Sample records for requires precise coordination

  1. High level continuity for coordinate generation with precise controls

    NASA Technical Reports Server (NTRS)

    Eiseman, P. R.

    1982-01-01

    Coordinate generation techniques with precise local controls have been derived and analyzed for continuity requirements up to both the first and second derivatives, and have been projected to higher level continuity requirements from the established pattern. The desired local control precision was obtained when a family of coordinate surfaces could be uniformly distributed without a consequent creation of flat spots on the coordinate curves transverse to the family. Relative to the uniform distribution, the family could be redistributed from an a priori distribution function or from a solution adaptive approach, both without distortion from the underlying transformation which may be independently chosen to fit a nontrivial geometry and topology.

  2. Status of research and development in coordinate-measurement technology

    NASA Astrophysics Data System (ADS)

    Dich, L. Z.; Latyev, S. M.

    1994-09-01

    This paper discusses problems involved in developing and operating coordinate-measuring machines. The status of this area of precision instrumentation is analyzed. These problems are made critical not only by the requirements of the machine-tool industry but also by those of the microelectronics industry, both of which use coordinate tables, step-up gears, and other equipment in which precise coordinate measurements are necessary.

  3. Measurement of whole tire profile

    NASA Astrophysics Data System (ADS)

    Yang, Yongyue; Jiao, Wenguang

    2010-08-01

    In this paper, a precision measuring device is developed for obtaining characteristic curve of tire profile and its geometric parameters. It consists of a laser displacement measurement unit, a closed-loop precision two-dimensional coordinate table, a step motor control system and a fast data acquisition and analysis system. Based on the laser trigonometry, a data map of tire profile and coordinate values of all points can be obtained through corresponding data transformation. This device has a compact structure, a convenient control, a simple hardware circuit design and a high measurement precision. Experimental results indicate that measurement precision can meet the customer accuracy requirement of +/-0.02 mm.

  4. A New Method of High-Precision Positioning for an Indoor Pseudolite without Using the Known Point Initialization.

    PubMed

    Zhao, Yinzhi; Zhang, Peng; Guo, Jiming; Li, Xin; Wang, Jinling; Yang, Fei; Wang, Xinzhe

    2018-06-20

    Due to the great influence of multipath effect, noise, clock and error on pseudorange, the carrier phase double difference equation is widely used in high-precision indoor pseudolite positioning. The initial position is determined mostly by the known point initialization (KPI) method, and then the ambiguities can be fixed with the LAMBDA method. In this paper, a new method without using the KPI to achieve high-precision indoor pseudolite positioning is proposed. The initial coordinates can be quickly obtained to meet the accuracy requirement of the indoor LAMBDA method. The detailed processes of the method follows: Aiming at the low-cost single-frequency pseudolite system, the static differential pseudolite system (DPL) method is used to obtain the low-accuracy positioning coordinates of the rover station quickly. Then, the ambiguity function method (AFM) is used to search for the coordinates in the corresponding epoch. The real coordinates obtained by AFM can meet the initial accuracy requirement of the LAMBDA method, so that the double difference carrier phase ambiguities can be correctly fixed. Following the above steps, high-precision indoor pseudolite positioning can be realized. Several experiments, including static and dynamic tests, are conducted to verify the feasibility of the new method. According to the results of the experiments, the initial coordinates with the accuracy of decimeter level through the DPL can be obtained. For the AFM part, both a one-meter search scope and two-centimeter or four-centimeter search steps are used to ensure the precision at the centimeter level and high search efficiency. After dealing with the problem of multiple peaks caused by the ambiguity cosine function, the coordinate information of the maximum ambiguity function value (AFV) is taken as the initial value of the LAMBDA, and the ambiguities can be fixed quickly. The new method provides accuracies at the centimeter level for dynamic experiments and at the millimeter level for static ones.

  5. Determining coordinates of the rotational pole using satellite data from four sites

    NASA Astrophysics Data System (ADS)

    Pisacane, V. L.; Dillon, S. C.

    1981-02-01

    The precision of the terrestrial coordinates of the rotational pole was determined from the satellite data using the Navy Navigation Satellite System (TRANSIT). Observations were made in Maine, Minnesota, California, and Hawaii; the data agreed with extrapolated and final coordinates from the Bureau International de l'Heure and final coordinates from the Doppler Polar Motion Service. The investigation indicates that low-cost and near-real-time estimates of the terrestrial coordinates of the pole are available as a by-product of the routine support required for the TRANSIT.

  6. Two-phase strategy of controlling motor coordination determined by task performance optimality.

    PubMed

    Shimansky, Yury P; Rand, Miya K

    2013-02-01

    A quantitative model of optimal coordination between hand transport and grip aperture has been derived in our previous studies of reach-to-grasp movements without utilizing explicit knowledge of the optimality criterion or motor plant dynamics. The model's utility for experimental data analysis has been demonstrated. Here we show how to generalize this model for a broad class of reaching-type, goal-directed movements. The model allows for measuring the variability of motor coordination and studying its dependence on movement phase. The experimentally found characteristics of that dependence imply that execution noise is low and does not affect motor coordination significantly. From those characteristics it is inferred that the cost of neural computations required for information acquisition and processing is included in the criterion of task performance optimality as a function of precision demand for state estimation and decision making. The precision demand is an additional optimized control variable that regulates the amount of neurocomputational resources activated dynamically. It is shown that an optimal control strategy in this case comprises two different phases. During the initial phase, the cost of neural computations is significantly reduced at the expense of reducing the demand for their precision, which results in speed-accuracy tradeoff violation and significant inter-trial variability of motor coordination. During the final phase, neural computations and thus motor coordination are considerably more precise to reduce the cost of errors in making a contact with the target object. The generality of the optimal coordination model and the two-phase control strategy is illustrated on several diverse examples.

  7. Retinotopic memory is more precise than spatiotopic memory.

    PubMed

    Golomb, Julie D; Kanwisher, Nancy

    2012-01-31

    Successful visually guided behavior requires information about spatiotopic (i.e., world-centered) locations, but how accurately is this information actually derived from initial retinotopic (i.e., eye-centered) visual input? We conducted a spatial working memory task in which subjects remembered a cued location in spatiotopic or retinotopic coordinates while making guided eye movements during the memory delay. Surprisingly, after a saccade, subjects were significantly more accurate and precise at reporting retinotopic locations than spatiotopic locations. This difference grew with each eye movement, such that spatiotopic memory continued to deteriorate, whereas retinotopic memory did not accumulate error. The loss in spatiotopic fidelity is therefore not a generic consequence of eye movements, but a direct result of converting visual information from native retinotopic coordinates. Thus, despite our conscious experience of an effortlessly stable spatiotopic world and our lifetime of practice with spatiotopic tasks, memory is actually more reliable in raw retinotopic coordinates than in ecologically relevant spatiotopic coordinates.

  8. The Equivalence of Precession Phenomena in Metric Theories of Gravity

    NASA Technical Reports Server (NTRS)

    Krisher, Timothy P.

    1996-01-01

    The requirement of general covariance imparts to metric theories of gravity, such as general relativity, important structural features. A precise mathematical form results, ensuring that computation of observable physical effects in the theory gives the same answers independently of the chosen system of coordinates. This coordinate independence property, in turn, can lead to an equivalence of apparently different physical effects.

  9. Tunnel profile measurement by vision metrology toward application to NATM

    NASA Astrophysics Data System (ADS)

    Hattori, Susumu; Akimoto, Keiichi; Ono, Tetsu; Miura, Satoru

    2003-05-01

    The NATM, a widely used tunnel excavation method, requires precise periodical monitoring of deformations especially at fault zones, which tends to hamper traffics with conventional measurement means. In this paper vision metrology was applied to tunnel profile measurement with a view to developing a new method. Two hundred of Retro-targets are placed on a one-meter spacing lattice at a tunnel site of 7m in diameter and 15m in longitude, and 66 images were taken to cover the target field. The object space coordinates of targets obtained by bundle adjustment were compared with ones obtained by high-precision total station observation. The root mean square (RMS) of differences of coordinates was 0.548mm, which is precise enough for monitoring deformations for the NATM.

  10. Ground control requirements for precision processing of ERTS images

    USGS Publications Warehouse

    Burger, Thomas C.

    1973-01-01

    With the successful flight of the ERTS-1 satellite, orbital height images are available for precision processing into products such as 1:1,000,000-scale photomaps and enlargements up to 1:250,000 scale. In order to maintain positional error below 100 meters, control points for the precision processing must be carefully selected, clearly definitive on photos in both X and Y. Coordinates of selected control points measured on existing ½ and 15-minute standard maps provide sufficient accuracy for any space imaging system thus far defined. This procedure references the points to accepted horizontal and vertical datums. Maps as small as 1:250,000 scale can be used as source material for coordinates, but to maintain the desired accuracy, maps of 1:100,000 and larger scale should be used when available.

  11. How precise are reported protein coordinate data?

    PubMed

    Konagurthu, Arun S; Allison, Lloyd; Abramson, David; Stuckey, Peter J; Lesk, Arthur M

    2014-03-01

    Atomic coordinates in the Worldwide Protein Data Bank (wwPDB) are generally reported to greater precision than the experimental structure determinations have actually achieved. By using information theory and data compression to study the compressibility of protein atomic coordinates, it is possible to quantify the amount of randomness in the coordinate data and thereby to determine the realistic precision of the reported coordinates. On average, the value of each C(α) coordinate in a set of selected protein structures solved at a variety of resolutions is good to about 0.1 Å.

  12. Brg1 coordinates multiple processes during retinogenesis and is a tumor suppressor in retinoblastoma

    DOE PAGES

    Aldiri, Issam; Ajioka, Itsuki; Xu, Beisi; ...

    2015-12-01

    Retinal development requires precise temporal and spatial coordination of cell cycle exit, cell fate specification, cell migration and differentiation. When this process is disrupted, retinoblastoma, a developmental tumor of the retina, can form. Epigenetic modulators are central to precisely coordinating developmental events, and many epigenetic processes have been implicated in cancer. Studying epigenetic mechanisms in development is challenging because they often regulate multiple cellular processes; therefore, elucidating the primary molecular mechanisms involved can be difficult. Here we explore the role of Brg1 (Smarca4) in retinal development and retinoblastoma in mice using molecular and cellular approaches. Brg1 was found to regulatemore » retinal size by controlling cell cycle length, cell cycle exit and cell survival during development. Brg1 was not required for cell fate specification but was required for photoreceptor differentiation and cell adhesion/polarity programs that contribute to proper retinal lamination during development. The combination of defective cell differentiation and lamination led to retinal degeneration in Brg1-deficient retinae. Despite the hypocellularity, premature cell cycle exit, increased cell death and extended cell cycle length, retinal progenitor cells persisted in Brg1-deficient retinae, making them more susceptible to retinoblastoma. In conclusion, ChIP-Seq analysis suggests that Brg1 might regulate gene expression through multiple mechanisms.« less

  13. Brg1 coordinates multiple processes during retinogenesis and is a tumor suppressor in retinoblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldiri, Issam; Ajioka, Itsuki; Xu, Beisi

    Retinal development requires precise temporal and spatial coordination of cell cycle exit, cell fate specification, cell migration and differentiation. When this process is disrupted, retinoblastoma, a developmental tumor of the retina, can form. Epigenetic modulators are central to precisely coordinating developmental events, and many epigenetic processes have been implicated in cancer. Studying epigenetic mechanisms in development is challenging because they often regulate multiple cellular processes; therefore, elucidating the primary molecular mechanisms involved can be difficult. Here we explore the role of Brg1 (Smarca4) in retinal development and retinoblastoma in mice using molecular and cellular approaches. Brg1 was found to regulatemore » retinal size by controlling cell cycle length, cell cycle exit and cell survival during development. Brg1 was not required for cell fate specification but was required for photoreceptor differentiation and cell adhesion/polarity programs that contribute to proper retinal lamination during development. The combination of defective cell differentiation and lamination led to retinal degeneration in Brg1-deficient retinae. Despite the hypocellularity, premature cell cycle exit, increased cell death and extended cell cycle length, retinal progenitor cells persisted in Brg1-deficient retinae, making them more susceptible to retinoblastoma. In conclusion, ChIP-Seq analysis suggests that Brg1 might regulate gene expression through multiple mechanisms.« less

  14. Proceedings of the 7th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Proceedings contain the papers presented at the Seventh Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting and the edited record of the discussion period following each paper. This meeting provided a forum to promote more effective, efficient, economical and skillful applications of PTTI technology to the many problem areas to which PTTI offers solutions. Specifically the purpose of the meeting is to: disseminate, coordinate, and exchange practical information associated with precise time and frequency; acquaint systems engineers, technicians and managers with precise time and frequency technology and its applications; and review present and future requirements for PTTI.

  15. Gaze Stabilization During Locomotion Requires Full Body Coordination

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Miller, C. A.; Houser, J.; Richards, J. T.; Bloomberg, J. J.

    2001-01-01

    Maintaining gaze stabilization during locomotion places substantial demands on multiple sensorimotor subsystems for precise coordination. Gaze stabilization during locomotion requires eye-head-trunk coordination (Bloomberg, et al., 1997) as well as the regulation of energy flow or shock-wave transmission through the body at high impact phases with the support surface (McDonald, et al., 1997). Allowing these excessive transmissions of energy to reach the head may compromise gaze stability. Impairments in these mechanisms may lead to the oscillopsia and decreased dynamic visual acuity seen in crewmembers returning from short and long duration spaceflight, as well as in patients with vestibular disorders (Hillman, et al., 1999). Thus, we hypothesize that stabilized gaze during locomotion results from full-body coordination of the eye-head-trunk system combined with the lower limb apparatus. The goal of this study was to determine how multiple, interdependent full- body sensorimotor subsystems aiding gaze stabilization during locomotion are functionally coordinated, and how they adaptively respond to spaceffight.

  16. Convergent microRNA actions coordinate neocortical development.

    PubMed

    Barca-Mayo, Olga; De Pietri Tonelli, Davide

    2014-08-01

    Neocortical development is a complex process that, at the cellular level, involves tight control of self-renewal, cell fate commitment, survival, differentiation and delamination/migration. These processes require, at the molecular level, the precise regulation of intrinsic signaling pathways and extrinsic factors with coordinated action in a spatially and temporally specific manner. Transcriptional regulation plays an important role during corticogenesis; however, microRNAs (miRNAs) are emerging as important post-transcriptional regulators of various aspects of central nervous system development. miRNAs are a class of small, single-stranded noncoding RNA molecules that control the expression of the majority of protein coding genes (i.e., targets). How do different miRNAs achieve precise control of gene networks during neocortical development? Here, we critically review all the miRNA-target interactions validated in vivo, with relevance to the generation and migration of pyramidal-projection glutamatergic neurons, and for the initial formation of cortical layers in the embryonic development of rodent neocortex. In particular, we focus on convergent miRNA actions, which are still a poorly understood layer of complexity in miRNA signaling, but potentially one of the keys to disclosing how miRNAs achieve the precise coordination of complex biological processes such as neocortical development.

  17. The Equivalence of Precession Phenomena in Metric Theories of Gravity

    NASA Technical Reports Server (NTRS)

    Krisher, Timothy P.

    1997-01-01

    The requirement of general covariance imparts to metric theories of gravity, such as general relavity, important structural features. A precise mathematical form results, ensuring that computation of observable physical effects in the theory gives the same answers independently of the chosen system of coordinates.

  18. A Good Move

    NASA Astrophysics Data System (ADS)

    Lakota, Gregory J.; Essary, Andrew; Bast, William D.; Dicaprio, Ralph; Symmes, Arthur H.; McDonald, Edward T.

    2006-11-01

    An underground exhibit space constructed at Chicago's Museum of Science and Industry now serves as the home of the German submarine U-505 -- the only vessel of its class captured by the United States during World War II. The careful lifting and moving of the vessel required precise coordination and meticulous reviews.

  19. Impact of orbit modeling on DORIS station position and Earth rotation estimates

    NASA Astrophysics Data System (ADS)

    Štěpánek, Petr; Rodriguez-Solano, Carlos Javier; Hugentobler, Urs; Filler, Vratislav

    2014-04-01

    The high precision of estimated station coordinates and Earth rotation parameters (ERP) obtained from satellite geodetic techniques is based on the precise determination of the satellite orbit. This paper focuses on the analysis of the impact of different orbit parameterizations on the accuracy of station coordinates and the ERPs derived from DORIS observations. In a series of experiments the DORIS data from the complete year 2011 were processed with different orbit model settings. First, the impact of precise modeling of the non-conservative forces on geodetic parameters was compared with results obtained with an empirical-stochastic modeling approach. Second, the temporal spacing of drag scaling parameters was tested. Third, the impact of estimating once-per-revolution harmonic accelerations in cross-track direction was analyzed. And fourth, two different approaches for solar radiation pressure (SRP) handling were compared, namely adjusting SRP scaling parameter or fixing it on pre-defined values. Our analyses confirm that the empirical-stochastic orbit modeling approach, which does not require satellite attitude information and macro models, results for most of the monitored station parameters in comparable accuracy as the dynamical model that employs precise non-conservative force modeling. However, the dynamical orbit model leads to a reduction of the RMS values for the estimated rotation pole coordinates by 17% for x-pole and 12% for y-pole. The experiments show that adjusting atmospheric drag scaling parameters each 30 min is appropriate for DORIS solutions. Moreover, it was shown that the adjustment of cross-track once-per-revolution empirical parameter increases the RMS of the estimated Earth rotation pole coordinates. With recent data it was however not possible to confirm the previously known high annual variation in the estimated geocenter z-translation series as well as its mitigation by fixing the SRP parameters on pre-defined values.

  20. Coordinate transformations and gauges in the relativistic astronomical reference systems

    NASA Astrophysics Data System (ADS)

    Tao, J.-H.; Huang, T.-Y.; Han, C.-H.

    2000-11-01

    This paper applies a fully post-Newtonian theory (Damour et al. 1991, 1992, 1993, 1994) to the problem of gauge in relativistic reference systems. Gauge fixing is necessary when the precision of time measurement and application reaches 10-16 or better. We give a general procedure for fixing the gauges of gravitational potentials in both the global and local coordinate systems, and for determining the gauge functions in all the coordinate transformations. We demonstrate that gauge fixing in a gravitational N-body problem can be solved by fixing the gauge of the self-gravitational potential of each body and the gauge function in the coordinate transformation between the global and local coordinate systems. We also show that these gauge functions can be chosen to make all the coordinate systems harmonic or any as required, no matter what gauge is chosen for the self-gravitational potential of each body.

  1. Advancements in LiDAR-based registration of FIA field plots

    Treesearch

    Demetrios Gatziolis

    2012-01-01

    Meaningful integration of National Forest Inventory field plot information with spectral imagery acquired from satellite or airborne platforms requires precise plot registration. Global positioning system-based plot registration procedures, such as the one employed by the Forest Inventory and Analysis (FIA) Program, yield plot coordinates that, although adequate for...

  2. How precise can atoms of a nanocluster be located in 3D using a tilt series of scanning transmission electron microscopy images?

    PubMed

    Alania, M; De Backer, A; Lobato, I; Krause, F F; Van Dyck, D; Rosenauer, A; Van Aert, S

    2017-10-01

    In this paper, we investigate how precise atoms of a small nanocluster can ultimately be located in three dimensions (3D) from a tilt series of images acquired using annular dark field (ADF) scanning transmission electron microscopy (STEM). Therefore, we derive an expression for the statistical precision with which the 3D atomic position coordinates can be estimated in a quantitative analysis. Evaluating this statistical precision as a function of the microscope settings also allows us to derive the optimal experimental design. In this manner, the optimal angular tilt range, required electron dose, optimal detector angles, and number of projection images can be determined. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Deficits in Coordinative Bimanual Timing Precision in Children With Specific Language Impairment

    PubMed Central

    Goffman, Lisa; Zelaznik, Howard N.

    2017-01-01

    Purpose Our objective was to delineate components of motor performance in specific language impairment (SLI); specifically, whether deficits in timing precision in one effector (unimanual tapping) and in two effectors (bimanual clapping) are observed in young children with SLI. Method Twenty-seven 4- to 5-year-old children with SLI and 21 age-matched peers with typical language development participated. All children engaged in a unimanual tapping and a bimanual clapping timing task. Standard measures of language and motor performance were also obtained. Results No group differences in timing variability were observed in the unimanual tapping task. However, compared with typically developing peers, children with SLI were more variable in their timing precision in the bimanual clapping task. Nine of the children with SLI performed greater than 1 SD below the mean on a standardized motor assessment. The children with low motor performance showed the same profile as observed across all children with SLI, with unaffected unimanual and impaired bimanual timing precision. Conclusions Although unimanual timing is unaffected, children with SLI show a deficit in timing that requires bimanual coordination. We propose that the timing deficits observed in children with SLI are associated with the increased demands inherent in bimanual performance. PMID:28174821

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The ATLAS collaboration at LHC has chosen the Micromegas (Micro Mesh Gaseous Structure) technology along with the small-strip Thin Gap Chambers (sTGC) for the high luminosity upgrade of the inner muon station in the high-rapidity region, the so called New Small Wheel (NSW). It employs eight layers of Micromegas detectors and eight layers of sTGC. The NSW project requires fully efficient Micromegas chambers with spatial resolution down to 100 μm in the precision coordinate for momentum reconstruction, and at mm level in the azimuthal (second) coordinate, over a total active area of 1200 m{sup 2}, with a rate capability upmore » to about 15 kHz/cm{sup 2} and operation in a moderate magnetic field up to B = 0.4 T. The required tracking capability is provided by the intrinsic space resolution combined with a mechanical precision at the level of 30 μm along the precision coordinate. Together with the precise tracking capability the Micromegas chambers should provide a trigger signal. Several tests have been performed on small (10x10 cm{sup 2}) and large (1 x 1 m{sup 2}) size single gap chambers prototypes using high energy hadron beams at CERN, low and intermediate energy (0.5-5 GeV) electron beams at Frascati and DESY, neutron beams at Demokritos (Athens) and Garching (Munich) and cosmic rays. More recently two quadruplets with dimensions 1.2 x 0.5 m{sup 2} and the same configuration and structure foreseen for the NSW upgrade have been built at CERN and tested with high energy pions/muons beam. Results obtained in the most recent tests, in different configurations and operating conditions, in dependence with the magnetic field, will be presented, along with a comparison between different read-out electronics, either based on the APV25 chips, or based on a new digital front-end ASIC developed in its second version (VMM2) as a new prototype of the final chip that will be employed in the NSW upgrade. (authors)« less

  5. Development of the One Centimeter Accuracy Geoid Model of Latvia for GNSS Measurements

    NASA Astrophysics Data System (ADS)

    Balodis, J.; Silabriedis, G.; Haritonova, D.; Kaļinka, M.; Janpaule, I.; Morozova, K.; Jumāre, I.; Mitrofanovs, I.; Zvirgzds, J.; Kaminskis, J.; Liepiņš, I.

    2015-11-01

    There is an urgent necessity for a highly accurate and reliable geoid model to enable prompt determination of normal height with the use of GNSS coordinate determination due to the high precision requirements in geodesy, building and high precision road construction development. Additionally, the Latvian height system is in the process of transition from BAS- 77 (Baltic Height System) to EVRS2007 system. The accuracy of the geoid model must approach the precision of about ∼1 cm looking forward to the Baltic Rail and other big projects. The use of all the available and verified data sources is planned, including the use of enlarged set of GNSS/levelling data, gravimetric measurement data and, additionally, the vertical deflection measurements over the territory of Latvia. The work is going ahead stepwise. Just the issue of GNSS reference network stability is discussed. In order to achieve the ∼1 cm precision geoid, it is required to have a homogeneous high precision GNSS network as a basis for ellipsoidal height determination for GNSS/levelling points. Both the LatPos and EUPOS® - Riga network have been examined in this article.

  6. Parallel Estimation and Control Architectures for Deep-Space Formation Flying Spacecraft

    NASA Technical Reports Server (NTRS)

    Hadaegh, Fred Y.; Smith, Roy S.

    2006-01-01

    The formation flying of precisely controlled spacecraft in deep space can be used to implement optical instruments capable of imaging planets in other solar systems. The distance of the formation from Earth necessitates a significant level of autonomy and each spacecraft must base its actions on its estimates of the location and velocity of the other spacecraft. Precise coordination and control is the key requirement in such missions and the flow of information between spacecraft must be carefully designed. Doing this in an efficient and optimal manner requires novel techniques for the design of the on-board estimators. The use of standard Kalman filter-based designs can lead to unanticipated dynamics--which we refer to as disagreement dynamics--in the estimators' errors. We show how communication amongst the spacecraft can be designed in order to control all of the dynamics within the formation. We present several results relating the topology of the communication network to the resulting closed-loop control dynamics of the formation. The consequences for the design of the control, communication and coordination are discussed.

  7. Refining FIA plot locations using LiDAR point clouds

    Treesearch

    Charlie Schrader-Patton; Greg C. Liknes; Demetrios Gatziolis; Brian M. Wing; Mark D. Nelson; Patrick D. Miles; Josh Bixby; Daniel G. Wendt; Dennis Kepler; Abbey Schaaf

    2015-01-01

    Forest Inventory and Analysis (FIA) plot location coordinate precision is often insufficient for use with high resolution remotely sensed data, thereby limiting the use of these plots for geospatial applications and reducing the validity of models that assume the locations are precise. A practical and efficient method is needed to improve coordinate precision. To...

  8. An Approach for High-precision Stand-alone Positioning in a Dynamic Environment

    NASA Astrophysics Data System (ADS)

    Halis Saka, M.; Metin Alkan, Reha; Ozpercin, Alişir

    2015-04-01

    In this study, an algorithm is developed for precise positioning in dynamic environment utilizing a single geodetic GNSS receiver using carrier phase data. In this method, users should start the measurement on a known point near the project area for a couple of seconds making use of a single dual-frequency geodetic-grade receiver. The technique employs iono-free carrier phase observations with precise products. The equation of the algorithm is given below; Sm(t(i+1))=SC(ti)+[ΦIF (t(i+1) )-ΦIF (ti)] where, Sm(t(i+1)) is the phase-range between satellites and the receiver, SC(ti) is the initial range computed from the initial known point coordinates and the satellite coordinates and ΦIF is the ionosphere-free phase measurement (in meters). Tropospheric path delays are modelled using the standard tropospheric model. To accomplish the process, an in-house program was coded and some functions were adopted from Easy-Suite available at http://kom.aau.dk/~borre/easy. In order to assess the performance of the introduced algorithm in a dynamic environment, a dataset from a kinematic test measurement was used. The data were collected from a kinematic test measurement in Istanbul, Turkey. In the test measurement, a geodetic dual-frequency GNSS receiver, Ashtech Z-Xtreme, was set up on a known point on the shore and a couple of epochs were recorded for initialization. The receiver was then moved to a vessel and data were collected for approximately 2.5 hours and the measurement was finalized on a known point on the shore. While the kinematic measurement on the vessel were carried out, another GNSS receiver was set up on a geodetic point with known coordinates on the shore and data were collected in static mode to calculate the reference trajectory of the vessel using differential technique. The coordinates of the vessel were calculated for each measurement epoch with the introduced method. With the purpose of obtaining more robust results, all coordinates were calculated once again by inversely, i.e. from the last epoch to the first one. In this way, the estimated coordinates were also controlled. The average of both computed coordinates were used as vessel coordinates and then compared with the known-coordinates those of geodetic receiver epoch by epoch. The results indicate that the calculated coordinates from the introduced method are consistent with the reference trajectory with an accuracy of about 1 decimeter. In contrast, the findings imply lower accuracy for height components with an accuracy of about 2 decimeters. This accuracy level meets the requirement of many applications including some marine applications, precise hydrographic surveying, dredging, attitude control of ships, buoys and floating platforms, marine geodesy, navigation and oceanography.

  9. A new type industrial total station based on target automatic collimation

    NASA Astrophysics Data System (ADS)

    Lao, Dabao; Zhou, Weihu; Ji, Rongyi; Dong, Dengfeng; Xiong, Zhi; Wei, Jiang

    2018-01-01

    In the case of industrial field measurement, the present measuring instruments work with manual operation and collimation, which give rise to low efficiency for field measurement. In order to solve the problem, a new type industrial total station is presented in this paper. The new instrument can identify and trace cooperative target automatically, in the mean time, coordinate of the target is measured in real time. For realizing the system, key technology including high precision absolutely distance measurement, small high accuracy angle measurement, target automatic collimation with vision, and quick precise controlling should be worked out. After customized system assemblage and adjustment, the new type industrial total station will be established. As the experiments demonstrated, the coordinate accuracy of the instrument is under 15ppm in the distance of 60m, which proved that the measuring system is feasible. The result showed that the total station can satisfy most industrial field measurement requirements.

  10. Physical Layer Ethernet Clock Synchronization

    DTIC Science & Technology

    2010-11-01

    42 nd Annual Precise Time and Time Interval (PTTI) Meeting 77 PHYSICAL LAYER ETHERNET CLOCK SYNCHRONIZATION Reinhard Exel, Georg...oeaw.ac.at Nikolaus Kerö Oregano Systems, Mohsgasse 1, 1030 Wien, Austria E-mail: nikolaus.keroe@oregano.at Abstract Clock synchronization ...is a service widely used in distributed networks to coordinate data acquisition and actions. As the requirement to achieve tighter synchronization

  11. The forthcoming era of precision medicine.

    PubMed

    Gamulin, Stjepan

    2016-11-01

    The aim of this essay is to present the definition and principles of personalized or precision medicine, the perspective and barriers to its development and clinical application. The implementation of precision medicine in health care requires the coordinated efforts of all health care stakeholders (the biomedical community, government, regulatory bodies, patients' groups). Particularly, translational research with the integration of genomic and comprehensive data from all levels of the organism ("big data"), development of bioinformatics platforms enabling network analysis of disease etiopathogenesis, development of a legislative framework for handling personal data, and new paradigms of medical education are necessary for successful application of the concept of precision medicine in health care. In the present and future era of precision medicine, the collaboration of all participants in health care is necessary for its realization, resulting in improvement of diagnosis, prevention and therapy, based on a holistic, individually tailored approach. Copyright © 2016 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  12. Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination

    PubMed Central

    Keller, Peter E.; Novembre, Giacomo; Hove, Michael J.

    2014-01-01

    Human interaction often requires simultaneous precision and flexibility in the coordination of rhythmic behaviour between individuals engaged in joint activity, for example, playing a musical duet or dancing with a partner. This review article addresses the psychological processes and brain mechanisms that enable such rhythmic interpersonal coordination. First, an overview is given of research on the cognitive-motor processes that enable individuals to represent joint action goals and to anticipate, attend and adapt to other's actions in real time. Second, the neurophysiological mechanisms that underpin rhythmic interpersonal coordination are sought in studies of sensorimotor and cognitive processes that play a role in the representation and integration of self- and other-related actions within and between individuals' brains. Finally, relationships between social–psychological factors and rhythmic interpersonal coordination are considered from two perspectives, one concerning how social-cognitive tendencies (e.g. empathy) affect coordination, and the other concerning how coordination affects interpersonal affiliation, trust and prosocial behaviour. Our review highlights musical ensemble performance as an ecologically valid yet readily controlled domain for investigating rhythm in joint action. PMID:25385772

  13. Stop Stalling: Mus81 Required for Efficient Replication | Center for Cancer Research

    Cancer.gov

    DNA replication is precisely controlled to ensure that daughter cells receive intact, accurate genetic information. Each segment of DNA must be copied only once, and the rate of replication coordinated genome-wide. Mild replication stress slows DNA synthesis and activates a pathway involving the Mus81 endonuclease, which generates a series of DNA breaks that are rapidly

  14. Investigation of Space Interferometer Control Using Imaging Sensor Output Feedback

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse A.; Cheng, Victor H. L.

    2003-01-01

    Numerous space interferometry missions are planned for the next decade to verify different enabling technologies towards very-long-baseline interferometry to achieve high-resolution imaging and high-precision measurements. These objectives will require coordinated formations of spacecraft separately carrying optical elements comprising the interferometer. High-precision sensing and control of the spacecraft and the interferometer-component payloads are necessary to deliver sub-wavelength accuracy to achieve the scientific objectives. For these missions, the primary scientific product of interferometer measurements may be the only source of data available at the precision required to maintain the spacecraft and interferometer-component formation. A concept is studied for detecting the interferometer's optical configuration errors based on information extracted from the interferometer sensor output. It enables precision control of the optical components, and, in cases of space interferometers requiring formation flight of spacecraft that comprise the elements of a distributed instrument, it enables the control of the formation-flying vehicles because independent navigation or ranging sensors cannot deliver the high-precision metrology over the entire required geometry. Since the concept can act on the quality of the interferometer output directly, it can detect errors outside the capability of traditional metrology instruments, and provide the means needed to augment the traditional instrumentation to enable enhanced performance. Specific analyses performed in this study include the application of signal-processing and image-processing techniques to solve the problems of interferometer aperture baseline control, interferometer pointing, and orientation of multiple interferometer aperture pairs.

  15. Application of backpack Lidar to geological cross-section measurement

    NASA Astrophysics Data System (ADS)

    Lin, Jingyu; Wang, Ran; Xiao, Zhouxuan; Li, Lu; Yao, Weihua; Han, Wei; Zhao, Baolin

    2017-11-01

    As the traditional geological cross section measurement, the artificial traverse method was recently substituted by using point coordinates data. However, it is still the crux of the matter that how to acquire the high-precision point coordinates data quickly and economically. Thereby, the backpack Lidar is presented on the premise of the principle of using point coordinates in this issue. Undoubtedly, Lidar technique, one of booming and international active remote sensing techniques, is a powerful tool in obtaining precise topographic information, high-precision 3-D coordinates and building a real 3-D model. With field practice and date processing indoors, it is essentially accomplished that geological sections maps could be generated simply, accurately and automatically in the support of relevant software such as ArcGIS and LiDAR360.

  16. Research and development of a control system for multi axis cooperative motion based on PMAC

    NASA Astrophysics Data System (ADS)

    Guo, Xiao-xiao; Dong, Deng-feng; Zhou, Wei-hu

    2017-10-01

    Based on Programmable Multi-axes Controller (PMAC), a design of a multi axis motion control system for the simulator of spatial targets' dynamic optical properties is proposed. According to analysis the properties of spatial targets' simulator motion control system, using IPC as the main control layer, TurboPMAC2 as the control layer to meet coordinated motion control, data acquisition and analog output. A simulator using 5 servomotors which is connected with speed reducers to drive the output axis was implemented to simulate the motion of both the sun and the space target. Based on PMAC using PID and a notch filter algorithm, negative feedback, the speed and acceleration feed forward algorithm to satisfy the axis' requirements of the good stability and high precision at low speeds. In the actual system, it shows that the velocity precision is higher than 0.04 s ° and the precision of repetitive positioning is better than 0.006° when each axis is at a low-speed. Besides, the system achieves the control function of multi axis coordinated motion. The design provides an important technical support for detecting spatial targets, also promoting the theoretical research.

  17. Optical technologies for space sensor

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun

    2015-10-01

    Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.

  18. Cerebral hierarchies: predictive processing, precision and the pulvinar

    PubMed Central

    Kanai, Ryota; Komura, Yutaka; Shipp, Stewart; Friston, Karl

    2015-01-01

    This paper considers neuronal architectures from a computational perspective and asks what aspects of neuroanatomy and neurophysiology can be disclosed by the nature of neuronal computations? In particular, we extend current formulations of the brain as an organ of inference—based upon hierarchical predictive coding—and consider how these inferences are orchestrated. In other words, what would the brain require to dynamically coordinate and contextualize its message passing to optimize its computational goals? The answer that emerges rests on the delicate (modulatory) gain control of neuronal populations that select and coordinate (prediction error) signals that ascend cortical hierarchies. This is important because it speaks to a hierarchical anatomy of extrinsic (between region) connections that form two distinct classes, namely a class of driving (first-order) connections that are concerned with encoding the content of neuronal representations and a class of modulatory (second-order) connections that establish context—in the form of the salience or precision ascribed to content. We explore the implications of this distinction from a formal perspective (using simulations of feature–ground segregation) and consider the neurobiological substrates of the ensuing precision-engineered dynamics, with a special focus on the pulvinar and attention. PMID:25823866

  19. Dynamical Coordination of Hand Intrinsic Muscles for Precision Grip in Diabetes Mellitus.

    PubMed

    Li, Ke; Wei, Na; Cheng, Mei; Hou, Xingguo; Song, Jun

    2018-03-12

    This study investigated the effects of diabetes mellitus (DM) on dynamical coordination of hand intrinsic muscles during precision grip. Precision grip was tested using a custom designed apparatus with stable and unstable loads, during which the surface electromyographic (sEMG) signals of the abductor pollicis brevis (APB) and first dorsal interosseous (FDI) were recorded simultaneously. Recurrence quantification analysis (RQA) was applied to quantify the dynamical structure of sEMG signals of the APB and FDI; and cross recurrence quantification analysis (CRQA) was used to assess the intermuscular coupling between the two intrinsic muscles. This study revealed that the DM altered the dynamical structure of muscle activation for the FDI and the dynamical intermuscular coordination between the APB and FDI during precision grip. A reinforced feedforward mechanism that compensates the loss of sensory feedbacks in DM may be responsible for the stronger intermuscular coupling between the APB and FDI muscles. Sensory deficits in DM remarkably decreased the capacity of online motor adjustment based on sensory feedback, rendering a lower adaptability to the uncertainty of environment. This study shed light on inherent dynamical properties underlying the intrinsic muscle activation and intermuscular coordination for precision grip and the effects of DM on hand sensorimotor function.

  20. Incorporation of feedback during beat synchronization is an index of neural maturation and reading skills.

    PubMed

    Woodruff Carr, Kali; Fitzroy, Ahren B; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina

    2017-01-01

    Speech communication involves integration and coordination of sensory perception and motor production, requiring precise temporal coupling. Beat synchronization, the coordination of movement with a pacing sound, can be used as an index of this sensorimotor timing. We assessed adolescents' synchronization and capacity to correct asynchronies when given online visual feedback. Variability of synchronization while receiving feedback predicted phonological memory and reading sub-skills, as well as maturation of cortical auditory processing; less variable synchronization during the presence of feedback tracked with maturation of cortical processing of sound onsets and resting gamma activity. We suggest the ability to incorporate feedback during synchronization is an index of intentional, multimodal timing-based integration in the maturing adolescent brain. Precision of temporal coding across modalities is important for speech processing and literacy skills that rely on dynamic interactions with sound. Synchronization employing feedback may prove useful as a remedial strategy for individuals who struggle with timing-based language learning impairments. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Reaching to Throw Compared to Reaching to Place: A Comparison across Individuals with and without Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Wilmut, Kate; Byrne, Maia; Barnett, Anna L.

    2013-01-01

    When picking up an object, adults show a longer deceleration phase when the onward action has a greater precision requirement. Tailoring action in this way is thought to need forward modelling in order to predict the consequences of movement. Some evidence suggests that young children also tailor reaching in this way; however, how this skill…

  2. Combination of optically measured coordinates and displacements for quantitative investigation of complex objects

    NASA Astrophysics Data System (ADS)

    Andrae, Peter; Beeck, Manfred-Andreas; Jueptner, Werner P. O.; Nadeborn, Werner; Osten, Wolfgang

    1996-09-01

    Holographic interferometry makes it possible to measure high precision displacement data in the range of the wavelength of the used laser light. However, the determination of 3D- displacement vectors of objects with complex surfaces requires the measurement of 3D-object coordinates not only to consider local sensitivities but to distinguish between in-plane deformation, i.e. strains, and out-of-plane components, i.e. shears, too. To this purpose both the surface displacement and coordinates have to be combined and it is advantageous to make the data available for CAE- systems. The object surface has to be approximated analytically from the measured point cloud to generate a surface mesh. The displacement vectors can be assigned to the nodes of this surface mesh for visualization of the deformation of the object under test. They also can be compared to the results of FEM-calculations or can be used as boundary conditions for further numerical investigations. Here the 3D-object coordinates are measured in a separate topometric set-up using a modified fringe projection technique to acquire absolute phase values and a sophisticated geometrical model to map these phase data onto coordinates precisely. The determination of 3D-displacement vectors requires the measurement of several interference phase distributions for at least three independent sensitivity directions depending on the observation and illumination directions as well as the 3D-position of each measuring point. These geometric quantities have to be transformed into a reference coordinate system of the interferometric set-up in order to calculate the geometric matrix. The necessary transformation can be realized by means of a detection of object features in both data sets and a subsequent determination of the external camera orientation. This paper presents a consistent solution for the measurement and combination of shape and displacement data including their transformation into simulation systems. The described procedure will be demonstrated on an automotive component. Thus more accurate and effective measurement techniques make it possible to bring experimental and numerical displacement analysis closer.

  3. Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination.

    PubMed

    Keller, Peter E; Novembre, Giacomo; Hove, Michael J

    2014-12-19

    Human interaction often requires simultaneous precision and flexibility in the coordination of rhythmic behaviour between individuals engaged in joint activity, for example, playing a musical duet or dancing with a partner. This review article addresses the psychological processes and brain mechanisms that enable such rhythmic interpersonal coordination. First, an overview is given of research on the cognitive-motor processes that enable individuals to represent joint action goals and to anticipate, attend and adapt to other's actions in real time. Second, the neurophysiological mechanisms that underpin rhythmic interpersonal coordination are sought in studies of sensorimotor and cognitive processes that play a role in the representation and integration of self- and other-related actions within and between individuals' brains. Finally, relationships between social-psychological factors and rhythmic interpersonal coordination are considered from two perspectives, one concerning how social-cognitive tendencies (e.g. empathy) affect coordination, and the other concerning how coordination affects interpersonal affiliation, trust and prosocial behaviour. Our review highlights musical ensemble performance as an ecologically valid yet readily controlled domain for investigating rhythm in joint action. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. A combined microphone and camera calibration technique with application to acoustic imaging.

    PubMed

    Legg, Mathew; Bradley, Stuart

    2013-10-01

    We present a calibration technique for an acoustic imaging microphone array, combined with a digital camera. Computer vision and acoustic time of arrival data are used to obtain microphone coordinates in the camera reference frame. Our new method allows acoustic maps to be plotted onto the camera images without the need for additional camera alignment or calibration. Microphones and cameras may be placed in an ad-hoc arrangement and, after calibration, the coordinates of the microphones are known in the reference frame of a camera in the array. No prior knowledge of microphone positions, inter-microphone spacings, or air temperature is required. This technique is applied to a spherical microphone array and a mean difference of 3 mm was obtained between the coordinates obtained with this calibration technique and those measured using a precision mechanical method.

  5. Parallelism measurement for base plate of standard artifact with multiple tactile approaches

    NASA Astrophysics Data System (ADS)

    Ye, Xiuling; Zhao, Yan; Wang, Yiwen; Wang, Zhong; Fu, Luhua; Liu, Changjie

    2018-01-01

    Nowadays, as workpieces become more precise and more specialized which results in more sophisticated structures and higher accuracy for the artifacts, higher requirements have been put forward for measuring accuracy and measuring methods. As an important method to obtain the size of workpieces, coordinate measuring machine (CMM) has been widely used in many industries. In order to achieve the calibration of a self-developed CMM, it is found that the parallelism of the base plate used for fixing the standard artifact is an important factor which affects the measurement accuracy in the process of studying self-made high-precision standard artifact. And aimed to measure the parallelism of the base plate, by using the existing high-precision CMM, gauge blocks, dial gauge and marble platform with the tactile approach, three methods for parallelism measurement of workpieces are employed, and comparisons are made within the measurement results. The results of experiments show that the final accuracy of all the three methods is able to reach micron level and meets the measurement requirements. Simultaneously, these three approaches are suitable for different measurement conditions which provide a basis for rapid and high-precision measurement under different equipment conditions.

  6. Image registration algorithm for high-voltage electric power live line working robot based on binocular vision

    NASA Astrophysics Data System (ADS)

    Li, Chengqi; Ren, Zhigang; Yang, Bo; An, Qinghao; Yu, Xiangru; Li, Jinping

    2017-12-01

    In the process of dismounting and assembling the drop switch for the high-voltage electric power live line working (EPL2W) robot, one of the key problems is the precision of positioning for manipulators, gripper and the bolts used to fix drop switch. To solve it, we study the binocular vision system theory of the robot and the characteristic of dismounting and assembling drop switch. We propose a coarse-to-fine image registration algorithm based on image correlation, which can improve the positioning precision of manipulators and bolt significantly. The algorithm performs the following three steps: firstly, the target points are marked respectively in the right and left visions, and then the system judges whether the target point in right vision can satisfy the lowest registration accuracy by using the similarity of target points' backgrounds in right and left visions, this is a typical coarse-to-fine strategy; secondly, the system calculates the epipolar line, and then the regional sequence existing matching points is generated according to neighborhood of epipolar line, the optimal matching image is confirmed by calculating the similarity between template image in left vision and the region in regional sequence according to correlation matching; finally, the precise coordinates of target points in right and left visions are calculated according to the optimal matching image. The experiment results indicate that the positioning accuracy of image coordinate is within 2 pixels, the positioning accuracy in the world coordinate system is within 3 mm, the positioning accuracy of binocular vision satisfies the requirement dismounting and assembling the drop switch.

  7. Application of the Undifferenced GNSS Precise Positioning in Determining Coordinates in National Reference Frames

    NASA Astrophysics Data System (ADS)

    Krzan, Grzegorz; Stępniak, Katarzyna

    2017-09-01

    In high-accuracy positioning using GNSS, the most common solution is still relative positioning using double-difference observations of dual-frequency measurements. An increasingly popular alternative to relative positioning are undifferenced approaches, which are designed to make full use of modern satellite systems and signals. Positions referenced to global International Terrestrial Reference Frame (ITRF2008) obtained from Precise Point Positioning (PPP) or Undifferenced (UD) network solutions have to be transformed to national (regional) reference frame, which introduces additional bases related to the transformation process. In this paper, satellite observations from two test networks using different observation time series were processed. The first test concerns the positioning accuracy from processing one year of dual-frequency GPS observations from 14 EUREF Permanent Network (EPN) stations using NAPEOS 3.3.1 software. The results were transformed into a national reference frame (PL-ETRF2000) and compared to positions from an EPN cumulative solution, which was adopted as the true coordinates. Daily observations were processed using PPP and UD multi-station solutions to determine the final accuracy resulting from satellite positioning, the transformation to national coordinate systems and Eurasian intraplate plate velocities. The second numerical test involved similar processing strategies of post-processing carried out using different observation time series (30 min., 1 hour, 2 hours, daily) and different classes of GNSS receivers. The centimeter accuracy of results presented in the national coordinate system satisfies the requirements of many surveying and engineering applications.

  8. Computational time reduction for sequential batch solutions in GNSS precise point positioning technique

    NASA Astrophysics Data System (ADS)

    Martín Furones, Angel; Anquela Julián, Ana Belén; Dimas-Pages, Alejandro; Cos-Gayón, Fernando

    2017-08-01

    Precise point positioning (PPP) is a well established Global Navigation Satellite System (GNSS) technique that only requires information from the receiver (or rover) to obtain high-precision position coordinates. This is a very interesting and promising technique because eliminates the need for a reference station near the rover receiver or a network of reference stations, thus reducing the cost of a GNSS survey. From a computational perspective, there are two ways to solve the system of observation equations produced by static PPP either in a single step (so-called batch adjustment) or with a sequential adjustment/filter. The results of each should be the same if they are both well implemented. However, if a sequential solution (that is, not only the final coordinates, but also those observed in previous GNSS epochs), is needed, as for convergence studies, finding a batch solution becomes a very time consuming task owing to the need for matrix inversion that accumulates with each consecutive epoch. This is not a problem for the filter solution, which uses information computed in the previous epoch for the solution of the current epoch. Thus filter implementations need extra considerations of user dynamics and parameter state variations between observation epochs with appropriate stochastic update parameter variances from epoch to epoch. These filtering considerations are not needed in batch adjustment, which makes it attractive. The main objective of this research is to significantly reduce the computation time required to obtain sequential results using batch adjustment. The new method we implemented in the adjustment process led to a mean reduction in computational time by 45%.

  9. Automatic pose correction for image-guided nonhuman primate brain surgery planning

    NASA Astrophysics Data System (ADS)

    Ghafurian, Soheil; Chen, Antong; Hines, Catherine; Dogdas, Belma; Bone, Ashleigh; Lodge, Kenneth; O'Malley, Stacey; Winkelmann, Christopher T.; Bagchi, Ansuman; Lubbers, Laura S.; Uslaner, Jason M.; Johnson, Colena; Renger, John; Zariwala, Hatim A.

    2016-03-01

    Intracranial delivery of recombinant DNA and neurochemical analysis in nonhuman primate (NHP) requires precise targeting of various brain structures via imaging derived coordinates in stereotactic surgeries. To attain targeting precision, the surgical planning needs to be done on preoperative three dimensional (3D) CT and/or MR images, in which the animals head is fixed in a pose identical to the pose during the stereotactic surgery. The matching of the image to the pose in the stereotactic frame can be done manually by detecting key anatomical landmarks on the 3D MR and CT images such as ear canal and ear bar zero position. This is not only time intensive but also prone to error due to the varying initial poses in the images which affects both the landmark detection and rotation estimation. We have introduced a fast, reproducible, and semi-automatic method to detect the stereotactic coordinate system in the image and correct the pose. The method begins with a rigid registration of the subject images to an atlas and proceeds to detect the anatomical landmarks through a sequence of optimization, deformable and multimodal registration algorithms. The results showed similar precision (maximum difference of 1.71 in average in-plane rotation) to a manual pose correction.

  10. Impact of orbit, clock and EOP errors in GNSS Precise Point Positioning

    NASA Astrophysics Data System (ADS)

    Hackman, C.

    2012-12-01

    Precise point positioning (PPP; [1]) has gained ever-increasing usage in GNSS carrier-phase positioning, navigation and timing (PNT) since its inception in the late 1990s. In this technique, high-precision satellite clocks, satellite ephemerides and earth-orientation parameters (EOPs) are applied as fixed input by the user in order to estimate receiver/location-specific quantities such as antenna coordinates, troposphere delay and receiver-clock corrections. This is in contrast to "network" solutions, in which (typically) less-precise satellite clocks, satellite ephemerides and EOPs are used as input, and in which these parameters are estimated simultaneously with the receiver/location-specific parameters. The primary reason for increased PPP application is that it offers most of the benefits of a network solution with a smaller computing cost. In addition, the software required to do PPP positioning can be simpler than that required for network solutions. Finally, PPP permits high-precision positioning of single or sparsely spaced receivers that may have few or no GNSS satellites in common view. A drawback of PPP is that the accuracy of the results depend directly on the accuracy of the supplied orbits, clocks and EOPs, since these parameters are not adjusted during the processing. In this study, we will examine the impact of orbit, EOP and satellite clock estimates on PPP solutions. Our primary focus will be the impact of these errors on station coordinates; however the study may be extended to error propagation into receiver-clock corrections and/or troposphere estimates if time permits. Study motivation: the United States Naval Observatory (USNO) began testing PPP processing using its own predicted orbits, clocks and EOPs in Summer 2012 [2]. The results of such processing could be useful for real- or near-real-time applications should they meet accuracy/precision requirements. Understanding how errors in satellite clocks, satellite orbits and EOPs propagate into PPP positioning and timing results allows researchers to focus their improvement efforts in areas most in need of attention. The initial study will be conducted using the simulation capabilities of Bernese GPS Software and extended to using real data if time permits. [1] J.F. Zumberge, M.B. Heflin, D.C. Jefferson, M.M. Watkins and F.H. Webb, Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res., 102(B3), 5005-5017, doi:10.1029/96JB03860, 1997. [2] C. Hackman, S.M. Byram, V.J. Slabinski and J.C. Tracey, Near-real-time and other high-precision GNSS-based orbit/clock/earth-orientation/troposphere parameters available from USNO, Proc. 2012 ION Joint Navigation Conference, 15 pp., in press, 2012.

  11. A Model-Based Approach for the Measurement of Eye Movements Using Image Processing

    NASA Technical Reports Server (NTRS)

    Sung, Kwangjae; Reschke, Millard F.

    1997-01-01

    This paper describes a video eye-tracking algorithm which searches for the best fit of the pupil modeled as a circular disk. The algorithm is robust to common image artifacts such as the droopy eyelids and light reflections while maintaining the measurement resolution available by the centroid algorithm. The presented algorithm is used to derive the pupil size and center coordinates, and can be combined with iris-tracking techniques to measure ocular torsion. A comparison search method of pupil candidates using pixel coordinate reference lookup tables optimizes the processing requirements for a least square fit of the circular disk model. This paper includes quantitative analyses and simulation results for the resolution and the robustness of the algorithm. The algorithm presented in this paper provides a platform for a noninvasive, multidimensional eye measurement system which can be used for clinical and research applications requiring the precise recording of eye movements in three-dimensional space.

  12. Anatomic motor point localization for partial quadriceps block in spasticity.

    PubMed

    Albert, T; Yelnik, A; Colle, F; Bonan, I; Lassau, J P

    2000-03-01

    To identify the location of the vastus intermedius nerve and its motor point (point M) and to precisely identify its coordinates in relation to anatomic surface landmarks. Descriptive study. Anatomy institute of a university school of medicine. Twenty-nine adult cadaver limbs immobilized in anatomic position. Anatomic dissection to identify point M. Anatomic surface landmarks were point F, the issuing point of femoral nerve under the inguinal ligament; point R, the middle of superior edge of the patella; segment FR, which corresponds to thigh length; point M', point M orthogonal projection on segment FR. Absolute vertical coordinate, distance FM, relative vertical coordinate compared to the thigh length, FM'/FR ratio; absolute horizontal coordinate, distance MM'. The absolute vertical coordinate was 11.7+/-2 cm. The relative vertical coordinate was at .29+/-.04 of thigh length. The horizontal coordinate was at 2+/-.5 cm lateral to the FR line. Point M can be defined with relative precision by two coordinates. Application and clinical interest of nerve blocking using these coordinates in quadriceps spasticity should be studied.

  13. Two-phase strategy of neural control for planar reaching movements: I. XY coordination variability and its relation to end-point variability.

    PubMed

    Rand, Miya K; Shimansky, Yury P

    2013-03-01

    A quantitative model of optimal transport-aperture coordination (TAC) during reach-to-grasp movements has been developed in our previous studies. The utilization of that model for data analysis allowed, for the first time, to examine the phase dependence of the precision demand specified by the CNS for neurocomputational information processing during an ongoing movement. It was shown that the CNS utilizes a two-phase strategy for movement control. That strategy consists of reducing the precision demand for neural computations during the initial phase, which decreases the cost of information processing at the expense of lower extent of control optimality. To successfully grasp the target object, the CNS increases precision demand during the final phase, resulting in higher extent of control optimality. In the present study, we generalized the model of optimal TAC to a model of optimal coordination between X and Y components of point-to-point planar movements (XYC). We investigated whether the CNS uses the two-phase control strategy for controlling those movements, and how the strategy parameters depend on the prescribed movement speed, movement amplitude and the size of the target area. The results indeed revealed a substantial similarity between the CNS's regulation of TAC and XYC. First, the variability of XYC within individual trials was minimal, meaning that execution noise during the movement was insignificant. Second, the inter-trial variability of XYC was considerable during the majority of the movement time, meaning that the precision demand for information processing was lowered, which is characteristic for the initial phase. That variability significantly decreased, indicating higher extent of control optimality, during the shorter final movement phase. The final phase was the longest (shortest) under the most (least) challenging combination of speed and accuracy requirements, fully consistent with the concept of the two-phase control strategy. This paper further discussed the relationship between motor variability and XYC variability.

  14. Three-dimensional coordinates of individual atoms in materials revealed by electron tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Rui; Chen, Chien-Chun; Wu, Li

    Crystallography, the primary method for determining the 3D atomic positions in crystals, has been fundamental to the development of many fields of science. However, the atomic positions obtained from crystallography represent a global average of many unit cells in a crystal. In this paper, we report, for the first time, the determination of the 3D coordinates of thousands of individual atoms and a point defect in a material by electron tomography with a precision of ~19 pm, where the crystallinity of the material is not assumed. From the coordinates of these individual atoms, we measure the atomic displacement field andmore » the full strain tensor with a 3D resolution of ~1 nm 3 and a precision of ~10 -3, which are further verified by density functional theory calculations and molecular dynamics simulations. Finally, the ability to precisely localize the 3D coordinates of individual atoms in materials without assuming crystallinity is expected to find important applications in materials science, nanoscience, physics, chemistry and biology.« less

  15. Three-dimensional coordinates of individual atoms in materials revealed by electron tomography

    DOE PAGES

    Xu, Rui; Chen, Chien-Chun; Wu, Li; ...

    2015-09-21

    Crystallography, the primary method for determining the 3D atomic positions in crystals, has been fundamental to the development of many fields of science. However, the atomic positions obtained from crystallography represent a global average of many unit cells in a crystal. In this paper, we report, for the first time, the determination of the 3D coordinates of thousands of individual atoms and a point defect in a material by electron tomography with a precision of ~19 pm, where the crystallinity of the material is not assumed. From the coordinates of these individual atoms, we measure the atomic displacement field andmore » the full strain tensor with a 3D resolution of ~1 nm 3 and a precision of ~10 -3, which are further verified by density functional theory calculations and molecular dynamics simulations. Finally, the ability to precisely localize the 3D coordinates of individual atoms in materials without assuming crystallinity is expected to find important applications in materials science, nanoscience, physics, chemistry and biology.« less

  16. Correlative imaging across microscopy platforms using the fast and accurate relocation of microscopic experimental regions (FARMER) method

    NASA Astrophysics Data System (ADS)

    Huynh, Toan; Daddysman, Matthew K.; Bao, Ying; Selewa, Alan; Kuznetsov, Andrey; Philipson, Louis H.; Scherer, Norbert F.

    2017-05-01

    Imaging specific regions of interest (ROIs) of nanomaterials or biological samples with different imaging modalities (e.g., light and electron microscopy) or at subsequent time points (e.g., before and after off-microscope procedures) requires relocating the ROIs. Unfortunately, relocation is typically difficult and very time consuming to achieve. Previously developed techniques involve the fabrication of arrays of features, the procedures for which are complex, and the added features can interfere with imaging the ROIs. We report the Fast and Accurate Relocation of Microscopic Experimental Regions (FARMER) method, which only requires determining the coordinates of 3 (or more) conspicuous reference points (REFs) and employs an algorithm based on geometric operators to relocate ROIs in subsequent imaging sessions. The 3 REFs can be quickly added to various regions of a sample using simple tools (e.g., permanent markers or conductive pens) and do not interfere with the ROIs. The coordinates of the REFs and the ROIs are obtained in the first imaging session (on a particular microscope platform) using an accurate and precise encoded motorized stage. In subsequent imaging sessions, the FARMER algorithm finds the new coordinates of the ROIs (on the same or different platforms), using the coordinates of the manually located REFs and the previously recorded coordinates. FARMER is convenient, fast (3-15 min/session, at least 10-fold faster than manual searches), accurate (4.4 μm average error on a microscope with a 100x objective), and precise (almost all errors are <8 μm), even with deliberate rotating and tilting of the sample well beyond normal repositioning accuracy. We demonstrate this versatility by imaging and re-imaging a diverse set of samples and imaging methods: live mammalian cells at different time points; fixed bacterial cells on two microscopes with different imaging modalities; and nanostructures on optical and electron microscopes. FARMER can be readily adapted to any imaging system with an encoded motorized stage and can facilitate multi-session and multi-platform imaging experiments in biology, materials science, photonics, and nanoscience.

  17. An Investigation on the Contribution of GLONASS to the Precise Point Positioning for Short Time Observations

    NASA Astrophysics Data System (ADS)

    Ulug, R.; Ozludemir, M. T.

    2016-12-01

    After 2011, through the modernization process of GLONASS, the number of satellites increased rapidly. This progress has made the GLONASS the only fully operational system alternative to GPS in point positioning. So far, many researches have been conducted to investigate the contribution of GLONASS to point positioning considering different methods such as Real Time Kinematic (RTK) and Precise Point Positioning (PPP). The latter one, PPP, is a method that performs precise position determination using a single GNSS receiver. PPP method has become very attractive since the early 2000s and it provided great advantages for engineering and scientific applications. However, PPP method needs at least 2 hours observation time and the required observation length may be longer depending on several factors, such as the number of satellites, satellite configuration etc. The more satellites, the less observation time. Nevertheless the impact of the number of satellites included must be known very well. In this study, to determine the contribution of GLONASS on PPP, GLONASS satellite observations were added one by one from 1 to 5 satellite in 2, 4 and 6 hours of observations. For this purpose, the data collected at the IGS site ISTA was used. Data processing has been done for Day of Year (DOY) 197 in 2016. 24 hours GPS observations have been processed by Bernese 5.2 PPP module and the output was selected as the reference while 2, 4 and 6 hours GPS and GPS/GLONASS observations have been processed by magic GNSS PPP module. The results clearly showed that GPS/GLONASS observations improved positional accuracy, precision, dilution of precision and convergence to the reference coordinates. In this context, coordinate differences between 24 hours GPS observations and 6 hours GPS/GLONASS observations have been obtained as less than 2 cm.

  18. Location precision analysis of stereo thermal anti-sniper detection system

    NASA Astrophysics Data System (ADS)

    He, Yuqing; Lu, Ya; Zhang, Xiaoyan; Jin, Weiqi

    2012-06-01

    Anti-sniper detection devices are the urgent requirement in modern warfare. The precision of the anti-sniper detection system is especially important. This paper discusses the location precision analysis of the anti-sniper detection system based on the dual-thermal imaging system. It mainly discusses the following two aspects which produce the error: the digital quantitative effects of the camera; effect of estimating the coordinate of bullet trajectory according to the infrared images in the process of image matching. The formula of the error analysis is deduced according to the method of stereovision model and digital quantitative effects of the camera. From this, we can get the relationship of the detecting accuracy corresponding to the system's parameters. The analysis in this paper provides the theory basis for the error compensation algorithms which are put forward to improve the accuracy of 3D reconstruction of the bullet trajectory in the anti-sniper detection devices.

  19. High Precision Edge Detection Algorithm for Mechanical Parts

    NASA Astrophysics Data System (ADS)

    Duan, Zhenyun; Wang, Ning; Fu, Jingshun; Zhao, Wenhui; Duan, Boqiang; Zhao, Jungui

    2018-04-01

    High precision and high efficiency measurement is becoming an imperative requirement for a lot of mechanical parts. So in this study, a subpixel-level edge detection algorithm based on the Gaussian integral model is proposed. For this purpose, the step edge normal section line Gaussian integral model of the backlight image is constructed, combined with the point spread function and the single step model. Then gray value of discrete points on the normal section line of pixel edge is calculated by surface interpolation, and the coordinate as well as gray information affected by noise is fitted in accordance with the Gaussian integral model. Therefore, a precise location of a subpixel edge was determined by searching the mean point. Finally, a gear tooth was measured by M&M3525 gear measurement center to verify the proposed algorithm. The theoretical analysis and experimental results show that the local edge fluctuation is reduced effectively by the proposed method in comparison with the existing subpixel edge detection algorithms. The subpixel edge location accuracy and computation speed are improved. And the maximum error of gear tooth profile total deviation is 1.9 μm compared with measurement result with gear measurement center. It indicates that the method has high reliability to meet the requirement of high precision measurement.

  20. Concise CIO based precession-nutation formulations

    NASA Astrophysics Data System (ADS)

    Capitaine, N.; Wallace, P. T.

    2008-01-01

    Context: The IAU 2000/2006 precession-nutation models have precision goals measured in microarcseconds. To reach this level of performance has required series containing terms at over 1300 frequencies and involving several thousand amplitude coefficients. There are many astronomical applications for which such precision is not required and the associated heavy computations are wasteful. This justifies developing smaller models that achieve adequate precision with greatly reduced computing costs. Aims: We discuss strategies for developing simplified IAU 2000/2006 precession-nutation procedures that offer a range of compromises between accuracy and computing costs. Methods: The chain of transformations linking celestial and terrestrial coordinates comprises frame bias, precession-nutation, Earth rotation and polar motion. We address the bias and precession-nutation (NPB) portion of the chain, linking the Geocentric Celestial Reference System (GCRS) with the Celestial Intermediate Reference System (CIRS), the latter based on the Celestial Intermediate Pole (CIP) and Celestial Intermediate Origin (CIO). Starting from direct series that deliver the CIP coordinates X,Y and (via the quantity s + XY/2) the CIO locator s, we look at the opportunities for simplification. Results: The biggest reductions come from truncating the series, but some additional gains can be made in the areas of the matrix formulation, the expressions for the nutation arguments and by subsuming long period effects into the bias quantities. Three example models are demonstrated that approximate the IAU 2000/2006 CIP to accuracies of 1 mas, 16 mas and 0.4 arcsec throughout 1995-2050 but with computation costs reduced by 1, 2 and 3 orders of magnitude compared with the full model. Appendices A to G are only available in electronic form at http://www.aanda.org

  1. Selected Tools and Techniques for Physical and Biological Monitoring of Aquatic Dredged Material Disposal Sites

    DTIC Science & Technology

    1990-09-01

    expanded in a specific direction if movement is indicated. Controlled dumping at precise coordinates or at marker buoys may reduce the required survey area...of the meters or theft of the marker buoys. Subsurface markers using acoustic releases prevent vandalism and loss of marker buoys, but they...data from field studies such as impact investigations ’Underwood 1981; Heck and Horowitz 1984; Hurlbert 1984; Millard and Lettenmaier 1986; Stewart

  2. Compensation of Horizontal Gravity Disturbances for High Precision Inertial Navigation

    PubMed Central

    Cao, Juliang; Wu, Meiping; Lian, Junxiang; Cai, Shaokun; Wang, Lin

    2018-01-01

    Horizontal gravity disturbances are an important factor that affects the accuracy of inertial navigation systems in long-duration ship navigation. In this paper, from the perspective of the coordinate system and vector calculation, the effects of horizontal gravity disturbance on the initial alignment and navigation calculation are simultaneously analyzed. Horizontal gravity disturbances cause the navigation coordinate frame built in initial alignment to not be consistent with the navigation coordinate frame in which the navigation calculation is implemented. The mismatching of coordinate frame violates the vector calculation law, which will have an adverse effect on the precision of the inertial navigation system. To address this issue, two compensation methods suitable for two different navigation coordinate frames are proposed, one of the methods implements the compensation in velocity calculation, and the other does the compensation in attitude calculation. Finally, simulations and ship navigation experiments confirm the effectiveness of the proposed methods. PMID:29562653

  3. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    NASA Astrophysics Data System (ADS)

    Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E.

    2014-06-01

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.

  4. KSC-65P-0205

    NASA Image and Video Library

    1965-11-06

    CAPE KENNEDY, Fla. -- At Cape Kennedy Air Force Station in Florida, a thrust augmented improved Delta lifts off with a three hundred eighty five pound geodetic Explorer spacecraft, designated GEOS-A. The spacecraft contains five geodetic instrumentation systems to provide simultaneous measurements that scientists require to establish a more precise model of the Earth's gravitational field, and to map a world coordinate system relating points on, or near the surface to the common center of mass. This will be the first launch for the improved Delta second stage. Photo Credit: NASA

  5. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallinikos, N.; Isliker, H.; Vlahos, L.

    2014-06-15

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.

  6. Solar electric propulsion for terminal flight to rendezvous with comets and asteroids. [using guidance algorithm

    NASA Technical Reports Server (NTRS)

    Bennett, A.

