially expressed genes and proteins could be mapped to the following pathways: 'phenylpropanoid biosynthesis,' 'glutathione metabolism,' 'phenylalanine metabolism,' 'photosynthesis,' and 'flavonoid biosynthesis.' Altered gene and protein levels in these pathways may account for the increased amino acid content and reduced chlorophyll and flavonoid content of ZH1. Altogether, this study combines transcriptomic and proteomic approaches to better understand the mechanisms responsible for the chlorina phenotype.

  12. Are there multiple proteolytic pathways contributing to c-Fos, c-Jun and p53 protein degradation in vivo?

    PubMed

    Salvat, C; Aquaviva, C; Jariel-Encontre, I; Ferrara, P; Pariat, M; Steff, A M; Carillo, S; Piechaczyk, M

    1999-04-01

    The c-Fos and c-Jun oncoproteins and the p53 tumor suppressor protein are short-lived transcription factors. Several catabolic pathways contribute to their degradation in vivo. c-Fos and c-Jun are thus mostly degraded by the proteasome, but there is indirect evidence that, under certain experimental/physiological conditions, calpains participate in their destruction, at least to a limited extent. Lysosomes have also been reported to participate in the destruction of c-Fos. Along the same lines, p53 is mostly degraded following the ubiquitin/proteasome pathway and calpains also seem to participate in its degradation. Moreover, c-Fos, c-Jun and p53 turnovers are regulated upon activation of intracellular signalling cascades. All taken together, these observations underline the complexity of the mechanisms responsible for the selective destruction of proteins within cells.

  13. Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures.

    PubMed

    Hong, Suk-Whan; Lee, Ung; Vierling, Elizabeth

    2003-06-01

    Plants acquire thermotolerance to lethal high temperatures if first exposed to moderately high temperature or if temperature is increased gradually to an otherwise lethal temperature. We have taken a genetic approach to dissecting acquired thermotolerance by characterizing loss-of-function thermotolerance mutants in Arabidopsis. In previous work, we identified single recessive alleles of four loci required for thermotolerance of hypocotyl elongation, hot1-1, hot2-1, hot3-1, and hot4-1. Completed screening of M2 progeny from approximately 2500 M1 plants has now identified new alleles of three of these original loci, along with three new loci. The low mutant frequency suggests that a relatively small number of genes make a major contribution to this phenotype or that other thermotolerance genes encode essential or redundant functions. Further analysis of the original four loci was performed to define the nature of their thermotolerance defects. Although the HOT1 locus was shown previously to encode a major heat shock protein (Hsp), Hsp101, chromosomal map positions indicate that HOT2, 3, and 4 do not correspond to major Hsp or heat shock transcription factor genes. Measurement of thermotolerance at different growth stages reveals that the mutants have growth stage-specific heat sensitivity. Analysis of Hsp accumulation shows that hot2 and hot4 produce normal levels of Hsps, whereas hot3 shows reduced accumulation. Thermotolerance of luciferase activity and of ion leakage also varies in the mutants. These data provide the first direct genetic evidence, to our knowledge, that distinct functions, independent of Hsp synthesis, are required for thermotolerance, including protection of membrane integrity and recovery of protein activity/synthesis. PMID:12805605

  14. The mevalonate pathway as a metabolic requirement for autophagy-implications for growth control, proteostasis, and disease.

    PubMed

    Miettinen, Teemu P; Björklund, Mikael

    2016-05-01

    Autophagy is responsible for the degradation and recycling of cellular proteins and organelles. Our recent work shows that the mevalonate pathway influences cell size, growth, and proteostasis by regulating basal autophagic flux through geranylgeranylation of the small GTPase RAB11. The control of autophagy by the mevalonate/cholesterol pathway has potential implications for statin toxicity, inflammation, cancer, and neurodegenerative diseases. PMID:27314093

  15. Synthetic promoters consisting of defined cis-acting elements link multiple signaling pathways to probenazole-inducible system * #

    PubMed Central

    Zhu, Zheng; Gao, Jiong; Yang, Jin-xiao; Wang, Xiao-yan; Ren, Guo-dong; Ding, Yu-long; Kuai, Ben-ke

