Computationally Efficient Resampling of Nonuniform Oversampled SAR Data
2010-05-01
noncoherently . The resample data is calculated using both a simple average and a weighted average of the demodulated data. The average nonuniform...trials with randomly varying accelerations. The results are shown in Fig. 5 for the noncoherent power difference and Fig. 6 for and coherent power...simple average. Figure 5. Noncoherent difference between SAR imagery generated with uniform sampling and nonuniform sampling that was resampled
System health monitoring using multiple-model adaptive estimation techniques
NASA Astrophysics Data System (ADS)
Sifford, Stanley Ryan
Monitoring system health for fault detection and diagnosis by tracking system parameters concurrently with state estimates is approached using a new multiple-model adaptive estimation (MMAE) method. This novel method is called GRid-based Adaptive Parameter Estimation (GRAPE). GRAPE expands existing MMAE methods by using new techniques to sample the parameter space. GRAPE expands on MMAE with the hypothesis that sample models can be applied and resampled without relying on a predefined set of models. GRAPE is initially implemented in a linear framework using Kalman filter models. A more generalized GRAPE formulation is presented using extended Kalman filter (EKF) models to represent nonlinear systems. GRAPE can handle both time invariant and time varying systems as it is designed to track parameter changes. Two techniques are presented to generate parameter samples for the parallel filter models. The first approach is called selected grid-based stratification (SGBS). SGBS divides the parameter space into equally spaced strata. The second approach uses Latin Hypercube Sampling (LHS) to determine the parameter locations and minimize the total number of required models. LHS is particularly useful when the parameter dimensions grow. Adding more parameters does not require the model count to increase for LHS. Each resample is independent of the prior sample set other than the location of the parameter estimate. SGBS and LHS can be used for both the initial sample and subsequent resamples. Furthermore, resamples are not required to use the same technique. Both techniques are demonstrated for both linear and nonlinear frameworks. The GRAPE framework further formalizes the parameter tracking process through a general approach for nonlinear systems. These additional methods allow GRAPE to either narrow the focus to converged values within a parameter range or expand the range in the appropriate direction to track the parameters outside the current parameter range boundary. Customizable rules define the specific resample behavior when the GRAPE parameter estimates converge. Convergence itself is determined from the derivatives of the parameter estimates using a simple moving average window to filter out noise. The system can be tuned to match the desired performance goals by making adjustments to parameters such as the sample size, convergence criteria, resample criteria, initial sampling method, resampling method, confidence in prior sample covariances, sample delay, and others.
Bias-Corrected Estimation of Noncentrality Parameters of Covariance Structure Models
ERIC Educational Resources Information Center
Raykov, Tenko
2005-01-01
A bias-corrected estimator of noncentrality parameters of covariance structure models is discussed. The approach represents an application of the bootstrap methodology for purposes of bias correction, and utilizes the relation between average of resample conventional noncentrality parameter estimates and their sample counterpart. The…
Bias Corrections for Regional Estimates of the Time-averaged Geomagnetic Field
NASA Astrophysics Data System (ADS)
Constable, C.; Johnson, C. L.
2009-05-01
We assess two sources of bias in the time-averaged geomagnetic field (TAF) and paleosecular variation (PSV): inadequate temporal sampling, and the use of unit vectors in deriving temporal averages of the regional geomagnetic field. For the first temporal sampling question we use statistical resampling of existing data sets to minimize and correct for bias arising from uneven temporal sampling in studies of the time- averaged geomagnetic field (TAF) and its paleosecular variation (PSV). The techniques are illustrated using data derived from Hawaiian lava flows for 0-5~Ma: directional observations are an updated version of a previously published compilation of paleomagnetic directional data centered on ± 20° latitude by Lawrence et al./(2006); intensity data are drawn from Tauxe & Yamazaki, (2007). We conclude that poor temporal sampling can produce biased estimates of TAF and PSV, and resampling to appropriate statistical distribution of ages reduces this bias. We suggest that similar resampling should be attempted as a bias correction for all regional paleomagnetic data to be used in TAF and PSV modeling. The second potential source of bias is the use of directional data in place of full vector data to estimate the average field. This is investigated for the full vector subset of the updated Hawaiian data set. Lawrence, K.P., C.G. Constable, and C.L. Johnson, 2006, Geochem. Geophys. Geosyst., 7, Q07007, DOI 10.1029/2005GC001181. Tauxe, L., & Yamazkai, 2007, Treatise on Geophysics,5, Geomagnetism, Elsevier, Amsterdam, Chapter 13,p509
Goldstein, Darlene R
2006-10-01
Studies of gene expression using high-density short oligonucleotide arrays have become a standard in a variety of biological contexts. Of the expression measures that have been proposed to quantify expression in these arrays, multi-chip-based measures have been shown to perform well. As gene expression studies increase in size, however, utilizing multi-chip expression measures is more challenging in terms of computing memory requirements and time. A strategic alternative to exact multi-chip quantification on a full large chip set is to approximate expression values based on subsets of chips. This paper introduces an extrapolation method, Extrapolation Averaging (EA), and a resampling method, Partition Resampling (PR), to approximate expression in large studies. An examination of properties indicates that subset-based methods can perform well compared with exact expression quantification. The focus is on short oligonucleotide chips, but the same ideas apply equally well to any array type for which expression is quantified using an entire set of arrays, rather than for only a single array at a time. Software implementing Partition Resampling and Extrapolation Averaging is under development as an R package for the BioConductor project.
0-2 Ma Paleomagnetic Field Behavior from Lava Flow Data Sets
NASA Astrophysics Data System (ADS)
Johnson, C. L.; Constable, C.; Tauxe, L.; Cromwell, G.
2010-12-01
The global time-averaged (TAF) structure of the paleomagnetic field and paleosecular variation (PSV) provide important constraints for numerical geodynamo simulations. Studies of the TAF have sought to characterize the nature of non-geocentric-axial dipole contributions to the field, in particular any such contributions that may be diagnostic of the influence of core-mantle boundary conditions on field generation. Similarly geographical variations in PSV are of interest, in particular the long-standing debate concerning anomalously low VGP (virtual geomagnetic pole) dispersion at Hawaii. Here, we analyze updated global directional data sets from lava flows. We present global models for the time-averaged field for the Brunhes and Matuyama epochs. New TAF models based on lava flow directional data for the Brunhes show longitudinal structure. In particular, high latitude flux lobes are observed, constrained by improved data sets from N. and S. America, Japan, and New Zealand. Anomalous TAF structure is also observed in the region around Hawaii. At Hawaii, previous inferences of the anomalous TAF (large inclination anomaly) and PSV (low VGP dispersion) have been argued to be the result of temporal sampling bias toward young flows. We use resampling techniques to examine possible biases in the TAF and PSV incurred by uneven temporal sampling. Resampling of the paleodirectional data onto a uniform temporal distribution, incorporating site ages and age errors leads to a TAF estimate for the Brunhes that is close to that reported for the actual data set, but an estimate for VGP dispersion that is increased relative to that obtained from the unevenly sampled data. Future investigations will incorporate the temporal resampling procedures into TAF modeling efforts, as well as recent progress in modeling the 0-2 Ma paleomagnetic dipole moment.
NASA Astrophysics Data System (ADS)
Jannati, Mojtaba; Valadan Zoej, Mohammad Javad; Mokhtarzade, Mehdi
2018-03-01
This paper presents a novel approach to epipolar resampling of cross-track linear pushbroom imagery using orbital parameters model (OPM). The backbone of the proposed method relies on modification of attitude parameters of linear array stereo imagery in such a way to parallelize the approximate conjugate epipolar lines (ACELs) with the instantaneous base line (IBL) of the conjugate image points (CIPs). Afterward, a complementary rotation is applied in order to parallelize all the ACELs throughout the stereo imagery. The new estimated attitude parameters are evaluated based on the direction of the IBL and the ACELs. Due to the spatial and temporal variability of the IBL (respectively changes in column and row numbers of the CIPs) and nonparallel nature of the epipolar lines in the stereo linear images, some polynomials in the both column and row numbers of the CIPs are used to model new attitude parameters. As the instantaneous position of sensors remains fix, the digital elevation model (DEM) of the area of interest is not required in the resampling process. According to the experimental results obtained from two pairs of SPOT and RapidEye stereo imagery with a high elevation relief, the average absolute values of remained vertical parallaxes of CIPs in the normalized images were obtained 0.19 and 0.28 pixels respectively, which confirm the high accuracy and applicability of the proposed method.
One-shot estimate of MRMC variance: AUC.
Gallas, Brandon D
2006-03-01
One popular study design for estimating the area under the receiver operating characteristic curve (AUC) is the one in which a set of readers reads a set of cases: a fully crossed design in which every reader reads every case. The variability of the subsequent reader-averaged AUC has two sources: the multiple readers and the multiple cases (MRMC). In this article, we present a nonparametric estimate for the variance of the reader-averaged AUC that is unbiased and does not use resampling tools. The one-shot estimate is based on the MRMC variance derived by the mechanistic approach of Barrett et al. (2005), as well as the nonparametric variance of a single-reader AUC derived in the literature on U statistics. We investigate the bias and variance properties of the one-shot estimate through a set of Monte Carlo simulations with simulated model observers and images. The different simulation configurations vary numbers of readers and cases, amounts of image noise and internal noise, as well as how the readers are constructed. We compare the one-shot estimate to a method that uses the jackknife resampling technique with an analysis of variance model at its foundation (Dorfman et al. 1992). The name one-shot highlights that resampling is not used. The one-shot and jackknife estimators behave similarly, with the one-shot being marginally more efficient when the number of cases is small. We have derived a one-shot estimate of the MRMC variance of AUC that is based on a probabilistic foundation with limited assumptions, is unbiased, and compares favorably to an established estimate.
Estimation of Rainfall Sampling Uncertainty: A Comparison of Two Diverse Approaches
NASA Technical Reports Server (NTRS)
Steiner, Matthias; Zhang, Yu; Baeck, Mary Lynn; Wood, Eric F.; Smith, James A.; Bell, Thomas L.; Lau, William K. M. (Technical Monitor)
2002-01-01
The spatial and temporal intermittence of rainfall causes the averages of satellite observations of rain rate to differ from the "true" average rain rate over any given area and time period, even if the satellite observations are perfectly accurate. The difference of satellite averages based on occasional observation by satellite systems and the continuous-time average of rain rate is referred to as sampling error. In this study, rms sampling error estimates are obtained for average rain rates over boxes 100 km, 200 km, and 500 km on a side, for averaging periods of 1 day, 5 days, and 30 days. The study uses a multi-year, merged radar data product provided by Weather Services International Corp. at a resolution of 2 km in space and 15 min in time, over an area of the central U.S. extending from 35N to 45N in latitude and 100W to 80W in longitude. The intervals between satellite observations are assumed to be equal, and similar In size to what present and future satellite systems are able to provide (from 1 h to 12 h). The sampling error estimates are obtained using a resampling method called "resampling by shifts," and are compared to sampling error estimates proposed by Bell based on earlier work by Laughlin. The resampling estimates are found to scale with areal size and time period as the theory predicts. The dependence on average rain rate and time interval between observations is also similar to what the simple theory suggests.
Zhang, Bo; Liu, Wei; Zhang, Zhiwei; Qu, Yanping; Chen, Zhen; Albert, Paul S
2017-08-01
Joint modeling and within-cluster resampling are two approaches that are used for analyzing correlated data with informative cluster sizes. Motivated by a developmental toxicity study, we examined the performances and validity of these two approaches in testing covariate effects in generalized linear mixed-effects models. We show that the joint modeling approach is robust to the misspecification of cluster size models in terms of Type I and Type II errors when the corresponding covariates are not included in the random effects structure; otherwise, statistical tests may be affected. We also evaluate the performance of the within-cluster resampling procedure and thoroughly investigate the validity of it in modeling correlated data with informative cluster sizes. We show that within-cluster resampling is a valid alternative to joint modeling for cluster-specific covariates, but it is invalid for time-dependent covariates. The two methods are applied to a developmental toxicity study that investigated the effect of exposure to diethylene glycol dimethyl ether.
The conditional resampling model STARS: weaknesses of the modeling concept and development
NASA Astrophysics Data System (ADS)
Menz, Christoph
2016-04-01
The Statistical Analogue Resampling Scheme (STARS) is based on a modeling concept of Werner and Gerstengarbe (1997). The model uses a conditional resampling technique to create a simulation time series from daily observations. Unlike other time series generators (such as stochastic weather generators) STARS only needs a linear regression specification of a single variable as the target condition for the resampling. Since its first implementation the algorithm was further extended in order to allow for a spatially distributed trend signal, to preserve the seasonal cycle and the autocorrelation of the observation time series (Orlovsky, 2007; Orlovsky et al., 2008). This evolved version was successfully used in several climate impact studies. However a detaild evaluation of the simulations revealed two fundamental weaknesses of the utilized resampling technique. 1. The restriction of the resampling condition on a single individual variable can lead to a misinterpretation of the change signal of other variables when the model is applied to a mulvariate time series. (F. Wechsung and M. Wechsung, 2014). As one example, the short-term correlations between precipitation and temperature (cooling of the near-surface air layer after a rainfall event) can be misinterpreted as a climatic change signal in the simulation series. 2. The model restricts the linear regression specification to the annual mean time series, refusing the specification of seasonal varying trends. To overcome these fundamental weaknesses a redevelopment of the whole algorithm was done. The poster discusses the main weaknesses of the earlier model implementation and the methods applied to overcome these in the new version. Based on the new model idealized simulations were conducted to illustrate the enhancement.
Burkness, Eric C; Hutchison, W D
2009-10-01
Populations of cabbage looper, Trichoplusiani (Lepidoptera: Noctuidae), were sampled in experimental plots and commercial fields of cabbage (Brasicca spp.) in Minnesota during 1998-1999 as part of a larger effort to implement an integrated pest management program. Using a resampling approach and the Wald's sequential probability ratio test, sampling plans with different sampling parameters were evaluated using independent presence/absence and enumerative data. Evaluations and comparisons of the different sampling plans were made based on the operating characteristic and average sample number functions generated for each plan and through the use of a decision probability matrix. Values for upper and lower decision boundaries, sequential error rates (alpha, beta), and tally threshold were modified to determine parameter influence on the operating characteristic and average sample number functions. The following parameters resulted in the most desirable operating characteristic and average sample number functions; action threshold of 0.1 proportion of plants infested, tally threshold of 1, alpha = beta = 0.1, upper boundary of 0.15, lower boundary of 0.05, and resampling with replacement. We found that sampling parameters can be modified and evaluated using resampling software to achieve desirable operating characteristic and average sample number functions. Moreover, management of T. ni by using binomial sequential sampling should provide a good balance between cost and reliability by minimizing sample size and maintaining a high level of correct decisions (>95%) to treat or not treat.
ERIC Educational Resources Information Center
Nevitt, Jonathan; Hancock, Gregory R.
2001-01-01
Evaluated the bootstrap method under varying conditions of nonnormality, sample size, model specification, and number of bootstrap samples drawn from the resampling space. Results for the bootstrap suggest the resampling-based method may be conservative in its control over model rejections, thus having an impact on the statistical power associated…
NASA Astrophysics Data System (ADS)
Baisden, W. T.; Prior, C.; Lambie, S.; Tate, K.; Bruhn, F.; Parfitt, R.; Schipper, L.; Wilde, R. H.; Ross, C.
2006-12-01
Soil organic matter contains more C than terrestrial biomass and atmospheric CO2 combined, and reacts to climate and land-use change on timescales requiring long-term experiments or monitoring. The direction and uncertainty of soil C stock changes has been difficult to predict and incorporate in decision support tools for climate change policies. Moreover, standardization of approaches has been difficult because historic methods of soil sampling have varied regionally, nationally and temporally. The most common and uniform type of historic sampling is soil profiles, which have commonly been collected, described and archived in the course of both soil survey studies and research. Resampling soil profiles has considerable utility in carbon monitoring and in parameterizing models to understand the ecosystem responses to global change. Recent work spanning seven soil orders in New Zealand's grazed pastures has shown that, averaged over approximately 20 years, 31 soil profiles lost 106 g C m-2 y-1 (p=0.01) and 9.1 g N m{^-2} y-1 (p=0.002). These losses are unexpected and appear to extend well below the upper 30 cm of soil. Following on these recent results, additional advantages of resampling soil profiles can be emphasized. One of the most powerful applications afforded by resampling archived soils is the use of the pulse label of radiocarbon injected into the atmosphere by thermonuclear weapons testing circa 1963 as a tracer of soil carbon dynamics. This approach allows estimation of the proportion of soil C that is `passive' or `inert' and therefore unlikely to respond to global change. Evaluation of resampled soil horizons in a New Zealand soil chronosequence confirms that the approach yields consistent values for the proportion of `passive' soil C, reaching 25% of surface horizon soil C over 12,000 years. Across whole profiles, radiocarbon data suggest that the proportion of `passive' C in New Zealand grassland soil can be less than 40% of total soil C. Below 30 cm, 1 kg C m-2 or more may be reactive on decadal timescales, supporting evidence of soil C losses from throughout the soil profiles. Information from resampled soil profiles can be combined with additional contemporary measurements to test hypotheses about mechanisms for soil C changes. For example, Δ14C in excess of 200‰ in water extractable dissolved organic C (DOC) from surface soil horizons supports the hypothesis that decadal movement of DOC represents an important translocation of soil C. These preliminary results demonstrate that resampling whole soil profiles can support substantial progress in C cycle science, ranging from updating operational C accounting systems to the frontiers of research. Resampling can be complementary or superior to fixed-depth interval sampling of surface soil layers. Resampling must however be undertaken with relative urgency to maximize the potential interpretive power of bomb-derived radiocarbon.
An add-in implementation of the RESAMPLING syntax under Microsoft EXCEL.
Meineke, I
2000-10-01
The RESAMPLING syntax defines a set of powerful commands, which allow the programming of probabilistic statistical models with few, easily memorized statements. This paper presents an implementation of the RESAMPLING syntax using Microsoft EXCEL with Microsoft WINDOWS(R) as a platform. Two examples are given to demonstrate typical applications of RESAMPLING in biomedicine. Details of the implementation with special emphasis on the programming environment are discussed at length. The add-in is available electronically to interested readers upon request. The use of the add-in facilitates numerical statistical analyses of data from within EXCEL in a comfortable way.
Wavelet analysis in ecology and epidemiology: impact of statistical tests
Cazelles, Bernard; Cazelles, Kévin; Chavez, Mario
2014-01-01
Wavelet analysis is now frequently used to extract information from ecological and epidemiological time series. Statistical hypothesis tests are conducted on associated wavelet quantities to assess the likelihood that they are due to a random process. Such random processes represent null models and are generally based on synthetic data that share some statistical characteristics with the original time series. This allows the comparison of null statistics with those obtained from original time series. When creating synthetic datasets, different techniques of resampling result in different characteristics shared by the synthetic time series. Therefore, it becomes crucial to consider the impact of the resampling method on the results. We have addressed this point by comparing seven different statistical testing methods applied with different real and simulated data. Our results show that statistical assessment of periodic patterns is strongly affected by the choice of the resampling method, so two different resampling techniques could lead to two different conclusions about the same time series. Moreover, our results clearly show the inadequacy of resampling series generated by white noise and red noise that are nevertheless the methods currently used in the wide majority of wavelets applications. Our results highlight that the characteristics of a time series, namely its Fourier spectrum and autocorrelation, are important to consider when choosing the resampling technique. Results suggest that data-driven resampling methods should be used such as the hidden Markov model algorithm and the ‘beta-surrogate’ method. PMID:24284892
Wavelet analysis in ecology and epidemiology: impact of statistical tests.
Cazelles, Bernard; Cazelles, Kévin; Chavez, Mario
2014-02-06
Wavelet analysis is now frequently used to extract information from ecological and epidemiological time series. Statistical hypothesis tests are conducted on associated wavelet quantities to assess the likelihood that they are due to a random process. Such random processes represent null models and are generally based on synthetic data that share some statistical characteristics with the original time series. This allows the comparison of null statistics with those obtained from original time series. When creating synthetic datasets, different techniques of resampling result in different characteristics shared by the synthetic time series. Therefore, it becomes crucial to consider the impact of the resampling method on the results. We have addressed this point by comparing seven different statistical testing methods applied with different real and simulated data. Our results show that statistical assessment of periodic patterns is strongly affected by the choice of the resampling method, so two different resampling techniques could lead to two different conclusions about the same time series. Moreover, our results clearly show the inadequacy of resampling series generated by white noise and red noise that are nevertheless the methods currently used in the wide majority of wavelets applications. Our results highlight that the characteristics of a time series, namely its Fourier spectrum and autocorrelation, are important to consider when choosing the resampling technique. Results suggest that data-driven resampling methods should be used such as the hidden Markov model algorithm and the 'beta-surrogate' method.
Image re-sampling detection through a novel interpolation kernel.
Hilal, Alaa
2018-06-01
Image re-sampling involved in re-size and rotation transformations is an essential element block in a typical digital image alteration. Fortunately, traces left from such processes are detectable, proving that the image has gone a re-sampling transformation. Within this context, we present in this paper two original contributions. First, we propose a new re-sampling interpolation kernel. It depends on five independent parameters that controls its amplitude, angular frequency, standard deviation, and duration. Then, we demonstrate its capacity to imitate the same behavior of the most frequent interpolation kernels used in digital image re-sampling applications. Secondly, the proposed model is used to characterize and detect the correlation coefficients involved in re-sampling transformations. The involved process includes a minimization of an error function using the gradient method. The proposed method is assessed over a large database of 11,000 re-sampled images. Additionally, it is implemented within an algorithm in order to assess images that had undergone complex transformations. Obtained results demonstrate better performance and reduced processing time when compared to a reference method validating the suitability of the proposed approaches. Copyright © 2018 Elsevier B.V. All rights reserved.
Resampling and Distribution of the Product Methods for Testing Indirect Effects in Complex Models
ERIC Educational Resources Information Center
Williams, Jason; MacKinnon, David P.
2008-01-01
Recent advances in testing mediation have found that certain resampling methods and tests based on the mathematical distribution of 2 normal random variables substantially outperform the traditional "z" test. However, these studies have primarily focused only on models with a single mediator and 2 component paths. To address this limitation, a…
A Sequential Ensemble Prediction System at Convection Permitting Scales
NASA Astrophysics Data System (ADS)
Milan, M.; Simmer, C.
2012-04-01
A Sequential Assimilation Method (SAM) following some aspects of particle filtering with resampling, also called SIR (Sequential Importance Resampling), is introduced and applied in the framework of an Ensemble Prediction System (EPS) for weather forecasting on convection permitting scales, with focus to precipitation forecast. At this scale and beyond, the atmosphere increasingly exhibits chaotic behaviour and non linear state space evolution due to convectively driven processes. One way to take full account of non linear state developments are particle filter methods, their basic idea is the representation of the model probability density function by a number of ensemble members weighted by their likelihood with the observations. In particular particle filter with resampling abandons ensemble members (particles) with low weights restoring the original number of particles adding multiple copies of the members with high weights. In our SIR-like implementation we substitute the likelihood way to define weights and introduce a metric which quantifies the "distance" between the observed atmospheric state and the states simulated by the ensemble members. We also introduce a methodology to counteract filter degeneracy, i.e. the collapse of the simulated state space. To this goal we propose a combination of resampling taking account of simulated state space clustering and nudging. By keeping cluster representatives during resampling and filtering, the method maintains the potential for non linear system state development. We assume that a particle cluster with initially low likelihood may evolve in a state space with higher likelihood in a subsequent filter time thus mimicking non linear system state developments (e.g. sudden convection initiation) and remedies timing errors for convection due to model errors and/or imperfect initial condition. We apply a simplified version of the resampling, the particles with highest weights in each cluster are duplicated; for the model evolution for each particle pair one particle evolves using the forward model; the second particle, however, is nudged to the radar and satellite observation during its evolution based on the forward model.
NASA Astrophysics Data System (ADS)
Chuan, Zun Liang; Ismail, Noriszura; Shinyie, Wendy Ling; Lit Ken, Tan; Fam, Soo-Fen; Senawi, Azlyna; Yusoff, Wan Nur Syahidah Wan
2018-04-01
Due to the limited of historical precipitation records, agglomerative hierarchical clustering algorithms widely used to extrapolate information from gauged to ungauged precipitation catchments in yielding a more reliable projection of extreme hydro-meteorological events such as extreme precipitation events. However, identifying the optimum number of homogeneous precipitation catchments accurately based on the dendrogram resulted using agglomerative hierarchical algorithms are very subjective. The main objective of this study is to propose an efficient regionalized algorithm to identify the homogeneous precipitation catchments for non-stationary precipitation time series. The homogeneous precipitation catchments are identified using average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling, while uncentered correlation coefficient as the similarity measure. The regionalized homogeneous precipitation is consolidated using K-sample Anderson Darling non-parametric test. The analysis result shows the proposed regionalized algorithm performed more better compared to the proposed agglomerative hierarchical clustering algorithm in previous studies.
Shen, Chung-Wei; Chen, Yi-Hau
2018-03-13
We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each subject, is "informative" in the sense that it is related to the frailty outcome itself. The new proposal, called Resampling Cluster Information Criterion (RCIC), is based on the resampling idea utilized in the within-cluster resampling method (Hoffman, Sen, and Weinberg, 2001, Biometrika 88, 1121-1134) and accommodates informative cluster size. The implementation of RCIC, however, is free of performing actual resampling of the data and hence is computationally convenient. Compared with the existing model selection methods for marginal mean regression, the RCIC method incorporates an additional component accounting for variability of the model over within-cluster subsampling, and leads to remarkable improvements in selecting the correct model, regardless of whether the cluster size is informative or not. Applying the RCIC method to the longitudinal frailty study, we identify being female, old age, low income and life satisfaction, and chronic health conditions as significant risk factors for physical frailty in the elderly. © 2018, The International Biometric Society.
A multistate dynamic site occupancy model for spatially aggregated sessile communities
Fukaya, Keiichi; Royle, J. Andrew; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi
2017-01-01
Estimation of transition probabilities of sessile communities seems easy in principle but may still be difficult in practice because resampling error (i.e. a failure to resample exactly the same location at fixed points) may cause significant estimation bias. Previous studies have developed novel analytical methods to correct for this estimation bias. However, they did not consider the local structure of community composition induced by the aggregated distribution of organisms that is typically observed in sessile assemblages and is very likely to affect observations.We developed a multistate dynamic site occupancy model to estimate transition probabilities that accounts for resampling errors associated with local community structure. The model applies a nonparametric multivariate kernel smoothing methodology to the latent occupancy component to estimate the local state composition near each observation point, which is assumed to determine the probability distribution of data conditional on the occurrence of resampling error.By using computer simulations, we confirmed that an observation process that depends on local community structure may bias inferences about transition probabilities. By applying the proposed model to a real data set of intertidal sessile communities, we also showed that estimates of transition probabilities and of the properties of community dynamics may differ considerably when spatial dependence is taken into account.Results suggest the importance of accounting for resampling error and local community structure for developing management plans that are based on Markovian models. Our approach provides a solution to this problem that is applicable to broad sessile communities. It can even accommodate an anisotropic spatial correlation of species composition, and may also serve as a basis for inferring complex nonlinear ecological dynamics.
Assessing Uncertainties in Surface Water Security: A Probabilistic Multi-model Resampling approach
NASA Astrophysics Data System (ADS)
Rodrigues, D. B. B.
2015-12-01
Various uncertainties are involved in the representation of processes that characterize interactions between societal needs, ecosystem functioning, and hydrological conditions. Here, we develop an empirical uncertainty assessment of water security indicators that characterize scarcity and vulnerability, based on a multi-model and resampling framework. We consider several uncertainty sources including those related to: i) observed streamflow data; ii) hydrological model structure; iii) residual analysis; iv) the definition of Environmental Flow Requirement method; v) the definition of critical conditions for water provision; and vi) the critical demand imposed by human activities. We estimate the overall uncertainty coming from the hydrological model by means of a residual bootstrap resampling approach, and by uncertainty propagation through different methodological arrangements applied to a 291 km² agricultural basin within the Cantareira water supply system in Brazil. Together, the two-component hydrograph residual analysis and the block bootstrap resampling approach result in a more accurate and precise estimate of the uncertainty (95% confidence intervals) in the simulated time series. We then compare the uncertainty estimates associated with water security indicators using a multi-model framework and provided by each model uncertainty estimation approach. The method is general and can be easily extended forming the basis for meaningful support to end-users facing water resource challenges by enabling them to incorporate a viable uncertainty analysis into a robust decision making process.
Cellular neural network-based hybrid approach toward automatic image registration
NASA Astrophysics Data System (ADS)
Arun, Pattathal VijayaKumar; Katiyar, Sunil Kumar
2013-01-01
Image registration is a key component of various image processing operations that involve the analysis of different image data sets. Automatic image registration domains have witnessed the application of many intelligent methodologies over the past decade; however, inability to properly model object shape as well as contextual information has limited the attainable accuracy. A framework for accurate feature shape modeling and adaptive resampling using advanced techniques such as vector machines, cellular neural network (CNN), scale invariant feature transform (SIFT), coreset, and cellular automata is proposed. CNN has been found to be effective in improving feature matching as well as resampling stages of registration and complexity of the approach has been considerably reduced using coreset optimization. The salient features of this work are cellular neural network approach-based SIFT feature point optimization, adaptive resampling, and intelligent object modelling. Developed methodology has been compared with contemporary methods using different statistical measures. Investigations over various satellite images revealed that considerable success was achieved with the approach. This system has dynamically used spectral and spatial information for representing contextual knowledge using CNN-prolog approach. This methodology is also illustrated to be effective in providing intelligent interpretation and adaptive resampling.
Biases in Time-Averaged Field and Paleosecular Variation Studies
NASA Astrophysics Data System (ADS)
Johnson, C. L.; Constable, C.
2009-12-01
Challenges to constructing time-averaged field (TAF) and paleosecular variation (PSV) models of Earth’s magnetic field over million year time scales are the uneven geographical and temporal distribution of paleomagnetic data and the absence of full vector records of the magnetic field variability at any given site. Recent improvements in paleomagnetic data sets now allow regional assessment of the biases introduced by irregular temporal sampling and the absence of full vector information. We investigate these effects over the past few Myr for regions with large paleomagnetic data sets, where the TAF and/or PSV have been of previous interest (e.g., significant departures of the TAF from the field predicted by a geocentric axial dipole). We calculate the effects of excluding paleointensity data from TAF calculations, and find these to be small. For example, at Hawaii, we find that for the past 50 ka, estimates of the TAF direction are minimally affected if only paleodirectional data versus the full paleofield vector are used. We use resampling techniques to investigate biases incurred by the uneven temporal distribution. Key to the latter issue is temporal information on a site-by-site basis. At Hawaii, resampling of the paleodirectional data onto a uniform temporal distribution, assuming no error in the site ages, reduces the magnitude of the inclination anomaly for the Brunhes, Gauss and Matuyama epochs. However inclusion of age errors in the sampling procedure leads to TAF estimates that are close to those reported for the original data sets. We discuss the implications of our results for global field models.
Assessment of resampling methods for causality testing: A note on the US inflation behavior
Kyrtsou, Catherine; Kugiumtzis, Dimitris; Diks, Cees
2017-01-01
Different resampling methods for the null hypothesis of no Granger causality are assessed in the setting of multivariate time series, taking into account that the driving-response coupling is conditioned on the other observed variables. As appropriate test statistic for this setting, the partial transfer entropy (PTE), an information and model-free measure, is used. Two resampling techniques, time-shifted surrogates and the stationary bootstrap, are combined with three independence settings (giving a total of six resampling methods), all approximating the null hypothesis of no Granger causality. In these three settings, the level of dependence is changed, while the conditioning variables remain intact. The empirical null distribution of the PTE, as the surrogate and bootstrapped time series become more independent, is examined along with the size and power of the respective tests. Additionally, we consider a seventh resampling method by contemporaneously resampling the driving and the response time series using the stationary bootstrap. Although this case does not comply with the no causality hypothesis, one can obtain an accurate sampling distribution for the mean of the test statistic since its value is zero under H0. Results indicate that as the resampling setting gets more independent, the test becomes more conservative. Finally, we conclude with a real application. More specifically, we investigate the causal links among the growth rates for the US CPI, money supply and crude oil. Based on the PTE and the seven resampling methods, we consistently find that changes in crude oil cause inflation conditioning on money supply in the post-1986 period. However this relationship cannot be explained on the basis of traditional cost-push mechanisms. PMID:28708870
Assessment of resampling methods for causality testing: A note on the US inflation behavior.
Papana, Angeliki; Kyrtsou, Catherine; Kugiumtzis, Dimitris; Diks, Cees
2017-01-01
Different resampling methods for the null hypothesis of no Granger causality are assessed in the setting of multivariate time series, taking into account that the driving-response coupling is conditioned on the other observed variables. As appropriate test statistic for this setting, the partial transfer entropy (PTE), an information and model-free measure, is used. Two resampling techniques, time-shifted surrogates and the stationary bootstrap, are combined with three independence settings (giving a total of six resampling methods), all approximating the null hypothesis of no Granger causality. In these three settings, the level of dependence is changed, while the conditioning variables remain intact. The empirical null distribution of the PTE, as the surrogate and bootstrapped time series become more independent, is examined along with the size and power of the respective tests. Additionally, we consider a seventh resampling method by contemporaneously resampling the driving and the response time series using the stationary bootstrap. Although this case does not comply with the no causality hypothesis, one can obtain an accurate sampling distribution for the mean of the test statistic since its value is zero under H0. Results indicate that as the resampling setting gets more independent, the test becomes more conservative. Finally, we conclude with a real application. More specifically, we investigate the causal links among the growth rates for the US CPI, money supply and crude oil. Based on the PTE and the seven resampling methods, we consistently find that changes in crude oil cause inflation conditioning on money supply in the post-1986 period. However this relationship cannot be explained on the basis of traditional cost-push mechanisms.
ERIC Educational Resources Information Center
Fan, Xitao
This paper empirically and systematically assessed the performance of bootstrap resampling procedure as it was applied to a regression model. Parameter estimates from Monte Carlo experiments (repeated sampling from population) and bootstrap experiments (repeated resampling from one original bootstrap sample) were generated and compared. Sample…
Sabourin, Jeremy; Nobel, Andrew B.; Valdar, William
2014-01-01
Genomewide association studies sometimes identify loci at which both the number and identities of the underlying causal variants are ambiguous. In such cases, statistical methods that model effects of multiple SNPs simultaneously can help disentangle the observed patterns of association and provide information about how those SNPs could be prioritized for follow-up studies. Current multi-SNP methods, however, tend to assume that SNP effects are well captured by additive genetics; yet when genetic dominance is present, this assumption translates to reduced power and faulty prioritizations. We describe a statistical procedure for prioritizing SNPs at GWAS loci that efficiently models both additive and dominance effects. Our method, LLARRMA-dawg, combines a group LASSO procedure for sparse modeling of multiple SNP effects with a resampling procedure based on fractional observation weights; it estimates for each SNP the robustness of association with the phenotype both to sampling variation and to competing explanations from other SNPs. In producing a SNP prioritization that best identifies underlying true signals, we show that: our method easily outperforms a single marker analysis; when additive-only signals are present, our joint model for additive and dominance is equivalent to or only slightly less powerful than modeling additive-only effects; and, when dominance signals are present, even in combination with substantial additive effects, our joint model is unequivocally more powerful than a model assuming additivity. We also describe how performance can be improved through calibrated randomized penalization, and discuss how dominance in ungenotyped SNPs can be incorporated through either heterozygote dosage or multiple imputation. PMID:25417853
Bromberg, J.E.; Kumar, S.; Brown, C.S.; Stohlgren, T.J.
2011-01-01
Downy brome (Bromus tectorum L.), an invasive winter annual grass, may be increasing in extent and abundance at high elevations in the western United States. This would pose a great threat to high-elevation plant communities and resources. However, data to track this species in high-elevation environments are limited. To address changes in the distribution and abundance of downy brome and the factors most associated with its occurrence, we used field sampling and statistical methods, and niche modeling. In 2007, we resampled plots from two vegetation surveys in Rocky Mountain National Park for presence and cover of downy brome. One survey was established in 1993 and had been resampled in 1999. The other survey was established in 1996 and had not been resampled until our study. Although not all comparisons between years demonstrated significant changes in downy brome abundance, its mean cover increased nearly fivefold from 1993 (0.7%) to 2007 (3.6%) in one of the two vegetation surveys (P = 0.06). Although the average cover of downy brome within the second survey appeared to be increasing from 1996 to 2007, this slight change from 0.5% to 1.2% was not statistically significant (P = 0.24). Downy brome was present in 50% more plots in 1999 than in 1993 (P = 0.02) in the first survey. In the second survey, downy brome was present in 30% more plots in 2007 than in 1996 (P = 0.08). Maxent, a species-environmental matching model, was generally able to predict occurrences of downy brome, as new locations were in the ranges predicted by earlier generated models. The model found that distance to roads, elevation, and vegetation community influenced the predictions most. The strong response of downy brome to interannual environmental variability makes detecting change challenging, especially with small sample sizes. However, our results suggest that the area in which downy brome occurs is likely increasing in Rocky Mountain National Park through increased frequency and cover. Field surveys along with predictive modeling will be vital in directing efforts to manage this highly invasive species. ?? Weed Science Society of America 2011.
Arctic Acoustic Workshop Proceedings, 14-15 February 1989.
1989-06-01
measurements. The measurements reported by Levine et al. (1987) were taken from current and temperature sensors moored in two triangular grids . The internal...requires a resampling of the data series on a uniform depth-time grid . Statistics calculated from the resampled series will be used to test numerical...from an isolated keel. Figure 2: 2-D Modeling Geometry - The model is based on a 2-D Cartesian grid with an axis of symmetry on the left. A pulsed
NASA Astrophysics Data System (ADS)
Zhang, Hongjuan; Hendricks Franssen, Harrie-Jan; Han, Xujun; Vrugt, Jasper A.; Vereecken, Harry
2017-09-01
Land surface models (LSMs) use a large cohort of parameters and state variables to simulate the water and energy balance at the soil-atmosphere interface. Many of these model parameters cannot be measured directly in the field, and require calibration against measured fluxes of carbon dioxide, sensible and/or latent heat, and/or observations of the thermal and/or moisture state of the soil. Here, we evaluate the usefulness and applicability of four different data assimilation methods for joint parameter and state estimation of the Variable Infiltration Capacity Model (VIC-3L) and the Community Land Model (CLM) using a 5-month calibration (assimilation) period (March-July 2012) of areal-averaged SPADE soil moisture measurements at 5, 20, and 50 cm depths in the Rollesbroich experimental test site in the Eifel mountain range in western Germany. We used the EnKF with state augmentation or dual estimation, respectively, and the residual resampling PF with a simple, statistically deficient, or more sophisticated, MCMC-based parameter resampling method. The performance of the calibrated
LSM models was investigated using SPADE water content measurements of a 5-month evaluation period (August-December 2012). As expected, all DA methods enhance the ability of the VIC and CLM models to describe spatiotemporal patterns of moisture storage within the vadose zone of the Rollesbroich site, particularly if the maximum baseflow velocity (VIC) or fractions of sand, clay, and organic matter of each layer (CLM) are estimated jointly with the model states of each soil layer. The differences between the soil moisture simulations of VIC-3L and CLM are much larger than the discrepancies among the four data assimilation methods. The EnKF with state augmentation or dual estimation yields the best performance of VIC-3L and CLM during the calibration and evaluation period, yet results are in close agreement with the PF using MCMC resampling. Overall, CLM demonstrated the best performance for the Rollesbroich site. The large systematic underestimation of water storage at 50 cm depth by VIC-3L during the first few months of the evaluation period questions, in part, the validity of its fixed water table depth at the bottom of the modeled soil domain.
NASA Astrophysics Data System (ADS)
Poppick, A. N.; McKinnon, K. A.; Dunn-Sigouin, E.; Deser, C.
2017-12-01
Initial condition climate model ensembles suggest that regional temperature trends can be highly variable on decadal timescales due to characteristics of internal climate variability. Accounting for trend uncertainty due to internal variability is therefore necessary to contextualize recent observed temperature changes. However, while the variability of trends in a climate model ensemble can be evaluated directly (as the spread across ensemble members), internal variability simulated by a climate model may be inconsistent with observations. Observation-based methods for assessing the role of internal variability on trend uncertainty are therefore required. Here, we use a statistical resampling approach to assess trend uncertainty due to internal variability in historical 50-year (1966-2015) winter near-surface air temperature trends over North America. We compare this estimate of trend uncertainty to simulated trend variability in the NCAR CESM1 Large Ensemble (LENS), finding that uncertainty in wintertime temperature trends over North America due to internal variability is largely overestimated by CESM1, on average by a factor of 32%. Our observation-based resampling approach is combined with the forced signal from LENS to produce an 'Observational Large Ensemble' (OLENS). The members of OLENS indicate a range of spatially coherent fields of temperature trends resulting from different sequences of internal variability consistent with observations. The smaller trend variability in OLENS suggests that uncertainty in the historical climate change signal in observations due to internal variability is less than suggested by LENS.
NASA Astrophysics Data System (ADS)
Khaki, M.; Hoteit, I.; Kuhn, M.; Awange, J.; Forootan, E.; van Dijk, A. I. J. M.; Schumacher, M.; Pattiaratchi, C.
2017-09-01
The time-variable terrestrial water storage (TWS) products from the Gravity Recovery And Climate Experiment (GRACE) have been increasingly used in recent years to improve the simulation of hydrological models by applying data assimilation techniques. In this study, for the first time, we assess the performance of the most popular data assimilation sequential techniques for integrating GRACE TWS into the World-Wide Water Resources Assessment (W3RA) model. We implement and test stochastic and deterministic ensemble-based Kalman filters (EnKF), as well as Particle filters (PF) using two different resampling approaches of Multinomial Resampling and Systematic Resampling. These choices provide various opportunities for weighting observations and model simulations during the assimilation and also accounting for error distributions. Particularly, the deterministic EnKF is tested to avoid perturbing observations before assimilation (that is the case in an ordinary EnKF). Gaussian-based random updates in the EnKF approaches likely do not fully represent the statistical properties of the model simulations and TWS observations. Therefore, the fully non-Gaussian PF is also applied to estimate more realistic updates. Monthly GRACE TWS are assimilated into W3RA covering the entire Australia. To evaluate the filters performances and analyze their impact on model simulations, their estimates are validated by independent in-situ measurements. Our results indicate that all implemented filters improve the estimation of water storage simulations of W3RA. The best results are obtained using two versions of deterministic EnKF, i.e. the Square Root Analysis (SQRA) scheme and the Ensemble Square Root Filter (EnSRF), respectively, improving the model groundwater estimations errors by 34% and 31% compared to a model run without assimilation. Applying the PF along with Systematic Resampling successfully decreases the model estimation error by 23%.
NASA Astrophysics Data System (ADS)
Müller, H.; Haberlandt, U.
2018-01-01
Rainfall time series of high temporal resolution and spatial density are crucial for urban hydrology. The multiplicative random cascade model can be used for temporal rainfall disaggregation of daily data to generate such time series. Here, the uniform splitting approach with a branching number of 3 in the first disaggregation step is applied. To achieve a final resolution of 5 min, subsequent steps after disaggregation are necessary. Three modifications at different disaggregation levels are tested in this investigation (uniform splitting at Δt = 15 min, linear interpolation at Δt = 7.5 min and Δt = 3.75 min). Results are compared both with observations and an often used approach, based on the assumption that a time steps with Δt = 5.625 min, as resulting if a branching number of 2 is applied throughout, can be replaced with Δt = 5 min (called the 1280 min approach). Spatial consistence is implemented in the disaggregated time series using a resampling algorithm. In total, 24 recording stations in Lower Saxony, Northern Germany with a 5 min resolution have been used for the validation of the disaggregation procedure. The urban-hydrological suitability is tested with an artificial combined sewer system of about 170 hectares. The results show that all three variations outperform the 1280 min approach regarding reproduction of wet spell duration, average intensity, fraction of dry intervals and lag-1 autocorrelation. Extreme values with durations of 5 min are also better represented. For durations of 1 h, all approaches show only slight deviations from the observed extremes. The applied resampling algorithm is capable to achieve sufficient spatial consistence. The effects on the urban hydrological simulations are significant. Without spatial consistence, flood volumes of manholes and combined sewer overflow are strongly underestimated. After resampling, results using disaggregated time series as input are in the range of those using observed time series. Best overall performance regarding rainfall statistics are obtained by the method in which the disaggregation process ends at time steps with 7.5 min duration, deriving the 5 min time steps by linear interpolation. With subsequent resampling this method leads to a good representation of manhole flooding and combined sewer overflow volume in terms of hydrological simulations and outperforms the 1280 min approach.
Han, Guanghui; Liu, Xiabi; Zheng, Guangyuan; Wang, Murong; Huang, Shan
2018-06-06
Ground-glass opacity (GGO) is a common CT imaging sign on high-resolution CT, which means the lesion is more likely to be malignant compared to common solid lung nodules. The automatic recognition of GGO CT imaging signs is of great importance for early diagnosis and possible cure of lung cancers. The present GGO recognition methods employ traditional low-level features and system performance improves slowly. Considering the high-performance of CNN model in computer vision field, we proposed an automatic recognition method of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNN models in this paper. Our hybrid resampling is performed on multi-views and multi-receptive fields, which reduces the risk of missing small or large GGOs by adopting representative sampling panels and processing GGOs with multiple scales simultaneously. The layer-wise fine-tuning strategy has the ability to obtain the optimal fine-tuning model. Multi-CNN models fusion strategy obtains better performance than any single trained model. We evaluated our method on the GGO nodule samples in publicly available LIDC-IDRI dataset of chest CT scans. The experimental results show that our method yields excellent results with 96.64% sensitivity, 71.43% specificity, and 0.83 F1 score. Our method is a promising approach to apply deep learning method to computer-aided analysis of specific CT imaging signs with insufficient labeled images. Graphical abstract We proposed an automatic recognition method of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNN models in this paper. Our hybrid resampling reduces the risk of missing small or large GGOs by adopting representative sampling panels and processing GGOs with multiple scales simultaneously. The layer-wise fine-tuning strategy has ability to obtain the optimal fine-tuning model. Our method is a promising approach to apply deep learning method to computer-aided analysis of specific CT imaging signs with insufficient labeled images.