    1973-01-01

    A guidance algorithm that provides precise rendezvous in the deterministic case while requiring only relative state information is developed. A navigation scheme employing only onboard relative measurements is built around a Kalman filter set in measurement coordinates. The overall guidance and navigation procedure is evaluated in the face of measurement errors by a detailed numerical simulation. Results indicate that onboard guidance and navigation for the terminal phase of rendezvous is possible with reasonable limits on measurement errors.

  7. High-Resolution Spectroscopy at the Wyoming Infrared Observatory: Setting TESS Science on FHiRE

    NASA Astrophysics Data System (ADS)

    Jang-Condell, Hannah; Pierce, Michael J.; Pilachowski, C. A.; Kobulnicky, Henry; McLane, Jacob N.

    2018-01-01

    The Fiber High Resolution Echelle (FHiRE) spectrograph is a new instrument designed for the 2.3-m Wyoming InfraRed Observatory (WIRO). With the construction of a vacuum chamber for FHiRE to stabilize the spectrograph and a temperature-stabilized Thorium-Argon lamp for precise velocity calibration, we will be able to achieve 1 m/s RV precision, making it an ideal instrument for finding exoplanets. Details of the design of FHiRE are presented in a companion poster (Pierce et al.). The construction of this instrument is well-timed with the planned 2018 launch of NASA's Transiting Exoplanet Survey Satellite (TESS) mission. TESS will require a great deal of follow-up spectroscopy to characterize potential exoplanet host stars as well as radial velocity measurements to confirm new exoplanets. WIRO is ideally suited to acquire the long-term, high-cadence observations that will be required to make progress in this frontier area of astrophysics. We will coordinate our efforts with the TESS Follow-up Observing Program (TFOP), specifically as part of the Recon Spectroscopy and Precise Radial Velocity Work sub-groups.This work is supported by a grant from NASA EPSCOR.

  8. Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells

    PubMed Central

    Chabaud, Mélanie; Heuzé, Mélina L.; Bretou, Marine; Vargas, Pablo; Maiuri, Paolo; Solanes, Paola; Maurin, Mathieu; Terriac, Emmanuel; Le Berre, Maël; Lankar, Danielle; Piolot, Tristan; Adelstein, Robert S.; Zhang, Yingfan; Sixt, Michael; Jacobelli, Jordan; Bénichou, Olivier; Voituriez, Raphaël; Piel, Matthieu; Lennon-Duménil, Ana-Maria

    2015-01-01

    The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space. PMID:26109323

  9. Postural Coordination during Socio-motor Improvisation

    PubMed Central

    Gueugnon, Mathieu; Salesse, Robin N.; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G.; Marin, Ludovic

    2016-01-01

    Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination. PMID:27547193

  10. Postural Coordination during Socio-motor Improvisation.

    PubMed

    Gueugnon, Mathieu; Salesse, Robin N; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G; Marin, Ludovic

    2016-01-01

    Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination.

  11. One load to rule them all: mechanical control of the musculoskeletal system in development and aging.

    PubMed

    Shwartz, Yulia; Blitz, Einat; Zelzer, Elazar

    2013-10-01

    The musculoskeletal system functions because of the precise and coordinated assembly of its components, namely bones and joints, muscles, tendons and ligaments. This coordination requires cross-talk between the tissues, which is mediated by various molecular and mechanical cues. In this review, we summarize the progress that has been made in understanding the involvement of mechanical loads exerted by the musculature in the development of skeletal and tendinous tissues, in their integration into one functional unit and in the maintenance of this system. In addition, we discuss the possible role of muscle load in aging and propose new directions for future studies of the musculoskeletal system. © 2013 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  12. Optimized star sensors laboratory calibration method using a regularization neural network.

    PubMed

    Zhang, Chengfen; Niu, Yanxiong; Zhang, Hao; Lu, Jiazhen

    2018-02-10

    High-precision ground calibration is essential to ensure the performance of star sensors. However, the complex distortion and multi-error coupling have brought great difficulties to traditional calibration methods, especially for large field of view (FOV) star sensors. Although increasing the complexity of models is an effective way to improve the calibration accuracy, it significantly increases the demand for calibration data. In order to achieve high-precision calibration of star sensors with large FOV, a novel laboratory calibration method based on a regularization neural network is proposed. A multi-layer structure neural network is designed to represent the mapping of the star vector and the corresponding star point coordinate directly. To ensure the generalization performance of the network, regularization strategies are incorporated into the net structure and the training algorithm. Simulation and experiment results demonstrate that the proposed method can achieve high precision with less calibration data and without any other priori information. Compared with traditional methods, the calibration error of the star sensor decreased by about 30%. The proposed method can satisfy the precision requirement for large FOV star sensors.

  13. Differential computation method used to calibrate the angle-centroid relationship in coaxial reverse Hartmann test

    NASA Astrophysics Data System (ADS)

    Li, Xinji; Hui, Mei; Zhao, Zhu; Liu, Ming; Dong, Liquan; Kong, Lingqin; Zhao, Yuejin

    2018-05-01

    A differential computation method is presented to improve the precision of calibration for coaxial reverse Hartmann test (RHT). In the calibration, the accuracy of the distance measurement greatly influences the surface shape test, as demonstrated in the mathematical analyses. However, high-precision absolute distance measurement is difficult in the calibration. Thus, a differential computation method that only requires the relative distance was developed. In the proposed method, a liquid crystal display screen successively displayed two regular dot matrix patterns with different dot spacing. In a special case, images on the detector exhibited similar centroid distributions during the reflector translation. Thus, the critical value of the relative displacement distance and the centroid distributions of the dots on the detector were utilized to establish the relationship between the rays at certain angles and the detector coordinates. Experiments revealed the approximately linear behavior of the centroid variation with the relative displacement distance. With the differential computation method, we increased the precision of traditional calibration 10-5 rad root mean square. The precision of the RHT was increased by approximately 100 nm.

  14. Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster

    PubMed Central

    Mendes, César S; Bartos, Imre; Akay, Turgay; Márka, Szabolcs; Mann, Richard S

    2013-01-01

    Coordinated walking in vertebrates and multi-legged invertebrates such as Drosophila melanogaster requires a complex neural network coupled to sensory feedback. An understanding of this network will benefit from systems such as Drosophila that have the ability to genetically manipulate neural activities. However, the fly's small size makes it challenging to analyze walking in this system. In order to overcome this limitation, we developed an optical method coupled with high-speed imaging that allows the tracking and quantification of gait parameters in freely walking flies with high temporal and spatial resolution. Using this method, we present a comprehensive description of many locomotion parameters, such as gait, tarsal positioning, and intersegmental and left-right coordination for wild type fruit flies. Surprisingly, we find that inactivation of sensory neurons in the fly's legs, to block proprioceptive feedback, led to deficient step precision, but interleg coordination and the ability to execute a tripod gait were unaffected. DOI: http://dx.doi.org/10.7554/eLife.00231.001 PMID:23326642

  15. Precision Effects for Solar Image Coordinates Within the FITS World Coordinate System

    NASA Technical Reports Server (NTRS)

    Thompson, W. T.

    2010-01-01

    The FITS world coordinate system (WCS) provides a number of tools for precisely specifying the spatial coordinates of an image. Many of the finer details that the WCS addresses have not historically been taken into account in solar image processing. This paper examines various effects which can affect the expression of coordinates in FITS headers, to determine under what conditions such effects need to be taken into account in data analysis, and under what conditions they can be safely ignored. Effects which are examined include perspective, parallax, spherical projection, optical axis determination, speed-of-light effects, stellar aberration, gravitational deflection, and scattering and refraction at radio wavelengths. Purely instrumental effects, such as misalignment or untreated optical aberrations, are not considered. Since the value of the solar radius is an experimental quantity, the effect of adopting a specific radius value is also examined. These effects are examined in the context of a previous paper outlining a WCS standard for encoding solar coordinates in FITS files. Aspects of that previous paper are clarified and extended in the present work.

  16. Photogrammetry: An available surface characterization tool for solar concentrators. Part 1: Measurements of surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shortis, M.R.; Johnston, G.H.G.

    1996-08-01

    Close range photogrammetry is a sensing technique that allows the three-dimensional coordinates of selected points on a surface of almost any dimension and orientation to be assessed. Surface characterizations of paraboloidal reflecting surfaces at the ANU using photogrammetry have indicated that three-dimensional coordinate precisions approach 1:20,000 are readily achievable using this technique. This allows surface quality assessments to be made of large solar collecting devices with a precision that is difficult to achieve with other methods.

  17. GPS common-view time transfer

    NASA Technical Reports Server (NTRS)

    Lewandowski, W.

    1994-01-01

    The introduction of the GPS common-view method at the beginning of the 1980's led to an immediate and dramatic improvement of international time comparisons. Since then, further progress brought the precision and accuracy of GPS common-view intercontinental time transfer from tens of nanoseconds to a few nanoseconds, even with SA activated. This achievement was made possible by the use of the following: ultra-precise ground antenna coordinates, post-processed precise ephemerides, double-frequency measurements of ionosphere, and appropriate international coordination and standardization. This paper reviews developments and applications of the GPS common-view method during the last decade and comments on possible future improvements whose objective is to attain sub-nanosecond uncertainty.

  18. The theory precision analyse of RFM localization of satellite remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Jianqing; Xv, Biao

    2009-11-01

    The tradition method of detecting precision of Rational Function Model(RFM) is to make use of a great deal check points, and it calculates mean square error through comparing calculational coordinate with known coordinate. This method is from theory of probability, through a large number of samples to statistic estimate value of mean square error, we can think its estimate value approaches in its true when samples are well enough. This paper is from angle of survey adjustment, take law of propagation of error as the theory basis, and it calculates theory precision of RFM localization. Then take the SPOT5 three array imagery as experiment data, and the result of traditional method and narrated method in the paper are compared, while has confirmed tradition method feasible, and answered its theory precision question from the angle of survey adjustment.

  19. Method of surface error visualization using laser 3D projection technology

    NASA Astrophysics Data System (ADS)

    Guo, Lili; Li, Lijuan; Lin, Xuezhu

    2017-10-01

    In the process of manufacturing large components, such as aerospace, automobile and shipping industry, some important mold or stamped metal plate requires precise forming on the surface, which usually needs to be verified, if necessary, the surface needs to be corrected and reprocessed. In order to make the correction of the machined surface more convenient, this paper proposes a method based on Laser 3D projection system, this method uses the contour form of terrain contour, directly showing the deviation between the actually measured data and the theoretical mathematical model (CAD) on the measured surface. First, measure the machined surface to get the point cloud data and the formation of triangular mesh; secondly, through coordinate transformation, unify the point cloud data to the theoretical model and calculate the three-dimensional deviation, according to the sign (positive or negative) and size of the deviation, use the color deviation band to denote the deviation of three-dimensional; then, use three-dimensional contour lines to draw and represent every coordinates deviation band, creating the projection files; finally, import the projection files into the laser projector, and make the contour line projected to the processed file with 1:1 in the form of a laser beam, compare the Full-color 3D deviation map with the projection graph, then, locate and make quantitative correction to meet the processing precision requirements. It can display the trend of the machined surface deviation clearly.

  20. Practice innovation: the need for nimble data platforms to implement precision oncology care.

    PubMed

    Elfiky, Aymen; Zhang, Dongyang; Krishnan Nair, Hari K

    2015-01-01

    Given the drive toward personalized, value-based, and coordinated cancer care delivery, modern knowledge-based practice is being shaped within the context of an increasingly technology-driven healthcare landscape. The ultimate promise of 'precision medicine' is predicated on taking advantage of the range of new capabilities for integrating disease- and individual-specific data to define new taxonomies as part of a systems-based knowledge network. Specifically, with cancer being a constantly evolving complex disease process, proper care of an individual will require the ability to seamlessly integrate multi-dimensional 'omic' and clinical data. Importantly, however, the challenges of curating knowledge from multiple dynamic data sources and translating to practice at the point-of-care highlight parallel needs. As patients, caregivers, and their environments become more proactive in clinical care and management, practical success of precision medicine is equally dependent on the development of proper infrastructures for evolving data integration, platforms for knowledge representation in a clinically-relevant context, and implementation within a provider's work-life and workflow.

  1. The use of precise ephemerides, ionospheric data, and corrected antenna coordinates in a long-distance GPS time transfer

    NASA Technical Reports Server (NTRS)

    Lewandowski, Wlodzimierz W.; Petit, Gerard; Thomas, Claudine; Weiss, Marc A.

    1990-01-01

    Over intercontinental distances, the accuracy of The Global Positioning System (GPS) time transfers ranges from 10 to 20 ns. The principal error sources are the broadcast ionospheric model, the broadcast ephemerides and the local antenna coordinates. For the first time, the three major error sources for GPS time transfer can be reduced simultaneously for a particular time link. Ionospheric measurement systems of the National Institute of Standards and Technology (NIST) type are now operating on a regular basis at the National Institute of Standards and Technology in Boulder and at the Paris Observatory in Paris. Broadcast ephemerides are currently recorded for time-transfer tracks between these sites, this being necessary for using precise ephemerides. At last, corrected local GPS antenna coordinates are now introduced in GPS receivers at both sites. Shown here is the improvement in precision for this long-distance time comparison resulting from the reduction of these three error sources.

  2. An Outer Arm Dynein Conformational Switch Is Required for Metachronal Synchrony of Motile Cilia in Planaria

    PubMed Central

    Rompolas, Panteleimon; Patel-King, Ramila S.

    2010-01-01

    Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony. PMID:20844081

  3. Precise FIA plot registration using field and dense LIDAR data

    Treesearch

    Demetrios Gatziolis

    2009-01-01

    Precise registration of forest inventory and analysis (FIA) plots is a prerequisite for an effective fusion of field data with ancillary spatial information, which is an approach commonly employed in the mapping of various forest parameters. Although the adoption of Global Positioning System technology has improved the precision of plot coordinates obtained during...

  4. Transformation formulas relating geodetic coordinates to a tangent to Earth, plane coordinate system

    NASA Technical Reports Server (NTRS)

    Credeur, L.

    1981-01-01

    Formulas and their approximation were developed to map geodetic position to an Earth tangent plane with an airport centered rectangular coordinate system. The transformations were developed for use in a terminal area air traffic model with deterministic aircraft traffic. The exact configured vehicle's approximation equations used in their precision microwave landing system navigation experiments.

  5. Technical and Organizational Lessons Learned From More Than One Decade of the International GNSS Service Global Tracking Network

    NASA Astrophysics Data System (ADS)

    Moore, A. W.

    2007-12-01

    The International GNSS Service (IGS) is a voluntary collaboration of more than 200 worldwide agencies that pool resources to generate precise GPS and GLONASS products. The foundation of the IGS is a global network of 385 permanent, continuous, geodetic-quality stations independently operated by about 100 agencies. The IGS Central Bureau develops minimum functional requirements and operational standards that enable the individual stations' data to be used coherently in global analyses, but the IGS remains vendor neutral, leaving procurement decisions and implementation details to the individual agencies. The IGS network is hence quite heterogeneous in instrumentation, station management strategies, and culture; these diversities bring both strengths and challenges in coordination. This presentation will detail the IGS's approaches, successes, and opportunities for improvement in coordinating and monitoring the collaborative network.

  6. Cyclin B in mouse oocytes and embryos: importance for human reproduction and aneuploidy.

    PubMed

    Polański, Zbigniew; Homer, Hayden; Kubiak, Jacek Z

    2012-01-01

    Oocyte maturation and early embryo development require precise coordination between cell cycle progression and the developmental programme. Cyclin B plays a major role in this process: its accumulation and degradation is critical for driving the cell cycle through activation and inactivation of the major cell cycle kinase, CDK1. CDK1 activation is required for M-phase entry whereas its inactivation leads to exit from M-phase. The tempo of oocyte meiotic and embryonic mitotic divisions is set by the rate of cyclin B accumulation and the timing of its destruction. By controlling when cyclin B destruction is triggered and by co-ordinating this with the completion of chromosome alignment, the spindle assembly checkpoint (SAC) is a critical quality control system important for averting aneuploidy and for building in the flexibility required to better integrate cell cycle progression with development. In this review we focus on cyclin B metabolism in mouse oocytes and embryos and illustrate how the cell cycle-powered clock (in fact cyclin B-powered clock) controls oocyte maturation and early embryo development, thereby providing important insight into human reproduction and potential causes of Down syndrome.

  7. Note: Precise radial distribution of charged particles in a magnetic guiding field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backe, H., E-mail: backe@kph.uni-mainz.de

    2015-07-15

    Current high precision beta decay experiments of polarized neutrons, employing magnetic guiding fields in combination with position sensitive and energy dispersive detectors, resulted in a detailed study of the mono-energetic point spread function (PSF) for a homogeneous magnetic field. A PSF describes the radial probability distribution of mono-energetic electrons at the detector plane emitted from a point-like source. With regard to accuracy considerations, unwanted singularities occur as a function of the radial detector coordinate which have recently been investigated by subdividing the radial coordinate into small bins or employing analytical approximations. In this note, a series expansion of the PSFmore » is presented which can numerically be evaluated with arbitrary precision.« less

  8. Construction and quality assurance of large area resistive strip Micromegas for the upgrade of the ATLAS Muon Spectrometer at LHC/CERN

    NASA Astrophysics Data System (ADS)

    Lösel, P.

    2017-06-01

    Large area Micromegas detectors will be employed for the first time in high-energy physics experiments. To cope with increasing background rates, associated with the steadily increasing luminosity of LHC to 10 times design luminosity, the present detector technology in the current innermost stations of the muon endcap system of the ATLAS experiment (the Small Wheel), will be replaced in 2019/2020 by resistive strip Micromegas and small strip TGC detectors. Both technologies will provide tracking and trigger information. In the "New Small Wheel" the Micromegas will be arranged in eight detection layers built of trapezoidally shaped quadruplets of four different sizes covering in total about 1200 m2 of detection plane. In order to achieve 15 % transverse momentum resolution for 1 TeV muons, a challenging mechanical precision is required in the construction of each active plane, with an alignment of the readout strips at the level of 30 μm RMS along the precision coordinate and 80 μm RMS perpendicular to the plane. Each individual Micromegas plane must achieve a spatial resolution better than 100 μm at background rates up to 15 kHz/cm2 while being operated in an inhomogeneous magnetic field (B <= 0.3 T). The required mechanical precision for the production of the components and their assembly, on such large area detectors, is a key point and must be controlled during construction and integration. Particularly the alignment of the readout strips within a quadruplet appears to be demanding. The readout strips are etched on PCB boards using photolithographic processes. Depending on the type of the module, 3 or 5 PCB boards need to be joined and precisely aligned to form a full readout plane. The precision in the alignment is reached either by use of precision mechanical holes or by optical masks, both referenced to the strip patterns. Assembly procedures have been developed to build the single panels with the required mechanical precision and to assemble them in a module including the four metallic micro-meshes. Methods to confirm the precision of components and assembly are based on precise optical devices and X-ray or cosmic muon investigations. We will report on the construction procedures for the Micromegas quadruplets, on the quality control procedures and results, and on the assembly and calibration methods.

  9. MicroRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development.

    PubMed

    Lu, Cecilia S; Zhai, Bo; Mauss, Alex; Landgraf, Matthias; Gygi, Stephen; Van Vactor, David

    2014-09-26

    Neuronal connectivity and specificity rely upon precise coordinated deployment of multiple cell-surface and secreted molecules. MicroRNAs have tremendous potential for shaping neural circuitry by fine-tuning the spatio-temporal expression of key synaptic effector molecules. The highly conserved microRNA miR-8 is required during late stages of neuromuscular synapse development in Drosophila. However, its role in initial synapse formation was previously unknown. Detailed analysis of synaptogenesis in this system now reveals that miR-8 is required at the earliest stages of muscle target contact by RP3 motor axons. We find that the localization of multiple synaptic cell adhesion molecules (CAMs) is dependent on the expression of miR-8, suggesting that miR-8 regulates the initial assembly of synaptic sites. Using stable isotope labelling in vivo and comparative mass spectrometry, we find that miR-8 is required for normal expression of multiple proteins, including the CAMs Fasciclin III (FasIII) and Neuroglian (Nrg). Genetic analysis suggests that Nrg and FasIII collaborate downstream of miR-8 to promote accurate target recognition. Unlike the function of miR-8 at mature larval neuromuscular junctions, at the embryonic stage we find that miR-8 controls key effectors on both sides of the synapse. MiR-8 controls multiple stages of synapse formation through the coordinate regulation of both pre- and postsynaptic cell adhesion proteins.

  10. MicroRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development

    PubMed Central

    Lu, Cecilia S.; Zhai, Bo; Mauss, Alex; Landgraf, Matthias; Gygi, Stephen; Van Vactor, David

    2014-01-01

    Neuronal connectivity and specificity rely upon precise coordinated deployment of multiple cell-surface and secreted molecules. MicroRNAs have tremendous potential for shaping neural circuitry by fine-tuning the spatio-temporal expression of key synaptic effector molecules. The highly conserved microRNA miR-8 is required during late stages of neuromuscular synapse development in Drosophila. However, its role in initial synapse formation was previously unknown. Detailed analysis of synaptogenesis in this system now reveals that miR-8 is required at the earliest stages of muscle target contact by RP3 motor axons. We find that the localization of multiple synaptic cell adhesion molecules (CAMs) is dependent on the expression of miR-8, suggesting that miR-8 regulates the initial assembly of synaptic sites. Using stable isotope labelling in vivo and comparative mass spectrometry, we find that miR-8 is required for normal expression of multiple proteins, including the CAMs Fasciclin III (FasIII) and Neuroglian (Nrg). Genetic analysis suggests that Nrg and FasIII collaborate downstream of miR-8 to promote accurate target recognition. Unlike the function of miR-8 at mature larval neuromuscular junctions, at the embryonic stage we find that miR-8 controls key effectors on both sides of the synapse. MiR-8 controls multiple stages of synapse formation through the coordinate regulation of both pre- and postsynaptic cell adhesion proteins. PMID:25135978

  11. NASA airborne laser altimetry and ICESat-2 post-launch data validation

    NASA Astrophysics Data System (ADS)

    Brunt, K. M.; Neumann, T.; Studinger, M.; Hawley, R. L.; Markus, T.

    2016-12-01

    A series of NASA airborne lidars have made repeated surveys over an 11,000-m ground-based kinematic GPS traverse near Summit Station, Greenland. These ground-based data were used to assess the surface elevation bias and measurement precision of two airborne laser altimeters: Airborne Topographic Mapper (ATM) and Land, Vegetation, and Ice Sensor (LVIS). Data from the ongoing monthly traverses allowed for the assessment of 8 airborne lidar campaigns; elevation biases for these altimeters were less than 12.2 cm, while assessments of surface measurement precision were less than 9.1 cm. Results from the analyses of the Greenland ground-based GPS and airborne lidar data provide guidance for validation strategies for Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products. Specifically, a nested approach to validation is required, where ground-based GPS data are used to constrain the bias and measurement precision of the airborne lidar data; airborne surveys can then be designed and conducted on longer length-scales to provide the amount of airborne data required to make more statistically meaningful assessments of satellite elevation data. This nested validation approach will continue for the ground-traverse in Greenland; further, the ICESat-2 Project Science Office has plans to conduct similar coordinated ground-based and airborne data collection in Antarctica.

  12. Advances in the molecular diagnosis of diffuse large B-cell lymphoma in the era of precision medicine.

    PubMed

    Araf, Shamzah; Korfi, Koorosh; Rahim, Tahrima; Davies, Andrew; Fitzgibbon, Jude

    2016-10-01

    The adoption of high-throughput technologies has led to a transformation in our ability to classify diffuse large B-cell lymphoma (DLBCL) into unique molecular subtypes. In parallel, the expansion of agents targeting key genetic and gene expression signatures has led to an unprecedented opportunity to personalize cancer therapies, paving the way for precision medicine. Areas covered: This review summarizes the key molecular subtypes of DLBCL and outlines the novel technology platforms in development to discriminate clinically relevant subtypes. Expert commentary: The application of emerging diagnostic tests into routine clinical practise is gaining momentum following the demonstration of subtype specific activity by novel agents. Co-ordinated efforts are required to ensure that these state of the art technologies provide reliable and clinically meaningful results accessible to the wider haematology community.

  13. Theoferometer for the Construction of Precision Optomechanical Assemblies

    NASA Technical Reports Server (NTRS)

    Korzun, Ashley M.

    2006-01-01

    The increasing difficulty of metrology requirements on projects involving optics and the alignment of instrumentation on spacecraft has reached a turning point. Requirements as low as 0.1 arcseconds for the static, rotational alignment of components within a coordinate system cannot be met with a theodolite, the alignment tool currently in use. A "theoferometer" is an interferometer mounted on a rotation stage with degrees of freedom in azimuth and elevation for metrology and alignment applications. The success of a prototype theoferometer in approaching these metrology requirements led to a redesign stressing mechanical, optical, and software changes to increase the sensitivity and portability of the unit. This paper covers the improvements made to the first prototype theoferometer, characteristic testing, and demonstration of the redesigned theoferometer s capabilities as a "theodolite replacement" and low-uncertainty metrology tool.

  14. Requirements Doc for Refurb of JASPER Facility in B131HB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knittel, Kenn M.

    The Joint Actinide Shock Physics Experimental Research (JASPER) Program target fabrication facility is currently located in building 131 (B131) of the Lawrence Livermore National Laboratory (LLNL). A portion of this current facility has been committed to another program as part of a larger effort to consolidate LLNL capabilities into newer facilities. This facility assembles precision targets for scientific studies at the Nevada National Security Site (NNSS). B131 is also going through a modernization project to upgrade the infrastructure and abate asbestos. These activities will interrupt the continuous target fabrication efforts for the JASPER Program. Several options are explored to meetmore » the above conflicting requirements, with the final recommendation to prepare a new facility for JASPER target fabrication operations before modernization efforts begin in the current facility assigned to JASPER. This recommendation fits within all schedule constraints and minimizes the disruption to the JASPER Program. This option is not without risk, as it requires moving an aged, precision coordinate measuring machine, which is essential to the JASPER Program’s success. The selected option balances the risk to the machine with continuity of operations.« less

  15. Study on portable optical 3D coordinate measuring system

    NASA Astrophysics Data System (ADS)

    Ren, Tongqun; Zhu, Jigui; Guo, Yinbiao

    2009-05-01

    A portable optical 3D coordinate measuring system based on digital Close Range Photogrammetry (CRP) technology and binocular stereo vision theory is researched. Three ultra-red LED with high stability is set on a hand-hold target to provide measuring feature and establish target coordinate system. Ray intersection based field directional calibrating is done for the intersectant binocular measurement system composed of two cameras by a reference ruler. The hand-hold target controlled by Bluetooth wireless communication is free moved to implement contact measurement. The position of ceramic contact ball is pre-calibrated accurately. The coordinates of target feature points are obtained by binocular stereo vision model from the stereo images pair taken by cameras. Combining radius compensation for contact ball and residual error correction, object point can be resolved by transfer of axes using target coordinate system as intermediary. This system is suitable for on-field large-scale measurement because of its excellent portability, high precision, wide measuring volume, great adaptability and satisfying automatization. It is tested that the measuring precision is near to +/-0.1mm/m.

  16. Image Tiling for Profiling Large Objects

    NASA Technical Reports Server (NTRS)

    Venkataraman, Ajit; Schock, Harold; Mercer, Carolyn R.

    1992-01-01

    Three dimensional surface measurements of large objects arc required in a variety of industrial processes. The nature of these measurements is changing as optical instruments arc beginning to replace conventional contact probes scanned over the objects. A common characteristic of the optical surface profilers is the trade off between measurement accuracy and field of view. In order to measure a large object with high accuracy, multiple views arc required. An accurate transformation between the different views is needed to bring about their registration. In this paper, we demonstrate how the transformation parameters can be obtained precisely by choosing control points which lie in the overlapping regions of the images. A good starting point for the transformation parameters is obtained by having a knowledge of the scanner position. The selection of the control points arc independent of the object geometry. By successively recording multiple views and obtaining transformation with respect to a single coordinate system, a complete physical model of an object can be obtained. Since all data arc in the same coordinate system, it can thus be used for building automatic models for free form surfaces.

  17. Requirements for efficient cell-type proportioning: regulatory timescales, stochasticity and lateral inhibition

    NASA Astrophysics Data System (ADS)

    Pfeuty, B.; Kaneko, K.

    2016-04-01

    The proper functioning of multicellular organisms requires the robust establishment of precise proportions between distinct cell types. This developmental differentiation process typically involves intracellular regulatory and stochastic mechanisms to generate cell-fate diversity as well as intercellular signaling mechanisms to coordinate cell-fate decisions at tissue level. We thus surmise that key insights about the developmental regulation of cell-type proportion can be captured by the modeling study of clustering dynamics in population of inhibitory-coupled noisy bistable systems. This general class of dynamical system is shown to exhibit a very stable two-cluster state, but also metastability, collective oscillations or noise-induced state hopping, which can prevent from timely and reliably reaching a robust and well-proportioned clustered state. To circumvent these obstacles or to avoid fine-tuning, we highlight a general strategy based on dual-time positive feedback loops, such as mediated through transcriptional versus epigenetic mechanisms, which improves proportion regulation by coordinating early and flexible lineage priming with late and firm commitment. This result sheds new light on the respective and cooperative roles of multiple regulatory feedback, stochasticity and lateral inhibition in developmental dynamics.

  18. Atoh1-dependent rhombic lip neurons are required for temporal delay between independent respiratory oscillators in embryonic mice

    PubMed Central

    Tupal, Srinivasan; Huang, Wei-Hsiang; Picardo, Maria Cristina D; Ling, Guang-Yi; Del Negro, Christopher A; Zoghbi, Huda Y; Gray, Paul A

    2014-01-01

    All motor behaviors require precise temporal coordination of different muscle groups. Breathing, for example, involves the sequential activation of numerous muscles hypothesized to be driven by a primary respiratory oscillator, the preBötzinger Complex, and at least one other as-yet unidentified rhythmogenic population. We tested the roles of Atoh1-, Phox2b-, and Dbx1-derived neurons (three groups that have known roles in respiration) in the generation and coordination of respiratory output. We found that Dbx1-derived neurons are necessary for all respiratory behaviors, whereas independent but coupled respiratory rhythms persist from at least three different motor pools after eliminating or silencing Phox2b- or Atoh1-expressing hindbrain neurons. Without Atoh1 neurons, however, the motor pools become temporally disorganized and coupling between independent respiratory oscillators decreases. We propose Atoh1 neurons tune the sequential activation of independent oscillators essential for the fine control of different muscles during breathing. DOI: http://dx.doi.org/10.7554/eLife.02265.001 PMID:24842997

  19. Precise and Fast Computation of the Gravitational Field of a General Finite Body and Its Application to the Gravitational Study of Asteroid Eros

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukushima, Toshio, E-mail: Toshio.Fukushima@nao.ac.jp

    In order to obtain the gravitational field of a general finite body inside its Brillouin sphere, we developed a new method to compute the field accurately. First, the body is assumed to consist of some layers in a certain spherical polar coordinate system and the volume mass density of each layer is expanded as a Maclaurin series of the radial coordinate. Second, the line integral with respect to the radial coordinate is analytically evaluated in a closed form. Third, the resulting surface integrals are numerically integrated by the split quadrature method using the double exponential rule. Finally, the associated gravitationalmore » acceleration vector is obtained by numerically differentiating the numerically integrated potential. Numerical experiments confirmed that the new method is capable of computing the gravitational field independently of the location of the evaluation point, namely whether inside, on the surface of, or outside the body. It can also provide sufficiently precise field values, say of 14–15 digits for the potential and of 9–10 digits for the acceleration. Furthermore, its computational efficiency is better than that of the polyhedron approximation. This is because the computational error of the new method decreases much faster than that of the polyhedron models when the number of required transcendental function calls increases. As an application, we obtained the gravitational field of 433 Eros from its shape model expressed as the 24 × 24 spherical harmonic expansion by assuming homogeneity of the object.« less

  20. Analysis of the Effect of UTI-UTC to High Precision Orbit

    NASA Astrophysics Data System (ADS)

    Shin, Dongseok; Kwak, Sunghee; Kim, Tag-Gon

    1999-12-01

    As the spatial resolution of remote sensing satellites becomes higher, very accurate determination of the position of a LEO (Low Earth Orbit) satellite is demanding more than ever. Non-symmetric Earth gravity is the major perturbation force to LEO satellites. Since the orbit propagation is performed in the celestial frame while Earth gravity is defined in the terrestrial frame, it is required to convert the coordinates of the satellite from one to the other accurately. Unless the coordinate conversion between the two frames is performed accurately the orbit propagation calculates incorrect Earth gravitational force at a specific time instant, and hence, causes errors in orbit prediction. The coordinate conversion between the two frames involves precession, nutation, Earth rotation and polar motion. Among these factors, unpredictability and uncertainty of Earth rotation, called UTI-UTC, is the largest error source. In this paper, the effect of UTI-UTC on the accuracy of the LEO propagation is introduced, tested and analzed. Considering the maximum unpredictability of UTI-UTC, 0.9 seconds, the meaningful order of non-spherical Earth harmonic functions is derived.

  1. An in-situ measuring method for planar straightness error

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Fu, Luhua; Yang, Tongyu; Sun, Changku; Wang, Zhong; Zhao, Yan; Liu, Changjie

    2018-01-01

    According to some current problems in the course of measuring the plane shape error of workpiece, an in-situ measuring method based on laser triangulation is presented in this paper. The method avoids the inefficiency of traditional methods like knife straightedge as well as the time and cost requirements of coordinate measuring machine(CMM). A laser-based measuring head is designed and installed on the spindle of a numerical control(NC) machine. The measuring head moves in the path planning to measure measuring points. The spatial coordinates of the measuring points are obtained by the combination of the laser triangulation displacement sensor and the coordinate system of the NC machine, which could make the indicators of measurement come true. The method to evaluate planar straightness error adopts particle swarm optimization(PSO). To verify the feasibility and accuracy of the measuring method, simulation experiments were implemented with a CMM. Comparing the measurement results of measuring head with the corresponding measured values obtained by composite measuring machine, it is verified that the method can realize high-precise and automatic measurement of the planar straightness error of the workpiece.

  2. Flexible coordinate measurement system based on robot for industries

    NASA Astrophysics Data System (ADS)

    Guo, Yin; Yang, Xue-you; Liu, Chang-jie; Ye, Sheng-hua

    2010-10-01

    The flexible coordinate measurement system based on robot which is applicable to multi-model vehicle is designed to meet the needs of online measurement for current mainstream mixed body-in-white(BIW) production line. The moderate precision, good flexibility and no blind angle are the benefits of this measurement system. According to the measurement system, a monocular structured light vision sensor has been designed, which can measure not only edges, but also planes, apertures and other features. And a effective way to fast on-site calibration of the whole system using the laser tracker has also been proposed, which achieves the unity of various coordinate systems in industrial fields. The experimental results show satisfactory precision of +/-0.30mm of this measurement system, which is sufficient for the needs of online measurement for body-in-white(BIW) in the auto production line. The system achieves real-time detection and monitoring of the whole process of the car body's manufacture, and provides a complete data support in purpose of overcoming the manufacturing error immediately and accurately and improving the manufacturing precision.

  3. Gauge Theories of Vector Particles

    DOE R&D Accomplishments Database

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  4. Discrete adjoint of fractional step Navier-Stokes solver in generalized coordinates

    NASA Astrophysics Data System (ADS)

    Wang, Mengze; Mons, Vincent; Zaki, Tamer

    2017-11-01

    Optimization and control in transitional and turbulent flows require evaluation of gradients of the flow state with respect to the problem parameters. Using adjoint approaches, these high-dimensional gradients can be evaluated with a similar computational cost as the forward Navier-Stokes simulations. The adjoint algorithm can be obtained by discretizing the continuous adjoint Navier-Stokes equations or by deriving the adjoint to the discretized Navier-Stokes equations directly. The latter algorithm is necessary when the forward-adjoint relations must be satisfied to machine precision. In this work, our forward model is the fractional step solution to the Navier-Stokes equations in generalized coordinates, proposed by Rosenfeld, Kwak & Vinokur. We derive the corresponding discrete adjoint equations. We also demonstrate the accuracy of the combined forward-adjoint model, and its application to unsteady wall-bounded flows. This work has been partially funded by the Office of Naval Research (Grant N00014-16-1-2542).

  5. Real-time blind image deconvolution based on coordinated framework of FPGA and DSP

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Li, Hang; Zhou, Hua; Liu, Hongjun

    2015-10-01

    Image restoration takes a crucial place in several important application domains. With the increasing of computation requirement as the algorithms become much more complexity, there has been a significant rise in the need for accelerating implementation. In this paper, we focus on an efficient real-time image processing system for blind iterative deconvolution method by means of the Richardson-Lucy (R-L) algorithm. We study the characteristics of algorithm, and an image restoration processing system based on the coordinated framework of FPGA and DSP (CoFD) is presented. Single precision floating-point processing units with small-scale cascade and special FFT/IFFT processing modules are adopted to guarantee the accuracy of the processing. Finally, Comparing experiments are done. The system could process a blurred image of 128×128 pixels within 32 milliseconds, and is up to three or four times faster than the traditional multi-DSPs systems.

  6. Problems of Technology of Energy-Saving Buildings and Their Impact on Energy Efficiency in Buildings

    NASA Astrophysics Data System (ADS)

    Kwasnowski, Pawel; Fedorczak-Cisak, Malgorzata; Knap, Katarzyna

    2017-10-01

    Introduction of EPBD in legislation of the EU member states caused that buildings must meet very stringent requirements of thermal protection and energy efficiency. On the basis of EPBD provisions, EU Member States introduce standard of NZEB (Nearly Zero-Energy Buildings). Such activities cause a need for new, innovative materials and technologies, and new approaches to design, construction and retrofitting of buildings. Indispensable is the precise coordination of the design of structure and technical installations of building, which may be provided in an integrated design process in the system BIM. Good coordination and cooperation of all contractors during the construction phase is also necessary. The article presents the problems and the new methodology for the design, construction and use of energy efficient buildings in terms of energy saving technologies, including discussion of the significant impact of the automation of technical installations on the building energy efficiency.

  7. Autonomous orbital navigation using Kepler's equation

    NASA Technical Reports Server (NTRS)

    Boltz, F. W.

    1974-01-01

    A simple method of determining the six elements of elliptic satellite orbits has been developed for use aboard manned and unmanned spacecraft orbiting the earth, moon, or any planet. The system requires the use of a horizon sensor or other device for determining the local vertical, a precision clock or timing device, and Apollo-type navigation equipment including an inertial measurement unit (IMU), a digital computer, and a coupling data unit. The three elements defining the in-plane motion are obtained from simultaneous measurements of central angle traversed around the planet and elapsed flight time using a linearization of Kepler's equation about a reference orbit. It is shown how Kalman filter theory may also be used to determine the in-plane orbital elements. The three elements defining the orbit orientation are obtained from position angles in celestial coordinates derived from the IMU with the spacecraft vertically oriented after alignment of the IMU to a known inertial coordinate frame.

  8. Acquisition and reacquisition of motor coordination in musicians.

    PubMed

    Furuya, Shinichi; Altenmüller, Eckart

    2015-03-01

    Precise control of movement timing plays a key role in musical performance. This motor skill requires coordination across multiple joints and muscles, which is acquired through extensive musical training from childhood. However, extensive training has a potential risk of causing neurological disorders that impair fine motor control, such as task-specific tremor and focal dystonia. Recent technological advances in measurement and analysis of biological data, as well as noninvasive manipulation of neuronal activities, have promoted the understanding of computational and neurophysiological mechanisms underlying acquisition, loss, and reacquisition of dexterous movements through musical practice and rehabilitation. This paper aims to provide an overview of the behavioral and neurophysiological basis of motor virtuosity and disorder in musicians, representative extremes of human motor skill. We also report novel evidence of effects of noninvasive neurorehabilitation that combined transcranial direct-current stimulation and motor rehabilitation over multiple days on musician's dystonia, which offers a promising therapeutic means. © 2015 New York Academy of Sciences.

  9. Flight Performance of a Man Portable Guided Projectile Concept

    DTIC Science & Technology

    2014-02-01

    include precision guided technologies. The focus of this study is maneuvering projectiles launched from man portable weapon systems . A novel guided...5 Figure 5. Body-fixed coordinate system and aerodynamic angles...20 Figure 20. Earth and body-fixed coordinate systems and Euler angles. ........................................24

  10. Precise calculation of the local pressure tensor in Cartesian and spherical coordinates in LAMMPS

    NASA Astrophysics Data System (ADS)

    Nakamura, Takenobu; Kawamoto, Shuhei; Shinoda, Wataru

    2015-05-01

    An accurate and efficient algorithm for calculating the 3D pressure field has been developed and implemented in the open-source molecular dynamics package, LAMMPS. Additionally, an algorithm to compute the pressure profile along the radial direction in spherical coordinates has also been implemented. The latter is particularly useful for systems showing a spherical symmetry such as micelles and vesicles. These methods yield precise pressure fields based on the Irving-Kirkwood contour integration and are particularly useful for biomolecular force fields. The present methods are applied to several systems including a buckled membrane and a vesicle.

  11. Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis.

    PubMed

    Wang, Peng; Liang, Fu-Cheng; Wittmann, Daniel; Siegel, Alex; Shan, Shu-Ou; Grimm, Bernhard

    2018-04-10

    Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis.

  12. JNK Controls the Onset of Mitosis in Planarian Stem Cells and Triggers Apoptotic Cell Death Required for Regeneration and Remodeling

    PubMed Central

    Almuedo-Castillo, María; Crespo, Xenia; Seebeck, Florian; Bartscherer, Kerstin; Salò, Emili; Adell, Teresa

    2014-01-01

    Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun–NH2–kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal. PMID:24922054

  13. Mass Separation by Metamaterials

    PubMed Central

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-01-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices. PMID:26912419

  14. Photogrammetric analysis of horizon panoramas: The Pathfinder landing site in Viking orbiter images

    USGS Publications Warehouse

    Oberst, J.; Jaumann, R.; Zeitler, W.; Hauber, E.; Kuschel, M.; Parker, T.; Golombek, M.; Malin, M.; Soderblom, L.

    1999-01-01

    Tiepoint measurements, block adjustment techniques, and sunrise/sunset pictures were used to obtain precise pointing data with respect to north for a set of 33 IMP horizon images. Azimuth angles for five prominent topographic features seen at the horizon were measured and correlated with locations of these features in Viking orbiter images. Based on this analysis, the Pathfinder line/sample coordinates in two raw Viking images were determined with approximate errors of 1 pixel, or 40 m. Identification of the Pathfinder location in orbit imagery yields geological context for surface studies of the landing site. Furthermore, the precise determination of coordinates in images together with the known planet-fixed coordinates of the lander make the Pathfinder landing site the most important anchor point in current control point networks of Mars. Copyright 1999 by the American Geophysical Union.

  15. The Astronomical Almanac Online - Welcome

    Science.gov Websites

    (incl. eclipses) Time-Scales and Coordinate Systems Sun Moon Planets Natural Satellites Dwarf Planets version contains precise ephemerides of the Sun, Moon, planets, and satellites, data for eclipses and : Phenomena (incl. eclipses) Section B: Time-Scales and Coordinate Systems Section C: Sun Section D: Moon

  16. Reliable positioning in a sparse GPS network, eastern Ontario

    NASA Astrophysics Data System (ADS)

    Samadi Alinia, H.; Tiampo, K.; Atkinson, G. M.

    2013-12-01

    Canada hosts two regions that are prone to large earthquakes: western British Columbia, and the St. Lawrence River region in eastern Canada. Although eastern Ontario is not as seismically active as other areas of eastern Canada, such as the Charlevoix/Ottawa Valley seismic zone, it experiences ongoing moderate seismicity. In historic times, potentially damaging events have occurred in New York State (Attica, 1929, M=5.7; Plattsburg, 2002, M=5.0), north-central Ontario (Temiskaming, 1935, M=6.2; North Bay, 2000, M=5.0), eastern Ontario (Cornwall, 1944, M=5.8), Georgian Bay (2005, MN=4.3), and western Quebec (Val-Des-Bois,2010, M=5.0, MN=5.8). In eastern Canada, the analysis of detailed, high-precision measurements of surface deformation is a key component in our efforts to better characterize the associated seismic hazard. The data from precise, continuous GPS stations is necessary to adequately characterize surface velocities from which patterns and rates of stress accumulation on faults can be estimated (Mazzotti and Adams, 2005; Mazzotti et al., 2005). Monitoring of these displacements requires employing high accuracy GPS positioning techniques. Detailed strain measurements can determine whether the regional strain everywhere is commensurate with a large event occurring every few hundred years anywhere within this general area or whether large earthquakes are limited to specific areas (Adams and Halchuck, 2003; Mazzotti and Adams, 2005). In many parts of southeastern Ontario and western Québec, GPS stations are distributed quite sparsely, with spacings of approximately 100 km or more. The challenge is to provide accurate solutions for these sparse networks with an approach that is capable of achieving high-accuracy positioning. Here, various reduction techniques are applied to a sparse network installed with the Southern Ontario Seismic Network in eastern Ontario. Recent developments include the implementation of precise point positioning processing on acquired GPS raw data. These are based on precise GPS orbit and clock data products with centimeter accuracy computed beforehand. Here, the analysis of 1Hz GPS data is conducted in order to find the most reliable regional network from eight stations (STCO, TYNO, ACTO, INUQ, IVKQ, KLBO, MATQ and ALGO) that cover the study area in eastern Ontario. In this way, the estimated parameters are the total number of ambiguities and resolved ambiguities, posteriori rms of each baseline and the coordinates for each station and their differences with the known coordinates. The positioning accuracy, the corrections and the accuracy of interpolated corrections, and the initialization time required for precise positioning are presented for the various applications.

  17. The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research

    PubMed Central

    Niehorster, Diederick C.; Li, Li; Lappe, Markus

    2017-01-01

    The advent of inexpensive consumer virtual reality equipment enables many more researchers to study perception with naturally moving observers. One such system, the HTC Vive, offers a large field-of-view, high-resolution head mounted display together with a room-scale tracking system for less than a thousand U.S. dollars. If the position and orientation tracking of this system is of sufficient accuracy and precision, it could be suitable for much research that is currently done with far more expensive systems. Here we present a quantitative test of the HTC Vive’s position and orientation tracking as well as its end-to-end system latency. We report that while the precision of the Vive’s tracking measurements is high and its system latency (22 ms) is low, its position and orientation measurements are provided in a coordinate system that is tilted with respect to the physical ground plane. Because large changes in offset were found whenever tracking was briefly lost, it cannot be corrected for with a one-time calibration procedure. We conclude that the varying offset between the virtual and the physical tracking space makes the HTC Vive at present unsuitable for scientific experiments that require accurate visual stimulation of self-motion through a virtual world. It may however be suited for other experiments that do not have this requirement. PMID:28567271

  18. The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research.

    PubMed

    Niehorster, Diederick C; Li, Li; Lappe, Markus

    2017-01-01

    The advent of inexpensive consumer virtual reality equipment enables many more researchers to study perception with naturally moving observers. One such system, the HTC Vive, offers a large field-of-view, high-resolution head mounted display together with a room-scale tracking system for less than a thousand U.S. dollars. If the position and orientation tracking of this system is of sufficient accuracy and precision, it could be suitable for much research that is currently done with far more expensive systems. Here we present a quantitative test of the HTC Vive's position and orientation tracking as well as its end-to-end system latency. We report that while the precision of the Vive's tracking measurements is high and its system latency (22 ms) is low, its position and orientation measurements are provided in a coordinate system that is tilted with respect to the physical ground plane. Because large changes in offset were found whenever tracking was briefly lost, it cannot be corrected for with a one-time calibration procedure. We conclude that the varying offset between the virtual and the physical tracking space makes the HTC Vive at present unsuitable for scientific experiments that require accurate visual stimulation of self-motion through a virtual world. It may however be suited for other experiments that do not have this requirement.

  19. Microscopic vision modeling method by direct mapping analysis for micro-gripping system with stereo light microscope.

    PubMed

    Wang, Yuezong; Zhao, Zhizhong; Wang, Junshuai

    2016-04-01

    We present a novel and high-precision microscopic vision modeling method, which can be used for 3D data reconstruction in micro-gripping system with stereo light microscope. This method consists of four parts: image distortion correction, disparity distortion correction, initial vision model and residual compensation model. First, the method of image distortion correction is proposed. Image data required by image distortion correction comes from stereo images of calibration sample. The geometric features of image distortions can be predicted though the shape deformation of lines constructed by grid points in stereo images. Linear and polynomial fitting methods are applied to correct image distortions. Second, shape deformation features of disparity distribution are discussed. The method of disparity distortion correction is proposed. Polynomial fitting method is applied to correct disparity distortion. Third, a microscopic vision model is derived, which consists of two models, i.e., initial vision model and residual compensation model. We derive initial vision model by the analysis of direct mapping relationship between object and image points. Residual compensation model is derived based on the residual analysis of initial vision model. The results show that with maximum reconstruction distance of 4.1mm in X direction, 2.9mm in Y direction and 2.25mm in Z direction, our model achieves a precision of 0.01mm in X and Y directions and 0.015mm in Z direction. Comparison of our model with traditional pinhole camera model shows that two kinds of models have a similar reconstruction precision of X coordinates. However, traditional pinhole camera model has a lower precision of Y and Z coordinates than our model. The method proposed in this paper is very helpful for the micro-gripping system based on SLM microscopic vision. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Spatial and Temporal Eye–Hand Coordination Relies on the Parietal Reach Region

    PubMed Central

    Hauschild, Markus; Wilke, Melanie; Andersen, Richard A.

    2014-01-01

    Coordinated eye movements are crucial for precision control of our hands. A commonly believed neural mechanism underlying eye–hand coordination is interaction between the neural networks controlling each effector, exchanging, and matching information, such as movement target location and onset time. Alternatively, eye–hand coordination may result simply from common inputs to independent eye and hand control pathways. Thus far, it remains unknown whether and where either of these two possible mechanisms exists. A candidate location for the former mechanism, interpathway communication, includes the posterior parietal cortex (PPC) where distinct effector-specific areas reside. If the PPC were within the network for eye–hand coordination, perturbing it would affect both eye and hand movements that are concurrently planned. In contrast, if eye–hand coordination arises solely from common inputs, perturbing one effector pathway, e.g., the parietal reach region (PRR), would not affect the other effector. To test these hypotheses, we inactivated part of PRR in the macaque, located in the medial bank of the intraparietal sulcus encompassing the medial intraparietal area and area 5V. When each effector moved alone, PRR inactivation shortened reach but not saccade amplitudes, compatible with the known reach-selective activity of PRR. However, when both effectors moved concurrently, PRR inactivation shortened both reach and saccade amplitudes, and decoupled their reaction times. Therefore, consistent with the interpathway communication hypothesis, we propose that the planning of concurrent eye and hand movements causes the spatial information in PRR to influence the otherwise independent eye control pathways, and that their temporal coupling requires an intact PRR. PMID:25232123

  1. Combination of GPS and GLONASS IN PPP algorithms and its effect on site coordinates determination

    NASA Astrophysics Data System (ADS)

    Hefty, J.; Gerhatova, L.; Burgan, J.

    2011-10-01

    Precise Point Positioning (PPP) approach using the un-differenced code and phase GPS observations, precise orbits and satellite clocks is an important alternative to the analyses based on double differences. We examine the extension of the PPP method by introducing the GLONASS satellites into the processing algorithms. The procedures are demonstrated on the software package ABSOLUTE developed at the Slovak University of Technology. Partial results, like ambiguities and receiver clocks obtained from separate solutions of the two GNSS are mutually compared. Finally, the coordinate time series from combination of GPS and GLONASS observations are compared with GPS-only solutions.

  2. Accuracy of the HST Standard Astrometric Catalogs w.r.t. Gaia

    NASA Astrophysics Data System (ADS)

    Kozhurina-Platais, V.; Grogin, N.; Sabbi, E.

    2018-02-01

    The goal of astrometric calibration of the HST ACS/WFC and WFC3/UVIS imaging instruments is to provide a coordinate system free of distortion to the precision level of 0.1 pixel 4-5 mas or better. This astrometric calibration is based on two HST astrometric standard fields in the vicinity of the globular clusters, 47 Tuc and omega Cen, respectively. The derived calibration of the geometric distortion is assumed to be accurate down to 2-3 mas. Is this accuracy in agreement with the true value? Now, with the access to globally accurate positions from the first Gaia data release (DR1), we found that there are measurable offsets, rotation, scale and other deviations of distortion parameters in two HST standard astrometric catalogs. These deviations from the distortion-free and properly aligned coordinate system should be accounted and corrected for, so that the high precision HST positions are free of any systematic errors. We also found that the precision of the HST pixel coordinates is substantially better than the accuracy listed in the Gaia DR1. Therefore, in order to finalize the components of distortion in the HST standard catalogs, the next release of Gaia data is needed.

  3. Precision wildlife medicine: applications of the human-centred precision medicine revolution to species conservation.

    PubMed

    Whilde, Jenny; Martindale, Mark Q; Duffy, David J

    2017-05-01

    The current species extinction crisis is being exacerbated by an increased rate of emergence of epizootic disease. Human-induced factors including habitat degradation, loss of biodiversity and wildlife population reductions resulting in reduced genetic variation are accelerating disease emergence. Novel, efficient and effective approaches are required to combat these epizootic events. Here, we present the case for the application of human precision medicine approaches to wildlife medicine in order to enhance species conservation efforts. We consider how the precision medicine revolution, coupled with the advances made in genomics, may provide a powerful and feasible approach to identifying and treating wildlife diseases in a targeted, effective and streamlined manner. A number of case studies of threatened species are presented which demonstrate the applicability of precision medicine to wildlife conservation, including sea turtles, amphibians and Tasmanian devils. These examples show how species conservation could be improved by using precision medicine techniques to determine novel treatments and management strategies for the specific medical conditions hampering efforts to restore population levels. Additionally, a precision medicine approach to wildlife health has in turn the potential to provide deeper insights into human health and the possibility of stemming and alleviating the impacts of zoonotic diseases. The integration of the currently emerging Precision Medicine Initiative with the concepts of EcoHealth (aiming for sustainable health of people, animals and ecosystems through transdisciplinary action research) and One Health (recognizing the intimate connection of humans, animal and ecosystem health and addressing a wide range of risks at the animal-human-ecosystem interface through a coordinated, collaborative, interdisciplinary approach) has great potential to deliver a deeper and broader interdisciplinary-based understanding of both wildlife and human diseases. © 2016 John Wiley & Sons Ltd.

  4. Monitoring of stability of ASG-EUPOS network coordinates

    NASA Astrophysics Data System (ADS)

    Figurski, M.; Szafranek, K.; Wrona, M.

    2009-04-01

    ASG-EUPOS (Active Geodetic Network - European Position Determination System) is the national system of precise satellite positioning in Poland, which increases a density of regional and global GNSS networks and is widely used by public administration, national institutions, entrepreneurs and citizens (especially surveyors). In near future ASG-EUPOS is to take role of main national network. Control of proper activity of stations and realization of ETRS'89 is a necessity. User of the system needs to be sure that observations quality and coordinates accuracy are high enough. Coordinates of IGS (International GNSS Service) and EPN (European Permanent Network) stations are precisely determined and any changes are monitored all the time. Observations are verified before they are archived in regional and global databases. The same applies to ASG-EUPOS. This paper concerns standardization of GNSS observations from different stations (uniform adjustment), examination of solutions correctness according to IGS and EPN standards and stability of solutions and sites activity

  5. Analysis of video-recorded images to determine linear and angular dimensions in the growing horse.

    PubMed

    Hunt, W F; Thomas, V G; Stiefel, W

    1999-09-01

    Studies of growth and conformation require statistical methods that are not applicable to subjective conformation standards used by breeders and trainers. A new system was developed to provide an objective approach for both science and industry, based on analysis of video images to measure aspects of conformation that were represented by angles or lengths. A studio crush was developed in which video images of horses of different sizes were taken after bone protuberances, located by palpation, were marked with white paper stickers. Screen pixel coordinates of calibration marks, bone markers and points on horse outlines were digitised from captured images and corrected for aspect ratio and 'fish-eye' lens effects. Calculations from the corrected coordinates produced linear dimensions and angular dimensions useful for comparison of horses for conformation and experimental purposes. The precision achieved by the method in determining linear and angular dimensions was examined through systematically determining variance for isolated steps of the procedure. Angles of the front limbs viewed from in front were determined with a standard deviation of 2-5 degrees and effects of viewing angle were detectable statistically. The height of the rump and wither were determined with precision closely related to the limitations encountered in locating a point on a screen, which was greater for markers applied to the skin than for points at the edge of the image. Parameters determined from markers applied to the skin were, however, more variable (because their relation to bone position was affected by movement), but still provided a means by which a number of aspects of size and conformation can be determined objectively for many horses during growth. Sufficient precision was achieved to detect statistically relatively small effects on calculated parameters of camera height position.

  6. Drainage area data for Alabama streams

    USGS Publications Warehouse

    Stallings, J.S.; Peirce, L.B.

    1957-01-01

    The drainage area of a river basin is an important parameter in many engineering equations used for hydrologic design. It is not a parameter, however, that always requires precise measurement. Factors in the hydrologic cycle such as rainfall, runoff, transpiration, and infiltration cannot be measured nearly as closely as drainage area. Largely for this reason, drainage areas are often measured to varying degrees of precision depending upon the immediate need, with little thought to some other use or some other user of the figure obtained. It can readily be appreciated that this practice, continued for long by many different agencies, will result in a heterogeneous collection of drainage area figures, often discordant and of an accuracy unknown to any but those who computed them. Figures of drainage area published by various Federal agencies are frequently discrepant or contradictory, giving rise to confusion in the use of drainage area data. Seeking to better this situation, the Federal Inter-Agency River Basin Committee (FIARBC) in November 1951 published its Bulletin No. 4, Inter-Agency Coordination of Drainage Area Data. That Bulletin recommended procedures to be followed by the interested Federal agencies “for coordinating drainage area data in the interest of promoting uniformity, reducing confusion and contradiction of published figures, and improving the ready availability of drainage area data pertaining to drainage basins of the United States and its possessions.”

  7. Heterogeneous Coordination Environments in Lithium-Neutralized Ionomers Identified Using 1H and 7Li MAS NMR

    PubMed Central

    Alam, Todd M.; Jenkins, Janelle E.; Bolintineanu, Dan S.; Stevens, Mark J.; Frischknecht, Amalie L.; Buitrago, C. Francisco; Winey, Karen I.; Opper, Kathleen L.; Wagener, Kenneth B.

    2012-01-01

    The carboxylic acid proton and the lithium coordination environments for precise and random Li-neutralized polyethylene acrylic acid P(E-AA) ionomers were explored using high speed solid-state 1H and 7Li MAS NMR. While the 7Li NMR revealed only a single Li coordination environment, the chemical shift temperature variation was dependent on the precise or random nature of the P(E-AA) ionomer. The 1H MAS NMR revealed two different carboxylic acid proton environments in these materials. By utilizing 1H-7Li rotational echo double resonance (REDOR) MAS NMR experiments, it was demonstrated that the proton environments correspond to different average 1H-7Li distances, with the majority of the protonated carboxylic acids having a close through space contact with the Li. Molecular dynamics simulations suggest that the shortest 1H-7Li distance corresponds to un-neutralized carboxylic acids directly involved in the coordination environment of Li clusters. These solid-state NMR results show that heterogeneous structural motifs need to be included when developing descriptions of these ionomer materials.

  8. Performance Analysis of Web-Based Ppp Services with DİFFERENT Visibility Conditions

    NASA Astrophysics Data System (ADS)

    Albayrak, M.; Erkaya, H.; Ozludemir, M. T.; Ocalan, T.

    2016-12-01

    GNSS is being used effectively to precise position for many measuring and geodetic purposes at the present time. There is an increasing variety of these systems including the post-processing calculations in terms of number, quality and features and many different techniques are developed to determine position. Precise positioning intend to derive requires user experience and scientific or commercial software with costly license fees. However, in recent years important alternatives to this software that are user friendly and offer free web-based online precise point positioning service have become widely used in geodetic applications. The aim of this study is to test the performance of PPP techniques on ground control points with different visibility conditions. Within this framework, static observations were carried out for three hours a day repeatedly for six days, in YTU Davutpasa Campus on three different ground control points. The locations of these stations were selected by taking into account the impact of natural (trees, etc.) and artificial (buildings, etc.) obstacles. In order to compare the obtained GPS observations with PPP performances, first of all the accurate coordinates of the control points were computed with relative positioning technique in connection with the IGS stations using Bernese v5.0 software. Afterwards, three different web-based positioning services (CSRS-PPP, magicGNSS, GAPS) were used to analyze the GPS observations via PPP technique. To compare all of the obtained results, ITRF2008 datum measurement epoch coordinates were preferred by taking the service result criteria into consideration. In coordinate comparison, for the first station located nearby a building and possibly subjected to multipath effect horizontal discrepancies vary between 2-14.5 cm while vertical differences are between 3.5-16 cm. For the second point located partly in a forestry area, the discrepancies have been obtained as 1.5-8 cm and 2-10 cm for horizontal and vertical components, respectively. For the third point located in an area with no obstacles, 1.5-7 cm horizontal and 1-7 cm vertical differences have been obtained. The results show that the PPP technique could be used effectively in several positioning applications.

  9. How Visuo-Spatial Mental Imagery Develops: Image Generation and Maintenance

    PubMed Central

    Wimmer, Marina C.; Maras, Katie L.; Robinson, Elizabeth J; Doherty, Martin J; Pugeault, Nicolas

    2015-01-01

    Two experiments examined the nature of visuo-spatial mental imagery generation and maintenance in 4-, 6-, 8-, 10-year old children and adults (N = 211). The key questions were how image generation and maintenance develop (Experiment 1) and how accurately children and adults coordinate mental and visually perceived images (Experiment 2). Experiment 1 indicated that basic image generation and maintenance abilities are present at 4 years of age but the precision with which images are generated and maintained improves particularly between 4 and 8 years. In addition to increased precision, Experiment 2 demonstrated that generated and maintained mental images become increasingly similar to visually perceived objects. Altogether, findings suggest that for simple tasks demanding image generation and maintenance, children attain adult-like precision younger than previously reported. This research also sheds new light on the ability to coordinate mental images with visual images in children and adults. PMID:26562296

  10. Coordinated Control Method of Voltage and Reactive Power for Active Distribution Networks Based on Soft Open Point

    DOE PAGES

    Li, Peng; Ji, Haoran; Wang, Chengshan; ...

    2017-03-22

    The increasing penetration of distributed generators (DGs) exacerbates the risk of voltage violations in active distribution networks (ADNs). The conventional voltage regulation devices limited by the physical constraints are difficult to meet the requirement of real-time voltage and VAR control (VVC) with high precision when DGs fluctuate frequently. But, soft open point (SOP), a flexible power electronic device, can be used as the continuous reactive power source to realize the fast voltage regulation. Considering the cooperation of SOP and multiple regulation devices, this paper proposes a coordinated VVC method based on SOP for ADNs. Firstly, a time-series model of coordi-natedmore » VVC is developed to minimize operation costs and eliminate voltage violations of ADNs. Then, by applying the linearization and conic relaxation, the original nonconvex mixed-integer non-linear optimization model is converted into a mixed-integer second-order cone programming (MISOCP) model which can be efficiently solved to meet the requirement of voltage regulation rapidity. Here, we carried out some case studies on the IEEE 33-node system and IEEE 123-node system to illustrate the effectiveness of the proposed method.« less

  11. Coordinated Control Method of Voltage and Reactive Power for Active Distribution Networks Based on Soft Open Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Peng; Ji, Haoran; Wang, Chengshan

    The increasing penetration of distributed generators (DGs) exacerbates the risk of voltage violations in active distribution networks (ADNs). The conventional voltage regulation devices limited by the physical constraints are difficult to meet the requirement of real-time voltage and VAR control (VVC) with high precision when DGs fluctuate frequently. But, soft open point (SOP), a flexible power electronic device, can be used as the continuous reactive power source to realize the fast voltage regulation. Considering the cooperation of SOP and multiple regulation devices, this paper proposes a coordinated VVC method based on SOP for ADNs. Firstly, a time-series model of coordi-natedmore » VVC is developed to minimize operation costs and eliminate voltage violations of ADNs. Then, by applying the linearization and conic relaxation, the original nonconvex mixed-integer non-linear optimization model is converted into a mixed-integer second-order cone programming (MISOCP) model which can be efficiently solved to meet the requirement of voltage regulation rapidity. Here, we carried out some case studies on the IEEE 33-node system and IEEE 123-node system to illustrate the effectiveness of the proposed method.« less

  12. Decentralized coordinated control of elastic web winding systems without tension sensor.

    PubMed

    Hou, Hailiang; Nian, Xiaohong; Chen, Jie; Xiao, Dengfeng

    2018-06-26

    In elastic web winding systems, precise regulation of web tension in each span is critical to ensure final product quality, and to achieve low cost by reducing the occurrence of web break or fold. Generally, web winding systems use load cells or swing rolls as tension sensors, which add cost, reduce system reliability and increase the difficulty of control. In this paper, a decentralized coordinated control scheme with tension observers is designed for a three-motor web-winding system. First, two tension observers are proposed to estimate the unwinding and winding tension. The designed observers consider the essential dynamic, radius, and inertial variation effects and only require the modest computational effort. Then, using the estimated tensions as feedback signals, a robust decentralized coordinated controller is adopted to reduce the interaction between subsystems. Asymptotic stabilities of the observer error dynamics and the closed-loop winding systems are demonstrated via Lyapunov stability theory. The observer gains and the controller gains can be obtained by solving matrix inequalities. Finally, some simulations and experiments are performed on a paper winding setup to test the performance of the designed observers and the observer-base DCC method, respectively. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Performance analysis of PPP ambiguity resolution with UPD products estimated from different scales of reference station networks

    NASA Astrophysics Data System (ADS)

    Wang, Siyao; Li, Bofeng; Li, Xingxing; Zang, Nan

    2018-01-01

    Integer ambiguity fixing with uncalibrated phase delay (UPD) products can significantly shorten the initialization time and improve the accuracy of precise point positioning (PPP). Since the tracking arcs of satellites and the behavior of atmospheric biases can be very different for the reference networks with different scales, the qualities of corresponding UPD products may be also various. The purpose of this paper is to comparatively investigate the influence of different scales of reference station networks on UPD estimation and user ambiguity resolution. Three reference station networks with global, wide-area and local scales are used to compute the UPD products and analyze their impact on the PPP-AR. The time-to-first-fix, the unfix rate and the incorrect fix rate of PPP-AR are analyzed. Moreover, in order to further shorten the convergence time for obtaining precise positioning, a modified partial ambiguity resolution (PAR) and corresponding validation strategy are presented. In this PAR method, the ambiguity subset is determined by removing the ambiguity one by one in the order of ascending elevations. Besides, for static positioning mode, a coordinate validation strategy is employed to enhance the reliability of the fixed coordinate. The experiment results show that UPD products computed by smaller station network are more accurate and lead to a better coordinate solution; the PAR method used in this paper can shorten the convergence time and the coordinate validation strategy can improve the availability of high precision positioning.