    2015-01-01

    Probenazole (3-allyloxy-1,2-benzisothiazole-1,1-dioxide, PBZ), the active component of Oryzemate, could induce systemic acquired resistance (SAR) in plants through the induction of salicylic acid (SA) biosynthesis. As a widely used chemical inducer, PBZ is a good prospect for establishing a new chemical-inducible system. We first designed artificially synthetic promoters with tandem copies of a single type of cis-element (SARE, JERE, GCC, GST1, HSRE, and W-box) that could mediate the expression of the β-glucuronidase (GUS) reporter gene in plants upon PBZ treatment. Then we combined different types of elements in order to improve inducibility in the PBZ-inducible system. On the other hand, we were surprised to find that the cis-elements, which are responsive to jasmonic acid (JA) and ethylene, also responded to PBZ, implying that SA, JA, and ethylene pathways also would play important roles in PBZ’s action. Further analysis demonstrated that PBZ also induced early events of innate immunity via a signaling pathway in which Ca2+ influx and mitogen-activated protein kinase (MAPK) activity were involved. We constructed synthesized artificial promoters to establish a PBZ chemical-inducible system, and preliminarily explored SA, JA, ethylene, calcium, and MAPK signaling pathways via PBZ-inducible system, which could provide an insight for in-depth study. PMID:25845359

  16. Lipopolysaccharide-induced Activation of NF-κB Non-Canonical Pathway Requires BCL10 Serine 138 and NIK Phosphorylations

    PubMed Central

    Bhattacharyya, Sumit; Borthakur, Alip; Dudeja, Pradeep K.; Tobacman, Joanne K.

    2010-01-01

    Background and Aims B-cell lymphoma / leukemia (BCL)-10 and reactive oxygen species mediate two pathways of NF-κB (RelA) activation by lipopolysaccharide (LPS) in human colonic epithelial cells. The pathway for LPS activation of RelB by the non-canonical pathway (RelB) in non-myeloid cells was not yet reported, but important for understanding the range of potential microbial LPS-induced effects in inflammatory bowel disease. Methods Experiments were performed in human colonic epithelial cells and in mouse embryonic fibroblasts deficient in components of the IkappaB kinase (IKK) signalosome, in order to detect mediators of the non-canonical pathway of NF-κB activation, including nuclear RelB and p52 and phospho- and total NF-κB inducing kinase (NIK). BCL10 was silenced by siRNA and effects of mutations of specific phosphorylation sites of BCL10 (Ser138Gly and Ser218Gly) were determined. Results By the non-canonical pathway, LPS exposure increased nuclear RelB and p52, and phospho-NIK, with no change in total NIK. Phosphorylation of BCL10 Serine 138 was required for NIK phosphorylation, since mutation of this residue eliminated the increases in phospho-NIK and nuclear RelB and p52. Mutations of either Serine 138 or Serine 218 reduced RelA, p50, and phospho-IκBα of the canonical pathway. Effects of LPS stimulation and BCL10 silencing on NIK phosphorylation were demonstrated in confocal images. Conclusions LPS-induces activation of both canonical and non-canonical pathways of NF-κB in human colonic epithelial cells, and the non-canonical pathway requires phosphorylations of BCL10 (Serine 138) and NIK. These findings demonstrate the important role of BCL10 in mediating LPS-induced inflammation in human colonic epithelial cells and may open new avenues for therapeutic interventions. PMID:20466000

  17. Neurospora crassa Female Development Requires the PACC and Other Signal Transduction Pathways, Transcription Factors, Chromatin Remodeling, Cell-To-Cell Fusion, and Autophagy

    PubMed Central

    Chinnici, Jennifer L.; Fu, Ci; Caccamise, Lauren M.; Arnold, Jason W.; Free, Stephen J.