Maximum a posteriori resampling of noisy, spatially correlated data
NASA Astrophysics Data System (ADS)
Goff, John A.; Jenkins, Chris; Calder, Brian
2006-08-01
In any geologic application, noisy data are sources of consternation for researchers, inhibiting interpretability and marring images with unsightly and unrealistic artifacts. Filtering is the typical solution to dealing with noisy data. However, filtering commonly suffers from ad hoc (i.e., uncalibrated, ungoverned) application. We present here an alternative to filtering: a newly developed method for correcting noise in data by finding the "best" value given available information. The motivating rationale is that data points that are close to each other in space cannot differ by "too much," where "too much" is governed by the field covariance. Data with large uncertainties will frequently violate this condition and therefore ought to be corrected, or "resampled." Our solution for resampling is determined by the maximum of the a posteriori density function defined by the intersection of (1) the data error probability density function (pdf) and (2) the conditional pdf, determined by the geostatistical kriging algorithm applied to proximal data values. A maximum a posteriori solution can be computed sequentially going through all the data, but the solution depends on the order in which the data are examined. We approximate the global a posteriori solution by randomizing this order and taking the average. A test with a synthetic data set sampled from a known field demonstrates quantitatively and qualitatively the improvement provided by the maximum a posteriori resampling algorithm. The method is also applied to three marine geology/geophysics data examples, demonstrating the viability of the method for diverse applications: (1) three generations of bathymetric data on the New Jersey shelf with disparate data uncertainties; (2) mean grain size data from the Adriatic Sea, which is a combination of both analytic (low uncertainty) and word-based (higher uncertainty) sources; and (3) side-scan backscatter data from the Martha's Vineyard Coastal Observatory which are, as is typical for such data, affected by speckle noise. Compared to filtering, maximum a posteriori resampling provides an objective and optimal method for reducing noise, and better preservation of the statistical properties of the sampled field. The primary disadvantage is that maximum a posteriori resampling is a computationally expensive procedure.
Forensic identification of resampling operators: A semi non-intrusive approach.
Cao, Gang; Zhao, Yao; Ni, Rongrong
2012-03-10
Recently, several new resampling operators have been proposed and successfully invalidate the existing resampling detectors. However, the reliability of such anti-forensic techniques is unaware and needs to be investigated. In this paper, we focus on the forensic identification of digital image resampling operators including the traditional type and the anti-forensic type which hides the trace of traditional resampling. Various resampling algorithms involving geometric distortion (GD)-based, dual-path-based and postprocessing-based are investigated. The identification is achieved in the manner of semi non-intrusive, supposing the resampling software could be accessed. Given an input pattern of monotone signal, polarity aberration of GD-based resampled signal's first derivative is analyzed theoretically and measured by effective feature metric. Dual-path-based and postprocessing-based resampling can also be identified by feeding proper test patterns. Experimental results on various parameter settings demonstrate the effectiveness of the proposed approach. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
An optical systems analysis approach to image resampling
NASA Technical Reports Server (NTRS)
Lyon, Richard G.
1997-01-01
All types of image registration require some type of resampling, either during the registration or as a final step in the registration process. Thus the image(s) must be regridded into a spatially uniform, or angularly uniform, coordinate system with some pre-defined resolution. Frequently the ending resolution is not the resolution at which the data was observed with. The registration algorithm designer and end product user are presented with a multitude of possible resampling methods each of which modify the spatial frequency content of the data in some way. The purpose of this paper is threefold: (1) to show how an imaging system modifies the scene from an end to end optical systems analysis approach, (2) to develop a generalized resampling model, and (3) empirically apply the model to simulated radiometric scene data and tabulate the results. A Hanning windowed sinc interpolator method will be developed based upon the optical characterization of the system. It will be discussed in terms of the effects and limitations of sampling, aliasing, spectral leakage, and computational complexity. Simulated radiometric scene data will be used to demonstrate each of the algorithms. A high resolution scene will be "grown" using a fractal growth algorithm based on mid-point recursion techniques. The result scene data will be convolved with a point spread function representing the optical response. The resultant scene will be convolved with the detection systems response and subsampled to the desired resolution. The resultant data product will be subsequently resampled to the correct grid using the Hanning windowed sinc interpolator and the results and errors tabulated and discussed.
Reconstruction of dynamical systems from resampled point processes produced by neuron models
NASA Astrophysics Data System (ADS)
Pavlova, Olga N.; Pavlov, Alexey N.
2018-04-01
Characterization of dynamical features of chaotic oscillations from point processes is based on embedding theorems for non-uniformly sampled signals such as the sequences of interspike intervals (ISIs). This theoretical background confirms the ability of attractor reconstruction from ISIs generated by chaotically driven neuron models. The quality of such reconstruction depends on the available length of the analyzed dataset. We discuss how data resampling improves the reconstruction for short amount of data and show that this effect is observed for different types of mechanisms for spike generation.
Gaussian Process Interpolation for Uncertainty Estimation in Image Registration
Wachinger, Christian; Golland, Polina; Reuter, Martin; Wells, William
2014-01-01
Intensity-based image registration requires resampling images on a common grid to evaluate the similarity function. The uncertainty of interpolation varies across the image, depending on the location of resampled points relative to the base grid. We propose to perform Bayesian inference with Gaussian processes, where the covariance matrix of the Gaussian process posterior distribution estimates the uncertainty in interpolation. The Gaussian process replaces a single image with a distribution over images that we integrate into a generative model for registration. Marginalization over resampled images leads to a new similarity measure that includes the uncertainty of the interpolation. We demonstrate that our approach increases the registration accuracy and propose an efficient approximation scheme that enables seamless integration with existing registration methods. PMID:25333127
Mattfeldt, Torsten
2011-04-01
Computer-intensive methods may be defined as data analytical procedures involving a huge number of highly repetitive computations. We mention resampling methods with replacement (bootstrap methods), resampling methods without replacement (randomization tests) and simulation methods. The resampling methods are based on simple and robust principles and are largely free from distributional assumptions. Bootstrap methods may be used to compute confidence intervals for a scalar model parameter and for summary statistics from replicated planar point patterns, and for significance tests. For some simple models of planar point processes, point patterns can be simulated by elementary Monte Carlo methods. The simulation of models with more complex interaction properties usually requires more advanced computing methods. In this context, we mention simulation of Gibbs processes with Markov chain Monte Carlo methods using the Metropolis-Hastings algorithm. An alternative to simulations on the basis of a parametric model consists of stochastic reconstruction methods. The basic ideas behind the methods are briefly reviewed and illustrated by simple worked examples in order to encourage novices in the field to use computer-intensive methods. © 2010 The Authors Journal of Microscopy © 2010 Royal Microscopical Society.
Pabon, Peter; Ternström, Sten; Lamarche, Anick
2011-06-01
To describe a method for unified description, statistical modeling, and comparison of voice range profile (VRP) contours, even from diverse sources. A morphologic modeling technique, which is based on Fourier descriptors (FDs), is applied to the VRP contour. The technique, which essentially involves resampling of the curve of the contour, is assessed and also is compared to density-based VRP averaging methods that use the overlap count. VRP contours can be usefully described and compared using FDs. The method also permits the visualization of the local covariation along the contour average. For example, the FD-based analysis shows that the population variance for ensembles of VRP contours is usually smallest at the upper left part of the VRP. To illustrate the method's advantages and possible further application, graphs are given that compare the averaged contours from different authors and recording devices--for normal, trained, and untrained male and female voices as well as for child voices. The proposed technique allows any VRP shape to be brought to the same uniform base. On this uniform base, VRP contours or contour elements coming from a variety of sources may be placed within the same graph for comparison and for statistical analysis.
NASA Astrophysics Data System (ADS)
Ruggeri, Paolo; Irving, James; Holliger, Klaus
2015-08-01
We critically examine the performance of sequential geostatistical resampling (SGR) as a model proposal mechanism for Bayesian Markov-chain-Monte-Carlo (MCMC) solutions to near-surface geophysical inverse problems. Focusing on a series of simple yet realistic synthetic crosshole georadar tomographic examples characterized by different numbers of data, levels of data error and degrees of model parameter spatial correlation, we investigate the efficiency of three different resampling strategies with regard to their ability to generate statistically independent realizations from the Bayesian posterior distribution. Quite importantly, our results show that, no matter what resampling strategy is employed, many of the examined test cases require an unreasonably high number of forward model runs to produce independent posterior samples, meaning that the SGR approach as currently implemented will not be computationally feasible for a wide range of problems. Although use of a novel gradual-deformation-based proposal method can help to alleviate these issues, it does not offer a full solution. Further, we find that the nature of the SGR is found to strongly influence MCMC performance; however no clear rule exists as to what set of inversion parameters and/or overall proposal acceptance rate will allow for the most efficient implementation. We conclude that although the SGR methodology is highly attractive as it allows for the consideration of complex geostatistical priors as well as conditioning to hard and soft data, further developments are necessary in the context of novel or hybrid MCMC approaches for it to be considered generally suitable for near-surface geophysical inversions.
NASA Technical Reports Server (NTRS)
Benner, R.; Young, W.
1977-01-01
The results of an experimental study conducted to determine the geometric and radiometric effects of double resampling (bi-resampling) performed on image data in the process of performing map projection transformations are reported.
A comparison of resampling schemes for estimating model observer performance with small ensembles
NASA Astrophysics Data System (ADS)
Elshahaby, Fatma E. A.; Jha, Abhinav K.; Ghaly, Michael; Frey, Eric C.
2017-09-01
In objective assessment of image quality, an ensemble of images is used to compute the 1st and 2nd order statistics of the data. Often, only a finite number of images is available, leading to the issue of statistical variability in numerical observer performance. Resampling-based strategies can help overcome this issue. In this paper, we compared different combinations of resampling schemes (the leave-one-out (LOO) and the half-train/half-test (HT/HT)) and model observers (the conventional channelized Hotelling observer (CHO), channelized linear discriminant (CLD) and channelized quadratic discriminant). Observer performance was quantified by the area under the ROC curve (AUC). For a binary classification task and for each observer, the AUC value for an ensemble size of 2000 samples per class served as a gold standard for that observer. Results indicated that each observer yielded a different performance depending on the ensemble size and the resampling scheme. For a small ensemble size, the combination [CHO, HT/HT] had more accurate rankings than the combination [CHO, LOO]. Using the LOO scheme, the CLD and CHO had similar performance for large ensembles. However, the CLD outperformed the CHO and gave more accurate rankings for smaller ensembles. As the ensemble size decreased, the performance of the [CHO, LOO] combination seriously deteriorated as opposed to the [CLD, LOO] combination. Thus, it might be desirable to use the CLD with the LOO scheme when smaller ensemble size is available.
Zhou, Shuntai; Jones, Corbin; Mieczkowski, Piotr
2015-01-01
ABSTRACT Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS. IMPORTANCE Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set. PMID:26041299
Quasi-Epipolar Resampling of High Resolution Satellite Stereo Imagery for Semi Global Matching
NASA Astrophysics Data System (ADS)
Tatar, N.; Saadatseresht, M.; Arefi, H.; Hadavand, A.
2015-12-01
Semi-global matching is a well-known stereo matching algorithm in photogrammetric and computer vision society. Epipolar images are supposed as input of this algorithm. Epipolar geometry of linear array scanners is not a straight line as in case of frame camera. Traditional epipolar resampling algorithms demands for rational polynomial coefficients (RPCs), physical sensor model or ground control points. In this paper we propose a new solution for epipolar resampling method which works without the need for these information. In proposed method, automatic feature extraction algorithms are employed to generate corresponding features for registering stereo pairs. Also original images are divided into small tiles. In this way by omitting the need for extra information, the speed of matching algorithm increased and the need for high temporal memory decreased. Our experiments on GeoEye-1 stereo pair captured over Qom city in Iran demonstrates that the epipolar images are generated with sub-pixel accuracy.
Method for Pre-Conditioning a Measured Surface Height Map for Model Validation
NASA Technical Reports Server (NTRS)
Sidick, Erkin
2012-01-01
This software allows one to up-sample or down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. Because the re-sampling of a surface map is accomplished based on the analytical expressions of Zernike-polynomials and a power spectral density model, such re-sampling does not introduce any aliasing and interpolation errors as is done by the conventional interpolation and FFT-based (fast-Fourier-transform-based) spatial-filtering method. Also, this new method automatically eliminates the measurement noise and other measurement errors such as artificial discontinuity. The developmental cycle of an optical system, such as a space telescope, includes, but is not limited to, the following two steps: (1) deriving requirements or specs on the optical quality of individual optics before they are fabricated through optical modeling and simulations, and (2) validating the optical model using the measured surface height maps after all optics are fabricated. There are a number of computational issues related to model validation, one of which is the "pre-conditioning" or pre-processing of the measured surface maps before using them in a model validation software tool. This software addresses the following issues: (1) up- or down-sampling a measured surface map to match it with the gridded data format of a model validation tool, and (2) eliminating the surface measurement noise or measurement errors such that the resulted surface height map is continuous or smoothly-varying. So far, the preferred method used for re-sampling a surface map is two-dimensional interpolation. The main problem of this method is that the same pixel can take different values when the method of interpolation is changed among the different methods such as the "nearest," "linear," "cubic," and "spline" fitting in Matlab. The conventional, FFT-based spatial filtering method used to eliminate the surface measurement noise or measurement errors can also suffer from aliasing effects. During re-sampling of a surface map, this software preserves the low spatial-frequency characteristic of a given surface map through the use of Zernike-polynomial fit coefficients, and maintains mid- and high-spatial-frequency characteristics of the given surface map by the use of a PSD model derived from the two-dimensional PSD data of the mid- and high-spatial-frequency components of the original surface map. Because this new method creates the new surface map in the desired sampling format from analytical expressions only, it does not encounter any aliasing effects and does not cause any discontinuity in the resultant surface map.
Permutation tests for goodness-of-fit testing of mathematical models to experimental data.
Fişek, M Hamit; Barlas, Zeynep
2013-03-01
This paper presents statistical procedures for improving the goodness-of-fit testing of theoretical models to data obtained from laboratory experiments. We use an experimental study in the expectation states research tradition which has been carried out in the "standardized experimental situation" associated with the program to illustrate the application of our procedures. We briefly review the expectation states research program and the fundamentals of resampling statistics as we develop our procedures in the resampling context. The first procedure we develop is a modification of the chi-square test which has been the primary statistical tool for assessing goodness of fit in the EST research program, but has problems associated with its use. We discuss these problems and suggest a procedure to overcome them. The second procedure we present, the "Average Absolute Deviation" test, is a new test and is proposed as an alternative to the chi square test, as being simpler and more informative. The third and fourth procedures are permutation versions of Jonckheere's test for ordered alternatives, and Kendall's tau(b), a rank order correlation coefficient. The fifth procedure is a new rank order goodness-of-fit test, which we call the "Deviation from Ideal Ranking" index, which we believe may be more useful than other rank order tests for assessing goodness-of-fit of models to experimental data. The application of these procedures to the sample data is illustrated in detail. We then present another laboratory study from an experimental paradigm different from the expectation states paradigm - the "network exchange" paradigm, and describe how our procedures may be applied to this data set. Copyright © 2012 Elsevier Inc. All rights reserved.
Performance analysis of deciduous morphology for detecting biological siblings.
Paul, Kathleen S; Stojanowski, Christopher M
2015-08-01
Family-centered burial practices influence cemetery structure and can represent social group composition in both modern and ancient contexts. In ancient sites dental phenotypic data are often used as proxies for underlying genotypes to identify potential biological relatives. Here, we test the performance of deciduous dental morphological traits for differentiating sibling pairs from unrelated individuals from the same population. We collected 46 deciduous morphological traits for 69 sibling pairs from the Burlington Growth Centre's long term Family Study. Deciduous crown features were recorded following published standards. After variable winnowing, inter-individual Euclidean distances were generated using 20 morphological traits. To determine whether sibling pairs are more phenotypically similar than expected by chance we used bootstrap resampling of distances to generate P values. Multidimensional scaling (MDS) plots were used to evaluate the degree of clustering among sibling pairs. Results indicate an average distance between siblings of 0.252, which is significantly less than 9,999 replicated averages of 69 resampled pseudo-distances generated from: 1) a sample of non-relative pairs (P < 0.001), and 2) a sample of relative and non-relative pairs (P < 0.001). MDS plots indicate moderate to strong clustering among siblings; families occupied 3.83% of the multidimensional space on average (versus 63.10% for the total sample). Deciduous crown morphology performed well in identifying related sibling pairs. However, there was considerable variation in the extent to which different families exhibited similarly low levels of phenotypic divergence. © 2015 Wiley Periodicals, Inc.
D.W. Johnson; C.C. Trettin; D.E. Todd
2016-01-01
Vegetation, forest floor, and soils were resampled at a mixed oak site in eastern Tennessee that had been subjected to stem only (SOH), whole-tree harvest (WTH), and no harvest (REF) 33Â years previously. Although differences between harvest treatments were not statistically significant (PÂ <Â 0.05), average diameter, height, basal...
NASA Astrophysics Data System (ADS)
Plaza Guingla, D. A.; Pauwels, V. R.; De Lannoy, G. J.; Matgen, P.; Giustarini, L.; De Keyser, R.
2012-12-01
The objective of this work is to analyze the improvement in the performance of the particle filter by including a resample-move step or by using a modified Gaussian particle filter. Specifically, the standard particle filter structure is altered by the inclusion of the Markov chain Monte Carlo move step. The second choice adopted in this study uses the moments of an ensemble Kalman filter analysis to define the importance density function within the Gaussian particle filter structure. Both variants of the standard particle filter are used in the assimilation of densely sampled discharge records into a conceptual rainfall-runoff model. In order to quantify the obtained improvement, discharge root mean square errors are compared for different particle filters, as well as for the ensemble Kalman filter. First, a synthetic experiment is carried out. The results indicate that the performance of the standard particle filter can be improved by the inclusion of the resample-move step, but its effectiveness is limited to situations with limited particle impoverishment. The results also show that the modified Gaussian particle filter outperforms the rest of the filters. Second, a real experiment is carried out in order to validate the findings from the synthetic experiment. The addition of the resample-move step does not show a considerable improvement due to performance limitations in the standard particle filter with real data. On the other hand, when an optimal importance density function is used in the Gaussian particle filter, the results show a considerably improved performance of the particle filter.
Adaptive topographic mass correction for satellite gravity and gravity gradient data
NASA Astrophysics Data System (ADS)
Holzrichter, Nils; Szwillus, Wolfgang; Götze, Hans-Jürgen
2014-05-01
Subsurface modelling with gravity data includes a reliable topographic mass correction. Since decades, this mandatory step is a standard procedure. However, originally methods were developed for local terrestrial surveys. Therefore, these methods often include defaults like a limited correction area of 167 km around an observation point, resampling topography depending on the distance to the station or disregard the curvature of the earth. New satellite gravity data (e.g. GOCE) can be used for large scale lithospheric modelling with gravity data. The investigation areas can include thousands of kilometres. In addition, measurements are located in the flight height of the satellite (e.g. ~250 km for GOCE). The standard definition of the correction area and the specific grid spacing around an observation point was not developed for stations located in these heights and areas of these dimensions. This asks for a revaluation of the defaults used for topographic correction. We developed an algorithm which resamples the topography based on an adaptive approach. Instead of resampling topography depending on the distance to the station, the grids will be resampled depending on its influence at the station. Therefore, the only value the user has to define is the desired accuracy of the topographic correction. It is not necessary to define the grid spacing and a limited correction area. Furthermore, the algorithm calculates the topographic mass response with a spherical shaped polyhedral body. We show examples for local and global gravity datasets and compare the results of the topographic mass correction to existing approaches. We provide suggestions how satellite gravity and gradient data should be corrected.
Preprocessing the Nintendo Wii Board Signal to Derive More Accurate Descriptors of Statokinesigrams.
Audiffren, Julien; Contal, Emile
2016-08-01
During the past few years, the Nintendo Wii Balance Board (WBB) has been used in postural control research as an affordable but less reliable replacement for laboratory grade force platforms. However, the WBB suffers some limitations, such as a lower accuracy and an inconsistent sampling rate. In this study, we focus on the latter, namely the non uniform acquisition frequency. We show that this problem, combined with the poor signal to noise ratio of the WBB, can drastically decrease the quality of the obtained information if not handled properly. We propose a new resampling method, Sliding Window Average with Relevance Interval Interpolation (SWARII), specifically designed with the WBB in mind, for which we provide an open source implementation. We compare it with several existing methods commonly used in postural control, both on synthetic and experimental data. The results show that some methods, such as linear and piecewise constant interpolations should definitely be avoided, particularly when the resulting signal is differentiated, which is necessary to estimate speed, an important feature in postural control. Other methods, such as averaging on sliding windows or SWARII, perform significantly better on synthetic dataset, and produce results more similar to the laboratory-grade AMTI force plate (AFP) during experiments. Those methods should be preferred when resampling data collected from a WBB.
Preprocessing the Nintendo Wii Board Signal to Derive More Accurate Descriptors of Statokinesigrams
Audiffren, Julien; Contal, Emile
2016-01-01
During the past few years, the Nintendo Wii Balance Board (WBB) has been used in postural control research as an affordable but less reliable replacement for laboratory grade force platforms. However, the WBB suffers some limitations, such as a lower accuracy and an inconsistent sampling rate. In this study, we focus on the latter, namely the non uniform acquisition frequency. We show that this problem, combined with the poor signal to noise ratio of the WBB, can drastically decrease the quality of the obtained information if not handled properly. We propose a new resampling method, Sliding Window Average with Relevance Interval Interpolation (SWARII), specifically designed with the WBB in mind, for which we provide an open source implementation. We compare it with several existing methods commonly used in postural control, both on synthetic and experimental data. The results show that some methods, such as linear and piecewise constant interpolations should definitely be avoided, particularly when the resulting signal is differentiated, which is necessary to estimate speed, an important feature in postural control. Other methods, such as averaging on sliding windows or SWARII, perform significantly better on synthetic dataset, and produce results more similar to the laboratory-grade AMTI force plate (AFP) during experiments. Those methods should be preferred when resampling data collected from a WBB. PMID:27490545
System for monitoring non-coincident, nonstationary process signals
Gross, Kenneth C.; Wegerich, Stephan W.
2005-01-04
An improved system for monitoring non-coincident, non-stationary, process signals. The mean, variance, and length of a reference signal is defined by an automated system, followed by the identification of the leading and falling edges of a monitored signal and the length of the monitored signal. The monitored signal is compared to the reference signal, and the monitored signal is resampled in accordance with the reference signal. The reference signal is then correlated with the resampled monitored signal such that the reference signal and the resampled monitored signal are coincident in time with each other. The resampled monitored signal is then compared to the reference signal to determine whether the resampled monitored signal is within a set of predesignated operating conditions.
NASA Astrophysics Data System (ADS)
Wang, Jinliang; Wu, Xuejiao
2010-11-01
Geometric correction of imagery is a basic application of remote sensing technology. Its precision will impact directly on the accuracy and reliability of applications. The accuracy of geometric correction depends on many factors, including the used model for correction and the accuracy of the reference map, the number of ground control points (GCP) and its spatial distribution, resampling methods. The ETM+ image of Kunming Dianchi Lake Basin and 1:50000 geographical maps had been used to compare different correction methods. The results showed that: (1) The correction errors were more than one pixel and some of them were several pixels when the polynomial model was used. The correction accuracy was not stable when the Delaunay model was used. The correction errors were less than one pixel when the collinearity equation was used. (2) 6, 9, 25 and 35 GCP were selected randomly for geometric correction using the polynomial correction model respectively, the best result was obtained when 25 GCPs were used. (3) The contrast ratio of image corrected by using nearest neighbor and the best resampling rate was compared to that of using the cubic convolution and bilinear model. But the continuity of pixel gravy value was not very good. The contrast of image corrected was the worst and the computation time was the longest by using the cubic convolution method. According to the above results, the result was the best by using bilinear to resample.
Communication Optimizations for a Wireless Distributed Prognostic Framework
NASA Technical Reports Server (NTRS)
Saha, Sankalita; Saha, Bhaskar; Goebel, Kai
2009-01-01
Distributed architecture for prognostics is an essential step in prognostic research in order to enable feasible real-time system health management. Communication overhead is an important design problem for such systems. In this paper we focus on communication issues faced in the distributed implementation of an important class of algorithms for prognostics - particle filters. In spite of being computation and memory intensive, particle filters lend well to distributed implementation except for one significant step - resampling. We propose new resampling scheme called parameterized resampling that attempts to reduce communication between collaborating nodes in a distributed wireless sensor network. Analysis and comparison with relevant resampling schemes is also presented. A battery health management system is used as a target application. A new resampling scheme for distributed implementation of particle filters has been discussed in this paper. Analysis and comparison of this new scheme with existing resampling schemes in the context for minimizing communication overhead have also been discussed. Our proposed new resampling scheme performs significantly better compared to other schemes by attempting to reduce both the communication message length as well as number total communication messages exchanged while not compromising prediction accuracy and precision. Future work will explore the effects of the new resampling scheme in the overall computational performance of the whole system as well as full implementation of the new schemes on the Sun SPOT devices. Exploring different network architectures for efficient communication is an importance future research direction as well.
A CNN based Hybrid approach towards automatic image registration
NASA Astrophysics Data System (ADS)
Arun, Pattathal V.; Katiyar, Sunil K.
2013-06-01
Image registration is a key component of various image processing operations which involve the analysis of different image data sets. Automatic image registration domains have witnessed the application of many intelligent methodologies over the past decade; however inability to properly model object shape as well as contextual information had limited the attainable accuracy. In this paper, we propose a framework for accurate feature shape modeling and adaptive resampling using advanced techniques such as Vector Machines, Cellular Neural Network (CNN), SIFT, coreset, and Cellular Automata. CNN has found to be effective in improving feature matching as well as resampling stages of registration and complexity of the approach has been considerably reduced using corset optimization The salient features of this work are cellular neural network approach based SIFT feature point optimisation, adaptive resampling and intelligent object modelling. Developed methodology has been compared with contemporary methods using different statistical measures. Investigations over various satellite images revealed that considerable success was achieved with the approach. System has dynamically used spectral and spatial information for representing contextual knowledge using CNN-prolog approach. Methodology also illustrated to be effective in providing intelligent interpretation and adaptive resampling. Rejestracja obrazu jest kluczowym składnikiem różnych operacji jego przetwarzania. W ostatnich latach do automatycznej rejestracji obrazu wykorzystuje się metody sztucznej inteligencji, których największą wadą, obniżającą dokładność uzyskanych wyników jest brak możliwości dobrego wymodelowania kształtu i informacji kontekstowych. W niniejszej pracy zaproponowano zasady dokładnego modelowania kształtu oraz adaptacyjnego resamplingu z wykorzystaniem zaawansowanych technik, takich jak Vector Machines (VM), komórkowa sieć neuronowa (CNN), przesiewanie (SIFT), Coreset i automaty komórkowe. Stwierdzono, że za pomocą CNN można skutecznie poprawiać dopasowanie obiektów obrazowych oraz resampling kolejnych kroków rejestracji, zaś zastosowanie optymalizacji metodą Coreset znacznie redukuje złożoność podejścia. Zasadniczym przedmiotem pracy są: optymalizacja punktów metodą SIFT oparta na podejściu CNN, adaptacyjny resampling oraz inteligentne modelowanie obiektów. Opracowana metoda została porównana ze współcześnie stosowanymi metodami wykorzystującymi różne miary statystyczne. Badania nad różnymi obrazami satelitarnymi wykazały, że stosując opracowane podejście osiągnięto bardzo dobre wyniki. System stosując podejście CNN-prolog dynamicznie wykorzystuje informacje spektralne i przestrzenne dla reprezentacji wiedzy kontekstowej. Metoda okazała się również skuteczna w dostarczaniu inteligentnych interpretacji i w adaptacyjnym resamplingu.
Resampling: A Marriage of Computers and Statistics. ERIC/TM Digest.
ERIC Educational Resources Information Center
Rudner, Lawrence M.; Shafer, Mary Morello
Advances in computer technology are making it possible for educational researchers to use simpler statistical methods to address a wide range of questions with smaller data sets and fewer, and less restrictive, assumptions. This digest introduces computationally intensive statistics, collectively called resampling techniques. Resampling is a…
Proposed hardware architectures of particle filter for object tracking
NASA Astrophysics Data System (ADS)
Abd El-Halym, Howida A.; Mahmoud, Imbaby Ismail; Habib, SED
2012-12-01
In this article, efficient hardware architectures for particle filter (PF) are presented. We propose three different architectures for Sequential Importance Resampling Filter (SIRF) implementation. The first architecture is a two-step sequential PF machine, where particle sampling, weight, and output calculations are carried out in parallel during the first step followed by sequential resampling in the second step. For the weight computation step, a piecewise linear function is used instead of the classical exponential function. This decreases the complexity of the architecture without degrading the results. The second architecture speeds up the resampling step via a parallel, rather than a serial, architecture. This second architecture targets a balance between hardware resources and the speed of operation. The third architecture implements the SIRF as a distributed PF composed of several processing elements and central unit. All the proposed architectures are captured using VHDL synthesized using Xilinx environment, and verified using the ModelSim simulator. Synthesis results confirmed the resource reduction and speed up advantages of our architectures.
Testing particle filters on convective scale dynamics
NASA Astrophysics Data System (ADS)
Haslehner, Mylene; Craig, George. C.; Janjic, Tijana
2014-05-01
Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical fluid dynamics. - Computers and Fluids, doi:10,1016/j.compfluid.2010.11.011, 1096 2011. Würsch, M. and G. C. Craig, 2013: A simple dynamical model of cumulus convection for data assimilation research, submitted to Met. Zeitschrift.
Zhang, Jianhua; Li, Sunan; Wang, Rubin
2017-01-01
In this paper, we deal with the Mental Workload (MWL) classification problem based on the measured physiological data. First we discussed the optimal depth (i.e., the number of hidden layers) and parameter optimization algorithms for the Convolutional Neural Networks (CNN). The base CNNs designed were tested according to five classification performance indices, namely Accuracy, Precision, F-measure, G-mean, and required training time. Then we developed an Ensemble Convolutional Neural Network (ECNN) to enhance the accuracy and robustness of the individual CNN model. For the ECNN design, three model aggregation approaches (weighted averaging, majority voting and stacking) were examined and a resampling strategy was used to enhance the diversity of individual CNN models. The results of MWL classification performance comparison indicated that the proposed ECNN framework can effectively improve MWL classification performance and is featured by entirely automatic feature extraction and MWL classification, when compared with traditional machine learning methods.
NASA Astrophysics Data System (ADS)
Bou-Fakhreddine, Bassam; Mougharbel, Imad; Faye, Alain; Abou Chakra, Sara; Pollet, Yann
2018-03-01
Accurate daily river flow forecast is essential in many applications of water resources such as hydropower operation, agricultural planning and flood control. This paper presents a forecasting approach to deal with a newly addressed situation where hydrological data exist for a period longer than that of meteorological data (measurements asymmetry). In fact, one of the potential solutions to resolve measurements asymmetry issue is data re-sampling. It is a matter of either considering only the hydrological data or the balanced part of the hydro-meteorological data set during the forecasting process. However, the main disadvantage is that we may lose potentially relevant information from the left-out data. In this research, the key output is a Two-Phase Constructive Fuzzy inference hybrid model that is implemented over the non re-sampled data. The introduced modeling approach must be capable of exploiting the available data efficiently with higher prediction efficiency relative to Constructive Fuzzy model trained over re-sampled data set. The study was applied to Litani River in the Bekaa Valley - Lebanon by using 4 years of rainfall and 24 years of river flow daily measurements. A Constructive Fuzzy System Model (C-FSM) and a Two-Phase Constructive Fuzzy System Model (TPC-FSM) are trained. Upon validating, the second model has shown a primarily competitive performance and accuracy with the ability to preserve a higher day-to-day variability for 1, 3 and 6 days ahead. In fact, for the longest lead period, the C-FSM and TPC-FSM were able of explaining respectively 84.6% and 86.5% of the actual river flow variation. Overall, the results indicate that TPC-FSM model has provided a better tool to capture extreme flows in the process of streamflow prediction.
Warton, David I; Thibaut, Loïc; Wang, Yi Alice
2017-01-01
Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.
Assessing uncertainties in surface water security: An empirical multimodel approach
NASA Astrophysics Data System (ADS)
Rodrigues, Dulce B. B.; Gupta, Hoshin V.; Mendiondo, Eduardo M.; Oliveira, Paulo Tarso S.
2015-11-01
Various uncertainties are involved in the representation of processes that characterize interactions among societal needs, ecosystem functioning, and hydrological conditions. Here we develop an empirical uncertainty assessment of water security indicators that characterize scarcity and vulnerability, based on a multimodel and resampling framework. We consider several uncertainty sources including those related to (i) observed streamflow data; (ii) hydrological model structure; (iii) residual analysis; (iv) the method for defining Environmental Flow Requirement; (v) the definition of critical conditions for water provision; and (vi) the critical demand imposed by human activities. We estimate the overall hydrological model uncertainty by means of a residual bootstrap resampling approach, and by uncertainty propagation through different methodological arrangements applied to a 291 km2 agricultural basin within the Cantareira water supply system in Brazil. Together, the two-component hydrograph residual analysis and the block bootstrap resampling approach result in a more accurate and precise estimate of the uncertainty (95% confidence intervals) in the simulated time series. We then compare the uncertainty estimates associated with water security indicators using a multimodel framework and the uncertainty estimates provided by each model uncertainty estimation approach. The range of values obtained for the water security indicators suggests that the models/methods are robust and performs well in a range of plausible situations. The method is general and can be easily extended, thereby forming the basis for meaningful support to end-users facing water resource challenges by enabling them to incorporate a viable uncertainty analysis into a robust decision-making process.
Thibaut, Loïc; Wang, Yi Alice
2017-01-01
Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)—common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of “model-free bootstrap”, adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods. PMID:28738071
Huang, Zhengxing; Chan, Tak-Ming; Dong, Wei
2017-02-01
Major adverse cardiac events (MACE) of acute coronary syndrome (ACS) often occur suddenly resulting in high mortality and morbidity. Recently, the rapid development of electronic medical records (EMR) provides the opportunity to utilize the potential of EMR to improve the performance of MACE prediction. In this study, we present a novel data-mining based approach specialized for MACE prediction from a large volume of EMR data. The proposed approach presents a new classification algorithm by applying both over-sampling and under-sampling on minority-class and majority-class samples, respectively, and integrating the resampling strategy into a boosting framework so that it can effectively handle imbalance of MACE of ACS patients analogous to domain practice. The method learns a new and stronger MACE prediction model each iteration from a more difficult subset of EMR data with wrongly predicted MACEs of ACS patients by a previous weak model. We verify the effectiveness of the proposed approach on a clinical dataset containing 2930 ACS patient samples with 268 feature types. While the imbalanced ratio does not seem extreme (25.7%), MACE prediction targets pose great challenge to traditional methods. As these methods degenerate dramatically with increasing imbalanced ratios, the performance of our approach for predicting MACE remains robust and reaches 0.672 in terms of AUC. On average, the proposed approach improves the performance of MACE prediction by 4.8%, 4.5%, 8.6% and 4.8% over the standard SVM, Adaboost, SMOTE, and the conventional GRACE risk scoring system for MACE prediction, respectively. We consider that the proposed iterative boosting approach has demonstrated great potential to meet the challenge of MACE prediction for ACS patients using a large volume of EMR. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Hand, Michael L.
1990-01-01
Use of the bootstrap resampling technique (BRT) is assessed in its application to resampling analysis associated with measurement of payment allocation errors by federally funded Family Assistance Programs. The BRT is applied to a food stamp quality control database in Oregon. This analysis highlights the outlier-sensitivity of the…
Application of a New Resampling Method to SEM: A Comparison of S-SMART with the Bootstrap
ERIC Educational Resources Information Center
Bai, Haiyan; Sivo, Stephen A.; Pan, Wei; Fan, Xitao
2016-01-01
Among the commonly used resampling methods of dealing with small-sample problems, the bootstrap enjoys the widest applications because it often outperforms its counterparts. However, the bootstrap still has limitations when its operations are contemplated. Therefore, the purpose of this study is to examine an alternative, new resampling method…
Assessment of Person Fit Using Resampling-Based Approaches
ERIC Educational Resources Information Center
Sinharay, Sandip
2016-01-01
De la Torre and Deng suggested a resampling-based approach for person-fit assessment (PFA). The approach involves the use of the [math equation unavailable] statistic, a corrected expected a posteriori estimate of the examinee ability, and the Monte Carlo (MC) resampling method. The Type I error rate of the approach was closer to the nominal level…
Statistical wiring of thalamic receptive fields optimizes spatial sampling of the retinal image
Wang, Xin; Sommer, Friedrich T.; Hirsch, Judith A.
2014-01-01
Summary It is widely assumed that mosaics of retinal ganglion cells establish the optimal representation of visual space. However, relay cells in the visual thalamus often receive convergent input from several retinal afferents and, in cat, outnumber ganglion cells. To explore how the thalamus transforms the retinal image, we built a model of the retinothalamic circuit using experimental data and simple wiring rules. The model shows how the thalamus might form a resampled map of visual space with the potential to facilitate detection of stimulus position in the presence of sensor noise. Bayesian decoding conducted with the model provides support for this scenario. Despite its benefits, however, resampling introduces image blur, thus impairing edge perception. Whole-cell recordings obtained in vivo suggest that this problem is mitigated by arrangements of excitation and inhibition within the receptive field that effectively boost contrast borders, much like strategies used in digital image processing. PMID:24559681
Bootstrap position analysis for forecasting low flow frequency
Tasker, Gary D.; Dunne, P.
1997-01-01
A method of random resampling of residuals from stochastic models is used to generate a large number of 12-month-long traces of natural monthly runoff to be used in a position analysis model for a water-supply storage and delivery system. Position analysis uses the traces to forecast the likelihood of specified outcomes such as reservoir levels falling below a specified level or streamflows falling below statutory passing flows conditioned on the current reservoir levels and streamflows. The advantages of this resampling scheme, called bootstrap position analysis, are that it does not rely on the unverifiable assumption of normality, fewer parameters need to be estimated directly from the data, and accounting for parameter uncertainty is easily done. For a given set of operating rules and water-use requirements for a system, water managers can use such a model as a decision-making tool to evaluate different operating rules. ?? ASCE,.
Katayama, R; Sakai, S; Sakaguchi, T; Maeda, T; Takada, K; Hayabuchi, N; Morishita, J
2008-07-20
PURPOSE/AIM OF THE EXHIBIT: The purpose of this exhibit is: 1. To explain "resampling", an image data processing, performed by the digital radiographic system based on flat panel detector (FPD). 2. To show the influence of "resampling" on the basic imaging properties. 3. To present accurate measurement methods of the basic imaging properties of the FPD system. 1. The relationship between the matrix sizes of the output image and the image data acquired on FPD that automatically changes depending on a selected image size (FOV). 2. The explanation of the image data processing of "resampling". 3. The evaluation results of the basic imaging properties of the FPD system using two types of DICOM image to which "resampling" was performed: characteristic curves, presampled MTFs, noise power spectra, detective quantum efficiencies. CONCLUSION/SUMMARY: The major points of the exhibit are as follows: 1. The influence of "resampling" should not be disregarded in the evaluation of the basic imaging properties of the flat panel detector system. 2. It is necessary for the basic imaging properties to be measured by using DICOM image to which no "resampling" is performed.
Comment on: 'A Poisson resampling method for simulating reduced counts in nuclear medicine images'.
de Nijs, Robin
2015-07-21
In order to be able to calculate half-count images from already acquired data, White and Lawson published their method based on Poisson resampling. They verified their method experimentally by measurements with a Co-57 flood source. In this comment their results are reproduced and confirmed by a direct numerical simulation in Matlab. Not only Poisson resampling, but also two direct redrawing methods were investigated. Redrawing methods were based on a Poisson and a Gaussian distribution. Mean, standard deviation, skewness and excess kurtosis half-count/full-count ratios were determined for all methods, and compared to the theoretical values for a Poisson distribution. Statistical parameters showed the same behavior as in the original note and showed the superiority of the Poisson resampling method. Rounding off before saving of the half count image had a severe impact on counting statistics for counts below 100. Only Poisson resampling was not affected by this, while Gaussian redrawing was less affected by it than Poisson redrawing. Poisson resampling is the method of choice, when simulating half-count (or less) images from full-count images. It simulates correctly the statistical properties, also in the case of rounding off of the images.
Paleosecular Variation and Time-Averaged Field Behavior: Global and Regional Signatures
NASA Astrophysics Data System (ADS)
Johnson, C. L.; Cromwell, G.; Tauxe, L.; Constable, C.
2012-12-01
We use an updated global dataset of directional and intensity data from lava flows to investigate time-averaged field (TAF) and paleosecular variation (PSV) signatures regionally and globally. The data set includes observations from the past 10 Ma, but we focus our investigations on the field structure over past 5 Ma, in particular during the Brunhes and Matuyama. We restrict our analyses to sites with at least 5 samples (all of which have been stepwise demagnetized), and for which the estimate of the Fisher precision parameter, k, is at least 50. The data set comprises 1572 sites from the past 5 Ma that span latitudes 78oS to 71oN; of these ˜40% are from the Brunhes chron and ˜20% are from the Matuyama chron. Age control at the site level is variable because radiometric dates are available for only about one third of our sites. New TAF models for the Brunhes show longitudinal structure. In particular, high latitude flux lobes are observed, constrained by improved data sets from N. and S. America, Japan, and New Zealand. We use resampling techniques to examine possible biases in the TAF and PSV incurred by uneven temporal sampling, and the limited age information available for many sites. Results from Hawaii indicate that resampling of the paleodirectional data onto a uniform temporal distribution, incorporating site ages and age errors leads to a TAF estimate for the Brunhes that is close to that reported for the actual data set, but a PSV estimate (virtual geomagnetic pole dispersion) that is increased relative to that obtained from the unevenly sampled data. The global distribution of sites in our dataset allows us to investigate possible hemispheric asymmetries in field structure, in particular differences between north and south high latitude field behavior and low latitude differences between the Pacific and Atlantic hemispheres.
NASA Astrophysics Data System (ADS)
Yuan, Shenfang; Chen, Jian; Yang, Weibo; Qiu, Lei
2017-08-01
Fatigue crack growth prognosis is important for prolonging service time, improving safety, and reducing maintenance cost in many safety-critical systems, such as in aircraft, wind turbines, bridges, and nuclear plants. Combining fatigue crack growth models with the particle filter (PF) method has proved promising to deal with the uncertainties during fatigue crack growth and reach a more accurate prognosis. However, research on prognosis methods integrating on-line crack monitoring with the PF method is still lacking, as well as experimental verifications. Besides, the PF methods adopted so far are almost all sequential importance resampling-based PFs, which usually encounter sample impoverishment problems, and hence performs poorly. To solve these problems, in this paper, the piezoelectric transducers (PZTs)-based active Lamb wave method is adopted for on-line crack monitoring. The deterministic resampling PF (DRPF) is proposed to be used in fatigue crack growth prognosis, which can overcome the sample impoverishment problem. The proposed method is verified through fatigue tests of attachment lugs, which are a kind of important joint component in aerospace systems.
Geographic Gossip: Efficient Averaging for Sensor Networks
NASA Astrophysics Data System (ADS)
Dimakis, Alexandros D. G.; Sarwate, Anand D.; Wainwright, Martin J.
Gossip algorithms for distributed computation are attractive due to their simplicity, distributed nature, and robustness in noisy and uncertain environments. However, using standard gossip algorithms can lead to a significant waste in energy by repeatedly recirculating redundant information. For realistic sensor network model topologies like grids and random geometric graphs, the inefficiency of gossip schemes is related to the slow mixing times of random walks on the communication graph. We propose and analyze an alternative gossiping scheme that exploits geographic information. By utilizing geographic routing combined with a simple resampling method, we demonstrate substantial gains over previously proposed gossip protocols. For regular graphs such as the ring or grid, our algorithm improves standard gossip by factors of $n$ and $\\sqrt{n}$ respectively. For the more challenging case of random geometric graphs, our algorithm computes the true average to accuracy $\\epsilon$ using $O(\\frac{n^{1.5}}{\\sqrt{\\log n}} \\log \\epsilon^{-1})$ radio transmissions, which yields a $\\sqrt{\\frac{n}{\\log n}}$ factor improvement over standard gossip algorithms. We illustrate these theoretical results with experimental comparisons between our algorithm and standard methods as applied to various classes of random fields.
NASA Astrophysics Data System (ADS)
Meadors, Grant David; Krishnan, Badri; Papa, Maria Alessandra; Whelan, John T.; Zhang, Yuanhao
2018-02-01
Continuous-wave (CW) gravitational waves (GWs) call for computationally-intensive methods. Low signal-to-noise ratio signals need templated searches with long coherent integration times and thus fine parameter-space resolution. Longer integration increases sensitivity. Low-mass x-ray binaries (LMXBs) such as Scorpius X-1 (Sco X-1) may emit accretion-driven CWs at strains reachable by current ground-based observatories. Binary orbital parameters induce phase modulation. This paper describes how resampling corrects binary and detector motion, yielding source-frame time series used for cross-correlation. Compared to the previous, detector-frame, templated cross-correlation method, used for Sco X-1 on data from the first Advanced LIGO observing run (O1), resampling is about 20 × faster in the costliest, most-sensitive frequency bands. Speed-up factors depend on integration time and search setup. The speed could be reinvested into longer integration with a forecast sensitivity gain, 20 to 125 Hz median, of approximately 51%, or from 20 to 250 Hz, 11%, given the same per-band cost and setup. This paper's timing model enables future setup optimization. Resampling scales well with longer integration, and at 10 × unoptimized cost could reach respectively 2.83 × and 2.75 × median sensitivities, limited by spin-wandering. Then an O1 search could yield a marginalized-polarization upper limit reaching torque-balance at 100 Hz. Frequencies from 40 to 140 Hz might be probed in equal observing time with 2 × improved detectors.