  14. Research on the method of improving the accuracy of CMM (coordinate measuring machine) testing aspheric surface

    NASA Astrophysics Data System (ADS)

    Cong, Wang; Xu, Lingdi; Li, Ang

    2017-10-01

    Large aspheric surface which have the deviation with spherical surface are being used widely in various of optical systems. Compared with spherical surface, Large aspheric surfaces have lots of advantages, such as improving image quality, correcting aberration, expanding field of view, increasing the effective distance and make the optical system compact, lightweight. Especially, with the rapid development of space optics, space sensor resolution is required higher and viewing angle is requred larger. Aspheric surface will become one of the essential components in the optical system. After finishing Aspheric coarse Grinding surface profile error is about Tens of microns[1].In order to achieve the final requirement of surface accuracy,the aspheric surface must be quickly modified, high precision testing is the basement of rapid convergence of the surface error . There many methods on aspheric surface detection[2], Geometric ray detection, hartmann detection, ronchi text, knifeedge method, direct profile test, interferometry, while all of them have their disadvantage[6]. In recent years the measure of the aspheric surface become one of the import factors which are restricting the aspheric surface processing development. A two meter caliber industrial CMM coordinate measuring machine is avaiable, but it has many drawbacks such as large detection error and low repeatability precision in the measurement of aspheric surface coarse grinding , which seriously affects the convergence efficiency during the aspherical mirror processing. To solve those problems, this paper presents an effective error control, calibration and removal method by calibration mirror position of the real-time monitoring and other effective means of error control, calibration and removal by probe correction and the measurement mode selection method to measure the point distribution program development. This method verified by real engineer examples, this method increases the original industrial-grade coordinate system nominal measurement accuracy PV value of 7 microns to 4microns, Which effectively improves the grinding efficiency of aspheric mirrors and verifies the correctness of the method. This paper also investigates the error detection and operation control method, the error calibration of the CMM and the random error calibration of the CMM .

  15. Indoor high precision three-dimensional positioning system based on visible light communication using modified genetic algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Guan, Weipeng; Li, Simin; Wu, Yuxiang

    2018-04-01

    To improve the precision of indoor positioning and actualize three-dimensional positioning, a reversed indoor positioning system based on visible light communication (VLC) using genetic algorithm (GA) is proposed. In order to solve the problem of interference between signal sources, CDMA modulation is used. Each light-emitting diode (LED) in the system broadcasts a unique identity (ID) code using CDMA modulation. Receiver receives mixed signal from every LED reference point, by the orthogonality of spreading code in CDMA modulation, ID information and intensity attenuation information from every LED can be obtained. According to positioning principle of received signal strength (RSS), the coordinate of the receiver can be determined. Due to system noise and imperfection of device utilized in the system, distance between receiver and transmitters will deviate from the real value resulting in positioning error. By introducing error correction factors to global parallel search of genetic algorithm, coordinates of the receiver in three-dimensional space can be determined precisely. Both simulation results and experimental results show that in practical application scenarios, the proposed positioning system can realize high precision positioning service.

  16. Amoeboid organism solves complex nutritional challenges

    PubMed Central

    Dussutour, Audrey; Latty, Tanya; Beekman, Madeleine; Simpson, Stephen J.

    2010-01-01

    A fundamental question in nutritional biology is how distributed systems maintain an optimal supply of multiple nutrients essential for life and reproduction. In the case of animals, the nutritional requirements of the cells within the body are coordinated by the brain in neural and chemical dialogue with sensory systems and peripheral organs. At the level of an insect society, the requirements for the entire colony are met by the foraging efforts of a minority of workers responding to cues emanating from the brood. Both examples involve components specialized to deal with nutrient supply and demand (brains and peripheral organs, foragers and brood). However, some of the most species-rich, largest, and ecologically significant heterotrophic organisms on earth, such as the vast mycelial networks of fungi, comprise distributed networks without specialized centers: How do these organisms coordinate the search for multiple nutrients? We address this question in the acellular slime mold Physarum polycephalum and show that this extraordinary organism can make complex nutritional decisions, despite lacking a coordination center and comprising only a single vast multinucleate cell. We show that a single slime mold is able to grow to contact patches of different nutrient quality in the precise proportions necessary to compose an optimal diet. That such organisms have the capacity to maintain the balance of carbon- and nitrogen-based nutrients by selective foraging has considerable implications not only for our understanding of nutrient balancing in distributed systems but for the functional ecology of soils, nutrient cycling, and carbon sequestration. PMID:20142479

  17. Effect of the Level of Coordinated Motor Abilities on Performance in Junior Judokas

    PubMed Central

    Lech, Grzegorz; Jaworski, Janusz; Lyakh, Vladimir; Krawczyk, Robert

    2011-01-01

    The main focus of this study was to identify coordinated motor abilities that affect fighting methods and performance in junior judokas. Subjects were selected for the study in consideration of their age, competition experience, body mass and prior sports level. Subjects’ competition history was taken into consideration when analysing the effectiveness of current fight actions, and individual sports level was determined with consideration to rank in the analysed competitions. The study sought to determine the level of coordinated motor abilities of competitors. The scope of this analysis covered the following aspects: kinaesthetic differentiation, movement frequency, simple and selective reaction time (evoked by a visual or auditory stimulus), spatial orientation, visual-motor coordination, rhythmization, speed, accuracy and precision of movements and the ability to adapt movements and balance. A set of computer tests was employed for the analysis of all of the coordination abilities, while balance examinations were based on the Flamingo Balance Test. Finally, all relationships were determined based on the Spearman’s rank correlation coefficient. It was observed that the activity of the contestants during the fight correlated with the ability to differentiate movements and speed, accuracy and precision of movement, whereas the achievement level during competition was connected with reaction time. PMID:23486723

  18. High precision applications of the global positioning system

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    1991-01-01

    The Global Positioning System (GPS) is a constellation of U.S. defense navigation satellites which can be used for military and civilian positioning applications. A wide variety of GPS scientific applications were identified and precise positioning capabilities with GPS were already demonstrated with data available from the present partial satellite constellation. Expected applications include: measurements of Earth crustal motion, particularly in seismically active regions; measurements of the Earth's rotation rate and pole orientation; high-precision Earth orbiter tracking; surveying; measurements of media propagation delays for calibration of deep space radiometric data in support of NASA planetary missions; determination of precise ground station coordinates; and precise time transfer worldwide.

  19. The Temporal Regulation of S Phase Proteins During G1

    PubMed Central

    Grant, Gavin D.; Cook, Jeanette G.

    2018-01-01

    Successful DNA replication requires intimate coordination with cell cycle progression. Prior to DNA replication initiation in S phase, a series of essential preparatory events in G1 phase ensures timely, complete, and precise genome duplication. Among the essential molecular processes are regulated transcriptional upregulation of genes that encode replication proteins, appropriate post-transcriptional control of replication factor abundance and activity, and the assembly of DNA-loaded protein complexes to license replication origins. In this chapter we describe these critical G1 events necessary for DNA replication and their regulation in the context of both cell cycle entry and cell cycle progression. PMID:29357066

  20. Ground registration of data from an airborne Multifrequency Microwave Radiometer (MfMR). [Colby, Kansas

    NASA Technical Reports Server (NTRS)

    Richter, J. C. (Principal Investigator)

    1981-01-01

    The agricultural soil moisture experiment was conducted near Colby, Kansas, in July and August 1978. A portion of the data collected was taken with a five band microwave radiometer. A method of locating the radiometer footprints with respect to a ground based coordinate system is documented. The procedure requires that the airplane's flight parameters along with aerial photography be acquired simultaneously with the radiometer data. The software which documented reads in data from the precision radiation thermometer (PRT Model 5) and attaches the scene temperature to the corresponding multifrequency microwave radiometer data. Listings of the programs used in the registration process are included.

  1. Neural guidance molecules regulate vascular remodeling and vessel navigation.

    PubMed

    Eichmann, Anne; Makinen, Taija; Alitalo, Kari

    2005-05-01

    The development of the embryonic blood vascular and lymphatic systems requires the coordinated action of several transcription factors and growth factors that target endothelial and periendothelial cells. However, according to recent studies, the precise "wiring" of the vascular system does not occur without an ordered series of guidance decisions involving several molecules initially discovered for axons in the nervous system, including ephrins, netrins, slits, and semaphorins. Here, we summarize the new advances in our understanding of the roles of these axonal pathfinding molecules in vascular remodeling and vessel guidance, indicating that neuronal axons and vessel sprouts use common molecular mechanisms for navigation in the body.

  2. Timing of Tissue-specific Cell Division Requires a Differential Onset of Zygotic Transcription during Metazoan Embryogenesis*

    PubMed Central

    Wong, Ming-Kin; Guan, Daogang; Ng, Kaoru Hon Chun; Ho, Vincy Wing Sze; An, Xiaomeng; Li, Runsheng; Ren, Xiaoliang

    2016-01-01

    Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development. PMID:27056332

  3. Developmental Control of Cell-Cycle Compensation Provides a Switch for Patterned Mitosis at the Onset of Chordate Neurulation.

    PubMed

    Ogura, Yosuke; Sasakura, Yasunori

    2016-04-18

    During neurulation of chordate ascidians, the 11th mitotic division within the epidermal layer shows a posterior-to-anterior wave that is precisely coordinated with the unidirectional progression of the morphogenetic movement. Here we show that the first sign of this patterned mitosis is an asynchronous anterior-to-posterior S-phase length and that mitotic synchrony is reestablished by a compensatory asynchronous G2-phase length. Live imaging combined with genetic experiments demonstrated that compensatory G2-phase regulation requires transcriptional activation of the G2/M regulator cdc25 by the patterning genes GATA and AP-2. The downregulation of GATA and AP-2 at the onset of neurulation leads to loss of compensatory G2-phase regulation and promotes the transition to patterned mitosis. We propose that such developmentally regulated cell-cycle compensation provides an abrupt switch to spatially patterned mitosis in order to achieve the coordination between mitotic timing and morphogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The C. elegans SoxC protein SEM-2 opposes differentiation factors to promote a proliferative blast cell fate in the postembryonic mesoderm

    PubMed Central

    Tian, Chenxi; Shi, Herong; Colledge, Clark; Stern, Michael; Waterston, Robert; Liu, Jun

    2011-01-01

    The proper development of multicellular organisms requires precise regulation and coordination of cell fate specification, cell proliferation and differentiation. Abnormal regulation and coordination of these processes could lead to disease, including cancer. We have examined the function of the sole C. elegans SoxC protein, SEM-2, in the M lineage, which produces the postembryonic mesoderm. We found that SEM-2/SoxC is both necessary and sufficient to promote a proliferating blast cell fate, the sex myoblast fate, over a differentiated striated bodywall muscle fate. A number of factors control the specific expression of sem-2 in the sex myoblast precursors and their descendants. This includes direct control of sem-2 expression by a Hox-PBC complex. The crucial nature of the HOX/PBC factors in directly enhancing expression of this proliferative factor in the C. elegans M lineage suggests a possible more general link between Hox-PBC factors and SoxC proteins in regulating cell proliferation. PMID:21307099

  5. "Silent" NMDA Synapses Enhance Motion Sensitivity in a Mature Retinal Circuit.

    PubMed

    Sethuramanujam, Santhosh; Yao, Xiaoyang; deRosenroll, Geoff; Briggman, Kevin L; Field, Greg D; Awatramani, Gautam B

    2017-12-06

    Retinal direction-selective ganglion cells (DSGCs) have the remarkable ability to encode motion over a wide range of contrasts, relying on well-coordinated excitation and inhibition (E/I). E/I is orchestrated by a diverse set of glutamatergic bipolar cells that drive DSGCs directly, as well as indirectly through feedforward GABAergic/cholinergic signals mediated by starburst amacrine cells. Determining how direction-selective responses are generated across varied stimulus conditions requires understanding how glutamate, acetylcholine, and GABA signals are precisely coordinated. Here, we use a combination of paired patch-clamp recordings, serial EM, and large-scale multi-electrode array recordings to show that a single high-sensitivity source of glutamate is processed differentially by starbursts via AMPA receptors and DSGCs via NMDA receptors. We further demonstrate how this novel synaptic arrangement enables DSGCs to encode direction robustly near threshold contrasts. Together, these results reveal a space-efficient synaptic circuit model for direction computations, in which "silent" NMDA receptors play critical roles. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A hydrogel actuator with flexible folding deformation and shape programming via using sodium carboxymethyl cellulose and acrylic acid.

    PubMed

    Wu, Shuiping; Yu, Feng; Dong, Hua; Cao, Xiaodong

    2017-10-01

    Hydrogel actuator is an intelligent material, which can work as artificial muscle. However, most present hydrogel actuators, due to the inferior mechanical property and uncontrolled folding property, have always resulted in slipping off or the failure of grasping an object with specific shape and required weight. In order to solve this problem, here a tough hydrogel actuator with programmable folding deformation has been prepared by combining the "selective implanting method" and "ionic coordination". The shape and folding angle (from 0 to 180 o ) of hydrogel actuator can be precisely controlled by altering the location and size of the implanting parts that seems like the joints of finger. The ionic coordination is not only the force to trigger the folding of hydrogel, but also utilized to reinforce the mechanical property. We believed the superior mechanical and shape-programmable property can endow the hydrogel actuator with great application prospect in soft machine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Calcineurin/NFAT signaling in osteoblasts regulates bone mass.

    PubMed

    Winslow, Monte M; Pan, Minggui; Starbuck, Michael; Gallo, Elena M; Deng, Lei; Karsenty, Gerard; Crabtree, Gerald R

    2006-06-01

    Development and repair of the vertebrate skeleton requires the precise coordination of bone-forming osteoblasts and bone-resorbing osteoclasts. In diseases such as osteoporosis, bone resorption dominates over bone formation, suggesting a failure to harmonize osteoclast and osteoblast function. Here, we show that mice expressing a constitutively nuclear NFATc1 variant (NFATc1(nuc)) in osteoblasts develop high bone mass. NFATc1(nuc) mice have massive osteoblast overgrowth, enhanced osteoblast proliferation, and coordinated changes in the expression of Wnt signaling components. In contrast, viable NFATc1-deficient mice have defects in skull bone formation in addition to impaired osteoclast development. NFATc1(nuc) mice have increased osteoclastogenesis despite normal levels of RANKL and OPG, indicating that an additional NFAT-regulated mechanism influences osteoclastogenesis in vivo. Calcineurin/NFATc signaling in osteoblasts controls the expression of chemoattractants that attract monocytic osteoclast precursors, thereby coupling bone formation and bone resorption. Our results indicate that NFATc1 regulates bone mass by functioning in both osteoblasts and osteoclasts.

  8. Cellular and oscillatory substrates of fear extinction learning.

    PubMed

    Davis, Patrick; Zaki, Yosif; Maguire, Jamie; Reijmers, Leon G

    2017-11-01

    The mammalian brain contains dedicated circuits for both the learned expression and suppression of fear. These circuits require precise coordination to facilitate the appropriate expression of fear behavior, but the mechanisms underlying this coordination remain unclear. Using a combination of chemogenetics, activity-based neuronal-ensemble labeling and in vivo electrophysiology, we found that fear extinction learning confers on parvalbumin-expressing (PV) interneurons in the basolateral amygdala (BLA) a dedicated role in the selective suppression of a previously encoded fear memory and BLA fear-encoding neurons. In addition, following extinction learning, PV interneurons enable a competing interaction between a 6-12 Hz oscillation and a fear-associated 3-6 Hz oscillation within the BLA. Loss of this competition increases a 3-6 Hz oscillatory signature, with BLA→medial prefrontal cortex directionality signaling the recurrence of fear expression. The discovery of cellular and oscillatory substrates of fear extinction learning that critically depend on BLA PV interneurons could inform therapies aimed at preventing the pathological recurrence of fear following extinction learning.

  9. Cellular and Oscillatory Substrates of Fear Extinction Learning

    PubMed Central

    Davis, Patrick; Zaki, Yosif; Maguire, Jamie; Reijmers, Leon G.

    2018-01-01

    The mammalian brain contains dedicated circuits for both the learned expression and suppression of fear. These circuits require precise coordination to facilitate the appropriate expression of fear behavior, but the mechanisms underlying this coordination remain unclear. Using a novel combination of chemogenetics, activity-based neuronal-ensemble labeling, and in vivo electrophysiology, we found that fear extinction learning confers parvalbumin-expressing (PV) interneurons in the basolateral amygdala (BLA) with a dedicated role in the selective suppression of a previously encoded fear memory and BLA fear-encoding neurons. In addition, following extinction learning, PV interneurons enable a competing interaction between a 6–12 Hz oscillation and a fear-associated 3–6 Hz oscillation within the BLA. Loss of this competition increases a 3–6 Hz oscillatory signature, with BLA→mPFC directionality signaling the recurrence of fear expression. The discovery of cellular and oscillatory substrates of fear extinction learning that critically depend on BLA PV-interneurons could inform therapies aimed at preventing the pathological recurrence of fear following extinction learning. PMID:28967909

  10. Deficits in Coordinative Bimanual Timing Precision in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Vuolo, Janet; Goffman, Lisa; Zelaznik, Howard N.

    2017-01-01

    Purpose: Our objective was to delineate components of motor performance in specific language impairment (SLI); specifically, whether deficits in timing precision in one effector (unimanual tapping) and in two effectors (bimanual clapping) are observed in young children with SLI. Method: Twenty-seven 4- to 5-year-old children with SLI and 21…

  11. Unification of height systems in the frame of GGOS

    NASA Astrophysics Data System (ADS)

    Sánchez, Laura

    2015-04-01

    Most of the existing vertical reference systems do not fulfil the accuracy requirements of modern Geodesy. They refer to local sea surface levels, are stationary (do not consider variations in time), realize different physical height types (orthometric, normal, normal-orthometric, etc.), and their combination in a global frame presents uncertainties at the metre level. To provide a precise geodetic infrastructure for monitoring the Earth system, the Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG), promotes the standardization of the height systems worldwide. The main purpose is to establish a global gravity field-related vertical reference system that (1) supports a highly-precise (at cm-level) combination of physical and geometric heights worldwide, (2) allows the unification of all existing local height datums, and (3) guarantees vertical coordinates with global consistency (the same accuracy everywhere) and long-term stability (the same order of accuracy at any time). Under this umbrella, the present contribution concentrates on the definition and realization of a conventional global vertical reference system; the standardization of the geodetic data referring to the existing height systems; and the formulation of appropriate strategies for the precise transformation of the local height datums into the global vertical reference system. The proposed vertical reference system is based on two components: a geometric component consisting of ellipsoidal heights as coordinates and a level ellipsoid as the reference surface, and a physical component comprising geopotential numbers as coordinates and an equipotential surface defined by a conventional W0 value as the reference surface. The definition of the physical component is based on potential parameters in order to provide reference to any type of physical heights (normal, orthometric, etc.). The conversion of geopotential numbers into metric heights and the modelling of the reference surface (geoid or quasigeoid determination) are considered as steps of the realization. The vertical datum unification strategy is based on (1) the physical connection of height datums to determine their discrepancies, (2) joint analysis of satellite altimetry and tide gauge records to determine time variations of sea level at reference tide gauges, (3) combination of geometrical and physical heights in a well-distributed and high-precise reference frame to estimate the relationship between the individual vertical levels and the global one, and (4) analysis of GNSS time series at reference tide gauges to separate crustal movements from sea level changes. The final vertical transformation parameters are provided by the common adjustment of the observation equations derived from these methods.

  12. Repair of major system elements on Skylab

    NASA Technical Reports Server (NTRS)

    Pace, R. E., Jr.

    1974-01-01

    In-flight maintenance, as conceived and preplanned for the Skylab mission was limited to simple scheduled and unscheduled replacement tasks and minor contingency repairs. Tools and spares were provided accordingly. However, failures during the mission dictated complicated and sophisticated repairs to major systems so that the mission could continue. These repairs included the release of a large structure that failed to deploy, the assembly and deployment of large mechanical devices, the installation and checkout of precision electronic equipment, troubleshooting and repair of precision electromechanical equipment, and tapping into and recharging a cooling system. The repairs were conducted both inside the spacecraft and during extravehicular activities. Some of the repair tasks required team effort on the part of the crewmen including close procedural coordination between internal and extravehicular crewmen. The Skylab experience indicates that crewmen can, with adequate training, make major system repairs in space using standard or special tools. Design of future spacecraft systems should acknowledge this capability and provide for more extensive in-flight repair and maintenance.

  13. GPS inferred geocentric reference frame for satellite positioning and navigation

    NASA Technical Reports Server (NTRS)

    Malla, Rajendra P.; Wu, Sien-Chong

    1989-01-01

    Accurate geocentric three-dimensional positioning is of great importance for various geodetic and oceanographic applications. While relative positioning accuracy of a few centimeters has become a reality using Very Long Baseline Interferometry (VLBI), the uncertainty in the offset of the adopted coordinate system origin from the geocenter is still believed to be of the order of one meter. Satellite Laser Ranging (SLR) is capable of determining this offset to better than 10 cm, though, because of the limited number of satellites, this requires a long arc of data. The Global Positioning System (GPS) measurements provide a powerful alternative for an accurate determination of this origin offset in relatively short period of time. Two strategies are discussed, the first utilizes the precise relative positions predetermined by VLBI, whereas the second establishes a reference frame by holding only one of the tracking sites longitude fixed. Covariance analysis studies indicate that geocentric positioning to an accuracy of a few centimeters can be achieved with just one day of precise GPS pseudorange and carrier phase data.

  14. High-precision method of binocular camera calibration with a distortion model.

    PubMed

    Li, Weimin; Shan, Siyu; Liu, Hui

    2017-03-10

    A high-precision camera calibration method for binocular stereo vision system based on a multi-view template and alternative bundle adjustment is presented in this paper. The proposed method could be achieved by taking several photos on a specially designed calibration template that has diverse encoded points in different orientations. In this paper, the method utilized the existing algorithm used for monocular camera calibration to obtain the initialization, which involves a camera model, including radial lens distortion and tangential distortion. We created a reference coordinate system based on the left camera coordinate to optimize the intrinsic parameters of left camera through alternative bundle adjustment to obtain optimal values. Then, optimal intrinsic parameters of the right camera can be obtained through alternative bundle adjustment when we create a reference coordinate system based on the right camera coordinate. We also used all intrinsic parameters that were acquired to optimize extrinsic parameters. Thus, the optimal lens distortion parameters and intrinsic and extrinsic parameters were obtained. Synthetic and real data were used to test the method. The simulation results demonstrate that the maximum mean absolute relative calibration errors are about 3.5e-6 and 1.2e-6 for the focal length and the principal point, respectively, under zero-mean Gaussian noise with 0.05 pixels standard deviation. The real result shows that the reprojection error of our model is about 0.045 pixels with the relative standard deviation of 1.0e-6 over the intrinsic parameters. The proposed method is convenient, cost-efficient, highly precise, and simple to carry out.

  15. A high precision dual feedback discrete control system designed for satellite trajectory simulator

    NASA Astrophysics Data System (ADS)

    Liu, Ximin; Liu, Liren; Sun, Jianfeng; Xu, Nan

    2005-08-01

    Cooperating with the free-space laser communication terminals, the satellite trajectory simulator is used to test the acquisition, pointing, tracking and communicating performances of the terminals. So the satellite trajectory simulator plays an important role in terminal ground test and verification. Using the double-prism, Sun etc in our group designed a satellite trajectory simulator. In this paper, a high precision dual feedback discrete control system designed for the simulator is given and a digital fabrication of the simulator is made correspondingly. In the dual feedback discrete control system, Proportional- Integral controller is used in velocity feedback loop and Proportional- Integral- Derivative controller is used in position feedback loop. In the controller design, simplex method is introduced and an improvement to the method is made. According to the transfer function of the control system in Z domain, the digital fabrication of the simulator is given when it is exposed to mechanism error and moment disturbance. Typically, when the mechanism error is 100urad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.49urad, 6.12urad, 4.56urad, 4.09urad respectively. When the moment disturbance is 0.1rad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.26urad, 0.22urad, 0.16urad, 0.15urad respectively. The digital fabrication results demonstrate that the dual feedback discrete control system designed for the simulator can achieve the anticipated high precision performance.

  16. Optical Testing of Retroreflectors for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Ohl, Raymond G.; Frey, Bradley J.; Stock, Joseph M.; McMann, Joseph C.; Zukowiski, Tmitri J.

    2010-01-01

    A laser tracker (LT) is an important coordinate metrology tool that uses laser interferometry to determine precise distances to objects, points, or surfaces defined by an optical reference, such as a retroreflector. A retroreflector is a precision optic consisting of three orthogonal faces that returns an incident laser beam nearly exactly parallel to the incident beam. Commercial retroreflectors are designed for operation at room temperature and are specified by the divergence, or beam deviation, of the returning laser beam, usually a few arcseconds or less. When a retroreflector goes to extreme cold (.35 K), however, it could be anticipated that the precision alignment between the three faces and the surface figure of each face would be compromised, resulting in wavefront errors and beam divergence, degrading the accuracy of the LT position determination. Controlled tests must be done beforehand to determine survivability and these LT coordinate errors. Since conventional interferometer systems and laser trackers do not operate in vacuum or at cold temperatures, measurements must be done through a vacuum window, and care must be taken to ensure window-induced errors are negligible, or can be subtracted out. Retroreflector holders must be carefully designed to minimize thermally induced stresses. Changes in the path length and refractive index of the retroreflector have to be considered. Cryogenic vacuum testing was done on commercial solid glass retroreflectors for use on cryogenic metrology tasks. The capabilities to measure wavefront errors, measure beam deviations, and acquire laser tracker coordinate data were demonstrated. Measurable but relatively small increases in beam deviation were shown, and further tests are planned to make an accurate determination of coordinate errors.

  17. Neuronal Correlates of Functional Coupling between Reach- and Grasp-Related Components of Muscle Activity

    PubMed Central

    Geed, Shashwati; McCurdy, Martha L.; van Kan, Peter L. E.

    2017-01-01

    Coordinated reach-to-grasp movements require precise spatiotemporal synchrony between proximal forelimb muscles (shoulder, elbow) that transport the hand toward a target during reach, and distal muscles (wrist, digit) that simultaneously preshape and orient the hand for grasp. The precise mechanisms through which the redundant neuromuscular circuitry coordinates reach with grasp, however, remain unclear. Recently, Geed and Van Kan (2016) demonstrated, using exploratory factor analysis (EFA), that limited numbers of global, template-like transport/preshape- and grasp-related muscle components underlie the complexity and variability of intramuscular electromyograms (EMGs) of up to 21 distal and proximal muscles recorded while monkeys performed reach-to-grasp tasks. Importantly, transport/preshape- and grasp-related muscle components showed invariant spatiotemporal coupling, which provides a potential mechanism for coordinating forelimb muscles during reach-to-grasp movements. In the present study, we tested whether ensemble discharges of forelimb neurons in the cerebellar nucleus interpositus (NI) and its target, the magnocellular red nucleus (RNm), a source of rubrospinal fibers, function as neuronal correlates of the transport/preshape- and grasp-related muscle components we identified. EFA applied to single-unit discharges of populations of NI and RNm neurons recorded while the same monkeys that were used previously performed the same reach-to-grasp tasks, revealed neuronal components in the ensemble discharges of both NI and RNm neuronal populations with characteristics broadly similar to muscle components. Subsets of NI and RNm neuronal components were strongly and significantly crosscorrelated with subsets of muscle components, suggesting that similar functional units of reach-to-grasp behavior are expressed by NI and RNm neuronal populations and forelimb muscles. Importantly, like transport/preshape- and grasp-related muscle components, their NI and RNm neuronal correlates showed invariant spatiotemporal coupling. Clinical and lesion studies have reported disruption of coupling between reach and grasp following cerebellar damage; the present results expand on those studies by identifying a neuronal mechanism that may underlie cerebellar contributions to spatiotemporal coordination of distal and proximal limb muscles during reaching to grasp. We conclude that finding similar functional units of behavior expressed at multiple levels of information processing along interposito-rubrospinal pathways and forelimb muscles supports the hypothesis that functionally related populations of NI and RNm neurons act synergistically in the control of complex coordinated motor behaviors. PMID:28270752

  18. Fast Dynamical Coupling Enhances Frequency Adaptation of Oscillators for Robotic Locomotion Control

    PubMed Central

    Nachstedt, Timo; Tetzlaff, Christian; Manoonpong, Poramate

    2017-01-01

    Rhythmic neural signals serve as basis of many brain processes, in particular of locomotion control and generation of rhythmic movements. It has been found that specific neural circuits, named central pattern generators (CPGs), are able to autonomously produce such rhythmic activities. In order to tune, shape and coordinate the produced rhythmic activity, CPGs require sensory feedback, i.e., external signals. Nonlinear oscillators are a standard model of CPGs and are used in various robotic applications. A special class of nonlinear oscillators are adaptive frequency oscillators (AFOs). AFOs are able to adapt their frequency toward the frequency of an external periodic signal and to keep this learned frequency once the external signal vanishes. AFOs have been successfully used, for instance, for resonant tuning of robotic locomotion control. However, the choice of parameters for a standard AFO is characterized by a trade-off between the speed of the adaptation and its precision and, additionally, is strongly dependent on the range of frequencies the AFO is confronted with. As a result, AFOs are typically tuned such that they require a comparably long time for their adaptation. To overcome the problem, here, we improve the standard AFO by introducing a novel adaptation mechanism based on dynamical coupling strengths. The dynamical adaptation mechanism enhances both the speed and precision of the frequency adaptation. In contrast to standard AFOs, in this system, the interplay of dynamics on short and long time scales enables fast as well as precise adaptation of the oscillator for a wide range of frequencies. Amongst others, a very natural implementation of this mechanism is in terms of neural networks. The proposed system enables robotic applications which require fast retuning of locomotion control in order to react to environmental changes or conditions. PMID:28377710

  19. Binocular coordination in response to stereoscopic stimuli

    NASA Astrophysics Data System (ADS)

    Liversedge, Simon P.; Holliman, Nicolas S.; Blythe, Hazel I.

    2009-02-01

    Humans actively explore their visual environment by moving their eyes. Precise coordination of the eyes during visual scanning underlies the experience of a unified perceptual representation and is important for the perception of depth. We report data from three psychological experiments investigating human binocular coordination during visual processing of stereoscopic stimuli.In the first experiment participants were required to read sentences that contained a stereoscopically presented target word. Half of the word was presented exclusively to one eye and half exclusively to the other eye. Eye movements were recorded and showed that saccadic targeting was uninfluenced by the stereoscopic presentation, strongly suggesting that complementary retinal stimuli are perceived as a single, unified input prior to saccade initiation. In a second eye movement experiment we presented words stereoscopically to measure Panum's Fusional Area for linguistic stimuli. In the final experiment we compared binocular coordination during saccades between simple dot stimuli under 2D, stereoscopic 3D and real 3D viewing conditions. Results showed that depth appropriate vergence movements were made during saccades and fixations to real 3D stimuli, but only during fixations on stereoscopic 3D stimuli. 2D stimuli did not induce depth vergence movements. Together, these experiments indicate that stereoscopic visual stimuli are fused when they fall within Panum's Fusional Area, and that saccade metrics are computed on the basis of a unified percept. Also, there is sensitivity to non-foveal retinal disparity in real 3D stimuli, but not in stereoscopic 3D stimuli, and the system responsible for binocular coordination responds to this during saccades as well as fixations.

  20. A study of attitude control concepts for precision-pointing non-rigid spacecraft

    NASA Technical Reports Server (NTRS)

    Likins, P. W.

    1975-01-01

    Attitude control concepts for use onboard structurally nonrigid spacecraft that must be pointed with great precision are examined. The task of determining the eigenproperties of a system of linear time-invariant equations (in terms of hybrid coordinates) representing the attitude motion of a flexible spacecraft is discussed. Literal characteristics are developed for the associated eigenvalues and eigenvectors of the system. A method is presented for determining the poles and zeros of the transfer function describing the attitude dynamics of a flexible spacecraft characterized by hybrid coordinate equations. Alterations are made to linear regulator and observer theory to accommodate modeling errors. The results show that a model error vector, which evolves from an error system, can be added to a reduced system model, estimated by an observer, and used by the control law to render the system less sensitive to uncertain magnitudes and phase relations of truncated modes and external disturbance effects. A hybrid coordinate formulation using the provided assumed mode shapes, rather than incorporating the usual finite element approach is provided.

  1. Comparison of nonmesonic hypernuclear decay rates computed in laboratory and center-of-mass coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Conti, C.; Barbero, C.; Galeão, A. P.

    In this work we compute the one-nucleon-induced nonmesonic hypernuclear decay rates of {sub Λ}{sup 5}He, {sub Λ}{sup 12}C and {sub Λ}{sup 13}C using a formalism based on the independent particle shell model in terms of laboratory coordinates. To ascertain the correctness and precision of the method, these results are compared with those obtained using a formalism in terms of center-of-mass coordinates, which has been previously reported in the literature. The formalism in terms of laboratory coordinates will be useful in the shell-model approach to two-nucleon-induced transitions.

  2. Field signature for apparently superluminal particle motion

    NASA Astrophysics Data System (ADS)

    Land, Martin

    2015-05-01

    In the context of Stueckelberg's covariant symplectic mechanics, Horwitz and Aharonovich [1] have proposed a simple mechanism by which a particle traveling below light speed almost everywhere may exhibit a transit time that suggests superluminal motion. This mechanism, which requires precise measurement of the particle velocity, involves a subtle perturbation affecting the particle's recorded time coordinate caused by virtual pair processes. The Stueckelberg framework is particularly well suited to such problems, because it permits pair creation/annihilation at the classical level. In this paper, we study a trajectory of the type proposed by Horwitz and Aharonovich, and derive the Maxwell 4-vector potential associated with the motion. We show that the resulting fields carry a signature associated with the apparent superluminal motion, providing an independent test for the mechanism that does not require direct observation of the trajectory, except at the detector.

  3. World-wide precision airports for SVS

    NASA Astrophysics Data System (ADS)

    Schiefele, Jens; Lugsch, Bill; Launer, Marc; Baca, Diana

    2004-08-01

    Future cockpit and aviation applications require high quality airport databases. Accuracy, resolution, integrity, completeness, traceability, and timeliness [1] are key requirements. For most aviation applications, attributed vector databases are needed. The geometry is based on points, lines, and closed polygons. To document the needs for aviation industry RTCA and EUROCAE developed in a joint committee, the DO-272/ED-99 document. It states industry needs for data features, attributes, coding, and capture rules for Airport Mapping Databases (AMDB). This paper describes the technical approach Jeppesen has taken to generate a world-wide set of three-hundred AMDB airports. All AMDB airports are DO-200A/ED-76 [1] and DO-272/ED-99 [2] compliant. Jeppesen airports have a 5m (CE90) accuracy and an 10-3 integrity. World-wide all AMDB data is delivered in WGS84 coordinates. Jeppesen continually updates the databases.

  4. Some considerations about the use of different sensors, in coordinate measuring of the small parts

    NASA Astrophysics Data System (ADS)

    Drăgan, L.

    2017-05-01

    The paper presents some particular aspects associated with measuring of the small-size parts with high precision, manufactured by injection procedures. The coordinate measuring machine (CMM) are very used in process of measuring parts with different shapes, dimensions and materials of the most varied. It is studied by experiments, the influence of hygroscopicity on the geometrical properties of polyamide parts, using different types of measuring sensors. We selected a few pieces- cover type, with precision features dimensions and shape tolerances. To measure them was used some sensors which is equipped CMM ScopeCheck S 400 and equipment for dehumidifying. Starting from the need for high precision measurement of geometric characteristics of the parts obtained by injection of plastic, it has been found that the hygroscopicity has a significant influence. To achieve the purpose were used three types of measuring sensors under different conditions of keeping after manufacture. It was observed that the influence of humidity is significantly reduced if the parts are kept in exikator or vacuum dryer.

  5. Scanner imaging systems, aircraft

    NASA Technical Reports Server (NTRS)

    Ungar, S. G.

    1982-01-01

    The causes and effects of distortion in aircraft scanner data are reviewed and an approach to reduce distortions by modelling the effect of aircraft motion on the scanner scene is discussed. With the advent of advanced satellite borne scanner systems, the geometric and radiometric correction of aircraft scanner data has become increasingly important. Corrections are needed to reliably simulate observations obtained by such systems for purposes of evaluation. It is found that if sufficient navigational information is available, aircraft scanner coordinates may be related very precisely to planimetric ground coordinates. However, the potential for a multivalue remapping transformation (i.e., scan lines crossing each other), adds an inherent uncertainty, to any radiometric resampling scheme, which is dependent on the precise geometry of the scan and ground pattern.

  6. The Accuracy of Webcams in 2D Motion Analysis: Sources of Error and Their Control

    ERIC Educational Resources Information Center

    Page, A.; Moreno, R.; Candelas, P.; Belmar, F.

    2008-01-01

    In this paper, we show the potential of webcams as precision measuring instruments in a physics laboratory. Various sources of error appearing in 2D coordinate measurements using low-cost commercial webcams are discussed, quantifying their impact on accuracy and precision, and simple procedures to control these sources of error are presented.…

  7. Coordinated X-Y stage apparatus

    DOEpatents

    Morimoto, Alan K.; Kozlowski, David M.; Charles, Steven T.; Spalding, James A.

    2000-01-01

    An apparatus based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion.

  8. Precision and accuracy of suggested maxillary and mandibular landmarks with cone-beam computed tomography for regional superimpositions: An in vitro study.

    PubMed

    Lemieux, Genevieve; Carey, Jason P; Flores-Mir, Carlos; Secanell, Marc; Hart, Adam; Lagravère, Manuel O

    2016-01-01

    Our objective was to identify and evaluate the accuracy and precision (intrarater and interrater reliabilities) of various anatomic landmarks for use in 3-dimensional maxillary and mandibular regional superimpositions. We used cone-beam computed tomography reconstructions of 10 human dried skulls to locate 10 landmarks in the maxilla and the mandible. Precision and accuracy were assessed with intrarater and interrater readings. Three examiners located these landmarks in the cone-beam computed tomography images 3 times with readings scheduled at 1-week intervals. Three-dimensional coordinates were determined (x, y, and z coordinates), and the intraclass correlation coefficient was computed to determine intrarater and interrater reliabilities, as well as the mean error difference and confidence intervals for each measurement. Bilateral mental foramina, bilateral infraorbital foramina, anterior nasal spine, incisive canal, and nasion showed the highest precision and accuracy in both intrarater and interrater reliabilities. Subspinale and bilateral lingulae had the lowest precision and accuracy in both intrarater and interrater reliabilities. When choosing the most accurate and precise landmarks for 3-dimensional cephalometric analysis or plane-derived maxillary and mandibular superimpositions, bilateral mental and infraorbital foramina, landmarks in the anterior region of the maxilla, and nasion appeared to be the best options of the analyzed landmarks. Caution is needed when using subspinale and bilateral lingulae because of their higher mean errors in location. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  9. New estimates of the Martian landers and rovers coordinates by combining Doppler data and topography model

    NASA Astrophysics Data System (ADS)

    Le Maistre, Sebastien

    2015-11-01

    We propose here a new method to determine the three coordinates of a spacecraft landed on Mars with a high accuracy as early as the very beginning of the mission. The method consists of determining first the in-equatorial plane coordinates with Doppler data only and then inferring the Z-coordinate (along the polar axis) using the MOLA topography model. The method is applied to several landed missions, providing good estimate of the Z-coordinate of Viking lander 1, Pathfinder and Spirit, but failing to improve the Z of Opportunity and Viking lander 2. Finally, the method is applied in the InSight landing ellipse showing the high probability to get InSight’s Z coordinate with a precision better than 10m after only a couple of days of observations.

  10. Coordination of precision grip in 2–6 years-old children with autism spectrum disorders compared to children developing typically and children with developmental disabilities

    PubMed Central

    David, Fabian J.; Baranek, Grace T.; Wiesen, Chris; Miao, Adrienne F.; Thorpe, Deborah E.

    2012-01-01

    Impaired motor coordination is prevalent in children with Autism Spectrum Disorders (ASD) and affects adaptive skills. Little is known about the development of motor patterns in young children with ASD between 2 and 6 years of age. The purpose of the current study was threefold: (1) to describe developmental correlates of motor coordination in children with ASD, (2) to identify the extent to which motor coordination deficits are unique to ASD by using a control group of children with other developmental disabilities (DD), and (3) to determine the association between motor coordination variables and functional fine motor skills. Twenty-four children with ASD were compared to 30 children with typical development (TD) and 11 children with DD. A precision grip task was used to quantify and analyze motor coordination. The motor coordination variables were two temporal variables (grip to load force onset latency and time to peak grip force) and two force variables (grip force at onset of load force and peak grip force). Functional motor skills were assessed using the Fine Motor Age Equivalents of the Vineland Adaptive Behavior Scale and the Mullen Scales of Early Learning. Mixed regression models were used for all analyses. Children with ASD presented with significant motor coordination deficits only on the two temporal variables, and these variables differentiated children with ASD from the children with TD, but not from children with DD. Fine motor functional skills had no statistically significant associations with any of the motor coordination variables. These findings suggest that subtle problems in the timing of motor actions, possibly related to maturational delays in anticipatory feed-forward mechanisms, may underlie some motor deficits reported in children with ASD, but that these issues are not unique to this population. Further research is needed to investigate how children with ASD or DD compensate for motor control deficits to establish functional skills. PMID:23293589

  11. TBGG- INTERACTIVE ALGEBRAIC GRID GENERATION

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1994-01-01

    TBGG, Two-Boundary Grid Generation, applies an interactive algebraic grid generation technique in two dimensions. The program incorporates mathematical equations that relate the computational domain to the physical domain. TBGG has application to a variety of problems using finite difference techniques, such as computational fluid dynamics. Examples include the creation of a C-type grid about an airfoil and a nozzle configuration in which no left or right boundaries are specified. The underlying two-boundary technique of grid generation is based on Hermite cubic interpolation between two fixed, nonintersecting boundaries. The boundaries are defined by two ordered sets of points, referred to as the top and bottom. Left and right side boundaries may also be specified, and call upon linear blending functions to conform interior interpolation to the side boundaries. Spacing between physical grid coordinates is determined as a function of boundary data and uniformly spaced computational coordinates. Control functions relating computational coordinates to parametric intermediate variables that affect the distance between grid points are embedded in the interpolation formulas. A versatile control function technique with smooth cubic spline functions is also presented. The TBGG program is written in FORTRAN 77. It works best in an interactive graphics environment where computational displays and user responses are quickly exchanged. The program has been implemented on a CDC Cyber 170 series computer using NOS 2.4 operating system, with a central memory requirement of 151,700 (octal) 60 bit words. TBGG requires a Tektronix 4015 terminal and the DI-3000 Graphics Library of Precision Visuals, Inc. TBGG was developed in 1986.

  12. Pavement cells: a model system for non-transcriptional auxin signalling and crosstalks

    PubMed Central

    Chen, Jisheng; Wang, Fei; Zheng, Shiqin; Xu, Tongda; Yang, Zhenbiao

    2015-01-01

    Auxin (indole acetic acid) is a multifunctional phytohormone controlling various developmental patterns, morphogenetic processes, and growth behaviours in plants. The transcription-based pathway activated by the nuclear TRANSPORT INHIBITOR RESISTANT 1/auxin-related F-box auxin receptors is well established, but the long-sought molecular mechanisms of non-transcriptional auxin signalling remained enigmatic until very recently. Along with the establishment of the Arabidopsis leaf epidermal pavement cell (PC) as an exciting and amenable model system in the past decade, we began to gain insight into non-transcriptional auxin signalling. The puzzle-piece shape of PCs forms from intercalated or interdigitated cell growth, requiring local intra- and inter-cellular coordination of lobe and indent formation. Precise coordination of this interdigitated pattern requires auxin and an extracellular auxin sensing system that activates plasma membrane-associated Rho GTPases from plants and subsequent downstream events regulating cytoskeletal reorganization and PIN polarization. Apart from auxin, mechanical stress and cytokinin have been shown to affect PC interdigitation, possibly by interacting with auxin signals. This review focuses upon signalling mechanisms for cell polarity formation in PCs, with an emphasis on non-transcriptional auxin signalling in polarized cell expansion and pattern formation and how different auxin pathways interplay with each other and with other signals. PMID:26047974

  13. Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer.

    PubMed

    Liu, Wei; Dai, Xing; Xie, Jian; Silver, Mark A; Zhang, Duo; Wang, Yanlong; Cai, Yawen; Diwu, Juan; Wang, Jian; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2018-02-07

    The accurate detection of UV radiation is required in a wide range of chemical industries and environmental or biological related applications. Conventional methods taking advantage of semiconductor photodetectors suffer from several drawbacks such as sophisticated synthesis and manufacturing procedure, not being able to measure the accumulated UV dosage as well as high defect density in the material. Searching for new strategies or materials serving as precise UV dosage sensor with extremely low detection limit is still highly desirable. In this work, a radiation resistant uranium coordination polymer [UO 2 (L)(DMF)] (L = 5-nitroisophthalic acid, DMF = N,N-dimethylformamide, denoted as compound 1) was successfully synthesized through mild solvothermal method and investigated as a unique UV probe with the detection limit of 2.4 × 10 -7 J. On the basis of the UV dosage dependent luminescence spectra, EPR analysis, single crystal structure investigation, and the DFT calculation, the UV-induced radical quenching mechanism was confirmed. Importantly, the generated radicals are of significant stability which offers the opportunity for measuring the accumulated UV radiation dosage. Furthermore, the powder material of compound 1 was further upgraded into membrane material without loss in luminescence intensity to investigate the real application potentials. To the best of our knowledge, compound 1 represents the most sensitive coordination polymer based UV dosage probe reported to date.

  14. Spherical harmonic analysis of a harmonic function given on a spheroid

    NASA Astrophysics Data System (ADS)

    Claessens, S. J.

    2016-07-01

    A new analytical method for the computation of a truncated series of solid spherical harmonic coefficients (HCs) from data on a spheroid (i.e. an oblate ellipsoid of revolution) is derived, using a transformation between surface and solid spherical HCs. A two-step procedure is derived to extend this transformation beyond degree and order (d/o) 520. The method is compared to the Hotine-Jekeli transformation in a numerical study based on the EGM2008 global gravity model. Both methods are shown to achieve submicrometre precision in terms of height anomalies for a model to d/o 2239. However, both methods result in spherical harmonic models that are different by up to 7.6 mm in height anomalies and 2.5 mGal in gravity disturbances due to the different coordinate system used. While the Hotine-Jekeli transformation requires the use of an ellipsoidal coordinate system, the new method uses only spherical polar coordinates. The Hotine-Jekeli transformation is numerically more efficient, but the new method can more easily be extended to cases where (a linear combination of) normal derivatives of the function under consideration are given on the surface of the spheroid. It therefore provides a solution to many types of ellipsoidal boundary-value problems in the spectral domain.

  15. Transsynaptic Coordination of Synaptic Growth, Function, and Stability by the L1-Type CAM Neuroglian

    PubMed Central

    Moreno, Eliza; Stephan, Raiko; Boerner, Jana; Godenschwege, Tanja A.; Pielage, Jan

    2013-01-01

    The precise control of synaptic connectivity is essential for the development and function of neuronal circuits. While there have been significant advances in our understanding how cell adhesion molecules mediate axon guidance and synapse formation, the mechanisms controlling synapse maintenance or plasticity in vivo remain largely uncharacterized. In an unbiased RNAi screen we identified the Drosophila L1-type CAM Neuroglian (Nrg) as a central coordinator of synapse growth, function, and stability. We demonstrate that the extracellular Ig-domains and the intracellular Ankyrin-interaction motif are essential for synapse development and stability. Nrg binds to Ankyrin2 in vivo and mutations reducing the binding affinities to Ankyrin2 cause an increase in Nrg mobility in motoneurons. We then demonstrate that the Nrg–Ank2 interaction controls the balance of synapse growth and stability at the neuromuscular junction. In contrast, at a central synapse, transsynaptic interactions of pre- and postsynaptic Nrg require a dynamic, temporal and spatial, regulation of the intracellular Ankyrin-binding motif to coordinate pre- and postsynaptic development. Our study at two complementary model synapses identifies the regulation of the interaction between the L1-type CAM and Ankyrin as an important novel module enabling local control of synaptic connectivity and function while maintaining general neuronal circuit architecture. PMID:23610557

  16. Transsynaptic coordination of synaptic growth, function, and stability by the L1-type CAM Neuroglian.

    PubMed

    Enneking, Eva-Maria; Kudumala, Sirisha R; Moreno, Eliza; Stephan, Raiko; Boerner, Jana; Godenschwege, Tanja A; Pielage, Jan

    2013-01-01

    The precise control of synaptic connectivity is essential for the development and function of neuronal circuits. While there have been significant advances in our understanding how cell adhesion molecules mediate axon guidance and synapse formation, the mechanisms controlling synapse maintenance or plasticity in vivo remain largely uncharacterized. In an unbiased RNAi screen we identified the Drosophila L1-type CAM Neuroglian (Nrg) as a central coordinator of synapse growth, function, and stability. We demonstrate that the extracellular Ig-domains and the intracellular Ankyrin-interaction motif are essential for synapse development and stability. Nrg binds to Ankyrin2 in vivo and mutations reducing the binding affinities to Ankyrin2 cause an increase in Nrg mobility in motoneurons. We then demonstrate that the Nrg-Ank2 interaction controls the balance of synapse growth and stability at the neuromuscular junction. In contrast, at a central synapse, transsynaptic interactions of pre- and postsynaptic Nrg require a dynamic, temporal and spatial, regulation of the intracellular Ankyrin-binding motif to coordinate pre- and postsynaptic development. Our study at two complementary model synapses identifies the regulation of the interaction between the L1-type CAM and Ankyrin as an important novel module enabling local control of synaptic connectivity and function while maintaining general neuronal circuit architecture.

  17. Robot geometry calibration

    NASA Technical Reports Server (NTRS)

    Hayati, Samad; Tso, Kam; Roston, Gerald

    1988-01-01

    Autonomous robot task execution requires that the end effector of the robot be positioned accurately relative to a reference world-coordinate frame. The authors present a complete formulation to identify the actual robot geometric parameters. The method applies to any serial link manipulator with arbitrary order and combination of revolute and prismatic joints. A method is also presented to solve the inverse kinematic of the actual robot model which usually is not a so-called simple robot. Experimental results performed by utilizing a PUMA 560 with simple measurement hardware are presented. As a result of this calibration a precision move command is designed and integrated into a robot language, RCCL, and used in the NASA Telerobot Testbed.

  18. Stop Stalling: Mus81 Required for Efficient Replication | Center for Cancer Research

    Cancer.gov

    DNA replication is precisely controlled to ensure that daughter cells receive intact, accurate genetic information. Each segment of DNA must be copied only once, and the rate of replication coordinated genome-wide. Mild replication stress slows DNA synthesis and activates a pathway involving the Mus81 endonuclease, which generates a series of DNA breaks that are rapidly repaired, allowing the cell to avoid activating the S-phase checkpoint and its potentially damaging outcomes of apoptosis or error-prone repair. Mirit Aladjem, Ph.D., of CCR’s Developmental Therapeutics Branch, and her colleagues wondered whether Mus81 also plays a role in regulating the replication rate during growth in the absence of stress.

  19. Poisson Coordinates.

    PubMed

    Li, Xian-Ying; Hu, Shi-Min

    2013-02-01

    Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.

  20. Characteristics of the BDS Carrier Phase Multipath and Its Mitigation Methods in Relative Positioning

    PubMed Central

    Dai, Wujiao; Shi, Qiang; Cai, Changsheng

    2017-01-01

    The carrier phase multipath effect is one of the most significant error sources in the precise positioning of BeiDou Navigation Satellite System (BDS). We analyzed the characteristics of BDS multipath, and found the multipath errors of geostationary earth orbit (GEO) satellite signals are systematic, whereas those of inclined geosynchronous orbit (IGSO) or medium earth orbit (MEO) satellites are both systematic and random. The modified multipath mitigation methods, including sidereal filtering algorithm and multipath hemispherical map (MHM) model, were used to improve BDS dynamic deformation monitoring. The results indicate that the sidereal filtering methods can reduce the root mean square (RMS) of positioning errors in the east, north and vertical coordinate directions by 15%, 37%, 25% and 18%, 51%, 27% in the coordinate and observation domains, respectively. By contrast, the MHM method can reduce the RMS by 22%, 52% and 27% on average. In addition, the BDS multipath errors in static baseline solutions are a few centimeters in multipath-rich environments, which is different from that of Global Positioning System (GPS) multipath. Therefore, we add a parameter representing the GEO multipath error in observation equation to the adjustment model to improve the precision of BDS static baseline solutions. And the results show that the modified model can achieve an average precision improvement of 82%, 54% and 68% in the east, north and up coordinate directions, respectively. PMID:28387744

  1. Characteristics of the BDS Carrier Phase Multipath and Its Mitigation Methods in Relative Positioning.

    PubMed

    Dai, Wujiao; Shi, Qiang; Cai, Changsheng

    2017-04-07

    The carrier phase multipath effect is one of the most significant error sources in the precise positioning of BeiDou Navigation Satellite System (BDS). We analyzed the characteristics of BDS multipath, and found the multipath errors of geostationary earth orbit (GEO) satellite signals are systematic, whereas those of inclined geosynchronous orbit (IGSO) or medium earth orbit (MEO) satellites are both systematic and random. The modified multipath mitigation methods, including sidereal filtering algorithm and multipath hemispherical map (MHM) model, were used to improve BDS dynamic deformation monitoring. The results indicate that the sidereal filtering methods can reduce the root mean square (RMS) of positioning errors in the east, north and vertical coordinate directions by 15%, 37%, 25% and 18%, 51%, 27% in the coordinate and observation domains, respectively. By contrast, the MHM method can reduce the RMS by 22%, 52% and 27% on average. In addition, the BDS multipath errors in static baseline solutions are a few centimeters in multipath-rich environments, which is different from that of Global Positioning System (GPS) multipath. Therefore, we add a parameter representing the GEO multipath error in observation equation to the adjustment model to improve the precision of BDS static baseline solutions. And the results show that the modified model can achieve an average precision improvement of 82%, 54% and 68% in the east, north and up coordinate directions, respectively.

  2. Precision and Error of Three-dimensional Phenotypic Measures Acquired from 3dMD Photogrammetric Images

    PubMed Central

    Aldridge, Kristina; Boyadjiev, Simeon A.; Capone, George T.; DeLeon, Valerie B.; Richtsmeier, Joan T.

    2015-01-01

    The genetic basis for complex phenotypes is currently of great interest for both clinical investigators and basic scientists. In order to acquire a thorough understanding of the translation from genotype to phenotype, highly precise measures of phenotypic variation are required. New technologies, such as 3D photogrammetry are being implemented in phenotypic studies due to their ability to collect data rapidly and non-invasively. Before these systems can be broadly implemented the error associated with data collected from images acquired using these technologies must be assessed. This study investigates the precision, error, and repeatability associated with anthropometric landmark coordinate data collected from 3D digital photogrammetric images acquired with the 3dMDface System. Precision, error due to the imaging system, error due to digitization of the images, and repeatability are assessed in a sample of children and adults (N=15). Results show that data collected from images with the 3dMDface System are highly repeatable and precise. The average error associated with the placement of landmarks is sub-millimeter; both the error due to digitization and to the imaging system are very low. The few measures showing a higher degree of error include those crossing the labial fissure, which are influenced by even subtle movement of the mandible. These results suggest that 3D anthropometric data collected using the 3dMDface System are highly reliable and therefore useful for evaluation of clinical dysmorphology and surgery, analyses of genotype-phenotype correlations, and inheritance of complex phenotypes. PMID:16158436

  3. Identifying non-elliptical entity mentions in a coordinated NP with ellipses.

    PubMed

    Chae, Jeongmin; Jung, Younghee; Lee, Taemin; Jung, Soonyoung; Huh, Chan; Kim, Gilhan; Kim, Hyeoncheol; Oh, Heungbum

    2014-02-01

    Named entities in the biomedical domain are often written using a Noun Phrase (NP) along with a coordinating conjunction such as 'and' and 'or'. In addition, repeated words among named entity mentions are frequently omitted. It is often difficult to identify named entities. Although various Named Entity Recognition (NER) methods have tried to solve this problem, these methods can only deal with relatively simple elliptical patterns in coordinated NPs. We propose a new NER method for identifying non-elliptical entity mentions with simple or complex ellipses using linguistic rules and an entity mention dictionary. The GENIA and CRAFT corpora were used to evaluate the performance of the proposed system. The GENIA corpus was used to evaluate the performance of the system according to the quality of the dictionary. The GENIA corpus comprises 3434 non-elliptical entity mentions in 1585 coordinated NPs with ellipses. The system achieves 92.11% precision, 95.20% recall, and 93.63% F-score in identification of non-elliptical entity mentions in coordinated NPs. The accuracy of the system in resolving simple and complex ellipses is 94.54% and 91.95%, respectively. The CRAFT corpus was used to evaluate the performance of the system under realistic conditions. The system achieved 78.47% precision, 67.10% recall, and 72.34% F-score in coordinated NPs. The performance evaluations of the system show that it efficiently solves the problem caused by ellipses, and improves NER performance. The algorithm is implemented in PHP and the code can be downloaded from https://code.google.com/p/medtextmining/. Copyright © 2013. Published by Elsevier Inc.

  4. Construction Theory and Noise Analysis Method of Global CGCS2000 Coordinate Frame

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Wang, F.; Bai, J.; Li, Z.

    2018-04-01

    The definition, renewal and maintenance of geodetic datum has been international hot issue. In recent years, many countries have been studying and implementing modernization and renewal of local geodetic reference coordinate frame. Based on the precise result of continuous observation for recent 15 years from state CORS (continuously operating reference system) network and the mainland GNSS (Global Navigation Satellite System) network between 1999 and 2007, this paper studies the construction of mathematical model of the Global CGCS2000 frame, mainly analyzes the theory and algorithm of two-step method for Global CGCS2000 Coordinate Frame formulation. Finally, the noise characteristic of the coordinate time series are estimated quantitatively with the criterion of maximum likelihood estimation.

  5. Representations of time coordinates in FITS. Time and relative dimension in space

    NASA Astrophysics Data System (ADS)

    Rots, Arnold H.; Bunclark, Peter S.; Calabretta, Mark R.; Allen, Steven L.; Manchester, Richard N.; Thompson, William T.

    2015-02-01

    Context. In a series of three previous papers, formulation and specifics of the representation of world coordinate transformations in FITS data have been presented. This fourth paper deals with encoding time. Aims: Time on all scales and precisions known in astronomical datasets is to be described in an unambiguous, complete, and self-consistent manner. Methods: Employing the well-established World Coordinate System (WCS) framework, and maintaining compatibility with the FITS conventions that are currently in use to specify time, the standard is extended to describe rigorously the time coordinate. Results: World coordinate functions are defined for temporal axes sampled linearly and as specified by a lookup table. The resulting standard is consistent with the existing FITS WCS standards and specifies a metadata set that achieves the aims enunciated above.

  6. New approach to accuracy verification of 3D surface models: An analysis of point cloud coordinates.

    PubMed

    Lee, Wan-Sun; Park, Jong-Kyoung; Kim, Ji-Hwan; Kim, Hae-Young; Kim, Woong-Chul; Yu, Chin-Ho

    2016-04-01

    The precision of two types of surface digitization devices, i.e., a contact probe scanner and an optical scanner, and the trueness of two types of stone replicas, i.e., one without an imaging powder (SR/NP) and one with an imaging powder (SR/P), were evaluated using a computer-aided analysis. A master die was fabricated from stainless steel. Ten impressions were taken, and ten stone replicas were prepared from Type IV stone (Fujirock EP, GC, Leuven, Belgium). The precision of two types of scanners was analyzed using the root mean square (RMS), measurement error (ME), and limits of agreement (LoA) at each coordinate. The trueness of the stone replicas was evaluated using the total deviation. A Student's t-test was applied to compare the discrepancies between the CAD-reference-models of the master die (m-CRM) and point clouds for the two types of stone replicas (α=.05). The RMS values for the precision were 1.58, 1.28, and 0.98μm along the x-, y-, and z-axes in the contact probe scanner and 1.97, 1.32, and 1.33μm along the x-, y-, and z-axes in the optical scanner, respectively. A comparison with m-CRM revealed a trueness of 7.10μm for SR/NP and 8.65μm for SR/P. The precision at each coordinate (x-, y-, and z-axes) was revealed to be higher than the one assessed in the previous method (overall offset differences). A comparison between the m-CRM and 3D surface models of the stone replicas revealed a greater dimensional change in SR/P than in SR/NP. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  7. CANYVAL-X: Enabling a new class of scientific instruments

    NASA Astrophysics Data System (ADS)

    Shah, Neerav; Calhoun, Philip C.; Park, Sang-young; Keidar, Michael

    2016-05-01

    Significant new discoveries in space science can be realized by replacing the traditional large monolithic space telescopes with precision formation flying spacecraft to form a “virtual telescope.” Such virtual telescopes will revolutionize occulting imaging systems, provide images of the Sun, accretion disks, and other astronomical objects with unprecedented milli-arcsecond resolution (several orders of magnitude beyond current capability).Since the days of Apollo, NASA and other organizations have been conducting formation flying in space, but not with the precision required for virtual telescopes. These efforts have focused on rendezvous and docking (e.g., crew docking, satellite servicing, etc.) and/or ground-controlled coordinated flight (e.g., EO-1, GRAIL, MMS, etc.). While the TRL of the component level technology for formation flying is high, the capability for the system-level guidance, navigation, and control (GN&C) technology required to align a virtual telescope to an inertial astronomical target with sub-arcsecond precision is not fully developed.The CANYVAL-X (CubeSat Astronomy by NASA and Yonsei using Virtual Telescope Alignment eXperiment) mission is an engineering proof of concept featuring a pair of CubeSats flying as a tandem telescope with a goal of demonstrating the system-level GN&C needed to form a virtual telescope. NASA partnered with the George Washington University and the Yonsei University to design and develop CANYVAL-X. CANYVAL-X will demonstrate key technologies for using virtual telescopes in space, including micro-propulsion using millinewton thrusters, relative position sensing, and communications control between the two spacecraft. CANYVAL-X is scheduled to launch on a Flacon-9 in summer of 2016.

  8. Minimizing Interpolation Bias and Precision Error in In Vivo μCT-based Measurements of Bone Structure and Dynamics

    PubMed Central

    de Bakker, Chantal M. J.; Altman, Allison R.; Li, Connie; Tribble, Mary Beth; Lott, Carina; Tseng, Wei-Ju; Liu, X. Sherry

    2016-01-01

    In vivo μCT imaging allows for high-resolution, longitudinal evaluation of bone properties. Based on this technology, several recent studies have developed in vivo dynamic bone histomorphometry techniques that utilize registered μCT images to identify regions of bone formation and resorption, allowing for longitudinal assessment of bone remodeling. However, this analysis requires a direct voxel-by-voxel subtraction between image pairs, necessitating rotation of the images into the same coordinate system, which introduces interpolation errors. We developed a novel image transformation scheme, matched-angle transformation (MAT), whereby the interpolation errors are minimized by equally rotating both the follow-up and baseline images instead of the standard of rotating one image while the other remains fixed. This new method greatly reduced interpolation biases caused by the standard transformation. Additionally, our study evaluated the reproducibility and precision of bone remodeling measurements made via in vivo dynamic bone histomorphometry. Although bone remodeling measurements showed moderate baseline noise, precision was adequate to measure physiologically relevant changes in bone remodeling, and measurements had relatively good reproducibility, with intra-class correlation coefficients of 0.75-0.95. This indicates that, when used in conjunction with MAT, in vivo dynamic histomorphometry provides a reliable assessment of bone remodeling. PMID:26786342

  9. Minimizing Interpolation Bias and Precision Error in In Vivo µCT-Based Measurements of Bone Structure and Dynamics.

    PubMed

    de Bakker, Chantal M J; Altman, Allison R; Li, Connie; Tribble, Mary Beth; Lott, Carina; Tseng, Wei-Ju; Liu, X Sherry

    2016-08-01

    In vivo µCT imaging allows for high-resolution, longitudinal evaluation of bone properties. Based on this technology, several recent studies have developed in vivo dynamic bone histomorphometry techniques that utilize registered µCT images to identify regions of bone formation and resorption, allowing for longitudinal assessment of bone remodeling. However, this analysis requires a direct voxel-by-voxel subtraction between image pairs, necessitating rotation of the images into the same coordinate system, which introduces interpolation errors. We developed a novel image transformation scheme, matched-angle transformation (MAT), whereby the interpolation errors are minimized by equally rotating both the follow-up and baseline images instead of the standard of rotating one image while the other remains fixed. This new method greatly reduced interpolation biases caused by the standard transformation. Additionally, our study evaluated the reproducibility and precision of bone remodeling measurements made via in vivo dynamic bone histomorphometry. Although bone remodeling measurements showed moderate baseline noise, precision was adequate to measure physiologically relevant changes in bone remodeling, and measurements had relatively good reproducibility, with intra-class correlation coefficients of 0.75-0.95. This indicates that, when used in conjunction with MAT, in vivo dynamic histomorphometry provides a reliable assessment of bone remodeling.

  10. Ultra-precision turning of complex spiral optical delay line

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Li, Po; Fang, Fengzhou; Wang, Qichang

    2011-11-01

    Optical delay line (ODL) implements the vertical or depth scanning of optical coherence tomography, which is the most important factor affecting the scanning resolution and speed. The spinning spiral mirror is found as an excellent optical delay device because of the high-speed and high-repetition-rate. However, it is one difficult task to machine the mirror due to the special shape and precision requirement. In this paper, the spiral mirror with titled parabolic generatrix is proposed, and the ultra-precision turning method is studied for its machining using the spiral mathematic model. Another type of ODL with the segmental shape is also introduced and machined to make rotation balance for the mass equalization when scanning. The efficiency improvement is considered in details, including the rough cutting with the 5- axis milling machine, the machining coordinates unification, and the selection of layer direction in turning. The onmachine measuring method based on stylus gauge is designed to analyze the shape deviation. The air bearing is used as the measuring staff and the laser interferometer sensor as the position sensor, whose repeatability accuracy is proved up to 10nm and the stable feature keeps well. With this method developed, the complex mirror with nanometric finish of 10.7nm in Ra and the form error within 1um are achieved.

  11. GPCR-mediated PLCβγ/PKCβ/PKD signaling pathway regulates the cofilin phosphatase slingshot 2 in neutrophil chemotaxis

    PubMed Central

    Xu, Xuehua; Gera, Nidhi; Li, Hongyan; Yun, Michelle; Zhang, Liyong; Wang, Youhong; Wang, Q. Jane; Jin, Tian

    2015-01-01

    Chemotaxis requires precisely coordinated polymerization and depolymerization of the actin cytoskeleton at leading fronts of migrating cells. However, GPCR activation-controlled F-actin depolymerization remains largely elusive. Here, we reveal a novel signaling pathway, including Gαi, PLC, PKCβ, protein kinase D (PKD), and SSH2, in control of cofilin phosphorylation and actin cytoskeletal reorganization, which is essential for neutrophil chemotaxis. We show that PKD is essential for neutrophil chemotaxis and that GPCR-mediated PKD activation depends on PLC/PKC signaling. More importantly, we discover that GPCR activation recruits/activates PLCγ2 in a PI3K-dependent manner. We further verify that PKCβ specifically interacts with PKD1 and is required for chemotaxis. Finally, we identify slingshot 2 (SSH2), a phosphatase of cofilin (actin depolymerization factor), as a target of PKD1 that regulates cofilin phosphorylation and remodeling of the actin cytoskeleton during neutrophil chemotaxis. PMID:25568344

  12. Research and application of online measurement system of tire tread profile in automobile tire production

    NASA Astrophysics Data System (ADS)

    Wang, Pengyao; Chen, Xiangguang; Yang, Kai; Liu, Xuejiao

    2017-01-01

    To improve the measuring efficiency of width and thickness of tire tread in the process of automobile tire production, the actual condition for the tire production process is analyzed, and a fast online measurement system based on moving tire tread of tire specifications is established in this paper. The coordinate data of tire tread profile is acquired by 3D laser sensor, and we use C# language for programming which is an object-oriented programming language to complete the development of client program. The system with laser sensor can provide real-time display of tire tread profile and the data to require in the process of tire production. Experimental results demonstrate that the measuring precision of the system is <= 1mm, it can meet the measurement requirements of the production process, and the system has the characteristics of convenient installation and testing, system stable operation.