    2014-01-01

    Using a screening protocol we have identified 68 genes that are required for female development in the filamentous fungus Neurospora crassa. We find that we can divide these genes into five general groups: 1) Genes encoding components of the PACC signal transduction pathway, 2) Other signal transduction pathway genes, including genes from the three N. crassa MAP kinase pathways, 3) Transcriptional factor genes, 4) Autophagy genes, and 5) Other miscellaneous genes. Complementation and RIP studies verified that these genes are needed for the formation of the female mating structure, the protoperithecium, and for the maturation of a fertilized protoperithecium into a perithecium. Perithecia grafting experiments demonstrate that the autophagy genes and the cell-to-cell fusion genes (the MAK-1 and MAK-2 pathway genes) are needed for the mobilization and movement of nutrients from an established vegetative hyphal network into the developing protoperithecium. Deletion mutants for the PACC pathway genes palA, palB, palC, palF, palH, and pacC were found to be defective in two aspects of female development. First, they were unable to initiate female development on synthetic crossing medium. However, they could form protoperithecia when grown on cellophane, on corn meal agar, or in response to the presence of nearby perithecia. Second, fertilized perithecia from PACC pathway mutants were unable to produce asci and complete female development. Protein localization experiments with a GFP-tagged PALA construct showed that PALA was localized in a peripheral punctate pattern, consistent with a signaling center associated with the ESCRT complex. The N. crassa PACC signal transduction pathway appears to be similar to the PacC/Rim101 pathway previously characterized in Aspergillus nidulans and Saccharomyces cerevisiae. In N. crassa the pathway plays a key role in regulating female development. PMID:25333968

  18. Smyd3 Is a Transcriptional Potentiator of Multiple Cancer-Promoting Genes and Required for Liver and Colon Cancer Development.

    PubMed

    Sarris, Michalis E; Moulos, Panagiotis; Haroniti, Anna; Giakountis, Antonis; Talianidis, Iannis

    2016-03-14

    Smyd3 is a protein methyltransferase implicated in cancer development. Here we show that Smyd3 expression in mice is required for chemically induced liver and colon cancer formation. In these organs Smyd3 functions in the nucleus, stimulating the transcription of several key regulators involved in cell proliferation, epithelial-mesenchymal transition, the JAK/Stat3 oncogenic pathway, as well as the Myc and Ctnnb1 oncogenes. Smyd3 interacts with H3K4Me3-modified histone tails, which facilitates its recruitment to the core promoter regions of most active genes. Smyd3 binding density on target genes positively correlates with increased RNA polymerase-II density and transcriptional outputs. Despite its widespread distribution, the transcription-potentiating function of Smyd3 is restricted to a particular set of genes, whose expression is induced specifically during carcinogenesis. PMID:26908355

  19. Multiple protein kinase A-regulated events are required for transcriptional induction by cAMP.

    PubMed Central

    Brindle, P; Nakajima, T; Montminy, M

    1995-01-01

    The second messenger cAMP stimulates the expression of numerous genes via the protein kinase A-mediated phosphorylation of the cAMP response element-binding protein (CREB) at Ser-133. Ser-133 phosphorylation, in turn, appears to induce target gene expression by promoting interaction between CREB and CBP, a 265-kDa nuclear phospho-CREB-binding protein. It is unclear, however, whether Ser-133 phosphorylation per se is sufficient for CREB-CBP complex formation and for target gene induction in vivo. Here we examine CREB activity in Jurkat T cells after stimulation of the T-cell receptor (TCR), an event that leads to calcium entry and diacylglycerol production. Triggering of the TCR stimulated Ser-133 phosphorylation of CREB with high stoichiometry, but TCR activation did not promote CREB-CBP complex formation or target gene induction unless suboptimal doses of cAMP agonist were provided as a costimulus. Our results demonstrate that, in addition to mediating Ser-133 phosphorylation of CREB, protein kinase A regulates additional proteins that are required for recruitment of the transcriptional apparatus to cAMP-responsive genes. Images Fig. 1 Fig. 2 Fig. 3 PMID:7479832

  20. Phenotypically linked dichotomy in sea turtle foraging requires multiple conservation approaches.

    PubMed

    Hawkes, Lucy A; Broderick, Annette C; Coyne, Michael S; Godfrey, Matthew H; Lopez-Jurado, Luis-Felipe; Lopez-Suarez, Pedro; Merino, Sonia Elsy; Varo-Cruz, Nuria; Godley, Brendan J