Resampling methods in Microsoft Excel® for estimating reference intervals
Theodorsson, Elvar
2015-01-01
Computer- intensive resampling/bootstrap methods are feasible when calculating reference intervals from non-Gaussian or small reference samples. Microsoft Excel® in version 2010 or later includes natural functions, which lend themselves well to this purpose including recommended interpolation procedures for estimating 2.5 and 97.5 percentiles. The purpose of this paper is to introduce the reader to resampling estimation techniques in general and in using Microsoft Excel® 2010 for the purpose of estimating reference intervals in particular. Parametric methods are preferable to resampling methods when the distributions of observations in the reference samples is Gaussian or can transformed to that distribution even when the number of reference samples is less than 120. Resampling methods are appropriate when the distribution of data from the reference samples is non-Gaussian and in case the number of reference individuals and corresponding samples are in the order of 40. At least 500-1000 random samples with replacement should be taken from the results of measurement of the reference samples. PMID:26527366
Resampling methods in Microsoft Excel® for estimating reference intervals.
Theodorsson, Elvar
2015-01-01
Computer-intensive resampling/bootstrap methods are feasible when calculating reference intervals from non-Gaussian or small reference samples. Microsoft Excel® in version 2010 or later includes natural functions, which lend themselves well to this purpose including recommended interpolation procedures for estimating 2.5 and 97.5 percentiles. The purpose of this paper is to introduce the reader to resampling estimation techniques in general and in using Microsoft Excel® 2010 for the purpose of estimating reference intervals in particular. Parametric methods are preferable to resampling methods when the distributions of observations in the reference samples is Gaussian or can transformed to that distribution even when the number of reference samples is less than 120. Resampling methods are appropriate when the distribution of data from the reference samples is non-Gaussian and in case the number of reference individuals and corresponding samples are in the order of 40. At least 500-1000 random samples with replacement should be taken from the results of measurement of the reference samples.
Testing for Granger Causality in the Frequency Domain: A Phase Resampling Method.
Liu, Siwei; Molenaar, Peter
2016-01-01
This article introduces phase resampling, an existing but rarely used surrogate data method for making statistical inferences of Granger causality in frequency domain time series analysis. Granger causality testing is essential for establishing causal relations among variables in multivariate dynamic processes. However, testing for Granger causality in the frequency domain is challenging due to the nonlinear relation between frequency domain measures (e.g., partial directed coherence, generalized partial directed coherence) and time domain data. Through a simulation study, we demonstrate that phase resampling is a general and robust method for making statistical inferences even with short time series. With Gaussian data, phase resampling yields satisfactory type I and type II error rates in all but one condition we examine: when a small effect size is combined with an insufficient number of data points. Violations of normality lead to slightly higher error rates but are mostly within acceptable ranges. We illustrate the utility of phase resampling with two empirical examples involving multivariate electroencephalography (EEG) and skin conductance data.
NASA Astrophysics Data System (ADS)
Schöniger, Anneli; Wöhling, Thomas; Nowak, Wolfgang
2014-05-01
Bayesian model averaging ranks the predictive capabilities of alternative conceptual models based on Bayes' theorem. The individual models are weighted with their posterior probability to be the best one in the considered set of models. Finally, their predictions are combined into a robust weighted average and the predictive uncertainty can be quantified. This rigorous procedure does, however, not yet account for possible instabilities due to measurement noise in the calibration data set. This is a major drawback, since posterior model weights may suffer a lack of robustness related to the uncertainty in noisy data, which may compromise the reliability of model ranking. We present a new statistical concept to account for measurement noise as source of uncertainty for the weights in Bayesian model averaging. Our suggested upgrade reflects the limited information content of data for the purpose of model selection. It allows us to assess the significance of the determined posterior model weights, the confidence in model selection, and the accuracy of the quantified predictive uncertainty. Our approach rests on a brute-force Monte Carlo framework. We determine the robustness of model weights against measurement noise by repeatedly perturbing the observed data with random realizations of measurement error. Then, we analyze the induced variability in posterior model weights and introduce this "weighting variance" as an additional term into the overall prediction uncertainty analysis scheme. We further determine the theoretical upper limit in performance of the model set which is imposed by measurement noise. As an extension to the merely relative model ranking, this analysis provides a measure of absolute model performance. To finally decide, whether better data or longer time series are needed to ensure a robust basis for model selection, we resample the measurement time series and assess the convergence of model weights for increasing time series length. We illustrate our suggested approach with an application to model selection between different soil-plant models following up on a study by Wöhling et al. (2013). Results show that measurement noise compromises the reliability of model ranking and causes a significant amount of weighting uncertainty, if the calibration data time series is not long enough to compensate for its noisiness. This additional contribution to the overall predictive uncertainty is neglected without our approach. Thus, we strongly advertise to include our suggested upgrade in the Bayesian model averaging routine.
Vehicle Fault Diagnose Based on Smart Sensor
NASA Astrophysics Data System (ADS)
Zhining, Li; Peng, Wang; Jianmin, Mei; Jianwei, Li; Fei, Teng
In the vehicle's traditional fault diagnose system, we usually use a computer system with a A/D card and with many sensors connected to it. The disadvantage of this system is that these sensor can hardly be shared with control system and other systems, there are too many connect lines and the electro magnetic compatibility(EMC) will be affected. In this paper, smart speed sensor, smart acoustic press sensor, smart oil press sensor, smart acceleration sensor and smart order tracking sensor were designed to solve this problem. With the CAN BUS these smart sensors, fault diagnose computer and other computer could be connected together to establish a network system which can monitor and control the vehicle's diesel and other system without any duplicate sensor. The hard and soft ware of the smart sensor system was introduced, the oil press, vibration and acoustic signal are resampled by constant angle increment to eliminate the influence of the rotate speed. After the resample, the signal in every working cycle could be averaged in angle domain and do other analysis like order spectrum.
Porto, Paolo; Walling, Des E; Alewell, Christine; Callegari, Giovanni; Mabit, Lionel; Mallimo, Nicola; Meusburger, Katrin; Zehringer, Markus
2014-12-01
Soil erosion and both its on-site and off-site impacts are increasingly seen as a serious environmental problem across the world. The need for an improved evidence base on soil loss and soil redistribution rates has directed attention to the use of fallout radionuclides, and particularly (137)Cs, for documenting soil redistribution rates. This approach possesses important advantages over more traditional means of documenting soil erosion and soil redistribution. However, one key limitation of the approach is the time-averaged or lumped nature of the estimated erosion rates. In nearly all cases, these will relate to the period extending from the main period of bomb fallout to the time of sampling. Increasing concern for the impact of global change, particularly that related to changing land use and climate change, has frequently directed attention to the need to document changes in soil redistribution rates within this period. Re-sampling techniques, which should be distinguished from repeat-sampling techniques, have the potential to meet this requirement. As an example, the use of a re-sampling technique to derive estimates of the mean annual net soil loss from a small (1.38 ha) forested catchment in southern Italy is reported. The catchment was originally sampled in 1998 and samples were collected from points very close to the original sampling points again in 2013. This made it possible to compare the estimate of mean annual erosion for the period 1954-1998 with that for the period 1999-2013. The availability of measurements of sediment yield from the catchment for parts of the overall period made it possible to compare the results provided by the (137)Cs re-sampling study with the estimates of sediment yield for the same periods. In order to compare the estimates of soil loss and sediment yield for the two different periods, it was necessary to establish the uncertainty associated with the individual estimates. In the absence of a generally accepted procedure for such calculations, key factors influencing the uncertainty of the estimates were identified and a procedure developed. The results of the study demonstrated that there had been no significant change in mean annual soil loss in recent years and this was consistent with the information provided by the estimates of sediment yield from the catchment for the same periods. The study demonstrates the potential for using a re-sampling technique to document recent changes in soil redistribution rates. Copyright © 2014. Published by Elsevier Ltd.
Plate tectonics and continental basaltic geochemistry throughout Earth history
NASA Astrophysics Data System (ADS)
Keller, Brenhin; Schoene, Blair
2018-01-01
Basaltic magmas constitute the primary mass flux from Earth's mantle to its crust, carrying information about the conditions of mantle melting through which they were generated. As such, changes in the average basaltic geochemistry through time reflect changes in underlying parameters such as mantle potential temperature and the geodynamic setting of mantle melting. However, sampling bias, preservation bias, and geological heterogeneity complicate the calculation of representative average compositions. Here we use weighted bootstrap resampling to minimize sampling bias over the heterogeneous rock record and obtain maximally representative average basaltic compositions through time. Over the approximately 4 Ga of the continental rock record, the average composition of preserved continental basalts has evolved along a generally continuous trajectory, with decreasing compatible element concentrations and increasing incompatible element concentrations, punctuated by a comparatively rapid transition in some variables such as La/Yb ratios and Zr, Nb, and Ti abundances approximately 2.5 Ga ago. Geochemical modeling of mantle melting systematics and trace element partitioning suggests that these observations can be explained by discontinuous changes in the mineralogy of mantle partial melting driven by a gradual decrease in mantle potential temperature, without appealing to any change in tectonic process. This interpretation is supported by the geochemical record of slab fluid input to continental basalts, which indicates no long-term change in the global proportion of arc versus non-arc basaltic magmatism at any time in the preserved rock record.
Liu, Fang; Shen, Changqing; He, Qingbo; Zhang, Ao; Liu, Yongbin; Kong, Fanrang
2014-01-01
A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects. PMID:24803197
Local variance for multi-scale analysis in geomorphometry.
Drăguţ, Lucian; Eisank, Clemens; Strasser, Thomas
2011-07-15
Increasing availability of high resolution Digital Elevation Models (DEMs) is leading to a paradigm shift regarding scale issues in geomorphometry, prompting new solutions to cope with multi-scale analysis and detection of characteristic scales. We tested the suitability of the local variance (LV) method, originally developed for image analysis, for multi-scale analysis in geomorphometry. The method consists of: 1) up-scaling land-surface parameters derived from a DEM; 2) calculating LV as the average standard deviation (SD) within a 3 × 3 moving window for each scale level; 3) calculating the rate of change of LV (ROC-LV) from one level to another, and 4) plotting values so obtained against scale levels. We interpreted peaks in the ROC-LV graphs as markers of scale levels where cells or segments match types of pattern elements characterized by (relatively) equal degrees of homogeneity. The proposed method has been applied to LiDAR DEMs in two test areas different in terms of roughness: low relief and mountainous, respectively. For each test area, scale levels for slope gradient, plan, and profile curvatures were produced at constant increments with either resampling (cell-based) or image segmentation (object-based). Visual assessment revealed homogeneous areas that convincingly associate into patterns of land-surface parameters well differentiated across scales. We found that the LV method performed better on scale levels generated through segmentation as compared to up-scaling through resampling. The results indicate that coupling multi-scale pattern analysis with delineation of morphometric primitives is possible. This approach could be further used for developing hierarchical classifications of landform elements.
Local variance for multi-scale analysis in geomorphometry
Drăguţ, Lucian; Eisank, Clemens; Strasser, Thomas
2011-01-01
Increasing availability of high resolution Digital Elevation Models (DEMs) is leading to a paradigm shift regarding scale issues in geomorphometry, prompting new solutions to cope with multi-scale analysis and detection of characteristic scales. We tested the suitability of the local variance (LV) method, originally developed for image analysis, for multi-scale analysis in geomorphometry. The method consists of: 1) up-scaling land-surface parameters derived from a DEM; 2) calculating LV as the average standard deviation (SD) within a 3 × 3 moving window for each scale level; 3) calculating the rate of change of LV (ROC-LV) from one level to another, and 4) plotting values so obtained against scale levels. We interpreted peaks in the ROC-LV graphs as markers of scale levels where cells or segments match types of pattern elements characterized by (relatively) equal degrees of homogeneity. The proposed method has been applied to LiDAR DEMs in two test areas different in terms of roughness: low relief and mountainous, respectively. For each test area, scale levels for slope gradient, plan, and profile curvatures were produced at constant increments with either resampling (cell-based) or image segmentation (object-based). Visual assessment revealed homogeneous areas that convincingly associate into patterns of land-surface parameters well differentiated across scales. We found that the LV method performed better on scale levels generated through segmentation as compared to up-scaling through resampling. The results indicate that coupling multi-scale pattern analysis with delineation of morphometric primitives is possible. This approach could be further used for developing hierarchical classifications of landform elements. PMID:21779138
Forecasting drought risks for a water supply storage system using bootstrap position analysis
Tasker, Gary; Dunne, Paul
1997-01-01
Forecasting the likelihood of drought conditions is an integral part of managing a water supply storage and delivery system. Position analysis uses a large number of possible flow sequences as inputs to a simulation of a water supply storage and delivery system. For a given set of operating rules and water use requirements, water managers can use such a model to forecast the likelihood of specified outcomes such as reservoir levels falling below a specified level or streamflows falling below statutory passing flows a few months ahead conditioned on the current reservoir levels and streamflows. The large number of possible flow sequences are generated using a stochastic streamflow model with a random resampling of innovations. The advantages of this resampling scheme, called bootstrap position analysis, are that it does not rely on the unverifiable assumption of normality and it allows incorporation of long-range weather forecasts into the analysis.
Dotsinsky, Ivan
2005-01-01
Background Public access defibrillators (PADs) are now available for more efficient and rapid treatment of out-of-hospital sudden cardiac arrest. PADs are used normally by untrained people on the streets and in sports centers, airports, and other public areas. Therefore, automated detection of ventricular fibrillation, or its exclusion, is of high importance. A special case exists at railway stations, where electric power-line frequency interference is significant. Many countries, especially in Europe, use 16.7 Hz AC power, which introduces high level frequency-varying interference that may compromise fibrillation detection. Method Moving signal averaging is often used for 50/60 Hz interference suppression if its effect on the ECG spectrum has little importance (no morphological analysis is performed). This approach may be also applied to the railway situation, if the interference frequency is continuously detected so as to synchronize the analog-to-digital conversion (ADC) for introducing variable inter-sample intervals. A better solution consists of rated ADC, software frequency measuring, internal irregular re-sampling according to the interference frequency, and a moving average over a constant sample number, followed by regular back re-sampling. Results The proposed method leads to a total railway interference cancellation, together with suppression of inherent noise, while the peak amplitudes of some sharp complexes are reduced. This reduction has negligible effect on accurate fibrillation detection. Conclusion The method is developed in the MATLAB environment and represents a useful tool for real time railway interference suppression. PMID:16309558
Dotsinsky, Ivan
2005-11-26
Public access defibrillators (PADs) are now available for more efficient and rapid treatment of out-of-hospital sudden cardiac arrest. PADs are used normally by untrained people on the streets and in sports centers, airports, and other public areas. Therefore, automated detection of ventricular fibrillation, or its exclusion, is of high importance. A special case exists at railway stations, where electric power-line frequency interference is significant. Many countries, especially in Europe, use 16.7 Hz AC power, which introduces high level frequency-varying interference that may compromise fibrillation detection. Moving signal averaging is often used for 50/60 Hz interference suppression if its effect on the ECG spectrum has little importance (no morphological analysis is performed). This approach may be also applied to the railway situation, if the interference frequency is continuously detected so as to synchronize the analog-to-digital conversion (ADC) for introducing variable inter-sample intervals. A better solution consists of rated ADC, software frequency measuring, internal irregular re-sampling according to the interference frequency, and a moving average over a constant sample number, followed by regular back re-sampling. The proposed method leads to a total railway interference cancellation, together with suppression of inherent noise, while the peak amplitudes of some sharp complexes are reduced. This reduction has negligible effect on accurate fibrillation detection. The method is developed in the MATLAB environment and represents a useful tool for real time railway interference suppression.
ERIC Educational Resources Information Center
Nevitt, Johnathan; Hancock, Gregory R.
Though common structural equation modeling (SEM) methods are predicated upon the assumption of multivariate normality, applied researchers often find themselves with data clearly violating this assumption and without sufficient sample size to use distribution-free estimation methods. Fortunately, promising alternatives are being integrated into…
Techniques for Down-Sampling a Measured Surface Height Map for Model Validation
NASA Technical Reports Server (NTRS)
Sidick, Erkin
2012-01-01
This software allows one to down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. The software tool of the current two new techniques can be used in all optical model validation processes involving large space optical surfaces
Pham-The, Hai; Casañola-Martin, Gerardo; Garrigues, Teresa; Bermejo, Marival; González-Álvarez, Isabel; Nguyen-Hai, Nam; Cabrera-Pérez, Miguel Ángel; Le-Thi-Thu, Huong
2016-02-01
In many absorption, distribution, metabolism, and excretion (ADME) modeling problems, imbalanced data could negatively affect classification performance of machine learning algorithms. Solutions for handling imbalanced dataset have been proposed, but their application for ADME modeling tasks is underexplored. In this paper, various strategies including cost-sensitive learning and resampling methods were studied to tackle the moderate imbalance problem of a large Caco-2 cell permeability database. Simple physicochemical molecular descriptors were utilized for data modeling. Support vector machine classifiers were constructed and compared using multiple comparison tests. Results showed that the models developed on the basis of resampling strategies displayed better performance than the cost-sensitive classification models, especially in the case of oversampling data where misclassification rates for minority class have values of 0.11 and 0.14 for training and test set, respectively. A consensus model with enhanced applicability domain was subsequently constructed and showed improved performance. This model was used to predict a set of randomly selected high-permeability reference drugs according to the biopharmaceutics classification system. Overall, this study provides a comparison of numerous rebalancing strategies and displays the effectiveness of oversampling methods to deal with imbalanced permeability data problems.
NASA Astrophysics Data System (ADS)
Adjorlolo, Clement; Mutanga, Onisimo; Cho, Moses A.; Ismail, Riyad
2013-04-01
In this paper, a user-defined inter-band correlation filter function was used to resample hyperspectral data and thereby mitigate the problem of multicollinearity in classification analysis. The proposed resampling technique convolves the spectral dependence information between a chosen band-centre and its shorter and longer wavelength neighbours. Weighting threshold of inter-band correlation (WTC, Pearson's r) was calculated, whereby r = 1 at the band-centre. Various WTC (r = 0.99, r = 0.95 and r = 0.90) were assessed, and bands with coefficients beyond a chosen threshold were assigned r = 0. The resultant data were used in the random forest analysis to classify in situ C3 and C4 grass canopy reflectance. The respective WTC datasets yielded improved classification accuracies (kappa = 0.82, 0.79 and 0.76) with less correlated wavebands when compared to resampled Hyperion bands (kappa = 0.76). Overall, the results obtained from this study suggested that resampling of hyperspectral data should account for the spectral dependence information to improve overall classification accuracy as well as reducing the problem of multicollinearity.
NASA Astrophysics Data System (ADS)
Han, Tao; Chen, Lingyun; Lai, Chao-Jen; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Shaw, Chris C.
2009-02-01
Images of mastectomy breast specimens have been acquired with a bench top experimental Cone beam CT (CBCT) system. The resulting images have been segmented to model an uncompressed breast for simulation of various CBCT techniques. To further simulate conventional or tomosynthesis mammographic imaging for comparison with the CBCT technique, a deformation technique was developed to convert the CT data for an uncompressed breast to a compressed breast without altering the breast volume or regional breast density. With this technique, 3D breast deformation is separated into two 2D deformations in coronal and axial views. To preserve the total breast volume and regional tissue composition, each 2D deformation step was achieved by altering the square pixels into rectangular ones with the pixel areas unchanged and resampling with the original square pixels using bilinear interpolation. The compression was modeled by first stretching the breast in the superior-inferior direction in the coronal view. The image data were first deformed by distorting the voxels with a uniform distortion ratio. These deformed data were then deformed again using distortion ratios varying with the breast thickness and re-sampled. The deformation procedures were applied in the axial view to stretch the breast in the chest wall to nipple direction while shrinking it in the mediolateral to lateral direction re-sampled and converted into data for uniform cubic voxels. Threshold segmentation was applied to the final deformed image data to obtain the 3D compressed breast model. Our results show that the original segmented CBCT image data were successfully converted into those for a compressed breast with the same volume and regional density preserved. Using this compressed breast model, conventional and tomosynthesis mammograms were simulated for comparison with CBCT.
Study on the Classification of GAOFEN-3 Polarimetric SAR Images Using Deep Neural Network
NASA Astrophysics Data System (ADS)
Zhang, J.; Zhang, J.; Zhao, Z.
2018-04-01
Polarimetric Synthetic Aperture Radar (POLSAR) imaging principle determines that the image quality will be affected by speckle noise. So the recognition accuracy of traditional image classification methods will be reduced by the effect of this interference. Since the date of submission, Deep Convolutional Neural Network impacts on the traditional image processing methods and brings the field of computer vision to a new stage with the advantages of a strong ability to learn deep features and excellent ability to fit large datasets. Based on the basic characteristics of polarimetric SAR images, the paper studied the types of the surface cover by using the method of Deep Learning. We used the fully polarimetric SAR features of different scales to fuse RGB images to the GoogLeNet model based on convolution neural network Iterative training, and then use the trained model to test the classification of data validation.First of all, referring to the optical image, we mark the surface coverage type of GF-3 POLSAR image with 8m resolution, and then collect the samples according to different categories. To meet the GoogLeNet model requirements of 256 × 256 pixel image input and taking into account the lack of full-resolution SAR resolution, the original image should be pre-processed in the process of resampling. In this paper, POLSAR image slice samples of different scales with sampling intervals of 2 m and 1 m to be trained separately and validated by the verification dataset. Among them, the training accuracy of GoogLeNet model trained with resampled 2-m polarimetric SAR image is 94.89 %, and that of the trained SAR image with resampled 1 m is 92.65 %.
NASA Astrophysics Data System (ADS)
Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.
2017-06-01
We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holoien, Thomas W. -S.; Marshall, Philip J.; Wechsler, Risa H.
We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of amore » subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.« less
Response of South American Ecosystems to Precipitation Variability
NASA Astrophysics Data System (ADS)
Knox, R. G.; Kim, Y.; Longo, M.; Medvigy, D.; Wang, J.; Moorcroft, P. R.; Bras, R. L.
2009-12-01
The Ecosystem Demography Model 2 is a dynamic ecosystem model and land surface energy balance model. ED2 discretizes landscapes of particular terrain and meteorology into fractional areas of unique disturbance history. Each fraction, defined by a shared vertical soil column and canopy air space, contains a stratum of plant groups unique in functional type, size and number density. The result is a vertically distributed representation of energy transfer and plant dynamics (mortality, productivity, recruitment, disturbance, resource competition, etc) that successfully approximates the behaviour of individual-based vegetation models. In previous exercises simulating Amazonian land surface dynamics with ED 2, it was observed that when using grid averaged precipitation as an external forcing the resulting water balance typically over-estimated leaf interception and leaf evaporation while under estimating through-fall and transpiration. To investigate this result, two scenario were conducted in which land surface biophysics and ecosystem demography over the Northern portion of South America are simulated over ~200 years: (1) ED2 is forced with grid averaged values taken from the ERA40 reanalysis meteorological dataset; (2) ED2 is forced with ERA40 reanalysis, but with its precipitation re-sampled to reflect statistical qualities of point precipitation found at rain gauge stations in the region. The findings in this study suggest that the equilibrium moisture states and vegetation demography are co-dependent and show sensitivity to temporal variability in precipitation. These sensitivities will need to be accounted for in future projections of coupled climate-ecosystem changes in South America.
Comparison of parametric and bootstrap method in bioequivalence test.
Ahn, Byung-Jin; Yim, Dong-Seok
2009-10-01
The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled datasets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption.
Comparison of Parametric and Bootstrap Method in Bioequivalence Test
Ahn, Byung-Jin
2009-01-01
The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled datasets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption. PMID:19915699
Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters.
Chung, SungWon; Lu, Ying; Henry, Roland G
2006-11-01
Bootstrap is an empirical non-parametric statistical technique based on data resampling that has been used to quantify uncertainties of diffusion tensor MRI (DTI) parameters, useful in tractography and in assessing DTI methods. The current bootstrap method (repetition bootstrap) used for DTI analysis performs resampling within the data sharing common diffusion gradients, requiring multiple acquisitions for each diffusion gradient. Recently, wild bootstrap was proposed that can be applied without multiple acquisitions. In this paper, two new approaches are introduced called residual bootstrap and repetition bootknife. We show that repetition bootknife corrects for the large bias present in the repetition bootstrap method and, therefore, better estimates the standard errors. Like wild bootstrap, residual bootstrap is applicable to single acquisition scheme, and both are based on regression residuals (called model-based resampling). Residual bootstrap is based on the assumption that non-constant variance of measured diffusion-attenuated signals can be modeled, which is actually the assumption behind the widely used weighted least squares solution of diffusion tensor. The performances of these bootstrap approaches were compared in terms of bias, variance, and overall error of bootstrap-estimated standard error by Monte Carlo simulation. We demonstrate that residual bootstrap has smaller biases and overall errors, which enables estimation of uncertainties with higher accuracy. Understanding the properties of these bootstrap procedures will help us to choose the optimal approach for estimating uncertainties that can benefit hypothesis testing based on DTI parameters, probabilistic fiber tracking, and optimizing DTI methods.
Image restoration techniques as applied to Landsat MSS and TM data
Meyer, David
1987-01-01
Two factors are primarily responsible for the loss of image sharpness in processing digital Landsat images. The first factor is inherent in the data because the sensor's optics and electronics, along with other sensor elements, blur and smear the data. Digital image restoration can be used to reduce this degradation. The second factor, which further degrades by blurring or aliasing, is the resampling performed during geometric correction. An image restoration procedure, when used in place of typical resampled techniques, reduces sensor degradation without introducing the artifacts associated with resampling. The EROS Data Center (EDC) has implemented the restoration proceed for Landsat multispectral scanner (MSS) and thematic mapper (TM) data. This capability, developed at the University of Arizona by Dr. Robert Schowengerdt and Lynette Wood, combines restoration and resampling in a single step to produce geometrically corrected MSS and TM imagery. As with resampling, restoration demands a tradeoff be made between aliasing, which occurs when attempting to extract maximum sharpness from an image, and blurring, which reduces the aliasing problem but sacrifices image sharpness. The restoration procedure used at EDC minimizes these artifacts by being adaptive, tailoring the tradeoff to be optimal for individual images.
Austin, Peter C.; van Klaveren, David; Vergouwe, Yvonne; Nieboer, Daan; Lee, Douglas S.; Steyerberg, Ewout W.
2017-01-01
Objective Validation of clinical prediction models traditionally refers to the assessment of model performance in new patients. We studied different approaches to geographic and temporal validation in the setting of multicenter data from two time periods. Study Design and Setting We illustrated different analytic methods for validation using a sample of 14,857 patients hospitalized with heart failure at 90 hospitals in two distinct time periods. Bootstrap resampling was used to assess internal validity. Meta-analytic methods were used to assess geographic transportability. Each hospital was used once as a validation sample, with the remaining hospitals used for model derivation. Hospital-specific estimates of discrimination (c-statistic) and calibration (calibration intercepts and slopes) were pooled using random effects meta-analysis methods. I2 statistics and prediction interval width quantified geographic transportability. Temporal transportability was assessed using patients from the earlier period for model derivation and patients from the later period for model validation. Results Estimates of reproducibility, pooled hospital-specific performance, and temporal transportability were on average very similar, with c-statistics of 0.75. Between-hospital variation was moderate according to I2 statistics and prediction intervals for c-statistics. Conclusion This study illustrates how performance of prediction models can be assessed in settings with multicenter data at different time periods. PMID:27262237
Vibration based condition monitoring of a multistage epicyclic gearbox in lifting cranes
NASA Astrophysics Data System (ADS)
Assaad, Bassel; Eltabach, Mario; Antoni, Jérôme
2014-01-01
This paper proposes a model-based technique for detecting wear in a multistage planetary gearbox used by lifting cranes. The proposed method establishes a vibration signal model which deals with cyclostationary and autoregressive models. First-order cyclostationarity is addressed by the analysis of the time synchronous average (TSA) of the angular resampled vibration signal. Then an autoregressive model (AR) is applied to the TSA part in order to extract a residual signal containing pertinent fault signatures. The paper also explores a number of methods commonly used in vibration monitoring of planetary gearboxes, in order to make comparisons. In the experimental part of this study, these techniques are applied to accelerated lifetime test bench data for the lifting winch. After processing raw signals recorded with an accelerometer mounted on the outside of the gearbox, a number of condition indicators (CIs) are derived from the TSA signal, the residual autoregressive signal and other signals derived using standard signal processing methods. The goal is to check the evolution of the CIs during the accelerated lifetime test (ALT). Clarity and fluctuation level of the historical trends are finally considered as a criteria for comparing between the extracted CIs.
Cui, Ming; Xu, Lili; Wang, Huimin; Ju, Shaoqing; Xu, Shuizhu; Jing, Rongrong
2017-12-01
Measurement uncertainty (MU) is a metrological concept, which can be used for objectively estimating the quality of test results in medical laboratories. The Nordtest guide recommends an approach that uses both internal quality control (IQC) and external quality assessment (EQA) data to evaluate the MU. Bootstrap resampling is employed to simulate the unknown distribution based on the mathematical statistics method using an existing small sample of data, where the aim is to transform the small sample into a large sample. However, there have been no reports of the utilization of this method in medical laboratories. Thus, this study applied the Nordtest guide approach based on bootstrap resampling for estimating the MU. We estimated the MU for the white blood cell (WBC) count, red blood cell (RBC) count, hemoglobin (Hb), and platelets (Plt). First, we used 6months of IQC data and 12months of EQA data to calculate the MU according to the Nordtest method. Second, we combined the Nordtest method and bootstrap resampling with the quality control data and calculated the MU using MATLAB software. We then compared the MU results obtained using the two approaches. The expanded uncertainty results determined for WBC, RBC, Hb, and Plt using the bootstrap resampling method were 4.39%, 2.43%, 3.04%, and 5.92%, respectively, and 4.38%, 2.42%, 3.02%, and 6.00% with the existing quality control data (U [k=2]). For WBC, RBC, Hb, and Plt, the differences between the results obtained using the two methods were lower than 1.33%. The expanded uncertainty values were all less than the target uncertainties. The bootstrap resampling method allows the statistical analysis of the MU. Combining the Nordtest method and bootstrap resampling is considered a suitable alternative method for estimating the MU. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Li, Dongmei; Le Pape, Marc A; Parikh, Nisha I; Chen, Will X; Dye, Timothy D
2013-01-01
Microarrays are widely used for examining differential gene expression, identifying single nucleotide polymorphisms, and detecting methylation loci. Multiple testing methods in microarray data analysis aim at controlling both Type I and Type II error rates; however, real microarray data do not always fit their distribution assumptions. Smyth's ubiquitous parametric method, for example, inadequately accommodates violations of normality assumptions, resulting in inflated Type I error rates. The Significance Analysis of Microarrays, another widely used microarray data analysis method, is based on a permutation test and is robust to non-normally distributed data; however, the Significance Analysis of Microarrays method fold change criteria are problematic, and can critically alter the conclusion of a study, as a result of compositional changes of the control data set in the analysis. We propose a novel approach, combining resampling with empirical Bayes methods: the Resampling-based empirical Bayes Methods. This approach not only reduces false discovery rates for non-normally distributed microarray data, but it is also impervious to fold change threshold since no control data set selection is needed. Through simulation studies, sensitivities, specificities, total rejections, and false discovery rates are compared across the Smyth's parametric method, the Significance Analysis of Microarrays, and the Resampling-based empirical Bayes Methods. Differences in false discovery rates controls between each approach are illustrated through a preterm delivery methylation study. The results show that the Resampling-based empirical Bayes Methods offer significantly higher specificity and lower false discovery rates compared to Smyth's parametric method when data are not normally distributed. The Resampling-based empirical Bayes Methods also offers higher statistical power than the Significance Analysis of Microarrays method when the proportion of significantly differentially expressed genes is large for both normally and non-normally distributed data. Finally, the Resampling-based empirical Bayes Methods are generalizable to next generation sequencing RNA-seq data analysis.
Fourier Descriptor Analysis and Unification of Voice Range Profile Contours: Method and Applications
ERIC Educational Resources Information Center
Pabon, Peter; Ternstrom, Sten; Lamarche, Anick
2011-01-01
Purpose: To describe a method for unified description, statistical modeling, and comparison of voice range profile (VRP) contours, even from diverse sources. Method: A morphologic modeling technique, which is based on Fourier descriptors (FDs), is applied to the VRP contour. The technique, which essentially involves resampling of the curve of the…
Uncertainty Quantification in High Throughput Screening ...
Using uncertainty quantification, we aim to improve the quality of modeling data from high throughput screening assays for use in risk assessment. ToxCast is a large-scale screening program that analyzes thousands of chemicals using over 800 assays representing hundreds of biochemical and cellular processes, including endocrine disruption, cytotoxicity, and zebrafish development. Over 2.6 million concentration response curves are fit to models to extract parameters related to potency and efficacy. Models built on ToxCast results are being used to rank and prioritize the toxicological risk of tested chemicals and to predict the toxicity of tens of thousands of chemicals not yet tested in vivo. However, the data size also presents challenges. When fitting the data, the choice of models, model selection strategy, and hit call criteria must reflect the need for computational efficiency and robustness, requiring hard and somewhat arbitrary cutoffs. When coupled with unavoidable noise in the experimental concentration response data, these hard cutoffs cause uncertainty in model parameters and the hit call itself. The uncertainty will then propagate through all of the models built on the data. Left unquantified, this uncertainty makes it difficult to fully interpret the data for risk assessment. We used bootstrap resampling methods to quantify the uncertainty in fitting models to the concentration response data. Bootstrap resampling determines confidence intervals for
SU-E-J-224: Multimodality Segmentation of Head and Neck Tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aristophanous, M; Yang, J; Beadle, B
2014-06-01
Purpose: Develop an algorithm that is able to automatically segment tumor volume in Head and Neck cancer by integrating information from CT, PET and MR imaging simultaneously. Methods: Twenty three patients that were recruited under an adaptive radiotherapy protocol had MR, CT and PET/CT scans within 2 months prior to start of radiotherapy. The patients had unresectable disease and were treated either with chemoradiotherapy or radiation therapy alone. Using the Velocity software, the PET/CT and MR (T1 weighted+contrast) scans were registered to the planning CT using deformable and rigid registration respectively. The PET and MR images were then resampled accordingmore » to the registration to match the planning CT. The resampled images, together with the planning CT, were fed into a multi-channel segmentation algorithm, which is based on Gaussian mixture models and solved with the expectation-maximization algorithm and Markov random fields. A rectangular region of interest (ROI) was manually placed to identify the tumor area and facilitate the segmentation process. The auto-segmented tumor contours were compared with the gross tumor volume (GTV) manually defined by the physician. The volume difference and Dice similarity coefficient (DSC) between the manual and autosegmented GTV contours were calculated as the quantitative evaluation metrics. Results: The multimodality segmentation algorithm was applied to all 23 patients. The volumes of the auto-segmented GTV ranged from 18.4cc to 32.8cc. The average (range) volume difference between the manual and auto-segmented GTV was −42% (−32.8%–63.8%). The average DSC value was 0.62, ranging from 0.39 to 0.78. Conclusion: An algorithm for the automated definition of tumor volume using multiple imaging modalities simultaneously was successfully developed and implemented for Head and Neck cancer. This development along with more accurate registration algorithms can aid physicians in the efforts to interpret the multitude of imaging information available in radiotherapy today. This project was supported by a grant by Varian Medical Systems.« less
Lawrence, Gregory B.; Fernandez, Ivan J.; Richter, Daniel D.; Ross, Donald S.; Hazlett, Paul W.; Bailey, Scott W.; Oiumet, Rock; Warby, Richard A.F.; Johnson, Arthur H.; Lin, Henry; Kaste, James M.; Lapenis, Andrew G.; Sullivan, Timothy J.
2013-01-01
Environmental change is monitored in North America through repeated measurements of weather, stream and river flow, air and water quality, and most recently, soil properties. Some skepticism remains, however, about whether repeated soil sampling can effectively distinguish between temporal and spatial variability, and efforts to document soil change in forest ecosystems through repeated measurements are largely nascent and uncoordinated. In eastern North America, repeated soil sampling has begun to provide valuable information on environmental problems such as air pollution. This review synthesizes the current state of the science to further the development and use of soil resampling as an integral method for recording and understanding environmental change in forested settings. The origins of soil resampling reach back to the 19th century in England and Russia. The concepts and methodologies involved in forest soil resampling are reviewed and evaluated through a discussion of how temporal and spatial variability can be addressed with a variety of sampling approaches. Key resampling studies demonstrate the type of results that can be obtained through differing approaches. Ongoing, large-scale issues such as recovery from acidification, long-term N deposition, C sequestration, effects of climate change, impacts from invasive species, and the increasing intensification of soil management all warrant the use of soil resampling as an essential tool for environmental monitoring and assessment. Furthermore, with better awareness of the value of soil resampling, studies can be designed with a long-term perspective so that information can be efficiently obtained well into the future to address problems that have not yet surfaced.
NASA Astrophysics Data System (ADS)
He, Song-Bing; Ben Hu; Kuang, Zheng-Kun; Wang, Dong; Kong, De-Xin
2016-11-01
Adenosine receptors (ARs) are potential therapeutic targets for Parkinson’s disease, diabetes, pain, stroke and cancers. Prediction of subtype selectivity is therefore important from both therapeutic and mechanistic perspectives. In this paper, we introduced a shape similarity profile as molecular descriptor, namely three-dimensional biologically relevant spectrum (BRS-3D), for AR selectivity prediction. Pairwise regression and discrimination models were built with the support vector machine methods. The average determination coefficient (r2) of the regression models was 0.664 (for test sets). The 2B-3 (A2B vs A3) model performed best with q2 = 0.769 for training sets (10-fold cross-validation), and r2 = 0.766, RMSE = 0.828 for test sets. The models’ robustness and stability were validated with 100 times resampling and 500 times Y-randomization. We compared the performance of BRS-3D with 3D descriptors calculated by MOE. BRS-3D performed as good as, or better than, MOE 3D descriptors. The performances of the discrimination models were also encouraging, with average accuracy (ACC) 0.912 and MCC 0.792 (test set). The 2A-3 (A2A vs A3) selectivity discrimination model (ACC = 0.882 and MCC = 0.715 for test set) outperformed an earlier reported one (ACC = 0.784). These results demonstrated that, through multiple conformation encoding, BRS-3D can be used as an effective molecular descriptor for AR subtype selectivity prediction.
Xiao, Yongling; Abrahamowicz, Michal
2010-03-30
We propose two bootstrap-based methods to correct the standard errors (SEs) from Cox's model for within-cluster correlation of right-censored event times. The cluster-bootstrap method resamples, with replacement, only the clusters, whereas the two-step bootstrap method resamples (i) the clusters, and (ii) individuals within each selected cluster, with replacement. In simulations, we evaluate both methods and compare them with the existing robust variance estimator and the shared gamma frailty model, which are available in statistical software packages. We simulate clustered event time data, with latent cluster-level random effects, which are ignored in the conventional Cox's model. For cluster-level covariates, both proposed bootstrap methods yield accurate SEs, and type I error rates, and acceptable coverage rates, regardless of the true random effects distribution, and avoid serious variance under-estimation by conventional Cox-based standard errors. However, the two-step bootstrap method over-estimates the variance for individual-level covariates. We also apply the proposed bootstrap methods to obtain confidence bands around flexible estimates of time-dependent effects in a real-life analysis of cluster event times.
Survival estimation and the effects of dependency among animals
Schmutz, Joel A.; Ward, David H.; Sedinger, James S.; Rexstad, Eric A.
1995-01-01
Survival models assume that fates of individuals are independent, yet the robustness of this assumption has been poorly quantified. We examine how empirically derived estimates of the variance of survival rates are affected by dependency in survival probability among individuals. We used Monte Carlo simulations to generate known amounts of dependency among pairs of individuals and analyzed these data with Kaplan-Meier and Cormack-Jolly-Seber models. Dependency significantly increased these empirical variances as compared to theoretically derived estimates of variance from the same populations. Using resighting data from 168 pairs of black brant, we used a resampling procedure and program RELEASE to estimate empirical and mean theoretical variances. We estimated that the relationship between paired individuals caused the empirical variance of the survival rate to be 155% larger than the empirical variance for unpaired individuals. Monte Carlo simulations and use of this resampling strategy can provide investigators with information on how robust their data are to this common assumption of independent survival probabilities.
A program for handling map projections of small-scale geospatial raster data
Finn, Michael P.; Steinwand, Daniel R.; Trent, Jason R.; Buehler, Robert A.; Mattli, David M.; Yamamoto, Kristina H.
2012-01-01
Scientists routinely accomplish small-scale geospatial modeling using raster datasets of global extent. Such use often requires the projection of global raster datasets onto a map or the reprojection from a given map projection associated with a dataset. The distortion characteristics of these projection transformations can have significant effects on modeling results. Distortions associated with the reprojection of global data are generally greater than distortions associated with reprojections of larger-scale, localized areas. The accuracy of areas in projected raster datasets of global extent is dependent on spatial resolution. To address these problems of projection and the associated resampling that accompanies it, methods for framing the transformation space, direct point-to-point transformations rather than gridded transformation spaces, a solution to the wrap-around problem, and an approach to alternative resampling methods are presented. The implementations of these methods are provided in an open-source software package called MapImage (or mapIMG, for short), which is designed to function on a variety of computer architectures.
Incorporating advanced language models into the P300 speller using particle filtering
NASA Astrophysics Data System (ADS)
Speier, W.; Arnold, C. W.; Deshpande, A.; Knall, J.; Pouratian, N.
2015-08-01
Objective. The P300 speller is a common brain-computer interface (BCI) application designed to communicate language by detecting event related potentials in a subject’s electroencephalogram signal. Information about the structure of natural language can be valuable for BCI communication, but attempts to use this information have thus far been limited to rudimentary n-gram models. While more sophisticated language models are prevalent in natural language processing literature, current BCI analysis methods based on dynamic programming cannot handle their complexity. Approach. Sampling methods can overcome this complexity by estimating the posterior distribution without searching the entire state space of the model. In this study, we implement sequential importance resampling, a commonly used particle filtering (PF) algorithm, to integrate a probabilistic automaton language model. Main result. This method was first evaluated offline on a dataset of 15 healthy subjects, which showed significant increases in speed and accuracy when compared to standard classification methods as well as a recently published approach using a hidden Markov model (HMM). An online pilot study verified these results as the average speed and accuracy achieved using the PF method was significantly higher than that using the HMM method. Significance. These findings strongly support the integration of domain-specific knowledge into BCI classification to improve system performance.
NASA Astrophysics Data System (ADS)
Huang, Huan; Baddour, Natalie; Liang, Ming
2018-02-01
Under normal operating conditions, bearings often run under time-varying rotational speed conditions. Under such circumstances, the bearing vibrational signal is non-stationary, which renders ineffective the techniques used for bearing fault diagnosis under constant running conditions. One of the conventional methods of bearing fault diagnosis under time-varying speed conditions is resampling the non-stationary signal to a stationary signal via order tracking with the measured variable speed. With the resampled signal, the methods available for constant condition cases are thus applicable. However, the accuracy of the order tracking is often inadequate and the time-varying speed is sometimes not measurable. Thus, resampling-free methods are of interest for bearing fault diagnosis under time-varying rotational speed for use without tachometers. With the development of time-frequency analysis, the time-varying fault character manifests as curves in the time-frequency domain. By extracting the Instantaneous Fault Characteristic Frequency (IFCF) from the Time-Frequency Representation (TFR) and converting the IFCF, its harmonics, and the Instantaneous Shaft Rotational Frequency (ISRF) into straight lines, the bearing fault can be detected and diagnosed without resampling. However, so far, the extraction of the IFCF for bearing fault diagnosis is mostly based on the assumption that at each moment the IFCF has the highest amplitude in the TFR, which is not always true. Hence, a more reliable T-F curve extraction approach should be investigated. Moreover, if the T-F curves including the IFCF, its harmonic, and the ISRF can be all extracted from the TFR directly, no extra processing is needed for fault diagnosis. Therefore, this paper proposes an algorithm for multiple T-F curve extraction from the TFR based on a fast path optimization which is more reliable for T-F curve extraction. Then, a new procedure for bearing fault diagnosis under unknown time-varying speed conditions is developed based on the proposed algorithm and a new fault diagnosis strategy. The average curve-to-curve ratios are utilized to describe the relationship of the extracted curves and fault diagnosis can then be achieved by comparing the ratios to the fault characteristic coefficients. The effectiveness of the proposed method is validated by simulated and experimental signals.
Zhang, Yeqing; Wang, Meiling; Li, Yafeng
2018-01-01
For the objective of essentially decreasing computational complexity and time consumption of signal acquisition, this paper explores a resampling strategy and variable circular correlation time strategy specific to broadband multi-frequency GNSS receivers. In broadband GNSS receivers, the resampling strategy is established to work on conventional acquisition algorithms by resampling the main lobe of received broadband signals with a much lower frequency. Variable circular correlation time is designed to adapt to different signal strength conditions and thereby increase the operation flexibility of GNSS signal acquisition. The acquisition threshold is defined as the ratio of the highest and second highest correlation results in the search space of carrier frequency and code phase. Moreover, computational complexity of signal acquisition is formulated by amounts of multiplication and summation operations in the acquisition process. Comparative experiments and performance analysis are conducted on four sets of real GPS L2C signals with different sampling frequencies. The results indicate that the resampling strategy can effectively decrease computation and time cost by nearly 90–94% with just slight loss of acquisition sensitivity. With circular correlation time varying from 10 ms to 20 ms, the time cost of signal acquisition has increased by about 2.7–5.6% per millisecond, with most satellites acquired successfully. PMID:29495301
Zhang, Yeqing; Wang, Meiling; Li, Yafeng
2018-02-24
For the objective of essentially decreasing computational complexity and time consumption of signal acquisition, this paper explores a resampling strategy and variable circular correlation time strategy specific to broadband multi-frequency GNSS receivers. In broadband GNSS receivers, the resampling strategy is established to work on conventional acquisition algorithms by resampling the main lobe of received broadband signals with a much lower frequency. Variable circular correlation time is designed to adapt to different signal strength conditions and thereby increase the operation flexibility of GNSS signal acquisition. The acquisition threshold is defined as the ratio of the highest and second highest correlation results in the search space of carrier frequency and code phase. Moreover, computational complexity of signal acquisition is formulated by amounts of multiplication and summation operations in the acquisition process. Comparative experiments and performance analysis are conducted on four sets of real GPS L2C signals with different sampling frequencies. The results indicate that the resampling strategy can effectively decrease computation and time cost by nearly 90-94% with just slight loss of acquisition sensitivity. With circular correlation time varying from 10 ms to 20 ms, the time cost of signal acquisition has increased by about 2.7-5.6% per millisecond, with most satellites acquired successfully.