  13. Providing critical care during a disaster: the interface between disaster response agencies and hospitals.

    PubMed

    Farmer, J Christopher; Carlton, Paul K

    2006-03-01

    Recent natural disasters have highlighted shortfall areas in current hospital disaster preparedness. These include the following: 1) insufficient coordination between hospitals and civil/governmental response agencies; 2) insufficient on-site critical care capability; 3) a lack of "portability" of acute care processes (i.e., patient transport and/or bringing care to the patient); 4) education shortfalls; and 5) the inability of hospitals to align disaster medical requirements with other competing priorities. Definition of the roles and responsibilities of a hospital during a disaster requires additional planning precision beyond the prehospital response phase. Planners must also better define plans for circumstances when or if a hospital is rendered unusable. Disaster medical training of hospital personnel has been inadequate. This article details the specifics of these issues and outlines various potential approaches to begin addressing and formulating remedies to these shortfalls.

  14. Design and Implementation of High Precision Temperature Measurement Unit

    NASA Astrophysics Data System (ADS)

    Zeng, Xianzhen; Yu, Weiyu; Zhang, Zhijian; Liu, Hancheng

    2018-03-01

    Large-scale neutrino detector requires calibration of photomultiplier tubes (PMT) and electronic system in the detector, performed by plotting the calibration source with a group of designated coordinates in the acrylic sphere. Where the calibration source positioning is based on the principle of ultrasonic ranging, the transmission speed of ultrasonic in liquid scintillator of acrylic sphere is related to temperature. This paper presents a temperature measurement unit based on STM32L031 and single-line bus digital temperature sensor TSic506. The measurement data of the temperature measurement unit can help the ultrasonic ranging to be more accurate. The test results show that the temperature measurement error is within ±0.1°C, which satisfies the requirement of calibration source positioning. Take energy-saving measures, with 3.7V/50mAH lithium battery-powered, the temperature measurement unit can work continuously more than 24 hours.

  15. MO-FG-CAMPUS-JeP3-01: A Statistical Model for Analyzing the Rotational Error of Single Iso-Center Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, J; Dept of Radiation Oncology, New York Weill Cornell Medical Ctr, New York, NY

    Purpose: To develop a generalized statistical model that incorporates the treatment uncertainty from the rotational error of single iso-center technique, and calculate the additional PTV (planning target volume) margin required to compensate for this error. Methods: The random vectors for setup and additional rotation errors in the three-dimensional (3D) patient coordinate system were assumed to follow the 3D independent normal distribution with zero mean, and standard deviations σx, σy, σz, for setup error and a uniform σR for rotational error. Both random vectors were summed, normalized and transformed to the spherical coordinates to derive the chi distribution with 3 degreesmore » of freedom for the radical distance ρ. PTV margin was determined using the critical value of this distribution for 0.05 significant level so that 95% of the time the treatment target would be covered by ρ. The additional PTV margin required to compensate for the rotational error was calculated as a function of σx, σy, σz and σR. Results: The effect of the rotational error is more pronounced for treatments that requires high accuracy/precision like stereotactic radiosurgery (SRS) or stereotactic body radiotherapy (SBRT). With a uniform 2mm PTV margin (or σx =σy=σz=0.7mm), a σR=0.32mm will decrease the PTV coverage from 95% to 90% of the time, or an additional 0.2mm PTV margin is needed to prevent this loss of coverage. If we choose 0.2 mm as the threshold, any σR>0.3mm will lead to an additional PTV margin that cannot be ignored, and the maximal σR that can be ignored is 0.0064 rad (or 0.37°) for iso-to-target distance=5cm, or 0.0032 rad (or 0.18°) for iso-to-target distance=10cm. Conclusions: The rotational error cannot be ignored for high-accuracy/-precision treatments like SRS/SBRT, particularly when the distance between the iso-center and target is large.« less

  16. Kinematics and eye-head coordination of gaze shifts evoked from different sites in the superior colliculus of the cat.

    PubMed

    Guillaume, Alain; Pélisson, Denis

    2006-12-15

    Shifting gaze requires precise coordination of eye and head movements. It is clear that the superior colliculus (SC) is involved with saccadic gaze shifts. Here we investigate its role in controlling both eye and head movements during gaze shifts. Gaze shifts of the same amplitude can be evoked from different SC sites by controlled electrical microstimulation. To describe how the SC coordinates the eye and the head, we compare the characteristics of these amplitude-matched gaze shifts evoked from different SC sites. We show that matched amplitude gaze shifts elicited from progressively more caudal sites are progressively slower and associated with a greater head contribution. Stimulation at more caudal SC sites decreased the peak velocity of the eye but not of the head, suggesting that the lower peak gaze velocity for the caudal sites is due to the increased contribution of the slower-moving head. Eye-head coordination across the SC motor map is also indicated by the relative latencies of the eye and head movements. For some amplitudes of gaze shift, rostral stimulation evoked eye movement before head movement, whereas this reversed with caudal stimulation, which caused the head to move before the eyes. These results show that gaze shifts of similar amplitude evoked from different SC sites are produced with different kinematics and coordination of eye and head movements. In other words, gaze shifts evoked from different SC sites follow different amplitude-velocity curves, with different eye-head contributions. These findings shed light on mechanisms used by the central nervous system to translate a high-level motor representation (a desired gaze displacement on the SC map) into motor commands appropriate for the involved body segments (the eye and the head).

  17. A design of optical measurement laboratory for space-based illumination condition emulation

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Zhao, Fei; Yang, Xin

    2015-10-01

    Space Objects Identification(SOI) and related technology have aroused wide attention from spacefaring nations due to the increasingly severe space environment. Multiple ground-based assets have been employed to acquire statistical survey data, detect faint debris, acquire photometric and spectroscopic data. Great efforts have been made to characterize different space objects using the statistical data acquired by telescopes. Furthermore, detailed laboratory data are needed to optimize the characterization of orbital debris and satellites via material composition and potential rotation axes, which calls for a high-precision and flexible optical measurement system. A typical method of taking optical measurements of a space object(or model) is to move light source and sensors through every possible orientation around it and keep the target still. However, moving equipments to accurate orientations in the air is difficult, especially for those large precise instruments sensitive to vibrations. Here, a rotation structure of "3+1" axes, with a three-axis turntable manipulating attitudes of the target and the sensor revolving around a single axis, is utilized to emulate every possible illumination condition in space, which can also avoid the inconvenience of moving large aparatus. Firstly, the source-target-sensor orientation of a real satellite was analyzed with vectors and coordinate systems built to illustrate their spatial relationship. By bending the Reference Coordinate Frame to the Phase Angle plane, the sensor only need to revolve around a single axis while the other three degrees of freedom(DOF) are associated with the Euler's angles of the satellite. Then according to practical engineering requirements, an integrated rotation system of four-axis structure is brought forward. Schemetic diagrams of the three-axis turntable and other equipments show an overview of the future laboratory layout. Finally, proposals on evironment arrangements, light source precautions and sensor selections are provided. Comparing to current methods, this design shows better effects on device simplication, automatic control and high-precision measurement.

  18. The reorientation of cell nucleus promotes the establishment of front-rear polarity in migrating fibroblasts.

    PubMed

    Maninová, Miloslava; Klímová, Zuzana; Parsons, J Thomas; Weber, Michael J; Iwanicki, Marcin P; Vomastek, Tomáš

    2013-06-12

    The establishment of cell polarity is an essential step in the process of cell migration. This process requires precise spatiotemporal coordination of signaling pathways that in most cells create the typical asymmetrical profile of a polarized cell with nucleus located at the cell rear and the microtubule organizing center (MTOC) positioned between the nucleus and the leading edge. During cell polarization, nucleus rearward positioning promotes correct microtubule organizing center localization and thus the establishment of front-rear polarity and directional migration. We found that cell polarization and directional migration require also the reorientation of the nucleus. Nuclear reorientation is manifested as temporally restricted nuclear rotation that aligns the nuclear axis with the axis of cell migration. We also found that nuclear reorientation requires physical connection between the nucleus and cytoskeleton mediated by the LINC (linker of nucleoskeleton and cytoskeleton) complex. Nuclear reorientation is controlled by coordinated activity of lysophosphatidic acid (LPA)-mediated activation of GTPase Rho and the activation of integrin, FAK (focal adhesion kinase), Src, and p190RhoGAP signaling pathway. Integrin signaling is spatially induced at the leading edge as FAK and p190RhoGAP are predominantly activated or localized at this location. We suggest that integrin activation within lamellipodia defines cell front, and subsequent FAK, Src, and p190RhoGAP signaling represents the polarity signal that induces reorientation of the nucleus and thus promotes the establishment of front-rear polarity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Alignment of the writing beam with the diffractive structure rotation axis in synthesis of diffractive optical elements in a polar coordinate system

    NASA Astrophysics Data System (ADS)

    Shimanskii, R. V.; Poleshchuk, A. G.; Korolkov, V. P.; Cherkashin, V. V.

    2017-03-01

    A method is developed to ensure precise alignment of the origin of a polar coordinate system in which the laser beam position is defined in writing diffractive optical elements with the optical workpiece rotation axis. This method is used to improve the accuracy of a circular laser writing system in writing large-scale diffractive optical elements in a polar coordinate system. Results of studying new algorithms of detection and correction of positioning errors of the circular laser writing system in the course of writing are reported.

  20. 45 CFR 162.1801 - Coordination of benefits transaction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Coordination of benefits transaction. 162.1801... RELATED REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Coordination of Benefits § 162.1801 Coordination of benefits transaction. The coordination of benefits transaction is the transmission from any entity to a...

  1. Motor Learning as Young Gymnast's Talent Indicator.

    PubMed

    di Cagno, Alessandra; Battaglia, Claudia; Fiorilli, Giovanni; Piazza, Marina; Giombini, Arrigo; Fagnani, Federica; Borrione, Paolo; Calcagno, Giuseppe; Pigozzi, Fabio

    2014-12-01

    Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr.) and juniors (aged 13.3 ± 0.5 years), competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz's battery (1985), and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p < 0.01) and ranking (p < 0.05) of elite cadet athletes. Precision, in skill acquisition test results, was positively and significantly associated with scores in 2013 (adj. R(2) = 0.26, p < 0.01). Gymnasts with the best results in coordination and motor learning tests went on to achieve better competition results in three- year time. Key pointsIn talent identification and selection procedures it is better to include the evaluation of coordination and motor learning ability.Motor learning assessment concerns performance improvement and the ability to develop it, rather than evaluating the athlete's current performance.In this manner talent identification processes should be focused on the future performance capabilities of athletes.

  2. Motor Learning as Young Gymnast’s Talent Indicator

    PubMed Central

    di Cagno, Alessandra; Battaglia, Claudia; Fiorilli, Giovanni; Piazza, Marina; Giombini, Arrigo; Fagnani, Federica; Borrione, Paolo; Calcagno, Giuseppe; Pigozzi, Fabio

    2014-01-01

    Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr.) and juniors (aged 13.3 ± 0.5 years), competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz’s battery (1985), and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p < 0.01) and ranking (p < 0.05) of elite cadet athletes. Precision, in skill acquisition test results, was positively and significantly associated with scores in 2013 (adj. R2 = 0.26, p < 0.01). Gymnasts with the best results in coordination and motor learning tests went on to achieve better competition results in three- year time. Key points In talent identification and selection procedures it is better to include the evaluation of coordination and motor learning ability. Motor learning assessment concerns performance improvement and the ability to develop it, rather than evaluating the athlete’s current performance. In this manner talent identification processes should be focused on the future performance capabilities of athletes. PMID:25435768

  3. Bonneville, Power Administration Timing System

    NASA Technical Reports Server (NTRS)

    Martin, Kenneth E.

    1996-01-01

    Time is an integral part of the Bonneville Power Administration's (BPA) operational systems. Generation and power transfers are planned in advance. Utilities coordinate with each other by making these adjustments on a timed schedule. Price varies with demand, so billing is based on time. Outages for maintenance are scheduled to assure they do not interrupt reliable power delivery. Disturbance records are aligned with recorded timetags for analysis and comparison with related information. Advanced applications like traveling wave fault location and real-time phase measurement require continuous timing with high precision. Most of BPA is served by a Central Time System (CTS) at the Dittmer Control Center near Portland, OR. This system keeps time locally and supplies time to both the control center systems and field locations via a microwave signal. It is kept synchronized to national standard time and coordinated with interconnected utilities. It is the official BPA time. Powwer system control and operation is described, followed by a description of BPA timing systems including CTS, the Fault Location Acquisition Reporter, time dissemination, and phasor measurements. References are provided for further reading.

  4. Situational influences on rhythmicity in speech, music, and their interaction

    PubMed Central

    Hawkins, Sarah

    2014-01-01

    Brain processes underlying the production and perception of rhythm indicate considerable flexibility in how physical signals are interpreted. This paper explores how that flexibility might play out in rhythmicity in speech and music. There is much in common across the two domains, but there are also significant differences. Interpretations are explored that reconcile some of the differences, particularly with respect to how functional properties modify the rhythmicity of speech, within limits imposed by its structural constraints. Functional and structural differences mean that music is typically more rhythmic than speech, and that speech will be more rhythmic when the emotions are more strongly engaged, or intended to be engaged. The influence of rhythmicity on attention is acknowledged, and it is suggested that local increases in rhythmicity occur at times when attention is required to coordinate joint action, whether in talking or music-making. Evidence is presented which suggests that while these short phases of heightened rhythmical behaviour are crucial to the success of transitions in communicative interaction, their modality is immaterial: they all function to enhance precise temporal prediction and hence tightly coordinated joint action. PMID:25385776

  5. X-ray emission spectroscopy of biomimetic Mn coordination complexes

    DOE PAGES

    Jensen, Scott C.; Davis, Katherine M.; Sullivan,

    2017-05-19

    Understanding the function of Mn ions in biological and chemical redox catalysis requires precise knowledge of their electronic structure. X-ray emission spectroscopy (XES) is an emerging technique with a growing application to biological and biomimetic systems. Here, we report an improved, cost-effective spectrometer used to analyze two biomimetic coordination compounds, [Mn IV(OH) 2(Me 2EBC)] 2+ and [Mn IV(O)(OH)(Me 2EBC)] +, the second of which contains a key Mn IV=O structural fragment. Despite having the same formal oxidation state (Mn IV) and tetradentate ligands, XES spectra from these two compounds demonstrate different electronic structures. Experimental measurements and DFT calculations yield differentmore » localized spin densities for the two complexes resulting from Mn IV–OH conversion to Mn IV=O. The relevance of the observed spectroscopic changes is discussed for applications in analyzing complex biological systems such as photosystem II. In conclusion, a model of the S 3 intermediate state of photosystem II containing a Mn IV=O fragment is compared to recent time-resolved X-ray diffraction data of the same state.« less

  6. X-ray Emission Spectroscopy of Biomimetic Mn Coordination Complexes.

    PubMed

    Jensen, Scott C; Davis, Katherine M; Sullivan, Brendan; Hartzler, Daniel A; Seidler, Gerald T; Casa, Diego M; Kasman, Elina; Colmer, Hannah E; Massie, Allyssa A; Jackson, Timothy A; Pushkar, Yulia

    2017-06-15

    Understanding the function of Mn ions in biological and chemical redox catalysis requires precise knowledge of their electronic structure. X-ray emission spectroscopy (XES) is an emerging technique with a growing application to biological and biomimetic systems. Here, we report an improved, cost-effective spectrometer used to analyze two biomimetic coordination compounds, [Mn IV (OH) 2 (Me 2 EBC)] 2+ and [Mn IV (O)(OH)(Me 2 EBC)] + , the second of which contains a key Mn IV ═O structural fragment. Despite having the same formal oxidation state (Mn IV ) and tetradentate ligands, XES spectra from these two compounds demonstrate different electronic structures. Experimental measurements and DFT calculations yield different localized spin densities for the two complexes resulting from Mn IV -OH conversion to Mn IV ═O. The relevance of the observed spectroscopic changes is discussed for applications in analyzing complex biological systems such as photosystem II. A model of the S 3 intermediate state of photosystem II containing a Mn IV ═O fragment is compared to recent time-resolved X-ray diffraction data of the same state.

  7. Architectures for intelligent machines

    NASA Technical Reports Server (NTRS)

    Saridis, George N.

    1991-01-01

    The theory of intelligent machines has been recently reformulated to incorporate new architectures that are using neural and Petri nets. The analytic functions of an intelligent machine are implemented by intelligent controls, using entropy as a measure. The resulting hierarchical control structure is based on the principle of increasing precision with decreasing intelligence. Each of the three levels of the intelligent control is using different architectures, in order to satisfy the requirements of the principle: the organization level is moduled after a Boltzmann machine for abstract reasoning, task planning and decision making; the coordination level is composed of a number of Petri net transducers supervised, for command exchange, by a dispatcher, which also serves as an interface to the organization level; the execution level, include the sensory, planning for navigation and control hardware which interacts one-to-one with the appropriate coordinators, while a VME bus provides a channel for database exchange among the several devices. This system is currently implemented on a robotic transporter, designed for space construction at the CIRSSE laboratories at the Rensselaer Polytechnic Institute. The progress of its development is reported.

  8. Enhancer and Transcription Factor Dynamics during Myeloid Differentiation Reveal an Early Differentiation Block in Cebpa null Progenitors.

    PubMed

    Pundhir, Sachin; Bratt Lauridsen, Felicia Kathrine; Schuster, Mikkel Bruhn; Jakobsen, Janus Schou; Ge, Ying; Schoof, Erwin Marten; Rapin, Nicolas; Waage, Johannes; Hasemann, Marie Sigurd; Porse, Bo Torben

    2018-05-29

    Transcription factors PU.1 and CEBPA are required for the proper coordination of enhancer activity during granulocytic-monocytic (GM) lineage differentiation to form myeloid cells. However, precisely how these factors control the chronology of enhancer establishment during differentiation is not known. Through integrated analyses of enhancer dynamics, transcription factor binding, and proximal gene expression during successive stages of murine GM-lineage differentiation, we unravel the distinct kinetics by which PU.1 and CEBPA coordinate GM enhancer activity. We find no evidence of a pioneering function of PU.1 during late GM-lineage differentiation. Instead, we delineate a set of enhancers that gain accessibility in a CEBPA-dependent manner, suggesting a pioneering function of CEBPA. Analyses of Cebpa null bone marrow demonstrate that CEBPA controls PU.1 levels and, unexpectedly, that the loss of CEBPA results in an early differentiation block. Taken together, our data provide insights into how PU.1 and CEBPA functionally interact to drive GM-lineage differentiation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Accuracy of GPS time transfer verified by closure around the world

    NASA Technical Reports Server (NTRS)

    Lewandowski, Wlodimierz W.; Petit, Gerard; Thomas, Claudine

    1992-01-01

    The precision of time transfer over intercontinental distances by the Global Positioning System common-view method, using measurements of ionospheric delays, precise ephemerides provided by the Defense Mapping Agency (DMA) and a consistent set of antenna coordinates, reaches 3 to 4 ns for a single 13-minute measurement, and decreases to 2 ns when averaging several measurements over the period of one day. It is thought that even this level of precision can be bettered by improving the ionospheric measurements, the ephemerides of satellites, and the antenna coordinates. In the same conditions, an estimation of the accuracy is attained by using three intercontinental links encircling the Earth to establish a closure condition; the three independent links should add to zero. We have computed such a closure condition over a period of 13 months using data recorded at the Paris Observatory, at the Communications Research Laboratory in Tokyo, and at the National Institute for Standards and Technology in Boulder, Colorado. The closure condition is verified to within a few nanoseconds, but a bias, varying with time, can be detected.

  10. Cerebellum - function (image)

    MedlinePlus

    The cerebellum processes input from other areas of the brain, spinal cord and sensory receptors to provide precise timing ... the skeletal muscular system. A stroke affecting the cerebellum may cause dizziness, nausea, balance and coordination problems.

  11. New characterization techniques for LSST sensors

    DOE PAGES

    Nomerotski, A.

    2015-06-18

    Fully depleted, thick CCDs with extended infra-red response have become the sensor of choice for modern sky surveys. The charge transport effects in the silicon and associated astrometric distortions could make mapping between the sky coordinates and sensor coordinates non-trivial, and limit the ultimate precision achievable with these sensors. Two new characterization techniques for the CCDs, which both could probe these issues, are discussed: x-ray flat fielding and imaging of pinhole arrays.

  12. Biomechanical basis of wing and haltere coordination in flies

    PubMed Central

    Deora, Tanvi; Singh, Amit Kumar; Sane, Sanjay P.

    2015-01-01

    The spectacular success and diversification of insects rests critically on two major evolutionary adaptations. First, the evolution of flight, which enhanced the ability of insects to colonize novel ecological habitats, evade predators, or hunt prey; and second, the miniaturization of their body size, which profoundly influenced all aspects of their biology from development to behavior. However, miniaturization imposes steep demands on the flight system because smaller insects must flap their wings at higher frequencies to generate sufficient aerodynamic forces to stay aloft; it also poses challenges to the sensorimotor system because precise control of wing kinematics and body trajectories requires fast sensory feedback. These tradeoffs are best studied in Dipteran flies in which rapid mechanosensory feedback to wing motor system is provided by halteres, reduced hind wings that evolved into gyroscopic sensors. Halteres oscillate at the same frequency as and precisely antiphase to the wings; they detect body rotations during flight, thus providing feedback that is essential for controlling wing motion during aerial maneuvers. Although tight phase synchrony between halteres and wings is essential for providing proper timing cues, the mechanisms underlying this coordination are not well understood. Here, we identify specific mechanical linkages within the thorax that passively mediate both wing–wing and wing–haltere phase synchronization. We demonstrate that the wing hinge must possess a clutch system that enables flies to independently engage or disengage each wing from the mechanically linked thorax. In concert with a previously described gearbox located within the wing hinge, the clutch system enables independent control of each wing. These biomechanical features are essential for flight control in flies. PMID:25605915

  13. Kinematics of pointing movements made in a virtual versus a physical 3-dimensional environment in healthy and stroke subjects.

    PubMed

    Knaut, Luiz A; Subramanian, Sandeep K; McFadyen, Bradford J; Bourbonnais, Daniel; Levin, Mindy F

    2009-05-01

    To compare kinematics of 3-dimensional pointing movements performed in a virtual environment (VE) displayed through a head-mounted display with those made in a physical environment. Observational study of movement in poststroke and healthy subjects. Motion analysis laboratory. Adults (n=15; 4 women; 59+/-15.4y) with chronic poststroke hemiparesis were recruited. Participants had moderate upper-limb impairment with Chedoke-McMaster Arm Scores ranging from 3 to 6 out of 7. Twelve healthy subjects (6 women; 53.3+/-17.1y) were recruited from the community. Not applicable. Arm and trunk kinematics were recorded in similar virtual and physical environments with an Optotrak System (6 markers; 100Hz; 5s). Subjects pointed as quickly and as accurately as possible to 6 targets (12 trials/target in a randomized sequence) placed in arm workspace areas requiring different arm movement patterns and levels of difficulty. Movements were analyzed in terms of performance outcome measures (endpoint precision, trajectory, peak velocity) and arm and trunk movement patterns (elbow and shoulder ranges of motion, elbow/shoulder coordination, trunk displacement, rotation). For healthy subjects, precision and trajectory straightness were higher in VE when pointing to contralateral targets, and movements were slower for all targets in VE. Stroke participants made less accurate and more curved movements in VE and used less trunk displacement. Elbow/shoulder coordination differed when pointing to the lower ipsilateral target. There were no group-by-environment interactions. Movements in both environments were sufficiently similar to consider VE a valid environment for clinical interventions and motor control studies.

  14. Neural network approach to time-dependent dividing surfaces in classical reaction dynamics.

    PubMed

    Schraft, Philippe; Junginger, Andrej; Feldmaier, Matthias; Bardakcioglu, Robin; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto

    2018-04-01

    In a dynamical system, the transition between reactants and products is typically mediated by an energy barrier whose properties determine the corresponding pathways and rates. The latter is the flux through a dividing surface (DS) between the two corresponding regions, and it is exact only if it is free of recrossings. For time-independent barriers, the DS can be attached to the top of the corresponding saddle point of the potential energy surface, and in time-dependent systems, the DS is a moving object. The precise determination of these direct reaction rates, e.g., using transition state theory, requires the actual construction of a DS for a given saddle geometry, which is in general a demanding methodical and computational task, especially in high-dimensional systems. In this paper, we demonstrate how such time-dependent, global, and recrossing-free DSs can be constructed using neural networks. In our approach, the neural network uses the bath coordinates and time as input, and it is trained in a way that its output provides the position of the DS along the reaction coordinate. An advantage of this procedure is that, once the neural network is trained, the complete information about the dynamical phase space separation is stored in the network's parameters, and a precise distinction between reactants and products can be made for all possible system configurations, all times, and with little computational effort. We demonstrate this general method for two- and three-dimensional systems and explain its straightforward extension to even more degrees of freedom.

  15. Neural network approach to time-dependent dividing surfaces in classical reaction dynamics

    NASA Astrophysics Data System (ADS)

    Schraft, Philippe; Junginger, Andrej; Feldmaier, Matthias; Bardakcioglu, Robin; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto

    2018-04-01

    In a dynamical system, the transition between reactants and products is typically mediated by an energy barrier whose properties determine the corresponding pathways and rates. The latter is the flux through a dividing surface (DS) between the two corresponding regions, and it is exact only if it is free of recrossings. For time-independent barriers, the DS can be attached to the top of the corresponding saddle point of the potential energy surface, and in time-dependent systems, the DS is a moving object. The precise determination of these direct reaction rates, e.g., using transition state theory, requires the actual construction of a DS for a given saddle geometry, which is in general a demanding methodical and computational task, especially in high-dimensional systems. In this paper, we demonstrate how such time-dependent, global, and recrossing-free DSs can be constructed using neural networks. In our approach, the neural network uses the bath coordinates and time as input, and it is trained in a way that its output provides the position of the DS along the reaction coordinate. An advantage of this procedure is that, once the neural network is trained, the complete information about the dynamical phase space separation is stored in the network's parameters, and a precise distinction between reactants and products can be made for all possible system configurations, all times, and with little computational effort. We demonstrate this general method for two- and three-dimensional systems and explain its straightforward extension to even more degrees of freedom.

  16. Method of orthogonally splitting imaging pose measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  17. Combined fabrication technique for high-precision aspheric optical windows

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Song, Ci; Xie, Xuhui

    2016-07-01

    Specifications made on optical components are becoming more and more stringent with the performance improvement of modern optical systems. These strict requirements not only involve low spatial frequency surface accuracy, mid-and-high spatial frequency surface errors, but also surface smoothness and so on. This presentation mainly focuses on the fabrication process for square aspheric window which combines accurate grinding, magnetorheological finishing (MRF) and smoothing polishing (SP). In order to remove the low spatial frequency surface errors and subsurface defects after accurate grinding, the deterministic polishing method MRF with high convergence and stable material removal rate is applied. Then the SP technology with pseudo-random path is adopted to eliminate the mid-and-high spatial frequency surface ripples and high slope errors which is the defect for MRF. Additionally, the coordinate measurement method and interferometry are combined in different phase. Acid-etched method and ion beam figuring (IBF) are also investigated on observing and reducing the subsurface defects. Actual fabrication result indicates that the combined fabrication technique can lead to high machining efficiency on manufaturing the high-precision and high-quality optical aspheric windows.

  18. Fast and precise large area metrology of micropattern detectors using laser distance sensors

    NASA Astrophysics Data System (ADS)

    Müller, R.; Biebel, O.; Hertenberger, R.; Lösel, P.; Schaile, O.

    2016-07-01

    Novel developments in micropattern detector technology require fast and precise methods to measure large area topologies in the order of a few square meters. Standard tactile coordinate measurement systems have resolutions better 10 μm, but suffer from relatively long measuring time of several hours for one cycle. Sensitive structures may be damaged when touched by the tactile sensor. We present a method using laser distance sensors. Such a device is able to scan surfaces fast without touching them. The presented device has the capability to measure semitransparent surfaces. The vertical translator to mount the sensor is able to move in sub-mm steps. Using this we are able to measure the position and height of copper on FR4 with an accuracy better than 10 μm. We report on the performance of the sensor scanning non-transparent as well as semi-transparent surfaces. This includes studies to minimize the measurement time without a loss in resolution. Our method to calibrate the measurement system will also be shown. This calibration is needed to reach a resolution better than 10 μm.

  19. Temporal processing dysfunction in schizophrenia.

    PubMed

    Carroll, Christine A; Boggs, Jennifer; O'Donnell, Brian F; Shekhar, Anantha; Hetrick, William P

    2008-07-01

    Schizophrenia may be associated with a fundamental disturbance in the temporal coordination of information processing in the brain, leading to classic symptoms of schizophrenia such as thought disorder and disorganized and contextually inappropriate behavior. Despite the growing interest and centrality of time-dependent conceptualizations of the pathophysiology of schizophrenia, there remains a paucity of research directly examining overt timing performance in the disorder. Accordingly, the present study investigated timing in schizophrenia using a well-established task of time perception. Twenty-three individuals with schizophrenia and 22 non-psychiatric control participants completed a temporal bisection task, which required participants to make temporal judgments about auditory and visually presented durations ranging from 300 to 600 ms. Both schizophrenia and control groups displayed greater visual compared to auditory timing variability, with no difference between groups in the visual modality. However, individuals with schizophrenia exhibited less temporal precision than controls in the perception of auditory durations. These findings correlated with parameter estimates obtained from a quantitative model of time estimation, and provide evidence of a fundamental deficit in temporal auditory precision in schizophrenia.

  20. Coordination of Actin- and Microtubule-Based Cytoskeletons Supports Transport of Spermatids and Residual Bodies/Phagosomes During Spermatogenesis in the Rat Testis

    PubMed Central

    Tang, Elizabeth I.; Lee, Will M.

    2016-01-01

    Germ cell transport across the seminiferous epithelium during spermatogenesis requires the intricate coordination of cell junctions, signaling proteins, and both actin- and microtubule (MT)-based cytoskeletons. Although the involvement of cytoskeletons in germ cell transport has been suggested, the precise mechanism(s) remains elusive. Based on growing evidence that actin and MT interactions underlie fundamental cellular processes, such as cell motility, it is unlikely that actin- and MT-based cytoskeletons work independently to regulate germ cell transport in the testis. Using rats treated with adjudin, a potential male contraceptive that disrupts spermatid adhesion and transport in the testis, as a study model, we show herein that actin- and MT-based cytoskeletons are both necessary for transport of spermatids and residual bodies/phagosomes across the seminiferous epithelium in adult rat testes. Analysis of intratubular expression of F-actin and tubulin revealed disruption of both actin and MT networks, concomitant with misdirected spermatids and phagosomes in rats treated with adjudin. Actin regulatory proteins, epidermal growth factor receptor pathway substrate 8 and actin-related protein 3, were mislocalized and down-regulated at the actin-rich anchoring junction between germ and Sertoli cells (apical ectoplasmic specialization) after adjudin treatment. Nonreceptor tyrosine kinase p-FAK-Tyr407, known to regulate F-actin nucleation via actin-related protein 3, was also mislocalized and down-regulated at the apical ectoplasmic specialization, corroborating the observation of actin cytoskeleton disruption. Additionally, spatiotemporal expression of MT regulatory protein end-binding protein 1, shown to be involved in MT-actin cross talk herein, was also disrupted after adjudin treatment. In summary, spermatid/phagosome transport across the epithelium during spermatogenesis requires the coordination between actin- and MT-based cytoskeletons. PMID:26894662

  1. 47 CFR 27.903 - Coordination requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Coordination requirements. 27.903 Section 27.903 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1670-1675 MHz Band § 27.903 Coordination requirements. (a) The...

  2. 47 CFR 27.903 - Coordination requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Coordination requirements. 27.903 Section 27.903 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1670-1675 MHz Band § 27.903 Coordination requirements. (a) The...

  3. The coordination dynamics of social neuromarkers.

    PubMed

    Tognoli, Emmanuelle; Kelso, J A Scott

    2015-01-01

    Social behavior is a complex integrative function that entails many aspects of the brain's sensory, cognitive, emotional and movement capacities. Its neural processes are seldom simultaneous but occur according to precise spatiotemporal choreographies, manifested by the coordination of their oscillations within and between brains. Methods with good temporal resolution can help to identify so-called "neuromarkers" of social function and aid in disentangling the dynamical architecture of social brains. In our ongoing research, we have used dual-electroencephalography (EEG) to study neuromarker dynamics during synchronic interactions in which pairs of subjects coordinate behavior spontaneously and intentionally (social coordination) and during diachronic transactions that require subjects to perceive or behave in turn (action observation, delayed imitation). In this paper, after outlining our dynamical approach to the neurophysiological basis of social behavior, we examine commonalities and differences in the neuromarkers that are recruited for both kinds of tasks. We find the neuromarker landscape to be task-specific: synchronic paradigms of social coordination reveal medial mu, alpha and the phi complex as contributing neuromarkers. Diachronic tasks recruit alpha as well, in addition to lateral mu rhythms and the newly discovered nu and kappa rhythms whose functional significance is still unclear. Social coordination, observation, and delayed imitation share commonality of context: in each of our experiments, subjects exchanged information through visual perception and moved in similar ways. Nonetheless, there was little overlap between their neuromarkers, a result that hints strongly of task-specific neural mechanisms for social behavior. The only neuromarker that transcended both synchronic and diachronic social behaviors was the ubiquitous alpha rhythm, which appears to be a key signature of visually-mediated social behaviors. The present paper is both an entry point and a challenge: much work remains to determine the nature and scope of recruitment of other neuromarkers, and to create theoretical models of their within- and between-brain dynamics during social interaction.

  4. The coordination dynamics of social neuromarkers

    PubMed Central

    Tognoli, Emmanuelle; Kelso, J. A. Scott

    2015-01-01

    Social behavior is a complex integrative function that entails many aspects of the brain’s sensory, cognitive, emotional and movement capacities. Its neural processes are seldom simultaneous but occur according to precise spatiotemporal choreographies, manifested by the coordination of their oscillations within and between brains. Methods with good temporal resolution can help to identify so-called “neuromarkers” of social function and aid in disentangling the dynamical architecture of social brains. In our ongoing research, we have used dual-electroencephalography (EEG) to study neuromarker dynamics during synchronic interactions in which pairs of subjects coordinate behavior spontaneously and intentionally (social coordination) and during diachronic transactions that require subjects to perceive or behave in turn (action observation, delayed imitation). In this paper, after outlining our dynamical approach to the neurophysiological basis of social behavior, we examine commonalities and differences in the neuromarkers that are recruited for both kinds of tasks. We find the neuromarker landscape to be task-specific: synchronic paradigms of social coordination reveal medial mu, alpha and the phi complex as contributing neuromarkers. Diachronic tasks recruit alpha as well, in addition to lateral mu rhythms and the newly discovered nu and kappa rhythms whose functional significance is still unclear. Social coordination, observation, and delayed imitation share commonality of context: in each of our experiments, subjects exchanged information through visual perception and moved in similar ways. Nonetheless, there was little overlap between their neuromarkers, a result that hints strongly of task-specific neural mechanisms for social behavior. The only neuromarker that transcended both synchronic and diachronic social behaviors was the ubiquitous alpha rhythm, which appears to be a key signature of visually-mediated social behaviors. The present paper is both an entry point and a challenge: much work remains to determine the nature and scope of recruitment of other neuromarkers, and to create theoretical models of their within- and between-brain dynamics during social interaction. PMID:26557067

  5. Single-baseline RTK GNSS Positioning for Hydrographic Surveying

    NASA Astrophysics Data System (ADS)

    Metin Alkan, Reha; Murat Ozulu, I.; Ilçi, Veli; Kahveci, Muzaffer

    2015-04-01

    Positioning with GNSS technique can be carried out in two ways, absolute and relative. It has been possible to reach a few meters absolute point positioning accuracies in real time after disabling SA permanently in May 2000. Today, accuracies obtainable from absolute point positioning using code observations are not sufficient for most surveying applications. Thus to meet higher accuracy requirements, differential methods using single or dual frequency geodetic-grade GNSS receivers that measure carrier phase have to be used. However, this method requires time-cost field and office works and if the measurement is not carried out with conventional RTK method, user needs a GNSS data processing software to estimate the coordinates. If RTK is used, at least two or more GNSS receivers are required, one as a reference and the other as a rover. Moreover, the distance between the receivers must not exceed 15-20 km in order to be able to rapidly and reliably resolve the carrier phase ambiguities. On the other hand, based on the innovations and improvements in satellite geodesy and GNSS modernization studies occurred within the last decade, many new positioning methods and new approaches have been developed. One of them is Network-RTK (or commonly known as CORS) and the other is Single-baseline RTK. These methods are widely used for many surveying applications in many countries. The user of the system can obtain his/her position within a few cm level of accuracy in real-time with only a single GNSS receiver that has Network RTK (CORS) capability. When compared with the conventional differential and RTK methods, this technique has several significant advantages as it is easy to use and it produces accurate, cost-effective and rapid solutions. In Turkey, establishment of a multi-base RTK network was completed and opened for civilian use in 2009. This network is called CORS-TR and consists of 146 reference stations having about 80-100 km interstation distances. It is possible for a user to determine his/her position with a few cm accuracy in real time in Turkey. Besides, there are some province municipalities in Turkey which have established their own local CORS networks such as Istanbul (with 9 reference stations) and Ankara (with 10 reference stations). There is also a local RTK base station which disseminates real time position corrections for surveyors in Çorum province and is operated by Çorum Municipality. This is the first step of establishing a complete local CORS network in Çorum (the municipality has plans to increase this number and establish a CORS network within a few years). At the time of this study, unfortunately, national CORS-TR stations in Çorum Province were under maintenance and thus we could not receive corrections from our national CORS network. Instead, Çorum Province's local RTK reference station's corrections were used during the study. The main purpose of this study is to investigate the accuracy performance of the Single-baseline RTK GNSS system operated by Çorum Municipality in marine environment. For this purpose, a kinematic test measurement was carried out at Obruk Dam, Çorum, Turkey. During the test measurement, a small vessel equipped with a dual-frequency geodetic-grade GNSS receiver, Spectra Precision ProMark 500, was used. The coordinates of the vessel were obtained from the Single-baseline RTK system in ITRF datum in real-time with fix solutions. At the same time, the raw kinematic GNSS data were also recorded to the receiver in order to estimate the known coordinates of the vessel with post-processed differential kinematic technique. In this way, GPS data were collected under the same conditions, which allowed precise assessment of the used system. The measurements were carried out along the survey profiles for about 1 hour. During the kinematic test, another receiver was set up on a geodetic point at the shore and data were collected in static mode to calculate the coordinates of the vessel for each epoch. As mentioned above, the vessel coordinates were estimated very accurately by using data collected on shore and vessel by using differential GNSS technique. The Single-baseline RTK-derived coordinates were compared with those obtained from the post-processing of the GNSS data for each epoch. Computed differences show that the coordinates agree with the relative solutions at 7 cm and below in position. Some marine applications like precise hydrographic surveying, monitoring silt accretion and erosion in rivers, lakes, estuaries, coastal waters and harbor areas; marine geodynamics; automatic docking; dredging; construction work; attitude control of ships, buoys and floating platforms, require high accuracy better than 0.1 m in position and height. Results obtained from this application show that Single-baseline RTK and/or CORS systems can reliably be utilized for the above mentioned marine applications and some others especially for positioning as a strong alternative to the conventional differential methods.

  6. The Magsat three axis arc second precision attitude transfer system

    NASA Technical Reports Server (NTRS)

    Schenkel, F. W.; Heins, R. J.

    1981-01-01

    The Magsat Attitude Transfer System (ATS), which provides attitude alteration in pitch, yaw, and roll is described. A remote vector magnetometer extends from Magsat on a 20 ft boom, requiring vector orientation by reference to coordinate axes determined by a set of star mapping cameras. The ATS was designed to perform in a solar illuminated environment by using an optically narrow bandwidth with synchronous demodulation at 9300 A. The pitch/yaw optical design, the electrooptics, and signal and switching diagrams are provided. Simple mirrors with no moving parts are placed on the magnetometer to reflect a collimated beam from the ATS for attitude indication, which is accurate to one part in 96. Alignment was completed within 24 hr after launch.

  7. Development of a precision, six-axis laboratory dynamometer

    NASA Technical Reports Server (NTRS)

    Champagne, P. J.; Cordova, S. A.; Jacoby, M. S.; Lorell, K. R.

    1992-01-01

    This paper describes the design, fabrication, test, and operation of a unique six axis force/torque dynamometer The specimen table used to hold components under test is supported in a full six axis kinematic mount. Support struts fabricated from high strength steel with special integral two axis flexures link the specimen table to the load cell transducers. Realtime force/torque coordinate transform, root mean squared calculation, and data averaging, and color six axis display with controllable scaling are provided by a specially programmed desktop computer. The extensive structural analysis and design optimization required to obtain a stiff, well damped, lightweight structure is described in detail. Geometric optimization of the kinematic mount and fabrication details of the struts are also described.

  8. Theory research of seam recognition and welding torch pose control based on machine vision

    NASA Astrophysics Data System (ADS)

    Long, Qiang; Zhai, Peng; Liu, Miao; He, Kai; Wang, Chunyang

    2017-03-01

    At present, the automation requirement of the welding become higher, so a method of the welding information extraction by vision sensor is proposed in this paper, and the simulation with the MATLAB has been conducted. Besides, in order to improve the quality of robot automatic welding, an information retrieval method for welding torch pose control by visual sensor is attempted. Considering the demands of welding technology and engineering habits, the relative coordinate systems and variables are strictly defined, and established the mathematical model of the welding pose, and verified its feasibility by using the MATLAB simulation in the paper, these works lay a foundation for the development of welding off-line programming system with high precision and quality.

  9. An Improved Method for Dynamic Measurement of Deflections of the Vertical Based on the Maintenance of Attitude Reference

    PubMed Central

    Dai, Dongkai; Wang, Xingshu; Zhan, Dejun; Huang, Zongsheng

    2014-01-01

    A new method for dynamic measurement of deflections of the vertical (DOV) is proposed in this paper. The integration of an inertial navigation system (INS) and global navigation satellite system (GNSS) is constructed to measure the body's attitude with respect to the astronomical coordinates. Simultaneously, the attitude with respect to the geodetic coordinates is initially measured by a star sensor under quasi-static condition and then maintained by the laser gyroscope unit (LGU), which is composed of three gyroscopes in the INS, when the vehicle travels along survey lines. Deflections of the vertical are calculated by using the difference between the attitudes with respect to the geodetic coordinates and astronomical coordinates. Moreover, an algorithm for removing the trend error of the vertical deflections is developed with the aid of Earth Gravitational Model 2008 (EGM2008). In comparison with traditional methods, the new method required less accurate GNSS, because the dynamic acceleration calculation is avoided. The errors of inertial sensors are well resolved in the INS/GNSS integration, which is implemented by a Rauch–Tung–Striebel (RTS) smoother. In addition, a single-axis indexed INS is adopted to improve the observability of the system errors and to restrain the inertial sensor errors. The proposed method is validated by Monte Carlo simulations. The results show that deflections of the vertical can achieve a precision of better than 1″ for a single survey line. The proposed method can be applied to a gravimetry system based on a ground vehicle or ship with a speed lower than 25 m/s. PMID:25192311

  10. Generalized Squashing Factors for Covariant Description of Magnetic Connectivity in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Titov, V. S.

    2007-01-01

    The study of magnetic connectivity in the solar corona reveals a need to generalize the field line mapping technique to arbitrary geometry of the boundaries and systems of coordinates. Indeed, the global description of the connectivity in the corona requires the use of the photospheric and solar wind boundaries. Both are closed surfaces and therefore do not admit a global regular system of coordinates. At least two overlapping regular systems of coordinates for each of the boundaries are necessary in this case to avoid spherical-pole-like singularities in the coordinates of the footpoints. This implies that the basic characteristic of magnetic connectivity-the squashing degree or factor Q of elemental flux tubes, according to Titov and coworkers-must be rewritten in covariant form. Such a covariant expression of Q is derived in this work. The derived expression is very flexible and highly efficient for describing the global magnetic connectivity in the solar corona. In addition, a general expression for a new characteristic Q1, which defines a squashing of the flux tubes in the directions perpendicular to the field lines, is determined. This new quantity makes it possible to filter out the quasi-separatrix layers whose large values of Q are caused by a projection effect at the field lines nearly touching the photosphere. Thus, the value Q1 provides a much more precise description of the volumetric properties of the magnetic field structure. The difference between Q and Q1 is illustrated by comparing their distributions for two configurations, one of which is the Titov-Demoulin model of a twisted magnetic field.

  11. An improved method for dynamic measurement of deflections of the vertical based on the maintenance of attitude reference.

    PubMed

    Dai, Dongkai; Wang, Xingshu; Zhan, Dejun; Huang, Zongsheng

    2014-09-03

    A new method for dynamic measurement of deflections of the vertical (DOV) is proposed in this paper. The integration of an inertial navigation system (INS) and global navigation satellite system (GNSS) is constructed to measure the body's attitude with respect to the astronomical coordinates. Simultaneously, the attitude with respect to the geodetic coordinates is initially measured by a star sensor under quasi-static condition and then maintained by the laser gyroscope unit (LGU), which is composed of three gyroscopes in the INS, when the vehicle travels along survey lines. Deflections of the vertical are calculated by using the difference between the attitudes with respect to the geodetic coordinates and astronomical coordinates. Moreover, an algorithm for removing the trend error of the vertical deflections is developed with the aid of Earth Gravitational Model 2008 (EGM2008). In comparison with traditional methods, the new method required less accurate GNSS, because the dynamic acceleration calculation is avoided. The errors of inertial sensors are well resolved in the INS/GNSS integration, which is implemented by a Rauch-Tung-Striebel (RTS) smoother. In addition, a single-axis indexed INS is adopted to improve the observability of the system errors and to restrain the inertial sensor errors. The proposed method is validated by Monte Carlo simulations. The results show that deflections of the vertical can achieve a precision of better than 1″ for a single survey line. The proposed method can be applied to a gravimetry system based on a ground vehicle or ship with a speed lower than 25 m/s.

  12. Improving the Quality of Low-Cost GPS Receiver Data for Monitoring Using Spatial Correlations

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Schwieger, Volker

    2016-06-01

    The investigations on low-cost single frequency GPS receivers at the Institute of Engineering Geodesy (IIGS) show that u-blox LEA-6T GPS receivers combined with Trimble Bullet III GPS antennas containing self-constructed L1-optimized choke rings can already obtain an accuracy in the range of millimeters which meets the requirements of geodetic precise monitoring applications (see [27]). However, the quality (accuracy and reliability) of low-cost GPS receiver data, particularly in shadowing environment, should still be improved, since the multipath effects are the major error for the short baselines. For this purpose, several adjoined stations with low-cost GPS receivers and antennas were set up next to the metal wall on the roof of the IIGS building and measured statically for several days. The time series of three-dimensional coordinates of the GPS receivers were analyzed. Spatial correlations between the adjoined stations, possibly caused by multipath effect, will be taken into account. The coordinates of one station can be corrected using the spatial correlations of the adjoined stations, so that the quality of the GPS measurements is improved. The developed algorithms are based on the coordinates and the results will be delivered in near-real-time (in about 30 minutes), so that they are suitable for structural health monitoring applications.

  13. 'Scalp coordinate system': a new tool to accurately describe cutaneous lesions on the scalp: a pilot study.

    PubMed

    Alexander, William; Miller, George; Alexander, Preeya; Henderson, Michael A; Webb, Angela

    2018-06-12

    Skin cancers are extremely common and the incidence increases with age. Care for patients with multiple or complicated skin cancers often require multidisciplinary input involving a general practitioner, dermatologist, plastic surgeon and/or radiation oncologist. Timely, efficient care of these patients relies on precise and effective communication between all parties. Until now, descriptions regarding the location of lesions on the scalp have been inaccurate, which can lead to error with the incorrect lesion being excised or biopsied. A novel technique for accurately and efficiently describing the location of lesions on the scalp, using a coordinate system, is described (the 'scalp coordinate system' (SCS)). This method was tested in a pilot study by clinicians typically involved in the care of patients with cutaneous malignancies. A mannequin scalp was used in the study. The SCS significantly improved the accuracy in the ability to both describe and locate lesions on the scalp. This improved accuracy comes at a minor time cost. The direct and indirect costs arising from poor communication between medical subspecialties (particularly relevant in surgical procedures) are immense. An effective tool used by all involved clinicians is long overdue particularly in patients with scalps with extensive actinic damage, scarring or innocuous biopsy sites. The SCS provides the opportunity to improve outcomes for both the patient and healthcare system. © 2018 Royal Australasian College of Surgeons.

  14. Pavement cells: a model system for non-transcriptional auxin signalling and crosstalks.

    PubMed

    Chen, Jisheng; Wang, Fei; Zheng, Shiqin; Xu, Tongda; Yang, Zhenbiao

    2015-08-01

    Auxin (indole acetic acid) is a multifunctional phytohormone controlling various developmental patterns, morphogenetic processes, and growth behaviours in plants. The transcription-based pathway activated by the nuclear TRANSPORT INHIBITOR RESISTANT 1/auxin-related F-box auxin receptors is well established, but the long-sought molecular mechanisms of non-transcriptional auxin signalling remained enigmatic until very recently. Along with the establishment of the Arabidopsis leaf epidermal pavement cell (PC) as an exciting and amenable model system in the past decade, we began to gain insight into non-transcriptional auxin signalling. The puzzle-piece shape of PCs forms from intercalated or interdigitated cell growth, requiring local intra- and inter-cellular coordination of lobe and indent formation. Precise coordination of this interdigitated pattern requires auxin and an extracellular auxin sensing system that activates plasma membrane-associated Rho GTPases from plants and subsequent downstream events regulating cytoskeletal reorganization and PIN polarization. Apart from auxin, mechanical stress and cytokinin have been shown to affect PC interdigitation, possibly by interacting with auxin signals. This review focuses upon signalling mechanisms for cell polarity formation in PCs, with an emphasis on non-transcriptional auxin signalling in polarized cell expansion and pattern formation and how different auxin pathways interplay with each other and with other signals. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Algorithm for transforming the coordinates of lunar objects while changing from various coordinate systems into the selenocentric one

    NASA Astrophysics Data System (ADS)

    Mazurova, Elena; Mikhaylov, Aleksandr

    2013-04-01

    The selenocentric network of objects setting the coordinate system on the Moon, with the origin coinciding with the mass centre and axes directed along the inertia axes can become one of basic elements of the coordinate-time support for lunar navigation with use of cartographic materials and control objects. A powerful array of highly-precise and multiparameter information obtained by modern space vehicles allows one to establish Lunar Reference Frames (LRF) of an essentially another accuracy. Here, a special role is played by the results of scanning the lunar surface by the Lunar Reconnaissance Orbiter(LRO) American mission. The coordinates of points calculated only from the results of laser scanning have high enough accuracy of position definition with respect to each other, but it is possible to check up the real accuracy of spatial tie and improve the coordinates only by a network of points whose coordinates are computed both from laser scanning and other methods too, for example, by terrestrial laser location, space photogrammetry methods, and so on. The paper presents the algorithm for transforming selenocentric coordinate systems and the accuracy estimation of changing from one lunar coordinate system to another one. Keywords: selenocentric coordinate system, coordinate-time support.

  16. Juvenile Osprey Navigation during Trans-Oceanic Migration

    PubMed Central

    Horton, Travis W.; Bierregaard, Richard O.; Zawar-Reza, Peyman; Holdaway, Richard N.; Sagar, Paul

    2014-01-01

    To compensate for drift, an animal migrating through air or sea must be able to navigate. Although some species of bird, fish, insect, mammal, and reptile are capable of drift compensation, our understanding of the spatial reference frame, and associated coordinate space, in which these navigational behaviors occur remains limited. Using high resolution satellite-monitored GPS track data, we show that juvenile ospreys (Pandion haliaetus) are capable of non-stop constant course movements over open ocean spanning distances in excess of 1500 km despite the perturbing effects of winds and the lack of obvious landmarks. These results are best explained by extreme navigational precision in an exogenous spatio-temporal reference frame, such as positional orientation relative to Earth's magnetic field and pacing relative to an exogenous mechanism of keeping time. Given the age (<1 year-old) of these birds and knowledge of their hatching site locations, we were able to transform Enhanced Magnetic Model coordinate locations such that the origin of the magnetic coordinate space corresponded with each bird's nest. Our analyses show that trans-oceanic juvenile osprey movements are consistent with bicoordinate positional orientation in transformed magnetic coordinate or geographic space. Through integration of movement and meteorological data, we propose a new theoretical framework, chord and clock navigation, capable of explaining the precise spatial orientation and temporal pacing performed by juvenile ospreys during their long-distance migrations over open ocean. PMID:25493430

  17. Development of a High Precision Axial 3-D PET for Brain Imaging

    NASA Astrophysics Data System (ADS)

    Bolle, E.; Braem, A.; Casella, C.; Chesi, E.; Clinthorne, N.; Cochran, E.; De Leo, R.; Dissertori, G.; Djambazov, L.; Honscheid, K.; Huh, S.; Johnson, I.; Joram, C.; Kagan, H.; Lacasta, C.; Lustermann, W.; Meddi, F.; Nappi, E.; Nessi-Tedaldi, F.; Oliver, J. F.; Pauss, F.; Rafecas, M.; Renker, D.; Rudge, A.; Schinzel, D.; Schneider, T.; Séguinot, J.; Smith, S.; Solevi, P.; Stapnes, S.; Vilardi, I.; Weilhammer, P.

    2009-12-01

    We describe a PET device based on a novel method to extract the coordinates of the interaction point of the 511keV γ rays from 100 mm long and thin LYSO (Lutetium Yttrium OxyorthoSilicate) scintillator bars, positioned axially in the tomograph. The coordinate along the hit crystal is measured by using a hodoscope of Wave Length Shifting (WLS) plastic strips mounted perpendicularly to each plane of scintillators. As photodetectors, new Geiger mode Avalanche PhotoDetectors (G-APDs) with integrated electronics are being used to detect both the hit crystal in a block (x and y coordinates) and the interaction point in the crystal (z coordinate) through the light escaping from the crystal and transmitted to the WLS strips. In this way, the γ interaction point can be determined with a spatial resolution of few cubic millimeters down to a minimum deposited energy of about 50 keV, resulting in a volumetric precision very close to the limits imposed by the physics of the positron annihilation. The method allows to increase the detection efficiency without affecting the spatial resolution by adding scintillator planes in the radial direction. A demonstrator scanner, based on two matrices of 8 × 6 LYS crystals and 312 WLS strips, slotted in between the crystals, is under construction. Preliminary results from the feasibility studies of the various components will be presented.

  18. DPOD2005: An extension of ITRF2005 for Precise Orbit Determination

    NASA Astrophysics Data System (ADS)

    Willis, P.; Ries, J. C.; Zelensky, N. P.; Soudarin, L.; Fagard, H.; Pavlis, E. C.; Lemoine, F. G.

    2009-09-01

    For Precise Orbit Determination of altimetry missions, we have computed a data set of DORIS station coordinates defined for specific time intervals called DPOD2005. This terrestrial reference set is an extension of ITRF2005. However, it includes all new DORIS stations and is more reliable, as we disregard stations with large velocity formal errors as they could contaminate POD computations in the near future. About 1/4 of the station coordinates need to be defined as they do not appear in the original ITRF2005 realization. These results were verified with available DORIS and GPS results, as the integrity of DPOD2005 is almost as critical as its accuracy. Besides station coordinates and velocities, we also provide additional information such as periods for which DORIS data should be disregarded for specific DORIS stations, and epochs of coordinate and velocity discontinuities (related to either geophysical events, equipment problem or human intervention). The DPOD model was tested for orbit determination for TOPEX/Poseidon (T/P), Jason-1 and Jason-2. Test results show DPOD2005 offers improvement over the original ITRF2005, improvement that rapidly and significantly increases after 2005. Improvement is also significant for the early T/P cycles indicating improved station velocities in the DPOD2005 model and a more complete station set. Following 2005 the radial accuracy and centering of the ITRF2005-original orbits rapidly degrades due to station loss.

  19. Learning to breathe and sing: development of respiratory-vocal coordination in young songbirds

    PubMed Central

    Veit, Lena; Aronov, Dmitriy

    2011-01-01

    How do animals with learned vocalizations coordinate vocal production with respiration? Songbirds such as the zebra finch learn their songs, beginning with highly variable babbling vocalizations known as subsong. After several weeks of practice, zebra finches are able to produce a precisely timed pattern of syllables and silences, precisely coordinated with expiratory and inspiratory pulses (Franz M, Goller F. J Neurobiol 51: 129–141, 2002). While respiration in adult song is well described, relatively little is known about respiratory patterns in subsong or about the processes by which respiratory and vocal patterns become coordinated. To address these questions, we recorded thoracic air sac pressure in juvenile zebra finches prior to the appearance of any consistent temporal or acoustic structure in their songs. We found that subsong contains brief inspiratory pulses (50 ms) alternating with longer pulses of sustained expiratory pressure (50–500 ms). In striking contrast to adult song, expiratory pulses often contained multiple (0–8) variably timed syllables separated by expiratory gaps and were only partially vocalized. During development, expiratory pulses became shorter and more stereotyped in duration with shorter and fewer nonvocalized parts. These developmental changes eventually resulted in the production of a single syllable per expiratory pulse and a single inspiratory pulse filling each gap, forming a coordinated sequence similar to that of adult song. To examine the role of forebrain song-control nuclei in the development of respiratory patterns, we performed pressure recordings before and after lesions of nucleus HVC (proper name) and found that this manipulation reverses the developmental trends in measures of the respiratory pattern. PMID:21697438

  20. Learning to breathe and sing: development of respiratory-vocal coordination in young songbirds.

    PubMed

    Veit, Lena; Aronov, Dmitriy; Fee, Michale S

    2011-10-01

    How do animals with learned vocalizations coordinate vocal production with respiration? Songbirds such as the zebra finch learn their songs, beginning with highly variable babbling vocalizations known as subsong. After several weeks of practice, zebra finches are able to produce a precisely timed pattern of syllables and silences, precisely coordinated with expiratory and inspiratory pulses (Franz M, Goller F. J Neurobiol 51: 129-141, 2002). While respiration in adult song is well described, relatively little is known about respiratory patterns in subsong or about the processes by which respiratory and vocal patterns become coordinated. To address these questions, we recorded thoracic air sac pressure in juvenile zebra finches prior to the appearance of any consistent temporal or acoustic structure in their songs. We found that subsong contains brief inspiratory pulses (50 ms) alternating with longer pulses of sustained expiratory pressure (50-500 ms). In striking contrast to adult song, expiratory pulses often contained multiple (0-8) variably timed syllables separated by expiratory gaps and were only partially vocalized. During development, expiratory pulses became shorter and more stereotyped in duration with shorter and fewer nonvocalized parts. These developmental changes eventually resulted in the production of a single syllable per expiratory pulse and a single inspiratory pulse filling each gap, forming a coordinated sequence similar to that of adult song. To examine the role of forebrain song-control nuclei in the development of respiratory patterns, we performed pressure recordings before and after lesions of nucleus HVC (proper name) and found that this manipulation reverses the developmental trends in measures of the respiratory pattern.

  1. Rigorous Photogrammetric Processing of CHANG'E-1 and CHANG'E-2 Stereo Imagery for Lunar Topographic Mapping

    NASA Astrophysics Data System (ADS)

    Di, K.; Liu, Y.; Liu, B.; Peng, M.

    2012-07-01

    Chang'E-1(CE-1) and Chang'E-2(CE-2) are the two lunar orbiters of China's lunar exploration program. Topographic mapping using CE-1 and CE-2 images is of great importance for scientific research as well as for preparation of landing and surface operation of Chang'E-3 lunar rover. In this research, we developed rigorous sensor models of CE-1 and CE-2 CCD cameras based on push-broom imaging principle with interior and exterior orientation parameters. Based on the rigorous sensor model, the 3D coordinate of a ground point in lunar body-fixed (LBF) coordinate system can be calculated by space intersection from the image coordinates of con-jugate points in stereo images, and the image coordinates can be calculated from 3D coordinates by back-projection. Due to uncer-tainties of the orbit and the camera, the back-projected image points are different from the measured points. In order to reduce these inconsistencies and improve precision, we proposed two methods to refine the rigorous sensor model: 1) refining EOPs by correcting the attitude angle bias, 2) refining the interior orientation model by calibration of the relative position of the two linear CCD arrays. Experimental results show that the mean back-projection residuals of CE-1 images are reduced to better than 1/100 pixel by method 1 and the mean back-projection residuals of CE-2 images are reduced from over 20 pixels to 0.02 pixel by method 2. Consequently, high precision DEM (Digital Elevation Model) and DOM (Digital Ortho Map) are automatically generated.

  2. Validation of XMALab software for marker-based XROMM.

    PubMed

    Knörlein, Benjamin J; Baier, David B; Gatesy, Stephen M; Laurence-Chasen, J D; Brainerd, Elizabeth L

    2016-12-01

    Marker-based XROMM requires software tools for: (1) correcting fluoroscope distortion; (2) calibrating X-ray cameras; (3) tracking radio-opaque markers; and (4) calculating rigid body motion. In this paper we describe and validate XMALab, a new open-source software package for marker-based XROMM (C++ source and compiled versions on Bitbucket). Most marker-based XROMM studies to date have used XrayProject in MATLAB. XrayProject can produce results with excellent accuracy and precision, but it is somewhat cumbersome to use and requires a MATLAB license. We have designed XMALab to accelerate the XROMM process and to make it more accessible to new users. Features include the four XROMM steps (listed above) in one cohesive user interface, real-time plot windows for detecting errors, and integration with an online data management system, XMAPortal. Accuracy and precision of XMALab when tracking markers in a machined object are ±0.010 and ±0.043 mm, respectively. Mean precision for nine users tracking markers in a tutorial dataset of minipig feeding was ±0.062 mm in XMALab and ±0.14 mm in XrayProject. Reproducibility of 3D point locations across nine users was 10-fold greater in XMALab than in XrayProject, and six degree-of-freedom bone motions calculated with a joint coordinate system were 3- to 6-fold more reproducible in XMALab. XMALab is also suitable for tracking white or black markers in standard light videos with optional checkerboard calibration. We expect XMALab to increase both the quality and quantity of animal motion data available for comparative biomechanics research. © 2016. Published by The Company of Biologists Ltd.

  3. Three-D multilateration: A precision geodetic measurement system

    NASA Technical Reports Server (NTRS)

    Escobal, P. R.; Ong, K. M.; Vonroos, O. H.; Shumate, M. S.; Jaffe, R. M.; Fliegel, H. F.; Muller, P. M.

    1973-01-01

    A technique of satellite geodesy for determining the relative three dimensional coordinates of ground stations within one centimeter over baselines of 20 to 10,000 kilometers is discussed. The system is referred to as 3-D Multilateration and has applications in earthquake hazard assessment, precision surveying, plate tectonics, and orbital mechanics. The accuracy is obtained by using pulsed lasers to obtain simultaneous slant ranges between several ground stations and a moving retroreflector with known trajectory for aiming the lasers.

  4. Earth orientation from lunar laser range-differencing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leick, A.

    1978-01-01

    For the optimal use of high precision lunar laser ranging (LLR), an investigation regarding a clear definition of the underlying coordinate systems, identification of estimable quantities, favorable station geometry and optimal observation schedule is given.

  5. A statistical model for analyzing the rotational error of single isocenter for multiple targets technique.

    PubMed

    Chang, Jenghwa

    2017-06-01

    To develop a statistical model that incorporates the treatment uncertainty from the rotational error of the single isocenter for multiple targets technique, and calculates the extra PTV (planning target volume) margin required to compensate for this error. The random vector for modeling the setup (S) error in the three-dimensional (3D) patient coordinate system was assumed to follow a 3D normal distribution with a zero mean, and standard deviations of σ x , σ y , σ z . It was further assumed that the rotation of clinical target volume (CTV) about the isocenter happens randomly and follows a three-dimensional (3D) independent normal distribution with a zero mean and a uniform standard deviation of σ δ . This rotation leads to a rotational random error (R), which also has a 3D independent normal distribution with a zero mean and a uniform standard deviation of σ R equal to the product of σδπ180 and dI⇔T, the distance between the isocenter and CTV. Both (S and R) random vectors were summed, normalized, and transformed to the spherical coordinates to derive the Chi distribution with three degrees of freedom for the radial coordinate of S+R. PTV margin was determined using the critical value of this distribution for a 0.05 significance level so that 95% of the time the treatment target would be covered by the prescription dose. The additional PTV margin required to compensate for the rotational error was calculated as a function of σ R and dI⇔T. The effect of the rotational error is more pronounced for treatments that require high accuracy/precision like stereotactic radiosurgery (SRS) or stereotactic body radiotherapy (SBRT). With a uniform 2-mm PTV margin (or σ x = σ y = σ z = 0.715 mm), a σ R = 0.328 mm will decrease the CTV coverage probability from 95.0% to 90.9%, or an additional 0.2-mm PTV margin is needed to prevent this loss of coverage. If we choose 0.2 mm as the threshold, any σ R > 0.328 mm will lead to an extra PTV margin that cannot be ignored, and the maximal σ δ that can be ignored is 0.45° (or 0.0079 rad ) for dI⇔T = 50 mm or 0.23° (or 0.004 rad ) for dI⇔T = 100 mm. The rotational error cannot be ignored for high-accuracy/-precision treatments like SRS/SBRT, particularly when the distance between the isocenter and target is large. © 2017 American Association of Physicists in Medicine.

  6. Improving geolocation and spatial accuracies with the modular integrated avionics group (MIAG)

    NASA Astrophysics Data System (ADS)

    Johnson, Einar; Souter, Keith

    1996-05-01

    The modular integrated avionics group (MIAG) is a single unit approach to combining position, inertial and baro-altitude/air data sensors to provide optimized navigation, guidance and control performance. Lear Astronics Corporation is currently working within the navigation community to upgrade existing MIAG performance with precise GPS positioning mechanization tightly integrated with inertial, baro and other sensors. Among the immediate benefits are the following: (1) accurate target location in dynamic conditions; (2) autonomous launch and recovery using airborne avionics only; (3) precise flight path guidance; and (4) improved aircraft and payload stability information. This paper will focus on the impact of using the MIAG with its multimode navigation accuracies on the UAV targeting mission. Gimbaled electro-optical sensors mounted on a UAV can be used to determine ground coordinates of a target at the center of the field of view by a series of vector rotation and scaling computations. The accuracy of the computed target coordinates is dependent on knowing the UAV position and the UAV-to-target offset computation. Astronics performed a series of simulations to evaluate the effects that the improved angular and position data available from the MIAG have on target coordinate accuracy.