    2006-05-23

    Marine turtles undergo dramatic ontogenic changes in body size and behavior, with the loggerhead sea turtle, Caretta caretta, typically switching from an initial oceanic juvenile stage to one in the neritic, where maturation is reached and breeding migrations are subsequently undertaken every 2-3 years. Using satellite tracking, we investigated the migratory movements of adult females from one of the world's largest nesting aggregations at Cape Verde, West Africa. In direct contrast with the accepted life-history model for this species, results reveal two distinct adult foraging strategies that appear to be linked to body size. The larger turtles (n = 3) foraged in coastal waters, whereas smaller individuals (n = 7) foraged oceanically. The conservation implications of these findings are profound, with the population compartmentalized into habitats that may be differentially impacted by fishery threats in what is a global fishing hotspot. Although the protection of discrete areas containing coastal individuals may be attainable, the more numerous pelagic individuals are widely dispersed with individuals roaming over more than half a million square kilometers. Therefore, mitigation of fisheries by-catch for sea turtles in the east Atlantic will likely require complex and regionally tailored actions to account for this dichotomous behavior.

  1. Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice

    PubMed Central

    Zhou, Xin; Zhang, Zhaoping; Feng, Jian Q.; Dusevich, Vladmir M.; Sinha, Krishna; Zhang, Hua; Darnay, Bryant G.; de Crombrugghe, Benoit

    2010-01-01

    The transcription factor Osterix (Osx) is required for osteoblast differentiation and bone formation during embryonic development, but it is not known whether Osx has an essential function in postnatal bone growth and in bone homeostasis. Conditional deletion of Osx at several time points postnatally revealed that Osx was essential for osteoblast differentiation and new bone formation in growing and adult bones. Additionally, inactivation of Osx in bones severely disrupted the maturation, morphology, and function of osteocytes. These findings identify Osx as having an essential role in the cell-specific genetic program of osteocytes. Interestingly, Osx inactivation also led to the massive accumulation of unresorbed calcified cartilage in a large area below the growth plate of endochondral bones. This specific area was also marked by an unanticipated almost complete lack of bone marrow cells and a marked decrease in the density and size of osteoclasts. This diminished density of osteoclasts could contribute to the lack of resorption of mineralized cartilage. In addition, we speculate that the abnormally accumulated, mainly naked cartilage represents an unfavorable substrate for osteoclasts. Our study identifies Osx as an essential multifunctional player in postnatal bone growth and homeostasis. PMID:20615976

  2. Policy, Service Pathways and Mortality: A 10-Year Longitudinal Study of People with Profound Intellectual and Multiple Disabilities

    ERIC Educational Resources Information Center

    Hogg, James; Juhlberg, K.; Lambe, L.

    2007-01-01

    Background: One hundred and forty-two children and adults with profound intellectual and multiple disabilities were identified in 1993 in a single Scottish region on whom detailed information was collected via a postal questionnaire survey. Methods: They were followed up in 2003. The time spanned represented a period of significant policy change…

  3. The K-fgf/hst oncogene induces transformation through an autocrine mechanism that requires extracellular stimulation of the mitogenic pathway.

    PubMed Central

    Talarico, D; Basilico, C

    1991-01-01

    The K-fgf/hst oncogene encodes a secreted growth factor of the fibroblast growth factor (FGF) family. The ability of K-fgf-transformed cells to grow in soft agar and in serum-free medium is inhibited by anti-K-FGF neutralizing antibodies, consistent with an autocrine mechanism of transformation. The transformed properties of clones that express high levels of K-FGF are, however, only partially affected. To better define the autocrine mechanism of transformation by K-fgf and to determine whether receptor activation could occur intracellularly, we constructed two mutants of the K-fgf cDNA. Deletion of the sequences encoding the signal peptide suppressed K-fgf ability to induce foci in NIH 3T3 cells. A few morphologically transformed colonies were observed in cotransfection experiments, and they were found to express high levels of cytoplasmic K-FGF. However, their ability to grow in serum-free medium and in soft agar was inhibited by anti-K-FGF antibodies. Addition of a sequence encoding the KDEL endoplasmic reticulum and Golgi retention signal to the K-fgf cDNA led to accumulation of the growth factor in intracellular compartments. The ability of the KDEL mutant to induce foci in NIH 3T3 cells was much lower than that of the wild-type cDNA, and also in this case the transformed phenotype was reverted by anti-K-FGF antibodies. These and other findings indicate that the transformed phenotype of cells expressing a nonsecretory K-FGF is due to the extracellular activation of the receptor by the small amounts of growth factor that these cells still release. Thus, transformation by K-fgf appears to be due to an autocrine growth mechanisms that requires activation of the mitogenic pathway at the cell surface. Images PMID:1990270