Coates, Peter S.; Casazza, Michael L.; Halstead, Brian J.; Fleskes, Joseph P.; Laughlin, James A.
2011-01-01
Radar systems designed to detect avian activity at airfields are useful in understanding factors that influence the risk of bird and aircraft collisions (bird strikes). We used an avian radar system to measure avian activity at Beale Air Force Base, California, USA, during 2008 and 2009. We conducted a 2-part analysis to examine relationships among avian activity, bird strikes, and meteorological and time-dependent factors. We found that avian activity around the airfield was greater at times when bird strikes occurred than on average using a permutation resampling technique. Second, we developed generalized linear mixed models of an avian activity index (AAI). Variation in AAI was first explained by seasons that were based on average migration dates of birds at the study area. We then modeled AAI by those seasons to further explain variation by meteorological factors and daily light levels within a 24-hour period. In general, avian activity increased with decreased temperature, wind, visibility, precipitation, and increased humidity and cloud cover. These effects differed by season. For example, during the spring bird migration period, most avian activity occurred before sunrise at twilight hours on clear days with low winds, whereas during fall migration, substantial activity occurred after sunrise, and birds generally were more active at lower temperatures. We report parameter estimates (i.e., constants and coefficients) averaged across models and a relatively simple calculation for safety officers and wildlife managers to predict AAI and the relative risk of bird strike based on time, date, and meteorological values. We validated model predictability and assessed model fit. These analyses will be useful for general inference of avian activity and risk assessment efforts. Further investigation and ongoing data collection will refine these inference models and improve our understanding of factors that influence avian activity, which is necessary to inform management decisions aimed at reducing risk of bird strikes.
Grain Size and Parameter Recovery with TIMSS and the General Diagnostic Model
ERIC Educational Resources Information Center
Skaggs, Gary; Wilkins, Jesse L. M.; Hein, Serge F.
2016-01-01
The purpose of this study was to explore the degree of grain size of the attributes and the sample sizes that can support accurate parameter recovery with the General Diagnostic Model (GDM) for a large-scale international assessment. In this resampling study, bootstrap samples were obtained from the 2003 Grade 8 TIMSS in Mathematics at varying…
Lopez, Michael J; Schuckers, Michael
2017-05-01
Roughly 14% of regular season National Hockey League games since the 2005-06 season have been decided by a shoot-out, and the resulting allocation of points has impacted play-off races each season. But despite interest from fans, players and league officials, there is little in the way of published research on team or individual shoot-out performance. This manuscript attempts to fill that void. We present both generalised linear mixed model and Bayesian hierarchical model frameworks to model shoot-out outcomes, with results suggesting that there are (i) small but statistically significant talent gaps between shooters, (ii) marginal differences in performance among netminders and (iii) few, if any, predictors of player success after accounting for individual talent. We also provide a resampling strategy to highlight a selection bias with respect to shooter assignment, in which coaches choose their most skilled offensive players early in shoot-out rounds and are less likely to select players with poor past performances. Finally, given that per-shot data for shoot-outs do not currently exist in a single location for public use, we provide both our data and source code for other researchers interested in studying shoot-out outcomes.
Resampling probability values for weighted kappa with multiple raters.
Mielke, Paul W; Berry, Kenneth J; Johnston, Janis E
2008-04-01
A new procedure to compute weighted kappa with multiple raters is described. A resampling procedure to compute approximate probability values for weighted kappa with multiple raters is presented. Applications of weighted kappa are illustrated with an example analysis of classifications by three independent raters.
Zhang, Huai-zhu; Lin, Jun; Zhang, Huai-Zhu
2014-06-01
In the present paper, the outlier detection methods for determination of oil yield in oil shale using near-infrared (NIR) diffuse reflection spectroscopy was studied. During the quantitative analysis with near-infrared spectroscopy, environmental change and operator error will both produce outliers. The presence of outliers will affect the overall distribution trend of samples and lead to the decrease in predictive capability. Thus, the detection of outliers are important for the construction of high-quality calibration models. The methods including principal component analysis-Mahalanobis distance (PCA-MD) and resampling by half-means (RHM) were applied to the discrimination and elimination of outliers in this work. The thresholds and confidences for MD and RHM were optimized using the performance of partial least squares (PLS) models constructed after the elimination of outliers, respectively. Compared with the model constructed with the data of full spectrum, the values of RMSEP of the models constructed with the application of PCA-MD with a threshold of a value equal to the sum of average and standard deviation of MD, RHM with the confidence level of 85%, and the combination of PCA-MD and RHM, were reduced by 48.3%, 27.5% and 44.8%, respectively. The predictive ability of the calibration model has been improved effectively.
Spatial Resolution Characterization for QuickBird Image Products 2003-2004 Season
NASA Technical Reports Server (NTRS)
Blonski, Slawomir
2006-01-01
This presentation focuses on spatial resolution characterization for QuickBird panochromatic images in 2003-2004 and presents data measurements and analysis of SSC edge target deployment and edge response extraction and modeling. The results of the characterization are shown as values of the Modulation Transfer Function (MTF) at the Nyquist spatial frequency and as the Relative Edge Response (RER) components. The results show that RER is much less sensitive to accuracy of the curve fitting than the value of MTF at Nyquist frequency. Therefore, the RER/edge response slope is a more robust estimator of the digital image spatial resolution than the MTF. For the QuickBird panochromatic images, the RER is consistently equal to 0.5 for images processed with the Cubic Convolution resampling and to 0.8 for the MTF resampling.
Restoration and reconstruction from overlapping images
NASA Technical Reports Server (NTRS)
Reichenbach, Stephen E.; Kaiser, Daniel J.; Hanson, Andrew L.; Li, Jing
1997-01-01
This paper describes a technique for restoring and reconstructing a scene from overlapping images. In situations where there are multiple, overlapping images of the same scene, it may be desirable to create a single image that most closely approximates the scene, based on all of the data in the available images. For example, successive swaths acquired by NASA's planned Moderate Imaging Spectrometer (MODIS) will overlap, particularly at wide scan angles, creating a severe visual artifact in the output image. Resampling the overlapping swaths to produce a more accurate image on a uniform grid requires restoration and reconstruction. The one-pass restoration and reconstruction technique developed in this paper yields mean-square-optimal resampling, based on a comprehensive end-to-end system model that accounts for image overlap, and subject to user-defined and data-availability constraints on the spatial support of the filter.
Modeling the Impact of Soil Conditions on Global Water Balance
NASA Astrophysics Data System (ADS)
Wang, P. L.; Feddema, J. J.
2016-12-01
The amount of water the soil can hold for plant use, defined as soil water-holding capacity (WHC), has a large influence on the water cycle and climatic variables. Although soil properties vary widely worldwide, many climate modeling applications assume WHC to be spatially invariant. This study explores how a more realistic soil WHC estimate affects the global water balance relative to commonly assumed soil properties. We use a modified Thornthwaite water balance model combined with a newly developed soil WHC and soil thickness data at a 30 arc second resolution. The soil WHC data was obtained by integrating WHCs to a depth of 2 m and modified by the soil thickness data on a grid-by-grid basis, and then resampling to the 0.5 degree climatology data. We observed that down scaling soils data before modifying soil depths greatly increases global soil WHCs. This new dataset is compared to WHC information with a fixed 2-m soil depth, and a constant 150-mm soil WHC. Results indicate higher soil WHC results in increased soil moisture, decreased moisture surplus and deficits, and increased actual evapotranspiration (AE), and vice-versa. However, due to high variability in soil characteristics across climate gradients, this generalization does not hold true for regionally averaged outcomes. Compared to using a constant 150-mm WHC, more realistic soil WHC increases global averaged AE 1%, and decreases deficit 2% and surplus 3%. Most change is observed in areas with pronounced wet and dry seasons; using a constant 2-m soil depth doubles the differences. Regionally, Europe was most affected: AE increases 4%, and the deficit and surplus decrease 20% and 12%. Australia shows that regionally averaged results are not equivocal for moisture surplus and deficit; deficit decreases 0.4%, while surplus decreases 9%. This research highlights the importance of soil condition for climate modeling and how a better representation of soil moisture conditions affects global water balance modeling.
Yang, Yang; DeGruttola, Victor
2016-01-01
Traditional resampling-based tests for homogeneity in covariance matrices across multiple groups resample residuals, that is, data centered by group means. These residuals do not share the same second moments when the null hypothesis is false, which makes them difficult to use in the setting of multiple testing. An alternative approach is to resample standardized residuals, data centered by group sample means and standardized by group sample covariance matrices. This approach, however, has been observed to inflate type I error when sample size is small or data are generated from heavy-tailed distributions. We propose to improve this approach by using robust estimation for the first and second moments. We discuss two statistics: the Bartlett statistic and a statistic based on eigen-decomposition of sample covariance matrices. Both statistics can be expressed in terms of standardized errors under the null hypothesis. These methods are extended to test homogeneity in correlation matrices. Using simulation studies, we demonstrate that the robust resampling approach provides comparable or superior performance, relative to traditional approaches, for single testing and reasonable performance for multiple testing. The proposed methods are applied to data collected in an HIV vaccine trial to investigate possible determinants, including vaccine status, vaccine-induced immune response level and viral genotype, of unusual correlation pattern between HIV viral load and CD4 count in newly infected patients. PMID:22740584
Yang, Yang; DeGruttola, Victor
2012-06-22
Traditional resampling-based tests for homogeneity in covariance matrices across multiple groups resample residuals, that is, data centered by group means. These residuals do not share the same second moments when the null hypothesis is false, which makes them difficult to use in the setting of multiple testing. An alternative approach is to resample standardized residuals, data centered by group sample means and standardized by group sample covariance matrices. This approach, however, has been observed to inflate type I error when sample size is small or data are generated from heavy-tailed distributions. We propose to improve this approach by using robust estimation for the first and second moments. We discuss two statistics: the Bartlett statistic and a statistic based on eigen-decomposition of sample covariance matrices. Both statistics can be expressed in terms of standardized errors under the null hypothesis. These methods are extended to test homogeneity in correlation matrices. Using simulation studies, we demonstrate that the robust resampling approach provides comparable or superior performance, relative to traditional approaches, for single testing and reasonable performance for multiple testing. The proposed methods are applied to data collected in an HIV vaccine trial to investigate possible determinants, including vaccine status, vaccine-induced immune response level and viral genotype, of unusual correlation pattern between HIV viral load and CD4 count in newly infected patients.
Oblinsky, Daniel G; Vanschouwen, Bryan M B; Gordon, Heather L; Rothstein, Stuart M
2009-12-14
Given the principal component analysis (PCA) of a molecular dynamics (MD) conformational trajectory for a model protein, we perform orthogonal Procrustean rotation to "best fit" the PCA squared-loading matrix to that of a target matrix computed for a related but different molecular system. The sum of squared deviations of the elements of the rotated matrix from those of the target, known as the error of fit (EOF), provides a quantitative measure of the dissimilarity between the two conformational samples. To estimate precision of the EOF, we perform bootstrap resampling of the molecular conformations within the trajectories, generating a distribution of EOF values for the system and target. The average EOF per variable is determined and visualized to ascertain where, locally, system and target sample properties differ. We illustrate this approach by analyzing MD trajectories for the wild-type and four selected mutants of the beta1 domain of protein G.
NASA Astrophysics Data System (ADS)
Oblinsky, Daniel G.; VanSchouwen, Bryan M. B.; Gordon, Heather L.; Rothstein, Stuart M.
2009-12-01
Given the principal component analysis (PCA) of a molecular dynamics (MD) conformational trajectory for a model protein, we perform orthogonal Procrustean rotation to "best fit" the PCA squared-loading matrix to that of a target matrix computed for a related but different molecular system. The sum of squared deviations of the elements of the rotated matrix from those of the target, known as the error of fit (EOF), provides a quantitative measure of the dissimilarity between the two conformational samples. To estimate precision of the EOF, we perform bootstrap resampling of the molecular conformations within the trajectories, generating a distribution of EOF values for the system and target. The average EOF per variable is determined and visualized to ascertain where, locally, system and target sample properties differ. We illustrate this approach by analyzing MD trajectories for the wild-type and four selected mutants of the β1 domain of protein G.
ERIC Educational Resources Information Center
Hsieh, Chueh-an; Xu, Xueli; von Davier, Matthias
2010-01-01
This paper presents an application of a jackknifing approach to variance estimation of ability inferences for groups of students, using a multidimensional discrete model for item response data. The data utilized to demonstrate the approach come from the National Assessment of Educational Progress (NAEP). In contrast to the operational approach…
Ter Braak, Cajo J F; Peres-Neto, Pedro; Dray, Stéphane
2017-01-01
Statistical testing of trait-environment association from data is a challenge as there is no common unit of observation: the trait is observed on species, the environment on sites and the mediating abundance on species-site combinations. A number of correlation-based methods, such as the community weighted trait means method (CWM), the fourth-corner correlation method and the multivariate method RLQ, have been proposed to estimate such trait-environment associations. In these methods, valid statistical testing proceeds by performing two separate resampling tests, one site-based and the other species-based and by assessing significance by the largest of the two p -values (the p max test). Recently, regression-based methods using generalized linear models (GLM) have been proposed as a promising alternative with statistical inference via site-based resampling. We investigated the performance of this new approach along with approaches that mimicked the p max test using GLM instead of fourth-corner. By simulation using models with additional random variation in the species response to the environment, the site-based resampling tests using GLM are shown to have severely inflated type I error, of up to 90%, when the nominal level is set as 5%. In addition, predictive modelling of such data using site-based cross-validation very often identified trait-environment interactions that had no predictive value. The problem that we identify is not an "omitted variable bias" problem as it occurs even when the additional random variation is independent of the observed trait and environment data. Instead, it is a problem of ignoring a random effect. In the same simulations, the GLM-based p max test controlled the type I error in all models proposed so far in this context, but still gave slightly inflated error in more complex models that included both missing (but important) traits and missing (but important) environmental variables. For screening the importance of single trait-environment combinations, the fourth-corner test is shown to give almost the same results as the GLM-based tests in far less computing time.
Introduction to Permutation and Resampling-Based Hypothesis Tests
ERIC Educational Resources Information Center
LaFleur, Bonnie J.; Greevy, Robert A.
2009-01-01
A resampling-based method of inference--permutation tests--is often used when distributional assumptions are questionable or unmet. Not only are these methods useful for obvious departures from parametric assumptions (e.g., normality) and small sample sizes, but they are also more robust than their parametric counterparts in the presences of…
Surface smoothing and template partitioning for cranial implant CAD
NASA Astrophysics Data System (ADS)
Min, Kyoung-june; Dean, David
2005-04-01
Employing patient-specific prefabricated implants can be an effective treatment for large cranial defects (i.e., > 25 cm2). We have previously demonstrated the use of Computer Aided Design (CAD) software that starts with the patient"s 3D head CT-scan. A template is accurately matched to the pre-detected skull defect margin. For unilateral cranial defects the template is derived from a left-to-right mirrored skull image. However, two problems arise: (1) slice edge artifacts generated during isosurface polygonalization are inherited by the final implant; and (2) partitioning (i.e., cookie-cutting) the implant surface from the mirrored skull image usually results in curvature discontinuities across the interface between the patient"s defect and the implant. To solve these problems, we introduce a novel space curve-to-surface partitioning algorithm following a ray-casting surface re-sampling and smoothing procedure. Specifically, the ray-cast re-sampling is followed by bilinear interpolation and low-pass filtering. The resulting surface has a highly regular grid-like topological structure of quadrilaterally arranged triangles. Then, we replace the regions to be partitioned with predefined sets of triangular elements thereby cutting the template surface to accurately fit the defect margin at high resolution and without surface curvature discontinuities. Comparisons of the CAD implants for five patients against the manually generated implant that the patient actually received show an average implant-patient gap of 0.45mm for the former and 2.96mm for the latter. Also, average maximum normalized curvature of interfacing surfaces was found to be smoother, 0.043, for the former than the latter, 0.097. This indicates that the CAD implants would provide a significantly better fit.
A resampling procedure for generating conditioned daily weather sequences
Clark, Martyn P.; Gangopadhyay, Subhrendu; Brandon, David; Werner, Kevin; Hay, Lauren E.; Rajagopalan, Balaji; Yates, David
2004-01-01
A method is introduced to generate conditioned daily precipitation and temperature time series at multiple stations. The method resamples data from the historical record “nens” times for the period of interest (nens = number of ensemble members) and reorders the ensemble members to reconstruct the observed spatial (intersite) and temporal correlation statistics. The weather generator model is applied to 2307 stations in the contiguous United States and is shown to reproduce the observed spatial correlation between neighboring stations, the observed correlation between variables (e.g., between precipitation and temperature), and the observed temporal correlation between subsequent days in the generated weather sequence. The weather generator model is extended to produce sequences of weather that are conditioned on climate indices (in this case the Niño 3.4 index). Example illustrations of conditioned weather sequences are provided for a station in Arizona (Petrified Forest, 34.8°N, 109.9°W), where El Niño and La Niña conditions have a strong effect on winter precipitation. The conditioned weather sequences generated using the methods described in this paper are appropriate for use as input to hydrologic models to produce multiseason forecasts of streamflow.
Incorporation of ice sheet models into an Earth system model: Focus on methodology of coupling
NASA Astrophysics Data System (ADS)
Rybak, Oleg; Volodin, Evgeny; Morozova, Polina; Nevecherja, Artiom
2018-03-01
Elaboration of a modern Earth system model (ESM) requires incorporation of ice sheet dynamics. Coupling of an ice sheet model (ICM) to an AOGCM is complicated by essential differences in spatial and temporal scales of cryospheric, atmospheric and oceanic components. To overcome this difficulty, we apply two different approaches for the incorporation of ice sheets into an ESM. Coupling of the Antarctic ice sheet model (AISM) to the AOGCM is accomplished via using procedures of resampling, interpolation and assigning to the AISM grid points annually averaged meanings of air surface temperature and precipitation fields generated by the AOGCM. Surface melting, which takes place mainly on the margins of the Antarctic peninsula and on ice shelves fringing the continent, is currently ignored. AISM returns anomalies of surface topography back to the AOGCM. To couple the Greenland ice sheet model (GrISM) to the AOGCM, we use a simple buffer energy- and water-balance model (EWBM-G) to account for orographically-driven precipitation and other sub-grid AOGCM-generated quantities. The output of the EWBM-G consists of surface mass balance and air surface temperature to force the GrISM, and freshwater run-off to force thermohaline circulation in the oceanic block of the AOGCM. Because of a rather complex coupling procedure of GrIS compared to AIS, the paper mostly focuses on Greenland.
A Stochastic Point Cloud Sampling Method for Multi-Template Protein Comparative Modeling.
Li, Jilong; Cheng, Jianlin
2016-05-10
Generating tertiary structural models for a target protein from the known structure of its homologous template proteins and their pairwise sequence alignment is a key step in protein comparative modeling. Here, we developed a new stochastic point cloud sampling method, called MTMG, for multi-template protein model generation. The method first superposes the backbones of template structures, and the Cα atoms of the superposed templates form a point cloud for each position of a target protein, which are represented by a three-dimensional multivariate normal distribution. MTMG stochastically resamples the positions for Cα atoms of the residues whose positions are uncertain from the distribution, and accepts or rejects new position according to a simulated annealing protocol, which effectively removes atomic clashes commonly encountered in multi-template comparative modeling. We benchmarked MTMG on 1,033 sequence alignments generated for CASP9, CASP10 and CASP11 targets, respectively. Using multiple templates with MTMG improves the GDT-TS score and TM-score of structural models by 2.96-6.37% and 2.42-5.19% on the three datasets over using single templates. MTMG's performance was comparable to Modeller in terms of GDT-TS score, TM-score, and GDT-HA score, while the average RMSD was improved by a new sampling approach. The MTMG software is freely available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/mtmg.html.
A Stochastic Point Cloud Sampling Method for Multi-Template Protein Comparative Modeling
Li, Jilong; Cheng, Jianlin
2016-01-01
Generating tertiary structural models for a target protein from the known structure of its homologous template proteins and their pairwise sequence alignment is a key step in protein comparative modeling. Here, we developed a new stochastic point cloud sampling method, called MTMG, for multi-template protein model generation. The method first superposes the backbones of template structures, and the Cα atoms of the superposed templates form a point cloud for each position of a target protein, which are represented by a three-dimensional multivariate normal distribution. MTMG stochastically resamples the positions for Cα atoms of the residues whose positions are uncertain from the distribution, and accepts or rejects new position according to a simulated annealing protocol, which effectively removes atomic clashes commonly encountered in multi-template comparative modeling. We benchmarked MTMG on 1,033 sequence alignments generated for CASP9, CASP10 and CASP11 targets, respectively. Using multiple templates with MTMG improves the GDT-TS score and TM-score of structural models by 2.96–6.37% and 2.42–5.19% on the three datasets over using single templates. MTMG’s performance was comparable to Modeller in terms of GDT-TS score, TM-score, and GDT-HA score, while the average RMSD was improved by a new sampling approach. The MTMG software is freely available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/mtmg.html. PMID:27161489
Methods to achieve accurate projection of regional and global raster databases
Usery, E.L.; Seong, J.C.; Steinwand, D.R.; Finn, M.P.
2002-01-01
This research aims at building a decision support system (DSS) for selecting an optimum projection considering various factors, such as pixel size, areal extent, number of categories, spatial pattern of categories, resampling methods, and error correction methods. Specifically, this research will investigate three goals theoretically and empirically and, using the already developed empirical base of knowledge with these results, develop an expert system for map projection of raster data for regional and global database modeling. The three theoretical goals are as follows: (1) The development of a dynamic projection that adjusts projection formulas for latitude on the basis of raster cell size to maintain equal-sized cells. (2) The investigation of the relationships between the raster representation and the distortion of features, number of categories, and spatial pattern. (3) The development of an error correction and resampling procedure that is based on error analysis of raster projection.
Measures of precision for dissimilarity-based multivariate analysis of ecological communities
Anderson, Marti J; Santana-Garcon, Julia
2015-01-01
Ecological studies require key decisions regarding the appropriate size and number of sampling units. No methods currently exist to measure precision for multivariate assemblage data when dissimilarity-based analyses are intended to follow. Here, we propose a pseudo multivariate dissimilarity-based standard error (MultSE) as a useful quantity for assessing sample-size adequacy in studies of ecological communities. Based on sums of squared dissimilarities, MultSE measures variability in the position of the centroid in the space of a chosen dissimilarity measure under repeated sampling for a given sample size. We describe a novel double resampling method to quantify uncertainty in MultSE values with increasing sample size. For more complex designs, values of MultSE can be calculated from the pseudo residual mean square of a permanova model, with the double resampling done within appropriate cells in the design. R code functions for implementing these techniques, along with ecological examples, are provided. PMID:25438826
Anomalous change detection in imagery
Theiler, James P [Los Alamos, NM; Perkins, Simon J [Santa Fe, NM
2011-05-31
A distribution-based anomaly detection platform is described that identifies a non-flat background that is specified in terms of the distribution of the data. A resampling approach is also disclosed employing scrambled resampling of the original data with one class specified by the data and the other by the explicit distribution, and solving using binary classification.
De-Dopplerization of Acoustic Measurements
2017-08-10
band energy obtained from fractional octave band digital filters generates a de-Dopplerized spectrum without complex resampling algorithms. An...energy obtained from fractional octave band digital filters generates a de-Dopplerized spectrum without complex resampling algorithms. An equation...fractional octave representation and smearing that occurs within the spectrum11, digital filtering techniques were not considered by these earlier
Thematic mapper design parameter investigation
NASA Technical Reports Server (NTRS)
Colby, C. P., Jr.; Wheeler, S. G.
1978-01-01
This study simulated the multispectral data sets to be expected from three different Thematic Mapper configurations, and the ground processing of these data sets by three different resampling techniques. The simulated data sets were then evaluated by processing them for multispectral classification, and the Thematic Mapper configuration, and resampling technique which provided the best classification accuracy were identified.
permGPU: Using graphics processing units in RNA microarray association studies.
Shterev, Ivo D; Jung, Sin-Ho; George, Stephen L; Owzar, Kouros
2010-06-16
Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are computationally intensive, scalable approaches that can take advantage of multi-core processor systems need to be developed. We have developed a CUDA based implementation, permGPU, that employs graphics processing units in microarray association studies. We illustrate the performance and applicability of permGPU within the context of permutation resampling for a number of test statistics. An extensive simulation study demonstrates a dramatic increase in performance when using permGPU on an NVIDIA GTX 280 card compared to an optimized C/C++ solution running on a conventional Linux server. permGPU is available as an open-source stand-alone application and as an extension package for the R statistical environment. It provides a dramatic increase in performance for permutation resampling analysis in the context of microarray association studies. The current version offers six test statistics for carrying out permutation resampling analyses for binary, quantitative and censored time-to-event traits.
Explanation of Two Anomalous Results in Statistical Mediation Analysis
ERIC Educational Resources Information Center
Fritz, Matthew S.; Taylor, Aaron B.; MacKinnon, David P.
2012-01-01
Previous studies of different methods of testing mediation models have consistently found two anomalous results. The first result is elevated Type I error rates for the bias-corrected and accelerated bias-corrected bootstrap tests not found in nonresampling tests or in resampling tests that did not include a bias correction. This is of special…
From climate-change spaghetti to climate-change distributions for 21st Century California
Dettinger, M.D.
2005-01-01
The uncertainties associated with climate-change projections for California are unlikely to disappear any time soon, and yet important long-term decisions will be needed to accommodate those potential changes. Projection uncertainties have typically been addressed by analysis of a few scenarios, chosen based on availability or to capture the extreme cases among available projections. However, by focusing on more common projections rather than the most extreme projections (using a new resampling method), new insights into current projections emerge: (1) uncertainties associated with future greenhouse-gas emissions are comparable with the differences among climate models, so that neither source of uncertainties should be neglected or underrepresented; (2) twenty-first century temperature projections spread more, overall, than do precipitation scenarios; (3) projections of extremely wet futures for California are true outliers among current projections; and (4) current projections that are warmest tend, overall, to yield a moderately drier California, while the cooler projections yield a somewhat wetter future. The resampling approach applied in this paper also provides a natural opportunity to objectively incorporate measures of model skill and the likelihoods of various emission scenarios into future assessments.
Active surface model improvement by energy function optimization for 3D segmentation.
Azimifar, Zohreh; Mohaddesi, Mahsa
2015-04-01
This paper proposes an optimized and efficient active surface model by improving the energy functions, searching method, neighborhood definition and resampling criterion. Extracting an accurate surface of the desired object from a number of 3D images using active surface and deformable models plays an important role in computer vision especially medical image processing. Different powerful segmentation algorithms have been suggested to address the limitations associated with the model initialization, poor convergence to surface concavities and slow convergence rate. This paper proposes a method to improve one of the strongest and recent segmentation algorithms, namely the Decoupled Active Surface (DAS) method. We consider a gradient of wavelet edge extracted image and local phase coherence as external energy to extract more information from images and we use curvature integral as internal energy to focus on high curvature region extraction. Similarly, we use resampling of points and a line search for point selection to improve the accuracy of the algorithm. We further employ an estimation of the desired object as an initialization for the active surface model. A number of tests and experiments have been done and the results show the improvements with regards to the extracted surface accuracy and computational time of the presented algorithm compared with the best and recent active surface models. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Beginner's Guide to the Bootstrap Method of Resampling.
ERIC Educational Resources Information Center
Lane, Ginny G.
The bootstrap method of resampling can be useful in estimating the replicability of study results. The bootstrap procedure creates a mock population from a given sample of data from which multiple samples are then drawn. The method extends the usefulness of the jackknife procedure as it allows for computation of a given statistic across a maximal…
2017-06-01
maintenance times from the fleet are randomly resampled when running the model to enhance model realism. The use of a simulation model to represent the...helicopter regiment. 2. Attack Helicopter UH TIGER The EC665, or Airbus Helicopter TIGER, (Figure 3) is a four- bladed , twin- engine multi-role attack...migrated into the automated management system SAP Standard Product Family (SASPF), and the usage clock starts to run with the amount of the current
NASA Astrophysics Data System (ADS)
Saidaliyeva, Zarina; Davenport, Ian; Nobakht, Mohamad; White, Kevin; Shahgedanova, Maria
2017-04-01
Kazakhstan is a major producer of grain. Large scale grain production dominates in the north, making Kazakhstan one of the largest exporters of grain in the world. Agricultural production accounts for 9% of the national GDP, providing 25% of national employment. The south relies on grain production from household farms for subsistence, and has low resilience, so is vulnerable to reductions in output. Yields in the south depend on snowmelt and glacier runoff. The major limit to production is water supply, which is affected by glacier retreat and frequent droughts. Climate change is likely to impact all climate drivers negatively, leading to a decrease in crop yield, which will impact Kazakhstan and countries dependent on importing its produce. This work makes initial steps in modelling the impact of climate change on crop yield, by identifying the links between snowfall, soil moisture and agricultural productivity. Several remotely-sensed data sources are being used. The availability of snowmelt water over the period 2010-2014 is estimated by extracting the annual maximum snow water equivalent (SWE) from the Globsnow dataset, which assimilates satellite microwave observations with field observations to produce a spatial map. Soil moisture over the period 2010-2016 is provided by the ESA Soil Moisture and Ocean Salinity (SMOS) mission. Vegetation density is approximated by the Normalised Difference Vegetation Index (NDVI) produced from NASA's MODIS instruments. Statistical information on crop yields is provided by the Ministry of National Economy of the Republic of Kazakhstan Committee on Statistics. Demonstrating the link between snowmelt yield and agricultural productivity depends on showing the impact of snow mass during winter on remotely-sensed soil moisture, the link between soil moisture and vegetation density, and finally the link between vegetation density and crop yield. Soil moisture maps were extracted from SMOS observations, and resampled onto a 40km x 40km grid, and analysed to produce monthly averages. The monthly maximum snow water equivalent estimates for March were resampled onto the same grid, to approximate the total snow contributing to snowmelt. The MODIS MOD13A2 1km 16-day NDVI product was resampled onto the same 40km grid, and aggregated into 32-day averages. Annual crop yield is available in terms of kg of yield per hectare for each region in Kazakhstan between 2004 and 2015. To show the connection between the snowmelt and soil moisture, the cells within the snow and soil moisture grids were compared to calculate correlation. Data were aggregated per region. Regions in northern Kazakhstan showed the strongest correlations, because more of the soil water supply is derived from snowmelt than rain, and the southern regions showed poor correlation because of the greater influence of rainfall and irrigation. Correlations between soil moisture and vegetation density, and crop yield are ongoing, and results will be presented. It is envisaged that this research will assist the Kazakh farming community, providing real-time soil moisture data from SMOS.
NASA Technical Reports Server (NTRS)
Tom, C.; Miller, L. D.; Christenson, J. W.
1978-01-01
A landscape model was constructed with 34 land-use, physiographic, socioeconomic, and transportation maps. A simple Markov land-use trend model was constructed from observed rates of change and nonchange from photointerpreted 1963 and 1970 airphotos. Seven multivariate land-use projection models predicting 1970 spatial land-use changes achieved accuracies from 42 to 57 percent. A final modeling strategy was designed, which combines both Markov trend and multivariate spatial projection processes. Landsat-1 image preprocessing included geometric rectification/resampling, spectral-band, and band/insolation ratioing operations. A new, systematic grid-sampled point training-set approach proved to be useful when tested on the four orginal MSS bands, ten image bands and ratios, and all 48 image and map variables (less land use). Ten variable accuracy was raised over 15 percentage points from 38.4 to 53.9 percent, with the use of the 31 ancillary variables. A land-use classification map was produced with an optimal ten-channel subset of four image bands and six ancillary map variables. Point-by-point verification of 331,776 points against a 1972/1973 U.S. Geological Survey (UGSG) land-use map prepared with airphotos and the same classification scheme showed average first-, second-, and third-order accuracies of 76.3, 58.4, and 33.0 percent, respectively.
NASA Astrophysics Data System (ADS)
Collins, Jarrod A.; Heiselman, Jon S.; Weis, Jared A.; Clements, Logan W.; Simpson, Amber L.; Jarnagin, William R.; Miga, Michael I.
2017-03-01
In image-guided liver surgery (IGLS), sparse representations of the anterior organ surface may be collected intraoperatively to drive image-to-physical space registration. Soft tissue deformation represents a significant source of error for IGLS techniques. This work investigates the impact of surface data quality on current surface based IGLS registration methods. In this work, we characterize the robustness of our IGLS registration methods to noise in organ surface digitization. We study this within a novel human-to-phantom data framework that allows a rapid evaluation of clinically realistic data and noise patterns on a fully characterized hepatic deformation phantom. Additionally, we implement a surface data resampling strategy that is designed to decrease the impact of differences in surface acquisition. For this analysis, n=5 cases of clinical intraoperative data consisting of organ surface and salient feature digitizations from open liver resection were collected and analyzed within our human-to-phantom validation framework. As expected, results indicate that increasing levels of noise in surface acquisition cause registration fidelity to deteriorate. With respect to rigid registration using the raw and resampled data at clinically realistic levels of noise (i.e. a magnitude of 1.5 mm), resampling improved TRE by 21%. In terms of nonrigid registration, registrations using resampled data outperformed the raw data result by 14% at clinically realistic levels and were less susceptible to noise across the range of noise investigated. These results demonstrate the types of analyses our novel human-to-phantom validation framework can provide and indicate the considerable benefits of resampling strategies.
Surface Fitting for Quasi Scattered Data from Coordinate Measuring Systems.
Mao, Qing; Liu, Shugui; Wang, Sen; Ma, Xinhui
2018-01-13
Non-uniform rational B-spline (NURBS) surface fitting from data points is wildly used in the fields of computer aided design (CAD), medical imaging, cultural relic representation and object-shape detection. Usually, the measured data acquired from coordinate measuring systems is neither gridded nor completely scattered. The distribution of this kind of data is scattered in physical space, but the data points are stored in a way consistent with the order of measurement, so it is named quasi scattered data in this paper. Therefore they can be organized into rows easily but the number of points in each row is random. In order to overcome the difficulty of surface fitting from this kind of data, a new method based on resampling is proposed. It consists of three major steps: (1) NURBS curve fitting for each row, (2) resampling on the fitted curve and (3) surface fitting from the resampled data. Iterative projection optimization scheme is applied in the first and third step to yield advisable parameterization and reduce the time cost of projection. A resampling approach based on parameters, local peaks and contour curvature is proposed to overcome the problems of nodes redundancy and high time consumption in the fitting of this kind of scattered data. Numerical experiments are conducted with both simulation and practical data, and the results show that the proposed method is fast, effective and robust. What's more, by analyzing the fitting results acquired form data with different degrees of scatterness it can be demonstrated that the error introduced by resampling is negligible and therefore it is feasible.
Accelerated spike resampling for accurate multiple testing controls.
Harrison, Matthew T
2013-02-01
Controlling for multiple hypothesis tests using standard spike resampling techniques often requires prohibitive amounts of computation. Importance sampling techniques can be used to accelerate the computation. The general theory is presented, along with specific examples for testing differences across conditions using permutation tests and for testing pairwise synchrony and precise lagged-correlation between many simultaneously recorded spike trains using interval jitter.
Exact and Monte carlo resampling procedures for the Wilcoxon-Mann-Whitney and Kruskal-Wallis tests.
Berry, K J; Mielke, P W
2000-12-01
Exact and Monte Carlo resampling FORTRAN programs are described for the Wilcoxon-Mann-Whitney rank sum test and the Kruskal-Wallis one-way analysis of variance for ranks test. The program algorithms compensate for tied values and do not depend on asymptotic approximations for probability values, unlike most algorithms contained in PC-based statistical software packages.
Pesticides in Wyoming Groundwater, 2008-10
Eddy-Miller, Cheryl A.; Bartos, Timothy T.; Taylor, Michelle L.
2013-01-01
Groundwater samples were collected from 296 wells during 1995-2006 as part of a baseline study of pesticides in Wyoming groundwater. In 2009, a previous report summarized the results of the baseline sampling and the statistical evaluation of the occurrence of pesticides in relation to selected natural and anthropogenic (human-related) characteristics. During 2008-10, the U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture, resampled a subset (52) of the 296 wells sampled during 1995-2006 baseline study in order to compare detected compounds and respective concentrations between the two sampling periods and to evaluate the detections of new compounds. The 52 wells were distributed similarly to sites used in the 1995-2006 baseline study with respect to geographic area and land use within the geographic area of interest. Because of the use of different types of reporting levels and variability in reporting-level values during both the 1995-2006 baseline study and the 2008-10 resampling study, analytical results received from the laboratory were recensored. Two levels of recensoring were used to compare pesticides—a compound-specific assessment level (CSAL) that differed by compound and a common assessment level (CAL) of 0.07 microgram per liter. The recensoring techniques and values used for both studies, with the exception of the pesticide 2,4-D methyl ester, were the same. Twenty-eight different pesticides were detected in samples from the 52 wells during the 2008-10 resampling study. Pesticide concentrations were compared with several U.S. Environmental Protection Agency drinking-water standards or health advisories for finished (treated) water established under the Safe Drinking Water Act. All detected pesticides were measured at concentrations smaller than U.S. Environmental Protection Agency drinking-water standards or health advisories where applicable (many pesticides did not have standards or advisories). One or more pesticides were detected at concentrations greater than the CAL in water from 16 of 52 wells sampled (about 31 percent) during the resampling study. Detected pesticides were classified into one of six types: herbicides, herbicide degradates, insecticides, insecticide degradates, fungicides, or fungicide degradates. At least 95 percent of detected pesticides were classified as herbicides or herbicide degradates. The number of different pesticides detected in samples from the 52 wells was similar between the 1995-2006 baseline study (30 different pesticides) and 2008-2010 resampling study (28 different pesticides). Thirteen pesticides were detected during both studies. The change in the number of pesticides detected (without regard to which pesticide was detected) in groundwater samples from each of the 52 wells was evaluated and the number of pesticides detected in groundwater did not change for most of the wells (32). Of those that did have a difference between the two studies, 17 wells had more pesticide detections in groundwater during the 1995-2006 baseline study, whereas only 3 wells had more detections during the 2008-2010 resampling study. The difference in pesticide concentrations in groundwater samples from each of the 52 wells was determined. Few changes in concentration between the 1995-2006 baseline study and the 2008-2010 resampling study were seen for most detected pesticides. Seven pesticides had a greater concentration detected in the groundwater from the same well during the baseline sampling compared to the resampling study. Concentrations of prometon, which was detected in 17 wells, were greater in the baseline study sample compared to the resampling study sample from the same well 100 percent of the time. The change in the number of pesticides detected (without regard to which pesticide was detected) in groundwater samples from each of the 52 wells with respect to land use and geographic area was calculated. All wells with land use classified as agricultural had the same or a smaller number of pesticides detected in the resampling study compared to the baseline study. All wells in the Bighorn Basin geographic area also had the same or a smaller number of pesticides detected in the resampling study compared to the baseline study.
Experimental study of digital image processing techniques for LANDSAT data
NASA Technical Reports Server (NTRS)
Rifman, S. S. (Principal Investigator); Allendoerfer, W. B.; Caron, R. H.; Pemberton, L. J.; Mckinnon, D. M.; Polanski, G.; Simon, K. W.
1976-01-01
The author has identified the following significant results. Results are reported for: (1) subscene registration, (2) full scene rectification and registration, (3) resampling techniques, (4) and ground control point (GCP) extraction. Subscenes (354 pixels x 234 lines) were registered to approximately 1/4 pixel accuracy and evaluated by change detection imagery for three cases: (1) bulk data registration, (2) precision correction of a reference subscene using GCP data, and (3) independently precision processed subscenes. Full scene rectification and registration results were evaluated by using a correlation technique to measure registration errors of 0.3 pixel rms thoughout the full scene. Resampling evaluations of nearest neighbor and TRW cubic convolution processed data included change detection imagery and feature classification. Resampled data were also evaluated for an MSS scene containing specular solar reflections.
Dunham, Kylee; Grand, James B.
2016-01-01
We examined the effects of complexity and priors on the accuracy of models used to estimate ecological and observational processes, and to make predictions regarding population size and structure. State-space models are useful for estimating complex, unobservable population processes and making predictions about future populations based on limited data. To better understand the utility of state space models in evaluating population dynamics, we used them in a Bayesian framework and compared the accuracy of models with differing complexity, with and without informative priors using sequential importance sampling/resampling (SISR). Count data were simulated for 25 years using known parameters and observation process for each model. We used kernel smoothing to reduce the effect of particle depletion, which is common when estimating both states and parameters with SISR. Models using informative priors estimated parameter values and population size with greater accuracy than their non-informative counterparts. While the estimates of population size and trend did not suffer greatly in models using non-informative priors, the algorithm was unable to accurately estimate demographic parameters. This model framework provides reasonable estimates of population size when little to no information is available; however, when information on some vital rates is available, SISR can be used to obtain more precise estimates of population size and process. Incorporating model complexity such as that required by structured populations with stage-specific vital rates affects precision and accuracy when estimating latent population variables and predicting population dynamics. These results are important to consider when designing monitoring programs and conservation efforts requiring management of specific population segments.
Estimating parasitic sea lamprey abundance in Lake Huron from heterogenous data sources
Young, Robert J.; Jones, Michael L.; Bence, James R.; McDonald, Rodney B.; Mullett, Katherine M.; Bergstedt, Roger A.
2003-01-01
The Great Lakes Fishery Commission uses time series of transformer, parasitic, and spawning population estimates to evaluate the effectiveness of its sea lamprey (Petromyzon marinus) control program. This study used an inverse variance weighting method to integrate Lake Huron sea lamprey population estimates derived from two estimation procedures: 1) prediction of the lake-wide spawning population from a regression model based on stream size and, 2) whole-lake mark and recapture estimates. In addition, we used a re-sampling procedure to evaluate the effect of trading off sampling effort between the regression and mark-recapture models. Population estimates derived from the regression model ranged from 132,000 to 377,000 while mark-recapture estimates of marked recently metamorphosed juveniles and parasitic sea lampreys ranged from 536,000 to 634,000 and 484,000 to 1,608,000, respectively. The precision of the estimates varied greatly among estimation procedures and years. The integrated estimate of the mark-recapture and spawner regression procedures ranged from 252,000 to 702,000 transformers. The re-sampling procedure indicated that the regression model is more sensitive to reduction in sampling effort than the mark-recapture model. Reliance on either the regression or mark-recapture model alone could produce misleading estimates of abundance of sea lampreys and the effect of the control program on sea lamprey abundance. These analyses indicate that the precision of the lakewide population estimate can be maximized by re-allocating sampling effort from marking sea lampreys to trapping additional streams.
NASA Astrophysics Data System (ADS)
Fan, Y. R.; Huang, G. H.; Baetz, B. W.; Li, Y. P.; Huang, K.
2017-06-01
In this study, a copula-based particle filter (CopPF) approach was developed for sequential hydrological data assimilation by considering parameter correlation structures. In CopPF, multivariate copulas are proposed to reflect parameter interdependence before the resampling procedure with new particles then being sampled from the obtained copulas. Such a process can overcome both particle degeneration and sample impoverishment. The applicability of CopPF is illustrated with three case studies using a two-parameter simplified model and two conceptual hydrologic models. The results for the simplified model indicate that model parameters are highly correlated in the data assimilation process, suggesting a demand for full description of their dependence structure. Synthetic experiments on hydrologic data assimilation indicate that CopPF can rejuvenate particle evolution in large spaces and thus achieve good performances with low sample size scenarios. The applicability of CopPF is further illustrated through two real-case studies. It is shown that, compared with traditional particle filter (PF) and particle Markov chain Monte Carlo (PMCMC) approaches, the proposed method can provide more accurate results for both deterministic and probabilistic prediction with a sample size of 100. Furthermore, the sample size would not significantly influence the performance of CopPF. Also, the copula resampling approach dominates parameter evolution in CopPF, with more than 50% of particles sampled by copulas in most sample size scenarios.
Feder, Paul I; Ma, Zhenxu J; Bull, Richard J; Teuschler, Linda K; Rice, Glenn
2009-01-01
In chemical mixtures risk assessment, the use of dose-response data developed for one mixture to estimate risk posed by a second mixture depends on whether the two mixtures are sufficiently similar. While evaluations of similarity may be made using qualitative judgments, this article uses nonparametric statistical methods based on the "bootstrap" resampling technique to address the question of similarity among mixtures of chemical disinfectant by-products (DBP) in drinking water. The bootstrap resampling technique is a general-purpose, computer-intensive approach to statistical inference that substitutes empirical sampling for theoretically based parametric mathematical modeling. Nonparametric, bootstrap-based inference involves fewer assumptions than parametric normal theory based inference. The bootstrap procedure is appropriate, at least in an asymptotic sense, whether or not the parametric, distributional assumptions hold, even approximately. The statistical analysis procedures in this article are initially illustrated with data from 5 water treatment plants (Schenck et al., 2009), and then extended using data developed from a study of 35 drinking-water utilities (U.S. EPA/AMWA, 1989), which permits inclusion of a greater number of water constituents and increased structure in the statistical models.
Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A; Kagemann, Larry; Schuman, Joel S
2016-01-01
Developing a novel image enhancement method so that nonframe-averaged optical coherence tomography (OCT) images become comparable to active eye-tracking frame-averaged OCT images. Twenty-one eyes of 21 healthy volunteers were scanned with noneye-tracking nonframe-averaged OCT device and active eye-tracking frame-averaged OCT device. Virtual averaging was applied to nonframe-averaged images with voxel resampling and adding amplitude deviation with 15-time repetitions. Signal-to-noise (SNR), contrast-to-noise ratios (CNR), and the distance between the end of visible nasal retinal nerve fiber layer (RNFL) and the foveola were assessed to evaluate the image enhancement effect and retinal layer visibility. Retinal thicknesses before and after processing were also measured. All virtual-averaged nonframe-averaged images showed notable improvement and clear resemblance to active eye-tracking frame-averaged images. Signal-to-noise and CNR were significantly improved (SNR: 30.5 vs. 47.6 dB, CNR: 4.4 vs. 6.4 dB, original versus processed, P < 0.0001, paired t -test). The distance between the end of visible nasal RNFL and the foveola was significantly different before (681.4 vs. 446.5 μm, Cirrus versus Spectralis, P < 0.0001) but not after processing (442.9 vs. 446.5 μm, P = 0.76). Sectoral macular total retinal and circumpapillary RNFL thicknesses showed systematic differences between Cirrus and Spectralis that became not significant after processing. The virtual averaging method successfully improved nontracking nonframe-averaged OCT image quality and made the images comparable to active eye-tracking frame-averaged OCT images. Virtual averaging may enable detailed retinal structure studies on images acquired using a mixture of nonframe-averaged and frame-averaged OCT devices without concerning about systematic differences in both qualitative and quantitative aspects.
Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A.; Kagemann, Larry; Schuman, Joel S.
2016-01-01
Purpose Developing a novel image enhancement method so that nonframe-averaged optical coherence tomography (OCT) images become comparable to active eye-tracking frame-averaged OCT images. Methods Twenty-one eyes of 21 healthy volunteers were scanned with noneye-tracking nonframe-averaged OCT device and active eye-tracking frame-averaged OCT device. Virtual averaging was applied to nonframe-averaged images with voxel resampling and adding amplitude deviation with 15-time repetitions. Signal-to-noise (SNR), contrast-to-noise ratios (CNR), and the distance between the end of visible nasal retinal nerve fiber layer (RNFL) and the foveola were assessed to evaluate the image enhancement effect and retinal layer visibility. Retinal thicknesses before and after processing were also measured. Results All virtual-averaged nonframe-averaged images showed notable improvement and clear resemblance to active eye-tracking frame-averaged images. Signal-to-noise and CNR were significantly improved (SNR: 30.5 vs. 47.6 dB, CNR: 4.4 vs. 6.4 dB, original versus processed, P < 0.0001, paired t-test). The distance between the end of visible nasal RNFL and the foveola was significantly different before (681.4 vs. 446.5 μm, Cirrus versus Spectralis, P < 0.0001) but not after processing (442.9 vs. 446.5 μm, P = 0.76). Sectoral macular total retinal and circumpapillary RNFL thicknesses showed systematic differences between Cirrus and Spectralis that became not significant after processing. Conclusion The virtual averaging method successfully improved nontracking nonframe-averaged OCT image quality and made the images comparable to active eye-tracking frame-averaged OCT images. Translational Relevance Virtual averaging may enable detailed retinal structure studies on images acquired using a mixture of nonframe-averaged and frame-averaged OCT devices without concerning about systematic differences in both qualitative and quantitative aspects. PMID:26835180
Anisotropic scene geometry resampling with occlusion filling for 3DTV applications
NASA Astrophysics Data System (ADS)
Kim, Jangheon; Sikora, Thomas
2006-02-01
Image and video-based rendering technologies are receiving growing attention due to their photo-realistic rendering capability in free-viewpoint. However, two major limitations are ghosting and blurring due to their sampling-based mechanism. The scene geometry which supports to select accurate sampling positions is proposed using global method (i.e. approximate depth plane) and local method (i.e. disparity estimation). This paper focuses on the local method since it can yield more accurate rendering quality without large number of cameras. The local scene geometry has two difficulties which are the geometrical density and the uncovered area including hidden information. They are the serious drawback to reconstruct an arbitrary viewpoint without aliasing artifacts. To solve the problems, we propose anisotropic diffusive resampling method based on tensor theory. Isotropic low-pass filtering accomplishes anti-aliasing in scene geometry and anisotropic diffusion prevents filtering from blurring the visual structures. Apertures in coarse samples are estimated following diffusion on the pre-filtered space, the nonlinear weighting of gradient directions suppresses the amount of diffusion. Aliasing artifacts from low density are efficiently removed by isotropic filtering and the edge blurring can be solved by the anisotropic method at one process. Due to difference size of sampling gap, the resampling condition is defined considering causality between filter-scale and edge. Using partial differential equation (PDE) employing Gaussian scale-space, we iteratively achieve the coarse-to-fine resampling. In a large scale, apertures and uncovered holes can be overcoming because only strong and meaningful boundaries are selected on the resolution. The coarse-level resampling with a large scale is iteratively refined to get detail scene structure. Simulation results show the marked improvements of rendering quality.
NASA Astrophysics Data System (ADS)
Tweedie, C. E.; Ebert-May, D.; Hollister, R. D.; Johnson, D. R.; Lara, M. J.; Villarreal, S.; Spasojevic, M.; Webber, P.
2010-12-01
The International Polar Year-Back to the Future (IPY-BTF) is an endorsed International Polar Year project (IPY project #214). The overarching goal of this program is to determine how key structural and functional characteristics of high latitude/altitude terrestrial ecosystems have changed over the past 25 or more years and assess if such trajectories of change are likely to continue in the future. By rescuing data, revisiting, re-sampling historic research sites and assessing environmental change over time, we aim to provide greater understanding of how tundra is changing and what the possible drivers of these changes are. Resampling of sites established by Patrick J. Webber between 1964 and 1975 in northern Baffin Island, Northern Alaska and in the Rocky Mountains form a key contribution to the BTF project. Here we report on resampling efforts at each of these locations and initial results of a synthesis effort that finds similarities and differences in change between sites. Results suggest that although shifts in plant community composition are detectable at each location, the magnitude and direction of change differ among locations. Vegetation shifts along soil moisture gradients is apparent at most of the sites resampled. Interestingly, however, wet communities seem to have changed more than dry communities in the Arctic locations, while plant communities at the alpine site appear to be becoming more distinct regardless of soil moisture status. Ecosystem function studies performed in conjunction with plant community change suggest that there has been an increase in plant productivity at most sites resampled, especially in wet and mesic land cover types.
Measures of precision for dissimilarity-based multivariate analysis of ecological communities.
Anderson, Marti J; Santana-Garcon, Julia
2015-01-01
Ecological studies require key decisions regarding the appropriate size and number of sampling units. No methods currently exist to measure precision for multivariate assemblage data when dissimilarity-based analyses are intended to follow. Here, we propose a pseudo multivariate dissimilarity-based standard error (MultSE) as a useful quantity for assessing sample-size adequacy in studies of ecological communities. Based on sums of squared dissimilarities, MultSE measures variability in the position of the centroid in the space of a chosen dissimilarity measure under repeated sampling for a given sample size. We describe a novel double resampling method to quantify uncertainty in MultSE values with increasing sample size. For more complex designs, values of MultSE can be calculated from the pseudo residual mean square of a permanova model, with the double resampling done within appropriate cells in the design. R code functions for implementing these techniques, along with ecological examples, are provided. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
Datamining approaches for modeling tumor control probability.
Naqa, Issam El; Deasy, Joseph O; Mu, Yi; Huang, Ellen; Hope, Andrew J; Lindsay, Patricia E; Apte, Aditya; Alaly, James; Bradley, Jeffrey D
2010-11-01
Tumor control probability (TCP) to radiotherapy is determined by complex interactions between tumor biology, tumor microenvironment, radiation dosimetry, and patient-related variables. The complexity of these heterogeneous variable interactions constitutes a challenge for building predictive models for routine clinical practice. We describe a datamining framework that can unravel the higher order relationships among dosimetric dose-volume prognostic variables, interrogate various radiobiological processes, and generalize to unseen data before when applied prospectively. Several datamining approaches are discussed that include dose-volume metrics, equivalent uniform dose, mechanistic Poisson model, and model building methods using statistical regression and machine learning techniques. Institutional datasets of non-small cell lung cancer (NSCLC) patients are used to demonstrate these methods. The performance of the different methods was evaluated using bivariate Spearman rank correlations (rs). Over-fitting was controlled via resampling methods. Using a dataset of 56 patients with primary NCSLC tumors and 23 candidate variables, we estimated GTV volume and V75 to be the best model parameters for predicting TCP using statistical resampling and a logistic model. Using these variables, the support vector machine (SVM) kernel method provided superior performance for TCP prediction with an rs=0.68 on leave-one-out testing compared to logistic regression (rs=0.4), Poisson-based TCP (rs=0.33), and cell kill equivalent uniform dose model (rs=0.17). The prediction of treatment response can be improved by utilizing datamining approaches, which are able to unravel important non-linear complex interactions among model variables and have the capacity to predict on unseen data for prospective clinical applications.
Delorme, Arnaud; Makeig, Scott
2004-03-15
We have developed a toolbox and graphic user interface, EEGLAB, running under the crossplatform MATLAB environment (The Mathworks, Inc.) for processing collections of single-trial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), independent component analysis (ICA) and time/frequency decompositions including channel and component cross-coherence supported by bootstrap statistical methods based on data resampling. EEGLAB functions are organized into three layers. Top-layer functions allow users to interact with the data through the graphic interface without needing to use MATLAB syntax. Menu options allow users to tune the behavior of EEGLAB to available memory. Middle-layer functions allow users to customize data processing using command history and interactive 'pop' functions. Experienced MATLAB users can use EEGLAB data structures and stand-alone signal processing functions to write custom and/or batch analysis scripts. Extensive function help and tutorial information are included. A 'plug-in' facility allows easy incorporation of new EEG modules into the main menu. EEGLAB is freely available (http://www.sccn.ucsd.edu/eeglab/) under the GNU public license for noncommercial use and open source development, together with sample data, user tutorial and extensive documentation.
Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.
Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca
2015-08-12
Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights.
Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping
Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca
2015-01-01
Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights. PMID:26274960
Narayan, Manjari; Allen, Genevera I.
2016-01-01
Many complex brain disorders, such as autism spectrum disorders, exhibit a wide range of symptoms and disability. To understand how brain communication is impaired in such conditions, functional connectivity studies seek to understand individual differences in brain network structure in terms of covariates that measure symptom severity. In practice, however, functional connectivity is not observed but estimated from complex and noisy neural activity measurements. Imperfect subject network estimates can compromise subsequent efforts to detect covariate effects on network structure. We address this problem in the case of Gaussian graphical models of functional connectivity, by proposing novel two-level models that treat both subject level networks and population level covariate effects as unknown parameters. To account for imperfectly estimated subject level networks when fitting these models, we propose two related approaches—R2 based on resampling and random effects test statistics, and R3 that additionally employs random adaptive penalization. Simulation studies using realistic graph structures reveal that R2 and R3 have superior statistical power to detect covariate effects compared to existing approaches, particularly when the number of within subject observations is comparable to the size of subject networks. Using our novel models and methods to study parts of the ABIDE dataset, we find evidence of hypoconnectivity associated with symptom severity in autism spectrum disorders, in frontoparietal and limbic systems as well as in anterior and posterior cingulate cortices. PMID:27147940
Kokaly, Raymond F.; Couvillion, Brady; Holloway, JoAnn M.; Roberts, Dar A.; Ustin, Susan L.; Peterson, Seth H.; Khanna, Shruti; Piazza, Sarai C.
2013-01-01
We applied a spectroscopic analysis to Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) data collected from low and medium altitudes during and after the Deepwater Horizon oil spill to delineate the distribution of oil-damaged canopies in the marshes of Barataria Bay, Louisiana. Spectral feature analysis compared the AVIRIS data to reference spectra of oiled marsh by using absorption features centered near 1.7 and 2.3 μm, which arise from CH bonds in oil. AVIRIS-derived maps of oiled shorelines from the individual dates of July 31, September 14, and October 4, 2010, were 89.3%, 89.8%, and 90.6% accurate, respectively. A composite map at 3.5 m grid spacing, accumulated from the three dates, was 93.4% accurate in detecting oiled shorelines. The composite map had 100% accuracy for detecting damaged plant canopy in oiled areas that extended more than 1.2 m into the marsh. Spatial resampling of the AVIRIS data to 30 m reduced the accuracy to 73.6% overall. However, detection accuracy remained high for oiled canopies that extended more than 4 m into the marsh (23 of 28 field reference points with oil were detected). Spectral resampling of the 3.5 m AVIRIS data to Landsat Enhanced Thematic Mapper (ETM) spectral response greatly reduced the detection of oil spectral signatures. With spatial resampling of simulated Landsat ETM data to 30 m, oil signatures were not detected. Overall, ~ 40 km of coastline, marsh comprised mainly of Spartina alterniflora and Juncus roemerianus, were found to be oiled in narrow zones at the shorelines. Zones of oiled canopies reached on average 11 m into the marsh, with a maximum reach of 21 m. The field and airborne data showed that, in many areas, weathered oil persisted in the marsh from the first field survey, July 10, to the latest airborne survey, October 4, 2010. The results demonstrate the applicability of high spatial resolution imaging spectrometer data to identifying contaminants in the environment for use in evaluating ecosystem disturbance and response.
Global evaluation of runoff from 10 state-of-the-art hydrological models
NASA Astrophysics Data System (ADS)
Beck, Hylke E.; van Dijk, Albert I. J. M.; de Roo, Ad; Dutra, Emanuel; Fink, Gabriel; Orth, Rene; Schellekens, Jaap
2017-06-01
Observed streamflow data from 966 medium sized catchments (1000-5000 km2) around the globe were used to comprehensively evaluate the daily runoff estimates (1979-2012) of six global hydrological models (GHMs) and four land surface models (LSMs) produced as part of tier-1 of the eartH2Observe project. The models were all driven by the WATCH Forcing Data ERA-Interim (WFDEI) meteorological dataset, but used different datasets for non-meteorologic inputs and were run at various spatial and temporal resolutions, although all data were re-sampled to a common 0. 5° spatial and daily temporal resolution. For the evaluation, we used a broad range of performance metrics related to important aspects of the hydrograph. We found pronounced inter-model performance differences, underscoring the importance of hydrological model uncertainty in addition to climate input uncertainty, for example in studies assessing the hydrological impacts of climate change. The uncalibrated GHMs were found to perform, on average, better than the uncalibrated LSMs in snow-dominated regions, while the ensemble mean was found to perform only slightly worse than the best (calibrated) model. The inclusion of less-accurate models did not appreciably degrade the ensemble performance. Overall, we argue that more effort should be devoted on calibrating and regionalizing the parameters of macro-scale models. We further found that, despite adjustments using gauge observations, the WFDEI precipitation data still contain substantial biases that propagate into the simulated runoff. The early bias in the spring snowmelt peak exhibited by most models is probably primarily due to the widespread precipitation underestimation at high northern latitudes.
Brandon M. Collins; Richard G. Everett; Scott L. Stephens
2011-01-01
We re-sampled areas included in an unbiased 1911 timber inventory conducted by the U.S. Forest Service over a 4000 ha study area. Over half of the re-sampled area burned in relatively recent management- and lightning-ignited fires. This allowed for comparisons of both areas that have experienced recent fire and areas with no recent fire, to the same areas historically...
NASA Astrophysics Data System (ADS)
Dohe, S.; Sherlock, V.; Hase, F.; Gisi, M.; Robinson, J.; Sepúlveda, E.; Schneider, M.; Blumenstock, T.
2013-08-01
The Total Carbon Column Observing Network (TCCON) has been established to provide ground-based remote sensing measurements of the column-averaged dry air mole fractions (DMF) of key greenhouse gases. To ensure network-wide consistency, biases between Fourier transform spectrometers at different sites have to be well controlled. Errors in interferogram sampling can introduce significant biases in retrievals. In this study we investigate a two-step scheme to correct these errors. In the first step the laser sampling error (LSE) is estimated by determining the sampling shift which minimises the magnitude of the signal intensity in selected, fully absorbed regions of the solar spectrum. The LSE is estimated for every day with measurements which meet certain selection criteria to derive the site-specific time series of the LSEs. In the second step, this sequence of LSEs is used to resample all the interferograms acquired at the site, and hence correct the sampling errors. Measurements acquired at the Izaña and Lauder TCCON sites are used to demonstrate the method. At both sites the sampling error histories show changes in LSE due to instrument interventions (e.g. realignment). Estimated LSEs are in good agreement with sampling errors inferred from the ratio of primary and ghost spectral signatures in optically bandpass-limited tungsten lamp spectra acquired at Lauder. The original time series of Xair and XCO2 (XY: column-averaged DMF of the target gas Y) at both sites show discrepancies of 0.2-0.5% due to changes in the LSE associated with instrument interventions or changes in the measurement sample rate. After resampling, discrepancies are reduced to 0.1% or less at Lauder and 0.2% at Izaña. In the latter case, coincident changes in interferometer alignment may also have contributed to the residual difference. In the future the proposed method will be used to correct historical spectra at all TCCON sites.
Janssen, Steve M J; Chessa, Antonio G; Murre, Jaap M J
2007-10-01
The reminiscence bump is the effect that people recall more personal events from early adulthood than from childhood or adulthood. The bump has been examined extensively. However, the question of whether the bump is caused by differential encoding or re-sampling is still unanswered. To examine this issue, participants were asked to name their three favourite books, movies, and records. Furthermore,they were asked when they first encountered them. We compared the temporal distributions and found that they all showed recency effects and reminiscence bumps. The distribution of favourite books had the largest recency effect and the distribution of favourite records had the largest reminiscence bump. We can explain these results by the difference in rehearsal. Books are read two or three times, movies are watched more frequently, whereas records are listened to numerous times. The results suggest that differential encoding initially causes the reminiscence bump and that re-sampling increases the bump further.
Generalized Bootstrap Method for Assessment of Uncertainty in Semivariogram Inference
Olea, R.A.; Pardo-Iguzquiza, E.
2011-01-01
The semivariogram and its related function, the covariance, play a central role in classical geostatistics for modeling the average continuity of spatially correlated attributes. Whereas all methods are formulated in terms of the true semivariogram, in practice what can be used are estimated semivariograms and models based on samples. A generalized form of the bootstrap method to properly model spatially correlated data is used to advance knowledge about the reliability of empirical semivariograms and semivariogram models based on a single sample. Among several methods available to generate spatially correlated resamples, we selected a method based on the LU decomposition and used several examples to illustrate the approach. The first one is a synthetic, isotropic, exhaustive sample following a normal distribution, the second example is also a synthetic but following a non-Gaussian random field, and a third empirical sample consists of actual raingauge measurements. Results show wider confidence intervals than those found previously by others with inadequate application of the bootstrap. Also, even for the Gaussian example, distributions for estimated semivariogram values and model parameters are positively skewed. In this sense, bootstrap percentile confidence intervals, which are not centered around the empirical semivariogram and do not require distributional assumptions for its construction, provide an achieved coverage similar to the nominal coverage. The latter cannot be achieved by symmetrical confidence intervals based on the standard error, regardless if the standard error is estimated from a parametric equation or from bootstrap. ?? 2010 International Association for Mathematical Geosciences.
NASA Astrophysics Data System (ADS)
Wicaksono, Pramaditya; Salivian Wisnu Kumara, Ignatius; Kamal, Muhammad; Afif Fauzan, Muhammad; Zhafarina, Zhafirah; Agus Nurswantoro, Dwi; Noviaris Yogyantoro, Rifka
2017-12-01
Although spectrally different, seagrass species may not be able to be mapped from multispectral remote sensing images due to the limitation of their spectral resolution. Therefore, it is important to quantitatively assess the possibility of mapping seagrass species using multispectral images by resampling seagrass species spectra to multispectral bands. Seagrass species spectra were measured on harvested seagrass leaves. Spectral resolution of multispectral images used in this research was adopted from WorldView-2, Quickbird, Sentinel-2A, ASTER VNIR, and Landsat 8 OLI. These images are widely available and can be a good representative and baseline for previous or future remote sensing images. Seagrass species considered in this research are Enhalus acoroides (Ea), Thalassodendron ciliatum (Tc), Thalassia hemprichii (Th), Cymodocea rotundata (Cr), Cymodocea serrulata (Cs), Halodule uninervis (Hu), Halodule pinifolia (Hp), Syringodum isoetifolium (Si), Halophila ovalis (Ho), and Halophila minor (Hm). Multispectral resampling analysis indicate that the resampled spectra exhibit similar shape and pattern with the original spectra but less precise, and they lose the unique absorption feature of seagrass species. Relying on spectral bands alone, multispectral image is not effective in mapping these seagrass species individually, which is shown by the poor and inconsistent result of Spectral Angle Mapper (SAM) classification technique in classifying seagrass species using seagrass species spectra as pure endmember. Only Sentinel-2A produced acceptable classification result using SAM.
Thompson, Steven K
2006-12-01
A flexible class of adaptive sampling designs is introduced for sampling in network and spatial settings. In the designs, selections are made sequentially with a mixture distribution based on an active set that changes as the sampling progresses, using network or spatial relationships as well as sample values. The new designs have certain advantages compared with previously existing adaptive and link-tracing designs, including control over sample sizes and of the proportion of effort allocated to adaptive selections. Efficient inference involves averaging over sample paths consistent with the minimal sufficient statistic. A Markov chain resampling method makes the inference computationally feasible. The designs are evaluated in network and spatial settings using two empirical populations: a hidden human population at high risk for HIV/AIDS and an unevenly distributed bird population.
Yeo, Boon Y.; McLaughlin, Robert A.; Kirk, Rodney W.; Sampson, David D.
2012-01-01
We present a high-resolution three-dimensional position tracking method that allows an optical coherence tomography (OCT) needle probe to be scanned laterally by hand, providing the high degree of flexibility and freedom required in clinical usage. The method is based on a magnetic tracking system, which is augmented by cross-correlation-based resampling and a two-stage moving window average algorithm to improve upon the tracker's limited intrinsic spatial resolution, achieving 18 µm RMS position accuracy. A proof-of-principle system was developed, with successful image reconstruction demonstrated on phantoms and on ex vivo human breast tissue validated against histology. This freehand scanning method could contribute toward clinical implementation of OCT needle imaging. PMID:22808429
ERIC Educational Resources Information Center
Zhang, Dongbo; Koda, Keiko
2012-01-01
Within the Structural Equation Modeling framework, this study tested the direct and indirect effects of morphological awareness and lexical inferencing ability on L2 vocabulary knowledge and reading comprehension among advanced Chinese EFL readers in a university in China. Using both regular z-test and the bootstrapping (data-based resampling)…
NASA Astrophysics Data System (ADS)
Schonlau, William J.
2006-05-01
An immersive viewing engine providing basic telepresence functionality for a variety of application types is presented. Augmented reality, teleoperation and virtual reality applications all benefit from the use of head mounted display devices that present imagery appropriate to the user's head orientation at full frame rates. Our primary application is the viewing of remote environments, as with a camera equipped teleoperated vehicle. The conventional approach where imagery from a narrow field camera onboard the vehicle is presented to the user on a small rectangular screen is contrasted with an immersive viewing system where a cylindrical or spherical format image is received from a panoramic camera on the vehicle, resampled in response to sensed user head orientation and presented via wide field eyewear display, approaching 180 degrees of horizontal field. Of primary interest is the user's enhanced ability to perceive and understand image content, even when image resolution parameters are poor, due to the innate visual integration and 3-D model generation capabilities of the human visual system. A mathematical model for tracking user head position and resampling the panoramic image to attain distortion free viewing of the region appropriate to the user's current head pose is presented and consideration is given to providing the user with stereo viewing generated from depth map information derived using stereo from motion algorithms.
NASA Astrophysics Data System (ADS)
Beckers, J.; Weerts, A.; Tijdeman, E.; Welles, E.; McManamon, A.
2013-12-01
To provide reliable and accurate seasonal streamflow forecasts for water resources management several operational hydrologic agencies and hydropower companies around the world use the Extended Streamflow Prediction (ESP) procedure. The ESP in its original implementation does not accommodate for any additional information that the forecaster may have about expected deviations from climatology in the near future. Several attempts have been conducted to improve the skill of the ESP forecast, especially for areas which are affected by teleconnetions (e,g. ENSO, PDO) via selection (Hamlet and Lettenmaier, 1999) or weighting schemes (Werner et al., 2004; Wood and Lettenmaier, 2006; Najafi et al., 2012). A disadvantage of such schemes is that they lead to a reduction of the signal to noise ratio of the probabilistic forecast. To overcome this, we propose a resampling method conditional on climate indices to generate meteorological time series to be used in the ESP. The method can be used to generate a large number of meteorological ensemble members in order to improve the statistical properties of the ensemble. The effectiveness of the method was demonstrated in a real-time operational hydrologic seasonal forecasts system for the Columbia River basin operated by the Bonneville Power Administration. The forecast skill of the k-nn resampler was tested against the original ESP for three basins at the long-range seasonal time scale. The BSS and CRPSS were used to compare the results to those of the original ESP method. Positive forecast skill scores were found for the resampler method conditioned on different indices for the prediction of spring peak flows in the Dworshak and Hungry Horse basin. For the Libby Dam basin however, no improvement of skill was found. The proposed resampling method is a promising practical approach that can add skill to ESP forecasts at the seasonal time scale. Further improvement is possible by fine tuning the method and selecting the most informative climate indices for the region of interest.
Correcting Evaluation Bias of Relational Classifiers with Network Cross Validation
2010-01-01
classi- fication algorithms: simple random resampling (RRS), equal-instance random resampling (ERS), and network cross-validation ( NCV ). The first two... NCV procedure that eliminates overlap between test sets altogether. The procedure samples for k disjoint test sets that will be used for evaluation...propLabeled ∗ S) nodes from train Pool in f erenceSet =network − trainSet F = F ∪ < trainSet, test Set, in f erenceSet > end for output: F NCV addresses
Jollymore, Ashlee; Johnson, Mark S.; Hawthorne, Iain
2012-01-01
Organic material, including total and dissolved organic carbon (DOC), is ubiquitous within aquatic ecosystems, playing a variety of important and diverse biogeochemical and ecological roles. Determining how land-use changes affect DOC concentrations and bioavailability within aquatic ecosystems is an important means of evaluating the effects on ecological productivity and biogeochemical cycling. This paper presents a methodology case study looking at the deployment of a submersible UV-Vis absorbance spectrophotometer (UV-Vis spectro∷lyzer model, s∷can, Vienna, Austria) to determine stream organic carbon dynamics within a headwater catchment located near Campbell River (British Columbia, Canada). Field-based absorbance measurements of DOC were made before and after forest harvest, highlighting the advantages of high temporal resolution compared to traditional grab sampling and laboratory measurements. Details of remote deployment are described. High-frequency DOC data is explored by resampling the 30 min time series with a range of resampling time intervals (from daily to weekly time steps). DOC export was calculated for three months from the post-harvest data and resampled time series, showing that sampling frequency has a profound effect on total DOC export. DOC exports derived from weekly measurements were found to underestimate export by as much as 30% compared to DOC export calculated from high-frequency data. Additionally, the importance of the ability to remotely monitor the system through a recently deployed wireless connection is emphasized by examining causes of prior data losses, and how such losses may be prevented through the ability to react when environmental or power disturbances cause system interruption and data loss. PMID:22666002
Jollymore, Ashlee; Johnson, Mark S; Hawthorne, Iain
2012-01-01
Organic material, including total and dissolved organic carbon (DOC), is ubiquitous within aquatic ecosystems, playing a variety of important and diverse biogeochemical and ecological roles. Determining how land-use changes affect DOC concentrations and bioavailability within aquatic ecosystems is an important means of evaluating the effects on ecological productivity and biogeochemical cycling. This paper presents a methodology case study looking at the deployment of a submersible UV-Vis absorbance spectrophotometer (UV-Vis spectro::lyzer model, s::can, Vienna, Austria) to determine stream organic carbon dynamics within a headwater catchment located near Campbell River (British Columbia, Canada). Field-based absorbance measurements of DOC were made before and after forest harvest, highlighting the advantages of high temporal resolution compared to traditional grab sampling and laboratory measurements. Details of remote deployment are described. High-frequency DOC data is explored by resampling the 30 min time series with a range of resampling time intervals (from daily to weekly time steps). DOC export was calculated for three months from the post-harvest data and resampled time series, showing that sampling frequency has a profound effect on total DOC export. DOC exports derived from weekly measurements were found to underestimate export by as much as 30% compared to DOC export calculated from high-frequency data. Additionally, the importance of the ability to remotely monitor the system through a recently deployed wireless connection is emphasized by examining causes of prior data losses, and how such losses may be prevented through the ability to react when environmental or power disturbances cause system interruption and data loss.
NASA Astrophysics Data System (ADS)
Wechsung, Frank; Wechsung, Maximilian
2016-11-01
The STatistical Analogue Resampling Scheme (STARS) statistical approach was recently used to project changes of climate variables in Germany corresponding to a supposed degree of warming. We show by theoretical and empirical analysis that STARS simply transforms interannual gradients between warmer and cooler seasons into climate trends. According to STARS projections, summers in Germany will inevitably become dryer and winters wetter under global warming. Due to the dominance of negative interannual correlations between precipitation and temperature during the year, STARS has a tendency to generate a net annual decrease in precipitation under mean German conditions. Furthermore, according to STARS, the annual level of global radiation would increase in Germany. STARS can be still used, e.g., for generating scenarios in vulnerability and uncertainty studies. However, it is not suitable as a climate downscaling tool to access risks following from changing climate for a finer than general circulation model (GCM) spatial scale.
Monte Carlo algorithms for Brownian phylogenetic models.
Horvilleur, Benjamin; Lartillot, Nicolas
2014-11-01
Brownian models have been introduced in phylogenetics for describing variation in substitution rates through time, with applications to molecular dating or to the comparative analysis of variation in substitution patterns among lineages. Thus far, however, the Monte Carlo implementations of these models have relied on crude approximations, in which the Brownian process is sampled only at the internal nodes of the phylogeny or at the midpoints along each branch, and the unknown trajectory between these sampled points is summarized by simple branchwise average substitution rates. A more accurate Monte Carlo approach is introduced, explicitly sampling a fine-grained discretization of the trajectory of the (potentially multivariate) Brownian process along the phylogeny. Generic Monte Carlo resampling algorithms are proposed for updating the Brownian paths along and across branches. Specific computational strategies are developed for efficient integration of the finite-time substitution probabilities across branches induced by the Brownian trajectory. The mixing properties and the computational complexity of the resulting Markov chain Monte Carlo sampler scale reasonably with the discretization level, allowing practical applications with up to a few hundred discretization points along the entire depth of the tree. The method can be generalized to other Markovian stochastic processes, making it possible to implement a wide range of time-dependent substitution models with well-controlled computational precision. The program is freely available at www.phylobayes.org. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Leveraging prognostic baseline variables to gain precision in randomized trials
Colantuoni, Elizabeth; Rosenblum, Michael
2015-01-01
We focus on estimating the average treatment effect in a randomized trial. If baseline variables are correlated with the outcome, then appropriately adjusting for these variables can improve precision. An example is the analysis of covariance (ANCOVA) estimator, which applies when the outcome is continuous, the quantity of interest is the difference in mean outcomes comparing treatment versus control, and a linear model with only main effects is used. ANCOVA is guaranteed to be at least as precise as the standard unadjusted estimator, asymptotically, under no parametric model assumptions and also is locally semiparametric efficient. Recently, several estimators have been developed that extend these desirable properties to more general settings that allow any real-valued outcome (e.g., binary or count), contrasts other than the difference in mean outcomes (such as the relative risk), and estimators based on a large class of generalized linear models (including logistic regression). To the best of our knowledge, we give the first simulation study in the context of randomized trials that compares these estimators. Furthermore, our simulations are not based on parametric models; instead, our simulations are based on resampling data from completed randomized trials in stroke and HIV in order to assess estimator performance in realistic scenarios. We provide practical guidance on when these estimators are likely to provide substantial precision gains and describe a quick assessment method that allows clinical investigators to determine whether these estimators could be useful in their specific trial contexts. PMID:25872751
NASA Astrophysics Data System (ADS)
Guo, Jun; Lu, Siliang; Zhai, Chao; He, Qingbo
2018-02-01
An automatic bearing fault diagnosis method is proposed for permanent magnet synchronous generators (PMSGs), which are widely installed in wind turbines subjected to low rotating speeds, speed fluctuations, and electrical device noise interferences. The mechanical rotating angle curve is first extracted from the phase current of a PMSG by sequentially applying a series of algorithms. The synchronous sampled vibration signal of the fault bearing is then resampled in the angular domain according to the obtained rotating phase information. Considering that the resampled vibration signal is still overwhelmed by heavy background noise, an adaptive stochastic resonance filter is applied to the resampled signal to enhance the fault indicator and facilitate bearing fault identification. Two types of fault bearings with different fault sizes in a PMSG test rig are subjected to experiments to test the effectiveness of the proposed method. The proposed method is fully automated and thus shows potential for convenient, highly efficient and in situ bearing fault diagnosis for wind turbines subjected to harsh environments.
Modified Polar-Format Software for Processing SAR Data
NASA Technical Reports Server (NTRS)
Chen, Curtis
2003-01-01
HMPF is a computer program that implements a modified polar-format algorithm for processing data from spaceborne synthetic-aperture radar (SAR) systems. Unlike prior polar-format processing algorithms, this algorithm is based on the assumption that the radar signal wavefronts are spherical rather than planar. The algorithm provides for resampling of SAR pulse data from slant range to radial distance from the center of a reference sphere that is nominally the local Earth surface. Then, invoking the projection-slice theorem, the resampled pulse data are Fourier-transformed over radial distance, arranged in the wavenumber domain according to the acquisition geometry, resampled to a Cartesian grid, and inverse-Fourier-transformed. The result of this process is the focused SAR image. HMPF, and perhaps other programs that implement variants of the algorithm, may give better accuracy than do prior algorithms for processing strip-map SAR data from high altitudes and may give better phase preservation relative to prior polar-format algorithms for processing spotlight-mode SAR data.
Full-vector geomagnetic field records from the East Eifel, Germany
NASA Astrophysics Data System (ADS)
Monster, Marilyn W. L.; Langemeijer, Jaap; Wiarda, Laura R.; Dekkers, Mark J.; Biggin, Andy J.; Hurst, Elliot A.; Groot, Lennart V. de
2018-01-01
To create meaningful models of the geomagnetic field, high-quality directional and intensity input data are needed. However, while it is fairly straightforward to obtain directional data, intensity data are much scarcer, especially for periods before the Holocene. Here, we present data from twelve flows (age range ∼ 200 to ∼ 470 ka) in the East Eifel volcanic field (Germany). These sites had been previously studied and are resampled to further test the recently proposed multi-method palaeointensity approach. Samples are first subjected to classic palaeomagnetic and rock magnetic analyses to optimise the subsequent palaeointensity experiments. Four different palaeointensity methods - IZZI-Thellier, the multispecimen method, calibrated pseudo-Thellier, and microwave-Thellier - are being used in the present study. The latter should be considered as supportive because only one or two specimens per site could be processed. Palaeointensities obtained for ten sites pass our selection criteria: two sites are successful with a single approach, four sites with two approaches, three more sites work with three approaches, and one site with all four approaches. Site-averaged intensity values typically range between 30 and 35 μT. No typically low palaeointensity values are found, in line with paleodirectional results which are compatible with regular palaeosecular variation of the Earth's magnetic field. Results from different methods are remarkably consistent and generally agree well with the values previously reported. They appear to be below the average for the Brunhes chron; there are no indications for relatively higher palaeointensities for units younger than 300 ka. However, our young sites could be close in age, and therefore may not represent the average intensity of the paleofield. Three of our sites are even considered coeval; encouragingly, these do yield the same palaeointensity within uncertainty bounds.
Assessing operating characteristics of CAD algorithms in the absence of a gold standard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy Choudhury, Kingshuk; Paik, David S.; Yi, Chin A.
2010-04-15
Purpose: The authors examine potential bias when using a reference reader panel as ''gold standard'' for estimating operating characteristics of CAD algorithms for detecting lesions. As an alternative, the authors propose latent class analysis (LCA), which does not require an external gold standard to evaluate diagnostic accuracy. Methods: A binomial model for multiple reader detections using different diagnostic protocols was constructed, assuming conditional independence of readings given true lesion status. Operating characteristics of all protocols were estimated by maximum likelihood LCA. Reader panel and LCA based estimates were compared using data simulated from the binomial model for a range ofmore » operating characteristics. LCA was applied to 36 thin section thoracic computed tomography data sets from the Lung Image Database Consortium (LIDC): Free search markings of four radiologists were compared to markings from four different CAD assisted radiologists. For real data, bootstrap-based resampling methods, which accommodate dependence in reader detections, are proposed to test of hypotheses of differences between detection protocols. Results: In simulation studies, reader panel based sensitivity estimates had an average relative bias (ARB) of -23% to -27%, significantly higher (p-value <0.0001) than LCA (ARB -2% to -6%). Specificity was well estimated by both reader panel (ARB -0.6% to -0.5%) and LCA (ARB 1.4%-0.5%). Among 1145 lesion candidates LIDC considered, LCA estimated sensitivity of reference readers (55%) was significantly lower (p-value 0.006) than CAD assisted readers' (68%). Average false positives per patient for reference readers (0.95) was not significantly lower (p-value 0.28) than CAD assisted readers' (1.27). Conclusions: Whereas a gold standard based on a consensus of readers may substantially bias sensitivity estimates, LCA may be a significantly more accurate and consistent means for evaluating diagnostic accuracy.« less
Recommended GIS Analysis Methods for Global Gridded Population Data
NASA Astrophysics Data System (ADS)
Frye, C. E.; Sorichetta, A.; Rose, A.
2017-12-01
When using geographic information systems (GIS) to analyze gridded, i.e., raster, population data, analysts need a detailed understanding of several factors that affect raster data processing, and thus, the accuracy of the results. Global raster data is most often provided in an unprojected state, usually in the WGS 1984 geographic coordinate system. Most GIS functions and tools evaluate data based on overlay relationships (area) or proximity (distance). Area and distance for global raster data can be either calculated directly using the various earth ellipsoids or after transforming the data to equal-area/equidistant projected coordinate systems to analyze all locations equally. However, unlike when projecting vector data, not all projected coordinate systems can support such analyses equally, and the process of transforming raster data from one coordinate space to another often results unmanaged loss of data through a process called resampling. Resampling determines which values to use in the result dataset given an imperfect locational match in the input dataset(s). Cell size or resolution, registration, resampling method, statistical type, and whether the raster represents continuous or discreet information potentially influence the quality of the result. Gridded population data represent estimates of population in each raster cell, and this presentation will provide guidelines for accurately transforming population rasters for analysis in GIS. Resampling impacts the display of high resolution global gridded population data, and we will discuss how to properly handle pyramid creation using the Aggregate tool with the sum option to create overviews for mosaic datasets.
Downscaling climate change scenarios for apple pest and disease modeling in Switzerland
NASA Astrophysics Data System (ADS)
Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.
2012-02-01
As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1% on average today to over 60% in the future for the median climate change signal of the multi-model projections), the actual risk will critically depend on the pace of the adaptation of the codling moth with respect to the critical photoperiod. To control this additional generation, an intensification and prolongation of control measures (e.g. insecticides) will be required, implying an increasing risk of pesticide resistances. For fire blight, the projected changes in infection days are less certain due to uncertainties in the leaf wetness approximation and the simulation of the blooming period. Two compensating effects are projected, warmer temperatures favoring infections are balanced by a temperature-induced advancement of the blooming period, leading to no significant change in the number of infection days under future climate conditions for most stations.
Downscaling climate change scenarios for apple pest and disease modeling in Switzerland
NASA Astrophysics Data System (ADS)
Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.
2011-08-01
As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously not affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology depending on actual weather conditions and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1 % on average today to over 60 % in the future for the median climate change signal of the multi-model projections), the actual risk will critically depend on the pace of the adaptation of the codling moth with respect to the critical photoperiod. To control this additional generation, an intensification and prolongation of control measures (e.g., insecticides) will be required, implying an increasing risk of pesticide resistances. For fire blight, the projected changes in infection days are less certain due to uncertainties in the leaf wetness approximation and the simulation of the blooming period. Two compensating effects are projected, warmer temperatures favoring infections are balanced by a temperature-induced advancement of the blooming period, leading to no significant change in the number of infection days under future climate conditions for most stations.
A novel iterative mixed model to remap three complex orthopedic traits in dogs
Huang, Meng; Hayward, Jessica J.; Corey, Elizabeth; Garrison, Susan J.; Wagner, Gabriela R.; Krotscheck, Ursula; Hayashi, Kei; Schweitzer, Peter A.; Lust, George; Boyko, Adam R.; Todhunter, Rory J.
2017-01-01
Hip dysplasia (HD), elbow dysplasia (ED), and rupture of the cranial (anterior) cruciate ligament (RCCL) are the most common complex orthopedic traits of dogs and all result in debilitating osteoarthritis. We reanalyzed previously reported data: the Norberg angle (a quantitative measure of HD) in 921 dogs, ED in 113 cases and 633 controls, and RCCL in 271 cases and 399 controls and their genotypes at ~185,000 single nucleotide polymorphisms. A novel fixed and random model with a circulating probability unification (FarmCPU) function, with marker-based principal components and a kinship matrix to correct for population stratification, was used. A Bonferroni correction at p<0.01 resulted in a P< 6.96 ×10−8. Six loci were identified; three for HD and three for RCCL. An associated locus at CFA28:34,369,342 for HD was described previously in the same dogs using a conventional mixed model. No loci were identified for RCCL in the previous report but the two loci for ED in the previous report did not reach genome-wide significance using the FarmCPU model. These results were supported by simulation which demonstrated that the FarmCPU held no power advantage over the linear mixed model for the ED sample but provided additional power for the HD and RCCL samples. Candidate genes for HD and RCCL are discussed. When using FarmCPU software, we recommend a resampling test, that a positive control be used to determine the optimum pseudo quantitative trait nucleotide-based covariate structure of the model, and a negative control be used consisting of permutation testing and the identical resampling test as for the non-permuted phenotypes. PMID:28614352
NASA Astrophysics Data System (ADS)
Zhang, Shengjun; Sandwell, David T.; Jin, Taoyong; Li, Dawei
2017-02-01
The accuracy and resolution of marine gravity field derived from satellite altimetry mainly depends on the range precision and dense spatial distribution. This paper aims at modeling a regional marine gravity field with improved accuracy and higher resolution (1‧ × 1‧) over Southeastern China Seas using additional data from CryoSat-2 as well as new data from AltiKa. Three approaches are used to enhance the precision level of satellite-derived gravity anomalies. Firstly we evaluate a suite of published retracking algorithms and find the two-step retracker is optimal for open ocean waveforms. Secondly, we evaluate the filtering and resampling procedure used to reduce the full 20 or 40 Hz data to a lower rate having lower noise. We adopt a uniform low-pass filter for all altimeter missions and resample at 5 Hz and then perform a second editing based on sea surface slope estimates from previous models. Thirdly, we selected WHU12 model to update the corrections provided in geophysical data record. We finally calculated the 1‧ × 1‧ marine gravity field model by using EGM2008 model as reference field during the remove/restore procedure. The root mean squares of the discrepancies between the new result and DTU10, DTU13, V23.1, EGM2008 are within the range of 1.8- 3.9 mGal, while the verification with respect to shipboard gravity data shows that the accuracy of the new result reached a comparable level with DTU13 and was slightly superior to V23.1, DTU10 and EGM2008 models. Moreover, the new result has a 2 mGal better accuracy over open seas than coastal areas with shallow water depth.
Bi-phasic trends in mercury concentrations in blood of Wisconsin common loons during 1992–2010
Meyer, Michael W.; Rasmussen, Paul W.; Watras, Carl J.; Fevold, Brick M.; Kenow, Kevin P.
2011-01-01
Wisconsin Department of Natural Resources (WDNR) assessed the ecological risk of mercury (Hg) in aquatic systems by monitoring common loon (Gavia immer) population dynamics and blood Hg concentrations. We report temporal trends in blood Hg concentrations based on 334 samples collected from adults recaptured in subsequent years (resampled 2-9 times) and from 421 blood samples of chicks collected at lakes resampled 2-8 times 1992-2010.. Temporal trends were identified with generalized additive mixed effects models (GAMMs) and mixed effects models to account for the potential lack of independence among observations from the same loon or same lake. Trend analyses indicated that Hg concentrations in the blood of Wisconsin loons declined over the period 1992-2000, and increased during 2002-2010, but not to the level observed in the early 1990s. The best fitting linear mixed effects model included separate trends for the two time periods. The estimated trend in Hg concentration among the adult loon population during 1992-2000 was -2.6% per year and the estimated trend during 2002-2010 was +1.8% per year; chick blood Hg concentrations decreased by -6.5% per year during 1992-2000, but increased 1.8% per year during 2002-2010. This bi-phasic pattern is similar to trends observed for concentrations of methylmercury (meHg) and SO4 in lake water of a well studied seepage lake (Little Rock Lake, Vilas County) within our study area. A cause-effect relationship between these independent trends is hypothesized.
NASA Astrophysics Data System (ADS)
Mishra, C.; Samantaray, A. K.; Chakraborty, G.
2016-09-01
Vibration analysis for diagnosis of faults in rolling element bearings is complicated when the rotor speed is variable or slow. In the former case, the time interval between the fault-induced impact responses in the vibration signal are non-uniform and the signal strength is variable. In the latter case, the fault-induced impact response strength is weak and generally gets buried in the noise, i.e. noise dominates the signal. This article proposes a diagnosis scheme based on a combination of a few signal processing techniques. The proposed scheme initially represents the vibration signal in terms of uniformly resampled angular position of the rotor shaft by using the interpolated instantaneous angular position measurements. Thereafter, intrinsic mode functions (IMFs) are generated through empirical mode decomposition (EMD) of resampled vibration signal which is followed by thresholding of IMFs and signal reconstruction to de-noise the signal and envelope order tracking to diagnose the faults. Data for validating the proposed diagnosis scheme are initially generated from a multi-body simulation model of rolling element bearing which is developed using bond graph approach. This bond graph model includes the ball and cage dynamics, localized fault geometry, contact mechanics, rotor unbalance, and friction and slip effects. The diagnosis scheme is finally validated with experiments performed with the help of a machine fault simulator (MFS) system. Some fault scenarios which could not be experimentally recreated are then generated through simulations and analyzed through the developed diagnosis scheme.
NASA Astrophysics Data System (ADS)
Carr, B. B.; Vaughan, R. G.