  7. VLBI: A Fascinating Technique for Geodesy and Astrometry

    NASA Technical Reports Server (NTRS)

    Schuh, H.; Behrend, Dirk

    2012-01-01

    Since the 1970s Very Long Baseline Interferometry (VLBI) has proven to be a primary space-geodetic technique by determining precise coordinates on the Earth, by monitoring the variable Earth rotation and orientation with highest precision, and by deriving many other parameters of the Earth system. VLBI provides an important linkage to astronomy through, for instance, the determination of very precise coordinates of extragalactic radio sources. Additionally, it contributes to determining parameters of relativistic and cosmological models. After a short review of the history of geodetic VLBI and a summary of recent results, this paper describes future perspectives of this fascinating technique. The International VLBI Service for Geodesy and Astrometry (IVS), as a service of the International Association of Geodesy (IAG) and the International Astronomical Union (IAU), is well on its way to fully defining a next generation VLBI system, called VLBI2010. The goals of the new system are to achieve on scales up to the size of the Earth an accuracy of 1 mm in position and of 0.1 mm/year in velocity. Continuous observations shall be carried out 24 h per day 7 days per week in the future with initial results to be delivered within 24 h after taking the data. Special sessions, e.g. for monitoring the Earth rotation parameters, will provide the results in near real-time. These goals require a completely new technical and conceptual design of VLBI measurements. Based on extensive simulation studies, strategies have been developed by the IVS to significantly improve its product accuracy through the use of a network of small (approx 12 m) fast-slewing antennas. A new method for generating high precision delay measurements as well as improved methods for handling biases related to radio source structure, system electronics, and deformations of the antenna structures has been developed. Furthermore, as of January 2012, the construction of ten new VLBI2010 sites has been funded, with good prospects for one dozen more antennas, which will improve the geographical distribution of geodetic VLBI sites on Earth and provide an important step toward a global VLBI2010 network. Within this paper, the Global Geodetic Observing System (GGOS) of the IAG will also be introduced and the contribution of VLBI to GGOS will be described.

  8. Feasibility study of proton-based quality assurance of proton range compensator

    NASA Astrophysics Data System (ADS)

    Park, S.; Jeong, C.; Min, B. J.; Kwak, J.; Lee, J.; Cho, S.; Shin, D.; Lim, Y. K.; Park, S. Y.; Lee, S. B.

    2013-06-01

    All patient specific range compensators (RCs) are customized for achieving distal dose conformity of target volume in passively scattered proton therapy. Compensators are milled precisely using a computerized machine. In proton therapy, precision of the compensator is critical and quality assurance (QA) is required to protect normal tissues and organs from radiation damage. This study aims to evaluate the precision of proton-based quality assurance of range compensator. First, the geometry information of two compensators was extracted from the DICOM Radiotherapy (RT) plan. Next, RCs were irradiated on the EBT film individually by proton beam which is modulated to have a photon-like percent depth dose (PDD). Step phantoms were also irradiated on the EBT film to generate calibration curve which indicates relationship between optical density of irradiated film and perpendicular depth of compensator. Comparisons were made using the mean absolute difference (MAD) between coordinate information from DICOM RT and converted depth information from the EBT film. MAD over the whole region was 1.7, and 2.0 mm. However, MAD over the relatively flat regions on each compensator selected for comparison was within 1 mm. These results shows that proton-based quality assurance of range compensator is feasible and it is expected to achieve MAD over the whole region less than 1 mm with further correction about scattering effect of proton imaging.

  9. Three-dimensional high-precision indoor positioning strategy using Tabu search based on visible light communication

    NASA Astrophysics Data System (ADS)

    Peng, Qi; Guan, Weipeng; Wu, Yuxiang; Cai, Ye; Xie, Canyu; Wang, Pengfei

    2018-01-01

    This paper proposes a three-dimensional (3-D) high-precision indoor positioning strategy using Tabu search based on visible light communication. Tabu search is a powerful global optimization algorithm, and the 3-D indoor positioning can be transformed into an optimal solution problem. Therefore, in the 3-D indoor positioning, the optimal receiver coordinate can be obtained by the Tabu search algorithm. For all we know, this is the first time the Tabu search algorithm is applied to visible light positioning. Each light-emitting diode (LED) in the system broadcasts a unique identity (ID) and transmits the ID information. When the receiver detects optical signals with ID information from different LEDs, using the global optimization of the Tabu search algorithm, the 3-D high-precision indoor positioning can be realized when the fitness value meets certain conditions. Simulation results show that the average positioning error is 0.79 cm, and the maximum error is 5.88 cm. The extended experiment of trajectory tracking also shows that 95.05% positioning errors are below 1.428 cm. It can be concluded from the data that the 3-D indoor positioning based on the Tabu search algorithm achieves the requirements of centimeter level indoor positioning. The algorithm used in indoor positioning is very effective and practical and is superior to other existing methods for visible light indoor positioning.

  10. Learning to play the violin: motor control by freezing, not freeing degrees of freedom.

    PubMed

    Konczak, Jürgen; Vander Velden, Heidi; Jaeger, Lukas

    2009-05-01

    Playing a violin requires precise patterns of limb coordination that are acquired over years of practice. In the present study, the authors investigated how motion at proximal arm joints influenced the precision of bow movements in novice learners and experts. The authors evaluated the performances of 11 children (4-12 years old), 3 beginning-to-advanced level adult players, and 2 adult concert violinists, using a musical work that all had mastered as their first violin piece. The authors found that learning to play the violin was not associated with a release or freeing of joint degrees of freedom. Instead, learning was characterized by an experience-dependent suppression of sagittal shoulder motion, as documented by an observed reduction in joint angular amplitude. This reduction in the amplitude of shoulder flexion-extension correlated highly with a decrease of bow-movement variability. The remaining mechanical degrees of freedom at the elbow and shoulder showed patterns of neither suppression nor freeing. Only violinists with more than 700 practice hr achieved sagittal shoulder range of motion comparable to experts. The findings imply that restricting joint amplitude at selected joint degrees of freedom, while leaving other degrees of freedom unconstrained, constitutes an appropriate strategy for learning complex, high-precision motor patterns in children and adults. The findings also highlight that mastering even seemingly simple bowing movements constitutes a prolonged learning process.

  11. Binocular optical axis parallelism detection precision analysis based on Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Ying, Jiaju; Liu, Bingqi

    2018-02-01

    According to the working principle of the binocular photoelectric instrument optical axis parallelism digital calibration instrument, and in view of all components of the instrument, the various factors affect the system precision is analyzed, and then precision analysis model is established. Based on the error distribution, Monte Carlo method is used to analyze the relationship between the comprehensive error and the change of the center coordinate of the circle target image. The method can further guide the error distribution, optimize control the factors which have greater influence on the comprehensive error, and improve the measurement accuracy of the optical axis parallelism digital calibration instrument.

  12. IGS Network Coordinator Report - 2002

    NASA Technical Reports Server (NTRS)

    Moore, Angelyn

    2004-01-01

    The IGS network is a set of permanent, continuously-operating, dual-frequency GPS stations operated by over 100 worldwide agencies. The dataset is pooled at IGS Data Centers for routine use by IGS Analysis Centers in creating precise IGS products, as well as free access by other analysts around the world. The IGS Central Bureau hosts the IGS Network Coordinator, who assures adherence to standards and provides information regarding the IGS network via the Central Bureau Information System website at http://igscb.jpl.nasa.gov.

  13. Automated Solvent Seaming of Large Polyimide Membranes

    NASA Technical Reports Server (NTRS)

    Rood, Robert; Moore, James D.; Talley, Chris; Gierow, Paul A.

    2006-01-01

    A solvent-based welding process enables the joining of precise, cast polyimide membranes at their edges to form larger precise membranes. The process creates a homogeneous, optical-quality seam between abutting membranes, with no overlap and with only a very localized area of figure disturbance. The seam retains 90 percent of the strength of the parent material. The process was developed for original use in the fabrication of wide-aperture membrane optics, with areal densities of less than 1 kg/m2, for lightweight telescopes, solar concentrators, antennas, and the like to be deployed in outer space. The process is just as well applicable to the fabrication of large precise polyimide membranes for flat or inflatable solar concentrators and antenna reflectors for terrestrial applications. The process is applicable to cast membranes made of CP1 (or equivalent) polyimide. The process begins with the precise fitting together and fixturing of two membrane segments. The seam is formed by applying a metered amount of a doped solution of the same polyimide along the abutting edges of the membrane segments. After the solution has been applied, the fixtured films are allowed to dry and are then cured by convective heating. The weld material is the same as the parent material, so that what is formed is a homogeneous, strong joint that is almost indistinguishable from the parent material. The success of the process is highly dependent on formulation of the seaming solution from the correct proportion of the polyimide in a suitable solvent. In addition, the formation of reliable seams depends on the deposition of a precise amount of the seaming solution along the seam line. To ensure the required precision, deposition is performed by use of an automated apparatus comprising a modified commercially available, large-format, ink-jet print head on an automated positioning table. The printing head jets the seaming solution into the seam area at a rate controlled in coordination with the movement of the positioning table.

  14. Optical Metrology for the Segmented Optics on the Constellation-X Spectroscopy X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Content, David; Colella, David; Fleetwood, Charles; Hadjimichael, Theo; Lehan, John; McMann, Joseph; Reid, Paul; Saha, Timo; Wright, Geraldine; Zhang, William

    2004-01-01

    We present the metrology requirements and metrology implementation necessary to prove out the reflector technology for the Constellation X(C-X) spectroscopy X-ray telescope (SXT). This segmented, 1.6m diameter highly nested Wolter-1 telescope presents many metrology and alignment challenges. In particular, these mirrors have a stringent imaging error budget as compared to their intrinsic stiffness; This is required for Constellation-X to have sufficient effective area with the weight requirement. This has implications for the metrology that can be used. A variety of contract and noncontact optical profiling and interferometric methods are combined to test the formed glass substrates before replication and the replicated reflector segments.The reflectors are tested both stand-alone and in-situ in an alignment tower.Some of these methods have not been used on prior X-ray telescopes and some are feasible only because of the segmented approach used on the SXT. Methods discussed include high precision coordinate measurement machines using very low force or optical probe axial interferometric profiling azimuthal circularity profiling and use of advanced null optics such as conical computer generated hologram (CGHs).

  15. Chaotic coordinates for the Large Helical Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, S. R., E-mail: shudson@pppl.gov; Suzuki, Y.

    The theory of quadratic-flux-minimizing (QFM) surfaces is reviewed, and numerical techniques that allow high-order QFM surfaces to be efficiently constructed for experimentally relevant, non-integrable magnetic fields are described. As a practical example, the chaotic edge of the magnetic field in the Large Helical Device (LHD) is examined. A precise technique for finding the boundary surface is implemented, the hierarchy of partial barriers associated with the near-critical cantori is constructed, and a coordinate system, which we call chaotic coordinates, that is based on a selection of QFM surfaces is constructed that simplifies the description of the magnetic field, so that fluxmore » surfaces become “straight” and islands become “square.”.« less

  16. 26 CFR 1.411(d)-1 - Coordination of vesting and discrimination requirements. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Coordination of vesting and discrimination requirements. [Reserved] 1.411(d)-1 Section 1.411(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF... Plans, Etc. § 1.411(d)-1 Coordination of vesting and discrimination requirements. [Reserved] ...

  17. Coordination success and interpersonal perceptions: matching versus mismatching.

    PubMed

    Abele, Susanne; Stasser, Garold

    2008-09-01

    Coordination is an essential part of social functioning. The authors distinguish 2 types of coordination: matching and mismatching. In matching, coordination is successful if parties choose the same action. In mismatching, coordination is successful if people choose different actions. In 3 studies, the authors investigated the downstream social consequences of tacit coordination for interpersonal perceptions. In all studies, participants repeatedly choose between 2 bets with equivalent expected values, and payoffs increased either when they choose the same bet or when they choose different bets. In the 1st 2 studies, coordination success increased the perceptions of interpersonal similarity and liking when matching was required but not when mismatching was required. The authors' interpretation is that matching responses and coordination success had countervailing effects in the mismatching task. Also, percentage of matched responses did not affect perceptions when coordination was not required (Experiment 2). In 4 person teams, a frequently matching partner was viewed more favorably (smarter, more similar to self, and more liked) than were other teammates, even when mismatching increased payoffs (Experiment 3).

  18. Increased reliability of nuclear magnetic resonance protein structures by consensus structure bundles.

    PubMed

    Buchner, Lena; Güntert, Peter

    2015-02-03

    Nuclear magnetic resonance (NMR) structures are represented by bundles of conformers calculated from different randomized initial structures using identical experimental input data. The spread among these conformers indicates the precision of the atomic coordinates. However, there is as yet no reliable measure of structural accuracy, i.e., how close NMR conformers are to the "true" structure. Instead, the precision of structure bundles is widely (mis)interpreted as a measure of structural quality. Attempts to increase precision often overestimate accuracy by tight bundles of high precision but much lower accuracy. To overcome this problem, we introduce a protocol for NMR structure determination with the software package CYANA, which produces, like the traditional method, bundles of conformers in agreement with a common set of conformational restraints but with a realistic precision that is, throughout a variety of proteins and NMR data sets, a much better estimate of structural accuracy than the precision of conventional structure bundles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. DNA replication stress: from molecular mechanisms to human disease.

    PubMed

    Muñoz, Sergio; Méndez, Juan

    2017-02-01

    The genome of proliferating cells must be precisely duplicated in each cell division cycle. Chromosomal replication entails risks such as the possibility of introducing breaks and/or mutations in the genome. Hence, DNA replication requires the coordinated action of multiple proteins and regulatory factors, whose deregulation causes severe developmental diseases and predisposes to cancer. In recent years, the concept of "replicative stress" (RS) has attracted much attention as it impinges directly on genomic stability and offers a promising new avenue to design anticancer therapies. In this review, we summarize recent progress in three areas: (1) endogenous and exogenous factors that contribute to RS, (2) molecular mechanisms that mediate the cellular responses to RS, and (3) the large list of diseases that are directly or indirectly linked to RS.

  20. Habitable Zone Planets: PLATO, and the search for Earth 2.0

    NASA Astrophysics Data System (ADS)

    Brown, D. J. A.

    2015-10-01

    The PLATO mission, part of ESA's Cosmic Vision program, will launch in 2024 and will revolutionize the field of transiting exoplanets. By observing a large sample of bright stars, PLATO will discover thousands of terrestrial planets, including hundreds in the habitable zones of their host stars. The brightness of PLATO targets allows full characterization of both the planets and their host stars, including asteroseismic analysis to precisely determine masses, radii, and ages. Moreover, PLATO host stars will be bright enough to allow atmospheric spectroscopy. Confirmation and characterization of PLATO planets will require a coordinated, ground-based follow-up program to both eliminate false-positives, and derive planetary masses. I will present an introduction to PLATO, discussing the scientific motivation behind the mission, its aims and goals, and the significant contribution that PLATO will make to the search for a second Earth. I will also talk about the requirements and formulation of the follow-up program, showing that the demands are not as onerous as might be feared.

  1. Railway clearance intrusion detection method with binocular stereo vision

    NASA Astrophysics Data System (ADS)

    Zhou, Xingfang; Guo, Baoqing; Wei, Wei

    2018-03-01

    In the stage of railway construction and operation, objects intruding railway clearance greatly threaten the safety of railway operation. Real-time intrusion detection is of great importance. For the shortcomings of depth insensitive and shadow interference of single image method, an intrusion detection method with binocular stereo vision is proposed to reconstruct the 3D scene for locating the objects and judging clearance intrusion. The binocular cameras are calibrated with Zhang Zhengyou's method. In order to improve the 3D reconstruction speed, a suspicious region is firstly determined by background difference method of a single camera's image sequences. The image rectification, stereo matching and 3D reconstruction process are only executed when there is a suspicious region. A transformation matrix from Camera Coordinate System(CCS) to Track Coordinate System(TCS) is computed with gauge constant and used to transfer the 3D point clouds into the TCS, then the 3D point clouds are used to calculate the object position and intrusion in TCS. The experiments in railway scene show that the position precision is better than 10mm. It is an effective way for clearance intrusion detection and can satisfy the requirement of railway application.

  2. Sensor-less pseudo-sinusoidal drive for a permanent-magnet brushless ac motor

    NASA Astrophysics Data System (ADS)

    Liu, Li-Hsiang; Chern, Tzuen-Lih; Pan, Ping-Lung; Huang, Tsung-Mou; Tsay, Der-Min; Kuang, Jao-Hwa

    2012-04-01

    The precise rotor-position information is required for a permanent-magnet brushless ac motor (BLACM) drive. In the conventional sinusoidal drive method, either an encoder or a resolver is usually employed. For position sensor-less vector control schemes, the rotor flux estimation and torque components are obtained by complicated coordinate transformations. These computational intensive methods are susceptible to current distortions and parameter variations. To simplify the method complexity, this work presents a sensor-less pseudo-sinusoidal drive scheme with speed control for a three-phase BLACM. Based on the sinusoidal drive scheme, a floating period of each phase current is inserted for back electromotive force detection. The zero-crossing point is determined directly by the proposed scheme, and the rotor magnetic position and rotor speed can be estimated simultaneously. Several experiments for various active angle periods are undertaken. Furthermore, a current feedback control is included to minimize and compensate the torque fluctuation. The experimental results show that the proposed method has a competitive performance compared with the conventional drive manners for BLACM. The proposed scheme is straightforward, bringing the benefits of sensor-less drive and negating the need for coordinate transformations in the operating process.

  3. Situational influences on rhythmicity in speech, music, and their interaction.

    PubMed

    Hawkins, Sarah

    2014-12-19

    Brain processes underlying the production and perception of rhythm indicate considerable flexibility in how physical signals are interpreted. This paper explores how that flexibility might play out in rhythmicity in speech and music. There is much in common across the two domains, but there are also significant differences. Interpretations are explored that reconcile some of the differences, particularly with respect to how functional properties modify the rhythmicity of speech, within limits imposed by its structural constraints. Functional and structural differences mean that music is typically more rhythmic than speech, and that speech will be more rhythmic when the emotions are more strongly engaged, or intended to be engaged. The influence of rhythmicity on attention is acknowledged, and it is suggested that local increases in rhythmicity occur at times when attention is required to coordinate joint action, whether in talking or music-making. Evidence is presented which suggests that while these short phases of heightened rhythmical behaviour are crucial to the success of transitions in communicative interaction, their modality is immaterial: they all function to enhance precise temporal prediction and hence tightly coordinated joint action. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Automatic extraction of the mid-sagittal plane using an ICP variant

    NASA Astrophysics Data System (ADS)

    Fieten, Lorenz; Eschweiler, Jörg; de la Fuente, Matías; Gravius, Sascha; Radermacher, Klaus

    2008-03-01

    Precise knowledge of the mid-sagittal plane is important for the assessment and correction of several deformities. Furthermore, the mid-sagittal plane can be used for the definition of standardized coordinate systems such as pelvis or skull coordinate systems. A popular approach for mid-sagittal plane computation is based on the selection of anatomical landmarks located either directly on the plane or symmetrically to it. However, the manual selection of landmarks is a tedious, time-consuming and error-prone task, which requires great care. In order to overcome this drawback, previously it was suggested to use the iterative closest point (ICP) algorithm: After an initial mirroring of the data points on a default mirror plane, the mirrored data points should be registered iteratively to the model points using rigid transforms. Finally, a reflection transform approximating the cumulative transform could be extracted. In this work, we present an ICP variant for the iterative optimization of the reflection parameters. It is based on a closed-form solution to the least-squares problem of matching data points to model points using a reflection. In experiments on CT pelvis and skull datasets our method showed a better ability to match homologous areas.

  5. Rigorous accuracy assessment for 3D reconstruction using time-series Dual Fluoroscopy (DF) image pairs

    NASA Astrophysics Data System (ADS)

    Al-Durgham, Kaleel; Lichti, Derek D.; Kuntze, Gregor; Ronsky, Janet

    2017-06-01

    High-speed biplanar videoradiography, or clinically referred to as dual fluoroscopy (DF), imaging systems are being used increasingly for skeletal kinematics analysis. Typically, a DF system comprises two X-ray sources, two image intensifiers and two high-speed video cameras. The combination of these elements provides time-series image pairs of articulating bones of a joint, which permits the measurement of bony rotation and translation in 3D at high temporal resolution (e.g., 120-250 Hz). Assessment of the accuracy of 3D measurements derived from DF imaging has been the subject of recent research efforts by several groups, however with methodological limitations. This paper presents a novel and simple accuracy assessment procedure based on using precise photogrammetric tools. We address the fundamental photogrammetry principles for the accuracy evaluation of an imaging system. Bundle adjustment with selfcalibration is used for the estimation of the system parameters. The bundle adjustment calibration uses an appropriate sensor model and applies free-network constraints and relative orientation stability constraints for a precise estimation of the system parameters. A photogrammetric intersection of time-series image pairs is used for the 3D reconstruction of a rotating planar object. A point-based registration method is used to combine the 3D coordinates from the intersection and independently surveyed coordinates. The final DF accuracy measure is reported as the distance between 3D coordinates from image intersection and the independently surveyed coordinates. The accuracy assessment procedure is designed to evaluate the accuracy over the full DF image format and a wide range of object rotation. Experiment of reconstruction of a rotating planar object reported an average positional error of 0.44 +/- 0.2 mm in the derived 3D coordinates (minimum 0.05 and maximum 1.2 mm).

  6. 20 CFR 30.627 - Under what circumstances will OWCP waive the statutory requirement to coordinate these benefits?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Under what circumstances will OWCP waive the statutory requirement to coordinate these benefits? 30.627 Section 30.627 Employees' Benefits OFFICE OF...' Compensation Benefits § 30.627 Under what circumstances will OWCP waive the statutory requirement to coordinate...

  7. 48 CFR 970.5223-7 - Sustainable acquisition program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... coordinate its activities with and submit required reports through the Environmental Sustainability... clause, the Contractor shall coordinate its activities with and submit required reports through the Environmental Sustainability Coordinator or equivalent position. (g) The Contractor shall prepare and submit...

  8. Measuring levee elevation heights in North Louisiana.

    DOT National Transportation Integrated Search

    2010-01-01

    The primary goals of this research are to measure the elevation and centerline coordinates of the top of federal and local levees and also to ensure that the resulting global positioning system (GPS) measurement data is within a precision interval of...

  9. Development of a 3D immersive videogame to improve arm-postural coordination in patients with TBI

    PubMed Central

    2011-01-01

    Background Traumatic brain injury (TBI) disrupts the central and executive mechanisms of arm(s) and postural (trunk and legs) coordination. To address these issues, we developed a 3D immersive videogame-- Octopus. The game was developed using the basic principles of videogame design and previous experience of using videogames for rehabilitation of patients with acquired brain injuries. Unlike many other custom-designed virtual environments, Octopus included an actual gaming component with a system of multiple rewards, making the game challenging, competitive, motivating and fun. Effect of a short-term practice with the Octopus game on arm-postural coordination in patients with TBI was tested. Methods The game was developed using WorldViz Vizard software, integrated with the Qualysis system for motion analysis. Avatars of the participant's hands precisely reproducing the real-time kinematic patterns were synchronized with the simulated environment, presented in the first person 3D view on an 82-inch DLP screen. 13 individuals with mild-to-moderate manifestations of TBI participated in the study. While standing in front of the screen, the participants interacted with a computer-generated environment by popping bubbles blown by the Octopus. The bubbles followed a specific trajectory. Interception of the bubbles with the left or right hand avatar allowed flexible use of the postural segments for balance maintenance and arm transport. All participants practiced ten 90-s gaming trials during a single session, followed by a retention test. Arm-postural coordination was analysed using principal component analysis. Results As a result of the short-term practice, the participants improved in game performance, arm movement time, and precision. Improvements were achieved mostly by adapting efficient arm-postural coordination strategies. Of the 13 participants, 10 showed an immediate increase in arm forward reach and single-leg stance time. Conclusion These results support the feasibility of using the custom-made 3D game for retraining of arm-postural coordination disrupted as a result of TBI. PMID:22040301

  10. Development of a 3D immersive videogame to improve arm-postural coordination in patients with TBI.

    PubMed

    Ustinova, Ksenia I; Leonard, Wesley A; Cassavaugh, Nicholas D; Ingersoll, Christopher D

    2011-10-31

    Traumatic brain injury (TBI) disrupts the central and executive mechanisms of arm(s) and postural (trunk and legs) coordination. To address these issues, we developed a 3D immersive videogame--Octopus. The game was developed using the basic principles of videogame design and previous experience of using videogames for rehabilitation of patients with acquired brain injuries. Unlike many other custom-designed virtual environments, Octopus included an actual gaming component with a system of multiple rewards, making the game challenging, competitive, motivating and fun. Effect of a short-term practice with the Octopus game on arm-postural coordination in patients with TBI was tested. The game was developed using WorldViz Vizard software, integrated with the Qualysis system for motion analysis. Avatars of the participant's hands precisely reproducing the real-time kinematic patterns were synchronized with the simulated environment, presented in the first person 3D view on an 82-inch DLP screen. 13 individuals with mild-to-moderate manifestations of TBI participated in the study. While standing in front of the screen, the participants interacted with a computer-generated environment by popping bubbles blown by the Octopus. The bubbles followed a specific trajectory. Interception of the bubbles with the left or right hand avatar allowed flexible use of the postural segments for balance maintenance and arm transport. All participants practiced ten 90-s gaming trials during a single session, followed by a retention test. Arm-postural coordination was analysed using principal component analysis. As a result of the short-term practice, the participants improved in game performance, arm movement time, and precision. Improvements were achieved mostly by adapting efficient arm-postural coordination strategies. Of the 13 participants, 10 showed an immediate increase in arm forward reach and single-leg stance time. These results support the feasibility of using the custom-made 3D game for retraining of arm-postural coordination disrupted as a result of TBI.

  11. Precision Departure Release Capability (PDRC) Final Report

    NASA Technical Reports Server (NTRS)

    Engelland, Shawn A.; Capps, Richard; Day, Kevin Brian; Kistler, Matthew Stephen; Gaither, Frank; Juro, Greg

    2013-01-01

    After takeoff, aircraft must merge into en route (Center) airspace traffic flows that may be subject to constraints that create localized demand/capacity imbalances. When demand exceeds capacity, Traffic Management Coordinators (TMCs) and Frontline Managers (FLMs) often use tactical departure scheduling to manage the flow of departures into the constrained Center traffic flow. Tactical departure scheduling usually involves a Call for Release (CFR) procedure wherein the Tower must call the Center to coordinate a release time prior to allowing the flight to depart. In present-day operations release times are computed by the Center Traffic Management Advisor (TMA) decision support tool, based upon manual estimates of aircraft ready time verbally communicated from the Tower to the Center. The TMA-computed release time is verbally communicated from the Center back to the Tower where it is relayed to the Local controller as a release window that is typically three minutes wide. The Local controller will manage the departure to meet the coordinated release time window. Manual ready time prediction and verbal release time coordination are labor intensive and prone to inaccuracy. Also, use of release time windows adds uncertainty to the tactical departure process. Analysis of more than one million flights from January 2011 indicates that a significant number of tactically scheduled aircraft missed their en route slot due to ready time prediction uncertainty. Uncertainty in ready time estimates may result in missed opportunities to merge into constrained en route flows and lead to lost throughput. Next Generation Air Transportation System plans call for development of Tower automation systems capable of computing surface trajectory-based ready time estimates. NASA has developed the Precision Departure Release Capability (PDRC) concept that improves tactical departure scheduling by automatically communicating surface trajectory-based ready time predictions and departure runway assignments to the Center scheduling tool. The PDRC concept also incorporates earlier NASA and FAA research into automation-assisted CFR coordination. The PDRC concept reduces uncertainty by automatically communicating coordinated release times with seconds-level precision enabling TMCs and FLMs to work with target times rather than windows. NASA has developed a PDRC prototype system that integrates the Center's TMA system with a research prototype Tower decision support tool. A two-phase field evaluation was conducted at NASA's North Texas Research Station in Dallas/Fort Worth. The field evaluation validated the PDRC concept and demonstrated reduced release time uncertainty while being used for tactical departure scheduling of more than 230 operational flights over 29 weeks of operations. This paper presents research results from the PDRC research activity. Companion papers present the Concept of Operations and a Technology Description.

  12. Precision Departure Release Capability (PDRC) Technology Description

    NASA Technical Reports Server (NTRS)

    Engelland, Shawn A.; Capps, Richard; Day, Kevin; Robinson, Corissia; Null, Jody R.

    2013-01-01

    After takeoff, aircraft must merge into en route (Center) airspace traffic flows which may be subject to constraints that create localized demand-capacity imbalances. When demand exceeds capacity, Traffic Management Coordinators (TMCs) often use tactical departure scheduling to manage the flow of departures into the constrained Center traffic flow. Tactical departure scheduling usually involves use of a Call for Release (CFR) procedure wherein the Tower must call the Center TMC to coordinate a release time prior to allowing the flight to depart. In present-day operations release times are computed by the Center Traffic Management Advisor (TMA) decision support tool based upon manual estimates of aircraft ready time verbally communicated from the Tower to the Center. The TMA-computed release is verbally communicated from the Center back to the Tower where it is relayed to the Local controller as a release window that is typically three minutes wide. The Local controller will manage the departure to meet the coordinated release time window. Manual ready time prediction and verbal release time coordination are labor intensive and prone to inaccuracy. Also, use of release time windows adds uncertainty to the tactical departure process. Analysis of more than one million flights from January 2011 indicates that a significant number of tactically scheduled aircraft missed their en route slot due to ready time prediction uncertainty. Uncertainty in ready time estimates may result in missed opportunities to merge into constrained en route flows and lead to lost throughput. Next Generation Air Transportation System (NextGen) plans call for development of Tower automation systems capable of computing surface trajectory-based ready time estimates. NASA has developed the Precision Departure Release Capability (PDRC) concept that uses this technology to improve tactical departure scheduling by automatically communicating surface trajectory-based ready time predictions to the Center scheduling tool. The PDRC concept also incorporates earlier NASA and FAA research into automation-assisted CFR coordination. The PDRC concept helps reduce uncertainty by automatically communicating coordinated release times with seconds-level precision enabling TMCs to work with target times rather than windows. NASA has developed a PDRC prototype system that integrates the Center's TMA system with a research prototype Tower decision support tool. A two-phase field evaluation was conducted at NASA's North Texas Research Station (NTX) in Dallas-Fort Worth. The field evaluation validated the PDRC concept and demonstrated reduced release time uncertainty while being used for tactical departure scheduling of more than 230 operational flights over 29 weeks of operations. This paper presents the Technology Description. Companion papers include the Final Report and a Concept of Operations.

  13. Precision Departure Release Capability (PDRC): NASA to FAA Research Transition

    NASA Technical Reports Server (NTRS)

    Engelland, Shawn; Davis, Thomas J.

    2013-01-01

    After takeoff, aircraft must merge into en route (Center) airspace traffic flows which may be subject to constraints that create localized demand-capacity imbalances. When demand exceeds capacity, Traffic Management Coordinators (TMCs) and Frontline Managers (FLMs) often use tactical departure scheduling to manage the flow of departures into the constrained Center traffic flow. Tactical departure scheduling usually involves use of a Call for Release (CFR) procedure wherein the Tower must call the Center to coordinate a release time prior to allowing the flight to depart. In present-day operations release times are computed by the Center Traffic Management Advisor (TMA) decision support tool based upon manual estimates of aircraft ready time verbally communicated from the Tower to the Center. The TMA-computed release time is verbally communicated from the Center back to the Tower where it is relayed to the Local controller as a release window that is typically three minutes wide. The Local controller will manage the departure to meet the coordinated release time window. Manual ready time prediction and verbal release time coordination are labor intensive and prone to inaccuracy. Also, use of release time windows adds uncertainty to the tactical departure process. Analysis of more than one million flights from January 2011 indicates that a significant number of tactically scheduled aircraft missed their en route slot due to ready time prediction uncertainty. Uncertainty in ready time estimates may result in missed opportunities to merge into constrained en route flows and lead to lost throughput. Next Generation Air Transportation System plans call for development of Tower automation systems capable of computing surface trajectory-based ready time estimates. NASA has developed the Precision Departure Release Capability (PDRC) concept that improves tactical departure scheduling by automatically communicating surface trajectory-based ready time predictions and departure runway assignments to the Center scheduling tool. The PDRC concept also incorporates earlier NASA and FAA research into automation-assisted CFR coordination. The PDRC concept reduces uncertainty by automatically communicating coordinated release times with seconds-level precision enabling TMCs and FLMs to work with target times rather than windows. NASA has developed a PDRC prototype system that integrates the Center's TMA system with a research prototype Tower decision support tool. A two-phase field evaluation was conducted at NASA's North Texas Research Station in Dallas-Fort Worth. The field evaluation validated the PDRC concept and demonstrated reduced release time uncertainty while being used for tactical departure scheduling of more than 230 operational flights over 29 weeks of operations.

  14. Precision Departure Release Capability (PDRC) Concept of Operations

    NASA Technical Reports Server (NTRS)

    Engelland, Shawn; Capps, Richard A.; Day, Kevin Brian

    2013-01-01

    After takeoff, aircraft must merge into en route (Center) airspace traffic flows which may be subject to constraints that create localized demandcapacity imbalances. When demand exceeds capacity Traffic Management Coordinators (TMCs) often use tactical departure scheduling to manage the flow of departures into the constrained Center traffic flow. Tactical departure scheduling usually involves use of a Call for Release (CFR) procedure wherein the Tower must call the Center TMC to coordinate a release time prior to allowing the flight to depart. In present-day operations release times are computed by the Center Traffic Management Advisor (TMA) decision support tool based upon manual estimates of aircraft ready time verbally communicated from the Tower to the Center. The TMA-computed release is verbally communicated from the Center back to the Tower where it is relayed to the Local controller as a release window that is typically three minutes wide. The Local controller will manage the departure to meet the coordinated release time window. Manual ready time prediction and verbal release time coordination are labor intensive and prone to inaccuracy. Also, use of release time windows adds uncertainty to the tactical departure process. Analysis of more than one million flights from January 2011 indicates that a significant number of tactically scheduled aircraft missed their en route slot due to ready time prediction uncertainty. Uncertainty in ready time estimates may result in missed opportunities to merge into constrained en route flows and lead to lost throughput. Next Generation Air Transportation System (NextGen) plans call for development of Tower automation systems capable of computing surface trajectory-based ready time estimates. NASA has developed the Precision Departure Release Capability (PDRC) concept that uses this technology to improve tactical departure scheduling by automatically communicating surface trajectory-based ready time predictions to the Center scheduling tool. The PDRC concept also incorporates earlier NASA and FAA research into automation-assisted CFR coordination. The PDRC concept helps reduce uncertainty by automatically communicating coordinated release times with seconds-level precision enabling TMCs to work with target times rather than windows. NASA has developed a PDRC prototype system that integrates the Center's TMA system with a research prototype Tower decision support tool. A two-phase field evaluation was conducted at NASA's North Texas Research Station (NTX) in DallasFort Worth. The field evaluation validated the PDRC concept and demonstrated reduced release time uncertainty while being used for tactical departure scheduling of more than 230 operational flights over 29 weeks of operations. This paper presents the Concept of Operations. Companion papers include the Final Report and a Technology Description. ? SUBJECT:

  15. Improving GNSS time series for volcano monitoring: application to Canary Islands (Spain)

    NASA Astrophysics Data System (ADS)

    García-Cañada, Laura; Sevilla, Miguel J.; Pereda de Pablo, Jorge; Domínguez Cerdeña, Itahiza

    2017-04-01

    The number of permanent GNSS stations has increased significantly in recent years for different geodetic applications such as volcano monitoring, which require a high precision. Recently we have started to have coordinates time series long enough so that we can apply different analysis and filters that allow us to improve the GNSS coordinates results. Following this idea we have processed data from GNSS permanent stations used by the Spanish Instituto Geográfico Nacional (IGN) for volcano monitoring in Canary Islands to obtained time series by double difference processing method with Bernese v5.0 for the period 2007-2014. We have identified the characteristics of these time series and obtained models to estimate velocities with greater accuracy and more realistic uncertainties. In order to improve the results we have used two kinds of filters to improve the time series. The first, a spatial filter, has been computed using the series of residuals of all stations in the Canary Islands without an anomalous behaviour after removing a linear trend. This allows us to apply this filter to all sets of coordinates of the permanent stations reducing their dispersion. The second filter takes account of the temporal correlation in the coordinate time series for each station individually. A research about the evolution of the velocity depending on the series length has been carried out and it has demonstrated the need for using time series of at least four years. Therefore, in those stations with more than four years of data, we calculated the velocity and the characteristic parameters in order to have time series of residuals. This methodology has been applied to the GNSS data network in El Hierro (Canary Islands) during the 2011-2012 eruption and the subsequent magmatic intrusions (2012-2014). The results show that in the new series it is easier to detect anomalous behaviours in the coordinates, so they are most useful to detect crustal deformations in volcano monitoring.

  16. Kinematic properties of the helicopter in coordinated turns

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Jeske, J. A.

    1981-01-01

    A study on the kinematic relationship of the variables of helicopter motion in steady, coordinated turns involving inherent sideslip is described. A set of exact kinematic equations which govern a steady coordinated helical turn about an Earth referenced vertical axis is developed. A precise definition for the load factor parameter that best characterizes a coordinated turn is proposed. Formulas are developed which relate the aircraft angular rates and pitch and roll attitudes to the turn parameters, angle of attack, and inherent sideslip. A steep, coordinated helical turn at extreme angles of attack with inherent sideslip is of primary interest. The bank angle of the aircraft can differ markedly from the tilt angle of the normal load factor. The normal load factor can also differ substantially from the accelerometer reading along the vertical body axis of the aircraft. Sideslip has a strong influence on the pitch attitude and roll rate of the helicopter. Pitch rate is independent of angle of attack in a coordinated turn and in the absence of sideslip, angular rates about the stability axes are independent of the aerodynamic characteristics of the aircraft.

  17. Defect in the Joint Spectrum of Hydrogen due to Monodromy.

    PubMed

    Dullin, Holger R; Waalkens, Holger

    2018-01-12

    In addition to the well-known case of spherical coordinates, the Schrödinger equation of the hydrogen atom separates in three further coordinate systems. Separating in a particular coordinate system defines a system of three commuting operators. We show that the joint spectrum of the Hamilton operator, the z component of the angular momentum, and an operator involving the z component of the quantum Laplace-Runge-Lenz vector obtained from separation in prolate spheroidal coordinates has quantum monodromy for energies sufficiently close to the ionization threshold. The precise value of the energy above which monodromy is observed depends on the distance of the focus points of the spheroidal coordinates. The presence of monodromy means that one cannot globally assign quantum numbers to the joint spectrum. Whereas the principal quantum number n and the magnetic quantum number m correspond to the Bohr-Sommerfeld quantization of globally defined classical actions a third quantum number cannot be globally defined because the third action is globally multivalued.

  18. Coupled solar-magnetic orientation during leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) long-distance migration

    NASA Astrophysics Data System (ADS)

    Horton, T. W.; Holdaway, R. N.; Zerbini, A.; Andriolo, A.; Clapham, P. J.

    2010-12-01

    Determining how animals perform long-distance animal migration remains one of the most enduring and fundamental mysteries of behavioural ecology. It is widely accepted that navigation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and significant experimental research has documented a variety of viable orientation and navigation cues. However, relatively few investigations have attempted to reconcile experimentally determined orientation and navigation capacities of animals with empirical remotely sensed animal track data, leaving most theories of navigation and orientation untested. Here we show, using basic hypothesis testing, that leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) migration paths are non-randomly distributed in magnetic coordinate space, with local peaks in magnetic coordinate distributions equal to fractional multiples of the angular obliquity of Earth’s axis of rotation. Time series analysis of humpback whale migratory behaviours, including migration initiation, changes in course, and migratory stop-overs, further demonstrate coupling of magnetic and celestial orientation cues during long-distance migration. These unexpected and highly novel results indicate that diverse taxa integrate magnetic and celestial orientation cues during long-distance migration. These results are compatible with a 'map and compass' orientation and navigation system. Humpback whale migration track geometries further indicate a map and compass orientation system is used. Several humpback whale tracks include highly directional segments (Mercator latitude vs. longitude r2>0.99) exceeding 2000 km in length, despite exposure to variable strength (c. 0-1 km/hr) surface cross-currents. Humpback whales appear to be able to compensate for surface current drift. The remarkable directional precision of these humpback whale track segments is far better than the ±25°-40° precision of the avian magnetic compass. The positional and directional orientation data presented suggests signal transduction provides spatial information to migrating animals with better than 1° precision.

  19. Hand preferences for bimanual coordination in 29 bonobos (Pan paniscus).

    PubMed

    Chapelain, Amandine S; Hogervorst, Eef

    2009-01-03

    Brain lateralization has long been thought to be unique to humans. To investigate the origins and functions of this feature, researchers study behavioural laterality in other animals. Despite a substantial database, manual laterality in non-human primates remains a controversial topic. We give here a review of the main findings on manual preference in great apes. This article presents data on hand preferences for a bimanual coordination in 29 bonobos (Pan paniscus). The study aims to provide data on manual laterality for a complex bimanual task in this very interesting and rarely studied species. Hand preferences were assessed using the 'tube task'. This task has been used with other species, which allows reliable data comparisons. The task requires a bimanual coordinated precise action: the subject holds the tube with one hand while reaching for food inside with the other hand. As a complex task, this measure has been shown to be efficient in revealing hand preferences. It has revealed group-level right bias in chimpanzees. Bonobos had never been tested. We recorded both independent bouts (counting only the first pattern of a sequence of identical actions) and frequency (counting every action). The bonobos exhibited strong hand preferences. With frequency, 11 bonobos were classified as right-handed, 15 were left-handed and 3 had no preference. With bouts, 8 bonobos were right-handed, 9 were left-handed and 12 had no preference. No group-level bias appeared. The results are discussed in relation with previous findings and theories on brain lateralization.

  20. Hand gesture guided robot-assisted surgery based on a direct augmented reality interface.

    PubMed

    Wen, Rong; Tay, Wei-Liang; Nguyen, Binh P; Chng, Chin-Boon; Chui, Chee-Kong

    2014-09-01

    Radiofrequency (RF) ablation is a good alternative to hepatic resection for treatment of liver tumors. However, accurate needle insertion requires precise hand-eye coordination and is also affected by the difficulty of RF needle navigation. This paper proposes a cooperative surgical robot system, guided by hand gestures and supported by an augmented reality (AR)-based surgical field, for robot-assisted percutaneous treatment. It establishes a robot-assisted natural AR guidance mechanism that incorporates the advantages of the following three aspects: AR visual guidance information, surgeon's experiences and accuracy of robotic surgery. A projector-based AR environment is directly overlaid on a patient to display preoperative and intraoperative information, while a mobile surgical robot system implements specified RF needle insertion plans. Natural hand gestures are used as an intuitive and robust method to interact with both the AR system and surgical robot. The proposed system was evaluated on a mannequin model. Experimental results demonstrated that hand gesture guidance was able to effectively guide the surgical robot, and the robot-assisted implementation was found to improve the accuracy of needle insertion. This human-robot cooperative mechanism is a promising approach for precise transcutaneous ablation therapy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Analytical Kinematics and Coupled Vibrations Analysis of Mechanical System Operated by Solar Array Drive Assembly

    NASA Astrophysics Data System (ADS)

    Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.

    2017-07-01

    To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.

  2. Highly accurate pulse-per-second timing distribution over optical fibre network using VCSEL side-mode injection

    NASA Astrophysics Data System (ADS)

    Wassin, Shukree; Isoe, George M.; Gamatham, Romeo R. G.; Leitch, Andrew W. R.; Gibbon, Tim B.

    2017-01-01

    Precise and accurate timing signals distributed between a centralized location and several end-users are widely used in both metro-access and speciality networks for Coordinated Universal Time (UTC), GPS satellite systems, banking, very long baseline interferometry and science projects such as SKA radio telescope. Such systems utilize time and frequency technology to ensure phase coherence among data signals distributed across an optical fibre network. For accurate timing requirements, precise time intervals should be measured between successive pulses. In this paper we describe a novel, all optical method for quantifying one-way propagation times and phase perturbations in the fibre length, using pulse-persecond (PPS) signals. The approach utilizes side mode injection of a 1550nm 10Gbps vertical cavity surface emitting laser (VCSEL) at the remote end. A 125 μs one-way time of flight was accurately measured for 25 km G655 fibre. Since the approach is all-optical, it avoids measurement inaccuracies introduced by electro-optical conversion phase delays. Furthermore, the implementation uses cost effective VCSEL technology and suited to a flexible range of network architectures, supporting a number of end-users conducting measurements at the remote end.

  3. Accuracy Investigation of Creating Orthophotomaps Based on Images Obtained by Applying Trimble-UX5 UAV

    NASA Astrophysics Data System (ADS)

    Hlotov, Volodymyr; Hunina, Alla; Siejka, Zbigniew

    2017-06-01

    The main purpose of this work is to confirm the possibility of making largescale orthophotomaps applying unmanned aerial vehicle (UAV) Trimble- UX5. A planned altitude reference of the studying territory was carried out before to the aerial surveying. The studying territory has been marked with distinctive checkpoints in the form of triangles (0.5 × 0.5 × 0.2 m). The checkpoints used to precise the accuracy of orthophotomap have been marked with similar triangles. To determine marked reference point coordinates and check-points method of GNSS in real-time kinematics (RTK) measuring has been applied. Projecting of aerial surveying has been done with the help of installed Trimble Access Aerial Imaging, having been used to run out the UX5. Aerial survey out of the Trimble UX5 UAV has been done with the help of the digital camera SONY NEX-5R from 200m and 300 m altitude. These aerial surveying data have been calculated applying special photogrammetric software Pix 4D. The orthophotomap of the surveying objects has been made with its help. To determine the precise accuracy of the got results of aerial surveying the checkpoint coordinates according to the orthophotomap have been set. The average square error has been calculated according to the set coordinates applying GNSS measurements. A-priori accuracy estimation of spatial coordinates of the studying territory using the aerial surveying data have been calculated: mx=0.11 m, my=0.15 m, mz=0.23 m in the village of Remeniv and mx=0.26 m, my=0.38 m, mz=0.43 m in the town of Vynnyky. The accuracy of determining checkpoint coordinates has been investigated using images obtained out of UAV and the average square error of the reference points. Based on comparative analysis of the got results of the accuracy estimation of the made orthophotomap it can be concluded that the value the average square error does not exceed a-priori accuracy estimation. The possibility of applying Trimble UX5 UAV for making large-scale orthophotomaps has been investigated. The aerial surveying output data using UAV can be applied for monitoring potentially dangerous for people objects, the state border controlling, checking out the plots of settlements. Thus, it is important to control the accuracy the got results. Having based on the done analysis and experimental researches it can be concluded that applying UAV gives the possibility to find data more efficiently in comparison with the land surveying methods. As the result, the Trimble UX5 UAV gives the possibility to survey built-up territories with the required accuracy for making orthophotomaps with the following scales 1: 2000, 1: 1000, 1: 500.

  4. HIGH-PRECISION BIOLOGICAL EVENT EXTRACTION: EFFECTS OF SYSTEM AND OF DATA

    PubMed Central

    Cohen, K. Bretonnel; Verspoor, Karin; Johnson, Helen L.; Roeder, Chris; Ogren, Philip V.; Baumgartner, William A.; White, Elizabeth; Tipney, Hannah; Hunter, Lawrence

    2013-01-01

    We approached the problems of event detection, argument identification, and negation and speculation detection in the BioNLP’09 information extraction challenge through concept recognition and analysis. Our methodology involved using the OpenDMAP semantic parser with manually written rules. The original OpenDMAP system was updated for this challenge with a broad ontology defined for the events of interest, new linguistic patterns for those events, and specialized coordination handling. We achieved state-of-the-art precision for two of the three tasks, scoring the highest of 24 teams at precision of 71.81 on Task 1 and the highest of 6 teams at precision of 70.97 on Task 2. We provide a detailed analysis of the training data and show that a number of trigger words were ambiguous as to event type, even when their arguments are constrained by semantic class. The data is also shown to have a number of missing annotations. Analysis of a sampling of the comparatively small number of false positives returned by our system shows that major causes of this type of error were failing to recognize second themes in two-theme events, failing to recognize events when they were the arguments to other events, failure to recognize nontheme arguments, and sentence segmentation errors. We show that specifically handling coordination had a small but important impact on the overall performance of the system. The OpenDMAP system and the rule set are available at http://bionlp.sourceforge.net. PMID:25937701

  5. CSL protein regulates transcription of genes required to prevent catastrophic mitosis in fission yeast.

    PubMed

    Převorovský, Martin; Oravcová, Martina; Zach, Róbert; Jordáková, Anna; Bähler, Jürg; Půta, František; Folk, Petr

    2016-11-16

    For every eukaryotic cell to grow and divide, intricately coordinated action of numerous proteins is required to ensure proper cell-cycle progression. The fission yeast Schizosaccharomyces pombe has been instrumental in elucidating the fundamental principles of cell-cycle control. Mutations in S. pombe 'cut' (cell untimely torn) genes cause failed coordination between cell and nuclear division, resulting in catastrophic mitosis. Deletion of cbf11, a fission yeast CSL transcription factor gene, triggers a 'cut' phenotype, but the precise role of Cbf11 in promoting mitotic fidelity is not known. We report that Cbf11 directly activates the transcription of the acetyl-coenzyme A carboxylase gene cut6, and the biotin uptake/biosynthesis genes vht1 and bio2, with the former 2 implicated in mitotic fidelity. Cbf11 binds to a canonical, metazoan-like CSL response element (GTGGGAA) in the cut6 promoter. Expression of Cbf11 target genes shows apparent oscillations during the cell cycle using temperature-sensitive cdc25-22 and cdc10-M17 block-release experiments, but not with other synchronization methods. The penetrance of catastrophic mitosis in cbf11 and cut6 mutants is nutrient-dependent. We also show that drastic decrease in biotin availability arrests cell proliferation but does not cause mitotic defects. Taken together, our results raise the possibility that CSL proteins play conserved roles in regulating cell-cycle progression, and they could guide experiments into mitotic CSL functions in mammals.

  6. Precise Orbital and Geodetic Parameter Estimation using SLR Observations for ILRS AAC

    NASA Astrophysics Data System (ADS)

    Kim, Young-Rok; Park, Eunseo; Oh, Hyungjik Jay; Park, Sang-Young; Lim, Hyung-Chul; Park, Chandeok

    2013-12-01

    In this study, we present results of precise orbital geodetic parameter estimation using satellite laser ranging (SLR) observations for the International Laser Ranging Service (ILRS) associate analysis center (AAC). Using normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2 in SLR consolidated laser ranging data format, the NASA/ GSFC GEODYN II and SOLVE software programs were utilized for precise orbit determination (POD) and finding solutions of a terrestrial reference frame (TRF) and Earth orientation parameters (EOPs). For POD, a weekly-based orbit determination strategy was employed to process SLR observations taken from 20 weeks in 2013. For solutions of TRF and EOPs, loosely constrained scheme was used to integrate POD results of four geodetic SLR satellites. The coordinates of 11 ILRS core sites were determined and daily polar motion and polar motion rates were estimated. The root mean square (RMS) value of post-fit residuals was used for orbit quality assessment, and both the stability of TRF and the precision of EOPs by external comparison were analyzed for verification of our solutions. Results of post-fit residuals show that the RMS of the orbits of LAGEOS-1 and LAGEOS-2 are 1.20 and 1.12 cm, and those of ETALON-1 and ETALON-2 are 1.02 and 1.11 cm, respectively. The stability analysis of TRF shows that the mean value of 3D stability of the coordinates of 11 ILRS core sites is 7.0 mm. An external comparison, with respect to International Earth rotation and Reference systems Service (IERS) 08 C04 results, shows that standard deviations of polar motion XP and YP are 0.754 milliarcseconds (mas) and 0.576 mas, respectively. Our results of precise orbital and geodetic parameter estimation are reasonable and help advance research at ILRS AAC.

  7. Pulkovo Observatory: An essay on its history and scientific activity

    NASA Technical Reports Server (NTRS)

    Dadaev, A. N.

    1978-01-01

    A history of the observatory and of the development of astronomy in Russia during the past 150 years is presented. Scientific activity was traced from the earliest objectives of precise stellar coordinates to the problems of radio variabilities of quasars.

  8. Quantitative model of transport-aperture coordination during reach-to-grasp movements.

    PubMed

    Rand, Miya K; Shimansky, Y P; Hossain, Abul B M I; Stelmach, George E

    2008-06-01

    It has been found in our previous studies that the initiation of aperture closure during reach-to-grasp movements occurs when the hand distance to target crosses a threshold that is a function of peak aperture amplitude, hand velocity, and hand acceleration. Thus, a stable relationship between those four movement parameters is observed at the moment of aperture closure initiation. Based on the concept of optimal control of movements (Naslin 1969) and its application for reach-to-grasp movement regulation (Hoff and Arbib 1993), it was hypothesized that the mathematical equation expressing that relationship can be generalized to describe coordination between hand transport and finger aperture during the entire reach-to-grasp movement by adding aperture velocity and acceleration to the above four movement parameters. The present study examines whether this hypothesis is supported by the data obtained in experiments in which young adults performed reach-to-grasp movements in eight combinations of two reach-amplitude conditions and four movement-speed conditions. It was found that linear approximation of the mathematical model described the relationship among the six movement parameters for the entire aperture-closure phase with very high precision for each condition, thus supporting the hypothesis for that phase. Testing whether one mathematical model could approximate the data across all the experimental conditions revealed that it was possible to achieve the same high level of data-fitting precision only by including in the model two additional, condition-encoding parameters and using a nonlinear, artificial neural network-based approximator with two hidden layers comprising three and two neurons, respectively. This result indicates that transport-aperture coordination, as a specific relationship between the parameters of hand transport and finger aperture, significantly depends on the condition-encoding variables. The data from the aperture-opening phase also fit a linear model, whose coefficients were substantially different from those identified for the aperture-closure phase. This result supports the above hypothesis for the aperture-opening phase, and consequently, for the entire reach-to-grasp movement. However, the fitting precision was considerably lower than that for the aperture-closure phase, indicating significant trial-to-trial variability of transport-aperture coordination during the aperture-opening phase. Implications for understanding the neural mechanisms employed by the CNS for controlling reach-to-grasp movements and utilization of the mathematical model of transport-aperture coordination for data analysis are discussed.

  9. Vehicle coordinated transportation dispatching model base on multiple crisis locations

    NASA Astrophysics Data System (ADS)

    Tian, Ran; Li, Shanwei; Yang, Guoying

    2018-05-01

    Many disastrous events are often caused after unconventional emergencies occur, and the requirements of disasters are often different. It is difficult for a single emergency resource center to satisfy such requirements at the same time. Therefore, how to coordinate the emergency resources stored by multiple emergency resource centers to various disaster sites requires the coordinated transportation of emergency vehicles. In this paper, according to the problem of emergency logistics coordination scheduling, based on the related constraints of emergency logistics transportation, an emergency resource scheduling model based on multiple disasters is established.

  10. Control of DNA replication: a new facet of Hox proteins?

    PubMed

    Miotto, Benoit; Graba, Yacine

    2010-09-01

    Hox proteins are well-known as developmental transcription factors controlling cell and tissue identity, but recent findings suggest that they are also part of the cell replication machinery. Hox-mediated control of transcription and replication may ensure coordinated control of cell growth and differentiation, two processes that need to be tightly and precisely coordinated to allow proper organ formation and patterning. In this review we summarize the available data linking Hox proteins to the replication machinery and discuss the developmental and pathological implications of this new facet of Hox protein function.

  11. Rail inspection system based on iGPS

    NASA Astrophysics Data System (ADS)

    Fu, Xiaoyan; Wang, Mulan; Wen, Xiuping

    2018-05-01

    Track parameters include gauge, super elevation, cross level and so on, which could be calculated through the three-dimensional coordinates of the track. The rail inspection system based on iGPS (indoor/infrared GPS) was composed of base station, receiver, rail inspection frame, wireless communication unit, display and control unit and data processing unit. With the continuous movement of the inspection frame, the system could accurately inspect the coordinates of rail; realize the intelligent detection and precision measurement. According to principle of angle intersection measurement, the inspection model was structured, and detection process was given.

  12. A Procedure to Determine the Coordinated Chromium and Calcium Isotopic Composition of Astromaterials Including the Chelyabinsk Meteorite

    NASA Technical Reports Server (NTRS)

    Tappa, M. J.; Mills, R. D.; Ware, B.; Simon, J. I.

    2014-01-01

    The isotopic compositions of elements are often used to characterize nucelosynthetic contributions in early Solar System objects. Coordinated multiple middle-mass elements with differing volatilities may provide information regarding the location of condensation of early Solar System solids. Here we detail new procedures that we have developed to make high-precision multi-isotope measurements of chromium and calcium using thermal ionization mass spectrometry, and characterize a suite of chondritic and terrestrial material including two fragments of the Chelyabinsk LL-chondrite.

  13. Development of a high-precision selenodetic coordinate system for the physical surface of the Moon based on LED beacons on its surface

    NASA Astrophysics Data System (ADS)

    Shirenin, A. M.; Mazurova, E. M.; Bagrov, A. V.

    2016-11-01

    The paper presents a mathematical algorithm for processing an array of angular measurements of light beacons on images of the lunar surface onboard a polar artificial lunar satellite (PALS) during the Luna-Glob mission and coordinate-time referencing of the PALS for the development of reference selenocentric coordinate systems. The algorithm makes it possible to obtain angular positions of point light beacons located on the surface of the Moon in selenocentric celestial coordinates. The operation of measurement systems that determine the position and orientation of the PALS during its active existence have been numerically simulated. Recommendations have been made for the optimal use of different types of measurements, including ground radio trajectory measurements, navigational star sensors based on the onboard star catalog, gyroscopic orientation systems, and space videos of the lunar surface.

  14. Output variability across animals and levels in a motor system

    PubMed Central

    Norris, Brian J; Günay, Cengiz; Kueh, Daniel

    2018-01-01

    Rhythmic behaviors vary across individuals. We investigated the sources of this output variability across a motor system, from the central pattern generator (CPG) to the motor plant. In the bilaterally symmetric leech heartbeat system, the CPG orchestrates two coordinations in the bilateral hearts with different intersegmental phase relations (Δϕ) and periodic side-to-side switches. Population variability is large. We show that the system is precise within a coordination, that differences in repetitions of a coordination contribute little to population output variability, but that differences between bilaterally homologous cells may contribute to some of this variability. Nevertheless, much output variability is likely associated with genetic and life history differences among individuals. Variability of Δϕ were coordination-specific: similar at all levels in one, but significantly lower for the motor pattern than the CPG pattern in the other. Mechanisms that transform CPG output to motor neurons may limit output variability in the motor pattern. PMID:29345614

  15. Implementation and validation of an implant-based coordinate system for RSA migration calculation.

    PubMed

    Laende, Elise K; Deluzio, Kevin J; Hennigar, Allan W; Dunbar, Michael J

    2009-10-16

    An in vitro radiostereometric analysis (RSA) phantom study of a total knee replacement was carried out to evaluate the effect of implementing two new modifications to the conventional RSA procedure: (i) adding a landmark of the tibial component as an implant marker and (ii) defining an implant-based coordinate system constructed from implant landmarks for the calculation of migration results. The motivation for these two modifications were (i) to improve the representation of the implant by the markers by including the stem tip marker which increases the marker distribution (ii) to recover clinical RSA study cases with insufficient numbers of markers visible in the implant polyethylene and (iii) to eliminate errors in migration calculations due to misalignment of the anatomical axes with the RSA global coordinate system. The translational and rotational phantom studies showed no loss of accuracy with the two new measurement methods. The RSA system employing these methods has a precision of better than 0.05 mm for translations and 0.03 degrees for rotations, and an accuracy of 0.05 mm for translations and 0.15 degrees for rotations. These results indicate that the new methods to improve the interpretability, relevance, and standardization of the results do not compromise precision and accuracy, and are suitable for application to clinical data.

  16. Antenna Linear-Quadratic-Gaussian (LQG) Controllers: Properties, Limits of Performance, and Tuning Procedure

    NASA Technical Reports Server (NTRS)

    Gawronski, W.

    2004-01-01

    Wind gusts are the main disturbances that depreciate tracking precision of microwave antennas and radiotelescopes. The linear-quadratic-Gaussian (LQG) controllers - as compared with the proportional-and-integral (PI) controllers significantly improve the tracking precision in wind disturbances. However, their properties have not been satisfactorily understood; consequently, their tuning is a trial-and-error process. A control engineer has two tools to tune an LQG controller: the choice of coordinate system of the controller model and the selection of weights of the LQG performance index. This article analyzes properties of an open- and closed-loop antenna. It shows that the proper choice of coordinates of the open-loop model simplifies the shaping of the closed-loop performance. The closed-loop properties are influenced by the LQG weights. The article shows the impact of the weights on the antenna closed-loop bandwidth, disturbance rejection properties, and antenna acceleration. The bandwidth and the disturbance rejection characterize the antenna performance, while the acceleration represents the performance limit set by the antenna hardware (motors). The article presents the controller tuning procedure, based on the coordinate selection and the weight properties. The procedure rationally shapes the closed-loop performance, as an alternative to the trial-and-error approach.

  17. Geometrically constrained kinematic global navigation satellite systems positioning: Implementation and performance

    NASA Astrophysics Data System (ADS)

    Asgari, Jamal; Mohammadloo, Tannaz H.; Amiri-Simkooei, Ali Reza

    2015-09-01

    GNSS kinematic techniques are capable of providing precise coordinates in extremely short observation time-span. These methods usually determine the coordinates of an unknown station with respect to a reference one. To enhance the precision, accuracy, reliability and integrity of the estimated unknown parameters, GNSS kinematic equations are to be augmented by possible constraints. Such constraints could be derived from the geometric relation of the receiver positions in motion. This contribution presents the formulation of the constrained kinematic global navigation satellite systems positioning. Constraints effectively restrict the definition domain of the unknown parameters from the three-dimensional space to a subspace defined by the equation of motion. To test the concept of the constrained kinematic positioning method, the equation of a circle is employed as a constraint. A device capable of moving on a circle was made and the observations from 11 positions on the circle were analyzed. Relative positioning was conducted by considering the center of the circle as the reference station. The equation of the receiver's motion was rewritten in the ECEF coordinates system. A special attention is drawn onto how a constraint is applied to kinematic positioning. Implementing the constraint in the positioning process provides much more precise results compared to the unconstrained case. This has been verified based on the results obtained from the covariance matrix of the estimated parameters and the empirical results using kinematic positioning samples as well. The theoretical standard deviations of the horizontal components are reduced by a factor ranging from 1.24 to 2.64. The improvement on the empirical standard deviation of the horizontal components ranges from 1.08 to 2.2.

  18. A Comparison of implant impression precision: Different materials and techniques

    PubMed Central

    Tabesh, Mahtab; Alikhasi, Marzieh

    2018-01-01

    Background Precision of implant impressions is a prerequisite for long-term success of implant supported prostheses. Impression materials and impression techniques are two important factors that impression precision relies on. Material and Methods A model of edentulous maxilla containing four implants inserted by All-on-4 guide was constructed. Seventy two impressions using polyether (PE), polyvinyl siloxane (PVS), and vinyl siloxanether (VSE) materials with direct and indirect techniques were made (n=12). Coordinates of implants in casts were measured using coordinate measuring machine (CMM). Data were analyzed with ANOVA; t-test and Tukey test were used for post hoc. Results With two-way ANOVA, mean values of linear displacements of implants were significantly different among materials and techniques. One-way ANOVA and Tukey showed significant difference between PE and VSE (P=0.019), PE and PVS (P=0.002) in direct technique, and between PVS and PE (P<0.001), PVS and VSE (P<0.001) in indirect technique. One-way ANOVA and t-test showed significant difference between the two techniques in PVS groups (P<0.001) and in PE groups (P=0.02). Two-way ANOVA showed mean values of rotational displacement of implants were significantly different among materials. One-way ANOVA and Tukey test showed significant difference between PVS and PE (P=0.001) and between PVS and VSE (P=0.012) in indirect groups. Conclusions On the basis of the results, when deciding on the material to make an impression of implants, PE is recommended for direct technique while PE and VSE are recommended for indirect technique. Recommended technique for VSE is either direct or indirect; and for PE and PVS is direct. Key words:Polyvinyl siloxane, polyether, vinyl siloxanether, direct technique, indirect technique, All-on-4, coordinate measuring machine. PMID:29670733

  19. Optimized formulas for the gravitational field of a tesseroid

    NASA Astrophysics Data System (ADS)

    Grombein, Thomas; Seitz, Kurt; Heck, Bernhard

    2013-07-01

    Various tasks in geodesy, geophysics, and related geosciences require precise information on the impact of mass distributions on gravity field-related quantities, such as the gravitational potential and its partial derivatives. Using forward modeling based on Newton's integral, mass distributions are generally decomposed into regular elementary bodies. In classical approaches, prisms or point mass approximations are mostly utilized. Considering the effect of the sphericity of the Earth, alternative mass modeling methods based on tesseroid bodies (spherical prisms) should be taken into account, particularly in regional and global applications. Expressions for the gravitational field of a point mass are relatively simple when formulated in Cartesian coordinates. In the case of integrating over a tesseroid volume bounded by geocentric spherical coordinates, it will be shown that it is also beneficial to represent the integral kernel in terms of Cartesian coordinates. This considerably simplifies the determination of the tesseroid's potential derivatives in comparison with previously published methodologies that make use of integral kernels expressed in spherical coordinates. Based on this idea, optimized formulas for the gravitational potential of a homogeneous tesseroid and its derivatives up to second-order are elaborated in this paper. These new formulas do not suffer from the polar singularity of the spherical coordinate system and can, therefore, be evaluated for any position on the globe. Since integrals over tesseroid volumes cannot be solved analytically, the numerical evaluation is achieved by means of expanding the integral kernel in a Taylor series with fourth-order error in the spatial coordinates of the integration point. As the structure of the Cartesian integral kernel is substantially simplified, Taylor coefficients can be represented in a compact and computationally attractive form. Thus, the use of the optimized tesseroid formulas particularly benefits from a significant decrease in computation time by about 45 % compared to previously used algorithms. In order to show the computational efficiency and to validate the mathematical derivations, the new tesseroid formulas are applied to two realistic numerical experiments and are compared to previously published tesseroid methods and the conventional prism approach.

  20. Precise, High-throughput Analysis of Bacterial Growth.

    PubMed

    Kurokawa, Masaomi; Ying, Bei-Wen

    2017-09-19

    Bacterial growth is a central concept in the development of modern microbial physiology, as well as in the investigation of cellular dynamics at the systems level. Recent studies have reported correlations between bacterial growth and genome-wide events, such as genome reduction and transcriptome reorganization. Correctly analyzing bacterial growth is crucial for understanding the growth-dependent coordination of gene functions and cellular components. Accordingly, the precise quantitative evaluation of bacterial growth in a high-throughput manner is required. Emerging technological developments offer new experimental tools that allow updates of the methods used for studying bacterial growth. The protocol introduced here employs a microplate reader with a highly optimized experimental procedure for the reproducible and precise evaluation of bacterial growth. This protocol was used to evaluate the growth of several previously described Escherichia coli strains. The main steps of the protocol are as follows: the preparation of a large number of cell stocks in small vials for repeated tests with reproducible results, the use of 96-well plates for high-throughput growth evaluation, and the manual calculation of two major parameters (i.e., maximal growth rate and population density) representing the growth dynamics. In comparison to the traditional colony-forming unit (CFU) assay, which counts the cells that are cultured in glass tubes over time on agar plates, the present method is more efficient and provides more detailed temporal records of growth changes, but has a stricter detection limit at low population densities. In summary, the described method is advantageous for the precise and reproducible high-throughput analysis of bacterial growth, which can be used to draw conceptual conclusions or to make theoretical observations.