  4. Multiple di-leucines in the ATP7A copper transporter are required for retrograde trafficking to the trans-Golgi network.

    PubMed

    Zhu, Sha; Shanbhag, Vinit; Hodgkinson, Victoria L; Petris, Michael J

    2016-09-01

    The ATP7A protein is a ubiquitous copper-transporting P-type ATPase that is mutated in the lethal pediatric disorder of copper metabolism, Menkes disease. The steady-state location of ATP7A is within the trans-Golgi network (TGN), where it delivers copper to copper-dependent enzymes within the secretory pathway. However, ATP7A constantly cycles between the TGN and the plasma membrane, and in the presence of high copper concentrations, the exocytic arm of this cycling pathway is enhanced to promote a steady-state distribution of ATP7A to post-Golgi vesicles and the plasma membrane. A single di-leucine endocytic motif within the cytosolic carboxy tail of ATP7A (1487LL) was previously shown to be essential for TGN localization by functioning in retrieval from the plasma membrane, however, the requirement of other di-leucine signals in this region has not been fully investigated. While there has been some success in identifying sequence elements within ATP7A required for trafficking and catalysis, progress has been hampered by the instability of the ATP7A cDNA in high-copy plasmids during replication in Escherichia coli. In this study, we find that the use of DNA synthesis to generate silent mutations across the majority of both mouse and human ATP7A open reading frames was sufficient to stabilize these genes in high-copy plasmids, thus permitting the generation of full-length expression constructs. Using the stabilized mouse Atp7a construct, we identify a second di-leucine motif in the carboxy tail of ATP7A (1459LL) as essential for steady-state localization in the TGN by functioning in endosome-to-TGN trafficking. Taken together, these findings demonstrate that multiple di-leucine signals are required for recycling ATP7A from the plasma membrane to the TGN and illustrate the utility of large-scale codon reassignment as a simple and effective approach to circumvent cDNA instability in high-copy plasmids.

  5. Multiple di-leucines in the ATP7A copper transporter are required for retrograde trafficking to the trans-Golgi network.

    PubMed

    Zhu, Sha; Shanbhag, Vinit; Hodgkinson, Victoria L; Petris, Michael J

    2016-09-01

    The ATP7A protein is a ubiquitous copper-transporting P-type ATPase that is mutated in the lethal pediatric disorder of copper metabolism, Menkes disease. The steady-state location of ATP7A is within the trans-Golgi network (TGN), where it delivers copper to copper-dependent enzymes within the secretory pathway. However, ATP7A constantly cycles between the TGN and the plasma membrane, and in the presence of high copper concentrations, the exocytic arm of this cycling pathway is enhanced to promote a steady-state distribution of ATP7A to post-Golgi vesicles and the plasma membrane. A single di-leucine endocytic motif within the cytosolic carboxy tail of ATP7A (1487LL) was previously shown to be essential for TGN localization by functioning in retrieval from the plasma membrane, however, the requirement of other di-leucine signals in this region has not been fully investigated. While there has been some success in identifying sequence elements within ATP7A required for trafficking and catalysis, progress has been hampered by the instability of the ATP7A cDNA in high-copy plasmids during replication in Escherichia coli. In this study, we find that the use of DNA synthesis to generate silent mutations across the majority of both mouse and human ATP7A open reading frames was sufficient to stabilize these genes in high-copy plasmids, thus permitting the generation of full-length expression c