2017-12-01
The thermal areas in Yellowstone National Park (Wyoming, USA) are constantly changing. Persistent monitoring of these areas is necessary to better understand the behavior and potential hazards of both the thermal features and the deeper hydrothermal system driving the observed surface activity. As part of the Park's monitoring program, thousands of visual and thermal infrared (TIR) images have been acquired from a variety of airborne platforms over the past decade. We have used structure-from-motion (SfM) photogrammetry techniques to generate a variety of data products from these images, including orthomosaics, temperature maps, and digital elevation models (DEMs). Temperature maps were generated for Upper Geyser Basin and Norris Geyser Basin for the years 2009-2015, by applying SfM to nighttime TIR images collected from an aircraft-mounted forward-looking infrared (FLIR) camera. Temperature data were preserved through the SfM processing by applying a uniform linear stretch over the entire image set to convert between temperature and a 16-bit digital number. Mosaicked temperature maps were compared to the original FLIR image frames and to ground-based temperature data to constrain the accuracy of the method. Due to pixel averaging and resampling, among other issues, the derived temperature values are typically within 5-10 ° of the values of the un-resampled image frame. We also created sub-meter resolution DEMs from airborne daytime visual images of individual thermal areas. These DEMs can be used for resource and hazard management, and in cases where multiple DEMs exist from different times, for measuring topographic change, including change due to thermal activity. For example, we examined the sensitivity of the DEMs to topographic change by comparing DEMs of the travertine terraces at Mammoth Hot Springs, which can grow at > 1 m per year. These methods are generally applicable to images from airborne platforms, including planes, helicopters, and unmanned aerial systems, and can be used to monitor thermal areas on a variety of spatial and temporal scales.
TU-EF-304-04: A Heart Motion Model for Proton Scanned Beam Chest Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, B; Kiely, J Blanco; Lin, L
Purpose: To model fast-moving heart surface motion as a function of cardiac-phase in order to compensate for the lack of cardiac-gating in evaluating accurate dose to coronary structures. Methods: Ten subjects were prospectively imaged with a breath-hold, cardiac-gated MRI protocol to determine heart surface motion. Radial and planar views of the heart were resampled into a 3-dimensional volume representing one heartbeat. A multi-resolution optical flow deformable image registration algorithm determined tissue displacement during the cardiac-cycle. The surface of the heart was modeled as a thin membrane comprised of voxels perpendicular to a pencil beam scanning (PBS) beam. The membrane’s out-of-planemore » spatial displacement was modeled as a harmonic function with Lame’s equations. Model accuracy was assessed with the root mean squared error (RMSE). The model was applied to a cohort of six chest wall irradiation patients with PBS plans generated on phase-sorted 4DCT. Respiratory motion was separated from the cardiac motion with a previously published technique. Volumetric dose painting was simulated and dose accumulated to validate plan robustness (target coverage variation accepted within 2%). Maximum and mean heart surface dose assessed the dosimetric impact of heart and coronary artery motion. Results: Average and maximum heart surface displacements were 2.54±0.35mm and 3.6mm from the end-diastole phase to the end-systole cardiac-phase respectively. An average RMSE of 0.11±0.04 showed the model to be accurate. Observed errors were greatest between the circumflex artery and mitral valve level of the heart anatomy. Heart surface displacements correspond to a 3.6±1.0% and 5.1±2.3% dosimetric impact on the maximum and mean heart surface DVH indicators respectively. Conclusion: Although heart surface motion parallel to beam’s direction was substantial, its maximum dosimetric impact was 5.1±2.3%. Since PBS delivers low doses to coronary structures relative to photon radiotherapy, it is unknown whether this variation would be clinically significant for late effects.« less
Approaches to Evaluating Probability of Collision Uncertainty
NASA Technical Reports Server (NTRS)
Hejduk, Matthew D.; Johnson, Lauren C.
2016-01-01
While the two-dimensional probability of collision (Pc) calculation has served as the main input to conjunction analysis risk assessment for over a decade, it has done this mostly as a point estimate, with relatively little effort made to produce confidence intervals on the Pc value based on the uncertainties in the inputs. The present effort seeks to try to carry these uncertainties through the calculation in order to generate a probability density of Pc results rather than a single average value. Methods for assessing uncertainty in the primary and secondary objects' physical sizes and state estimate covariances, as well as a resampling approach to reveal the natural variability in the calculation, are presented; and an initial proposal for operationally-useful display and interpretation of these data for a particular conjunction is given.
NASA Astrophysics Data System (ADS)
Olafsdottir, Kristin B.; Mudelsee, Manfred
2013-04-01
Estimation of the Pearson's correlation coefficient between two time series to evaluate the influences of one time depended variable on another is one of the most often used statistical method in climate sciences. Various methods are used to estimate confidence interval to support the correlation point estimate. Many of them make strong mathematical assumptions regarding distributional shape and serial correlation, which are rarely met. More robust statistical methods are needed to increase the accuracy of the confidence intervals. Bootstrap confidence intervals are estimated in the Fortran 90 program PearsonT (Mudelsee, 2003), where the main intention was to get an accurate confidence interval for correlation coefficient between two time series by taking the serial dependence of the process that generated the data into account. However, Monte Carlo experiments show that the coverage accuracy for smaller data sizes can be improved. Here we adapt the PearsonT program into a new version called PearsonT3, by calibrating the confidence interval to increase the coverage accuracy. Calibration is a bootstrap resampling technique, which basically performs a second bootstrap loop or resamples from the bootstrap resamples. It offers, like the non-calibrated bootstrap confidence intervals, robustness against the data distribution. Pairwise moving block bootstrap is used to preserve the serial correlation of both time series. The calibration is applied to standard error based bootstrap Student's t confidence intervals. The performances of the calibrated confidence intervals are examined with Monte Carlo simulations, and compared with the performances of confidence intervals without calibration, that is, PearsonT. The coverage accuracy is evidently better for the calibrated confidence intervals where the coverage error is acceptably small (i.e., within a few percentage points) already for data sizes as small as 20. One form of climate time series is output from numerical models which simulate the climate system. The method is applied to model data from the high resolution ocean model, INALT01 where the relationship between the Agulhas Leakage and the North Brazil Current is evaluated. Preliminary results show significant correlation between the two variables when there is 10 year lag between them, which is more or less the time that takes the Agulhas Leakage water to reach the North Brazil Current. Mudelsee, M., 2003. Estimating Pearson's correlation coefficient with bootstrap confidence interval from serially dependent time series. Mathematical Geology 35, 651-665.
Comparisons of Reflectivities from the TRMM Precipitation Radar and Ground-Based Radars
NASA Technical Reports Server (NTRS)
Wang, Jianxin; Wolff, David B.
2008-01-01
Given the decade long and highly successful Tropical Rainfall Measuring Mission (TRMM), it is now possible to provide quantitative comparisons between ground-based radars (GRs) with the space-borne TRMM precipitation radar (PR) with greater certainty over longer time scales in various tropical climatological regions. This study develops an automated methodology to match and compare simultaneous TRMM PR and GR reflectivities at four primary TRMM Ground Validation (GV) sites: Houston, Texas (HSTN); Melbourne, Florida (MELB); Kwajalein, Republic of the Marshall Islands (KWAJ); and Darwin, Australia (DARW). Data from each instrument are resampled into a three-dimensional Cartesian coordinate system. The horizontal displacement during the PR data resampling is corrected. Comparisons suggest that the PR suffers significant attenuation at lower levels especially in convective rain. The attenuation correction performs quite well for convective rain but appears to slightly over-correct in stratiform rain. The PR and GR observations at HSTN, MELB and KWAJ agree to about 1 dB on average with a few exceptions, while the GR at DARW requires +1 to -5 dB calibration corrections. One of the important findings of this study is that the GR calibration offset is dependent on the reflectivity magnitude. Hence, we propose that the calibration should be carried out using a regression correction, rather than simply adding an offset value to all GR reflectivities. This methodology is developed towards TRMM GV efforts to improve the accuracy of tropical rain estimates, and can also be applied to the proposed Global Precipitation Measurement and other related activities over the globe.
NASA Astrophysics Data System (ADS)
Rendon Santillan, Jojene; Makinano-Santillan, Meriam
2018-04-01
We present a characterization, comparison and analysis of in-situ spectral reflectance of Sago and other palms (coconut, oil palm and nipa) to ascertain on which part of the electromagnetic spectrum these palms are distinguishable from each other. The analysis also aims to reveal information that will assist in selecting which band to use when mapping Sago palms using the images acquired by these sensors. The datasets used in the analysis consisted of averaged spectral reflectance curves of each palm species measured within the 345-1045 nm wavelength range using an Ocean Optics USB4000-VIS-NIR Miniature Fiber Optic Spectrometer. This in-situ reflectance data was also resampled to match the spectral response of the 4 bands of ALOS AVNIR-2, 3 bands of ASTER VNIR, 4 bands of Landsat 7 ETM+, 5 bands of Landsat 8, and 8 bands of Worldview-2 (WV2). Examination of the spectral reflectance curves showed that the near infra-red region, specifically at 770, 800 and 875 nm, provides the best wavelengths where Sago palms can be distinguished from other palms. The resampling of the in-situ reflectance spectra to match the spectral response of optical sensors made possible the analysis of the differences in reflectance values of Sago and other palms in different bands of the sensors. Overall, the knowledge learned from the analysis can be useful in the actual analysis of optical satellite images, specifically in determining which band to include or to exclude, or whether to use all bands of a sensor in discriminating and mapping Sago palms.
Wittenberg, Philipp; Gan, Fah Fatt; Knoth, Sven
2018-04-17
The variable life-adjusted display (VLAD) is the first risk-adjusted graphical procedure proposed in the literature for monitoring the performance of a surgeon. It displays the cumulative sum of expected minus observed deaths. It has since become highly popular because the statistic plotted is easy to understand. But it is also easy to misinterpret a surgeon's performance by utilizing the VLAD, potentially leading to grave consequences. The problem of misinterpretation is essentially caused by the variance of the VLAD's statistic that increases with sample size. In order for the VLAD to be truly useful, a simple signaling rule is desperately needed. Various forms of signaling rules have been developed, but they are usually quite complicated. Without signaling rules, making inferences using the VLAD alone is difficult if not misleading. In this paper, we establish an equivalence between a VLAD with V-mask and a risk-adjusted cumulative sum (RA-CUSUM) chart based on the difference between the estimated probability of death and surgical outcome. Average run length analysis based on simulation shows that this particular RA-CUSUM chart has similar performance as compared to the established RA-CUSUM chart based on the log-likelihood ratio statistic obtained by testing the odds ratio of death. We provide a simple design procedure for determining the V-mask parameters based on a resampling approach. Resampling from a real data set ensures that these parameters can be estimated appropriately. Finally, we illustrate the monitoring of a real surgeon's performance using VLAD with V-mask. Copyright © 2018 John Wiley & Sons, Ltd.
TU-CD-BRA-01: A Novel 3D Registration Method for Multiparametric Radiological Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhbardeh, A; Parekth, VS; Jacobs, MA
2015-06-15
Purpose: Multiparametric and multimodality radiological imaging methods, such as, magnetic resonance imaging(MRI), computed tomography(CT), and positron emission tomography(PET), provide multiple types of tissue contrast and anatomical information for clinical diagnosis. However, these radiological modalities are acquired using very different technical parameters, e.g.,field of view(FOV), matrix size, and scan planes, which, can lead to challenges in registering the different data sets. Therefore, we developed a hybrid registration method based on 3D wavelet transformation and 3D interpolations that performs 3D resampling and rotation of the target radiological images without loss of information Methods: T1-weighted, T2-weighted, diffusion-weighted-imaging(DWI), dynamic-contrast-enhanced(DCE) MRI and PET/CT were usedmore » in the registration algorithm from breast and prostate data at 3T MRI and multimodality(PET/CT) cases. The hybrid registration scheme consists of several steps to reslice and match each modality using a combination of 3D wavelets, interpolations, and affine registration steps. First, orthogonal reslicing is performed to equalize FOV, matrix sizes and the number of slices using wavelet transformation. Second, angular resampling of the target data is performed to match the reference data. Finally, using optimized angles from resampling, 3D registration is performed using similarity transformation(scaling and translation) between the reference and resliced target volume is performed. After registration, the mean-square-error(MSE) and Dice Similarity(DS) between the reference and registered target volumes were calculated. Results: The 3D registration method registered synthetic and clinical data with significant improvement(p<0.05) of overlap between anatomical structures. After transforming and deforming the synthetic data, the MSE and Dice similarity were 0.12 and 0.99. The average improvement of the MSE in breast was 62%(0.27 to 0.10) and prostate was 63%(0.13 to 0.04;p<0.05). The Dice similarity was in breast 8%(0.91 to 0.99) and for prostate was 89%(0.01 to 0.90;p<0.05) Conclusion: Our 3D wavelet hybrid registration approach registered diverse breast and prostate data of different radiological images(MR/PET/CT) with a high accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, S; Vedantham, S; Karellas, A
Purpose: Detectors with hexagonal pixels require resampling to square pixels for distortion-free display of acquired images. In this work, the presampling modulation transfer function (MTF) of a hexagonal pixel array photon-counting CdTe detector for region-of-interest fluoroscopy was measured and the optimal square pixel size for resampling was determined. Methods: A 0.65mm thick CdTe Schottky sensor capable of concurrently acquiring up to 3 energy-windowed images was operated in a single energy-window mode to include ≥10 KeV photons. The detector had hexagonal pixels with apothem of 30 microns resulting in pixel spacing of 60 and 51.96 microns along the two orthogonal directions.more » Images of a tungsten edge test device acquired under IEC RQA5 conditions were double Hough transformed to identify the edge and numerically differentiated. The presampling MTF was determined from the finely sampled line spread function that accounted for the hexagonal sampling. The optimal square pixel size was determined in two ways; the square pixel size for which the aperture function evaluated at the Nyquist frequencies along the two orthogonal directions matched that from the hexagonal pixel aperture functions, and the square pixel size for which the mean absolute difference between the square and hexagonal aperture functions was minimized over all frequencies up to the Nyquist limit. Results: Evaluation of the aperture functions over the entire frequency range resulted in square pixel size of 53 microns with less than 2% difference from the hexagonal pixel. Evaluation of the aperture functions at Nyquist frequencies alone resulted in 54 microns square pixels. For the photon-counting CdTe detector and after resampling to 53 microns square pixels using quadratic interpolation, the presampling MTF at Nyquist frequency of 9.434 cycles/mm along the two directions were 0.501 and 0.507. Conclusion: Hexagonal pixel array photon-counting CdTe detector after resampling to square pixels provides high-resolution imaging suitable for fluoroscopy.« less
NASA Astrophysics Data System (ADS)
Adjorlolo, Clement; Cho, Moses A.; Mutanga, Onisimo; Ismail, Riyad
2012-01-01
Hyperspectral remote-sensing approaches are suitable for detection of the differences in 3-carbon (C3) and four carbon (C4) grass species phenology and composition. However, the application of hyperspectral sensors to vegetation has been hampered by high-dimensionality, spectral redundancy, and multicollinearity problems. In this experiment, resampling of hyperspectral data to wider wavelength intervals, around a few band-centers, sensitive to the biophysical and biochemical properties of C3 or C4 grass species is proposed. The approach accounts for an inherent property of vegetation spectral response: the asymmetrical nature of the inter-band correlations between a waveband and its shorter- and longer-wavelength neighbors. It involves constructing a curve of weighting threshold of correlation (Pearson's r) between a chosen band-center and its neighbors, as a function of wavelength. In addition, data were resampled to some multispectral sensors-ASTER, GeoEye-1, IKONOS, QuickBird, RapidEye, SPOT 5, and WorldView-2 satellites-for comparative purposes, with the proposed method. The resulting datasets were analyzed, using the random forest algorithm. The proposed resampling method achieved improved classification accuracy (κ=0.82), compared to the resampled multispectral datasets (κ=0.78, 0.65, 0.62, 0.59, 0.65, 0.62, 0.76, respectively). Overall, results from this study demonstrated that spectral resolutions for C3 and C4 grasses can be optimized and controlled for high dimensionality and multicollinearity problems, yet yielding high classification accuracies. The findings also provide a sound basis for programming wavebands for future sensors.
Hamman, Josheph J; Hamlet, Alan F.; Fuller, Roger; Grossman, Eric E.
2016-01-01
Current understanding of the combined effects of sea level rise (SLR), storm surge, and changes in river flooding on near-coastal environments is very limited. This project uses a suite of numerical models to examine the combined effects of projected future climate change on flooding in the Skagit floodplain and estuary. Statistically and dynamically downscaled global climate model scenarios from the ECHAM-5 GCM were used as the climate forcings. Unregulated daily river flows were simulated using the VIC hydrology model, and regulated river flows were simulated using the SkagitSim reservoir operations model. Daily tidal anomalies (TA) were calculated using a regression approach based on ENSO and atmospheric pressure forcing simulated by the WRF regional climate model. A 2-D hydrodynamic model was used to estimate water surface elevations in the Skagit floodplain using resampled hourly hydrographs keyed to regulated daily flood flows produced by the reservoir simulation model, and tide predictions adjusted for SLR and TA. Combining peak annual TA with projected sea level rise, the historical (1970–1999) 100-yr peak high water level is exceeded essentially every year by the 2050s. The combination of projected sea level rise and larger floods by the 2080s yields both increased flood inundation area (+ 74%), and increased average water depth (+ 25 cm) in the Skagit floodplain during a 100-year flood. Adding sea level rise to the historical FEMA 100-year flood resulted in a 35% increase in inundation area by the 2040's, compared to a 57% increase when both SLR and projected changes in river flow were combined.
Confidence Intervals from Realizations of Simulated Nuclear Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younes, W.; Ratkiewicz, A.; Ressler, J. J.
2017-09-28
Various statistical techniques are discussed that can be used to assign a level of confidence in the prediction of models that depend on input data with known uncertainties and correlations. The particular techniques reviewed in this paper are: 1) random realizations of the input data using Monte-Carlo methods, 2) the construction of confidence intervals to assess the reliability of model predictions, and 3) resampling techniques to impose statistical constraints on the input data based on additional information. These techniques are illustrated with a calculation of the keff value, based on the 235U(n, f) and 239Pu (n, f) cross sections.
NEBULAR: Spectrum synthesis for mixed hydrogen-helium gas in ionization equilibrium
NASA Astrophysics Data System (ADS)
Schirmer, Mischa
2016-08-01
NEBULAR synthesizes the spectrum of a mixed hydrogen helium gas in collisional ionization equilibrium. It is not a spectral fitting code, but it can be used to resample a model spectrum onto the wavelength grid of a real observation. It supports a wide range of temperatures and densities. NEBULAR includes free-free, free-bound, two-photon and line emission from HI, HeI and HeII. The code will either return the composite model spectrum, or, if desired, the unrescaled atomic emission coefficients. It is written in C++ and depends on the GNU Scientific Library (GSL).
Computation of ancestry scores with mixed families and unrelated individuals.
Zhou, Yi-Hui; Marron, James S; Wright, Fred A
2018-03-01
The issue of robustness to family relationships in computing genotype ancestry scores such as eigenvector projections has received increased attention in genetic association, and is particularly challenging when sets of both unrelated individuals and closely related family members are included. The current standard is to compute loadings (left singular vectors) using unrelated individuals and to compute projected scores for remaining family members. However, projected ancestry scores from this approach suffer from shrinkage toward zero. We consider two main novel strategies: (i) matrix substitution based on decomposition of a target family-orthogonalized covariance matrix, and (ii) using family-averaged data to obtain loadings. We illustrate the performance via simulations, including resampling from 1000 Genomes Project data, and analysis of a cystic fibrosis dataset. The matrix substitution approach has similar performance to the current standard, but is simple and uses only a genotype covariance matrix, while the family-average method shows superior performance. Our approaches are accompanied by novel ancillary approaches that provide considerable insight, including individual-specific eigenvalue scree plots. © 2017 The Authors. Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.
Onboard Interferometric SAR Processor for the Ka-Band Radar Interferometer (KaRIn)
NASA Technical Reports Server (NTRS)
Esteban-Fernandez, Daniel; Rodriquez, Ernesto; Peral, Eva; Clark, Duane I.; Wu, Xiaoqing
2011-01-01
An interferometric synthetic aperture radar (SAR) onboard processor concept and algorithm has been developed for the Ka-band radar interferometer (KaRIn) instrument on the Surface and Ocean Topography (SWOT) mission. This is a mission- critical subsystem that will perform interferometric SAR processing and multi-look averaging over the oceans to decrease the data rate by three orders of magnitude, and therefore enable the downlink of the radar data to the ground. The onboard processor performs demodulation, range compression, coregistration, and re-sampling, and forms nine azimuth squinted beams. For each of them, an interferogram is generated, including common-band spectral filtering to improve correlation, followed by averaging to the final 1 1-km ground resolution pixel. The onboard processor has been prototyped on a custom FPGA-based cPCI board, which will be part of the radar s digital subsystem. The level of complexity of this technology, dictated by the implementation of interferometric SAR processing at high resolution, the extremely tight level of accuracy required, and its implementation on FPGAs are unprecedented at the time of this reporting for an onboard processor for flight applications.
Reyes, Betzaida
2010-01-01
The U.S. Geological Survey, in cooperation with the Delaware Department of Natural Resources and Environmental Control and the Delaware Geological Survey, conducted a groundwater-quality investigation to (a) describe the occurrence and distribution of selected contaminants, and (b) document any changes in groundwater quality in the Columbia aquifer public water-supply wells in the Coastal Plain in Delaware between 2000 and 2008. Thirty public water-supply wells located throughout the Columbia aquifer of the Delaware Coastal Plain were sampled from August through November of 2008. Twenty-two of the wells in the sampling network for this project were previously sampled in 2000. Eight new wells were selected to replace wells no longer in use. Groundwater collected from the wells was analyzed for the occurrence and distribution of selected pesticides, pesticide degradates, volatile organic compounds, nutrients, and major inorganic ions. Nine of the wells were analyzed for radioactive elements (radium-226, radium-228, and radon). Groundwater-quality data were compared for sites sampled in both 2000 and 2008 to document any changes in water quality. One or more pesticides were detected in samples from 29 of the 30 wells. There were no significant differences in pesticide and pesticide degradate concentrations and similar compounds were detected when comparing sampling results from 2000 and 2008. Pesticide and pesticide degradate concentrations were generally less than 1 microgram per liter. Twenty-four compounds, 14 pesticides, and 10 pesticide degradates were detected in at least one sample; the pesticide degradates, metolachlor ethanesulfonic acid, deethylatrazine, and alachlor ethanesulfonic acid were the most frequently detected compounds, each found in more than 50 percent of samples. Almost 80 percent of the detected pesticides were agricultural herbicides, which reflects the prevalence and wide distribution of agriculture in sampled areas, as well the dominance of agricultural pesticides among the target analytes for this study. No concentration of a pesticide or pesticide degradate exceeded any regulatory standard. Dieldrin, an insecticide that has been banned for several decades, was detected at a concentration that exceeded a non-regulatory health-based screening level of 0.002 micrograms per liter at nine sites. Volatile organic compounds (VOCs) were generally detected at concentrations of less than 1 microgram per liter, although 7 of the 31 detected VOCs had concentrations greater than 1 microgram per liter. There were no significant differences in VOC concentrations from 2000 to 2008; however, among the resampled wells, the mean number of VOCs detected per well was significantly different over the 8-year period. The number of VOCs detected per well decreased in 73 percent of the resampled wells; the decrease ranged from one to eight fewer detections in 2008 than in 2000. Chloroform and methyl tert-butyl ether were the most frequently detected VOCs, at 90 percent and 63 percent, respectively, among the 30 wells. Solvents were the most frequently detected class of VOCs. All measured concentrations of VOCs in groundwater were below established standards for drinking water and below other health-based guidelines. There were no significant differences in nutrient or major-ion concentrations between 2000 and 2008, however, the medians of two field measurements, pH and dissolved oxygen, were significantly higher in 2008 than in 2000 in the resampled wells. Although pH and dissolved oxygen were higher, water was still acidic and predominantly oxic. Nitrate was the predominant nutrient species in the Columbia aquifer, with a 90-percent detection frequency. The median nitrate concentration in groundwater was 4.88 milligrams per liter, which was slightly lower than, but not significantly different from, the median of 5.23 milligrams per liter for the 2000 samples. Concentrations of nitrate exceeded the U.S. Environmental Protection Agency's Maximum Contaminant Level or Federal drinking-water standard of 10 milligrams per liter as nitrogen in samples from two wells. Eight of the 30 wells sampled had iron or manganese concentrations that exceeded the U.S. Environmental Protection Agency's Secondary Maximum Contaminant Level; nine samples exceeded the Health Advisory Limit set by the Delaware Division of Public Health of 20 milligrams per liter for sodium in drinking water. Two radiochemical isotopes, radium-226 and radon-222, were detected in all nine groundwater samples analyzed; five samples had detectable levels of radium-228 activity. None of the samples exceeded the U.S Environmental Protection Agency's Maximum Contaminant Level for radium or radon in drinking water. Although radioactive elements were more frequently detected in 2008 than in 2000, this increased detection frequency is more likely due to lower detection levels in 2008 than 2000. The average age of groundwater entering the screens of the production wells sampled in 2008 ranged from 6 to 35 years, with a median groundwater age of 22 years. Groundwater age was positively correlated with well depth and negatively correlated with dissolved oxygen. Data from the 22 resampled wells indicate a significant positive difference in the average modeled groundwater-sample-age results. The average groundwater age from samples collected in 2008 was generally 7 years older than the average groundwater age from samples collected in 2000.
An Algorithm Framework for Isolating Anomalous Signals in Electromagnetic Data
NASA Astrophysics Data System (ADS)
Kappler, K. N.; Schneider, D.; Bleier, T.; MacLean, L. S.
2016-12-01
QuakeFinder and its international collaborators have installed and currently maintain an array of 165 three-axis induction magnetometer instrument sites in California, Peru, Taiwan, Greece, Chile and Sumatra. Based on research by Bleier et al. (2009), Fraser-Smith et al. (1990), and Freund (2007), the electromagnetic data from these instruments are being analyzed for pre-earthquake signatures. This analysis consists of both private research by QuakeFinder, and institutional collaborators (PUCP in Peru, NCU in Taiwan, NOA in Greece, LASP at University of Colorado, Stanford, UCLA, NASA-ESI, NASA-AMES and USC-CSEP). QuakeFinder has developed an algorithm framework aimed at isolating anomalous signals (pulses) in the time series. Results are presented from an application of this framework to induction-coil magnetometer data. Our data driven approach starts with sliding windows applied to uniformly resampled array data with a variety of lengths and overlap. Data variance (a proxy for energy) is calculated on each window and a short-term average/ long-term average (STA/LTA) filter is applied to the variance time series. Pulse identification is done by flagging time intervals in the STA/LTA filtered time series which exceed a threshold. Flagged time intervals are subsequently fed into a feature extraction program which computes statistical properties of the resampled data. These features are then filtered using a Principal Component Analysis (PCA) based method to cluster similar pulses. We explore the extent to which this approach categorizes pulses with known sources (e.g. cars, lightning, etc.) and the remaining pulses of unknown origin can be analyzed with respect to their relationship with seismicity. We seek a correlation between these daily pulse-counts (with known sources removed) and subsequent (days to weeks) seismic events greater than M5 within 15km radius. Thus we explore functions which map daily pulse-counts to a time series representing the likelihood of a seismic event occurring at some future time. These "pseudo-probabilities" can in turn be represented as Molchan diagrams. The Molchan curve provides an effective cost function for optimization and allows for a rigorous statistical assessment of the validity of pre-earthquake signals in the electromagnetic data.
NASA Astrophysics Data System (ADS)
Angrisano, Antonio; Maratea, Antonio; Gaglione, Salvatore
2018-01-01
In the absence of obstacles, a GPS device is generally able to provide continuous and accurate estimates of position, while in urban scenarios buildings can generate multipath and echo-only phenomena that severely affect the continuity and the accuracy of the provided estimates. Receiver autonomous integrity monitoring (RAIM) techniques are able to reduce the negative consequences of large blunders in urban scenarios, but require both a good redundancy and a low contamination to be effective. In this paper a resampling strategy based on bootstrap is proposed as an alternative to RAIM, in order to estimate accurately position in case of low redundancy and multiple blunders: starting with the pseudorange measurement model, at each epoch the available measurements are bootstrapped—that is random sampled with replacement—and the generated a posteriori empirical distribution is exploited to derive the final position. Compared to standard bootstrap, in this paper the sampling probabilities are not uniform, but vary according to an indicator of the measurement quality. The proposed method has been compared with two different RAIM techniques on a data set collected in critical conditions, resulting in a clear improvement on all considered figures of merit.
Gupta, Nidhi; Christiansen, Caroline Stordal; Hanisch, Christiana; Bay, Hans; Burr, Hermann; Holtermann, Andreas
2017-01-01
Objectives To investigate the differences between a questionnaire-based and accelerometer-based sitting time, and develop a model for improving the accuracy of questionnaire-based sitting time for predicting accelerometer-based sitting time. Methods 183 workers in a cross-sectional study reported sitting time per day using a single question during the measurement period, and wore 2 Actigraph GT3X+ accelerometers on the thigh and trunk for 1–4 working days to determine their actual sitting time per day using the validated Acti4 software. Least squares regression models were fitted with questionnaire-based siting time and other self-reported predictors to predict accelerometer-based sitting time. Results Questionnaire-based and accelerometer-based average sitting times were ≈272 and ≈476 min/day, respectively. A low Pearson correlation (r=0.32), high mean bias (204.1 min) and wide limits of agreement (549.8 to −139.7 min) between questionnaire-based and accelerometer-based sitting time were found. The prediction model based on questionnaire-based sitting explained 10% of the variance in accelerometer-based sitting time. Inclusion of 9 self-reported predictors in the model increased the explained variance to 41%, with 10% optimism using a resampling bootstrap validation. Based on a split validation analysis, the developed prediction model on ≈75% of the workers (n=132) reduced the mean and the SD of the difference between questionnaire-based and accelerometer-based sitting time by 64% and 42%, respectively, in the remaining 25% of the workers. Conclusions This study indicates that questionnaire-based sitting time has low validity and that a prediction model can be one solution to materially improve the precision of questionnaire-based sitting time. PMID:28093433
2010-03-01
sufficient replications often lead to models that lack precision in error estimation and thus imprecision in corresponding conclusions. This work develops...v Preface This work is dedicated to all who gave and continue to give in order for me to achieve some semblance of success. Benjamin M. Lee vi...develop, examine and test methodologies for an- alyzing test results from split-plot designs. In particular, this work determines the applicability
Variability of drought characteristics in Europe over the last 250 years
NASA Astrophysics Data System (ADS)
Hanel, Martin; Rakovec, Oldrich; Máca, Petr; Markonis, Yannis; Samaniego, Luis; Kumar, Rohini
2017-04-01
The mesoscale hydrological model (mHM) with spatial resolution 0.5deg is applied to simulate water balance across large part of continental Europe (excluding Scandinavia and Russia) for the period 1766-2015. The model is driven by available European gridded monthly temperature and precipitation reconstructions (Casty et al, 2007), which are disaggregated into daily time step using k-nearest neighbour resampling (Lall and Sharma, 1996). To quantify the uncertainty due to temporal disaggregation, several replicates of precipitation and temperature fields for the whole period are considered. In parallel, model parameter uncertainty is addressed by an ensemble of parameter realizations provided by Rakovec et al (2016). Deficit periods with respect to total runoff and soil moisture are identified at each grid cell using the variable threshold method. We assess the severity and intensity of drought, spatial extent of area under drought as well as the length of deficit periods. In addition, we also determine the occurrence of multi-year droughts during the period and evaluate the extremity of recent droughts in Europe (i.e., 2003, 2015) in the context of the whole multi-decadal record. References: Casty, C., Raible, C.C., Stocker, T.F., Luterbacher, J. and H. Wanner (2007), A European pattern climatology 1766-2000, Climate Dynamics, 29(7), DOI:10.1007/s00382-007-0257-6. Lall, U., and A. Sharma (1996), A Nearest neighbor bootstrap for resampling hydrologic time series, Water Resour. Res., 32(3), 679-693, DOI:10.1029/95WR02966. Rakovec, O., Kumar, R., Attinger, S. and Samaniego, L. (2016), Improving the realism of hydrologic model functioning through multivariate parameter estimation, Water Resour. Res., 52, DOI:10.1002/2016WR019430
Model Selection for Monitoring CO2 Plume during Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-12-31
The model selection method developed as part of this project mainly includes four steps: (1) assessing the connectivity/dynamic characteristics of a large prior ensemble of models, (2) model clustering using multidimensional scaling coupled with k-mean clustering, (3) model selection using the Bayes' rule in the reduced model space, (4) model expansion using iterative resampling of the posterior models. The fourth step expresses one of the advantages of the method: it provides a built-in means of quantifying the uncertainty in predictions made with the selected models. In our application to plume monitoring, by expanding the posterior space of models, the finalmore » ensemble of representations of geological model can be used to assess the uncertainty in predicting the future displacement of the CO2 plume. The software implementation of this approach is attached here.« less
Gleeson, Helena K; Wiley, Veronica; Wilcken, Bridget; Elliott, Elizabeth; Cowell, Christopher; Thonsett, Michael; Byrne, Geoffrey; Ambler, Geoffrey
2008-10-01
To assess the benefits and practicalities of setting up a newborn screening (NBS) program in Australia for congenital adrenal hyperplasia (CAH) through a 2 year pilot screening in ACT/NSW and comparing with case surveillance in other states. The pilot newborn screening occurred between 1/10/95 and 30/9/97 in NSW/ACT. Concurrently, case reporting for all new CAH cases occurred through the Australian Paediatric Surveillance Unit (APSU) across Australia. Details of clinical presentation, re-sampling and laboratory performance were assessed. 185,854 newborn infants were screened for CAH in NSW/ACT. Concurrently, 30 cases of CAH were reported to APSU, twelve of which were from NSW/ACT. CAH incidence was 1 in 15 488 (screened population) vs 1 in 18,034 births (unscreened) (difference not significant). Median age of initial notification was day 8 with confirmed diagnosis at 13(5-23) days in the screened population vs 16(7-37) days in the unscreened population (not significant). Of the 5 clinically unsuspected males in the screened population, one had mild salt-wasting by the time of notification, compared with salt-wasting crisis in all 6 males from the unscreened population. 96% of results were reported by day 10. Resampling was requested in 637 (0.4%) and median re-sampling delay was 11(0-28) days with higher resample rates in males (p < 0.0001). The within-laboratory cost per case of clinically unsuspected cases was A$42 717. There seems good justification for NBS for CAH based on clear prevention of salt-wasting crises and their potential long-term consequences. Also, prospects exist for enhancing screening performance.
NASA Astrophysics Data System (ADS)
Sargent, Steven D.; Greenman, Mark E.; Hansen, Scott M.
1998-11-01
The Spatial Infrared Imaging Telescope (SPIRIT III) is the primary sensor aboard the Midcourse Space Experiment (MSX), which was launched 24 April 1996. SPIRIT III included a Fourier transform spectrometer that collected terrestrial and celestial background phenomenology data for the Ballistic Missile Defense Organization (BMDO). This spectrometer used a helium-neon reference laser to measure the optical path difference (OPD) in the spectrometer and to command the analog-to-digital conversion of the infrared detector signals, thereby ensuring the data were sampled at precise increments of OPD. Spectrometer data must be sampled at accurate increments of OPD to optimize the spectral resolution and spectral position of the transformed spectra. Unfortunately, a failure in the power supply preregulator at the MSX spacecraft/SPIRIT III interface early in the mission forced the spectrometer to be operated without the reference laser until a failure investigation was completed. During this time data were collected in a backup mode that used an electronic clock to sample the data. These data were sampled evenly in time, and because the scan velocity varied, at nonuniform increments of OPD. The scan velocity profile depended on scan direction and scan length, and varied over time, greatly degrading the spectral resolution and spectral and radiometric accuracy of the measurements. The Convert software used to process the SPIRIT III data was modified to resample the clock-sampled data at even increments of OPD, using scan velocity profiles determined from ground and on-orbit data, greatly improving the quality of the clock-sampled data. This paper presents the resampling algorithm, the characterization of the scan velocity profiles, and the results of applying the resampling algorithm to on-orbit data.
NASA Technical Reports Server (NTRS)
Tedesco, M.; Kim, E. J.; Gasiewski, A.; Stankov, B.
2005-01-01
Brightness temperature maps at 18.7 and 37 GHz collected at the Fraser and North Park Meso-Scale Areas during the Cold Land Processes Experiment by the NOAA Polarimetric Scanning Radiometer (PSWA) airborne sensor are analyzed. The Fraser site is mostly covered by forest with a typical snowpack depth of 1 m while North Park has no forest cover and is characterized by patches of shallow snow. We examine histograms of the brightness temperatures at 500 m resolution for both the Fraser and North Park areas. The histograms can be modelled by a log-normal distribution in the case of the Fraser MSA and by a bi-modal distribution in the case of the North Park MSA. The histograms of the brightness temperatures at coarser resolutions are also plotted to study the effects of sensor resolution on the shape of the distribution, on the values of the average brightness temperatures and standard deviations. Finally, the values of brightness temperatures obtained by re-sampling (aggregating) the data at 25 km resolution are compared with the values of the brightness temperatures collected by the Advanced Microwave Scanning Radiometer (AMSR-E) and Special Sensor Microwave/Imager (SSMII) satellite radiometers. The results show that in both areas for sensor footprint larger than 5000 m, the brightness temperatures show a flat distribution and the memory of the initial distribution is lost. The values of the brightness temperatures measured by the satellite radiometers are in good agreement with the values obtained averaging the airborne data, even if some discrepancies occur.
Quantifying the risk of extreme aviation accidents
NASA Astrophysics Data System (ADS)
Das, Kumer Pial; Dey, Asim Kumer
2016-12-01
Air travel is considered a safe means of transportation. But when aviation accidents do occur they often result in fatalities. Fortunately, the most extreme accidents occur rarely. However, 2014 was the deadliest year in the past decade causing 111 plane crashes, and among them worst four crashes cause 298, 239, 162 and 116 deaths. In this study, we want to assess the risk of the catastrophic aviation accidents by studying historical aviation accidents. Applying a generalized Pareto model we predict the maximum fatalities from an aviation accident in future. The fitted model is compared with some of its competitive models. The uncertainty in the inferences are quantified using simulated aviation accident series, generated by bootstrap resampling and Monte Carlo simulations.
White, H; Racine, J
2001-01-01
We propose tests for individual and joint irrelevance of network inputs. Such tests can be used to determine whether an input or group of inputs "belong" in a particular model, thus permitting valid statistical inference based on estimated feedforward neural-network models. The approaches employ well-known statistical resampling techniques. We conduct a small Monte Carlo experiment showing that our tests have reasonable level and power behavior, and we apply our methods to examine whether there are predictable regularities in foreign exchange rates. We find that exchange rates do appear to contain information that is exploitable for enhanced point prediction, but the nature of the predictive relations evolves through time.
NASA Astrophysics Data System (ADS)
Moreno, Claudia E.; Guevara, Roger; Sánchez-Rojas, Gerardo; Téllez, Dianeis; Verdú, José R.
2008-01-01
Environmental assessment at the community level in highly diverse ecosystems is limited by taxonomic constraints and statistical methods requiring true replicates. Our objective was to show how diverse systems can be studied at the community level using higher taxa as biodiversity surrogates, and re-sampling methods to allow comparisons. To illustrate this we compared the abundance, richness, evenness and diversity of the litter fauna in a pine-oak forest in central Mexico among seasons, sites and collecting methods. We also assessed changes in the abundance of trophic guilds and evaluated the relationships between community parameters and litter attributes. With the direct search method we observed differences in the rate of taxa accumulation between sites. Bootstrap analysis showed that abundance varied significantly between seasons and sampling methods, but not between sites. In contrast, diversity and evenness were significantly higher at the managed than at the non-managed site. Tree regression models show that abundance varied mainly between seasons, whereas taxa richness was affected by litter attributes (composition and moisture content). The abundance of trophic guilds varied among methods and seasons, but overall we found that parasitoids, predators and detrivores decreased under management. Therefore, although our results suggest that management has positive effects on the richness and diversity of litter fauna, the analysis of trophic guilds revealed a contrasting story. Our results indicate that functional groups and re-sampling methods may be used as tools for describing community patterns in highly diverse systems. Also, the higher taxa surrogacy could be seen as a preliminary approach when it is not possible to identify the specimens at a low taxonomic level in a reasonable period of time and in a context of limited financial resources, but further studies are needed to test whether the results are specific to a system or whether they are general with regards to land management.
Confidence intervals in Flow Forecasting by using artificial neural networks
NASA Astrophysics Data System (ADS)
Panagoulia, Dionysia; Tsekouras, George
2014-05-01
One of the major inadequacies in implementation of Artificial Neural Networks (ANNs) for flow forecasting is the development of confidence intervals, because the relevant estimation cannot be implemented directly, contrasted to the classical forecasting methods. The variation in the ANN output is a measure of uncertainty in the model predictions based on the training data set. Different methods for uncertainty analysis, such as bootstrap, Bayesian, Monte Carlo, have already proposed for hydrologic and geophysical models, while methods for confidence intervals, such as error output, re-sampling, multi-linear regression adapted to ANN have been used for power load forecasting [1-2]. The aim of this paper is to present the re-sampling method for ANN prediction models and to develop this for flow forecasting of the next day. The re-sampling method is based on the ascending sorting of the errors between real and predicted values for all input vectors. The cumulative sample distribution function of the prediction errors is calculated and the confidence intervals are estimated by keeping the intermediate value, rejecting the extreme values according to the desired confidence levels, and holding the intervals symmetrical in probability. For application of the confidence intervals issue, input vectors are used from the Mesochora catchment in western-central Greece. The ANN's training algorithm is the stochastic training back-propagation process with decreasing functions of learning rate and momentum term, for which an optimization process is conducted regarding the crucial parameters values, such as the number of neurons, the kind of activation functions, the initial values and time parameters of learning rate and momentum term etc. Input variables are historical data of previous days, such as flows, nonlinearly weather related temperatures and nonlinearly weather related rainfalls based on correlation analysis between the under prediction flow and each implicit input variable of different ANN structures [3]. The performance of each ANN structure is evaluated by the voting analysis based on eleven criteria, which are the root mean square error (RMSE), the correlation index (R), the mean absolute percentage error (MAPE), the mean percentage error (MPE), the mean percentage error (ME), the percentage volume in errors (VE), the percentage error in peak (MF), the normalized mean bias error (NMBE), the normalized root mean bias error (NRMSE), the Nash-Sutcliffe model efficiency coefficient (E) and the modified Nash-Sutcliffe model efficiency coefficient (E1). The next day flow for the test set is calculated using the best ANN structure's model. Consequently, the confidence intervals of various confidence levels for training, evaluation and test sets are compared in order to explore the generalisation dynamics of confidence intervals from training and evaluation sets. [1] H.S. Hippert, C.E. Pedreira, R.C. Souza, "Neural networks for short-term load forecasting: A review and evaluation," IEEE Trans. on Power Systems, vol. 16, no. 1, 2001, pp. 44-55. [2] G. J. Tsekouras, N.E. Mastorakis, F.D. Kanellos, V.T. Kontargyri, C.D. Tsirekis, I.S. Karanasiou, Ch.N. Elias, A.D. Salis, P.A. Kontaxis, A.A. Gialketsi: "Short term load forecasting in Greek interconnected power system using ANN: Confidence Interval using a novel re-sampling technique with corrective Factor", WSEAS International Conference on Circuits, Systems, Electronics, Control & Signal Processing, (CSECS '10), Vouliagmeni, Athens, Greece, December 29-31, 2010. [3] D. Panagoulia, I. Trichakis, G. J. Tsekouras: "Flow Forecasting via Artificial Neural Networks - A Study for Input Variables conditioned on atmospheric circulation", European Geosciences Union, General Assembly 2012 (NH1.1 / AS1.16 - Extreme meteorological and hydrological events induced by severe weather and climate change), Vienna, Austria, 22-27 April 2012.
Optimization of Trade-offs in Error-free Image Transmission
NASA Astrophysics Data System (ADS)
Cox, Jerome R.; Moore, Stephen M.; Blaine, G. James; Zimmerman, John B.; Wallace, Gregory K.
1989-05-01
The availability of ubiquitous wide-area channels of both modest cost and higher transmission rate than voice-grade lines promises to allow the expansion of electronic radiology services to a larger community. The band-widths of the new services becoming available from the Integrated Services Digital Network (ISDN) are typically limited to 128 Kb/s, almost two orders of magnitude lower than popular LANs can support. Using Discrete Cosine Transform (DCT) techniques, a compressed approximation to an image may be rapidly transmitted. However, intensity or resampling transformations of the reconstructed image may reveal otherwise invisible artifacts of the approximate encoding. A progressive transmission scheme reported in ISO Working Paper N800 offers an attractive solution to this problem by rapidly reconstructing an apparently undistorted image from the DCT coefficients and then subse-quently transmitting the error image corresponding to the difference between the original and the reconstructed images. This approach achieves an error-free transmission without sacrificing the perception of rapid image delivery. Furthermore, subsequent intensity and resampling manipulations can be carried out with confidence. DCT coefficient precision affects the amount of error information that must be transmitted and, hence the delivery speed of error-free images. This study calculates the overall information coding rate for six radiographic images as a function of DCT coefficient precision. The results demonstrate that a minimum occurs for each of the six images at an average coefficient precision of between 0.5 and 1.0 bits per pixel (b/p). Apparently undistorted versions of these six images can be transmitted with a coding rate of between 0.25 and 0.75 b/p while error-free versions can be transmitted with an overall coding rate between 4.5 and 6.5 b/p.
A non-parametric peak calling algorithm for DamID-Seq.