  1. Use of the RISK21 roadmap and matrix: human health risk assessment of the use of a pyrethroid in bed netting

    PubMed Central

    Doe, John E.; Lander, Deborah R.; Doerrer, Nancy G.; Heard, Nina; Hines, Ronald N.; Lowit, Anna B.; Pastoor, Timothy; Phillips, Richard D.; Sargent, Dana; Sherman, James H.; Young Tanir, Jennifer; Embry, Michelle R.

    2016-01-01

    Abstract The HESI-coordinated RISK21 roadmap and matrix are tools that provide a transparent method to compare exposure and toxicity information and assess whether additional refinement is required to obtain the necessary precision level for a decision regarding safety. A case study of the use of a pyrethroid, “pseudomethrin,” in bed netting to control malaria is presented to demonstrate the application of the roadmap and matrix. The evaluation began with a problem formulation step. The first assessment utilized existing information pertaining to the use and the class of chemistry. At each stage of the step-wise approach, the precision of the toxicity and exposure estimates were refined as necessary by obtaining key data which enabled a decision on safety to be made efficiently and with confidence. The evaluation demonstrated the concept of using existing information within the RISK21 matrix to drive the generation of additional data using a value-of-information approach. The use of the matrix highlighted whether exposure or toxicity required further investigation and emphasized the need to address the default uncertainty factor of 100 at the highest tier of the evaluation. It also showed how new methodology such as the use of in vitro studies and assays could be used to answer the specific questions which arise through the use of the matrix. The matrix also serves as a useful means to communicate progress to stakeholders during an assessment of chemical use. PMID:26517449

  2. Manufacture of ultra high precision aerostatic bearings based on glass guide

    NASA Astrophysics Data System (ADS)

    Guo, Meng; Dai, Yifan; Peng, Xiaoqiang; Tie, Guipeng; Lai, Tao

    2017-10-01

    The aerostatic guide in the traditional three-coordinate measuring machine and profilometer generally use metal or ceramics material. Limited by the guide processing precision, the measurement accuracy of these traditional instruments is around micro-meter level. By selection of optical materials as guide material, optical processing method and laser interference measurement can be introduced to the traditional aerostatic bearings manufacturing field. By using the large aperture wave-front interference measuring equipment , the shape and position error of the glass guide can be obtained in high accuracy and then it can be processed to 0.1μm or even better with the aid of Magnetorheological Finishing(MRF) and Computer Controlled Optical Surfacing (CCOS) process and other modern optical processing method, so the accuracy of aerostatic bearings can be fundamentally improved and ultra high precision coordinate measuring can be achieved. This paper introduces the fabrication and measurement process of the glass guide by K9 with 300mm measuring range, and its working surface accuracy is up to 0.1μm PV, the verticality and parallelism error between the two guide rail face is better than 2μm, and the straightness of the aerostatic bearings by this K9 glass guide is up to 40nm after error compensation.

  3. Octopuses use a human-like strategy to control precise point-to-point arm movements.

    PubMed

    Sumbre, Germán; Fiorito, Graziano; Flash, Tamar; Hochner, Binyamin

    2006-04-18

    One of the key problems in motor control is mastering or reducing the number of degrees of freedom (DOFs) through coordination. This problem is especially prominent with hyper-redundant limbs such as the extremely flexible arm of the octopus. Several strategies for simplifying these control problems have been suggested for human point-to-point arm movements. Despite the evolutionary gap and morphological differences, humans and octopuses evolved similar strategies when fetching food to the mouth. To achieve this precise point-to-point-task, octopus arms generate a quasi-articulated structure based on three dynamic joints. A rotational movement around these joints brings the object to the mouth . Here, we describe a peripheral neural mechanism-two waves of muscle activation propagate toward each other, and their collision point sets the medial-joint location. This is a remarkably simple mechanism for adjusting the length of the segments according to where the object is grasped. Furthermore, similar to certain human arm movements, kinematic invariants were observed at the joint level rather than at the end-effector level, suggesting intrinsic control coordination. The evolutionary convergence to similar geometrical and kinematic features suggests that a kinematically constrained articulated limb controlled at the level of joint space is the optimal solution for precise point-to-point movements.

  4. Measuring levee elevation heights in North Louisiana.

    DOT National Transportation Integrated Search

    2009-12-01

    The primary goals of this research are to measure the elevation and centerline coordinates of the top of federal and local levees and to ensure that resulting GPS measurement data are within a precise interval of plus or minus 3/10ths of a foot verti...

  5. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation

    DOE PAGES

    Zhang, Peng; Lee, Seungah; Yu, Hyunung; ...

    2015-06-15

    Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the corresponding localization precisions, super-resolution images were reconstructed. Depending onmore » the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions was resolved and provided more elaborate localization information. This novel fluorescence-free super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable subdiffraction limit images.« less

  6. Estimating the total energy demand for supra-maximal exercise using the VO2-power regression from an incremental exercise test.

    PubMed

    Aisbett, B; Le Rossignol, P

    2003-09-01

    The VO2-power regression and estimated total energy demand for a 6-minute supra-maximal exercise test was predicted from a continuous incremental exercise test. Sub-maximal VO2-power co-ordinates were established from the last 40 seconds (s) of 150-second exercise stages. The precision of the estimated total energy demand was determined using the 95% confidence interval (95% CI) of the estimated total energy demand. The linearity of the individual VO2-power regression equations was determined using Pearson's correlation coefficient. The mean 95% CI of the estimated total energy demand was 5.9 +/- 2.5 mL O2 Eq x kg(-1) x min(-1), and the mean correlation coefficient was 0.9942 +/- 0.0042. The current study contends that the sub-maximal VO2-power co-ordinates from a continuous incremental exercise test can be used to estimate supra-maximal energy demand without compromising the precision of the accumulated oxygen deficit (AOD) method.

  7. Modeling and Assessment of GPS/BDS Combined Precise Point Positioning.

    PubMed

    Chen, Junping; Wang, Jungang; Zhang, Yize; Yang, Sainan; Chen, Qian; Gong, Xiuqiang

    2016-07-22

    Precise Point Positioning (PPP) technique enables stand-alone receivers to obtain cm-level positioning accuracy. Observations from multi-GNSS systems can augment users with improved positioning accuracy, reliability and availability. In this paper, we present and evaluate the GPS/BDS combined PPP models, including the traditional model and a simplified model, where the inter-system bias (ISB) is treated in different way. To evaluate the performance of combined GPS/BDS PPP, kinematic and static PPP positions are compared to the IGS daily estimates, where 1 month GPS/BDS data of 11 IGS Multi-GNSS Experiment (MGEX) stations are used. The results indicate apparent improvement of GPS/BDS combined PPP solutions in both static and kinematic cases, where much smaller standard deviations are presented in the magnitude distribution of coordinates RMS statistics. Comparisons between the traditional and simplified combined PPP models show no difference in coordinate estimations, and the inter system biases between the GPS/BDS system are assimilated into receiver clock, ambiguities and pseudo-range residuals accordingly.

  8. Calibration of an Outdoor Distributed Camera Network with a 3D Point Cloud

    PubMed Central

    Ortega, Agustín; Silva, Manuel; Teniente, Ernesto H.; Ferreira, Ricardo; Bernardino, Alexandre; Gaspar, José; Andrade-Cetto, Juan

    2014-01-01

    Outdoor camera networks are becoming ubiquitous in critical urban areas of the largest cities around the world. Although current applications of camera networks are mostly tailored to video surveillance, recent research projects are exploiting their use to aid robotic systems in people-assisting tasks. Such systems require precise calibration of the internal and external parameters of the distributed camera network. Despite the fact that camera calibration has been an extensively studied topic, the development of practical methods for user-assisted calibration that minimize user intervention time and maximize precision still pose significant challenges. These camera systems have non-overlapping fields of view, are subject to environmental stress, and are likely to suffer frequent recalibration. In this paper, we propose the use of a 3D map covering the area to support the calibration process and develop an automated method that allows quick and precise calibration of a large camera network. We present two cases of study of the proposed calibration method: one is the calibration of the Barcelona Robot Lab camera network, which also includes direct mappings (homographies) between image coordinates and world points in the ground plane (walking areas) to support person and robot detection and localization algorithms. The second case consist of improving the GPS positioning of geo-tagged images taken with a mobile device in the Facultat de Matemàtiques i Estadística (FME) patio at the Universitat Politècnica de Catalunya (UPC). PMID:25076221

  9. Calibration of an outdoor distributed camera network with a 3D point cloud.

    PubMed

    Ortega, Agustín; Silva, Manuel; Teniente, Ernesto H; Ferreira, Ricardo; Bernardino, Alexandre; Gaspar, José; Andrade-Cetto, Juan

    2014-07-29

    Outdoor camera networks are becoming ubiquitous in critical urban areas of the largest cities around the world. Although current applications of camera networks are mostly tailored to video surveillance, recent research projects are exploiting their use to aid robotic systems in people-assisting tasks. Such systems require precise calibration of the internal and external parameters of the distributed camera network. Despite the fact that camera calibration has been an extensively studied topic, the development of practical methods for user-assisted calibration that minimize user intervention time and maximize precision still pose significant challenges. These camera systems have non-overlapping fields of view, are subject to environmental stress, and are likely to suffer frequent recalibration. In this paper, we propose the use of a 3D map covering the area to support the calibration process and develop an automated method that allows quick and precise calibration of a large camera network. We present two cases of study of the proposed calibration method: one is the calibration of the Barcelona Robot Lab camera network, which also includes direct mappings (homographies) between image coordinates and world points in the ground plane (walking areas) to support person and robot detection and localization algorithms. The second case consist of improving the GPS positioning of geo-tagged images taken with a mobile device in the Facultat de Matemàtiques i Estadística (FME) patio at the Universitat Politècnica de Catalunya (UPC).

  10. A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bert, Christoph; Metheany, Katherine G.; Doppke, Karen

    2005-09-15

    External beam irradiation requires precise positioning of the target relative to the treatment planning coordinate system. A three-dimensional (3D) surface imaging system for patient positioning has recently been installed in one of our linear accelerator (linac) rooms. The device utilizes close-range photogrammetry to generate a 3D model of the patient's surface. This geometric model can be made to look like a digital camera image if wrapped with a gray-level image (texture mapping) that shows surface coloration. The system is calibrated to the linac coordinate system and has been designed as a patient setup device. To reproduce patient position in fractionatedmore » radiotherapy, the daily patient surface model is registered to a previously recorded reference surface. Using surface registration, the system calculates the rigid-body transformation that minimizes the distance between the treatment and the reference surface models in a region-of-interest (ROI). This transformation is expressed as a set of new couch coordinates at which the patient position best matches with the reference data. If respiratory motion is a concern, the surface can be obtained with a gated acquisition at a specified phase of the respiratory cycle. To analyze the accuracy of the system, we performed several experiments with phantoms to assess stability, alignment accuracy, precision of the gating function, and surface topology. The reproducibility of surface measurements was tested for periods up to 57 h. Each recorded frame was registered to the reference surface to calculate the required couch adjustment. The system stability over this time period was better than 0.5 mm. To measure the accuracy of the system to detect and quantify patient shift relative to a reference image, we compared the shift detected by the surface imaging system with known couch transitions in a phantom study. The maximum standard deviation was 0.75 mm for the three translational degrees of freedom, and less than 0.1 deg. for each rotation. Surface model precision was tested against computed tomography (CT)-derived surface topology. The root-mean-square rms of the distance between the surfaces was 0.65 mm, excluding regions where beam hardening caused artifacts in the CT data. Measurements were made to test the gated acquisition mode. The time-dependent amplitude was measured with the surface imaging system and an established respiratory gating system based on infrared (IR)-marker detection. The measured motion trajectories from both systems were compared to the known trajectory of the stage. The standard deviations of the amplitude differences to the motor trajectory were 0.04 and 0.15 mm for the IR-marker system and the 3D surface imaging system, respectively. A limitation of the surface-imaging device is the frame rate of 6.5 Hz, because rapid changes of the motion trajectory cannot be detected. In conclusion, the system is accurate and sufficiently stable to be used in the clinic. The errors computed when comparing the surface model with CT geometry were submillimeter, and deviations in the alignment and gating-signal tests were of the same magnitude.« less

  11. How Moving Together Brings Us Together: When Coordinated Rhythmic Movement Affects Cooperation

    PubMed Central

    Cross, Liam; Wilson, Andrew D.; Golonka, Sabrina

    2016-01-01

    Although it is well established that rhythmically coordinating with a social partner can increase cooperation, it is as yet unclear when and why intentional coordination has such effects. We distinguish three dimensions along which explanations might vary. First, pro-social effects might require in-phase synchrony or simply coordination. Second, the effects of rhythmic movements on cooperation might be direct or mediated by an intervening variable. Third, the pro-social effects might occur in proportion to the quality of the coordination, or occur once some threshold amount of coordination has occurred. We report an experiment and two follow-ups which sought to identify which classes of models are required to account for the positive effects of coordinated rhythmic movement on cooperation. Across the studies, we found evidence (1) that coordination, and not just synchrony, can have pro-social consequences (so long as the social nature of the task is perceived), (2) that the effects of intentional coordination are direct, not mediated, and (3) that the degree of the coordination did not predict the degree of cooperation. The fact of inter-personal coordination (moving together in time and in a social context) is all that's required for pro-social effects. We suggest that future research should use the kind of carefully controllable experimental task used here to continue to develop explanations for when and why coordination affects pro-social behaviors. PMID:28066301

  12. Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate

    NASA Astrophysics Data System (ADS)

    Worthy, Anna; Grosjean, Arnaud; Pfrunder, Michael C.; Xu, Yanan; Yan, Cheng; Edwards, Grant; Clegg, Jack K.; McMurtrie, John C.

    2018-01-01

    Single crystals are typically brittle, inelastic materials. Such mechanical responses limit their use in practical applications, particularly in flexible electronics and optical devices. Here we describe single crystals of a well-known coordination compound—copper(II) acetylacetonate—that are flexible enough to be reversibly tied into a knot. Mechanical measurements indicate that the crystals exhibit an elasticity similar to that of soft materials such as nylon, and thus display properties normally associated with both hard and soft matter. Using microfocused synchrotron radiation, we mapped the changes in crystal structure that occur on bending, and determined the mechanism that allows this flexibility with atomic precision. We show that, under strain, the molecules in the crystal reversibly rotate, and thus reorganize to allow the mechanical compression and expansion required for elasticity and still maintain the integrity of the crystal structure.

  13. The Design and Implementation of Indoor Localization System Using Magnetic Field Based on Smartphone

    NASA Astrophysics Data System (ADS)

    Liu, J.; Jiang, C.; Shi, Z.

    2017-09-01

    Sufficient signal nodes are mostly required to implement indoor localization in mainstream research. Magnetic field take advantage of high precision, stable and reliability, and the reception of magnetic field signals is reliable and uncomplicated, it could be realized by geomagnetic sensor on smartphone, without external device. After the study of indoor positioning technologies, choose the geomagnetic field data as fingerprints to design an indoor localization system based on smartphone. A localization algorithm that appropriate geomagnetic matching is designed, and present filtering algorithm and algorithm for coordinate conversion. With the implement of plot geomagnetic fingerprints, the indoor positioning of smartphone without depending on external devices can be achieved. Finally, an indoor positioning system which is based on Android platform is successfully designed, through the experiments, proved the capability and effectiveness of indoor localization algorithm.

  14. Integrated regulation of motor-driven organelle transport by scaffolding proteins.

    PubMed

    Fu, Meng-meng; Holzbaur, Erika L F

    2014-10-01

    Intracellular trafficking pathways, including endocytosis, autophagy, and secretion, rely on directed organelle transport driven by the opposing microtubule motor proteins kinesin and dynein. Precise spatial and temporal targeting of vesicles and organelles requires the integrated regulation of these opposing motors, which are often bound simultaneously to the same cargo. Recent progress demonstrates that organelle-associated scaffolding proteins, including Milton/TRAKs (trafficking kinesin-binding protein), JIP1, JIP3 (JNK-interacting proteins), huntingtin, and Hook1, interact with molecular motors to coordinate activity and sustain unidirectional transport. Scaffolding proteins also bind to upstream regulatory proteins, including kinases and GTPases, to modulate transport in the cell. This integration of regulatory control with motor activity allows for cargo-specific changes in the transport or targeting of organelles in response to cues from the complex cellular environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A discontinuous Galerkin method for the shallow water equations in spherical triangular coordinates

    NASA Astrophysics Data System (ADS)

    Läuter, Matthias; Giraldo, Francis X.; Handorf, Dörthe; Dethloff, Klaus

    2008-12-01

    A global model of the atmosphere is presented governed by the shallow water equations and discretized by a Runge-Kutta discontinuous Galerkin method on an unstructured triangular grid. The shallow water equations on the sphere, a two-dimensional surface in R3, are locally represented in terms of spherical triangular coordinates, the appropriate local coordinate mappings on triangles. On every triangular grid element, this leads to a two-dimensional representation of tangential momentum and therefore only two discrete momentum equations. The discontinuous Galerkin method consists of an integral formulation which requires both area (elements) and line (element faces) integrals. Here, we use a Rusanov numerical flux to resolve the discontinuous fluxes at the element faces. A strong stability-preserving third-order Runge-Kutta method is applied for the time discretization. The polynomial space of order k on each curved triangle of the grid is characterized by a Lagrange basis and requires high-order quadature rules for the integration over elements and element faces. For the presented method no mass matrix inversion is necessary, except in a preprocessing step. The validation of the atmospheric model has been done considering standard tests from Williamson et al. [D.L. Williamson, J.B. Drake, J.J. Hack, R. Jakob, P.N. Swarztrauber, A standard test set for numerical approximations to the shallow water equations in spherical geometry, J. Comput. Phys. 102 (1992) 211-224], unsteady analytical solutions of the nonlinear shallow water equations and a barotropic instability caused by an initial perturbation of a jet stream. A convergence rate of O(Δx) was observed in the model experiments. Furthermore, a numerical experiment is presented, for which the third-order time-integration method limits the model error. Thus, the time step Δt is restricted by both the CFL-condition and accuracy demands. Conservation of mass was shown up to machine precision and energy conservation converges for both increasing grid resolution and increasing polynomial order k.

  16. Precise Selenodetic Coordinate System on Artificial Light Refers

    NASA Astrophysics Data System (ADS)

    Bagrov, Alexander; Pichkhadze, Konstantin M.; Sysoev, Valentin

    Historically a coordinate system for the Moon was established on the base of telescopic observations from the Earth. As the angular resolution of Earth-to-Space telescopic observations is limited by Earth atmosphere, and is ordinary worse then 1 ang. second, the mean accuracy of selenodetic coordinates is some angular minutes, which corresponds to errors about 900 meters for positions of lunar objects near center of visible lunar disk, and at least twice more when objects are near lunar poles. As there are no Global Positioning System nor any astronomical observation instruments on the Moon, we proposed to use an autonomous light beacon on the Luna-Globe landing module to fix its position on the surface of the moon ant to use it as refer point for fixation of spherical coordinates system for the Moon. The light beacon is designed to be surely visible by orbiting probe TV-camera. As any space probe has its own stars-orientation system, there is not a problem to calculate a set of directions to the beacon and to the referent stars in probe-centered coordinate system during flight over the beacon. Large number of measured angular positions and time of each observation will be enough to calculate both orbital parameters of the probe and selenodetic coordinates of the beacon by methods of geodesy. All this will allow fixing angular coordinates of any feature of lunar surface in one global coordinate system, referred to the beacon. The satellite’s orbit plane contains ever the center mass of main body, so if the beacon will be placed closely to a lunar pole, we shall determine pole point position of the Moon with accuracy tens times better then it is known now. When angular accuracy of self-orientation by stars of the orbital module of Luna-Glob mission will be 6 angular seconds, then being in circular orbit with height of 200 km the on-board TV-camera will allow calculation of the beacon position as well as 6" corresponding to spatial resolution of the camera. It mean that coordinates of the beacon will be determined with accuracy not worse then 6 meters on the lunar surface. Much more accuracy can be achieved if orbital probe will use as precise angular measurer as optical interferometer. The limiting accuracy of proposed method is far above any reasonable level, because it may be sub-millimeter one. Theoretical analysis shows that for achievement of 1-meter accuracy of coordinate measuring over lunar globe it will be enough to disperse over it surface some 60 light beacons. Designed by Lavochkin Association light beacon is autonomous one, and it will work at least 10 years, so coordinate frame of any other lunar mission could use established selenodetic coordinates during this period. The same approach may be used for establishing Martial coordinates system.

  17. Effect of Receiver Choosing on Point Positions Determination in Network RTK

    NASA Astrophysics Data System (ADS)

    Bulbul, Sercan; Inal, Cevat

    2016-04-01

    Nowadays, the developments in GNSS technique allow to determinate point positioning in real time. Initially, point positioning was determined by RTK (Real Time Kinematic) based on a reference station. But, to avoid systematic errors in this method, distance between the reference points and rover receiver must be shorter than10 km. To overcome this restriction in RTK method, the idea of setting more than one reference point had been suggested and, CORS (Continuously Operations Reference Systems) was put into practice. Today, countries like ABD, Germany, Japan etc. have set CORS network. CORS-TR network which has 146 reference points has also been established in 2009 in Turkey. In CORS-TR network, active CORS approach was adopted. In Turkey, CORS-TR reference stations covering whole country are interconnected and, the positions of these stations and atmospheric corrections are continuously calculated. In this study, in a selected point, RTK measurements based on CORS-TR, were made with different receivers (JAVAD TRIUMPH-1, TOPCON Hiper V, MAGELLAN PRoMark 500, PENTAX SMT888-3G, SATLAB SL-600) and with different correction techniques (VRS, FKP, MAC). In the measurements, epoch interval was taken as 5 seconds and measurement time as 1 hour. According to each receiver and each correction technique, means and differences between maximum and minimum values of measured coordinates, root mean squares in the directions of coordinate axis and 2D and 3D positioning precisions were calculated, the results were evaluated by statistical methods and the obtained graphics were interpreted. After evaluation of the measurements and calculations, for each receiver and each correction technique; the coordinate differences between maximum and minimum values were measured to be less than 8 cm, root mean squares in coordinate axis directions less than ±1.5 cm, 2D point positioning precisions less than ±1.5 cm and 3D point positioning precisions less than ±1.5 cm. In the measurement point, it has been concluded that VRS correction technique is generally better than other corrections techniques.

  18. Terrain matching image pre-process and its format transform in autonomous underwater navigation

    NASA Astrophysics Data System (ADS)

    Cao, Xuejun; Zhang, Feizhou; Yang, Dongkai; Yang, Bogang

    2007-06-01

    Underwater passive navigation technology is one of the important development orientations in the field of modern navigation. With the advantage of high self-determination, stealth at sea, anti-jamming and high precision, passive navigation is completely meet with actual navigation requirements. Therefore passive navigation has become a specific navigating method for underwater vehicles. The scientists and researchers in the navigating field paid more attention to it. The underwater passive navigation can provide accurate navigation information with main Inertial Navigation System (INS) for a long period, such as location and speed. Along with the development of micro-electronics technology, the navigation of AUV is given priority to INS assisted with other navigation methods, such as terrain matching navigation. It can provide navigation ability for a long period, correct the errors of INS and make AUV not emerge from the seabed termly. With terrain matching navigation technique, in the assistance of digital charts and ocean geographical characteristics sensors, we carry through underwater image matching assistant navigation to obtain the higher location precision, therefore it is content with the requirement of underwater, long-term, high precision and all-weather of the navigation system for Autonomous Underwater Vehicles. Tertian-assistant navigation (TAN) is directly dependent on the image information (map information) in the navigating field to assist the primary navigation system according to the path appointed in advance. In TAN, a factor coordinative important with the system operation is precision and practicability of the storable images and the database which produce the image data. If the data used for characteristics are not suitable, the system navigation precision will be low. Comparing with terrain matching assistant navigation system, image matching navigation system is a kind of high precision and low cost assistant navigation system, and its matching precision directly influences the final precision of integrated navigation system. Image matching assistant navigation is spatially matching and aiming at two underwater scenery images coming from two different sensors matriculating of the same scenery in order to confirm the relative displacement of the two images. In this way, we can obtain the vehicle's location in fiducial image known geographical relation, and the precise location information given from image matching location is transmitted to INS to eliminate its location error and greatly enhance the navigation precision of vehicle. Digital image data analysis and processing of image matching in underwater passive navigation is important. In regard to underwater geographic data analysis, we focus on the acquirement, disposal, analysis, expression and measurement of database information. These analysis items structure one of the important contents of underwater terrain matching and are propitious to know the seabed terrain configuration of navigation areas so that the best advantageous seabed terrain district and dependable navigation algorithm can be selected. In this way, we can improve the precision and reliability of terrain assistant navigation system. The pre-process and format transformation of digital image during underwater image matching are expatiated in this paper. The information of the terrain status in navigation areas need further study to provide the reliable data terrain characteristic and underwater overcast for navigation. Through realizing the choice of sea route, danger district prediction and navigating algorithm analysis, TAN can obtain more high location precision and probability, hence provide technological support for image matching of underwater passive navigation.

  19. An Expanded Theoretical Framework of Care Coordination Across Transitions in Care Settings.

    PubMed

    Radwin, Laurel E; Castonguay, Denise; Keenan, Carolyn B; Hermann, Cherice

    2016-01-01

    For many patients, high-quality, patient-centered, and cost-effective health care requires coordination among multiple clinicians and settings. Ensuring optimal care coordination requires a clear understanding of how clinician activities and continuity during transitions affect patient-centeredness and quality outcomes. This article describes an expanded theoretical framework to better understand care coordination. The framework provides clear articulation of concepts. Examples are provided of ways to measure the concepts.

  20. Research in navigation and optimization for space trajectories

    NASA Technical Reports Server (NTRS)

    Pines, S.; Kelley, H. J.

    1979-01-01

    Topics covered include: (1) initial Cartesian coordinates for rapid precision orbit prediction; (2) accelerating convergence in optimization methods using search routines by applying curvilinear projection ideas; (3) perturbation-magnitude control for difference-quotient estimation of derivatives; and (4) determining the accelerometer bias for in-orbit shuttle trajectories.

  1. Belle II SVD ladder assembly procedure and electrical qualification

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, Varghese; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaya, I.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.; Belle II SVD Collaboration

    2016-07-01

    The Belle II experiment at the SuperKEKB asymmetric e+e- collider in Japan will operate at a luminosity approximately 50 times larger than its predecessor (Belle). At its heart lies a six-layer vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is time-dependent CP violation asymmetry, which hinges on a precise charged-track vertex determination. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision three dimensional coordinate measurements of the jigs used in assembly as well as of the final SVD modules.

  2. Localization of an Underwater Control Network Based on Quasi-Stable Adjustment.

    PubMed

    Zhao, Jianhu; Chen, Xinhua; Zhang, Hongmei; Feng, Jie

    2018-03-23

    There exists a common problem in the localization of underwater control networks that the precision of the absolute coordinates of known points obtained by marine absolute measurement is poor, and it seriously affects the precision of the whole network in traditional constraint adjustment. Therefore, considering that the precision of underwater baselines is good, we use it to carry out quasi-stable adjustment to amend known points before constraint adjustment so that the points fit the network shape better. In addition, we add unconstrained adjustment for quality control of underwater baselines, the observations of quasi-stable adjustment and constrained adjustment, to eliminate the unqualified baselines and improve the results' accuracy of the two adjustments. Finally, the modified method is applied to a practical LBL (Long Baseline) experiment and obtains a mean point location precision of 0.08 m, which improves by 38% compared with the traditional method.

  3. Localization of an Underwater Control Network Based on Quasi-Stable Adjustment

    PubMed Central

    Chen, Xinhua; Zhang, Hongmei; Feng, Jie

    2018-01-01

    There exists a common problem in the localization of underwater control networks that the precision of the absolute coordinates of known points obtained by marine absolute measurement is poor, and it seriously affects the precision of the whole network in traditional constraint adjustment. Therefore, considering that the precision of underwater baselines is good, we use it to carry out quasi-stable adjustment to amend known points before constraint adjustment so that the points fit the network shape better. In addition, we add unconstrained adjustment for quality control of underwater baselines, the observations of quasi-stable adjustment and constrained adjustment, to eliminate the unqualified baselines and improve the results’ accuracy of the two adjustments. Finally, the modified method is applied to a practical LBL (Long Baseline) experiment and obtains a mean point location precision of 0.08 m, which improves by 38% compared with the traditional method. PMID:29570627

  4. On the feasibility of phase only PPP for kinematic LEO orbits

    NASA Astrophysics Data System (ADS)

    Wallat, Christoph; Schön, Steffen

    2016-04-01

    Low Earth Orbiters (LEO) are satellites in altitudes up to 1000 kilometers. From the sensor data collected on board the Earth's gravity field can be recovered. Over the last 15 years several satellite missions were brought into space and the orbit determination improved over the years. To process the sensor data, precise positioning and timing of the satellite is mandatory. There are two approaches for precise orbit determination (POD) of LEO satellites. Kinematic orbits are based on GNSS observations and star camera data measured on board of the LEO. With a Precise Point Positioning (PPP) known from the terrestrial case, using ionospheric-free linear combinations P3 and L3 three-dimensional coordinates of the LEO can be estimated for every observation epoch. To counteract the challenges in kinematic orbit determination our approach is based on a technique called GNSS receiver clock modeling (RCM). Here the frequency stability of an external oscillator is used to model the behavior of the GNSS receiver clock with piecewise linear polynomials instead of estimating epoch-wise the receiver clock time offset as an unknown parameter. When using RCM the observation geometry is stabilized and the orbit coordinates and the receiver clock error can be estimated with a better precision. The satellites of the Gravity Recovery And Climate Experiment (GRACE) mission are equipped with Ultra Stable quartz Oscillators (USO). The USO frequency stability is used to correct the GRACE GPS receiver clock. Therefore, receiver clock modeling is feasible for polynomials with a length up to 60 seconds, leading to improved mean PDOP values of 30 % and smaller formal mean standard deviations of the coordinates between 6 and 33 %. We developed a new approach for GRACE orbits using kinematic PPP with clock modeling and tested our approach with simulated and real GPS data. The idea to use only carrier phase observations in the final processing and no code measurements leads to a reduced number of observations and changes in parameter correlation in the adjustment. Canceling the code observations out of the normal equation system is possible due to a technique named parameter lumping, which will be explained in detail. The estimated coordinates of our phase only approach are comparable to the conventional PPP solution concerning standard deviations and RMS values. We will point out the advantages of our approach for the kinematic orbit determination of the GRACE satellites also for improvements in computing phase ambiguities.

  5. A precise and accurate acupoint location obtained on the face using consistency matrix pointwise fusion method.

    PubMed

    Yanq, Xuming; Ye, Yijun; Xia, Yong; Wei, Xuanzhong; Wang, Zheyu; Ni, Hongmei; Zhu, Ying; Xu, Lingyu

    2015-02-01

    To develop a more precise and accurate method, and identified a procedure to measure whether an acupoint had been correctly located. On the face, we used an acupoint location from different acupuncture experts and obtained the most precise and accurate values of acupoint location based on the consistency information fusion algorithm, through a virtual simulation of the facial orientation coordinate system. Because of inconsistencies in each acupuncture expert's original data, the system error the general weight calculation. First, we corrected each expert of acupoint location system error itself, to obtain a rational quantification for each expert of acupuncture and moxibustion acupoint location consistent support degree, to obtain pointwise variable precision fusion results, to put every expert's acupuncture acupoint location fusion error enhanced to pointwise variable precision. Then, we more effectively used the measured characteristics of different acupuncture expert's acupoint location, to improve the measurement information utilization efficiency and acupuncture acupoint location precision and accuracy. Based on using the consistency matrix pointwise fusion method on the acupuncture experts' acupoint location values, each expert's acupoint location information could be calculated, and the most precise and accurate values of each expert's acupoint location could be obtained.

  6. Precise aircraft single-point positioning using GPS post-mission orbits and satellite clock corrections

    NASA Astrophysics Data System (ADS)

    Lachapelle, G.; Cannon, M. E.; Qiu, W.; Varner, C.

    1996-09-01

    Aircraft single point position accuracy is assessed through a comparison of the single point coordinates with corresponding DGPS-derived coordinates. The platform utilized for this evaluation is a Naval Air Warfare Center P-3 Orion aircraft. Data was collected over a period of about 40 hours, spread over six days, off Florida's East Coast in July 94, using DGPS reference stations in Jacksonville, FL, and Warminster, PA. The analysis of results shows that the consistency between aircraft single point and DGPS coordinates obtained in single point positioning mode and DGPS mode is about 1 m (rms) in latitude and longitude, and 2 m (rms) in height, with instantaneous errors of up to a few metres due to the effect of the ionosphere on the single point L1 solutions.

  7. Non-contact measurement of rotation angle with solo camera

    NASA Astrophysics Data System (ADS)

    Gan, Xiaochuan; Sun, Anbin; Ye, Xin; Ma, Liqun

    2015-02-01

    For the purpose to measure a rotation angle around the axis of an object, a non-contact rotation angle measurement method based on solo camera was promoted. The intrinsic parameters of camera were calibrated using chessboard on principle of plane calibration theory. The translation matrix and rotation matrix between the object coordinate and the camera coordinate were calculated according to the relationship between the corners' position on object and their coordinates on image. Then the rotation angle between the measured object and the camera could be resolved from the rotation matrix. A precise angle dividing table (PADT) was chosen as the reference to verify the angle measurement error of this method. Test results indicated that the rotation angle measurement error of this method did not exceed +/- 0.01 degree.

  8. Scientific basis for learning transfer from movements to urinary bladder functions for bladder repair in human patients with CNS injury.

    PubMed

    Schalow, G

    2010-01-01

    Coordination Dynamics Therapy (CDT) has been shown to be able to partly repair CNS injury. The repair is based on a movement-based re-learning theory which requires at least three levels of description: the movement or pattern (and anamnesis) level, the collective variable level, and the neuron level. Upon CDT not only the actually performed movement pattern itself is repaired, but the entire dynamics of CNS organization is improved, which is the theoretical basis for (re-) learning transfer. The transfer of learning for repair from jumping on springboard and exercising on a special CDT and recording device to urinary bladder functions is investigated at the neuron level. At the movement or pattern level, the improvement of central nervous system (CNS) functioning in human patients can be seen (or partly measured) by the improvement of the performance of the pattern. At the collective variable level, coordination tendencies can be measured by the so-called 'coordination dynamics' before, during and after treatment. At the neuron level, re-learning can additionally be assessed by surface electromyography (sEMG) as alterations of single motor unit firings and motor programs. But to express the ongoing interaction between the numerous neural, muscular, and metabolic elements involved in perception and action, it is relevant to inquire how the individual afferent and efferent neurons adjust their phase and frequency coordination to other neurons to satisfy learning task requirements. With the single-nerve fibre action potential recording method it was possible to measure that distributed single neurons communicate by phase and frequency coordination. It is shown that this timed firing of neurons is getting impaired upon injury and has to be improved by learning The stability of phase and frequency coordination among afferent and efferent neuron firings can be related to pattern stability. The stability of phase and frequency coordination at the neuron level can therefore be assessed integratively at the (non-invasive) collective variable level by the arrhythmicity of turning (coordination dynamics) when a patient is exercising on a special CDT device. Upon jumping on springboard and exercising on the special CDT device, the intertwined neuronal networks, subserving movements (somatic) and urinary bladder functions (autonomic and somatic) in the sacral spinal cord, are synchronously activated and entrained to give rise to learning transfer from movements to bladder functions. Jumping on springboard and other movements primarily repair the pattern dynamics, whereas the exactly coordinated performed movements, performed on the special CDT device for turning, primarily improve the preciseness of the timed firing of neurons. The synchronous learning of perceptuomotor and perceptuobladder functioning from a dynamical perspective (giving rise to learning transfer) can be understood at the neuron level. Especially the activated phase and frequency coordination upon natural stimulation under physiologic and pathophysiologic conditions among a and gamma-motoneurons, muscle spindle afferents, touch and pain afferents, and urinary bladder stretch and tension receptor afferents in the human sacral spinal cord make understandable that somatic and parasympathetic functions are integrated in their functioning and give rise to learning transfer from movements to bladder functions. The power of this human treatment research project lies in the unit of theory, diagnostic/measurement, and praxis, namely that CNS injury can partly be repaired, including urinary bladder functions, and the repair can partly be understood even at the neuron level of description in human.

  9. Antenna Linear-Quadratic-Gaussian (LQG) Ccontrollers: Properties, Limits of Performance, and Tuning

    NASA Technical Reports Server (NTRS)

    Gawronski, Wodek K.

    2004-01-01

    The LQG controllers significantly improve antenna tracking precision, but their tuning is a trial-and-error process. A control engineer has two tools to tune an LQG controller: the choice of coordinate system of the controller, and the selection of weights of the LQG performance index. The paper selects the coordinates of the open-loop model that simplify the shaping of the closed-loop performance. and analyzes the impact of thc weights on the antenna closed-loop bandwidth, disturbance rejection properties, and antenna acceleration. Finally, it presents the LQG controller tuning procedure that rationally shapes the closed-loop performance.

  10. Redetermination of dicerium(III) tris-(sulfate) tetra-hydrate.

    PubMed

    Xu, Xin

    2007-12-06

    Ce(2)(SO(4))(3)(H(2)O)(4) was obtained hydro-thermally from an aqueous solution of cerium(III) oxide, trimethyl-amine and sulfuric acid. The precision of the structure determination has been significantly improved compared with the previous result [Dereigne (1972 ▶). Bull. Soc. Fr. Mineral. Cristallogr.95, 269-280]. The coordination about the two Ce atoms is achieved by seven and six bridging O atoms from sulfate anions. Each S atom makes four S-O-Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands.

  11. Gamma oscillations: precise temporal coordination without a metronome.

    PubMed

    Nikolić, Danko; Fries, Pascal; Singer, Wolf

    2013-02-01

    Gamma oscillations in the brain should not be conceptualized as a sine wave with constant oscillation frequency. Rather, these oscillations serve to concentrate neuronal discharges to particular phases of the oscillation cycle and thereby provide the substrate for various, functionally relevant synchronization phenomena. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Research on the aircraft level measurement by laser tracker

    NASA Astrophysics Data System (ADS)

    Ye, Xiaowen; Tang, Wuzhong; Cao, Chun

    2014-09-01

    The measuring principle of laser tracking system was introduced. The aircraft level measurement was completed by establish the measurement datum mark, select public sites, set up the aircraft coordinate system and transfer stations. Laser tracking measurement technology improved the work efficiency and ensured the installation precision of key components.

  13. Cortical inter-hemispheric circuits for multimodal vocal learning in songbirds.

    PubMed

    Paterson, Amy K; Bottjer, Sarah W

    2017-10-15

    Vocal learning in songbirds and humans is strongly influenced by social interactions based on sensory inputs from several modalities. Songbird vocal learning is mediated by cortico-basal ganglia circuits that include the SHELL region of lateral magnocellular nucleus of the anterior nidopallium (LMAN), but little is known concerning neural pathways that could integrate multimodal sensory information with SHELL circuitry. In addition, cortical pathways that mediate the precise coordination between hemispheres required for song production have been little studied. In order to identify candidate mechanisms for multimodal sensory integration and bilateral coordination for vocal learning in zebra finches, we investigated the anatomical organization of two regions that receive input from SHELL: the dorsal caudolateral nidopallium (dNCL SHELL ) and a region within the ventral arcopallium (Av). Anterograde and retrograde tracing experiments revealed a topographically organized inter-hemispheric circuit: SHELL and dNCL SHELL , as well as adjacent nidopallial areas, send axonal projections to ipsilateral Av; Av in turn projects to contralateral SHELL, dNCL SHELL , and regions of nidopallium adjacent to each. Av on each side also projects directly to contralateral Av. dNCL SHELL and Av each integrate inputs from ipsilateral SHELL with inputs from sensory regions in surrounding nidopallium, suggesting that they function to integrate multimodal sensory information with song-related responses within LMAN-SHELL during vocal learning. Av projections share this integrated information from the ipsilateral hemisphere with contralateral sensory and song-learning regions. Our results suggest that the inter-hemispheric pathway through Av may function to integrate multimodal sensory feedback with vocal-learning circuitry and coordinate bilateral vocal behavior. © 2017 Wiley Periodicals, Inc.

  14. A new FOD recognition algorithm based on multi-source information fusion and experiment analysis

    NASA Astrophysics Data System (ADS)

    Li, Yu; Xiao, Gang

    2011-08-01

    Foreign Object Debris (FOD) is a kind of substance, debris or article alien to an aircraft or system, which would potentially cause huge damage when it appears on the airport runway. Due to the airport's complex circumstance, quick and precise detection of FOD target on the runway is one of the important protections for airplane's safety. A multi-sensor system including millimeter-wave radar and Infrared image sensors is introduced and a developed new FOD detection and recognition algorithm based on inherent feature of FOD is proposed in this paper. Firstly, the FOD's location and coordinate can be accurately obtained by millimeter-wave radar, and then according to the coordinate IR camera will take target images and background images. Secondly, in IR image the runway's edges which are straight lines can be extracted by using Hough transformation method. The potential target region, that is, runway region, can be segmented from the whole image. Thirdly, background subtraction is utilized to localize the FOD target in runway region. Finally, in the detailed small images of FOD target, a new characteristic is discussed and used in target classification. The experiment results show that this algorithm can effectively reduce the computational complexity, satisfy the real-time requirement and possess of high detection and recognition probability.

  15. Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases.

    PubMed

    Tomecki, Rafal; Sikorski, Pawel J; Zakrzewska-Placzek, Monika

    2017-07-01

    Proper regulation of ribosome biosynthesis is mandatory for cellular adaptation, growth and proliferation. Ribosome biogenesis is the most energetically demanding cellular process, which requires tight control. Abnormalities in ribosome production have severe consequences, including developmental defects in plants and genetic diseases (ribosomopathies) in humans. One of the processes occurring during eukaryotic ribosome biogenesis is processing of the ribosomal RNA precursor molecule (pre-rRNA), synthesized by RNA polymerase I, into mature rRNAs. It must not only be accurate but must also be precisely coordinated with other phenomena leading to the synthesis of functional ribosomes: RNA modification, RNA folding, assembly with ribosomal proteins and nucleocytoplasmic RNP export. A multitude of ribosome biogenesis factors ensure that these events take place in a correct temporal order. Among them are endo- and exoribonucleases involved in pre-rRNA processing. Here, we thoroughly present a wide spectrum of ribonucleases participating in rRNA maturation, focusing on their biochemical properties, regulatory mechanisms and substrate specificity. We also discuss cooperation between various ribonucleolytic activities in particular stages of pre-rRNA processing, delineating major similarities and differences between three representative groups of eukaryotes: yeast, plants and humans. © 2017 Federation of European Biochemical Societies.

  16. TOPBP1Dpb11 plays a conserved role in homologous recombination DNA repair through the coordinated recruitment of 53BP1Rad9

    PubMed Central

    Sims, Jennie Rae; Freire, Raimundo

    2017-01-01

    Genome maintenance and cancer suppression require homologous recombination (HR) DNA repair. In yeast and mammals, the scaffold protein TOPBP1Dpb11 has been implicated in HR, although its precise function and mechanism of action remain elusive. In this study, we show that yeast Dpb11 plays an antagonistic role in recombination control through regulated protein interactions. Dpb11 mediates opposing roles in DNA end resection by coordinating both the stabilization and exclusion of Rad9 from DNA lesions. The Mec1 kinase promotes the pro-resection function of Dpb11 by mediating its interaction with the Slx4 scaffold. Human TOPBP1Dpb11 engages in interactions with the anti-resection factor 53BP1 and the pro-resection factor BRCA1, suggesting that TOPBP1 also mediates opposing functions in HR control. Hyperstabilization of the 53BP1–TOPBP1 interaction enhances the recruitment of 53BP1 to nuclear foci in the S phase, resulting in impaired HR and the accumulation of chromosomal aberrations. Our results support a model in which TOPBP1Dpb11 plays a conserved role in mediating a phosphoregulated circuitry for the control of recombinational DNA repair. PMID:28228534

  17. A biologically inspired approach to modeling unmanned vehicle teams

    NASA Astrophysics Data System (ADS)

    Cortesi, Roger S.; Galloway, Kevin S.; Justh, Eric W.

    2008-04-01

    Cooperative motion control of teams of agile unmanned vehicles presents modeling challenges at several levels. The "microscopic equations" describing individual vehicle dynamics and their interaction with the environment may be known fairly precisely, but are generally too complicated to yield qualitative insights at the level of multi-vehicle trajectory coordination. Interacting particle models are suitable for coordinating trajectories, but require care to ensure that individual vehicles are not driven in a "costly" manner. From the point of view of the cooperative motion controller, the individual vehicle autopilots serve to "shape" the microscopic equations, and we have been exploring the interplay between autopilots and cooperative motion controllers using a multivehicle hardware-in-the-loop simulator. Specifically, we seek refinements to interacting particle models in order to better describe observed behavior, without sacrificing qualitative understanding. A recent analogous example from biology involves introducing a fixed delay into a curvature-control-based feedback law for prey capture by an echolocating bat. This delay captures both neural processing time and the flight-dynamic response of the bat as it uses sensor-driven feedback. We propose a comparable approach for unmanned vehicle modeling; however, in contrast to the bat, with unmanned vehicles we have an additional freedom to modify the autopilot. Simulation results demonstrate the effectiveness of this biologically guided modeling approach.

  18. Ultrahigh precision cosmology from gravitational waves

    NASA Astrophysics Data System (ADS)

    Cutler, Curt; Holz, Daniel E.

    2009-11-01

    We show that the Big Bang Observer (BBO), a proposed space-based gravitational-wave (GW) detector, would provide ultraprecise measurements of cosmological parameters. By detecting ˜3×105 compact-star binaries, and utilizing them as standard sirens, BBO would determine the Hubble constant to ˜0.1%, and the dark-energy parameters w0 and wa to ˜0.01 and ˜0.1, respectively. BBO’s dark-energy figure-of-merit would be approximately an order of magnitude better than all other proposed, dedicated dark-energy missions. To date, BBO has been designed with the primary goal of searching for gravitational waves from inflation, down to the level ΩGW˜10-17; this requirement determines BBO’s frequency band (deci-Hz) and its sensitivity requirement (strain measured to ˜10-24). To observe an inflationary GW background, BBO would first have to detect and subtract out ˜3×105 merging compact-star binaries, out to a redshift z˜5. It is precisely this carefully measured foreground which would enable high-precision cosmology. BBO would determine the luminosity distance to each binary to ˜ percent accuracy. In addition, BBO’s angular resolution would be sufficient to uniquely identify the host galaxy for the majority of binaries; a coordinated optical/infrared observing campaign could obtain the redshifts. Combining the GW-derived distances and the electromagnetically-derived redshifts for such a large sample of objects, out to such high redshift, naturally leads to extraordinarily tight constraints on cosmological parameters. We emphasize that such “standard siren” measurements of cosmology avoid many of the systematic errors associated with other techniques: GWs offer a physics-based, absolute measurement of distance. In addition, we show that BBO would also serve as an exceptionally powerful gravitational-lensing mission, and we briefly discuss other astronomical uses of BBO, including providing an early warning system for all short/hard gamma-ray bursts.

  19. Photogrammetric method to measure the discrepancy between clinical and software-designed positions of implants.

    PubMed

    Rivara, Federico; Lumetti, Simone; Calciolari, Elena; Toffoli, Andrea; Forlani, Gianfranco; Manfredi, Edoardo

    2016-06-01

    The position of dental implants placed with software-guided systems should be highly accurate in order to ensure safety and a passive fit of the immediate prosthesis. The purpose of this study was to measure the discrepancy between the clinical and software-planned position of dental implants by applying a photogrammetric method. Two casts were obtained, 1 from the surgical template and 1 from the actual position of the implants on the alveolar ridge of a patient. Photogrammetry was then applied to precisely locate the position of each implant on the casts. Because this mathematical technique required the identification of image points and of the relative spatial coordinates, 4 marks were drilled on the implant screw. The position of the implants was then identified as the geometric center of the 4 marks, while the orientation of the implant axis was represented by a vector normal to the plane fitting the points. A series of 16 convergent images all around the object was made using a high-resolution digital camera. A mathematical method called "rototranslation" was used to superimpose the cast images for the comparison. The tests performed on the casts resulted in an average precision level of 4 μm for the locations and less than 1 degree for the axis of the implants. A series of empirical and numerical tests were performed to assess the performance of the procedure and of the measurement protocol. The photogrammetric method is reproducible and can be used to measure the discrepancy between the software-planned and the real position of dental implants. Considering that the average precision level required for an implant-based prosthesis is approximately 50 μm, the error associated with this method can be considered as negligible. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Force coordination in static manipulation tasks performed using standard and non-standard grasping techniques.

    PubMed

    de Freitas, Paulo B; Jaric, Slobodan

    2009-04-01

    We evaluated coordination of the hand grip force (GF; normal component of the force acting at the hand-object contact area) and load force (LF; the tangential component) in a variety of grasping techniques and two LF directions. Thirteen participants exerted a continuous sinusoidal LF pattern against externally fixed handles applying both standard (i.e., using either the tips of the digits or the palms; the precision and palm grasps, respectively) and non-standard grasping techniques (using wrists and the dorsal finger areas; the wrist and fist grasp). We hypothesized (1) that the non-standard grasping techniques would provide deteriorated indices of force coordination when compared with the standard ones, and (2) that the nervous system would be able to adjust GF to the differences in friction coefficients of various skin areas used for grasping. However, most of the indices of force coordination remained similar across the tested grasping techniques, while the GF adjustments for the differences in friction coefficients (highest in the palm and the lowest in the fist and wrist grasp) provided inconclusive results. As hypothesized, GF relative to the skin friction was lowest in the precision grasp, but highest in the palm grasp. Therefore, we conclude that (1) the elaborate coordination of GF and LF consistently seen across the standard grasping techniques could be generalized to the non-standard ones, while (2) the ability to adjust GF using the same grasping technique to the differences in friction of various objects cannot be fully generalized to the GF adjustment when different grasps (i.e., hand segments) are used to manipulate the same object. Due to the importance of the studied phenomena for understanding both the functional and neural control aspects of manipulation, future studies should extend the current research to the transient and dynamic tasks, as well as to the general role of friction in our mechanical interactions with the environment.

  1. Anticipatory planning and control of grasp positions and forces for dexterous two-digit manipulation.

    PubMed

    Fu, Qiushi; Zhang, Wei; Santello, Marco

    2010-07-07

    Dexterous object manipulation requires anticipatory control of digit positions and forces. Despite extensive studies on sensorimotor learning of digit forces, how humans learn to coordinate digit positions and forces has never been addressed. Furthermore, the functional role of anticipatory modulation of digit placement to object properties remains to be investigated. We addressed these questions by asking human subjects (12 females, 12 males) to grasp and lift an inverted T-shaped object using precision grip at constrained or self-chosen locations. The task requirement was to minimize object roll during lift. When digit position was not constrained, subjects could have implemented many equally valid digit position-force coordination patterns. However, choice of digit placement might also have resulted in large trial-to-trial variability of digit position, hence challenging the extent to which the CNS could have relied on sensorimotor memories for anticipatory control of digit forces. We hypothesized that subjects would modulate digit placement for optimal force distribution and digit forces as a function of variable digit positions. All subjects learned to minimize object roll within the first three trials, and the unconstrained device was associated with significantly smaller grip forces but larger variability of digit positions. Importantly, however, digit load force modulation compensated for position variability, thus ensuring consistent object roll minimization on each trial. This indicates that subjects learned object manipulation by integrating sensorimotor memories with sensory feedback about digit positions. These results are discussed in the context of motor equivalence and sensorimotor integration of grasp kinematics and kinetics.

  2. Rack Insertion End Effector (RIEE) guidance

    NASA Technical Reports Server (NTRS)

    Malladi, Narasimha S.

    1994-01-01

    NASA-KSC has developed a mechanism to handle and insert Racks into the Space Station Logistic Modules. This mechanism consists of a Base with 3 motorized degrees of freedom, a 3 section motorized Boom that goes from 15 to 44 feet in length, and a Rack Insertion End Effector (RIEE) with 5 hand wheels for precise alignment. During the 1993 NASA-ASEE Summer Faculty Fellowship Program at KSC, I designed an Active Vision (Camera) Arrangement and developed an algorithm to determine (1) the displacements required by the Room for its initial positioning and (2) the rotations required at the five hand-wheels of the RIEE, for the insertion of the Rack, using the centroids fo the Camera Images of the Location Targets in the Logistic Module. Presently, during the summer of '94, I completed the preliminary design of an easily portable measuring instrument using encoders to obtain the 3-Dimensional Coordinates of Location Targets in the Logistics Module relative to the RIEE mechanism frame. The algorithm developed in '93 can use the output of this instrument also. Simplification of the '93 work and suggestions for the future work are discussed.

  3. An innovative method for coordinate measuring machine one-dimensional self-calibration with simplified experimental process.

    PubMed

    Fang, Cheng; Butler, David Lee

    2013-05-01

    In this paper, an innovative method for CMM (Coordinate Measuring Machine) self-calibration is proposed. In contrast to conventional CMM calibration that relies heavily on a high precision reference standard such as a laser interferometer, the proposed calibration method is based on a low-cost artefact which is fabricated with commercially available precision ball bearings. By optimizing the mathematical model and rearranging the data sampling positions, the experimental process and data analysis can be simplified. In mathematical expression, the samples can be minimized by eliminating the redundant equations among those configured by the experimental data array. The section lengths of the artefact are measured at arranged positions, with which an equation set can be configured to determine the measurement errors at the corresponding positions. With the proposed method, the equation set is short of one equation, which can be supplemented by either measuring the total length of the artefact with a higher-precision CMM or calibrating the single point error at the extreme position with a laser interferometer. In this paper, the latter is selected. With spline interpolation, the error compensation curve can be determined. To verify the proposed method, a simple calibration system was set up on a commercial CMM. Experimental results showed that with the error compensation curve uncertainty of the measurement can be reduced to 50%.

  4. Trajectory NG: portable, compressed, general molecular dynamics trajectories.

    PubMed

    Spångberg, Daniel; Larsson, Daniel S D; van der Spoel, David

    2011-10-01

    We present general algorithms for the compression of molecular dynamics trajectories. The standard ways to store MD trajectories as text or as raw binary floating point numbers result in very large files when efficient simulation programs are used on supercomputers. Our algorithms are based on the observation that differences in atomic coordinates/velocities, in either time or space, are generally smaller than the absolute values of the coordinates/velocities. Also, it is often possible to store values at a lower precision. We apply several compression schemes to compress the resulting differences further. The most efficient algorithms developed here use a block sorting algorithm in combination with Huffman coding. Depending on the frequency of storage of frames in the trajectory, either space, time, or combinations of space and time differences are usually the most efficient. We compare the efficiency of our algorithms with each other and with other algorithms present in the literature for various systems: liquid argon, water, a virus capsid solvated in 15 mM aqueous NaCl, and solid magnesium oxide. We perform tests to determine how much precision is necessary to obtain accurate structural and dynamic properties, as well as benchmark a parallelized implementation of the algorithms. We obtain compression ratios (compared to single precision floating point) of 1:3.3-1:35 depending on the frequency of storage of frames and the system studied.

  5. An approach for real-time fast point positioning of the BeiDou Navigation Satellite System using augmentation information

    NASA Astrophysics Data System (ADS)

    Tu, Rui; Zhang, Rui; Zhang, Pengfei; Liu, Jinhai; Lu, Xiaochun

    2018-07-01

    This study proposes an approach to facilitate real-time fast point positioning of the BeiDou Navigation Satellite System (BDS) based on regional augmentation information. We term this as the precise positioning based on augmentation information (BPP) approach. The coordinates of the reference stations were highly constrained to extract the augmentation information, which contained not only the satellite orbit clock error correlated with the satellite running state, but also included the atmosphere error and unmodeled error, which are correlated with the spatial and temporal states. Based on these mixed augmentation corrections, a precise point positioning (PPP) model could be used for the coordinates estimation of the user stations, and the float ambiguity could be easily fixed for the single-difference between satellites. Thus, this technique provided a quick and high-precision positioning service. Three different datasets with small, medium, and large baselines (0.6 km, 30 km and 136 km) were used to validate the feasibility and effectiveness of the proposed BPP method. The validations showed that using the BPP model, 1–2 cm positioning service can be provided in a 100 km wide area after just 2 s of initialization. Thus, as the proposed approach not only capitalized on both PPP and RTK but also provided consistent application, it can be used for area augmentation positioning.

  6. A New Method for Single-Epoch Ambiguity Resolution with Indoor Pseudolite Positioning.

    PubMed

    Li, Xin; Zhang, Peng; Guo, Jiming; Wang, Jinling; Qiu, Weining

    2017-04-21

    Ambiguity resolution (AR) is crucial for high-precision indoor pseudolite positioning. Due to the existing characteristics of the pseudolite positioning system, such as the geometry structure of the stationary pseudolite which is consistently invariant, the indoor signal is easy to interrupt and the first order linear truncation error cannot be ignored, and a new AR method based on the idea of the ambiguity function method (AFM) is proposed in this paper. The proposed method is a single-epoch and nonlinear method that is especially well-suited for indoor pseudolite positioning. Considering the very low computational efficiency of conventional AFM, we adopt an improved particle swarm optimization (IPSO) algorithm to search for the best solution in the coordinate domain, and variances of a least squares adjustment is conducted to ensure the reliability of the solving ambiguity. Several experiments, including static and kinematic tests, are conducted to verify the validity of the proposed AR method. Numerical results show that the IPSO significantly improved the computational efficiency of AFM and has a more elaborate search ability compared to the conventional grid searching method. For the indoor pseudolite system, which had an initial approximate coordinate precision better than 0.2 m, the AFM exhibited good performances in both static and kinematic tests. With the corrected ambiguity gained from our proposed method, indoor pseudolite positioning can achieve centimeter-level precision using a low-cost single-frequency software receiver.

  7. A U.S. Geological Survey Data Standard (Specifications for representation of geographic point locations for information interchange)

    USGS Publications Warehouse

    ,

    1983-01-01

    This standard establishes uniform formats for geographic point location data. Geographic point location refers to the use of a coordinate system to define the position of a point that may be on, above, or below the Earth's surface. It provides a means for representing these data in digital form for the purpose of interchanging information among data systems and improving clarity and accuracy of interpersonal communications. This document is an expansion and clarification of National Bureau of Standards FIPS PUB 70, issued October 24, 1980. There are minor editorial changes, plus the following additions and modifications: (I) The representation of latitude and longitude using radian measure was added. (2) Alternate 2 for Representation of Hemispheric Information was deleted. (3) Use of the maximum precision for all numerical values was emphasized. The Alternate Representation of Precision was deleted. (4) The length of the zone representation for the State Plane Coordinate System was standardized. (5) The term altitude was substituted for elevation throughout to conform with international usage. (6) Section 3, Specifications for Altitude Data, was expanded and upgraded significantly to the same level of detail as for the horizontal values. (7) A table delineating the coverage of Universal Transverse Mercator zones and the longitudes of the Central Meridians was added and the other tables renumbered. (8) The total length of the representation of point location data at maximum precision was standardized.

  8. Overcoming gaps and bottlenecks to advance precision agriculture

    USDA-ARS?s Scientific Manuscript database

    Maintaining a clear understanding of the technology gaps, knowledge needs, and training bottlenecks is required for improving adoption of precision agriculture. As an industry, precision agriculture embraces tools, methods, and practices that are constantly changing, requiring industry, education, a...

  9. The parametrization of radio source coordinates in VLBI and its impact on the CRF

    NASA Astrophysics Data System (ADS)

    Karbon, Maria; Heinkelmann, Robert; Mora-Diaz, Julian; Xu, Minghui; Nilsson, Tobias; Schuh, Harald

    2016-04-01

    Usually celestial radio sources in the celestial reference frame (CRF) catalog are divided in three categories: defining, special handling, and others. The defining sources are those used for the datum realization of the celestial reference frame, i.e. they are included in the No-Net-Rotation (NNR) constraints to maintain the axis orientation of the CRF, and are modeled with one set of totally constant coordinates. At the current level of precision, the choice of the defining sources has a significant effect on the coordinates. For the ICRF2 295 sources were chosen as defining sources, based on their geometrical distribution, statistical properties, and stability. The number of defining sources is a compromise between the reliability of the datum, which increases with the number of sources, and the noise which is introduced by each source. Thus, the optimal number of defining sources is a trade-off between reliability, geometry, and precision. In the ICRF2 only 39 of sources were sorted into the special handling group as they show large fluctuations in their position, therefore they are excluded from the NNR conditions and their positions are normally estimated for each VLBI session instead of as global parameters. All the remaining sources are classified as others. However, a large fraction of these unstable sources show other favorable characteristics, e.g. large flux density (brightness) and a long history of observations. Thus, it would prove advantageous including these sources into the NNR condition. However, the instability of these objects inhibit this. If the coordinate model of these sources would be extended, it would be possible to use these sources for the NNR condition as well. All other sources are placed in the "others" group. This is the largest group of sources, containing those which have not shown any very problematic behavior, but still do not fulfill the requirements for defining sources. Studies show that the behavior of each source can vary dramatically in time. Hence, each source would have to be modeled individually. Considering this, the shear amount of sources, in our study more than 600 are included, sets practical limitations. We decided to use the multivariate adaptive regression splines (MARS) procedure to parametrize the source coordinates, as they allow a great deal of automation as it combines recursive partitioning and spline fitting in an optimal way. The algorithm finds the ideal knot positions for the splines and thus the best number of polynomial pieces to fit the data. We investigate linear and cubic splines determined by MARS to "human" determined linear splines and their impact on the CRF. Within this work we try to answer the following questions: How can we find optimal criteria for the definition of the defining and unstable sources? What are the best polynomials for the individual categories? How much can we improve the CRF by extending the parametrization of the sources?

  10. Time-Coordination Strategies and Control Laws for Multi-Agent Unmanned Systems

    NASA Technical Reports Server (NTRS)

    Puig-Navarro, Javier; Hovakimyan, Naira; Allen, B. Danette

    2017-01-01

    Time-critical coordination tools for unmanned systems can be employed to enforce the type of temporal constraints required in terminal control areas, ensure minimum distance requirements among vehicles are satisfied, and successfully perform coordinated missions. In comparison with previous literature, this paper presents an ampler spectrum of coordination and temporal specifications for unmanned systems, and proposes a general control law that can enforce this range of constraints. The constraint classification presented con- siders the nature of the desired arrival window and the permissible coordination errors to define six different types of time-coordination strategies. The resulting decentralized coordination control law allows the vehicles to negotiate their speeds along their paths in response to information exchanged over the communication network. This control law organizes the different members in the fleet hierarchically per their behavior and informational needs as reference agent, leaders, and followers. Examples and simulation results for all the coordination strategies presented demonstrate the applicability and efficacy of the coordination control law for multiple unmanned systems.

  11. Making Initial Earthquake Catalogs from a Temporary Seismic Network for Monitoring Aftershocks

    NASA Astrophysics Data System (ADS)

    Park, J.; Kang, T. S.; Kim, K. H.; Rhie, J.; Kim, Y.

    2017-12-01

    The ML 5.1 foreshock and the ML 5.8 mainshock earthquakes occurred consecutively in Gyeongju, the southeastern part of the Korean Peninsula, on September 12, 2016. A temporary seismic network was installed quickly to observe aftershocks followed this mainshock event in the vicinity of the epicenter. The network was consisting of 27 stations equipped with broadband sensors initially and it has been operated in off-line system which required a periodic manual backup of the recorded data. We detected P-triggers and associated events by using SeisComP3 to make an initial catalogue of aftershock events rapidly. If necessary, manual picking was performed to obtain precise P- and S-arrival times from a module, scolv, included in SeisComP3. For cross-checking of reliable identification of seismic phases, a seismic python package, PhasePApy, was applied in parallel with SeisComP3. Then we get the precise relocated coordinates and depth of the aftershock events using the velellipse algorithm. The resulting dataset comprises of an initial aftershock catalog. The catalog will provide the means to address some important questions and issues on seismogenesis in this intraplate seismicity region including the 2016 Gyeongju earthquake sequence and to improve seismic hazard estimation of the region.

  12. Propagating synchrony in feed-forward networks

    PubMed Central

    Jahnke, Sven; Memmesheimer, Raoul-Martin; Timme, Marc

    2013-01-01

    Coordinated patterns of precisely timed action potentials (spikes) emerge in a variety of neural circuits but their dynamical origin is still not well understood. One hypothesis states that synchronous activity propagating through feed-forward chains of groups of neurons (synfire chains) may dynamically generate such spike patterns. Additionally, synfire chains offer the possibility to enable reliable signal transmission. So far, mostly densely connected chains, often with all-to-all connectivity between groups, have been theoretically and computationally studied. Yet, such prominent feed-forward structures have not been observed experimentally. Here we analytically and numerically investigate under which conditions diluted feed-forward chains may exhibit synchrony propagation. In addition to conventional linear input summation, we study the impact of non-linear, non-additive summation accounting for the effect of fast dendritic spikes. The non-linearities promote synchronous inputs to generate precisely timed spikes. We identify how non-additive coupling relaxes the conditions on connectivity such that it enables synchrony propagation at connectivities substantially lower than required for linearly coupled chains. Although the analytical treatment is based on a simple leaky integrate-and-fire neuron model, we show how to generalize our methods to biologically more detailed neuron models and verify our results by numerical simulations with, e.g., Hodgkin Huxley type neurons. PMID:24298251

  13. A novel platform for electromagnetic navigated ultrasound bronchoscopy (EBUS).

    PubMed

    Sorger, Hanne; Hofstad, Erlend Fagertun; Amundsen, Tore; Langø, Thomas; Leira, Håkon Olav

    2016-08-01

    Endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) of mediastinal lymph nodes is essential for lung cancer staging and distinction between curative and palliative treatment. Precise sampling is crucial. Navigation and multimodal imaging may improve the efficiency of EBUS-TBNA. We demonstrate a novel EBUS-TBNA navigation system in a dedicated airway phantom. Using a convex probe EBUS bronchoscope (CP-EBUS) with an integrated sensor for electromagnetic (EM) position tracking, we performed navigated CP-EBUS in a phantom. Preoperative computed tomography (CT) and real-time ultrasound (US) images were integrated into a navigation platform for EM navigated bronchoscopy. The coordinates of targets in CT and US volumes were registered in the navigation system, and the position deviation was calculated. The system visualized all tumor models and displayed their fused CT and US images in correct positions in the navigation system. Navigating the EBUS bronchoscope was fast and easy. Mean error observed between US and CT positions for 11 target lesions (37 measurements) was [Formula: see text] mm, maximum error was 5.9 mm. The feasibility of our novel navigated CP-EBUS system was successfully demonstrated. An EBUS navigation system is needed to meet future requirements of precise mediastinal lymph node mapping, and provides new opportunities for procedure documentation in EBUS-TBNA.

  14. Design and realization of the control system for the three-channel birefringent filter

    NASA Astrophysics Data System (ADS)

    Zhu, Dan

    2008-07-01

    Space Solar Telescope is one of the large-scale scientific programs under development in China. In it, an important part is the filter, a birefringent filter with three-channels. It consists of 17 rotatable wave plates. In coordination with other mechanical and optical components, complicated and precise adjustments of their attitudes are necessary, which requests a high-accuracy control system to ensure their concertedness. The paper describes the design and realization of the control system. It mainly has a hardware plate and a software one. The former uses an industrial controller, a control card and step motors, while the latter uses the technique construction of the object oriented. That is modularization design with lengthwise dividing as per functions and breadthwise dividing as per element layers. Shift arithmetic for whole spectrum in programs is for intelligent spectral scanning. At the same time, the control information is roundly recorded in the data base of the system. Tests show that the system is characterized by high precision, good stabilization, high data safety and user-friendly interface, totally meeting the design requirements. Also discussed in this paper is some new conceivability to realize the handiness and miniaturization of the filter to fit the use in space flight in the future.

  15. AstroImageJ: Image Processing and Photometric Extraction for Ultra-precise Astronomical Light Curves

    NASA Astrophysics Data System (ADS)

    Collins, Karen A.; Kielkopf, John F.; Stassun, Keivan G.; Hessman, Frederic V.

    2017-02-01

    ImageJ is a graphical user interface (GUI) driven, public domain, Java-based, software package for general image processing traditionally used mainly in life sciences fields. The image processing capabilities of ImageJ are useful and extendable to other scientific fields. Here we present AstroImageJ (AIJ), which provides an astronomy specific image display environment and tools for astronomy specific image calibration and data reduction. Although AIJ maintains the general purpose image processing capabilities of ImageJ, AIJ is streamlined for time-series differential photometry, light curve detrending and fitting, and light curve plotting, especially for applications requiring ultra-precise light curves (e.g., exoplanet transits). AIJ reads and writes standard Flexible Image Transport System (FITS) files, as well as other common image formats, provides FITS header viewing and editing, and is World Coordinate System aware, including an automated interface to the astrometry.net web portal for plate solving images. AIJ provides research grade image calibration and analysis tools with a GUI driven approach, and easily installed cross-platform compatibility. It enables new users, even at the level of undergraduate student, high school student, or amateur astronomer, to quickly start processing, modeling, and plotting astronomical image data with one tightly integrated software package.

  16. The Radiative Forcing Model Intercomparison Project (RFMIP): Assessment and characterization of forcing to enable feedback studies

    NASA Astrophysics Data System (ADS)

    Pincus, R.; Stevens, B. B.; Forster, P.; Collins, W.; Ramaswamy, V.

    2014-12-01

    The Radiative Forcing Model Intercomparison Project (RFMIP): Assessment and characterization of forcing to enable feedback studies An enormous amount of attention has been paid to the diversity of responses in the CMIP and other multi-model ensembles. This diversity is normally interpreted as a distribution in climate sensitivity driven by some distribution of feedback mechanisms. Identification of these feedbacks relies on precise identification of the forcing to which each model is subject, including distinguishing true error from model diversity. The Radiative Forcing Model Intercomparison Project (RFMIP) aims to disentangle the role of forcing from model sensitivity as determinants of varying climate model response by carefully characterizing the radiative forcing to which such models are subject and by coordinating experiments in which it is specified. RFMIP consists of four activities: 1) An assessment of accuracy in flux and forcing calculations for greenhouse gases under past, present, and future climates, using off-line radiative transfer calculations in specified atmospheres with climate model parameterizations and reference models 2) Characterization and assessment of model-specific historical forcing by anthropogenic aerosols, based on coordinated diagnostic output from climate models and off-line radiative transfer calculations with reference models 3) Characterization of model-specific effective radiative forcing, including contributions of model climatology and rapid adjustments, using coordinated climate model integrations and off-line radiative transfer calculations with a single fast model 4) Assessment of climate model response to precisely-characterized radiative forcing over the historical record, including efforts to infer true historical forcing from patterns of response, by direct specification of non-greenhouse-gas forcing in a series of coordinated climate model integrations This talk discusses the rationale for RFMIP, provides an overview of the four activities, and presents preliminary motivating results.

  17. Left-right asymmetry and cardiac looping: implications for cardiac development and congenital heart disease.

    PubMed

    Kathiriya, I S; Srivastava, D

    2000-01-01

    Proper morphogenesis and positioning of internal organs requires delivery and interpretation of precise signals along the anterior-posterior, dorsal-ventral, and left-right axes. An elegant signaling cascade determines left- versus right-sided identity in visceral organs in a concordant fashion, resulting in a predictable left-right (LR) organ asymmetry in all vertebrates. The complex morphogenesis of the heart and its connections to the vasculature are particularly dependent upon coordinated LR signaling pathways. Disorganization of LR signals can result in myriad congenital heart defects that are a consequence of abnormal looping and remodeling of the primitive heart tube into a multi-chambered organ. A framework for understanding how LR asymmetric signals contribute to normal organogenesis has emerged and begins to explain the basis of many human diseases of LR asymmetry. Here we review the impact of LR signaling pathways on cardiac development and congenital heart disease.

  18. Study on verifying the angle measurement performance of the rotary-laser system

    NASA Astrophysics Data System (ADS)

    Zhao, Jin; Ren, Yongjie; Lin, Jiarui; Yin, Shibin; Zhu, Jigui

    2018-04-01

    An angle verification method to verify the angle measurement performance of the rotary-laser system was developed. Angle measurement performance has a great impact on measuring accuracy. Although there is some previous research on the verification of angle measuring uncertainty for the rotary-laser system, there are still some limitations. High-precision reference angles are used in the study of the method, and an integrated verification platform is set up to evaluate the performance of the system. This paper also probes the error that has biggest influence on the verification system. Some errors of the verification system are avoided via the experimental method, and some are compensated through the computational formula and curve fitting. Experimental results show that the angle measurement performance meets the requirement for coordinate measurement. The verification platform can evaluate the uncertainty of angle measurement for the rotary-laser system efficiently.

  19. [Exploring Flow and Supervision of Medical Instruments by Standing on Frontier of the Reform of Free Trade Zone].

    PubMed

    Shen, Jianhua; Han, Meixian; Lu, Fei

    2017-11-30

    Shanghai Waigaoqiao Free Trade Zone as one of the special customs supervision areas of China (Shanghai) free trade pilot area, gathered a large number of general agent enterprises related to medical apparatus and instruments. This article analyzes the characteristics of special environment and medical equipment business in Shanghai Waigaoqiao Free Trade Zone in order to further implement the national administrative examination and approval reform. According to the latest requirement in laws and regulations of medical instruments, and trend of development in the industry of medical instruments, as well as research on the basis of practices of market supervision in countries around the world, this article also proposes measures about precision supervision, coordination of supervision, classification supervision and dynamic supervision to establish a new order of fair and standardized competition in market, and create conditions for establishment of allocation and transport hub of international medicine.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwan, Simon; Lei, CM; Menasce, Dario

    An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm 2more » pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.« less

  1. Pathways of cellular proteostasis in aging and disease.

    PubMed

    Klaips, Courtney L; Jayaraj, Gopal Gunanathan; Hartl, F Ulrich

    2018-01-02

    Ensuring cellular protein homeostasis, or proteostasis, requires precise control of protein synthesis, folding, conformational maintenance, and degradation. A complex and adaptive proteostasis network coordinates these processes with molecular chaperones of different classes and their regulators functioning as major players. This network serves to ensure that cells have the proteins they need while minimizing misfolding or aggregation events that are hallmarks of age-associated proteinopathies, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. It is now clear that the capacity of cells to maintain proteostasis undergoes a decline during aging, rendering the organism susceptible to these pathologies. Here we discuss the major proteostasis pathways in light of recent research suggesting that their age-dependent failure can both contribute to and result from disease. We consider different strategies to modulate proteostasis capacity, which may help develop urgently needed therapies for neurodegeneration and other age-dependent pathologies. © 2018 Klaips et al.

  2. Inter-Cellular Forces Orchestrate Contact Inhibition of Locomotion

    PubMed Central

    Davis, John R.; Luchici, Andrei; Mosis, Fuad; Thackery, James; Salazar, Jesus A.; Mao, Yanlan; Dunn, Graham A.; Betz, Timo; Miodownik, Mark; Stramer, Brian M.

    2015-01-01

    Summary Contact inhibition of locomotion (CIL) is a multifaceted process that causes many cell types to repel each other upon collision. During development, this seemingly uncoordinated reaction is a critical driver of cellular dispersion within embryonic tissues. Here, we show that Drosophila hemocytes require a precisely orchestrated CIL response for their developmental dispersal. Hemocyte collision and subsequent repulsion involves a stereotyped sequence of kinematic stages that are modulated by global changes in cytoskeletal dynamics. Tracking actin retrograde flow within hemocytes in vivo reveals synchronous reorganization of colliding actin networks through engagement of an inter-cellular adhesion. This inter-cellular actin-clutch leads to a subsequent build-up in lamellar tension, triggering the development of a transient stress fiber, which orchestrates cellular repulsion. Our findings reveal that the physical coupling of the flowing actin networks during CIL acts as a mechanotransducer, allowing cells to haptically sense each other and coordinate their behaviors. PMID:25799385

  3. Linear State-Space Representation of the Dynamics of Relative Motion, Based on Restricted Three Body Dynamics

    NASA Technical Reports Server (NTRS)

    Luquette,Richard J.; Sanner, Robert M.

    2004-01-01

    Precision Formation Flying is an enabling technology for a variety of proposed space-based observatories, including the Micro-Arcsecond X-ray Imaging Mission (MAXIM) , the associated MAXIM pathfinder mission, Stellar Imager (SI) and the Terrestrial Planet Finder (TPF). An essential element of the technology is the control algorithm, requiring a clear understanding of the dynamics of relative motion. This paper examines the dynamics of relative motion in the context of the Restricted Three Body Problem (RTBP). The natural dynamics of relative motion are presented in their full nonlinear form. Motivated by the desire to apply linear control methods, the dynamics equations are linearized and presented in state-space form. The stability properties are explored for regions in proximity to each of the libration points in the Earth/Moon - Sun rotating frame. The dynamics of relative motion are presented in both the inertial and rotating coordinate frames.

  4. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise

    USGS Publications Warehouse

    Webb, Edward L.; Friess, Daniel A.; Krauss, Ken W.; Cahoon, Donald R.; Guntenspergen, Glenn R.; Phelps, Jacob

    2013-01-01

    Sea-level rise threatens coastal salt-marshes and mangrove forests around the world, and a key determinant of coastal wetland vulnerability is whether its surface elevation can keep pace with rising sea level. Globally, a large data gap exists because wetland surface and shallow subsurface processes remain unaccounted for by traditional vulnerability assessments using tide gauges. Moreover, those processes vary substantially across wetlands, so modelling platforms require relevant local data. The low-cost, simple, high-precision rod surface-elevation table–marker horizon (RSET-MH) method fills this critical data gap, can be paired with spatial data sets and modelling and is financially and technically accessible to every country with coastal wetlands. Yet, RSET deployment has been limited to a few regions and purposes. A coordinated expansion of monitoring efforts, including development of regional networks that could support data sharing and collaboration, is crucial to adequately inform coastal climate change adaptation policy at several scales.

  5. Underwater photogrammetric theoretical equations and technique

    NASA Astrophysics Data System (ADS)

    Fan, Ya-bing; Huang, Guiping; Qin, Gui-qin; Chen, Zheng

    2011-12-01

    In order to have a high level of accuracy of measurement in underwater close-range photogrammetry, this article deals with a study of three varieties of model equations according to the way of imaging upon the water. First, the paper makes a careful analysis for the two varieties of theoretical equations and finds out that there are some serious limitations in practical application and has an in-depth study for the third model equation. Second, one special project for this measurement has designed correspondingly. Finally, one rigid antenna has been tested by underwater photogrammetry. The experimental results show that the precision of 3D coordinates measurement is 0.94mm, which validates the availability and operability in practical application with this third equation. It can satisfy the measurement requirements of refraction correction, improving levels of accuracy of underwater close-range photogrammetry, as well as strong antijamming and stabilization.

  6. Study on Huizhou architecture of point cloud registration based on optimized ICP algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Runmei; Wu, Yulu; Zhang, Guangbin; Zhou, Wei; Tao, Yuqian

    2018-03-01

    In view of the current point cloud registration software has high hardware requirements, heavy workload and moltiple interactive definition, the source of software with better processing effect is not open, a two--step registration method based on normal vector distribution feature and coarse feature based iterative closest point (ICP) algorithm is proposed in this paper. This method combines fast point feature histogram (FPFH) algorithm, define the adjacency region of point cloud and the calculation model of the distribution of normal vectors, setting up the local coordinate system for each key point, and obtaining the transformation matrix to finish rough registration, the rough registration results of two stations are accurately registered by using the ICP algorithm. Experimental results show that, compared with the traditional ICP algorithm, the method used in this paper has obvious time and precision advantages for large amount of point clouds.

  7. Airborne gravimetry, altimetry, and GPS navigation errors

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.

    1992-01-01

    Proper interpretation of airborne gravimetry and altimetry requires good knowledge of aircraft trajectory. Recent advances in precise navigation with differential GPS have made it possible to measure gravity from the air with accuracies of a few milligals, and to obtain altimeter profiles of terrain or sea surface correct to one decimeter. These developments are opening otherwise inaccessible regions to detailed geophysical mapping. Navigation with GPS presents some problems that grow worse with increasing distance from a fixed receiver: the effect of errors in tropospheric refraction correction, GPS ephemerides, and the coordinates of the fixed receivers. Ionospheric refraction and orbit error complicate ambiguity resolution. Optimal navigation should treat all error sources as unknowns, together with the instantaneous vehicle position. To do so, fast and reliable numerical techniques are needed: efficient and stable Kalman filter-smoother algorithms, together with data compression and, sometimes, the use of simplified dynamics.

  8. High accuracy mapping with cartographic assessment for a fixed-wing remotely piloted aircraft system

    NASA Astrophysics Data System (ADS)

    Alves Júnior, Leomar Rufino; Ferreira, Manuel Eduardo; Côrtes, João Batista Ramos; de Castro Jorge, Lúcio André

    2018-01-01

    The lack of updated maps on large scale representations has encouraged the use of remotely piloted aircraft systems (RPAS) to generate maps for a wide range of professionals. However, some questions arise: do the orthomosaics generated by these systems have the cartographic precision required to use them? Which problems can be identified in stitching orthophotos to generate orthomosaics? To answer these questions, an aerophotogrammetric survey was conducted in an environmental conservation unit in the city of Goiânia. The flight plan was set up using the E-motion software, provided by Sensefly-a Swiss manufacturer of the RPAS Swinglet CAM used in this work. The camera installed in the RPAS was the Canon IXUS 220 HS, with the number of pixels in the sensor array of 12.1 megapixel, complementary metal oxide semiconductor 1 ∶ 2.3 ? (4000 × 3000 pixel), horizontal and vertical pixel sizes of 1.54 μm. Using the orthophotos, four orthomosaics were generated in the Pix4D mapper software. The first orthomosaic was generated without using the control points. The other three mosaics were generated using 4, 8, and 16 premarked ground control points. To check the precision and accuracy of the orthomosaics, 46 premarked targets were uniformly distributed in the block. The three-dimensional (3-D) coordinates of the premarked targets were read on the orthomosaic and compared with the coordinates obtained by the geodetic survey real-time kinematic positioning method using the global navigation satellite system receiver signals. The cartographic accuracy standard was evaluated by discrepancies between these coordinates. The bias was analyzed by the Student's t test and the accuracy by the chi-square probability considering the orthomosaic on a scale of 1 ∶ 250, in which 90% of the points tested must have a planimetric error of <0.13 m with a standard deviation of 0.08 m and altimetric errors of <0.30 m with a standard deviation of 0.20 m. It was observed that some buildings in the orthomosaics were not properly orthorectified. The orthomosaics generated with 8 or more points reached the scale of 1 ∶ 250, whereas without control points the scale was 10-fold smaller (1 ∶ 3000).

  9. 45 CFR 1310.23 - Coordinated transportation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Coordinated transportation. 1310.23 Section 1310... START PROGRAM HEAD START TRANSPORTATION Special Requirements § 1310.23 Coordinated transportation. (a) Each agency providing transportation services must make reasonable efforts to coordinate transportation...

  10. 45 CFR 1310.23 - Coordinated transportation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Coordinated transportation. 1310.23 Section 1310... START PROGRAM HEAD START TRANSPORTATION Special Requirements § 1310.23 Coordinated transportation. (a) Each agency providing transportation services must make reasonable efforts to coordinate transportation...

  11. 45 CFR 1310.23 - Coordinated transportation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Coordinated transportation. 1310.23 Section 1310... START PROGRAM HEAD START TRANSPORTATION Special Requirements § 1310.23 Coordinated transportation. (a) Each agency providing transportation services must make reasonable efforts to coordinate transportation...

  12. 78 FR 73819 - Forest Resource Coordinating Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... DEPARTMENT OF AGRICULTURE Forest Service Forest Resource Coordinating Committee AGENCY: Forest... was required to cancel the October 17-18, 2013 meeting of the Forest Resource Coordinating Committee..., September 17, 2013, Page 57128. FOR FURTHER INFORMATION CONTACT: Maya Solomon, Forest Resource Coordinating...

  13. Impact and Implementation of Higher-Order Ionospheric Effects on Precise GNSS Applications

    NASA Astrophysics Data System (ADS)

    Hadas, T.; Krypiak-Gregorczyk, A.; Hernández-Pajares, M.; Kaplon, J.; Paziewski, J.; Wielgosz, P.; Garcia-Rigo, A.; Kazmierski, K.; Sosnica, K.; Kwasniak, D.; Sierny, J.; Bosy, J.; Pucilowski, M.; Szyszko, R.; Portasiak, K.; Olivares-Pulido, G.; Gulyaeva, T.; Orus-Perez, R.

    2017-11-01

    High precision Global Navigation Satellite Systems (GNSS) positioning and time transfer require correcting signal delays, in particular higher-order ionospheric (I2+) terms. We present a consolidated model to correct second- and third-order terms, geometric bending and differential STEC bending effects in GNSS data. The model has been implemented in an online service correcting observations from submitted RINEX files for I2+ effects. We performed GNSS data processing with and without including I2+ corrections, in order to investigate the impact of I2+ corrections on GNSS products. We selected three time periods representing different ionospheric conditions. We used GPS and GLONASS observations from a global network and two regional networks in Poland and Brazil. We estimated satellite orbits, satellite clock corrections, Earth rotation parameters, troposphere delays, horizontal gradients, and receiver positions using global GNSS solution, Real-Time Kinematic (RTK), and Precise Point Positioning (PPP) techniques. The satellite-related products captured most of the impact of I2+ corrections, with the magnitude up to 2 cm for clock corrections, 1 cm for the along- and cross-track orbit components, and below 5 mm for the radial component. The impact of I2+ on troposphere products turned out to be insignificant in general. I2+ corrections had limited influence on the performance of ambiguity resolution and the reliability of RTK positioning. Finally, we found that I2+ corrections caused a systematic shift in the coordinate domain that was time- and region-dependent and reached up to -11 mm for the north component of the Brazilian stations during the most active ionospheric conditions.

  14. The Photogrammetry Cube

    NASA Technical Reports Server (NTRS)

    2008-01-01

    We can determine distances between objects and points of interest in 3-D space to a useful degree of accuracy from a set of camera images by using multiple camera views and reference targets in the camera s field of view (FOV). The core of the software processing is based on the previously developed foreign-object debris vision trajectory software (see KSC Research and Technology 2004 Annual Report, pp. 2 5). The current version of this photogrammetry software includes the ability to calculate distances between any specified point pairs, the ability to process any number of reference targets and any number of camera images, user-friendly editing features, including zoom in/out, translate, and load/unload, routines to help mark reference points with a Find function, while comparing them with the reference point database file, and a comprehensive output report in HTML format. In this system, scene reference targets are replaced by a photogrammetry cube whose exterior surface contains multiple predetermined precision 2-D targets. Precise measurement of the cube s 2-D targets during the fabrication phase eliminates the need for measuring 3-D coordinates of reference target positions in the camera's FOV, using for example a survey theodolite or a Faroarm. Placing the 2-D targets on the cube s surface required the development of precise machining methods. In response, 2-D targets were embedded into the surface of the cube and then painted black for high contrast. A 12-inch collapsible cube was developed for room-size scenes. A 3-inch, solid, stainless-steel photogrammetry cube was also fabricated for photogrammetry analysis of small objects.

  15. Rate and Timing Precision of Motor Coordination in Developmental Dyslexia.

    ERIC Educational Resources Information Center

    Wolff, Peter H.; And Others

    1990-01-01

    Adolescents and young adults with developmental dyslexia and matched normal and disabled controls were asked to tap in time to a metronome at three rates by moving the index fingers of both hands in unison, in rhythmical alternation, or in more complex bimanual patterns. Dyslexic subjects showed significant deficits on asynchronous, but not…

  16. Agreement of NP and VP Coordination in English and Korean

    ERIC Educational Resources Information Center

    Hong, Sung-Ryong; Na, Won-Shik

    2011-01-01

    There have been long argumentations about this topic and people are still having difficulty in explaining precisely what the agreement values the mother NP phrase should have from two conjunct daughters which have different AGR (Agreement) values. Especially, this could be more complicated when the values of gender, number, and person of each…

  17. Steering UTC (AOS) and UTC (PL) by TA (PL)

    DTIC Science & Technology

    2007-01-01

    UTC. • A second time-transfer technique ( TWSTFT ) will be introduced at AOS. 38th Annual Precise Time and Time Interval (PTTI) Meeting 387 • AOS will...Deviation TWSTFT – Two-Way Satellite Time and Frequency Transfer UTC – Coordinated Universal Time UTC (i) – Realization of UTC by laboratory i

  18. Synthesis of a New Family of Hexakisferrocenyl Hexagons and Their Electrochemical Behavior

    PubMed Central

    Ghosh, Koushik; Zhao, Yue; Yang, Hai-Bo; Northrop, Brian H.

    2009-01-01

    The design and synthesis of two new hexakisferrocenyl hexagons has been achieved via coordination-driven self-assembly wherein the size and relative distribution of six ferrocene moieties has been precisely controlled. Insight into the structure and electronic properties of these supramolecules was obtained through electrochemical studies. PMID:18841907

  19. Swallowing function and chronic respiratory diseases: Systematic review.

    PubMed

    Ghannouchi, Ines; Speyer, Renée; Doma, Kenji; Cordier, Reinie; Verin, Eric

    2016-08-01

    The precise coordination between breathing and swallowing is an important mechanism to prevent pulmonary aspiration. Factors that alter breathing patterns and ventilation, such as chronic respiratory diseases, may influence that precise coordination of breathing and swallowing. The purpose of this systematic literature review is to examine the effects of chronic respiratory diseases on swallowing function. Literature searches were performed using the electronic databases PubMed and Embase. All articles meeting the eligibility criteria up to March 2016 were included. All articles included studied Chronic Obstructive Pulmonary Diseases (COPD) or Obstructive Sleep Apnea (OSA); no studies involving other respiratory diseases were found. A total of 1069 abstracts were retrieved, of which twenty-six studies met the inclusion criteria; eleven studies dealt with OSA and fifteen studies dealt with COPD. The outcome data indicate that chronic respiratory diseases increase the prevalence of oropharyngeal dysphagia (OD) in patients. However, the relative small number of studies, differences in selection criteria, definitions and assessment techniques used for diagnosing OSA, COPD, and OD point to the need for further research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Structure, Bonding, and Stability of Mercury Complexes with Thiolate and Thioether Ligands from High-Resolution XANES Spectroscopy and First-Principles Calculations.

    PubMed

    Manceau, Alain; Lemouchi, Cyprien; Rovezzi, Mauro; Lanson, Martine; Glatzel, Pieter; Nagy, Kathryn L; Gautier-Luneau, Isabelle; Joly, Yves; Enescu, Mironel

    2015-12-21

    We present results obtained from high energy-resolution L3-edge XANES spectroscopy and first-principles calculations for the structure, bonding, and stability of mercury(II) complexes with thiolate and thioether ligands in crystalline compounds, aqueous solution, and macromolecular natural organic matter (NOM). Core-to-valence XANES features that vary in intensity differentiate with unprecedented sensitivity the number and identity of Hg ligands and the geometry of the ligand environment. Post-Hartree-Fock XANES calculations, coupled with natural population analysis, performed on MP2-optimized Hg[(SR)2···(RSR)n] complexes show that the shape, position, and number of electronic transitions observed at high energy-resolution are directly correlated to the Hg and S (l,m)-projected empty densities of states and occupations of the hybridized Hg 6s and 5d valence orbitals. Linear two-coordination, the most common coordination geometry in mercury chemistry, yields a sharp 2p to 6s + 5d electronic transition. This transition varies in intensity for Hg bonded to thiol groups in macromolecular NOM. The intensity variation is explained by contributions from next-nearest, low-charge, thioether-type RSR ligands at 3.0-3.3 Å from Hg. Thus, Hg in NOM has two strong bonds to thiol S and k additional weak Hg···S contacts, or 2 + k coordination. The calculated stabilization energy is -5 kcal/mol per RSR ligand. Detection of distant ligands beyond the first coordination shell requires precise measurement of, and comparison to, spectra of reference compounds as well as accurate calculation of spectra for representative molecular models. The combined experimental and theoretical approaches described here for Hg can be applied to other closed-shell atoms, such as Ag(I) and Au(I). To facilitate further calculation of XANES spectra, experimental data, a new crystallographic structure of a key mercury thioether complex, Cartesian coordinates of the computed models, and examples of input files are provided as Supporting Information .

  1. Design of an omnidirectional single-point photodetector for large-scale spatial coordinate measurement

    NASA Astrophysics Data System (ADS)

    Xie, Hongbo; Mao, Chensheng; Ren, Yongjie; Zhu, Jigui; Wang, Chao; Yang, Lei

    2017-10-01

    In high precision and large-scale coordinate measurement, one commonly used approach to determine the coordinate of a target point is utilizing the spatial trigonometric relationships between multiple laser transmitter stations and the target point. A light receiving device at the target point is the key element in large-scale coordinate measurement systems. To ensure high-resolution and highly sensitive spatial coordinate measurement, a high-performance and miniaturized omnidirectional single-point photodetector (OSPD) is greatly desired. We report one design of OSPD using an aspheric lens, which achieves an enhanced reception angle of -5 deg to 45 deg in vertical and 360 deg in horizontal. As the heart of our OSPD, the aspheric lens is designed in a geometric model and optimized by LightTools Software, which enables the reflection of a wide-angle incident light beam into the single-point photodiode. The performance of home-made OSPD is characterized with working distances from 1 to 13 m and further analyzed utilizing developed a geometric model. The experimental and analytic results verify that our device is highly suitable for large-scale coordinate metrology. The developed device also holds great potential in various applications such as omnidirectional vision sensor, indoor global positioning system, and optical wireless communication systems.

  2. Non-essential role for cilia in coordinating precise alignment of lens fibres

    PubMed Central

    Sugiyama, Yuki; Shelley, Elizabeth J.; Yoder, Bradley K.; Kozmik, Zbynek; May-Simera, Helen L.; Beales, Philip L.; Lovicu, Frank J.; McAvoy, John W.

    2016-01-01

    The primary cilium, a microtubule-based organelle found in most cells, is a centre for mechano-sensing fluid movement and cellular signalling, notably through the Hedgehog pathway. We recently found that each lens fibre cell has an apically situated primary cilium that is polarised to the side of the cell facing the anterior pole of the lens. The direction of polarity is similar in neighbouring cells so that in the global view, lens fibres exhibit planar cell polarity (PCP) along the equatorial-anterior polar axis. Ciliogenesis has been associated with the establishment of PCP, although the exact relationship between PCP and the role of cilia is still controversial. To test the hypothesis that the primary cilia have a role in coordinating the precise alignment/orientation of the fibre cells, IFT88, a key component of the intraflagellar transport (IFT) complex, was removed specifically from the lens at different developmental stages using several lens-specific Cre-expressing mouse lines (MLR10- and LR-Cre). Irrespective of which Cre-line was adopted, both demonstrated that in IFT88-depleted cells, the ciliary axoneme was absent or substantially shortened, confirming the disruption of primary cilia formation. However no obvious histological defects were detected even when IFT88 was removed from the lens placode as early as E9.5. Specifically, the lens fibres aligned/oriented towards the poles to form the characteristic Y-shaped sutures as normal. Consistent with this, in primary lens epithelial explants prepared from these conditional knockout mouse lenses, the basal bodies still showed polarised localisation at the apical surface of elongating cells upon FGF-induced fibre differentiation. We further investigated the lens phenotype in knockouts of Bardet–Biedl Syndrome (BBS) proteins 4 and 8, the components of the BBSome complex which modulate ciliary function. In these BBS4 and 8 knockout lenses, again we found the pattern of the anterior sutures formed by the apical tips of elongating/migrating fibres were comparable to the control lenses. Taken together, these results indicate that primary cilia do not play an essential role in the precise cellular alignment/orientation of fibre cells. Thus, it appears that in the lens cilia are not required to establish PCP. PMID:26825015

  3. Redetermination of dicerium(III) tris­(sulfate) tetra­hydrate

    PubMed Central

    Xu, Xin

    2008-01-01

    Ce2(SO4)3(H2O)4 was obtained hydro­thermally from an aqueous solution of cerium(III) oxide, trimethyl­amine and sulfuric acid. The precision of the structure determination has been significantly improved compared with the previous result [Dereigne (1972 ▶). Bull. Soc. Fr. Mineral. Cristallogr. 95, 269–280]. The coordination about the two Ce atoms is achieved by seven and six bridging O atoms from sulfate anions. Each S atom makes four S—O—Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands. PMID:21200451

  4. In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency.

    PubMed

    Tashman, Scott; Anderst, William

    2003-04-01

    Dynamic assessment of three-dimensional (3D) skeletal kinematics is essential for understanding normal joint function as well as the effects of injury or disease. This paper presents a novel technique for measuring in-vivo skeletal kinematics that combines data collected from high-speed biplane radiography and static computed tomography (CT). The goals of the present study were to demonstrate that highly precise measurements can be obtained during dynamic movement studies employing high frame-rate biplane video-radiography, to develop a method for expressing joint kinematics in an anatomically relevant coordinate system and to demonstrate the application of this technique by calculating canine tibio-femoral kinematics during dynamic motion. The method consists of four components: the generation and acquisition of high frame rate biplane radiographs, identification and 3D tracking of implanted bone markers, CT-based coordinate system determination, and kinematic analysis routines for determining joint motion in anatomically based coordinates. Results from dynamic tracking of markers inserted in a phantom object showed the system bias was insignificant (-0.02 mm). The average precision in tracking implanted markers in-vivo was 0.064 mm for the distance between markers and 0.31 degree for the angles between markers. Across-trial standard deviations for tibio-femoral translations were similar for all three motion directions, averaging 0.14 mm (range 0.08 to 0.20 mm). Variability in tibio-femoral rotations was more dependent on rotation axis, with across-trial standard deviations averaging 1.71 degrees for flexion/extension, 0.90 degree for internal/external rotation, and 0.40 degree for varus/valgus rotation. Advantages of this technique over traditional motion analysis methods include the elimination of skin motion artifacts, improved tracking precision and the ability to present results in a consistent anatomical reference frame.

  5. Noninertial coordinate time: A new concept affecting time standards, time transfers, and clock synchronization

    NASA Technical Reports Server (NTRS)

    Deines, Steven D.

    1992-01-01

    Relativity compensations must be made in precise and accurate measurements whenever an observer is accelerated. Although many believe the Earth-centered frame is sufficiently inertial, accelerations of the Earth, as evidenced by the tides, prove that it is technically a noninertial system for even an Earth-based observer. Using the constant speed of light, a set of fixed remote clocks in an inertial frame can be synchronized to a fixed master clock transmitting its time in that frame. The time on the remote clock defines the coordinate time at that coordinate position. However, the synchronization procedure for an accelerated frame is affected, because the distance between the master and remote clocks is altered due to the acceleration of the remote clock toward or away from the master clock during the transmission interval. An exact metric that converts observations from noninertial frames to inertial frames was recently derived. Using this metric with other physical relationships, a new concept of noninertial coordinate time is defined. This noninertial coordinate time includes all relativity compensations. This new issue raises several timekeeping issues, such as proper time standards, time transfer process, and clock synchronization, all in a noninertial frame such as Earth.

  6. National Coordinating Committee for Technology in Education and Training (NCC-TET) Requirements for the National Information Infrastructure (NII).

    ERIC Educational Resources Information Center

    Yrchik, John; Cradler, John

    1994-01-01

    Discusses guidelines that were developed to ensure that the National Information Infrastructure provides expanded opportunities for education and training. Topics include access requirements for homes and work places as well as schools; education and training application requirements, including coordination by federal departments and agencies; and…

  7. Tool simplifies machining of pipe ends for precision welding

    NASA Technical Reports Server (NTRS)

    Matus, S. T.

    1969-01-01

    Single tool prepares a pipe end for precision welding by simultaneously performing internal machining, end facing, and bevel cutting to specification standards. The machining operation requires only one milling adjustment, can be performed quickly, and produces the high quality pipe-end configurations required to ensure precision-welded joints.

  8. Multichannel heterodyning for wideband interferometry, correlation and signal processing

    DOEpatents

    Erskine, David J.

    1999-01-01

    A method of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized.

  9. High Astrometric Precision in the Calculation of the Coordinates of Orbiters in the GEO Ring

    NASA Astrophysics Data System (ADS)

    Lacruz, E.; Abad, C.; Downes, J. J.; Hernández-Pérez, F.; Casanova, D.; Tresaco, E.

    2018-04-01

    We present an astrometric method for the calculation of the positions of orbiters in the GEO ring with a high precision, through a rigorous astrometric treatment of observations with a 1-m class telescope, which are part of the CIDA survey of the GEO ring. We compute the distortion pattern to correct for the systematic errors introduced by the optics and electronics of the telescope, resulting in absolute mean errors of 0.16″ and 0.12″ in right ascension and declination, respectively. These correspond to ≍25 m at the mean distance of the GEO ring, and are thus good quality results.

  10. Improved treatment of global positioning system force parameters in precise orbit determination applications

    NASA Technical Reports Server (NTRS)

    Vigue, Y.; Lichten, S. M.; Muellerschoen, R. J.; Blewitt, G.; Heflin, M. B.

    1993-01-01

    Data collected from a worldwide 1992 experiment were processed at JPL to determine precise orbits for the satellites of the Global Positioning System (GPS). A filtering technique was tested to improve modeling of solar-radiation pressure force parameters for GPS satellites. The new approach improves orbit quality for eclipsing satellites by a factor of two, with typical results in the 25- to 50-cm range. The resultant GPS-based estimates for geocentric coordinates of the tracking sites, which include the three DSN sites, are accurate to 2 to 8 cm, roughly equivalent to 3 to 10 nrad of angular measure.

  11. Multichannel heterodyning for wideband interferometry, correlation and signal processing

    DOEpatents

    Erskine, D.J.

    1999-08-24

    A method is disclosed of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized. 50 figs.

  12. Railway Tunnel Clearance Inspection Method Based on 3D Point Cloud from Mobile Laser Scanning

    PubMed Central

    Zhou, Yuhui; Wang, Shaohua; Mei, Xi; Yin, Wangling; Lin, Chunfeng; Mao, Qingzhou

    2017-01-01

    Railway tunnel clearance is directly related to the safe operation of trains and upgrading of freight capacity. As more and more railway are put into operation and the operation is continuously becoming faster, the railway tunnel clearance inspection should be more precise and efficient. In view of the problems existing in traditional tunnel clearance inspection methods, such as low density, slow speed and a lot of manual operations, this paper proposes a tunnel clearance inspection approach based on 3D point clouds obtained by a mobile laser scanning system (MLS). First, a dynamic coordinate system for railway tunnel clearance inspection has been proposed. A rail line extraction algorithm based on 3D linear fitting is implemented from the segmented point cloud to establish a dynamic clearance coordinate system. Second, a method to seamlessly connect all rail segments based on the railway clearance restrictions, and a seamless rail alignment is formed sequentially from the middle tunnel section to both ends. Finally, based on the rail alignment and the track clearance coordinate system, different types of clearance frames are introduced for intrusion operation with the tunnel section to realize the tunnel clearance inspection. By taking the Shuanghekou Tunnel of the Chengdu–Kunming Railway as an example, when the clearance inspection is carried out by the method mentioned herein, its precision can reach 0.03 m, and difference types of clearances can be effectively calculated. This method has a wide application prospects. PMID:28880232

  13. Articulated Arm Coordinate Measuring Machine Calibration by Laser Tracker Multilateration

    PubMed Central

    Majarena, Ana C.; Brau, Agustín; Velázquez, Jesús

    2014-01-01

    A new procedure for the calibration of an articulated arm coordinate measuring machine (AACMM) is presented in this paper. First, a self-calibration algorithm of four laser trackers (LTs) is developed. The spatial localization of a retroreflector target, placed in different positions within the workspace, is determined by means of a geometric multilateration system constructed from the four LTs. Next, a nonlinear optimization algorithm for the identification procedure of the AACMM is explained. An objective function based on Euclidean distances and standard deviations is developed. This function is obtained from the captured nominal data (given by the LTs used as a gauge instrument) and the data obtained by the AACMM and compares the measured and calculated coordinates of the target to obtain the identified model parameters that minimize this difference. Finally, results show that the procedure presented, using the measurements of the LTs as a gauge instrument, is very effective by improving the AACMM precision. PMID:24688418

  14. A method to correct coordinate distortion in EBSD maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.B., E-mail: yubz@dtu.dk; Elbrønd, A.; Lin, F.X.

    2014-10-15

    Drift during electron backscatter diffraction mapping leads to coordinate distortions in resulting orientation maps, which affects, in some cases significantly, the accuracy of analysis. A method, thin plate spline, is introduced and tested to correct such coordinate distortions in the maps after the electron backscatter diffraction measurements. The accuracy of the correction as well as theoretical and practical aspects of using the thin plate spline method is discussed in detail. By comparing with other correction methods, it is shown that the thin plate spline method is most efficient to correct different local distortions in the electron backscatter diffraction maps. -more » Highlights: • A new method is suggested to correct nonlinear spatial distortion in EBSD maps. • The method corrects EBSD maps more precisely than presently available methods. • Errors less than 1–2 pixels are typically obtained. • Direct quantitative analysis of dynamic data are available after this correction.« less

  15. A method of reconstructing the spatial measurement network by mobile measurement transmitter for shipbuilding

    NASA Astrophysics Data System (ADS)

    Guo, Siyang; Lin, Jiarui; Yang, Linghui; Ren, Yongjie; Guo, Yin

    2017-07-01

    The workshop Measurement Position System (wMPS) is a distributed measurement system which is suitable for the large-scale metrology. However, there are some inevitable measurement problems in the shipbuilding industry, such as the restriction by obstacles and limited measurement range. To deal with these factors, this paper presents a method of reconstructing the spatial measurement network by mobile transmitter. A high-precision coordinate control network with more than six target points is established. The mobile measuring transmitter can be added into the measurement network using this coordinate control network with the spatial resection method. This method reconstructs the measurement network and broadens the measurement scope efficiently. To verify this method, two comparison experiments are designed with the laser tracker as the reference. The results demonstrate that the accuracy of point-to-point length is better than 0.4mm and the accuracy of coordinate measurement is better than 0.6mm.

  16. Divergent Effects of Cognitive Load on Quiet Stance and Task-Linked Postural Coordination

    ERIC Educational Resources Information Center

    Mitra, Suvobrata; Knight, Alec; Munn, Alexandra

    2013-01-01

    Performing a cognitive task while maintaining upright stance can lead to increased or reduced body sway depending on tasks and experimental conditions. Because greater sway is commonly taken to indicate loosened postural control, and vice versa, the precise impact of cognitive load on postural stability has remained unclear. In much of the large…

  17. From ACTS (Air Corps Tactical School) to COBRA: Evolution of Close Air Support Doctrine in World War Two.

    DTIC Science & Technology

    1988-04-01

    cooperated and coordinated their activities in absolute precision cieated by total nental telepathy . Although XIX Tactice.1 Air Coeeand and Third Aray did...capture of the Romanian oil fields and increased production of synthetic oil, Germany produced enough oil to meet her military needs. By 1944, the

  18. Integrity monitoring of IGS products

    NASA Technical Reports Server (NTRS)

    Zumberge, James F.; Plag, H. -P.

    2005-01-01

    The IGS has successfully produced precise GPS and GLONASS transmitter parameters, coordinates of IGS tracking stations, Earth rotation parameters, and atmospheric parameters. In this paper we discuss the concepts of integrity monitoring, system monitoring, and performance assessment, all in the context of IGS products. We report on a recent survey of IGS product users, and propose an integrity strategy for the IGS.

  19. Satellite-tracking and Earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Tracking of LAGEOS for polar motion and Earth rotation studies and for other geophysical investigations, including crustal dynamics, Earth and ocean tides, and the general development of precision orbit determination continues. The BE-C and Starlette satellites were tracked for refined determinations of station coordinates and the Earth's gravity field and for studies of solid Earth dynamics.

  20. 3D Analysis of Human Embryos and Fetuses Using Digitized Datasets From the Kyoto Collection.

    PubMed

    Takakuwa, Tetsuya

    2018-06-01

    Three-dimensional (3D) analysis of the human embryonic and early-fetal period has been performed using digitized datasets obtained from the Kyoto Collection, in which the digital datasets play a primary role in research. Datasets include magnetic resonance imaging (MRI) acquired with 1.5 T, 2.35 T, and 7 T magnet systems, phase-contrast X-ray computed tomography (CT), and digitized histological serial sections. Large, high-resolution datasets covering a broad range of developmental periods obtained with various methods of acquisition are key elements for the studies. The digital data have gross merits that enabled us to develop various analysis. Digital data analysis accelerated the speed of morphological observations using precise and improved methods by providing a suitable plane for a morphometric analysis from staged human embryos. Morphometric data are useful for quantitatively evaluating and demonstrating the features of development and for screening abnormal samples, which may be suggestive in the pathogenesis of congenital malformations. Morphometric data are also valuable for comparing sonographic data in a process known as "sonoembryology." The 3D coordinates of anatomical landmarks may be useful tools for analyzing the positional change of interesting landmarks and their relationships during development. Several dynamic events could be explained by differential growth using 3D coordinates. Moreover, 3D coordinates can be utilized in mathematical analysis as well as statistical analysis. The 3D analysis in our study may serve to provide accurate morphologic data, including the dynamics of embryonic structures related to developmental stages, which is required for insights into the dynamic and complex processes occurring during organogenesis. Anat Rec, 301:960-969, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  1. Hand preferences in two unimanual and two bimanual coordinated tasks in the black-handed spider monkey (Ateles geoffroyi).

    PubMed

    Motes Rodrigo, Alba; Ramirez Torres, Carlos Eduardo; Hernandez Salazar, Laura Teresa; Laska, Matthias

    2018-05-01

    Spider monkeys are interesting to study with regard to hand preferences, as they are one of the few primate species that lack a thumb and, thus, are unable to perform a precision grip. Further, being platyrrhine primates, they also largely lack independent motor control of the digits and, thus, have only limited manual dexterity. It was therefore the aim of the present study to assess hand preferences in black-handed spider monkeys ( Ateles geoffroyi ) in 4 tasks differing in task demand: simple unimanual reaching for food and 3 versions of the widely used tube task, including 2 bimanual versions that differ from each other in the degree of fine motor control needed and a unimanual version that does not require coordinated action of the hands. We found that black-handed spider monkeys display significant hand preferences at the individual, but not at the population, level. This was true both in the 2 bimanual coordinated tasks and in the 2 unimanual tasks. Further, our results show that the majority of animals were consistent in the hand they preferred in these 4 tasks. Our findings only partially support the notion that task demand positively correlates with strength of hand preference. Finally, we found that the index finger was the most frequently used digit in all 3 tube tasks, although the animals also used other digits and 2- and 3-finger combinations to extract food from a tube. We conclude that limited manual dexterity does not prevent spider monkeys from displaying strong and consistent hand preferences at the individual level. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Somatostatin signaling system as an ancestral mechanism: Myoregulatory activity of an Allatostatin-C peptide in Hydra.

    PubMed

    Alzugaray, María Eugenia; Hernández-Martínez, Salvador; Ronderos, Jorge Rafael

    2016-08-01

    The coordination of physiological processes requires precise communication between cells. Cellular interactions allow cells to be functionally related, facilitating the maintaining of homeostasis. Neuropeptides functioning as intercellular signals are widely distributed in Metazoa. It is assumed that neuropeptides were the first intercellular transmitters, appearing early during the evolution. In Cnidarians, neuropeptides are mainly involved in neurotransmission, acting directly or indirectly on epithelial muscle cells, and thereby controlling coordinated movements. Allatostatins are a group of chemically unrelated neuropeptides that were originally characterized based on their ability to inhibit juvenil hormone synthesis in insects. Allatostatin-C has pleiotropic functions, acting as myoregulator in several insects. In these studies, we analyzed the myoregulatory effect of Aedes aegypti Allatostatin-C in Hydra sp., a member of the phylum Cnidaria. Allatostatin-C peptide conjugated with Qdots revealed specifically distributed cell populations that respond to the peptide in different regions of hydroids. In vivo physiological assays using Allatostatin-C showed that the peptide induced changes in shape and length in tentacles, peduncle and gastrovascular cavity. The observed changes were dose and time dependent suggesting the physiological nature of the response. Furthermore, at highest doses, Allatostatin-C induced peristaltic movements of the gastrovascular cavity resembling those that occur during feeding. In silico search of putative Allatostatin-C receptors in Cnidaria showed that genomes predict the existence of proteins of the somatostatin/Allatostatin-C receptors family. Altogether, these results suggest that Allatostatin-C has myoregulatory activity in Hydra sp, playing a role in the control of coordinated movements during feeding, indicating that Allatostatin-C/Somatostatin based signaling might be an ancestral mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Researcher perspectives on competencies of return-to-work coordinators.

    PubMed

    Gardner, Bethany T; Pransky, Glenn; Shaw, William S; Hong, Qua Nha; Loisel, Patrick

    2010-01-01

    Return-to-work (RTW) coordination programs are successful in reducing long-term work disability, but research reports have not adequately described the role and competencies of the RTW coordinator. This study was conducted to clarify the impact of RTW coordinators, and competencies (knowledge, skills, and attitudes) required to achieve optimal RTW outcomes in injured workers. Studies involving RTW coordination for injured workers were identified through literature review. Semi-structured interviews were conducted with 12 principal investigators to obtain detailed information about the RTW coordinator role and competencies not included in published articles. Interview results were synthesized into principal conceptual groups by affinity mapping. All investigators strongly endorsed the role of RTW coordinator as key to the program's success. Affinity mapping identified 10 groups of essential competencies: (1) individual traits/qualities, (2) relevant knowledge base, (3) RTW focus and attitude, (4) organizational/administrative skills, (5) assessment skills, (6) communication skills, (7) interpersonal relationship skills, (8) conflict resolution skills, (9) problem-solving skills, and (10) RTW facilitation skills. Specific consensus competencies were identified within each affinity group. Most investigators endorsed similar competencies, although there was some variation by setting or scope of RTW intervention. RTW coordinators are essential contributors in RTW facilitation programs. This study identified specific competencies required to achieve success. More emphasis on mentorship and observation will be required to develop and evaluate necessary skills in this area.

  4. 48 CFR 952.223-78 - Sustainable acquisition program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... activities with and submit required reports through the Environmental Sustainability Coordinator or... reports through the Environmental Sustainability Coordinator or equivalent position. Reporting under this... prepare and submit performance reports, if required, using prescribed DOE formats, at the end of the...

  5. Evaluating a campaign GNSS velocity field derived from an online precise point positioning service

    NASA Astrophysics Data System (ADS)

    Holden, L.; Silcock, D.; Choy, S.; Cas, R.; Ailleres, L.; Fournier, N.

    2017-01-01

    Traditional processing of Global Navigation Satellite System (GNSS) data using dedicated scientific software has provided the highest levels of positional accuracy, and has been used extensively in geophysical deformation studies. To achieve these accuracies a significant level of understanding and training is required, limiting their availability to the general scientific community. Various online GNSS processing services, now freely available, address some of these difficulties and allow users to easily process their own GNSS data and potentially obtain high quality results. Previous research into these services has focused on Continually Operating Reference Station (CORS) GNSS data. Less research exists on the results achievable with these services using large campaign GNSS data sets, which are inherently noisier than CORS data. Even less research exists on the quality of velocity fields derived from campaign GNSS data processed through online precise point positioning services. Particularly, whether they are suitable for geodynamic and deformation studies where precise and reliable velocities are needed. In this research, we process a very large campaign GPS data set (spanning 10 yr) with the online Jet Propulsion Laboratory Automated Precise Positioning Service. This data set is taken from a GNSS network specifically designed and surveyed to measure deformation through the central North Island of New Zealand. This includes regional CORS stations. We then use these coordinates to derive a horizontal and vertical velocity field. This is the first time that a large campaign GPS data set has been processed solely using an online service and the solutions used to determine a horizontal and vertical velocity field. We compared this velocity field to that of another well utilized GNSS scientific software package. The results show a good agreement between the CORS positions and campaign station velocities obtained from the two approaches. We discuss the implications of these results for how future GNSS campaign field surveys might be conducted and how their data might be processed.

  6. Sensorimotor synchronization with tempo-changing auditory sequences: Modeling temporal adaptation and anticipation.

    PubMed

    van der Steen, M C Marieke; Jacoby, Nori; Fairhurst, Merle T; Keller, Peter E

    2015-11-11

    The current study investigated the human ability to synchronize movements with event sequences containing continuous tempo changes. This capacity is evident, for example, in ensemble musicians who maintain precise interpersonal coordination while modulating the performance tempo for expressive purposes. Here we tested an ADaptation and Anticipation Model (ADAM) that was developed to account for such behavior by combining error correction processes (adaptation) with a predictive temporal extrapolation process (anticipation). While previous computational models of synchronization incorporate error correction, they do not account for prediction during tempo-changing behavior. The fit between behavioral data and computer simulations based on four versions of ADAM was assessed. These versions included a model with adaptation only, one in which adaptation and anticipation act in combination (error correction is applied on the basis of predicted tempo changes), and two models in which adaptation and anticipation were linked in a joint module that corrects for predicted discrepancies between the outcomes of adaptive and anticipatory processes. The behavioral experiment required participants to tap their finger in time with three auditory pacing sequences containing tempo changes that differed in the rate of change and the number of turning points. Behavioral results indicated that sensorimotor synchronization accuracy and precision, while generally high, decreased with increases in the rate of tempo change and number of turning points. Simulations and model-based parameter estimates showed that adaptation mechanisms alone could not fully explain the observed precision of sensorimotor synchronization. Including anticipation in the model increased the precision of simulated sensorimotor synchronization and improved the fit of model to behavioral data, especially when adaptation and anticipation mechanisms were linked via a joint module based on the notion of joint internal models. Overall results suggest that adaptation and anticipation mechanisms both play an important role during sensorimotor synchronization with tempo-changing sequences. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Fine-resolution repeat topographic surveying of dryland landscapes using UAS-based structure-from-motion photogrammetry: Assessing accuracy and precision against traditional ground-based erosion measurements

    USGS Publications Warehouse

    Gillian, Jeffrey K.; Karl, Jason W.; Elaksher, Ahmed; Duniway, Michael C.

    2017-01-01

    Structure-from-motion (SfM) photogrammetry from unmanned aerial system (UAS) imagery is an emerging tool for repeat topographic surveying of dryland erosion. These methods are particularly appealing due to the ability to cover large landscapes compared to field methods and at reduced costs and finer spatial resolution compared to airborne laser scanning. Accuracy and precision of high-resolution digital terrain models (DTMs) derived from UAS imagery have been explored in many studies, typically by comparing image coordinates to surveyed check points or LiDAR datasets. In addition to traditional check points, this study compared 5 cm resolution DTMs derived from fixed-wing UAS imagery with a traditional ground-based method of measuring soil surface change called erosion bridges. We assessed accuracy by comparing the elevation values between DTMs and erosion bridges along thirty topographic transects each 6.1 m long. Comparisons occurred at two points in time (June 2014, February 2015) which enabled us to assess vertical accuracy with 3314 data points and vertical precision (i.e., repeatability) with 1657 data points. We found strong vertical agreement (accuracy) between the methods (RMSE 2.9 and 3.2 cm in June 2014 and February 2015, respectively) and high vertical precision for the DTMs (RMSE 2.8 cm). Our results from comparing SfM-generated DTMs to check points, and strong agreement with erosion bridge measurements suggests repeat UAS imagery and SfM processing could replace erosion bridges for a more synoptic landscape assessment of shifting soil surfaces for some studies. However, while collecting the UAS imagery and generating the SfM DTMs for this study was faster than collecting erosion bridge measurements, technical challenges related to the need for ground control networks and image processing requirements must be addressed before this technique could be applied effectively to large landscapes.

  8. Numerical Algorithms for Precise and Efficient Orbit Propagation and Positioning

    NASA Astrophysics Data System (ADS)

    Bradley, Ben K.

    Motivated by the growing space catalog and the demands for precise orbit determination with shorter latency for science and reconnaissance missions, this research improves the computational performance of orbit propagation through more efficient and precise numerical integration and frame transformation implementations. Propagation of satellite orbits is required for astrodynamics applications including mission design, orbit determination in support of operations and payload data analysis, and conjunction assessment. Each of these applications has somewhat different requirements in terms of accuracy, precision, latency, and computational load. This dissertation develops procedures to achieve various levels of accuracy while minimizing computational cost for diverse orbit determination applications. This is done by addressing two aspects of orbit determination: (1) numerical integration used for orbit propagation and (2) precise frame transformations necessary for force model evaluation and station coordinate rotations. This dissertation describes a recently developed method for numerical integration, dubbed Bandlimited Collocation Implicit Runge-Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. It requires significantly fewer force function evaluations than explicit Runge-Kutta schemes and approaches the efficiency of the 8th-order Gauss-Jackson multistep method. Converting between the Geocentric Celestial Reference System (GCRS) and International Terrestrial Reference System (ITRS) is necessary for many applications in astrodynamics, such as orbit propagation, orbit determination, and analyzing geoscience data from satellite missions. This dissertation provides simplifications to the Celestial Intermediate Origin (CIO) transformation scheme and Earth orientation parameter (EOP) storage for use in positioning and orbit propagation, yielding savings in computation time and memory. Orbit propagation and position transformation simulations are analyzed to generate a complete set of recommendations for performing the ITRS/GCRS transformation for a wide range of needs, encompassing real-time on-board satellite operations and precise post-processing applications. In addition, a complete derivation of the ITRS/GCRS frame transformation time-derivative is detailed for use in velocity transformations between the GCRS and ITRS and is applied to orbit propagation in the rotating ITRS. EOP interpolation methods and ocean tide corrections are shown to impact the ITRS/GCRS transformation accuracy at the level of 5 cm and 20 cm on the surface of the Earth and at the Global Positioning System (GPS) altitude, respectively. The precession-nutation and EOP simplifications yield maximum propagation errors of approximately 2 cm and 1 m after 15 minutes and 6 hours in low-Earth orbit (LEO), respectively, while reducing computation time and memory usage. Finally, for orbit propagation in the ITRS, a simplified scheme is demonstrated that yields propagation errors under 5 cm after 15 minutes in LEO. This approach is beneficial for orbit determination based on GPS measurements. We conclude with a summary of recommendations on EOP usage and bias-precession-nutation implementations for achieving a wide range of transformation and propagation accuracies at several altitudes. This comprehensive set of recommendations allows satellite operators, astrodynamicists, and scientists to make informed decisions when choosing the best implementation for their application, balancing accuracy and computational complexity.

  9. 47 CFR 25.262 - Licensing and domestic coordination requirements for 17/24 GHz BSS space stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... requirements for 17/24 GHz BSS space stations. 25.262 Section 25.262 Telecommunication FEDERAL COMMUNICATIONS... Licensing and domestic coordination requirements for 17/24 GHz BSS space stations. (a) Except as described in paragraphs (b), (c) or (e) of this section, applicants seeking to operate a space station in the...

  10. 47 CFR 25.262 - Licensing and domestic coordination requirements for 17/24 GHz BSS space stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... requirements for 17/24 GHz BSS space stations. 25.262 Section 25.262 Telecommunication FEDERAL COMMUNICATIONS... Licensing and domestic coordination requirements for 17/24 GHz BSS space stations. (a) Except as described in paragraphs (b), (c) or (e) of this section, applicants seeking to operate a space station in the...

  11. 47 CFR 25.262 - Licensing and domestic coordination requirements for 17/24 GHz BSS space stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... requirements for 17/24 GHz BSS space stations. 25.262 Section 25.262 Telecommunication FEDERAL COMMUNICATIONS... Licensing and domestic coordination requirements for 17/24 GHz BSS space stations. (a) Except as described in paragraphs (b), (c) or (e) of this section, applicants seeking to operate a space station in the...

  12. 47 CFR 25.262 - Licensing and domestic coordination requirements for 17/24 GHz BSS space stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... requirements for 17/24 GHz BSS space stations. 25.262 Section 25.262 Telecommunication FEDERAL COMMUNICATIONS... Licensing and domestic coordination requirements for 17/24 GHz BSS space stations. (a) Except as described in paragraphs (b), (c) or (e) of this section, applicants seeking to operate a space station in the...

  13. 75 FR 57690 - Acquisition Regulation: Sustainable Acquisition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... coordinate its activities with and submit required reports through the Environmental Sustainability... reports directly to the Prime Contractor's Environmental Sustainability Coordinator at the supported... reports through the Environmental Sustainability Coordinator or equivalent position. Reporting under this...

  14. 48 CFR 952.223-78 - Sustainable acquisition program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... activities with and submit required reports through the Environmental Sustainability Coordinator or... Prime Contractor's Environmental Sustainability Coordinator at the supported facility. The Subcontractor... reports through the Environmental Sustainability Coordinator or equivalent position. Reporting under this...

  15. 48 CFR 952.223-78 - Sustainable acquisition program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... activities with and submit required reports through the Environmental Sustainability Coordinator or... Prime Contractor's Environmental Sustainability Coordinator at the supported facility. The Subcontractor... reports through the Environmental Sustainability Coordinator or equivalent position. Reporting under this...

  16. 48 CFR 952.223-78 - Sustainable acquisition program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... activities with and submit required reports through the Environmental Sustainability Coordinator or... Prime Contractor's Environmental Sustainability Coordinator at the supported facility. The Subcontractor... reports through the Environmental Sustainability Coordinator or equivalent position. Reporting under this...

  17. 48 CFR 952.223-78 - Sustainable acquisition program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... activities with and submit required reports through the Environmental Sustainability Coordinator or... Prime Contractor's Environmental Sustainability Coordinator at the supported facility. The Subcontractor... reports through the Environmental Sustainability Coordinator or equivalent position. Reporting under this...

  18. Effects of a descending lithospheric slab on yield estimates of underground nuclear tests. Final technical report, 8 Mar 88-31 Aug 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cormier, V.F.; Kim, W.; Mandal, B.

    A method for computing seismic wavefields in a high-frequency approximation is proposed based on the integration of the kinematic ray tracing equations and a new set of differential equations for the dynamic properties of the wavefront, which the authors call the vicinity ray tracing (VRT) equations. These equations are directly obtained from the Hamiltonian in ray centered coordinates, using no paraxial approximations. This system is comparable to the standard dynamic ray tracing (DRT) system, but it is specified by fewer equations (four versus eight in 3-D) and only requires the specification of velocity and its first spacial derivative along amore » ray. The VRT equations describe the trajectory of a ray in ray centered coordinates of a reference ray. Quantities obtained from vicinity ray tracing can be used to determine wavefront curvature, geometric spreading, travel time to a receiver near the reference ray, and the KMAH index of the reference ray with greater numerical precision than is possible by differencing kinematically traced rays. Since second spatial derivatives of velocity are not required by the new technique, parameterization of the medium is simplified, and reflection and transmission of beams can be calculated by applying Snell's law to both vicinity and central rays. Conversation relations between VRT and DRT can be used to determine the paraxial vicinity of DRT, in which the errors of the paraxial approximations of DRT remain small. Because no paraxial approximations are made, the superposition of the Gaussian beams define from the vicinity rays should exhibit a much slower breakdown in accuracy as the scale length of the medium given by V/Delta v approaches the beamwidth.« less

  19. Use of global positioning system measurements to determine geocentric coordinates and variations in Earth orientation

    NASA Technical Reports Server (NTRS)

    Malla, R. P.; Wu, S.-C.; Lichten, S. M.

    1993-01-01

    Geocentric tracking station coordinates and short-period Earth-orientation variations can be measured with Global Positioning System (GPS) measurements. Unless calibrated, geocentric coordinate errors and changes in Earth orientation can lead to significant deep-space tracking errors. Ground-based GPS estimates of daily and subdaily changes in Earth orientation presently show centimeter-level precision. Comparison between GPS-estimated Earth-rotation variations, which are the differences between Universal Time 1 and Universal Coordinated Time (UT1-UTC), and those calculated from ocean tide models suggests that observed subdaily variations in Earth rotation are dominated by oceanic tidal effects. Preliminary GPS estimates for the geocenter location (from a 3-week experiment) agree with independent satellite laser-ranging estimates to better than 10 cm. Covariance analysis predicts that temporal resolution of GPS estimates for Earth orientation and geocenter improves significantly when data collected from low Earth-orbiting satellites as well as from ground sites are combined. The low Earth GPS tracking data enhance the accuracy and resolution for measuring high-frequency global geodynamical signals over time scales of less than 1 day.

  20. An Encoding Method for Compressing Geographical Coordinates in 3d Space

    NASA Astrophysics Data System (ADS)

    Qian, C.; Jiang, R.; Li, M.

    2017-09-01

    This paper proposed an encoding method for compressing geographical coordinates in 3D space. By the way of reducing the length of geographical coordinates, it helps to lessen the storage size of geometry information. In addition, the encoding algorithm subdivides the whole space according to octree rules, which enables progressive transmission and loading. Three main steps are included in this method: (1) subdividing the whole 3D geographic space based on octree structure, (2) resampling all the vertices in 3D models, (3) encoding the coordinates of vertices with a combination of Cube Index Code (CIC) and Geometry Code. A series of geographical 3D models were applied to evaluate the encoding method. The results showed that this method reduced the storage size of most test data by 90 % or even more under the condition of a speed of encoding and decoding. In conclusion, this method achieved a remarkable compression rate in vertex bit size with a steerable precision loss. It shall be of positive meaning to the web 3d map storing and transmission.

  1. Small format digital photogrammetry for applications in the earth sciences

    NASA Astrophysics Data System (ADS)

    Rieke-Zapp, Dirk

    2010-05-01

    Small format digital photogrammetry for applications in the earth sciences Photogrammetry is often considered one of the most precise and versatile surveying techniques. The same camera and analysis software can be used for measurements from sub-millimetre to kilometre scale. Such a measurement device is well suited for application by earth scientists working in the field. In this case a small toolset and a straight forward setup best fit the needs of the operator. While a digital camera is typically already part of the field equipment of an earth scientist the main focus of the field work is often not surveying. Lack in photogrammetric training at the same time requires an easy to learn, straight forward surveying technique. A photogrammetric method was developed aimed primarily at earth scientists for taking accurate measurements in the field minimizing extra bulk and weight of the required equipment. The work included several challenges. A) Definition of an upright coordinate system without heavy and bulky tools like a total station or GNS-Sensor. B) Optimization of image acquisition and geometric stability of the image block. C) Identification of a small camera suitable for precise measurements in the field. D) Optimization of the workflow from image acquisition to preparation of images for stereo measurements. E) Introduction of students and non-photogrammetrists to the workflow. Wooden spheres were used as target points in the field. They were more rugged and available in different sizes than ping pong balls used in a previous setup. Distances between three spheres were introduced as scale information in a photogrammetric adjustment. The distances were measured with a laser distance meter accurate to 1 mm (1 sigma). The vertical angle between the spheres was measured with the same laser distance meter. The precision of the measurement was 0.3° (1 sigma) which is sufficient, i.e. better than inclination measurements with a geological compass. The upright coordinate system is important to measure the dip angle of geologic features in outcrop. The planimetric coordinate systems would be arbitrary, but may easily be oriented to compass north introducing a direction measurement of a compass. Wooden spheres and a Leica disto D3 laser distance meter added less than 0.150 kg to the field equipment considering that a suitable digital camera was already part of it. Identification of a small digital camera suitable for precise measurements was a major part of this work. A group of cameras were calibrated several times over different periods of time on a testfield. Further evaluation involved an accuracy assessment in the field comparing distances between signalized points calculated form a photogrammetric setup with coordinates derived from a total station survey. The smallest camera in the test required calibration on the job as the interior orientation changed significantly between testfield calibration and use in the field. We attribute this to the fact that the lens was retracted then the camera was switched off. Fairly stable camera geometry in a compact size camera with lens retracting system was accomplished for Sigma DP1 and DP2 cameras. While the pixel count of the cameras was less than for the Ricoh, the pixel pitch in the Sigma cameras was much larger. Hence, the same mechanical movement would have less per pixel effect for the Sigma cameras than for the Ricoh camera. A large pixel pitch may therefore compensate for some camera instability explaining why cameras with large sensors and larger pixel pitch typically yield better accuracy in object space. Both Sigma cameras weigh approximately 0.250 kg and may even be suitable for use with ultralight aerial vehicles (UAV) which have payload restriction of 0.200 to 0.300 kg. A set of other cameras that were available were also tested on a calibration field and on location showing once again that it is difficult to reason geometric stability from camera specifications. Image acquisition with geometrically stable cameras was fairly straight forward to cover the area of interest with stereo pairs for analysis. We limited our tests to setups with three to five images to minimize the amount of post processing. The laser dot of the laser distance meter was not visible for distances farther than 5-7 m with the naked eye which also limited the maximum stereo area that may be covered with this technique. Extrapolating the setup to fairly large areas showed no significant decrease in accuracy accomplished in object space. Working with a Sigma SD14 SLR camera on a 6 x 18 x 20 m3 volume the maximum length measurement error ranged between 20 and 30 mm depending on image setup and analysis. For smaller outcrops even the compact cameras yielded maximum length measurement errors in the mm range which was considered sufficient for measurements in the earth sciences. In many cases the resolution per pixel was the limiting factor of image analysis rather than accuracy. A field manual was developed guiding novice users and students to this technique. The technique does not simplify ease of use for precision; therefore successful users of the presented method easily grow into more advanced photogrammetric methods for high precision applications. Originally camera calibration was not part of the methodology for the novice operators. Recent introduction of Camera Calibrator which is a low cost, well automated software for camera calibration, allowed beginners to calibrate their camera within a couple minutes. The complete set of calibration parameters can be applied in ERDAS LPS software easing the workflow. Image orientation was performed in LPS 9.2 software which was also used for further image analysis.

  2. Positional and Dimensional Accuracy Assessment of Drone Images Geo-referenced with Three Different GPSs

    NASA Astrophysics Data System (ADS)

    Cao, C.; Lee, X.; Xu, J.

    2017-12-01

    Unmanned Aerial Vehicles (UAVs) or drones have been widely used in environmental, ecological and engineering applications in recent years. These applications require assessment of positional and dimensional accuracy. In this study, positional accuracy refers to the accuracy of the latitudinal and longitudinal coordinates of locations on the mosaicked image in reference to the coordinates of the same locations measured by a Global Positioning System (GPS) in a ground survey, and dimensional accuracy refers to length and height of a ground target. Here, we investigate the effects of the number of Ground Control Points (GCPs) and the accuracy of the GPS used to measure the GCPs on positional and dimensional accuracy of a drone 3D model. Results show that using on-board GPS and a hand-held GPS produce a positional accuracy on the order of 2-9 meters. In comparison, using a differential GPS with high accuracy (30 cm) improves the positional accuracy of the drone model by about 40 %. Increasing the number of GCPs can compensate for the uncertainty brought by the GPS equipment with low accuracy. In terms of the dimensional accuracy of the drone model, even with the use of a low resolution GPS onboard the vehicle, the mean absolute errors are only 0.04 m for height and 0.10 m for length, which are well suited for some applications in precision agriculture and in land survey studies.