Li, Renhua; Hempel, Leonie U; Jiang, Tingbo
2015-01-01
Protein-DNA interactions play a significant role in gene regulation and expression. In order to identify transcription factor binding sites (TFBS) of double sex (DSX)-an important transcription factor in sex determination, we applied the DNA adenine methylation identification (DamID) technology to the fat body tissue of Drosophila, followed by deep sequencing (DamID-Seq). One feature of DamID-Seq data is that induced adenine methylation signals are not assured to be symmetrically distributed at TFBS, which renders the existing peak calling algorithms for ChIP-Seq, including SPP and MACS, inappropriate for DamID-Seq data. This challenged us to develop a new algorithm for peak calling. A challenge in peaking calling based on sequence data is estimating the averaged behavior of background signals. We applied a bootstrap resampling method to short sequence reads in the control (Dam only). After data quality check and mapping reads to a reference genome, the peaking calling procedure compromises the following steps: 1) reads resampling; 2) reads scaling (normalization) and computing signal-to-noise fold changes; 3) filtering; 4) Calling peaks based on a statistically significant threshold. This is a non-parametric method for peak calling (NPPC). We also used irreproducible discovery rate (IDR) analysis, as well as ChIP-Seq data to compare the peaks called by the NPPC. We identified approximately 6,000 peaks for DSX, which point to 1,225 genes related to the fat body tissue difference between female and male Drosophila. Statistical evidence from IDR analysis indicated that these peaks are reproducible across biological replicates. In addition, these peaks are comparable to those identified by use of ChIP-Seq on S2 cells, in terms of peak number, location, and peaks width.
Table-driven image transformation engine algorithm
NASA Astrophysics Data System (ADS)
Shichman, Marc
1993-04-01
A high speed image transformation engine (ITE) was designed and a prototype built for use in a generic electronic light table and image perspective transformation application code. The ITE takes any linear transformation, breaks the transformation into two passes and resamples the image appropriately for each pass. The system performance is achieved by driving the engine with a set of look up tables computed at start up time for the calculation of pixel output contributions. Anti-aliasing is done automatically in the image resampling process. Operations such as multiplications and trigonometric functions are minimized. This algorithm can be used for texture mapping, image perspective transformation, electronic light table, and virtual reality.
On removing interpolation and resampling artifacts in rigid image registration.
Aganj, Iman; Yeo, Boon Thye Thomas; Sabuncu, Mert R; Fischl, Bruce
2013-02-01
We show that image registration using conventional interpolation and summation approximations of continuous integrals can generally fail because of resampling artifacts. These artifacts negatively affect the accuracy of registration by producing local optima, altering the gradient, shifting the global optimum, and making rigid registration asymmetric. In this paper, after an extensive literature review, we demonstrate the causes of the artifacts by comparing inclusion and avoidance of resampling analytically. We show the sum-of-squared-differences cost function formulated as an integral to be more accurate compared with its traditional sum form in a simple case of image registration. We then discuss aliasing that occurs in rotation, which is due to the fact that an image represented in the Cartesian grid is sampled with different rates in different directions, and propose the use of oscillatory isotropic interpolation kernels, which allow better recovery of true global optima by overcoming this type of aliasing. Through our experiments on brain, fingerprint, and white noise images, we illustrate the superior performance of the integral registration cost function in both the Cartesian and spherical coordinates, and also validate the introduced radial interpolation kernel by demonstrating the improvement in registration.
On Removing Interpolation and Resampling Artifacts in Rigid Image Registration
Aganj, Iman; Yeo, Boon Thye Thomas; Sabuncu, Mert R.; Fischl, Bruce
2013-01-01
We show that image registration using conventional interpolation and summation approximations of continuous integrals can generally fail because of resampling artifacts. These artifacts negatively affect the accuracy of registration by producing local optima, altering the gradient, shifting the global optimum, and making rigid registration asymmetric. In this paper, after an extensive literature review, we demonstrate the causes of the artifacts by comparing inclusion and avoidance of resampling analytically. We show the sum-of-squared-differences cost function formulated as an integral to be more accurate compared with its traditional sum form in a simple case of image registration. We then discuss aliasing that occurs in rotation, which is due to the fact that an image represented in the Cartesian grid is sampled with different rates in different directions, and propose the use of oscillatory isotropic interpolation kernels, which allow better recovery of true global optima by overcoming this type of aliasing. Through our experiments on brain, fingerprint, and white noise images, we illustrate the superior performance of the integral registration cost function in both the Cartesian and spherical coordinates, and also validate the introduced radial interpolation kernel by demonstrating the improvement in registration. PMID:23076044
Generating Virtual Patients by Multivariate and Discrete Re-Sampling Techniques.
Teutonico, D; Musuamba, F; Maas, H J; Facius, A; Yang, S; Danhof, M; Della Pasqua, O
2015-10-01
Clinical Trial Simulations (CTS) are a valuable tool for decision-making during drug development. However, to obtain realistic simulation scenarios, the patients included in the CTS must be representative of the target population. This is particularly important when covariate effects exist that may affect the outcome of a trial. The objective of our investigation was to evaluate and compare CTS results using re-sampling from a population pool and multivariate distributions to simulate patient covariates. COPD was selected as paradigm disease for the purposes of our analysis, FEV1 was used as response measure and the effects of a hypothetical intervention were evaluated in different populations in order to assess the predictive performance of the two methods. Our results show that the multivariate distribution method produces realistic covariate correlations, comparable to the real population. Moreover, it allows simulation of patient characteristics beyond the limits of inclusion and exclusion criteria in historical protocols. Both methods, discrete resampling and multivariate distribution generate realistic pools of virtual patients. However the use of a multivariate distribution enable more flexible simulation scenarios since it is not necessarily bound to the existing covariate combinations in the available clinical data sets.
NASA Astrophysics Data System (ADS)
Laloy, Eric; Linde, Niklas; Jacques, Diederik; Mariethoz, Grégoire
2016-04-01
The sequential geostatistical resampling (SGR) algorithm is a Markov chain Monte Carlo (MCMC) scheme for sampling from possibly non-Gaussian, complex spatially-distributed prior models such as geologic facies or categorical fields. In this work, we highlight the limits of standard SGR for posterior inference of high-dimensional categorical fields with realistically complex likelihood landscapes and benchmark a parallel tempering implementation (PT-SGR). Our proposed PT-SGR approach is demonstrated using synthetic (error corrupted) data from steady-state flow and transport experiments in categorical 7575- and 10,000-dimensional 2D conductivity fields. In both case studies, every SGR trial gets trapped in a local optima while PT-SGR maintains an higher diversity in the sampled model states. The advantage of PT-SGR is most apparent in an inverse transport problem where the posterior distribution is made bimodal by construction. PT-SGR then converges towards the appropriate data misfit much faster than SGR and partly recovers the two modes. In contrast, for the same computational resources SGR does not fit the data to the appropriate error level and hardly produces a locally optimal solution that looks visually similar to one of the two reference modes. Although PT-SGR clearly surpasses SGR in performance, our results also indicate that using a small number (16-24) of temperatures (and thus parallel cores) may not permit complete sampling of the posterior distribution by PT-SGR within a reasonable computational time (less than 1-2 weeks).
The Need of Nested Grids for Aerial and Satellite Images and Digital Elevation Models
NASA Astrophysics Data System (ADS)
Villa, G.; Mas, S.; Fernández-Villarino, X.; Martínez-Luceño, J.; Ojeda, J. C.; Pérez-Martín, B.; Tejeiro, J. A.; García-González, C.; López-Romero, E.; Soteres, C.
2016-06-01
Usual workflows for production, archiving, dissemination and use of Earth observation images (both aerial and from remote sensing satellites) pose big interoperability problems, as for example: non-alignment of pixels at the different levels of the pyramids that makes it impossible to overlay, compare and mosaic different orthoimages, without resampling them and the need to apply multiple resamplings and compression-decompression cycles. These problems cause great inefficiencies in production, dissemination through web services and processing in "Big Data" environments. Most of them can be avoided, or at least greatly reduced, with the use of a common "nested grid" for mutiresolution production, archiving, dissemination and exploitation of orthoimagery, digital elevation models and other raster data. "Nested grids" are space allocation schemas that organize image footprints, pixel sizes and pixel positions at all pyramid levels, in order to achieve coherent and consistent multiresolution coverage of a whole working area. A "nested grid" must be complemented by an appropriate "tiling schema", ideally based on the "quad-tree" concept. In the last years a "de facto standard" grid and Tiling Schema has emerged and has been adopted by virtually all major geospatial data providers. It has also been adopted by OGC in its "WMTS Simple Profile" standard. In this paper we explain how the adequate use of this tiling schema as common nested grid for orthoimagery, DEMs and other types of raster data constitutes the most practical solution to most of the interoperability problems of these types of data.
Exchangeability, extreme returns and Value-at-Risk forecasts
NASA Astrophysics Data System (ADS)
Huang, Chun-Kai; North, Delia; Zewotir, Temesgen
2017-07-01
In this paper, we propose a new approach to extreme value modelling for the forecasting of Value-at-Risk (VaR). In particular, the block maxima and the peaks-over-threshold methods are generalised to exchangeable random sequences. This caters for the dependencies, such as serial autocorrelation, of financial returns observed empirically. In addition, this approach allows for parameter variations within each VaR estimation window. Empirical prior distributions of the extreme value parameters are attained by using resampling procedures. We compare the results of our VaR forecasts to that of the unconditional extreme value theory (EVT) approach and the conditional GARCH-EVT model for robust conclusions.
Collell, Guillem; Prelec, Drazen; Patil, Kaustubh R
2018-01-31
Class imbalance presents a major hurdle in the application of classification methods. A commonly taken approach is to learn ensembles of classifiers using rebalanced data. Examples include bootstrap averaging (bagging) combined with either undersampling or oversampling of the minority class examples. However, rebalancing methods entail asymmetric changes to the examples of different classes, which in turn can introduce their own biases. Furthermore, these methods often require specifying the performance measure of interest a priori, i.e., before learning. An alternative is to employ the threshold moving technique, which applies a threshold to the continuous output of a model, offering the possibility to adapt to a performance measure a posteriori , i.e., a plug-in method. Surprisingly, little attention has been paid to this combination of a bagging ensemble and threshold-moving. In this paper, we study this combination and demonstrate its competitiveness. Contrary to the other resampling methods, we preserve the natural class distribution of the data resulting in well-calibrated posterior probabilities. Additionally, we extend the proposed method to handle multiclass data. We validated our method on binary and multiclass benchmark data sets by using both, decision trees and neural networks as base classifiers. We perform analyses that provide insights into the proposed method.
NASA Astrophysics Data System (ADS)
Khlopenkov, Konstantin; Duda, David; Thieman, Mandana; Minnis, Patrick; Su, Wenying; Bedka, Kristopher
2017-10-01
The Deep Space Climate Observatory (DSCOVR) enables analysis of the daytime Earth radiation budget via the onboard Earth Polychromatic Imaging Camera (EPIC) and National Institute of Standards and Technology Advanced Radiometer (NISTAR). Radiance observations and cloud property retrievals from low earth orbit and geostationary satellite imagers have to be co-located with EPIC pixels to provide scene identification in order to select anisotropic directional models needed to calculate shortwave and longwave fluxes. A new algorithm is proposed for optimal merging of selected radiances and cloud properties derived from multiple satellite imagers to obtain seamless global hourly composites at 5-km resolution. An aggregated rating is employed to incorporate several factors and to select the best observation at the time nearest to the EPIC measurement. Spatial accuracy is improved using inverse mapping with gradient search during reprojection and bicubic interpolation for pixel resampling. The composite data are subsequently remapped into EPIC-view domain by convolving composite pixels with the EPIC point spread function defined with a half-pixel accuracy. PSF-weighted average radiances and cloud properties are computed separately for each cloud phase. The algorithm has demonstrated contiguous global coverage for any requested time of day with a temporal lag of under 2 hours in over 95% of the globe.
NASA Technical Reports Server (NTRS)
Khlopenkov, Konstantin; Duda, David; Thieman, Mandana; Minnis, Patrick; Su, Wenying; Bedka, Kristopher
2017-01-01
The Deep Space Climate Observatory (DSCOVR) enables analysis of the daytime Earth radiation budget via the onboard Earth Polychromatic Imaging Camera (EPIC) and National Institute of Standards and Technology Advanced Radiometer (NISTAR). Radiance observations and cloud property retrievals from low earth orbit and geostationary satellite imagers have to be co-located with EPIC pixels to provide scene identification in order to select anisotropic directional models needed to calculate shortwave and longwave fluxes. A new algorithm is proposed for optimal merging of selected radiances and cloud properties derived from multiple satellite imagers to obtain seamless global hourly composites at 5-kilometer resolution. An aggregated rating is employed to incorporate several factors and to select the best observation at the time nearest to the EPIC measurement. Spatial accuracy is improved using inverse mapping with gradient search during reprojection and bicubic interpolation for pixel resampling. The composite data are subsequently remapped into EPIC-view domain by convolving composite pixels with the EPIC point spread function (PSF) defined with a half-pixel accuracy. PSF-weighted average radiances and cloud properties are computed separately for each cloud phase. The algorithm has demonstrated contiguous global coverage for any requested time of day with a temporal lag of under 2 hours in over 95 percent of the globe.
Analysis of model development strategies: predicting ventral hernia recurrence.
Holihan, Julie L; Li, Linda T; Askenasy, Erik P; Greenberg, Jacob A; Keith, Jerrod N; Martindale, Robert G; Roth, J Scott; Liang, Mike K
2016-11-01
There have been many attempts to identify variables associated with ventral hernia recurrence; however, it is unclear which statistical modeling approach results in models with greatest internal and external validity. We aim to assess the predictive accuracy of models developed using five common variable selection strategies to determine variables associated with hernia recurrence. Two multicenter ventral hernia databases were used. Database 1 was randomly split into "development" and "internal validation" cohorts. Database 2 was designated "external validation". The dependent variable for model development was hernia recurrence. Five variable selection strategies were used: (1) "clinical"-variables considered clinically relevant, (2) "selective stepwise"-all variables with a P value <0.20 were assessed in a step-backward model, (3) "liberal stepwise"-all variables were included and step-backward regression was performed, (4) "restrictive internal resampling," and (5) "liberal internal resampling." Variables were included with P < 0.05 for the Restrictive model and P < 0.10 for the Liberal model. A time-to-event analysis using Cox regression was performed using these strategies. The predictive accuracy of the developed models was tested on the internal and external validation cohorts using Harrell's C-statistic where C > 0.70 was considered "reasonable". The recurrence rate was 32.9% (n = 173/526; median/range follow-up, 20/1-58 mo) for the development cohort, 36.0% (n = 95/264, median/range follow-up 20/1-61 mo) for the internal validation cohort, and 12.7% (n = 155/1224, median/range follow-up 9/1-50 mo) for the external validation cohort. Internal validation demonstrated reasonable predictive accuracy (C-statistics = 0.772, 0.760, 0.767, 0.757, 0.763), while on external validation, predictive accuracy dipped precipitously (C-statistic = 0.561, 0.557, 0.562, 0.553, 0.560). Predictive accuracy was equally adequate on internal validation among models; however, on external validation, all five models failed to demonstrate utility. Future studies should report multiple variable selection techniques and demonstrate predictive accuracy on external data sets for model validation. Copyright © 2016 Elsevier Inc. All rights reserved.
Gray, B.R.; Haro, R.J.; Rogala, J.T.; Sauer, J.S.
2005-01-01
1. Macroinvertebrate count data often exhibit nested or hierarchical structure. Examples include multiple measurements along each of a set of streams, and multiple synoptic measurements from each of a set of ponds. With data exhibiting hierarchical structure, outcomes at both sampling (e.g. Within stream) and aggregated (e.g. Stream) scales are often of interest. Unfortunately, methods for modelling hierarchical count data have received little attention in the ecological literature. 2. We demonstrate the use of hierarchical count models using fingernail clam (Family: Sphaeriidae) count data and habitat predictors derived from sampling and aggregated spatial scales. The sampling scale corresponded to that of a standard Ponar grab (0.052 m(2)) and the aggregated scale to impounded and backwater regions within 38-197 km reaches of the Upper Mississippi River. Impounded and backwater regions were resampled annually for 10 years. Consequently, measurements on clams were nested within years. Counts were treated as negative binomial random variates, and means from each resampling event as random departures from the impounded and backwater region grand means. 3. Clam models were improved by the addition of covariates that varied at both the sampling and regional scales. Substrate composition varied at the sampling scale and was associated with model improvements, and reductions (for a given mean) in variance at the sampling scale. Inorganic suspended solids (ISS) levels, measured in the summer preceding sampling, also yielded model improvements and were associated with reductions in variances at the regional rather than sampling scales. ISS levels were negatively associated with mean clam counts. 4. Hierarchical models allow hierarchically structured data to be modelled without ignoring information specific to levels of the hierarchy. In addition, information at each hierarchical level may be modelled as functions of covariates that themselves vary by and within levels. As a result, hierarchical models provide researchers and resource managers with a method for modelling hierarchical data that explicitly recognises both the sampling design and the information contained in the corresponding data.
Kent, Robert; Belitz, Kenneth; Fram, Miranda S.
2014-01-01
The Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The GAMA-PBP began sampling, primarily public supply wells in May 2004. By the end of February 2006, seven (of what would eventually be 35) study units had been sampled over a wide area of the State. Selected wells in these first seven study units were resampled for water quality from August 2007 to November 2008 as part of an assessment of temporal trends in water quality by the GAMA-PBP. The initial sampling was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within the seven study units. In the 7 study units, 462 wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study area. Wells selected this way are referred to as grid wells or status wells. Approximately 3 years after the initial sampling, 55 of these previously sampled status wells (approximately 10 percent in each study unit) were randomly selected for resampling. The seven resampled study units, the total number of status wells sampled for each study unit, and the number of these wells resampled for trends are as follows, in chronological order of sampling: San Diego Drainages (53 status wells, 7 trend wells), North San Francisco Bay (84, 10), Northern San Joaquin Basin (51, 5), Southern Sacramento Valley (67, 7), San Fernando–San Gabriel (35, 6), Monterey Bay and Salinas Valley Basins (91, 11), and Southeast San Joaquin Valley (83, 9). The groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], pesticides, and pesticide degradates), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), and naturally-occurring inorganic constituents (nutrients, major and minor ions, and trace elements). Naturally-occurring isotopes (tritium, carbon-14, and stable isotopes of hydrogen and oxygen in water) also were measured to help identify processes affecting groundwater quality and the sources and ages of the sampled groundwater. Nearly 300 constituents and water-quality indicators were investigated. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected at 24 percent of the 55 status wells resampled for trends, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a noticeable source of bias in the data for the groundwater samples. Differences between replicate samples were mostly within acceptable ranges, indicating acceptably low variability in analytical results. Matrix-spike recoveries were within the acceptable range (70 to 130 percent) for 75 percent of the compounds for which matrix spikes were collected. This study did not attempt to evaluate the quality of water delivered to consumers. After withdrawal, groundwater typically is treated, disinfected, and blended with other waters to maintain acceptable water quality. The benchmarks used in this report apply to treated water that is served to the consumer, not to untreated groundwater. To provide some context for the results, however, concentrations of constituents measured in these groundwater samples were compared with benchmarks established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH). Comparisons between data collected for this study and benchmarks for drinking water are for illustrative purposes only and are not indicative of compliance or non-compliance with those benchmarks. Most constituents that were detected in groundwater samples from the trend wells were found at concentrations less than drinking-water benchmarks. Four VOCs—trichloroethene, tetrachloroethene, 1,2-dibromo-3-chloropropane, and methyl tert-butyl ether—were detected in one or more wells at concentrations greater than their health-based benchmarks, and six VOCs were detected in at least 10 percent of the samples during initial sampling or resampling of the trend wells. No pesticides were detected at concentrations near or greater than their health-based benchmarks. Three pesticide constituents—atrazine, deethylatrazine, and simazine—were detected in more than 10 percent of the trend-well samples during both sampling periods. Perchlorate, a constituent of special interest, was detected more frequently, and at greater concentrations during resampling than during initial sampling, but this may be due to a change in analytical method between the sampling periods, rather than to a change in groundwater quality. Another constituent of special interest, 1,2,3-TCP, was also detected more frequently during resampling than during initial sampling, but this pattern also may not reflect a change in groundwater quality. Samples from several of the wells where 1,2,3-TCP was detected by low-concentration-level analysis during resampling were not analyzed for 1,2,3-TCP using a low-level method during initial sampling. Most detections of nutrients and trace elements in samples from trend wells were less than health-based benchmarks during both sampling periods. Exceptions include nitrate, arsenic, boron, and vanadium, all detected at concentrations greater than their health-based benchmarks in at least one well during both sampling periods, and molybdenum, detected at concentrations greater than its health-based benchmark during resampling only. The isotopic ratios of oxygen and hydrogen in water and tritium and carbon-14 activities generally changed little between sampling periods, suggesting that the predominant sources and ages of groundwater in most trend wells were consistent between the sampling periods.
Bayesian Optimization for Neuroimaging Pre-processing in Brain Age Classification and Prediction
Lancaster, Jenessa; Lorenz, Romy; Leech, Rob; Cole, James H.
2018-01-01
Neuroimaging-based age prediction using machine learning is proposed as a biomarker of brain aging, relating to cognitive performance, health outcomes and progression of neurodegenerative disease. However, even leading age-prediction algorithms contain measurement error, motivating efforts to improve experimental pipelines. T1-weighted MRI is commonly used for age prediction, and the pre-processing of these scans involves normalization to a common template and resampling to a common voxel size, followed by spatial smoothing. Resampling parameters are often selected arbitrarily. Here, we sought to improve brain-age prediction accuracy by optimizing resampling parameters using Bayesian optimization. Using data on N = 2003 healthy individuals (aged 16–90 years) we trained support vector machines to (i) distinguish between young (<22 years) and old (>50 years) brains (classification) and (ii) predict chronological age (regression). We also evaluated generalisability of the age-regression model to an independent dataset (CamCAN, N = 648, aged 18–88 years). Bayesian optimization was used to identify optimal voxel size and smoothing kernel size for each task. This procedure adaptively samples the parameter space to evaluate accuracy across a range of possible parameters, using independent sub-samples to iteratively assess different parameter combinations to arrive at optimal values. When distinguishing between young and old brains a classification accuracy of 88.1% was achieved, (optimal voxel size = 11.5 mm3, smoothing kernel = 2.3 mm). For predicting chronological age, a mean absolute error (MAE) of 5.08 years was achieved, (optimal voxel size = 3.73 mm3, smoothing kernel = 3.68 mm). This was compared to performance using default values of 1.5 mm3 and 4mm respectively, resulting in MAE = 5.48 years, though this 7.3% improvement was not statistically significant. When assessing generalisability, best performance was achieved when applying the entire Bayesian optimization framework to the new dataset, out-performing the parameters optimized for the initial training dataset. Our study outlines the proof-of-principle that neuroimaging models for brain-age prediction can use Bayesian optimization to derive case-specific pre-processing parameters. Our results suggest that different pre-processing parameters are selected when optimization is conducted in specific contexts. This potentially motivates use of optimization techniques at many different points during the experimental process, which may improve statistical sensitivity and reduce opportunities for experimenter-led bias. PMID:29483870
Chaffee, Benjamin W.; Feldens, Carlos Alberto; Vítolo, Márcia Regina
2014-01-01
Purpose Estimate the association between breastfeeding ≥24 months and severe early childhood caries (ECC). Methods Within a birth cohort (n=715) from low-income families in Porto Alegre, Brazil, the age 38-month prevalence of severe-ECC (≥4 affected tooth surfaces or ≥1 affected maxillary anterior teeth) was compared over breastfeeding duration categories using marginal structural models to account for time-dependent confounding by other feeding habits and child growth. Additional analyses assessed whether daily breastfeeding frequency modified the association of breastfeeding duration and severe-ECC. Multiple imputation and censoring weights were used to address incomplete covariate information and missing outcomes, respectively. Confidence intervals (CI) were estimated using bootstrap re-sampling. Results Breastfeeding ≥24 months was associated with the highest adjusted population-average severe-ECC prevalence (0.45, 95% CI: 0.36, 0.54) compared with breastfeeding <6 months (0.22, 95% CI: 0.15, 0.28), 6–11 months (0.38, 95% CI: 0.25, 0.53), or 12–23 months (0.39, 95% CI: 0.20, 0.56). High frequency breastfeeding enhanced the association between long-duration breastfeeding and caries (excess prevalence due to interaction: 0.13, 80% CI: −0.03, 0.30). Conclusions In this population, breastfeeding ≥24 months, particularly if frequent, was associated with severe-ECC. Dental health should be one consideration, among many, in evaluating health outcomes associated with breastfeeding ≥24 months. PMID:24636616
Automatic staging of bladder cancer on CT urography
NASA Astrophysics Data System (ADS)
Garapati, Sankeerth S.; Hadjiiski, Lubomir M.; Cha, Kenny H.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Weizer, Alon; Alva, Ajjai; Paramagul, Chintana; Wei, Jun; Zhou, Chuan
2016-03-01
Correct staging of bladder cancer is crucial for the decision of neoadjuvant chemotherapy treatment and minimizing the risk of under- or over-treatment. Subjectivity and variability of clinicians in utilizing available diagnostic information may lead to inaccuracy in staging bladder cancer. An objective decision support system that merges the information in a predictive model based on statistical outcomes of previous cases and machine learning may assist clinicians in making more accurate and consistent staging assessments. In this study, we developed a preliminary method to stage bladder cancer. With IRB approval, 42 bladder cancer cases with CTU scans were collected from patient files. The cases were classified into two classes based on pathological stage T2, which is the decision threshold for neoadjuvant chemotherapy treatment (i.e. for stage >=T2) clinically. There were 21 cancers below stage T2 and 21 cancers at stage T2 or above. All 42 lesions were automatically segmented using our auto-initialized cascaded level sets (AI-CALS) method. Morphological features were extracted, which were selected and merged by linear discriminant analysis (LDA) classifier. A leave-one-case-out resampling scheme was used to train and test the classifier using the 42 lesions. The classification accuracy was quantified using the area under the ROC curve (Az). The average training Az was 0.97 and the test Az was 0.85. The classifier consistently selected the lesion volume, a gray level feature and a contrast feature. This predictive model shows promise for assisting in assessing the bladder cancer stage.
Approximate median regression for complex survey data with skewed response.
Fraser, Raphael André; Lipsitz, Stuart R; Sinha, Debajyoti; Fitzmaurice, Garrett M; Pan, Yi
2016-12-01
The ready availability of public-use data from various large national complex surveys has immense potential for the assessment of population characteristics using regression models. Complex surveys can be used to identify risk factors for important diseases such as cancer. Existing statistical methods based on estimating equations and/or utilizing resampling methods are often not valid with survey data due to complex survey design features. That is, stratification, multistage sampling, and weighting. In this article, we accommodate these design features in the analysis of highly skewed response variables arising from large complex surveys. Specifically, we propose a double-transform-both-sides (DTBS)'based estimating equations approach to estimate the median regression parameters of the highly skewed response; the DTBS approach applies the same Box-Cox type transformation twice to both the outcome and regression function. The usual sandwich variance estimate can be used in our approach, whereas a resampling approach would be needed for a pseudo-likelihood based on minimizing absolute deviations (MAD). Furthermore, the approach is relatively robust to the true underlying distribution, and has much smaller mean square error than a MAD approach. The method is motivated by an analysis of laboratory data on urinary iodine (UI) concentration from the National Health and Nutrition Examination Survey. © 2016, The International Biometric Society.
Approximate Median Regression for Complex Survey Data with Skewed Response
Fraser, Raphael André; Lipsitz, Stuart R.; Sinha, Debajyoti; Fitzmaurice, Garrett M.; Pan, Yi
2016-01-01
Summary The ready availability of public-use data from various large national complex surveys has immense potential for the assessment of population characteristics using regression models. Complex surveys can be used to identify risk factors for important diseases such as cancer. Existing statistical methods based on estimating equations and/or utilizing resampling methods are often not valid with survey data due to complex survey design features. That is, stratification, multistage sampling and weighting. In this paper, we accommodate these design features in the analysis of highly skewed response variables arising from large complex surveys. Specifically, we propose a double-transform-both-sides (DTBS) based estimating equations approach to estimate the median regression parameters of the highly skewed response; the DTBS approach applies the same Box-Cox type transformation twice to both the outcome and regression function. The usual sandwich variance estimate can be used in our approach, whereas a resampling approach would be needed for a pseudo-likelihood based on minimizing absolute deviations (MAD). Furthermore, the approach is relatively robust to the true underlying distribution, and has much smaller mean square error than a MAD approach. The method is motivated by an analysis of laboratory data on urinary iodine (UI) concentration from the National Health and Nutrition Examination Survey. PMID:27062562
NASA Astrophysics Data System (ADS)
Montzka, Carsten; Hendricks Franssen, Harrie-Jan; Moradkhani, Hamid; Pütz, Thomas; Han, Xujun; Vereecken, Harry
2013-04-01
An adequate description of soil hydraulic properties is essential for a good performance of hydrological forecasts. So far, several studies showed that data assimilation could reduce the parameter uncertainty by considering soil moisture observations. However, these observations and also the model forcings were recorded with a specific measurement error. It seems a logical step to base state updating and parameter estimation on observations made at multiple time steps, in order to reduce the influence of outliers at single time steps given measurement errors and unknown model forcings. Such outliers could result in erroneous state estimation as well as inadequate parameters. This has been one of the reasons to use a smoothing technique as implemented for Bayesian data assimilation methods such as the Ensemble Kalman Filter (i.e. Ensemble Kalman Smoother). Recently, an ensemble-based smoother has been developed for state update with a SIR particle filter. However, this method has not been used for dual state-parameter estimation. In this contribution we present a Particle Smoother with sequentially smoothing of particle weights for state and parameter resampling within a time window as opposed to the single time step data assimilation used in filtering techniques. This can be seen as an intermediate variant between a parameter estimation technique using global optimization with estimation of single parameter sets valid for the whole period, and sequential Monte Carlo techniques with estimation of parameter sets evolving from one time step to another. The aims are i) to improve the forecast of evaporation and groundwater recharge by estimating hydraulic parameters, and ii) to reduce the impact of single erroneous model inputs/observations by a smoothing method. In order to validate the performance of the proposed method in a real world application, the experiment is conducted in a lysimeter environment.
Remote biopsy darting and marking of polar bears
Pagano, Anthony M.; Peacock, Elizabeth; McKinney, Melissa A.
2014-01-01
Remote biopsy darting of polar bears (Ursus maritimus) is less invasive and time intensive than physical capture and is therefore useful when capture is challenging or unsafe. We worked with two manufacturers to develop a combination biopsy and marking dart for use on polar bears. We had an 80% success rate of collecting a tissue sample with a single biopsy dart and collected tissue samples from 143 polar bears on land, in water, and on sea ice. Dye marks ensured that 96% of the bears were not resampled during the same sampling period, and we recovered 96% of the darts fired. Biopsy heads with 5 mm diameters collected an average of 0.12 g of fur, tissue, and subcutaneous adipose tissue, while biopsy heads with 7 mm diameters collected an average of 0.32 g. Tissue samples were 99.3% successful (142 of 143 samples) in providing a genetic and sex identification of individuals. We had a 64% success rate collecting adipose tissue and we successfully examined fatty acid signatures in all adipose samples. Adipose lipid content values were lower compared to values from immobilized or harvested polar bears, indicating that our method was not suitable for quantifying adipose lipid content.
An empirical study using permutation-based resampling in meta-regression
2012-01-01
Background In meta-regression, as the number of trials in the analyses decreases, the risk of false positives or false negatives increases. This is partly due to the assumption of normality that may not hold in small samples. Creation of a distribution from the observed trials using permutation methods to calculate P values may allow for less spurious findings. Permutation has not been empirically tested in meta-regression. The objective of this study was to perform an empirical investigation to explore the differences in results for meta-analyses on a small number of trials using standard large sample approaches verses permutation-based methods for meta-regression. Methods We isolated a sample of randomized controlled clinical trials (RCTs) for interventions that have a small number of trials (herbal medicine trials). Trials were then grouped by herbal species and condition and assessed for methodological quality using the Jadad scale, and data were extracted for each outcome. Finally, we performed meta-analyses on the primary outcome of each group of trials and meta-regression for methodological quality subgroups within each meta-analysis. We used large sample methods and permutation methods in our meta-regression modeling. We then compared final models and final P values between methods. Results We collected 110 trials across 5 intervention/outcome pairings and 5 to 10 trials per covariate. When applying large sample methods and permutation-based methods in our backwards stepwise regression the covariates in the final models were identical in all cases. The P values for the covariates in the final model were larger in 78% (7/9) of the cases for permutation and identical for 22% (2/9) of the cases. Conclusions We present empirical evidence that permutation-based resampling may not change final models when using backwards stepwise regression, but may increase P values in meta-regression of multiple covariates for relatively small amount of trials. PMID:22587815
Methods of Soil Resampling to Monitor Changes in the Chemical Concentrations of Forest Soils.
Lawrence, Gregory B; Fernandez, Ivan J; Hazlett, Paul W; Bailey, Scott W; Ross, Donald S; Villars, Thomas R; Quintana, Angelica; Ouimet, Rock; McHale, Michael R; Johnson, Chris E; Briggs, Russell D; Colter, Robert A; Siemion, Jason; Bartlett, Olivia L; Vargas, Olga; Antidormi, Michael R; Koppers, Mary M
2016-11-25
Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise.
Kent, Robert; Landon, Matthew K.
2016-01-01
From 2004 to 2011, the U.S. Geological Survey collected samples from 1686 wells across the State of California as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project (PBP). From 2007 to 2013, 224 of these wells were resampled to assess temporal trends in water quality. The samples were analyzed for 216 water-quality constituents, including inorganic and organic compounds as well as isotopic tracers. The resampled wells were grouped into five hydrogeologic zones. A nonparametric hypothesis test was used to test the differences between initial sampling and resampling results to evaluate possible step trends in water-quality, statewide, and within each hydrogeologic zone. The hypothesis tests were performed on the 79 constituents that were detected in more than 5 % of the samples collected during either sampling period in at least one hydrogeologic zone. Step trends were detected for 17 constituents. Increasing trends were detected for alkalinity, aluminum, beryllium, boron, lithium, orthophosphate, perchlorate, sodium, and specific conductance. Decreasing trends were detected for atrazine, cobalt, dissolved oxygen, lead, nickel, pH, simazine, and tritium. Tritium was expected to decrease due to decreasing values in precipitation, and the detection of decreases indicates that the method is capable of resolving temporal trends.
Methods of Soil Resampling to Monitor Changes in the Chemical Concentrations of Forest Soils
Lawrence, Gregory B.; Fernandez, Ivan J.; Hazlett, Paul W.; Bailey, Scott W.; Ross, Donald S.; Villars, Thomas R.; Quintana, Angelica; Ouimet, Rock; McHale, Michael R.; Johnson, Chris E.; Briggs, Russell D.; Colter, Robert A.; Siemion, Jason; Bartlett, Olivia L.; Vargas, Olga; Antidormi, Michael R.; Koppers, Mary M.
2016-01-01
Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise. PMID:27911419
Methods of soil resampling to monitor changes in the chemical concentrations of forest soils
Lawrence, Gregory B.; Fernandez, Ivan J.; Hazlett, Paul W.; Bailey, Scott W.; Ross, Donald S.; Villars, Thomas R.; Quintana, Angelica; Ouimet, Rock; McHale, Michael; Johnson, Chris E.; Briggs, Russell D.; Colter, Robert A.; Siemion, Jason; Bartlett, Olivia L.; Vargas, Olga; Antidormi, Michael; Koppers, Mary Margaret
2016-01-01
Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise.
Maximum likelihood resampling of noisy, spatially correlated data
NASA Astrophysics Data System (ADS)
Goff, J.; Jenkins, C.
2005-12-01
In any geologic application, noisy data are sources of consternation for researchers, inhibiting interpretability and marring images with unsightly and unrealistic artifacts. Filtering is the typical solution to dealing with noisy data. However, filtering commonly suffers from ad hoc (i.e., uncalibrated, ungoverned) application, which runs the risk of erasing high variability components of the field in addition to the noise components. We present here an alternative to filtering: a newly developed methodology for correcting noise in data by finding the "best" value given the data value, its uncertainty, and the data values and uncertainties at proximal locations. The motivating rationale is that data points that are close to each other in space cannot differ by "too much", where how much is "too much" is governed by the field correlation properties. Data with large uncertainties will frequently violate this condition, and in such cases need to be corrected, or "resampled." The best solution for resampling is determined by the maximum of the likelihood function defined by the intersection of two probability density functions (pdf): (1) the data pdf, with mean and variance determined by the data value and square uncertainty, respectively, and (2) the geostatistical pdf, whose mean and variance are determined by the kriging algorithm applied to proximal data values. A Monte Carlo sampling of the data probability space eliminates non-uniqueness, and weights the solution toward data values with lower uncertainties. A test with a synthetic data set sampled from a known field demonstrates quantitatively and qualitatively the improvement provided by the maximum likelihood resampling algorithm. The method is also applied to three marine geology/geophysics data examples: (1) three generations of bathymetric data on the New Jersey shelf with disparate data uncertainties; (2) mean grain size data from the Adriatic Sea, which is combination of both analytic (low uncertainty) and word-based (higher uncertainty) sources; and (3) sidescan backscatter data from the Martha's Vineyard Coastal Observatory which are, as is typical for such data, affected by speckly noise.
Prosser, Diann J.; Hungerford, Laura L.; Erwin, R. Michael; Ottinger, Mary Ann; Takekawa, John Y.; Newman, Scott H.; Xiao, Xianming; Ellis, Erie C.
2016-01-01
One of the longest-persisting avian influenza viruses in history, highly pathogenic avian influenza virus (HPAIV) A(H5N1), continues to evolve after 18 years, advancing the threat of a global pandemic. Wild waterfowl (family Anatidae), are reported as secondary transmitters of HPAIV, and primary reservoirs for low-pathogenic avian influenza viruses, yet spatial inputs for disease risk modeling for this group have been lacking. Using GIS and Monte Carlo simulations, we developed geospatial indices of waterfowl abundance at 1 and 30 km resolutions and for the breeding and wintering seasons for China, the epicenter of H5N1. Two spatial layers were developed: cumulative waterfowl abundance (WAB), a measure of predicted abundance across species, and cumulative abundance weighted by H5N1 prevalence (WPR), whereby abundance for each species was adjusted based on prevalence values then totaled across species. Spatial patterns of the model output differed between seasons, with higher WAB and WPR in the northern and western regions of China for the breeding season and in the southeast for the wintering season. Uncertainty measures indicated highest error in southeastern China for both WAB and WPR. We also explored the effect of resampling waterfowl layers from 1 km to 30 km resolution for multi-scale risk modeling. Results indicated low average difference (less than 0.16 and 0.01 standard deviations for WAB and WPR, respectively), with greatest differences in the north for the breeding season and southeast for the wintering season. This work provides the first geospatial models of waterfowl abundance available for China. The indices provide important inputs for modeling disease transmission risk at the interface of poultry and wild birds. These models are easily adaptable, have broad utility to both disease and conservation needs, and will be available to the scientific community for advanced modeling applications.
Classifier performance prediction for computer-aided diagnosis using a limited dataset.
Sahiner, Berkman; Chan, Heang-Ping; Hadjiiski, Lubomir
2008-04-01
In a practical classifier design problem, the true population is generally unknown and the available sample is finite-sized. A common approach is to use a resampling technique to estimate the performance of the classifier that will be trained with the available sample. We conducted a Monte Carlo simulation study to compare the ability of the different resampling techniques in training the classifier and predicting its performance under the constraint of a finite-sized sample. The true population for the two classes was assumed to be multivariate normal distributions with known covariance matrices. Finite sets of sample vectors were drawn from the population. The true performance of the classifier is defined as the area under the receiver operating characteristic curve (AUC) when the classifier designed with the specific sample is applied to the true population. We investigated methods based on the Fukunaga-Hayes and the leave-one-out techniques, as well as three different types of bootstrap methods, namely, the ordinary, 0.632, and 0.632+ bootstrap. The Fisher's linear discriminant analysis was used as the classifier. The dimensionality of the feature space was varied from 3 to 15. The sample size n2 from the positive class was varied between 25 and 60, while the number of cases from the negative class was either equal to n2 or 3n2. Each experiment was performed with an independent dataset randomly drawn from the true population. Using a total of 1000 experiments for each simulation condition, we compared the bias, the variance, and the root-mean-squared error (RMSE) of the AUC estimated using the different resampling techniques relative to the true AUC (obtained from training on a finite dataset and testing on the population). Our results indicated that, under the study conditions, there can be a large difference in the RMSE obtained using different resampling methods, especially when the feature space dimensionality is relatively large and the sample size is small. Under this type of conditions, the 0.632 and 0.632+ bootstrap methods have the lowest RMSE, indicating that the difference between the estimated and the true performances obtained using the 0.632 and 0.632+ bootstrap will be statistically smaller than those obtained using the other three resampling methods. Of the three bootstrap methods, the 0.632+ bootstrap provides the lowest bias. Although this investigation is performed under some specific conditions, it reveals important trends for the problem of classifier performance prediction under the constraint of a limited dataset.
Significance of the impact of motion compensation on the variability of PET image features
NASA Astrophysics Data System (ADS)
Carles, M.; Bach, T.; Torres-Espallardo, I.; Baltas, D.; Nestle, U.; Martí-Bonmatí, L.
2018-03-01
In lung cancer, quantification by positron emission tomography/computed tomography (PET/CT) imaging presents challenges due to respiratory movement. Our primary aim was to study the impact of motion compensation implied by retrospectively gated (4D)-PET/CT on the variability of PET quantitative parameters. Its significance was evaluated by comparison with the variability due to (i) the voxel size in image reconstruction and (ii) the voxel size in image post-resampling. The method employed for feature extraction was chosen based on the analysis of (i) the effect of discretization of the standardized uptake value (SUV) on complementarity between texture features (TF) and conventional indices, (ii) the impact of the segmentation method on the variability of image features, and (iii) the variability of image features across the time-frame of 4D-PET. Thirty-one PET-features were involved. Three SUV discretization methods were applied: a constant width (SUV resolution) of the resampling bin (method RW), a constant number of bins (method RN) and RN on the image obtained after histogram equalization (method EqRN). The segmentation approaches evaluated were 40% of SUVmax and the contrast oriented algorithm (COA). Parameters derived from 4D-PET images were compared with values derived from the PET image obtained for (i) the static protocol used in our clinical routine (3D) and (ii) the 3D image post-resampled to the voxel size of the 4D image and PET image derived after modifying the reconstruction of the 3D image to comprise the voxel size of the 4D image. Results showed that TF complementarity with conventional indices was sensitive to the SUV discretization method. In the comparison of COA and 40% contours, despite the values not being interchangeable, all image features showed strong linear correlations (r > 0.91, p\\ll 0.001 ). Across the time-frames of 4D-PET, all image features followed a normal distribution in most patients. For our patient cohort, the compensation of tumor motion did not have a significant impact on the quantitative PET parameters. The variability of PET parameters due to voxel size in image reconstruction was more significant than variability due to voxel size in image post-resampling. In conclusion, most of the parameters (apart from the contrast of neighborhood matrix) were robust to the motion compensation implied by 4D-PET/CT. The impact on parameter variability due to the voxel size in image reconstruction and in image post-resampling could not be assumed to be equivalent.
Porto, Paolo; Walling, Desmond E; Cogliandro, Vanessa; Callegari, Giovanni
2016-11-01
In recent years, the fallout radionuclides caesium-137 ( 137 Cs) and unsupported lead-210 ( 210 Pb ex) have been successfully used to document rates of soil erosion in many areas of the world, as an alternative to conventional measurements. By virtue of their different half-lives, these two radionuclides are capable of providing information related to different time windows. 137 Cs measurements are commonly used to generate information on mean annual erosion rates over the past ca. 50-60 years, whereas 210 Pb ex measurements are able to provide information relating to a longer period of up to ca. 100 years. However, the time-integrated nature of the estimates of soil redistribution provided by 137 Cs and 210 Pb ex measurements can be seen as a limitation, particularly when viewed in the context of global change and interest in the response of soil redistribution rates to contemporary climate change and land use change. Re-sampling techniques used with these two fallout radionuclides potentially provide a basis for providing information on recent changes in soil redistribution rates. By virtue of the effectively continuous fallout input, of 210 Pb, the response of the 210 Pb ex inventory of a soil profile to changing soil redistribution rates and thus its potential for use with the re-sampling approach differs from that of 137 Cs. Its greater sensitivity to recent changes in soil redistribution rates suggests that 210 Pb ex may have advantages over 137 Cs for use in the re-sampling approach. The potential for using 210 Pb ex measurements in re-sampling studies is explored further in this contribution. Attention focuses on a small (1.38 ha) forested catchment in southern Italy. The catchment was originally sampled for 210 Pb ex measurements in 2001 and equivalent samples were collected from points very close to the original sampling points again in 2013. This made it possible to compare the estimates of mean annual erosion related to two different time windows. This comparison suggests that mean annual rates of net soil loss had increased during the period between the two sampling campaigns and that this increase was associated with a shift to an increased sediment delivery ratio. This change was consistent with independent information on likely changes in the sediment response of the study catchment provided by the available records of annual sediment yield and changes in the annual rainfall documented for the local area. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adaptive Resampling Particle Filters for GPS Carrier-Phase Navigation and Collision Avoidance System
NASA Astrophysics Data System (ADS)
Hwang, Soon Sik
This dissertation addresses three problems: 1) adaptive resampling technique (ART) for Particle Filters, 2) precise relative positioning using Global Positioning System (GPS) Carrier-Phase (CP) measurements applied to nonlinear integer resolution problem for GPS CP navigation using Particle Filters, and 3) collision detection system based on GPS CP broadcasts. First, Monte Carlo filters, called Particle Filters (PF), are widely used where the system is non-linear and non-Gaussian. In real-time applications, their estimation accuracies and efficiencies are significantly affected by the number of particles and the scheduling of relocating weights and samples, the so-called resampling step. In this dissertation, the appropriate number of particles is estimated adaptively such that the error of the sample mean and variance stay in bounds. These bounds are given by the confidence interval of a normal probability distribution for a multi-variate state. Two required number of samples maintaining the mean and variance error within the bounds are derived. The time of resampling is determined when the required sample number for the variance error crosses the required sample number for the mean error. Second, the PF using GPS CP measurements with adaptive resampling is applied to precise relative navigation between two GPS antennas. In order to make use of CP measurements for navigation, the unknown number of cycles between GPS antennas, the so called integer ambiguity, should be resolved. The PF is applied to this integer ambiguity resolution problem where the relative navigation states estimation involves nonlinear observations and nonlinear dynamics equation. Using the PF, the probability density function of the states is estimated by sampling from the position and velocity space and the integer ambiguities are resolved without using the usual hypothesis tests to search for the integer ambiguity. The ART manages the number of position samples and the frequency of the resampling step for real-time kinematics GPS navigation. The experimental results demonstrate the performance of the ART and the insensitivity of the proposed approach to GPS CP cycle-slips. Third, the GPS has great potential for the development of new collision avoidance systems and is being considered for the next generation Traffic alert and Collision Avoidance System (TCAS). The current TCAS equipment, is capable of broadcasting GPS code information to nearby airplanes, and also, the collision avoidance system using the navigation information based on GPS code has been studied by researchers. In this dissertation, the aircraft collision detection system using GPS CP information is addressed. The PF with position samples is employed for the CP based relative position estimation problem and the same algorithm can be used to determine the vehicle attitude if multiple GPS antennas are used. For a reliable and enhanced collision avoidance system, three dimensional trajectories are projected using the estimates of the relative position, velocity, and the attitude. It is shown that the performance of GPS CP based collision detecting algorithm meets the accuracy requirements for a precise approach of flight for auto landing with significantly less unnecessary collision false alarms and no miss alarms.