  3. Initial Investigation of Operational Concept Elements for NASA's NextGen-Airportal Project Research

    NASA Technical Reports Server (NTRS)

    Lohr, Gary; Lee, Jonathan; Poage, James L.; Tobias, Leonard

    2009-01-01

    The NextGen-Airportal Project is organized into three research focus areas: Safe and Efficient Surface Operations, Coordinated Arrival/Departure Operations Management, and Airportal Transition and Integration Management. The content in this document was derived from an examination of constraints and problems at airports for accommodating future increases in air traffic, and from an examination of capabilities envisioned for NextGen. The concepts are organized around categories of constraints and problems and therefore do not precisely match, but generally reflect, the research focus areas. The concepts provide a framework for defining and coordinating research activities that are, and will be, conducted by the NextGen-Airportal Project. The concepts will help the research activities function as an integrated set focused on future needs for airport operations and will aid aligning the research activities with NextGen key capabilities. The concepts are presented as concept elements with more detailed sub-elements under each concept element. For each concept element, the following topics are discussed: constraints and problems being addressed, benefit descriptions, required technology and infrastructure, and an initial list of potential research topics. Concept content will be updated and more detail added as the research progresses. The concepts are focused on enhancing airportal capacity and efficiency in a timeframe 20 to 25 years in the future, which is similar to NextGen's timeframe.

  4. A Global Terrestrial Reference Frame from simulated VLBI and SLR data in view of GGOS

    NASA Astrophysics Data System (ADS)

    Glaser, Susanne; König, Rolf; Ampatzidis, Dimitrios; Nilsson, Tobias; Heinkelmann, Robert; Flechtner, Frank; Schuh, Harald

    2017-07-01

    In this study, we assess the impact of two combination strategies, namely local ties (LT) and global ties (GT), on the datum realization of Global Terrestrial Reference Frames in view of the Global Geodetic Observing System requiring 1 mm-accuracy. Simulated Very Long Baseline Interferometry (VLBI) and Satellite Laser Ranging (SLR) data over a 7 year time span was used. The LT results show that the geodetic datum can be best transferred if the precision of the LT is at least 1 mm. Investigating different numbers of LT, the lack of co-located sites on the southern hemisphere is evidenced by differences of 9 mm in translation and rotation compared to the solution using all available LT. For the GT, the combination applying all Earth rotation parameters (ERP), such as pole coordinates and UT1-UTC, indicates that the rotation around the Z axis cannot be adequately transferred from VLBI to SLR within the combination. Applying exclusively the pole coordinates as GT, we show that the datum can be transferred with mm-accuracy within the combination. Furthermore, adding artificial stations in Tahiti and Nigeria to the current VLBI network results in an improvement in station positions by 13 and 12%, respectively, and in ERP by 17 and 11%, respectively. Extending to every day VLBI observations leads to 65% better ERP estimates compared to usual twice-weekly VLBI observations.

  5. Joint Attention without Gaze Following: Human Infants and Their Parents Coordinate Visual Attention to Objects through Eye-Hand Coordination

    PubMed Central

    Yu, Chen; Smith, Linda B.

    2013-01-01

    The coordination of visual attention among social partners is central to many components of human behavior and human development. Previous research has focused on one pathway to the coordination of looking behavior by social partners, gaze following. The extant evidence shows that even very young infants follow the direction of another's gaze but they do so only in highly constrained spatial contexts because gaze direction is not a spatially precise cue as to the visual target and not easily used in spatially complex social interactions. Our findings, derived from the moment-to-moment tracking of eye gaze of one-year-olds and their parents as they actively played with toys, provide evidence for an alternative pathway, through the coordination of hands and eyes in goal-directed action. In goal-directed actions, the hands and eyes of the actor are tightly coordinated both temporally and spatially, and thus, in contexts including manual engagement with objects, hand movements and eye movements provide redundant information about where the eyes are looking. Our findings show that one-year-olds rarely look to the parent's face and eyes in these contexts but rather infants and parents coordinate looking behavior without gaze following by attending to objects held by the self or the social partner. This pathway, through eye-hand coupling, leads to coordinated joint switches in visual attention and to an overall high rate of looking at the same object at the same time, and may be the dominant pathway through which physically active toddlers align their looking behavior with a social partner. PMID:24236151

  6. Streamlining Collaborative Planning in Spacecraft Mission Architectures

    NASA Technical Reports Server (NTRS)

    Misra, Dhariti; Bopf, Michel; Fishman, Mark; Jones, Jeremy; Kerbel, Uri; Pell, Vince

    2000-01-01

    During the past two decades, the planning and scheduling community has substantially increased the capability and efficiency of individual planning and scheduling systems. Relatively recently, research work to streamline collaboration between planning systems is gaining attention. Spacecraft missions stand to benefit substantially from this work as they require the coordination of multiple planning organizations and planning systems. Up to the present time this coordination has demanded a great deal of human intervention and/or extensive custom software development efforts. This problem will become acute with increased requirements for cross-mission plan coordination and multi -spacecraft mission planning. The Advanced Architectures and Automation Branch of NASA's Goddard Space Flight Center is taking innovative steps to define collaborative planning architectures, and to identify coordinated planning tools for Cross-Mission Campaigns. Prototypes are being developed to validate these architectures and assess the usefulness of the coordination tools by the planning community. This presentation will focus on one such planning coordination too], named Visual Observation Layout Tool (VOLT), which is currently being developed to streamline the coordination between astronomical missions

  7. 45 CFR 1340.4 - Coordination requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, CHILD ABUSE AND NEGLECT PREVENTION AND TREATMENT PROGRAM CHILD ABUSE AND NEGLECT PREVENTION AND TREATMENT General Provisions § 1340.4 Coordination requirements. All Federal agencies responsible for programs related to child...

  8. 47 CFR 25.111 - Additional information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... information it requires for the Advance Publication, Coordination and Notification of frequency assignments... information required by the ITU Radiocommunication Bureau to advance publish, coordinate and notify the frequencies to be used for tracking, telemetry and control functions of DBS systems. [56 FR 24016, May 28...

  9. 45 CFR 1340.4 - Coordination requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, CHILD ABUSE AND NEGLECT PREVENTION AND TREATMENT PROGRAM CHILD ABUSE AND NEGLECT PREVENTION AND TREATMENT General Provisions § 1340.4 Coordination requirements. All Federal agencies responsible for programs related to child...

  10. 45 CFR 1340.4 - Coordination requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, CHILD ABUSE AND NEGLECT PREVENTION AND TREATMENT PROGRAM CHILD ABUSE AND NEGLECT PREVENTION AND TREATMENT General Provisions § 1340.4 Coordination requirements. All Federal agencies responsible for programs related to child...

  11. 45 CFR 1340.4 - Coordination requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, CHILD ABUSE AND NEGLECT PREVENTION AND TREATMENT PROGRAM CHILD ABUSE AND NEGLECT PREVENTION AND TREATMENT General Provisions § 1340.4 Coordination requirements. All Federal agencies responsible for programs related to child...

  12. 45 CFR 1340.4 - Coordination requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, CHILD ABUSE AND NEGLECT PREVENTION AND TREATMENT PROGRAM CHILD ABUSE AND NEGLECT PREVENTION AND TREATMENT General Provisions § 1340.4 Coordination requirements. All Federal agencies responsible for programs related to child...

  13. The elimination of influence of disturbing bodies' coordinates and derivatives discontinuity on the accuracy of asteroid motion simulation

    NASA Astrophysics Data System (ADS)

    Baturin, A. P.; Votchel, I. A.

    2013-12-01

    The problem of asteroid motion sumulation has been considered. At present this simulation is being performed by means of numerical integration taking into account the pertubations from planets and the Moon with some their ephemerides (DE405, DE422, etc.). All these ephemerides contain coefficients for Chebyshev polinomials for the great amount of equal interpolation intervals. However, all ephemerides has been constructed to keep at the junctions of adjacent intervals a continuity of just coordinates and their first derivatives (just in 16-digit decimal format corre-sponding to 64-bit floating-point numbers). But as for the second and higher order derivatives, they have breaks at these junctions. These breaks, if they are within an integration step, decrease the accuracy of numerical integration. If to consider 34-digit format (128-bit floating point numbers) the coordinates and their first derivatives will also have breaks (at 15-16 decimal digit) at interpolation intervals' junctions. Two ways of elimination of influence of such breaks have been considered. The first one is a "smoothing" of ephemerides so that planets' coordinates and their de-rivatives up to some order will be continuous at the junctions. The smoothing algorithm is based on conditional least-square fitting of coefficients for Chebyshev polynomials, the conditions are equalities of coordinates and derivatives up to some order "from the left" and "from the right" at the each junction. The algorithm has been applied for the smoothing of ephemerides DE430 just up to the first-order derivatives. The second way is a correction of integration step so that junctions does not lie within the step and always coincide with its end. But this way may be applied just at 16-digit decimal precision because it assumes a continuity of planets' coordinates and their first derivatives. Both ways was applied in forward and backward numerical integration for asteroids Apophis and 2012 DA14 by means of 15- and 31-order Everhart method at 16- and 34-digit decimal precision correspondently. The ephemerides DE430 (in its original and smoothed form) has been used for the calculation of perturbations. The results of the research indicate that the integration step correction increases a numercal integration accuracy by 3-4 orders. If, in addition, to replace the original ephemerides by the smoothed ones the accuracy increases approximately by 10 orders.

  14. Effects of relational coordination among colleagues and span of control on work engagement among home-visiting nurses.

    PubMed

    Naruse, Takashi; Sakai, Mahiro; Nagata, Satoko

    2016-04-01

    Home-visiting nursing agencies are required to foster staff nurse's work engagement; thus, the factors related to work engagement require identification. This study examined relational coordination among colleagues and agency span of control on the work engagement of home-visiting nurses. Cross-sectional data from 93 staff nurses in 31 home-visiting nursing agencies were collected via a survey and analyzed using mixed linear regression. There was no significant main effect of relational coordination among nurse colleagues on work engagement. In large agencies with a large span of control, relational coordination among nursing colleagues predicted work engagement. Nursing managers' relational coordination was found to be positively associated with staff nurse work engagement. Agency span of control is a moderating factor on the positive effect of relational coordination with nursing colleagues on staff nurse work engagement. © 2016 Japan Academy of Nursing Science.

  15. The influence of asymmetric force requirements on a multi-frequency bimanual coordination task.

    PubMed

    Kennedy, Deanna M; Rhee, Joohyun; Jimenez, Judith; Shea, Charles H

    2017-01-01

    An experiment was designed to determine the impact of the force requirements on the production of bimanual 1:2 coordination patterns requiring the same (symmetric) or different (asymmetric) forces when Lissajous displays and goal templates are provided. The Lissajous displays have been shown to minimize the influence of attentional and perceptual constraints allowing constraints related to neural crosstalk to be more clearly observed. Participants (N=20) were randomly assigned to a force condition in which the left or right limb was required to produce more force than the contralateral limb. In each condition participants were required to rhythmically coordinate the pattern of isometric forces in a 1:2 coordination pattern. Participant performed 13 practice trials and 1 test trial per force level. The results indicated that participants were able to effectively coordinate the 1:2 multi-frequency goal patterns under both symmetric and asymmetric force requirements. However, consistent distortions in the force and force velocity time series were observed for one limb that appeared to be associated with the production of force in the contralateral limb. Distortions in the force produced by the left limb occurred regardless of the force requirements of the task (symmetric, asymmetric) or whether the left or right limb had to produce more force than the contralateral limb. However, distinct distortions in the right limb occurred only when the left limb was required to produce 5 times more force than the right limb. These results are consistent with the notion that neural crosstalk can influence both limbs, but may manifest differently for each limb depending on the force requirements of the task. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Accuracy and Precision of a Surgical Navigation System: Effect of Camera and Patient Tracker Position and Number of Active Markers.

    PubMed

    Gundle, Kenneth R; White, Jedediah K; Conrad, Ernest U; Ching, Randal P

    2017-01-01

    Surgical navigation systems are increasingly used to aid resection and reconstruction of osseous malignancies. In the process of implementing image-based surgical navigation systems, there are numerous opportunities for error that may impact surgical outcome. This study aimed to examine modifiable sources of error in an idealized scenario, when using a bidirectional infrared surgical navigation system. Accuracy and precision were assessed using a computerized-numerical-controlled (CNC) machined grid with known distances between indentations while varying: 1) the distance from the grid to the navigation camera (range 150 to 247cm), 2) the distance from the grid to the patient tracker device (range 20 to 40cm), and 3) whether the minimum or maximum number of bidirectional infrared markers were actively functioning. For each scenario, distances between grid points were measured at 10-mm increments between 10 and 120mm, with twelve measurements made at each distance. The accuracy outcome was the root mean square (RMS) error between the navigation system distance and the actual grid distance. To assess precision, four indentations were recorded six times for each scenario while also varying the angle of the navigation system pointer. The outcome for precision testing was the standard deviation of the distance between each measured point to the mean three-dimensional coordinate of the six points for each cluster. Univariate and multiple linear regression revealed that as the distance from the navigation camera to the grid increased, the RMS error increased (p<0.001). The RMS error also increased when not all infrared markers were actively tracking (p=0.03), and as the measured distance increased (p<0.001). In a multivariate model, these factors accounted for 58% of the overall variance in the RMS error. Standard deviations in repeated measures also increased when not all infrared markers were active (p<0.001), and as the distance between navigation camera and physical space increased (p=0.005). Location of the patient tracker did not affect accuracy (0.36) or precision (p=0.97). In our model laboratory test environment, the infrared bidirectional navigation system was more accurate and precise when the distance from the navigation camera to the physical (working) space was minimized and all bidirectional markers were active. These findings may require alterations in operating room setup and software changes to improve the performance of this system.

  17. Coordination Polymer Gels with Modular Nanomorphologies, Tunable Emissions, and Stimuli-Responsive Behavior Based on an Amphiphilic Tripodal Gelator.

    PubMed

    Sutar, Papri; Maji, Tapas Kumar

    2017-08-21

    The recent upsurge in research on coordination polymer gels (CPGs) stems from their synthetic modularity, nanoscale processability, and versatile functionalities. Here we report self-assembly of an amphiphilic, tripodal low-molecular weight gelator (L) that consists of 4,4',4-[1,3,5-phenyl-tri(methoxy)]-tris-benzene core and 2,2':6',2″-terpyridyl termini, with different metal ions toward the formation of CPGs that show controllable nanomorphologies, tunable emission, and stimuli-responsive behaviors. L can also act as a selective chemosensor for Zn II with very low limit of detection (0.18 ppm) in aqueous medium. Coordination-driven self-assembly of L with Zn II in H 2 O/MeOH solvent mixture results in a coordination polymer hydrogel (ZnL) that exhibits sheet like morphology and charge-transfer emission. On the other hand, coordination of L with Tb III and Eu III in CHCl 3 /tetrahydrofuran solvent mixture results in green- and red-emissive CPGs, respectively, with nanotubular morphology. Moreover, precise stoichiometric control of L/Eu III /Tb III ratio leads to the formation of bimetallic CPGs that show emissions over a broad spectral range, including white-light-emission. We also explore the multistimuli responsive properties of the white-light-emitting CPG by exploiting the dynamics of Ln III -tpy coordination.

  18. A fiducial skull marker for precise MRI-based stereotaxic surgery in large animal models.

    PubMed

    Glud, Andreas Nørgaard; Bech, Johannes; Tvilling, Laura; Zaer, Hamed; Orlowski, Dariusz; Fitting, Lise Moberg; Ziedler, Dora; Geneser, Michael; Sangill, Ryan; Alstrup, Aage Kristian Olsen; Bjarkam, Carsten Reidies; Sørensen, Jens Christian Hedemann

    2017-06-15

    Stereotaxic neurosurgery in large animals is used widely in different sophisticated models, where precision is becoming more crucial as desired anatomical target regions are becoming smaller. Individually calculated coordinates are necessary in large animal models with cortical and subcortical anatomical differences. We present a convenient method to make an MRI-visible skull fiducial for 3D MRI-based stereotaxic procedures in larger experimental animals. Plastic screws were filled with either copper-sulfate solution or MRI-visible paste from a commercially available cranial head marker. The screw fiducials were inserted in the animal skulls and T1 weighted MRI was performed allowing identification of the inserted skull marker. Both types of fiducial markers were clearly visible on the MRÍs. This allows high precision in the stereotaxic space. The use of skull bone based fiducial markers gives high precision for both targeting and evaluation of stereotaxic systems. There are no metal artifacts and the fiducial is easily removed after surgery. The fiducial marker can be used as a very precise reference point, either for direct targeting or in evaluation of other stereotaxic systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Modelling and precision of the localization of the robotic mobile platforms for constructions with laser tracker and SmartTrack sensor

    NASA Astrophysics Data System (ADS)

    Dima, M.; Francu, C.

    2016-08-01

    This paper presents a way to expand the field of use of the laser tracker and SmartTrack sensor localization device used in lately for the localisation of the end effector of the industrial robots to the localization of the mobile construction robots. The research paper presents the equipment along with its characteristics, determines the relationships for the localization coordinates by comparison to the forward kinematics of the industrial robot's spherical arm (positioning mechanism in spherical coordinates) and the orientation mechanism with three revolute axes. In the end of the paper the accuracy of the mobile robot's localization is analysed.

  20. Application of 3D Laser Scanning Technology in Inspection and Dynamic Reserves Detection of Open-Pit Mine

    NASA Astrophysics Data System (ADS)

    Hu, Zhumin; Wei, Shiyu; Jiang, Jun

    2017-10-01

    The traditional open-pit mine mining rights verification and dynamic reserve detection means rely on the total station and RTK to collect the results of the turning point coordinates of mining surface contours. It resulted in obtaining the results of low precision and large error in the means that is limited by the traditional measurement equipment accuracy and measurement methods. The three-dimensional scanning technology can obtain the three-dimensional coordinate data of the surface of the measured object in a large area at high resolution. This paper expounds the commonly used application of 3D scanning technology in the inspection and dynamic reserve detection of open mine mining rights.

  1. Declination, Radial Distance, and Phases of the Moon for the Years 1961 to 1971 for Use in Trajectory Considerations

    NASA Technical Reports Server (NTRS)

    Woolston, Donald S.

    1961-01-01

    As a byproduct of the preparation of solar and lunar coordinates for use in trajectory calculations a time history has been obtained of the radial distance and declination of the moon and its phases. Results are intended for use as an aid in the selection of launch dates. Results are presented for the years 1961 to 1971 in a form which permits a rapid approximate determination of the combination of declination and lighting for any calendar date. The information provides a time basis for entering tables of the moon's coordinates to obtain more precise data for use in computing insertion conditions.

  2. From Adult Finger Tapping to Fetal Heart Beating: Retracing the Role of Coordination in Constituting Agency.

    PubMed

    Solfo, Alessandro; van Leeuwen, Cees

    2018-01-01

    Sense of agency can be defined as the self-awareness of bodily movement, whereas extended agency as the self-awareness of affecting, through movement, events concomitant with movement. As a distinctive manifestation of agency, we review Spizzo's effect. This effect arises when agents coordinate their rhythmic movements with visual pulses. Once coordination is established, agents feel controlling the onset or the offset of the pulses through their movements. Spizzo's effect, therefore, constitutes a manifest case of extended agency, in which agents are aware of controlling, through movement, the pulses temporally concomitant with movement. We propose that sense of agency requires continuity of kinesthesia, which in turn requires the continuity of selfhood. The continuity of kinesthesia is necessarily deduced from the consistent kinematics observed in movements, whereas the continuity of selfhood may stem from the patterns of rhythmic coordination that humans encounter ever since intrauterine life. The primacy of these patterns in adults is in accordance with phenomena such as Spizzo's effect, which require coordination to be induced. We, therefore, propose coordination as the fundamental interaction from which selfhood, kinesthesia, and agency arise. Copyright © 2017 Cognitive Science Society, Inc.

  3. First aircraft experiment results with the wide-angle airborne laser ranging system

    NASA Astrophysics Data System (ADS)

    Bock, Olivier; Thom, Christian; Kasser, Michel

    1999-12-01

    The first aircraft experiment with the Wide-Angle Airborne Laser Ranging System has been conducted in May 1998 over an air base in France equipped with a network of 64 cub-corner retroreflectors. The ranging system was operated from the Avion de Recherche Atmospherique et de Teledetection of CNES/IGN/INSU. Data have been collected during two 4-hour flights. The paper describes the data processing methods and presents the first experimental results. The precision is of 2 cm on the difference of vertical coordinates from two sets of 3 X 103 distance measurements, which is consistent with simulations and a posteriori covariance. The precision is mainly limited by the smallness of the number of efficient measurements remaining after a drastic data sorting for outliers. Higher precision is expected for future experiments after some instrumental improvements (achieving higher link budget) and measurement of aircraft attitude during the flight.

  4. Precise through-space control of an abiotic electrophilic aromatic substitution reaction

    NASA Astrophysics Data System (ADS)

    Murphy, Kyle E.; Bocanegra, Jessica L.; Liu, Xiaoxi; Chau, H.-Y. Katharine; Lee, Patrick C.; Li, Jianing; Schneebeli, Severin T.

    2017-04-01

    Nature has evolved selective enzymes for the efficient biosynthesis of complex products. This exceptional ability stems from adapted enzymatic pockets, which geometrically constrain reactants and stabilize specific reactive intermediates by placing electron-donating/accepting residues nearby. Here we perform an abiotic electrophilic aromatic substitution reaction, which is directed precisely through space. Ester arms--positioned above the planes of aromatic rings--enable it to distinguish between nearly identical, neighbouring reactive positions. Quantum mechanical calculations show that, in two competing reaction pathways, both [C-H...O]-hydrogen bonding and electrophile preorganization by coordination to a carbonyl group likely play a role in controlling the reaction. These through-space-directed mechanisms are inspired by dimethylallyl tryptophan synthases, which direct biological electrophilic aromatic substitutions by preorganizing dimethylallyl cations and by stabilizing reactive intermediates with [C-H...N]-hydrogen bonding. Our results demonstrate how the third dimension above and underneath aromatic rings can be exploited to precisely control electrophilic aromatic substitutions.

  5. HARNESSING BIG DATA FOR PRECISION MEDICINE: INFRASTRUCTURES AND APPLICATIONS.

    PubMed

    Yu, Kun-Hsing; Hart, Steven N; Goldfeder, Rachel; Zhang, Qiangfeng Cliff; Parker, Stephen C J; Snyder, Michael

    2017-01-01

    Precision medicine is a health management approach that accounts for individual differences in genetic backgrounds and environmental exposures. With the recent advancements in high-throughput omics profiling technologies, collections of large study cohorts, and the developments of data mining algorithms, big data in biomedicine is expected to provide novel insights into health and disease states, which can be translated into personalized disease prevention and treatment plans. However, petabytes of biomedical data generated by multiple measurement modalities poses a significant challenge for data analysis, integration, storage, and result interpretation. In addition, patient privacy preservation, coordination between participating medical centers and data analysis working groups, as well as discrepancies in data sharing policies remain important topics of discussion. In this workshop, we invite experts in omics integration, biobank research, and data management to share their perspectives on leveraging big data to enable precision medicine.Workshop website: http://tinyurl.com/PSB17BigData; HashTag: #PSB17BigData.

  6. Linking clinician interaction and coordination to clinical performance in Patient-Aligned Care Teams.

    PubMed

    Hysong, Sylvia J; Thomas, Candice L; Spitzmüller, Christiane; Amspoker, Amber B; Woodard, LeChauncy; Modi, Varsha; Naik, Aanand D

    2016-01-15

    Team coordination within clinical care settings is a critical component of effective patient care. Less is known about the extent, effectiveness, and impact of coordination activities among professionals within VA Patient-Aligned Care Teams (PACTs). This study will address these gaps by describing the specific, fundamental tasks and practices involved in PACT coordination, their impact on performance measures, and the role of coordination task complexity. First, we will use a web-based survey of coordination practices among 1600 PACTs in the national VHA. Survey findings will characterize PACT coordination practices and assess their association with clinical performance measures. Functional job analysis, using 6-8 subject matter experts who are 3rd and 4th year residents in VA Primary Care rotations, will be utilized to identify the tasks involved in completing clinical performance measures to standard. From this, expert ratings of coordination complexity will be used to determine the level of coordinative complexity required for each of the clinical performance measures drawn from the VA External Peer Review Program (EPRP). For objective 3, data collected from the first two methods will evaluate the effect of clinical complexity on the relationships between measures of PACT coordination and their ratings on the clinical performance measures. Results from this study will support successful implementation of coordinated team-based work in clinical settings by providing knowledge regarding which aspects of care require the most complex levels of coordination and how specific coordination practices impact clinical performance.

  7. Automatic alignment of double optical paths in excimer laser amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun

    2013-05-01

    A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.

  8. AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1994-01-01

    This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.

  9. On the enhanced detectability of GPS anomalous behavior with relative entropy

    NASA Astrophysics Data System (ADS)

    Cho, Jeongho

    2016-10-01

    A standard receiver autonomous integrity monitoring (RAIM) technique for the global positioning system (GPS) has been dedicated to provide an integrity monitoring capability for safety-critical GPS applications, such as in civil aviation for the en-route (ER) through non-precision approach (NPA) or lateral navigation (LNAV). The performance of the existing RAIM method, however, may not meet more stringent aviation requirements for availability and integrity during the precision approach and landing phases of flight due to insufficient observables and/or untimely warning to the user beyond a specified time-to-alert in the event of a significant GPS failure. This has led to an enhanced RAIM architecture ensuring stricter integrity requirement by greatly decreasing the detection time when a satellite failure or a measurement error has occurred. We thus attempted to devise a user integrity monitor which is capable of identifying the GPS failure more rapidly than a standard RAIM scheme by incorporating the RAIM with the relative entropy, which is a likelihood ratio approach to assess the inconsistence between two data streams, quite different from a Euclidean distance. In addition, the delay-coordinate embedding technique needs to be considered and preprocessed to associate the discriminant measure obtained from the RAIM with the relative entropy in the new RAIM design. In simulation results, we demonstrate that the proposed user integrity monitor outperforms the standard RAIM with a higher level of detection rate of anomalies which could be hazardous to the users in the approach or landing phase and is a very promising alternative for the detection of deviations in GPS signal. The comparison also shows that it enables to catch even small anomalous gradients more rapidly than a typical user integrity monitor.

  10. High precise measurement of tiny angle dimensional holes for the unit-holes of the LAMOST Focal Plane Plate

    NASA Astrophysics Data System (ADS)

    Zhou, Zengxiang; Jin, Yi; Zhai, Chao; Xing, Xiaozheng

    2008-07-01

    In the LAMOST project, the unit-holes on the Focal Plane Plate are the final installation location of the optical fiber positioning system. Theirs precision will influence the observation efficiency of the LAMOST. For the unique requirements, the unit-holes on the Focal Plane Plate are composed by a series of tiny angle dimensional holes which dimensional angle are between 16' to 2.5°. According to these requirements, the measurement of the tiny angle dimensional holes for the unit-holes needs to less than 3'. And all the unit-holes point to the virtual sphere center of the Focal Plane Plate. To that end, the angle departure of the unit-holes axis is changed to the distance from the virtual sphere center of Focal Plane Plate to the unit-holes axis. That is the better way to evaluate the technical requirements of the dimensional angle errors. In the measuring process, common measuring methods do not fit for the tiny angle dimensional hole by CMM(coordinate measurement machine). An extraordinary way to solve this problem is to insert a measuring stick into a unit-hole, with a target ball on the stick. Then measure the low point of the ball center and pull out the stick for the high station of center. Finally, calculate the two points for the unit-hole axis to get the angle departure. But on the other hand, use this methods will bring extra errors for the measuring stick and the target ball. For better analysis this question, a series experiments are mentioned in this paper, which testify that the influence of the measure implement is little. With increasing the distance between the low point and the high point position in the measuring process should enhance the accuracy of dimensional angle measurement.

  11. Coordinated crew performance in commercial aircraft operations

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.

    1977-01-01

    A specific methodology is proposed for an improved system of coding and analyzing crew member interaction. The complexity and lack of precision of many crew and task variables suggest the usefulness of fuzzy linguistic techniques for modeling and computer simulation of the crew performance process. Other research methodologies and concepts that have promise for increasing the effectiveness of research on crew performance are identified.

  12. Determination of the Beagle2 landing site

    NASA Astrophysics Data System (ADS)

    Trautner, R.; Manaud, N.; Michael, G.; Griffiths, A.; Beauvivre, S.; Koschny, D.; Coates, A.; Josset, J.-L.

    2004-02-01

    Beagle2 is the UK-led lander element on ESA's Mars Express mission, which will reach Mars in late December 2003. After separation from the Mars Express orbiter 6 days before the atmospheric entry, Beagle2 will descend to the Martian surface by means of ablative heat shields and parachutes. The impact will be cushioned by a set of airbags. The selected landing site at 11.6 deg N/90.75 deg E (IAU 2000 coordinates) is situated in the south-east of the center of Isidis Planitia, a sedimentary basin which is expected to meet the requirements of Beagle's scientific mission, the lander operations, and the entry, descent and landing systems. The exact determination of the Beagle2 landing site is important not only for the Beagle2 and MEX orbiter science investigations, but also for the reconstruction of Beagle's entry and descent trajectory. A precise determination of the Beagle2 position is not possible via the MELACOM radio link. Instead, a novel method based on celestial navigation is employed, which utilizes the Stereo Camera System on the lander for imaging the Martian night sky. The position data is then refined by comparing the landing site panorama images with high resolution orbiter images and laser altimeter data. This combination of celestial navigation with image data analysis for precision position determination will be applicable for many future missions as well.

  13. Fast axial scanning for 2-photon microscopy using liquid lens technology.

    PubMed

    Tehrani, Kayvan Forouhesh; Sun, Min Kyoung; Karumbaiah, Lohitash; Mortensen, Luke J

    2017-03-01

    Scanning microscopy methods require movement of the focus in Z coordinates to produce an image of a 3-dimensional volume. In a typical imaging system, the optical setup is kept fixed and either the sample or the objective is translated with a mechanical stage driven by a stepper motor or a piezoelectric element. Mechanical Z scanning is precise, but its slow response and vulnerability to mechanical vibrations and stress make it disadvantageous to image dynamic, time-varying samples such as live cell structures. An alternative method less susceptible to these problems is to change the focal plane using conjugate optics. Deformable mirrors, acoustooptics, and electrically tunable lenses have been experimented with to achieve this goal and have attained very fast and precise Z-scanning without physically moving the sample. Here, we present the use of a liquid lens for fast axial scanning. Liquid lenses have a long functional life, high degree of phase shift, and low sensitivity to mechanical stress. They work on the principle of refraction at a liquid-liquid interface. At the boundary of a polar and an apolar liquid a spherical surface is formed whose curvature can be controlled by adjusting its relative wettability using electrowetting. We characterize the effects of the lens on attainable Z displacement, beam spectral characteristics, and pulse duration as compared with mechanical scanning.

  14. Fast axial scanning for 2-photon microscopy using liquid lens technology

    PubMed Central

    Tehrani, Kayvan Forouhesh; Sun, Min Kyoung; Karumbaiah, Lohitash; Mortensen, Luke J.

    2018-01-01

    Scanning microscopy methods require movement of the focus in Z coordinates to produce an image of a 3-dimensional volume. In a typical imaging system, the optical setup is kept fixed and either the sample or the objective is translated with a mechanical stage driven by a stepper motor or a piezoelectric element. Mechanical Z scanning is precise, but its slow response and vulnerability to mechanical vibrations and stress make it disadvantageous to image dynamic, time-varying samples such as live cell structures. An alternative method less susceptible to these problems is to change the focal plane using conjugate optics. Deformable mirrors, acoustooptics, and electrically tunable lenses have been experimented with to achieve this goal and have attained very fast and precise Z-scanning without physically moving the sample. Here, we present the use of a liquid lens for fast axial scanning. Liquid lenses have a long functional life, high degree of phase shift, and low sensitivity to mechanical stress. They work on the principle of refraction at a liquid-liquid interface. At the boundary of a polar and an apolar liquid a spherical surface is formed whose curvature can be controlled by adjusting its relative wettability using electrowetting. We characterize the effects of the lens on attainable Z displacement, beam spectral characteristics, and pulse duration as compared with mechanical scanning. PMID:29706682

  15. Ptolemy's Britain and Ireland: A New Digital Reconstruction

    NASA Astrophysics Data System (ADS)

    Abshire, Corey; Durham, Anthony; Gusev, Dmitri A.; Stafeyev, Sergey K.

    2018-05-01

    In this paper, we expand application of our mathematical methods for translating ancient coordinates from the classical Geography by Claudius Ptolemy into modern coordinates from India and Arabia to Britain and Ireland, historically important islands on the periphery of the ancient Roman Empire. The methods include triangulation and flocking with subsequent Bayesian correction. The results of our work can be conveniently visualized in modern GIS tools, such as ArcGIS, QGIS, and Google Earth. The enhancements we have made include a novel technique for handling tentatively identified points. We compare the precision of reconstruction achieved for Ptolemy's Britain and Ireland with the precisions that we had computed earlier for his India before the Ganges and three provinces of Arabia. We also provide improved validation and comparison amongst the methods applied. We compare our results with the prior work, while utilizing knowledge from such important ancient sources as the Antonine Itinerary, Tabula Peutingeriana, and the Ravenna Cosmography. The new digital reconstruction of Claudius Ptolemy's Britain and Ireland presented in this paper, along with the accompanying linguistic analysis of ancient toponyms, contributes to improvement of understanding of our cultural cartographic heritage by making it easier to study the ancient world using the popular and accessible GIS programs.

  16. In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting.

    PubMed

    Chen, Xiaoyu; Janssen, Josephine M; Liu, Jin; Maggio, Ignazio; 't Jong, Anke E J; Mikkers, Harald M M; Gonçalves, Manuel A F V

    2017-09-22

    Precise genome editing involves homologous recombination between donor DNA and chromosomal sequences subjected to double-stranded DNA breaks made by programmable nucleases. Ideally, genome editing should be efficient, specific, and accurate. However, besides constituting potential translocation-initiating lesions, double-stranded DNA breaks (targeted or otherwise) are mostly repaired through unpredictable and mutagenic non-homologous recombination processes. Here, we report that the coordinated formation of paired single-stranded DNA breaks, or nicks, at donor plasmids and chromosomal target sites by RNA-guided nucleases based on CRISPR-Cas9 components, triggers seamless homology-directed gene targeting of large genetic payloads in human cells, including pluripotent stem cells. Importantly, in addition to significantly reducing the mutagenicity of the genome modification procedure, this in trans paired nicking strategy achieves multiplexed, single-step, gene targeting, and yields higher frequencies of accurately edited cells when compared to the standard double-stranded DNA break-dependent approach.CRISPR-Cas9-based gene editing involves double-strand breaks at target sequences, which are often repaired by mutagenic non-homologous end-joining. Here the authors use Cas9 nickases to generate coordinated single-strand breaks in donor and target DNA for precise homology-directed gene editing.

  17. Department of Defense Precise Time and Time Interval program improvement plan

    NASA Technical Reports Server (NTRS)

    Bowser, J. R.

    1981-01-01

    The United States Naval Observatory is responsible for ensuring uniformity in precise time and time interval operations including measurements, the establishment of overall DOD requirements for time and time interval, and the accomplishment of objectives requiring precise time and time interval with minimum cost. An overview of the objectives, the approach to the problem, the schedule, and a status report, including significant findings relative to organizational relationships, current directives, principal PTTI users, and future requirements as currently identified by the users are presented.

  18. DIDO as a Switchboard that Regulates Self-Renewal and Differentiation in Embryonic Stem Cells.

    PubMed

    Fütterer, Agnes; de Celis, Jésus; Navajas, Rosana; Almonacid, Luis; Gutiérrez, Julio; Talavera-Gutiérrez, Amaia; Pacios-Bras, Cristina; Bernascone, Ilenia; Martin-Belmonte, Fernando; Martinéz-A, Carlos

    2017-04-11

    Transition from symmetric to asymmetric cell division requires precise coordination of differential gene expression. We show that embryonic stem cells (ESCs) mainly express DIDO3 and that their differentiation after leukemia inhibitory factor withdrawal requires DIDO1 expression. C-terminal truncation of DIDO3 (Dido3ΔCT) impedes ESC differentiation while retaining self-renewal; small hairpin RNA-Dido1 ESCs have the same phenotype. Dido3ΔCT ESC differentiation is rescued by ectopic expression of DIDO3, which binds the Dido locus via H3K4me3 and RNA POL II and induces DIDO1 expression. DIDO1, which is exported to cytoplasm, associates with, and is N-terminally phosphorylated by PKCiota. It binds the E3 ubiquitin ligase WWP2, which contributes to cell fate by OCT4 degradation, to allow expression of primitive endoderm (PE) markers. PE formation also depends on phosphorylated DIDO3 localization to centrosomes, which ensures their correct positioning for PE cell polarization. We propose that DIDO isoforms act as a switchboard that regulates genetic programs for ESC transition from pluripotency maintenance to promotion of differentiation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Towards Using Reo for Compliance-Aware Business Process Modeling

    NASA Astrophysics Data System (ADS)

    Arbab, Farhad; Kokash, Natallia; Meng, Sun

    Business process modeling and implementation of process supporting infrastructures are two challenging tasks that are not fully aligned. On the one hand, languages such as Business Process Modeling Notation (BPMN) exist to capture business processes at the level of domain analysis. On the other hand, programming paradigms and technologies such as Service-Oriented Computing (SOC) and web services have emerged to simplify the development of distributed web systems that underly business processes. BPMN is the most recognized language for specifying process workflows at the early design steps. However, it is rather declarative and may lead to the executable models which are incomplete or semantically erroneous. Therefore, an approach for expressing and analyzing BPMN models in a formal setting is required. In this paper we describe how BPMN diagrams can be represented by means of a semantically precise channel-based coordination language called Reo which admits formal analysis using model checking and bisimulation techniques. Moreover, since additional requirements may come from various regulatory/legislative documents, we discuss the opportunities offered by Reo and its mathematical abstractions for expressing process-related constraints such as Quality of Service (QoS) or time-aware conditions on process states.

  20. 32 CFR 555.10 - Coordination requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Coordination requirements. 555.10 Section 555.10 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY MILITARY RESERVATIONS AND... be reported to the designated POC in the Principal Laboratory, with a copy of the notification to...

  1. 48 CFR 970.5223-7 - Sustainable acquisition program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Environmental Sustainability Coordinator or equivalent position. (g) The Contractor shall prepare and submit... Sustainability Coordinator at the supported facility. The Subcontractor will advise the Contractor if it is... coordinate its activities with and submit required reports through the Environmental Sustainability...

  2. 48 CFR 970.5223-7 - Sustainable acquisition program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Environmental Sustainability Coordinator or equivalent position. (g) The Contractor shall prepare and submit... Sustainability Coordinator at the supported facility. The Subcontractor will advise the Contractor if it is... coordinate its activities with and submit required reports through the Environmental Sustainability...

  3. 48 CFR 970.5223-7 - Sustainable acquisition program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Environmental Sustainability Coordinator or equivalent position. (g) The Contractor shall prepare and submit... Sustainability Coordinator at the supported facility. The Subcontractor will advise the Contractor if it is... coordinate its activities with and submit required reports through the Environmental Sustainability...

  4. 48 CFR 970.5223-7 - Sustainable acquisition program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Environmental Sustainability Coordinator or equivalent position. (g) The Contractor shall prepare and submit... Sustainability Coordinator at the supported facility. The Subcontractor will advise the Contractor if it is... coordinate its activities with and submit required reports through the Environmental Sustainability...

  5. Head-target tracking control of well drilling

    NASA Astrophysics Data System (ADS)

    Agzamov, Z. V.

    2018-05-01

    The method of directional drilling trajectory control for oil and gas wells using predictive models is considered in the paper. The developed method does not apply optimization and therefore there is no need for the high-performance computing. Nevertheless, it allows following the well-plan with high precision taking into account process input saturation. Controller output is calculated both from the present target reference point of the well-plan and from well trajectory prediction with using the analytical model. This method allows following a well-plan not only on angular, but also on the Cartesian coordinates. Simulation of the control system has confirmed the high precision and operation performance with a wide range of random disturbance action.

  6. VLBI geodesy - 2 parts-per-billion precision in length determinations for transcontinental baselines

    NASA Technical Reports Server (NTRS)

    Davis, J. L.; Herring, T. A.; Shapiro, I. I.

    1988-01-01

    VLBI was to make twenty-two independent measurements, between September 1984 and December 1986, of the length of the 3900-km baseline between the Mojave site in California and the Haystack/Westford site in Massachusetts. These experiments differ from the typical geodetic VLBI experiments in that a large fraction of observations is obtained at elevation angles between 4 and 10 deg. Data from these low elevation angles allow the vertical coordinate of site position, and hence the baseline length, to be estimated with greater precision. For the sixteen experiments processed thus far, the weighted root-mean-square scatter of the estimates of the baseline length is 8 mm.

  7. Close the gap for vision: The key is to invest on coordination.

    PubMed

    Hsueh, Ya-seng Arthur; Dunt, David; Anjou, Mitchell D; Boudville, Andrea; Taylor, Hugh

    2013-12-01

    The study aims to estimate costs required for coordination and case management activities support access to treatment for the three most common eye conditions among Indigenous Australians, cataract, refractive error and diabetic retinopathy. Coordination activities were identified using in-depth interviews, focus groups and face-to-face consultations. Data were collected at 21 sites across Australia. The estimation of costs used salary data from relevant government websites and was organised by diagnosis and type of coordination activity. Urban and remote regions of Australia. Needs-based provision support services to facilitate access to eye care for cataract, refractive error and diabetic retinopathy to Indigenous Australians. Cost (AUD$ in 2011) of equivalent full time (EFT) coordination staff. The annual coordination workforce required for the three eye conditions was 8.3 EFT staff per 10 000 Indigenous Australians. The annual cost of eye care coordination workforce is estimated to be AUD$21 337 012 in 2011. This innovative, 'activity-based' model identified the workforce required to support the provision of eye care for Indigenous Australians and estimated their costs. The findings are of clear value to government funders and other decision makers. The model can potentially be used to estimate staffing and associated costs for other Indigenous and non-Indigenous health needs. © 2013 The Authors. Australian Journal of Rural Health © National Rural Health Alliance Inc.

  8. Generations of orthogonal surface coordinates

    NASA Technical Reports Server (NTRS)

    Blottner, F. G.; Moreno, J. B.

    1980-01-01

    Two generation methods were developed for three dimensional flows where the computational domain normal to the surface is small. With this restriction the coordinate system requires orthogonality only at the body surface. The first method uses the orthogonal condition in finite-difference form to determine the surface coordinates with the metric coefficients and curvature of the coordinate lines calculated numerically. The second method obtains analytical expressions for the metric coefficients and for the curvature of the coordinate lines.

  9. 36 CFR 801.6 - Coordination with requirements under the National Environmental Policy Act (42 U.S.C. 4321 et seq.).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OF THE URBAN DEVELOPMENT ACTION GRANT PROGRAM § 801.6 Coordination with requirements under the... Policy Act apply to the effect that the project will have on the human environment. To the extent that... Environmental Impact Statement (EIS) subject to the time requirements for a draft and final EIS, in which case...

  10. 36 CFR 801.6 - Coordination with requirements under the National Environmental Policy Act (42 U.S.C. 4321 et seq.).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OF THE URBAN DEVELOPMENT ACTION GRANT PROGRAM § 801.6 Coordination with requirements under the... Policy Act apply to the effect that the project will have on the human environment. To the extent that... Environmental Impact Statement (EIS) subject to the time requirements for a draft and final EIS, in which case...

  11. 36 CFR 801.6 - Coordination with requirements under the National Environmental Policy Act (42 U.S.C. 4321 et seq.).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OF THE URBAN DEVELOPMENT ACTION GRANT PROGRAM § 801.6 Coordination with requirements under the... Policy Act apply to the effect that the project will have on the human environment. To the extent that... Environmental Impact Statement (EIS) subject to the time requirements for a draft and final EIS, in which case...

  12. 36 CFR 801.6 - Coordination with requirements under the National Environmental Policy Act (42 U.S.C. 4321 et seq.).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OF THE URBAN DEVELOPMENT ACTION GRANT PROGRAM § 801.6 Coordination with requirements under the... Policy Act apply to the effect that the project will have on the human environment. To the extent that... Environmental Impact Statement (EIS) subject to the time requirements for a draft and final EIS, in which case...

  13. 36 CFR § 801.6 - Coordination with requirements under the National Environmental Policy Act (42 U.S.C. 4321 et seq.).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OF THE URBAN DEVELOPMENT ACTION GRANT PROGRAM § 801.6 Coordination with requirements under the... Policy Act apply to the effect that the project will have on the human environment. To the extent that... Environmental Impact Statement (EIS) subject to the time requirements for a draft and final EIS, in which case...

  14. Self-Calibrated In-Process Photogrammetry for Large Raw Part Measurement and Alignment before Machining

    PubMed Central

    Mendikute, Alberto; Zatarain, Mikel; Bertelsen, Álvaro; Leizea, Ibai

    2017-01-01

    Photogrammetry methods are being used more and more as a 3D technique for large scale metrology applications in industry. Optical targets are placed on an object and images are taken around it, where measuring traceability is provided by precise off-process pre-calibrated digital cameras and scale bars. According to the 2D target image coordinates, target 3D coordinates and camera views are jointly computed. One of the applications of photogrammetry is the measurement of raw part surfaces prior to its machining. For this application, post-process bundle adjustment has usually been adopted for computing the 3D scene. With that approach, a high computation time is observed, leading in practice to time consuming and user dependent iterative review and re-processing procedures until an adequate set of images is taken, limiting its potential for fast, easy-to-use, and precise measurements. In this paper, a new efficient procedure is presented for solving the bundle adjustment problem in portable photogrammetry. In-process bundle computing capability is demonstrated on a consumer grade desktop PC, enabling quasi real time 2D image and 3D scene computing. Additionally, a method for the self-calibration of camera and lens distortion has been integrated into the in-process approach due to its potential for highest precision when using low cost non-specialized digital cameras. Measurement traceability is set only by scale bars available in the measuring scene, avoiding the uncertainty contribution of off-process camera calibration procedures or the use of special purpose calibration artifacts. The developed self-calibrated in-process photogrammetry has been evaluated both in a pilot case scenario and in industrial scenarios for raw part measurement, showing a total in-process computing time typically below 1 s per image up to a maximum of 2 s during the last stages of the computed industrial scenes, along with a relative precision of 1/10,000 (e.g., 0.1 mm error in 1 m) with an error RMS below 0.2 pixels at image plane, ranging at the same performance reported for portable photogrammetry with precise off-process pre-calibrated cameras. PMID:28891946

  15. Self-Calibrated In-Process Photogrammetry for Large Raw Part Measurement and Alignment before Machining.

    PubMed

    Mendikute, Alberto; Yagüe-Fabra, José A; Zatarain, Mikel; Bertelsen, Álvaro; Leizea, Ibai

    2017-09-09

    Photogrammetry methods are being used more and more as a 3D technique for large scale metrology applications in industry. Optical targets are placed on an object and images are taken around it, where measuring traceability is provided by precise off-process pre-calibrated digital cameras and scale bars. According to the 2D target image coordinates, target 3D coordinates and camera views are jointly computed. One of the applications of photogrammetry is the measurement of raw part surfaces prior to its machining. For this application, post-process bundle adjustment has usually been adopted for computing the 3D scene. With that approach, a high computation time is observed, leading in practice to time consuming and user dependent iterative review and re-processing procedures until an adequate set of images is taken, limiting its potential for fast, easy-to-use, and precise measurements. In this paper, a new efficient procedure is presented for solving the bundle adjustment problem in portable photogrammetry. In-process bundle computing capability is demonstrated on a consumer grade desktop PC, enabling quasi real time 2D image and 3D scene computing. Additionally, a method for the self-calibration of camera and lens distortion has been integrated into the in-process approach due to its potential for highest precision when using low cost non-specialized digital cameras. Measurement traceability is set only by scale bars available in the measuring scene, avoiding the uncertainty contribution of off-process camera calibration procedures or the use of special purpose calibration artifacts. The developed self-calibrated in-process photogrammetry has been evaluated both in a pilot case scenario and in industrial scenarios for raw part measurement, showing a total in-process computing time typically below 1 s per image up to a maximum of 2 s during the last stages of the computed industrial scenes, along with a relative precision of 1/10,000 (e.g. 0.1 mm error in 1 m) with an error RMS below 0.2 pixels at image plane, ranging at the same performance reported for portable photogrammetry with precise off-process pre-calibrated cameras.

  16. 34 CFR 364.26 - What are the requirements for cooperation, coordination, and working relationships?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EDUCATION STATE INDEPENDENT LIVING SERVICES PROGRAM AND CENTERS FOR INDEPENDENT LIVING PROGRAM: GENERAL... 34 Education 2 2010-07-01 2010-07-01 false What are the requirements for cooperation, coordination, and working relationships? 364.26 Section 364.26 Education Regulations of the Offices of the...

  17. 34 CFR 364.26 - What are the requirements for cooperation, coordination, and working relationships?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EDUCATION STATE INDEPENDENT LIVING SERVICES PROGRAM AND CENTERS FOR INDEPENDENT LIVING PROGRAM: GENERAL... 34 Education 2 2011-07-01 2010-07-01 true What are the requirements for cooperation, coordination, and working relationships? 364.26 Section 364.26 Education Regulations of the Offices of the...

  18. 10 CFR 1021.341 - Coordination with other environmental review requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... environmental review requirements. (a) In accordance with 40 CFR 1500.4(k) and (o), 1502.25, and 1506.4, DOE shall integrate the NEPA process and coordinate NEPA compliance with other environmental review... agencies when necessary or appropriate, to ensure compliance and to avoid delays, and shall incorporate any...

  19. Roadside Judgments in Children with Developmental Co-ordination Disorder

    ERIC Educational Resources Information Center

    Purcell, Catherine; Wann, John P.; Wilmut, Kate; Poulter, Damian

    2011-01-01

    As pedestrians, the perceptual ability to accurately judge the relative rate of approaching vehicles and select a suitable crossing gap requires sensitivity to looming. It also requires that crossing judgments are synchronized with motoric capabilities. Previous research has suggested that children with Developmental Co-ordination Disorder (DCD)…

  20. 47 CFR 27.73 - WCS, AMT, and Goldstone coordination requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... requirements. 27.73 Section 27.73 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON... must cooperate in good faith in the coordination and deployment of new facilities. WCS licensees must also cooperate in good faith in the selection and use of new station sites and new frequencies when...

  1. 47 CFR 27.73 - WCS, AMT, and Goldstone coordination requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... requirements. 27.73 Section 27.73 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON... must cooperate in good faith in the coordination and deployment of new facilities. WCS licensees must also cooperate in good faith in the selection and use of new station sites and new frequencies when...

  2. (De)stabilization of Required and Spontaneous Postural Dynamics with Learning

    ERIC Educational Resources Information Center

    Faugloire, Elise; Bardy, Benoit G.; Stoffregen, Thomas A.

    2009-01-01

    The present research examined how learning a new ankle-hip coordination influenced the preexisting postural repertoire. Standing participants learned a new ankle-hip coordination mode (relative phase of 90[degrees]). Before and after practice, postural patterns were evaluated in two different tasks. In the required task, specific ankle-hip…

  3. The Spring 1985 high precision baseline test of the JPL GPS-based geodetic system

    NASA Technical Reports Server (NTRS)

    Davidson, John M.; Thornton, Catherine L.; Stephens, Scott A.; Blewitt, Geoffrey; Lichten, Stephen M.; Sovers, Ojars J.; Kroger, Peter M.; Skrumeda, Lisa L.; Border, James S.; Neilan, Ruth E.

    1987-01-01

    The Spring 1985 High Precision Baseline Test (HPBT) was conducted. The HPBT was designed to meet a number of objectives. Foremost among these was the demonstration of a level of accuracy of 1 to 2:10 to the 7th power, or better, for baselines ranging in length up to several hundred kilometers. These objectives were all met with a high degree of success, with respect to the demonstration of system accuracy in particular. The results from six baselines ranging in length from 70 to 729 km were examined for repeatability and, in the case of three baselines, were compared to results from colocated VLBI systems. Repeatability was found to be 5:10 to the 8th power (RMS) for the north baseline coordinate, independent of baseline length, while for the east coordinate RMS repeatability was found to be larger than this by factors of 2 to 4. The GPS-based results were found to be in agreement with those from colocated VLBI measurements, when corrected for the physical separations of the VLBI and CPG antennas, at the level of 1 to 2:10 to the 7th power in all coordinates, independent of baseline length. The results for baseline repeatability are consistent with the current GPA error budget, but the GPS-VLBI intercomparisons disagree at a somewhat larger level than expected. It is hypothesized that these differences may result from errors in the local survey measurements used to correct for the separations of the GPS and VLBI antenna reference centers.

  4. KALREF—A Kalman filter and time series approach to the International Terrestrial Reference Frame realization

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoping; Abbondanza, Claudio; Altamimi, Zuheir; Chin, T. Mike; Collilieux, Xavier; Gross, Richard S.; Heflin, Michael B.; Jiang, Yan; Parker, Jay W.

    2015-05-01

    The current International Terrestrial Reference Frame is based on a piecewise linear site motion model and realized by reference epoch coordinates and velocities for a global set of stations. Although linear motions due to tectonic plates and glacial isostatic adjustment dominate geodetic signals, at today's millimeter precisions, nonlinear motions due to earthquakes, volcanic activities, ice mass losses, sea level rise, hydrological changes, and other processes become significant. Monitoring these (sometimes rapid) changes desires consistent and precise realization of the terrestrial reference frame (TRF) quasi-instantaneously. Here, we use a Kalman filter and smoother approach to combine time series from four space geodetic techniques to realize an experimental TRF through weekly time series of geocentric coordinates. In addition to secular, periodic, and stochastic components for station coordinates, the Kalman filter state variables also include daily Earth orientation parameters and transformation parameters from input data frames to the combined TRF. Local tie measurements among colocated stations are used at their known or nominal epochs of observation, with comotion constraints applied to almost all colocated stations. The filter/smoother approach unifies different geodetic time series in a single geocentric frame. Fragmented and multitechnique tracking records at colocation sites are bridged together to form longer and coherent motion time series. While the time series approach to TRF reflects the reality of a changing Earth more closely than the linear approximation model, the filter/smoother is computationally powerful and flexible to facilitate incorporation of other data types and more advanced characterization of stochastic behavior of geodetic time series.

  5. Use of generalized linear models and digital data in a forest inventory of Northern Utah

    USGS Publications Warehouse

    Moisen, Gretchen G.; Edwards, Thomas C.

    1999-01-01

    Forest inventories, like those conducted by the Forest Service's Forest Inventory and Analysis Program (FIA) in the Rocky Mountain Region, are under increased pressure to produce better information at reduced costs. Here we describe our efforts in Utah to merge satellite-based information with forest inventory data for the purposes of reducing the costs of estimates of forest population totals and providing spatial depiction of forest resources. We illustrate how generalized linear models can be used to construct approximately unbiased and efficient estimates of population totals while providing a mechanism for prediction in space for mapping of forest structure. We model forest type and timber volume of five tree species groups as functions of a variety of predictor variables in the northern Utah mountains. Predictor variables include elevation, aspect, slope, geographic coordinates, as well as vegetation cover types based on satellite data from both the Advanced Very High Resolution Radiometer (AVHRR) and Thematic Mapper (TM) platforms. We examine the relative precision of estimates of area by forest type and mean cubic-foot volumes under six different models, including the traditional double sampling for stratification strategy. Only very small gains in precision were realized through the use of expensive photointerpreted or TM-based data for stratification, while models based on topography and spatial coordinates alone were competitive. We also compare the predictive capability of the models through various map accuracy measures. The models including the TM-based vegetation performed best overall, while topography and spatial coordinates alone provided substantial information at very low cost.

  6. 44 CFR 5.22 - Coordination of publication.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Coordination of publication..., DEPARTMENT OF HOMELAND SECURITY GENERAL PRODUCTION OR DISCLOSURE OF INFORMATION Publication of or... of publication. The Chief Counsel, FEMA, is responsible for coordination of FEMA materials required...

  7. 44 CFR 5.22 - Coordination of publication.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Coordination of publication..., DEPARTMENT OF HOMELAND SECURITY GENERAL PRODUCTION OR DISCLOSURE OF INFORMATION Publication of or... of publication. The Chief Counsel, FEMA, is responsible for coordination of FEMA materials required...

  8. Coordinated Flexibility: How Initial Gaze Position Modulates Eye-Hand Coordination and Reaching

    ERIC Educational Resources Information Center

    Adam, Jos J.; Buetti, Simona; Kerzel, Dirk

    2012-01-01

    Reaching to targets in space requires the coordination of eye and hand movements. In two experiments, we recorded eye and hand kinematics to examine the role of gaze position at target onset on eye-hand coordination and reaching performance. Experiment 1 showed that with eyes and hand aligned on the same peripheral start location, time lags…

  9. Jaw-phonatory coordination in chronic developmental stuttering.

    PubMed

    Loucks, Torrey M J; De Nil, Luc F; Sasisekaran, Jayanthi

    2007-01-01

    A deficiency in sensorimotor integration in a person who stutters may be a factor in the pathophysiology of developmental stuttering. To test oral sensorimotor function in adults who stutter, we used a task that requires the coordination of a jaw-opening movement with phonation onset. The task was adapted from previous limb coordination studies, which show that movement coordination depends on intact proprioception. We hypothesized that adult stutterers would show deficient jaw-phonatory coordination relative to control participants. The task required initiation of phonation as a jaw-opening movement passed through a narrow spatial target. Target amplitude and jaw movement speed were varied. The stuttering group showed significantly higher movement error and spatial variability in jaw-phonatory coordination compared to the control group, but group differences in movement velocity or duration were not found. The aberrant jaw-phonatory coordination of the stuttering participants suggests that stuttering is associated with an oral proprioceptive limitation, although, the findings are also consistent with a motor control deficit. As a result of this activity, reader will (1) learn about a hypothesis and evidence supporting the view that a sensorimotor deficit contributes to chronic developmental stuttering and (2) will obtain information about the role of proprioception in multi-articulatory coordination and how it can be tested using an oral-phonatory coordination task.

  10. FELIX-2.0: New version of the finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation

    NASA Astrophysics Data System (ADS)

    Regnier, D.; Dubray, N.; Verrière, M.; Schunck, N.

    2018-04-01

    The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this paper, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different types of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank-Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. We emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).

  11. 40 CFR 123.3 - Coordination with other programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Coordination with other programs. 123.3 Section 123.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS STATE PROGRAM REQUIREMENTS General § 123.3 Coordination with other programs. Issuance of State permits...

  12. 40 CFR 123.3 - Coordination with other programs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Coordination with other programs. 123.3 Section 123.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS STATE PROGRAM REQUIREMENTS General § 123.3 Coordination with other programs. Issuance of State permits...

  13. 40 CFR 123.3 - Coordination with other programs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Coordination with other programs. 123.3 Section 123.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS STATE PROGRAM REQUIREMENTS General § 123.3 Coordination with other programs. Issuance of State permits...

  14. The roles of categorical and coordinate spatial relations in recognizing buildings.

    PubMed

    Palermo, Liana; Piccardi, Laura; Nori, Raffaella; Giusberti, Fiorella; Guariglia, Cecilia

    2012-11-01

    Categorical spatial information is considered more useful for recognizing objects, and coordinate spatial information for guiding actions--for example, during navigation or grasping. In contrast with this assumption, we hypothesized that buildings, unlike other categories of objects, require both categorical and coordinate spatial information in order to be recognized. This hypothesis arose from evidence that right-brain-damaged patients have deficits in both coordinate judgments and recognition of buildings and from the fact that buildings are very useful for guiding navigation in urban environments. To test this hypothesis, we assessed 210 healthy college students while they performed four different tasks that required categorical and coordinate judgments and the recognition of common objects and buildings. Our results showed that both categorical and coordinate spatial representations are necessary to recognize a building, whereas only categorical representations are necessary to recognize an object. We discuss our data in view of a recent neural framework for visuospatial processing, suggesting that recognizing buildings may specifically activate the parieto-medial-temporal pathway.

  15. Distribution and mitigation of higher-order ionospheric effects on precise GNSS processing

    NASA Astrophysics Data System (ADS)

    Hernández-Pajares, Manuel; Aragón-Ángel, Àngela; Defraigne, Pascale; Bergeot, Nicolas; Prieto-Cerdeira, Roberto; García-Rigo, Alberto

    2014-04-01

    Higher-order ionospheric effects (I2+) are one of the main limiting factors in very precise Global Navigation Satellite Systems (GNSS) processing, for applications where millimeter accuracy is demanded. This paper summarizes a comprehensive study of the I2+ effects in range and in GNSS precise products such as receiver position and clock, tropospheric delay, geocenter offset, and GNSS satellite position and clock. All the relevant higher-order contributions are considered: second and third orders, geometric bending, and slant total electron content (dSTEC) bending (i.e., the difference between the STEC for straight and bent paths). Using a realistic simulation with representative solar maximum conditions on GPS signals, both the effects and mitigation errors are analyzed. The usage of the combination of multifrequency L band observations has to be rejected due to its increased noise level. The results of the study show that the main two effects in range are the second-order ionospheric and dSTEC terms, with peak values up to 2 cm. Their combined impacts on the precise GNSS satellite products affects the satellite Z coordinates (up to +1 cm) and satellite clocks (more than ±20 ps). Other precise products are affected at the millimeter level. After correction the impact on all the precise GNSS products is reduced below 5 mm. We finally show that the I2+ impact on a Precise Point Positioning (PPP) user is lower than the current uncertainties of the PPP solutions, after applying consistently the precise products (satellite orbits and clocks) obtained under I2+ correction.

  16. In vivo glenohumeral analysis using 3D MRI models and a flexible software tool: feasibility and precision.

    PubMed

    Busse, Harald; Thomas, Michael; Seiwerts, Matthias; Moche, Michael; Busse, Martin W; von Salis-Soglio, Georg; Kahn, Thomas

    2008-01-01

    To implement a PC-based morphometric analysis platform and to evaluate the feasibility and precision of MRI measurements of glenohumeral translation. Using a vertically open 0.5T MRI scanner, the shoulders of 10 healthy subjects were scanned in apprehension (AP) and in neutral position (NP), respectively. Surface models of the humeral head (HH) and the glenoid cavity (GC) were created from segmented MR images by three readers. Glenohumeral translation was determined by the projection point of the manually fitted HH center on the GC plane defined by the two main principal axes of the GC model. Positional precision, given as mean (extreme value at 95% confidence level), was 0.9 (1.8) mm for the HH center and 0.7 (1.6) mm for the GC centroid; angular GC precision was 1.3 degrees (2.3 degrees ) for the normal and about 4 degrees (7 degrees ) for the anterior and superior coordinate axes. The two-dimensional (2D) precision of the HH projection point was 1.1 (2.2) mm. A significant HH translation between AP and NP was found. Despite a limited quality of the underlying model data, our PC-based analysis platform allows a precise morphometric analysis of the glenohumeral joint. The software is easily extendable and may potentially be used for an objective evaluation of therapeutical measures.

  17. Consistency of different tropospheric models and mapping functions for precise GNSS processing

    NASA Astrophysics Data System (ADS)

    Graffigna, Victoria; Hernández-Pajares, Manuel; García-Rigo, Alberto; Gende, Mauricio

    2017-04-01

    The TOmographic Model of the IONospheric electron content (TOMION) software implements a simultaneous precise geodetic and ionospheric modeling, which can be used to test new approaches for real-time precise GNSS modeling (positioning, ionospheric and tropospheric delays, clock errors, among others). In this work, the software is used to estimate the Zenith Tropospheric Delay (ZTD) emulating real time and its performance is evaluated through a comparative analysis with a built-in GIPSY estimation and IGS final troposphere product, exemplified in a two-day experiment performed in East Australia. Furthermore, the troposphere mapping function was upgraded from Niell to Vienna approach. On a first scenario, only forward processing was activated and the coordinates of the Wide Area GNSS network were loosely constrained, without fixing the carrier phase ambiguities, for both reference and rover receivers. On a second one, precise point positioning (PPP) was implemented, iterating for a fixed coordinates set for the second day. Comparisons between TOMION, IGS and GIPSY estimates have been performed and for the first one, IGS clocks and orbits were considered. The agreement with GIPSY results seems to be 10 times better than with the IGS final ZTD product, despite having considered IGS products for the computations. Hence, the subsequent analysis was carried out with respect to the GIPSY computations. The estimates show a typical bias of 2cm for the first strategy and of 7mm for PPP, in the worst cases. Moreover, Vienna mapping function showed in general a fairly better agreement than Niell one for both strategies. The RMS values' were found to be around 1cm for all studied situations, with a slightly fitter performance for the Niell one. Further improvement could be achieved for such estimations with coefficients for the Vienna mapping function calculated from raytracing as well as integrating meteorological comparative parameters.

  18. Improved spring model-based collaborative indoor visible light positioning

    NASA Astrophysics Data System (ADS)

    Luo, Zhijie; Zhang, WeiNan; Zhou, GuoFu

    2016-06-01

    Gaining accuracy with indoor positioning of individuals is important as many location-based services rely on the user's current position to provide them with useful services. Many researchers have studied indoor positioning techniques based on WiFi and Bluetooth. However, they have disadvantages such as low accuracy or high cost. In this paper, we propose an indoor positioning system in which visible light radiated from light-emitting diodes is used to locate the position of receivers. Compared with existing methods using light-emitting diode light, we present a high-precision and simple implementation collaborative indoor visible light positioning system based on an improved spring model. We first estimate coordinate position information using the visible light positioning system, and then use the spring model to correct positioning errors. The system can be employed easily because it does not require additional sensors and the occlusion problem of visible light would be alleviated. We also describe simulation experiments, which confirm the feasibility of our proposed method.

  19. Quasi-finite-time control for high-order nonlinear systems with mismatched disturbances via mapping filtered forwarding technique

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Huang, X. L.; Lu, H. Q.

    2017-02-01

    In this study, a quasi-finite-time control method for designing stabilising control laws is developed for high-order strict-feedback nonlinear systems with mismatched disturbances. By using mapping filtered forwarding technique, a virtual control is designed to force the off-the-manifold coordinate to converge to zero in quasi-finite time at each step of the design; at the same time, the manifold is rendered insensitive to time-varying, bounded and unknown disturbances. In terms of standard forwarding methodology, the algorithm proposed here not only does not require the Lyapunov function for controller design, but also avoids to calculate the derivative of sign function. As far as the dynamic performance of closed-loop systems is concerned, we essentially obtain the finite-time performances, which is typically reflected in the following aspects: fast and accurate responses, high tracking precision, and robust disturbance rejection. Spring, mass, and damper system and flexible joints robot are tested to demonstrate the proposed controller performance.

  20. In-orbit evaluation of the control system/structural mode interactions of the OSO-8 spacecraft

    NASA Technical Reports Server (NTRS)

    Slafer, L. I.

    1979-01-01

    The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. The paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments, and have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system.

Top