NASA Astrophysics Data System (ADS)
Singh, A. K.; Toshniwal, D.
2017-12-01
The MODIS Joint Atmosphere product, MODATML2 and MYDATML2 L2/3 provided by LAADS DAAC (Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive Center) re-sampled from medium resolution MODIS Terra /Aqua Satellites data at 5km scale, contains Cloud Reflectance, Cloud Top Temperature, Water Vapor, Aerosol Optical Depth/Thickness, Humidity data. These re-sampled data, when used for deriving climatic effects of aerosols (particularly in case of cooling effect) still exposes limitations in presence of uncertainty measures in atmospheric artifacts such as aerosol, cloud, cirrus cloud etc. The effect of uncertainty measures in these artifacts imposes an important challenge for estimation of aerosol effects, adequately affecting precise regional weather modeling and predictions: Forecasting and recommendation applications developed largely depend on these short-term local conditions (e.g. City/Locality based recommendations to citizens/farmers based on local weather models). Our approach inculcates artificial intelligence technique for representing heterogeneous data(satellite data along with air quality data from local weather stations (i.e. in situ data)) to learn, correct and predict aerosol effects in the presence of cloud and other atmospheric artifacts, defusing Spatio-temporal correlations and regressions. The Big Data process pipeline consisting correlation and regression techniques developed on Apache Spark platform can easily scale for large data sets including many tiles (scenes) and over widened time-scale. Keywords: Climatic Effects of Aerosols, Situation-Aware, Big Data, Apache Spark, MODIS Terra /Aqua, Time Series
The Bootstrap, the Jackknife, and the Randomization Test: A Sampling Taxonomy.
Rodgers, J L
1999-10-01
A simple sampling taxonomy is defined that shows the differences between and relationships among the bootstrap, the jackknife, and the randomization test. Each method has as its goal the creation of an empirical sampling distribution that can be used to test statistical hypotheses, estimate standard errors, and/or create confidence intervals. Distinctions between the methods can be made based on the sampling approach (with replacement versus without replacement) and the sample size (replacing the whole original sample versus replacing a subset of the original sample). The taxonomy is useful for teaching the goals and purposes of resampling schemes. An extension of the taxonomy implies other possible resampling approaches that have not previously been considered. Univariate and multivariate examples are presented.
A Maximum Entropy Method for Particle Filtering
NASA Astrophysics Data System (ADS)
Eyink, Gregory L.; Kim, Sangil
2006-06-01
Standard ensemble or particle filtering schemes do not properly represent states of low priori probability when the number of available samples is too small, as is often the case in practical applications. We introduce here a set of parametric resampling methods to solve this problem. Motivated by a general H-theorem for relative entropy, we construct parametric models for the filter distributions as maximum-entropy/minimum-information models consistent with moments of the particle ensemble. When the prior distributions are modeled as mixtures of Gaussians, our method naturally generalizes the ensemble Kalman filter to systems with highly non-Gaussian statistics. We apply the new particle filters presented here to two simple test cases: a one-dimensional diffusion process in a double-well potential and the three-dimensional chaotic dynamical system of Lorenz.
Atmospheric Science Data Center
2016-08-22
MISBR MISR Browse Data: Color browse image of the Ellipsoid product for each camera resampled to 2.2 km resolution. ... Tool: Order Data Readme Files: Processing Status Production Report Read Software ...
An object-oriented framework for medical image registration, fusion, and visualization.
Zhu, Yang-Ming; Cochoff, Steven M
2006-06-01
An object-oriented framework for image registration, fusion, and visualization was developed based on the classic model-view-controller paradigm. The framework employs many design patterns to facilitate legacy code reuse, manage software complexity, and enhance the maintainability and portability of the framework. Three sample applications built a-top of this framework are illustrated to show the effectiveness of this framework: the first one is for volume image grouping and re-sampling, the second one is for 2D registration and fusion, and the last one is for visualization of single images as well as registered volume images.
Rainfall disaggregation for urban hydrology: Effects of spatial consistence
NASA Astrophysics Data System (ADS)
Müller, Hannes; Haberlandt, Uwe
2015-04-01
For urban hydrology rainfall time series with a high temporal resolution are crucial. Observed time series of this kind are very short in most cases, so they cannot be used. On the contrary, time series with lower temporal resolution (daily measurements) exist for much longer periods. The objective is to derive time series with a long duration and a high resolution by disaggregating time series of the non-recording stations with information of time series of the recording stations. The multiplicative random cascade model is a well-known disaggregation model for daily time series. For urban hydrology it is often assumed, that a day consists of only 1280 minutes in total as starting point for the disaggregation process. We introduce a new variant for the cascade model, which is functional without this assumption and also outperforms the existing approach regarding time series characteristics like wet and dry spell duration, average intensity, fraction of dry intervals and extreme value representation. However, in both approaches rainfall time series of different stations are disaggregated without consideration of surrounding stations. This yields in unrealistic spatial patterns of rainfall. We apply a simulated annealing algorithm that has been used successfully for hourly values before. Relative diurnal cycles of the disaggregated time series are resampled to reproduce the spatial dependence of rainfall. To describe spatial dependence we use bivariate characteristics like probability of occurrence, continuity ratio and coefficient of correlation. Investigation area is a sewage system in Northern Germany. We show that the algorithm has the capability to improve spatial dependence. The influence of the chosen disaggregation routine and the spatial dependence on overflow occurrences and volumes of the sewage system will be analyzed.
Hyperspectral Features of Oil-Polluted Sea Ice and the Response to the Contamination Area Fraction
Li, Ying; Liu, Chengyu; Xie, Feng
2018-01-01
Researchers have studied oil spills in open waters using remote sensors, but few have focused on extracting reflectance features of oil pollution on sea ice. An experiment was conducted on natural sea ice in Bohai Bay, China, to obtain the spectral reflectance of oil-contaminated sea ice. The spectral absorption index (SAI), spectral peak height (SPH), and wavelet detail coefficient (DWT d5) were calculated using stepwise multiple linear regression. The reflectances of some false targets were measured and analysed. The simulated false targets were sediment, iron ore fines, coal dust, and the melt pool. The measured reflectances were resampled using five common sensors (GF-2, Landsat8-OLI, Sentinel3-OLCI, MODIS, and AVIRIS). Some significant spectral features could discriminate between oil-polluted and clean sea ice. The indices correlated well with the oil area fractions. All of the adjusted R2 values exceeded 0.9. The SPH model1, based on spectral features at 507–670 and 1627–1746 nm, displayed the best fitting. The resampled data indicated that these multi-spectral and hyper-spectral sensors could be used to detect crude oil on the sea ice if the effect of noise and spatial resolution are neglected. The spectral features and their identified changes may provide reference on sensor design and band selection. PMID:29342945
Resampling to Address the Winner's Curse in Genetic Association Analysis of Time to Event
Poirier, Julia G.; Faye, Laura L.; Dimitromanolakis, Apostolos; Paterson, Andrew D.; Sun, Lei
2015-01-01
ABSTRACT The “winner's curse” is a subtle and difficult problem in interpretation of genetic association, in which association estimates from large‐scale gene detection studies are larger in magnitude than those from subsequent replication studies. This is practically important because use of a biased estimate from the original study will yield an underestimate of sample size requirements for replication, leaving the investigators with an underpowered study. Motivated by investigation of the genetics of type 1 diabetes complications in a longitudinal cohort of participants in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Genetics Study, we apply a bootstrap resampling method in analysis of time to nephropathy under a Cox proportional hazards model, examining 1,213 single‐nucleotide polymorphisms (SNPs) in 201 candidate genes custom genotyped in 1,361 white probands. Among 15 top‐ranked SNPs, bias reduction in log hazard ratio estimates ranges from 43.1% to 80.5%. In simulation studies based on the observed DCCT/EDIC genotype data, genome‐wide bootstrap estimates for false‐positive SNPs and for true‐positive SNPs with low‐to‐moderate power are closer to the true values than uncorrected naïve estimates, but tend to overcorrect SNPs with high power. This bias‐reduction technique is generally applicable for complex trait studies including quantitative, binary, and time‐to‐event traits. PMID:26411674
Lessio, Federico; Alma, Alberto
2006-04-01
The spatial distribution of the nymphs of Scaphoideus titanus Ball (Homoptera Cicadellidae), the vector of grapevine flavescence dorée (Candidatus Phytoplasma vitis, 16Sr-V), was studied by applying Taylor's power law. Studies were conducted from 2002 to 2005, in organic and conventional vineyards of Piedmont, northern Italy. Minimum sample size and fixed precision level stop lines were calculated to develop appropriate sampling plans. Model validation was performed, using independent field data, by means of Resampling Validation of Sample Plans (RVSP) resampling software. The nymphal distribution, analyzed via Taylor's power law, was aggregated, with b = 1.49. A sample of 32 plants was adequate at low pest densities with a precision level of D0 = 0.30; but for a more accurate estimate (D0 = 0.10), the required sample size needs to be 292 plants. Green's fixed precision level stop lines seem to be more suitable for field sampling: RVSP simulations of this sampling plan showed precision levels very close to the desired levels. However, at a prefixed precision level of 0.10, sampling would become too time-consuming, whereas a precision level of 0.25 is easily achievable. How these results could influence the correct application of the compulsory control of S. titanus and Flavescence dorée in Italy is discussed.
NASA Astrophysics Data System (ADS)
Wani, Omar; Beckers, Joost V. L.; Weerts, Albrecht H.; Solomatine, Dimitri P.
2017-08-01
A non-parametric method is applied to quantify residual uncertainty in hydrologic streamflow forecasting. This method acts as a post-processor on deterministic model forecasts and generates a residual uncertainty distribution. Based on instance-based learning, it uses a k nearest-neighbour search for similar historical hydrometeorological conditions to determine uncertainty intervals from a set of historical errors, i.e. discrepancies between past forecast and observation. The performance of this method is assessed using test cases of hydrologic forecasting in two UK rivers: the Severn and Brue. Forecasts in retrospect were made and their uncertainties were estimated using kNN resampling and two alternative uncertainty estimators: quantile regression (QR) and uncertainty estimation based on local errors and clustering (UNEEC). Results show that kNN uncertainty estimation produces accurate and narrow uncertainty intervals with good probability coverage. Analysis also shows that the performance of this technique depends on the choice of search space. Nevertheless, the accuracy and reliability of uncertainty intervals generated using kNN resampling are at least comparable to those produced by QR and UNEEC. It is concluded that kNN uncertainty estimation is an interesting alternative to other post-processors, like QR and UNEEC, for estimating forecast uncertainty. Apart from its concept being simple and well understood, an advantage of this method is that it is relatively easy to implement.
Gupta, Nidhi; Christiansen, Caroline Stordal; Hanisch, Christiana; Bay, Hans; Burr, Hermann; Holtermann, Andreas
2017-01-16
To investigate the differences between a questionnaire-based and accelerometer-based sitting time, and develop a model for improving the accuracy of questionnaire-based sitting time for predicting accelerometer-based sitting time. 183 workers in a cross-sectional study reported sitting time per day using a single question during the measurement period, and wore 2 Actigraph GT3X+ accelerometers on the thigh and trunk for 1-4 working days to determine their actual sitting time per day using the validated Acti4 software. Least squares regression models were fitted with questionnaire-based siting time and other self-reported predictors to predict accelerometer-based sitting time. Questionnaire-based and accelerometer-based average sitting times were ≈272 and ≈476 min/day, respectively. A low Pearson correlation (r=0.32), high mean bias (204.1 min) and wide limits of agreement (549.8 to -139.7 min) between questionnaire-based and accelerometer-based sitting time were found. The prediction model based on questionnaire-based sitting explained 10% of the variance in accelerometer-based sitting time. Inclusion of 9 self-reported predictors in the model increased the explained variance to 41%, with 10% optimism using a resampling bootstrap validation. Based on a split validation analysis, the developed prediction model on ≈75% of the workers (n=132) reduced the mean and the SD of the difference between questionnaire-based and accelerometer-based sitting time by 64% and 42%, respectively, in the remaining 25% of the workers. This study indicates that questionnaire-based sitting time has low validity and that a prediction model can be one solution to materially improve the precision of questionnaire-based sitting time. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Lakes without Landsat? An alternative approach to remote lake monitoring with MODIS 250 m imagery
Ian M. McCullough,; Loftin, Cynthia S.; Steven A. Sader,
2013-01-01
We evaluated use of MODIS 250 m imagery for remote lake monitoring in Maine. Despite limited spectral resolution (visible red and near infrared bands), the twice daily image capture has a potential advantage over conventionally used, often cloudy Landsat imagery (16 day interval) when short time windows are of interest. We analyzed 364 eligible (≥100 ha) Maine lakes during late summer (Aug–early Sep) 2000–2011. The red band was strongly correlated with natural log-transformed Secchi depth (SD), and the addition of ancillary lake and watershed variables explained some variability in ln(SD) (R2= 0.68–0.85; 9 models). Weak spectral resolution and variable lake conditions limited accurate lake monitoring to relatively productive periods in late summer, as indicated by inconsistent, sometimes weak regressions during June and July when lakes were clearer and less stable (R2 = 0.19–0.74; 8 models). Additionally, SD estimates derived from 2 sets of concurrent MODIS and Landsat imagery generally did not agree unless Landsat imagery (30 m) was resampled to 250 m, likely owing to various factors related to scale. Average MODIS estimates exceeded those of Landsat by 0.35 and 0.49 m on the 2 dates. Overall, MODIS 250 m imagery are potentially useful for remote lake monitoring during productive periods when Landsat data are unavailable; however, analyses must occur when algal communities are stable and well-developed, are biased toward large lakes, may overestimate SD, and accuracy may be unreliable without non-spectral lake predictors.
Lakes without Landsat? An alternative approach to remote lake monitoring with MODIS 250 m imagery
Loftin, Cyndy; Ian M. McCullough,; Steven A. Sader,
2013-01-01
We evaluated use of MODIS 250 m imagery for remote lake monitoring in Maine. Despite limited spectral resolution (visible red and near infrared bands), the twice daily image capture has a potential advantage over conventionally used, often cloudy Landsat imagery (16 day interval) when short time windows are of interest. We analyzed 364 eligible (≥100 ha) Maine lakes during late summer (Aug–early Sep) 2000–2011. The red band was strongly correlated with natural log-transformed Secchi depth (SD), and the addition of ancillary lake and watershed variables explained some variability in ln(SD) (R2 = 0.68–0.85; 9 models). Weak spectral resolution and variable lake conditions limited accurate lake monitoring to relatively productive periods in late summer, as indicated by inconsistent, sometimes weak regressions during June and July when lakes were clearer and less stable (R2 = 0.19–0.74; 8 models). Additionally, SD estimates derived from 2 sets of concurrent MODIS and Landsat imagery generally did not agree unless Landsat imagery (30 m) was resampled to 250 m, likely owing to various factors related to scale. Average MODIS estimates exceeded those of Landsat by 0.35 and 0.49 m on the 2 dates. Overall, MODIS 250 m imagery are potentially useful for remote lake monitoring during productive periods when Landsat data are unavailable; however, analyses must occur when algal communities are stable and well-developed, are biased toward large lakes, may overestimate SD, and accuracy may be unreliable without non-spectral lake predictors.
GPU and APU computations of Finite Time Lyapunov Exponent fields
NASA Astrophysics Data System (ADS)
Conti, Christian; Rossinelli, Diego; Koumoutsakos, Petros
2012-03-01
We present GPU and APU accelerated computations of Finite-Time Lyapunov Exponent (FTLE) fields. The calculation of FTLEs is a computationally intensive process, as in order to obtain the sharp ridges associated with the Lagrangian Coherent Structures an extensive resampling of the flow field is required. The computational performance of this resampling is limited by the memory bandwidth of the underlying computer architecture. The present technique harnesses data-parallel execution of many-core architectures and relies on fast and accurate evaluations of moment conserving functions for the mesh to particle interpolations. We demonstrate how the computation of FTLEs can be efficiently performed on a GPU and on an APU through OpenCL and we report over one order of magnitude improvements over multi-threaded executions in FTLE computations of bluff body flows.
NASA Technical Reports Server (NTRS)
Lawton, Pat
2004-01-01
The objective of this work was to support the design of improved IUE NEWSIPS high dispersion extraction algorithms. The purpose of this work was to evaluate use of the Linearized Image (LIHI) file versus the Re-Sampled Image (SIHI) file, evaluate various extraction, and design algorithms for evaluation of IUE High Dispersion spectra. It was concluded the use of the Re-Sampled Image (SIHI) file was acceptable. Since the Gaussian profile worked well for the core and the Lorentzian profile worked well for the wings, the Voigt profile was chosen for use in the extraction algorithm. It was found that the gamma and sigma parameters varied significantly across the detector, so gamma and sigma masks for the SWP detector were developed. Extraction code was written.
Fast Computation of the Two-Point Correlation Function in the Age of Big Data
NASA Astrophysics Data System (ADS)
Pellegrino, Andrew; Timlin, John
2018-01-01
We present a new code which quickly computes the two-point correlation function for large sets of astronomical data. This code combines the ease of use of Python with the speed of parallel shared libraries written in C. We include the capability to compute the auto- and cross-correlation statistics, and allow the user to calculate the three-dimensional and angular correlation functions. Additionally, the code automatically divides the user-provided sky masks into contiguous subsamples of similar size, using the HEALPix pixelization scheme, for the purpose of resampling. Errors are computed using jackknife and bootstrap resampling in a way that adds negligible extra runtime, even with many subsamples. We demonstrate comparable speed with other clustering codes, and code accuracy compared to known and analytic results.
Spatial resampling of IDR frames for low bitrate video coding with HEVC
NASA Astrophysics Data System (ADS)
Hosking, Brett; Agrafiotis, Dimitris; Bull, David; Easton, Nick
2015-03-01
As the demand for higher quality and higher resolution video increases, many applications fail to meet this demand due to low bandwidth restrictions. One factor contributing to this problem is the high bitrate requirement of the intra-coded Instantaneous Decoding Refresh (IDR) frames featuring in all video coding standards. Frequent coding of IDR frames is essential for error resilience in order to prevent the occurrence of error propagation. However, as each one consumes a huge portion of the available bitrate, the quality of future coded frames is hindered by high levels of compression. This work presents a new technique, known as Spatial Resampling of IDR Frames (SRIF), and shows how it can increase the rate distortion performance by providing a higher and more consistent level of video quality at low bitrates.
More About the Phase-Synchronized Enhancement Method
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
2004-01-01
A report presents further details regarding the subject matter of "Phase-Synchronized Enhancement Method for Engine Diagnostics" (MFS-26435), NASA Tech Briefs, Vol. 22, No. 1 (January 1998), page 54. To recapitulate: The phase-synchronized enhancement method (PSEM) involves the digital resampling of a quasi-periodic signal in synchronism with the instantaneous phase of one of its spectral components. This resampling transforms the quasi-periodic signal into a periodic one more amenable to analysis. It is particularly useful for diagnosis of a rotating machine through analysis of vibration spectra that include components at the fundamental and harmonics of a slightly fluctuating rotation frequency. The report discusses the machinery-signal-analysis problem, outlines the PSEM algorithms, presents the mathematical basis of the PSEM, and presents examples of application of the PSEM in some computational simulations.
National-Scale Changes in Soil Profile C and N in New Zealand Pastures are Determined by Land Use
NASA Astrophysics Data System (ADS)
Schipper, L. A.; Parfitt, R.; Ross, C.; Baisden, W. T.; Claydon, J.; Fraser, S.
2010-12-01
Grazed pasture is New Zealand’s predominant agricultural land-use and has been relatively recently developed from forest and native grasslands/shrub communities. From the 1850s onwards, land was cleared and exotic pastures established. Phosphorus fertilizer was increasingly used after 1950 which accelerated N fixation by clover. In the last two decades N fertilizers have been used, and grazing intensity has increased, thus affecting soil C and N. Re-sampling of 31 New Zealand soil profiles under grazed pasture measured surprisingly large losses of C and N over the last 2-3 decades (Schipper et al., 2007 Global Change Biology 13:1138-1144). These profiles were predominantly on the most intensively grazed flat land. We extended this re-sampling to 83 profiles (to 90 cm depth), to investigate whether changes in soil C and N stocks also occurred in less intensively managed pasture. Archived soils samples were analysed for total soil C and N alongside the newly collected samples. Intact cores were collected to determine bulk density through the profile. Over an average of 27 years, soils (0-30 cm) in flat dairy pastures significantly lost 0.73±0.16 Mg C ha-1y-1 and 57±16 kg N ha-1y-1 while we observed no change in soil C or N in flat pasture grazed by “dry stock” (e.g., sheep, beef), or in grazed tussock grasslands. Grazed hill country soils (0-30 cm) gained 0.52±0.18 Mg C ha-1y-1 and 66±18 kg N ha-1y-1. The losses of C and N were strongly correlated and C:N ratio has generally declined suggesting soils are becoming N saturated. Losses and gains also occurred in soil layers below 30 cm demonstrating that organic matter throughout the profile was responding to land use. The losses under dairying may be due to greater grazing pressure, fertilizer inputs and exports of C and N. There is evidence that grazing pressure reduces inputs of C below ground, reduces soil microbial C, and that dairy cow urine can mobilise C and N. Gains in hill country pastures may be due to long-term recovery from erosion and disturbance following land clearance. When changes were extrapolated across New Zealand taking into account the different areas of pastures, gains and losses cancelled one another (Table 1) but none-the-less demonstrate considerable alteration of basic soil properties at national scales, and show the usefulness of resampling sites providing that older samples have been archived.Table 1. Change in total C and total N of grazed land for top 30 cm extrapolated across New Zealand. SEM - standard error of the mean
Satellite image maps of Pakistan
,
1997-01-01
Georeferenced Landsat satellite image maps of Pakistan are now being made available for purchase from the U.S. Geological Survey (USGS). The first maps to be released are a series of Multi-Spectral Scanner (MSS) color image maps compiled from Landsat scenes taken before 1979. The Pakistan image maps were originally developed by USGS as an aid for geologic and general terrain mapping in support of the Coal Resource Exploration and Development Program in Pakistan (COALREAP). COALREAP, a cooperative program between the USGS, the United States Agency for International Development, and the Geological Survey of Pakistan, was in effect from 1985 through 1994. The Pakistan MSS image maps (bands 1, 2, and 4) are available as a full-country mosaic of 72 Landsat scenes at a scale of 1:2,000,000, and in 7 regional sheets covering various portions of the entire country at a scale of 1:500,000. The scenes used to compile the maps were selected from imagery available at the Eros Data Center (EDC), Sioux Falls, S. Dak. Where possible, preference was given to cloud-free and snow-free scenes that displayed similar stages of seasonal vegetation development. The data for the MSS scenes were resampled from the original 80-meter resolution to 50-meter picture elements (pixels) and digitally transformed to a geometrically corrected Lambert conformal conic projection. The cubic convolution algorithm was used during rotation and resampling. The 50-meter pixel size allows for such data to be imaged at a scale of 1:250,000 without degradation; for cost and convenience considerations, however, the maps were printed at 1:500,000 scale. The seven regional sheets have been named according to the main province or area covered. The 50-meter data were averaged to 150-meter pixels to generate the country image on a single sheet at 1:2,000,000 scale
Assessing uncertainties in superficial water provision by different bootstrap-based techniques
NASA Astrophysics Data System (ADS)
Rodrigues, Dulce B. B.; Gupta, Hoshin V.; Mendiondo, Eduardo Mario
2014-05-01
An assessment of water security can incorporate several water-related concepts, characterizing the interactions between societal needs, ecosystem functioning, and hydro-climatic conditions. The superficial freshwater provision level depends on the methods chosen for 'Environmental Flow Requirement' estimations, which integrate the sources of uncertainty in the understanding of how water-related threats to aquatic ecosystem security arise. Here, we develop an uncertainty assessment of superficial freshwater provision based on different bootstrap techniques (non-parametric resampling with replacement). To illustrate this approach, we use an agricultural basin (291 km2) within the Cantareira water supply system in Brazil monitored by one daily streamflow gage (24-year period). The original streamflow time series has been randomly resampled for different times or sample sizes (N = 500; ...; 1000), then applied to the conventional bootstrap approach and variations of this method, such as: 'nearest neighbor bootstrap'; and 'moving blocks bootstrap'. We have analyzed the impact of the sampling uncertainty on five Environmental Flow Requirement methods, based on: flow duration curves or probability of exceedance (Q90%, Q75% and Q50%); 7-day 10-year low-flow statistic (Q7,10); and presumptive standard (80% of the natural monthly mean ?ow). The bootstrap technique has been also used to compare those 'Environmental Flow Requirement' (EFR) methods among themselves, considering the difference between the bootstrap estimates and the "true" EFR characteristic, which has been computed averaging the EFR values of the five methods and using the entire streamflow record at monitoring station. This study evaluates the bootstrapping strategies, the representativeness of streamflow series for EFR estimates and their confidence intervals, in addition to overview of the performance differences between the EFR methods. The uncertainties arisen during EFR methods assessment will be propagated through water security indicators referring to water scarcity and vulnerability, seeking to provide meaningful support to end-users and water managers facing the incorporation of uncertainties in the decision making process.
Verhagen, Simone J. W.; Simons, Claudia J. P.; van Zelst, Catherine; Delespaul, Philippe A. E. G.
2017-01-01
Background: Mental healthcare needs person-tailored interventions. Experience Sampling Method (ESM) can provide daily life monitoring of personal experiences. This study aims to operationalize and test a measure of momentary reward-related Quality of Life (rQoL). Intuitively, quality of life improves by spending more time on rewarding experiences. ESM clinical interventions can use this information to coach patients to find a realistic, optimal balance of positive experiences (maximize reward) in daily life. rQoL combines the frequency of engaging in a relevant context (a ‘behavior setting’) with concurrent (positive) affect. High rQoL occurs when the most frequent behavior settings are combined with positive affect or infrequent behavior settings co-occur with low positive affect. Methods: Resampling procedures (Monte Carlo experiments) were applied to assess the reliability of rQoL using various behavior setting definitions under different sampling circumstances, for real or virtual subjects with low-, average- and high contextual variability. Furthermore, resampling was used to assess whether rQoL is a distinct concept from positive affect. Virtual ESM beep datasets were extracted from 1,058 valid ESM observations for virtual and real subjects. Results: Behavior settings defined by Who-What contextual information were most informative. Simulations of at least 100 ESM observations are needed for reliable assessment. Virtual ESM beep datasets of a real subject can be defined by Who-What-Where behavior setting combinations. Large sample sizes are necessary for reliable rQoL assessments, except for subjects with low contextual variability. rQoL is distinct from positive affect. Conclusion: rQoL is a feasible concept. Monte Carlo experiments should be used to assess the reliable implementation of an ESM statistic. Future research in ESM should asses the behavior of summary statistics under different sampling situations. This exploration is especially relevant in clinical implementation, where often only small datasets are available. PMID:29163294
Verhagen, Simone J W; Simons, Claudia J P; van Zelst, Catherine; Delespaul, Philippe A E G
2017-01-01
Background: Mental healthcare needs person-tailored interventions. Experience Sampling Method (ESM) can provide daily life monitoring of personal experiences. This study aims to operationalize and test a measure of momentary reward-related Quality of Life (rQoL). Intuitively, quality of life improves by spending more time on rewarding experiences. ESM clinical interventions can use this information to coach patients to find a realistic, optimal balance of positive experiences (maximize reward) in daily life. rQoL combines the frequency of engaging in a relevant context (a 'behavior setting') with concurrent (positive) affect. High rQoL occurs when the most frequent behavior settings are combined with positive affect or infrequent behavior settings co-occur with low positive affect. Methods: Resampling procedures (Monte Carlo experiments) were applied to assess the reliability of rQoL using various behavior setting definitions under different sampling circumstances, for real or virtual subjects with low-, average- and high contextual variability. Furthermore, resampling was used to assess whether rQoL is a distinct concept from positive affect. Virtual ESM beep datasets were extracted from 1,058 valid ESM observations for virtual and real subjects. Results: Behavior settings defined by Who-What contextual information were most informative. Simulations of at least 100 ESM observations are needed for reliable assessment. Virtual ESM beep datasets of a real subject can be defined by Who-What-Where behavior setting combinations. Large sample sizes are necessary for reliable rQoL assessments, except for subjects with low contextual variability. rQoL is distinct from positive affect. Conclusion: rQoL is a feasible concept. Monte Carlo experiments should be used to assess the reliable implementation of an ESM statistic. Future research in ESM should asses the behavior of summary statistics under different sampling situations. This exploration is especially relevant in clinical implementation, where often only small datasets are available.
The GOLM-database standard- a framework for time-series data management based on free software
NASA Astrophysics Data System (ADS)
Eichler, M.; Francke, T.; Kneis, D.; Reusser, D.
2009-04-01
Monitoring and modelling projects usually involve time series data originating from different sources. Often, file formats, temporal resolution and meta-data documentation rarely adhere to a common standard. As a result, much effort is spent on converting, harmonizing, merging, checking, resampling and reformatting these data. Moreover, in work groups or during the course of time, these tasks tend to be carried out redundantly and repeatedly, especially when new data becomes available. The resulting duplication of data in various formats strains additional ressources. We propose a database structure and complementary scripts for facilitating these tasks. The GOLM- (General Observation and Location Management) framework allows for import and storage of time series data of different type while assisting in meta-data documentation, plausibility checking and harmonization. The imported data can be visually inspected and its coverage among locations and variables may be visualized. Supplementing scripts provide options for data export for selected stations and variables and resampling of the data to the desired temporal resolution. These tools can, for example, be used for generating model input files or reports. Since GOLM fully supports network access, the system can be used efficiently by distributed working groups accessing the same data over the internet. GOLM's database structure and the complementary scripts can easily be customized to specific needs. Any involved software such as MySQL, R, PHP, OpenOffice as well as the scripts for building and using the data base, including documentation, are free for download. GOLM was developed out of the practical requirements of the OPAQUE-project. It has been tested and further refined in the ERANET-CRUE and SESAM projects, all of which used GOLM to manage meteorological, hydrological and/or water quality data.
Comparing apples and oranges: the Community Intercomparison Suite
NASA Astrophysics Data System (ADS)
Schutgens, Nick; Stier, Philip; Kershaw, Philip; Pascoe, Stephen
2015-04-01
Visual representation and comparison of geoscientific datasets presents a huge challenge due to the large variety of file formats and spatio-temporal sampling of data (be they observations or simulations). The Community Intercomparison Suite attempts to greatly simplify these tasks for users by offering an intelligent but simple command line tool for visualisation and colocation of diverse datasets. In addition, CIS can subset and aggregate large datasets into smaller more manageable datasets. Our philosophy is to remove as much as possible the need for specialist knowledge by the user of the structure of a dataset. The colocation of observations with model data is as simple as: "cis col
Analysis of spreadable cheese by Raman spectroscopy and chemometric tools.
Oliveira, Kamila de Sá; Callegaro, Layce de Souza; Stephani, Rodrigo; Almeida, Mariana Ramos; de Oliveira, Luiz Fernando Cappa
2016-03-01
In this work, FT-Raman spectroscopy was explored to evaluate spreadable cheese samples. A partial least squares discriminant analysis was employed to identify the spreadable cheese samples containing starch. To build the models, two types of samples were used: commercial samples and samples manufactured in local industries. The method of supervised classification PLS-DA was employed to classify the samples as adulterated or without starch. Multivariate regression was performed using the partial least squares method to quantify the starch in the spreadable cheese. The limit of detection obtained for the model was 0.34% (w/w) and the limit of quantification was 1.14% (w/w). The reliability of the models was evaluated by determining the confidence interval, which was calculated using the bootstrap re-sampling technique. The results show that the classification models can be used to complement classical analysis and as screening methods. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zan, Mei; Zhou, Yanlian; Ju, Weimin; Zhang, Yongguang; Zhang, Leiming; Liu, Yibo
2018-02-01
Estimating terrestrial gross primary production is an important task when studying the carbon cycle. In this study, the ability of a two-leaf light use efficiency model to simulate regional gross primary production in China was validated using satellite Global Ozone Monitoring Instrument - 2 sun-induced chlorophyll fluorescence data. The two-leaf light use efficiency model was used to estimate daily gross primary production in China's terrestrial ecosystems with 500-m resolution for the period from 2007 to 2014. Gross primary production simulated with the two-leaf light use efficiency model was resampled to a spatial resolution of 0.5° and then compared with sun-induced chlorophyll fluorescence. During the study period, sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model exhibited similar spatial and temporal patterns in China. The correlation coefficient between sun-induced chlorophyll fluorescence and monthly gross primary production simulated by the two-leaf light use efficiency model was significant (p<0.05, n=96) in 88.9% of vegetated areas in China (average value 0.78) and varied among vegetation types. The interannual variations in monthly sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model were similar in spring and autumn in most vegetated regions, but dissimilar in winter and summer. The spatial variability of sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model was similar in spring, summer, and autumn. The proportion of spatial variations of sun-induced chlorophyll fluorescence and annual gross primary production simulated by the two-leaf light use efficiency model explained by ranged from 0.76 (2011) to 0.80 (2013) during the study period. Overall, the two-leaf light use efficiency model was capable of capturing spatial and temporal variations in gross primary production in China. However, the model needs further improvement to better simulate gross primary production in summer. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Swanberg, Nancy A.; Matson, Pamela A.
1987-01-01
It was experimentally determined whether induced differences in forest canopy chemical composition can be detected using data from the Airborne Imaging Spectrometer (AIS). Treatments were applied to an even-aged forest of Douglas fir trees. Work to date has stressed wet chemical analysis of foilage samples and correction of AIS data. Plot treatments were successful in providing a range of foliar N2 concentrations. Much time was spent investigating and correcting problems with the raw AIS data. Initial problems with groups of drop out lines in the AIS data were traced to the tape recorder and the tape drive. Custom adjustment of the tape drive led to recovery of most missing lines. Remaining individual drop out lines were replaced using average of adjacent lines. Application of a notch filter to the Fourier transform of the image in each band satisfactorily removed vertical striping. The aspect ratio was corrected by resampling the image in the line direction using nearest neighbor interpolation.
Towards an optimal flow: Density-of-states-informed replica-exchange simulations
Vogel, Thomas; Perez, Danny
2015-11-05
Here we learn that replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that addresses some of these challenges. The key feature of our approach is to inform the simulation with readily available, but commonly unused, information on the density of states of the system as the RE simulation proceeds. This enables two improvements, namely,more » the introduction of resampling moves that actively move the system towards equilibrium and the continual adaptation of the optimal temperature set. As a consequence of these two innovations, we show that the configuration flow in temperature space is optimized and that the overall convergence of RE simulations can be dramatically accelerated.« less
Quality improving techniques for free-viewpoint DIBR
NASA Astrophysics Data System (ADS)
Do, Luat; Zinger, Sveta; de With, Peter H. N.
2010-02-01
Interactive free-viewpoint selection applied to a 3D multi-view signal is a possible attractive feature of the rapidly developing 3D TV media. This paper explores a new rendering algorithm that computes a free-viewpoint based on depth image warping between two reference views from existing cameras. We have developed three quality enhancing techniques that specifically aim at solving the major artifacts. First, resampling artifacts are filled in by a combination of median filtering and inverse warping. Second, contour artifacts are processed while omitting warping of edges at high discontinuities. Third, we employ a depth signal for more accurate disocclusion inpainting. We obtain an average PSNR gain of 3 dB and 4.5 dB for the 'Breakdancers' and 'Ballet' sequences, respectively, compared to recently published results. While experimenting with synthetic data, we observe that the rendering quality is highly dependent on the complexity of the scene. Moreover, experiments are performed using compressed video from surrounding cameras. The overall system quality is dominated by the rendering quality and not by coding.
Assessment of an ensemble seasonal streamflow forecasting system for Australia
NASA Astrophysics Data System (ADS)
Bennett, James C.; Wang, Quan J.; Robertson, David E.; Schepen, Andrew; Li, Ming; Michael, Kelvin
2017-11-01
Despite an increasing availability of skilful long-range streamflow forecasts, many water agencies still rely on simple resampled historical inflow sequences (stochastic scenarios) to plan operations over the coming year. We assess a recently developed forecasting system called forecast guided stochastic scenarios
(FoGSS) as a skilful alternative to standard stochastic scenarios for the Australian continent. FoGSS uses climate forecasts from a coupled ocean-land-atmosphere prediction system, post-processed with the method of calibration, bridging and merging. Ensemble rainfall forecasts force a monthly rainfall-runoff model, while a staged hydrological error model quantifies and propagates hydrological forecast uncertainty through forecast lead times. FoGSS is able to generate ensemble streamflow forecasts in the form of monthly time series to a 12-month forecast horizon. FoGSS is tested on 63 Australian catchments that cover a wide range of climates, including 21 ephemeral rivers. In all perennial and many ephemeral catchments, FoGSS provides an effective alternative to resampled historical inflow sequences. FoGSS generally produces skilful forecasts at shorter lead times ( < 4 months), and transits to climatology-like forecasts at longer lead times. Forecasts are generally reliable and unbiased. However, FoGSS does not perform well in very dry catchments (catchments that experience zero flows more than half the time in some months), sometimes producing strongly negative forecast skill and poor reliability. We attempt to improve forecasts through the use of (i) ESP rainfall forcings, (ii) different rainfall-runoff models, and (iii) a Bayesian prior to encourage the error model to return climatology forecasts in months when the rainfall-runoff model performs poorly. Of these, the use of the prior offers the clearest benefit in very dry catchments, where it moderates strongly negative forecast skill and reduces bias in some instances. However, the prior does not remedy poor reliability in very dry catchments. Overall, FoGSS is an attractive alternative to historical inflow sequences in all but the driest catchments. We discuss ways in which forecast reliability in very dry catchments could be improved in future work.
Yin, Weiwei; Garimalla, Swetha; Moreno, Alberto; Galinski, Mary R; Styczynski, Mark P
2015-08-28
There are increasing efforts to bring high-throughput systems biology techniques to bear on complex animal model systems, often with a goal of learning about underlying regulatory network structures (e.g., gene regulatory networks). However, complex animal model systems typically have significant limitations on cohort sizes, number of samples, and the ability to perform follow-up and validation experiments. These constraints are particularly problematic for many current network learning approaches, which require large numbers of samples and may predict many more regulatory relationships than actually exist. Here, we test the idea that by leveraging the accuracy and efficiency of classifiers, we can construct high-quality networks that capture important interactions between variables in datasets with few samples. We start from a previously-developed tree-like Bayesian classifier and generalize its network learning approach to allow for arbitrary depth and complexity of tree-like networks. Using four diverse sample networks, we demonstrate that this approach performs consistently better at low sample sizes than the Sparse Candidate Algorithm, a representative approach for comparison because it is known to generate Bayesian networks with high positive predictive value. We develop and demonstrate a resampling-based approach to enable the identification of a viable root for the learned tree-like network, important for cases where the root of a network is not known a priori. We also develop and demonstrate an integrated resampling-based approach to the reduction of variable space for the learning of the network. Finally, we demonstrate the utility of this approach via the analysis of a transcriptional dataset of a malaria challenge in a non-human primate model system, Macaca mulatta, suggesting the potential to capture indicators of the earliest stages of cellular differentiation during leukopoiesis. We demonstrate that by starting from effective and efficient approaches for creating classifiers, we can identify interesting tree-like network structures with significant ability to capture the relationships in the training data. This approach represents a promising strategy for inferring networks with high positive predictive value under the constraint of small numbers of samples, meeting a need that will only continue to grow as more high-throughput studies are applied to complex model systems.
Final Data Usability Summary and Resampling Proposal for Fort Sheridan
1996-03-22
performed. The basic approach discussed here was determined in discussions between Fort Sheridan, the EPA, Illinois EPA, the Army Environmental Center, and its RI consultant, Environmental Science and Engineering, Inc.
Immersive volume rendering of blood vessels
NASA Astrophysics Data System (ADS)
Long, Gregory; Kim, Han Suk; Marsden, Alison; Bazilevs, Yuri; Schulze, Jürgen P.
2012-03-01
In this paper, we present a novel method of visualizing flow in blood vessels. Our approach reads unstructured tetrahedral data, resamples it, and uses slice based 3D texture volume rendering. Due to the sparse structure of blood vessels, we utilize an octree to efficiently store the resampled data by discarding empty regions of the volume. We use animation to convey time series data, wireframe surface to give structure, and utilize the StarCAVE, a 3D virtual reality environment, to add a fully immersive element to the visualization. Our tool has great value in interdisciplinary work, helping scientists collaborate with clinicians, by improving the understanding of blood flow simulations. Full immersion in the flow field allows for a more intuitive understanding of the flow phenomena, and can be a great help to medical experts for treatment planning.
Voice Conversion Using Pitch Shifting Algorithm by Time Stretching with PSOLA and Re-Sampling
NASA Astrophysics Data System (ADS)
Mousa, Allam
2010-01-01
Voice changing has many applications in the industry and commercial filed. This paper emphasizes voice conversion using a pitch shifting method which depends on detecting the pitch of the signal (fundamental frequency) using Simplified Inverse Filter Tracking (SIFT) and changing it according to the target pitch period using time stretching with Pitch Synchronous Over Lap Add Algorithm (PSOLA), then resampling the signal in order to have the same play rate. The same study was performed to see the effect of voice conversion when some Arabic speech signal is considered. Treatment of certain Arabic voiced vowels and the conversion between male and female speech has shown some expansion or compression in the resulting speech. Comparison in terms of pitch shifting is presented here. Analysis was performed for a single frame and a full segmentation of speech.
Mir, Taskia; Dirks, Peter; Mason, Warren P; Bernstein, Mark
2014-10-01
This is a qualitative study designed to examine patient acceptability of re-sampling surgery for glioblastoma multiforme (GBM) electively post-therapy or at asymptomatic relapse. Thirty patients were selected using the convenience sampling method and interviewed. Patients were presented with hypothetical scenarios including a scenario in which the surgery was offered to them routinely and a scenario in which the surgery was in a clinical trial. The results of the study suggest that about two thirds of the patients offered the surgery on a routine basis would be interested, and half of the patients would agree to the surgery as part of a clinical trial. Several overarching themes emerged, some of which include: patients expressed ethical concerns about offering financial incentives or compensation to the patients or surgeons involved in the study; patients were concerned about appropriate communication and full disclosure about the procedures involved, the legalities of tumor ownership and the use of the tumor post-surgery; patients may feel alone or vulnerable when they are approached about the surgery; patients and their families expressed immense trust in their surgeon and indicated that this trust is a major determinant of their agreeing to surgery. The overall positive response to re-sampling surgery suggests that this procedure, if designed with all the ethical concerns attended to, would be welcomed by most patients. This approach of asking patients beforehand if a treatment innovation is acceptable would appear to be more practical and ethically desirable than previous practice.
Phu, Jack; Bui, Bang V; Kalloniatis, Michael; Khuu, Sieu K
2018-03-01
The number of subjects needed to establish the normative limits for visual field (VF) testing is not known. Using bootstrap resampling, we determined whether the ground truth mean, distribution limits, and standard deviation (SD) could be approximated using different set size ( x ) levels, in order to provide guidance for the number of healthy subjects required to obtain robust VF normative data. We analyzed the 500 Humphrey Field Analyzer (HFA) SITA-Standard results of 116 healthy subjects and 100 HFA full threshold results of 100 psychophysically experienced healthy subjects. These VFs were resampled (bootstrapped) to determine mean sensitivity, distribution limits (5th and 95th percentiles), and SD for different ' x ' and numbers of resamples. We also used the VF results of 122 glaucoma patients to determine the performance of ground truth and bootstrapped results in identifying and quantifying VF defects. An x of 150 (for SITA-Standard) and 60 (for full threshold) produced bootstrapped descriptive statistics that were no longer different to the original distribution limits and SD. Removing outliers produced similar results. Differences between original and bootstrapped limits in detecting glaucomatous defects were minimized at x = 250. Ground truth statistics of VF sensitivities could be approximated using set sizes that are significantly smaller than the original cohort. Outlier removal facilitates the use of Gaussian statistics and does not significantly affect the distribution limits. We provide guidance for choosing the cohort size for different levels of error when performing normative comparisons with glaucoma patients.
A novel fruit shape classification method based on multi-scale analysis
NASA Astrophysics Data System (ADS)
Gui, Jiangsheng; Ying, Yibin; Rao, Xiuqin
2005-11-01
Shape is one of the major concerns and which is still a difficult problem in automated inspection and sorting of fruits. In this research, we proposed the multi-scale energy distribution (MSED) for object shape description, the relationship between objects shape and its boundary energy distribution at multi-scale was explored for shape extraction. MSED offers not only the mainly energy which represent primary shape information at the lower scales, but also subordinate energy which represent local shape information at higher differential scales. Thus, it provides a natural tool for multi resolution representation and can be used as a feature for shape classification. We addressed the three main processing steps in the MSED-based shape classification. They are namely, 1) image preprocessing and citrus shape extraction, 2) shape resample and shape feature normalization, 3) energy decomposition by wavelet and classification by BP neural network. Hereinto, shape resample is resample 256 boundary pixel from a curve which is approximated original boundary by using cubic spline in order to get uniform raw data. A probability function was defined and an effective method to select a start point was given through maximal expectation, which overcame the inconvenience of traditional methods in order to have a property of rotation invariants. The experiment result is relatively well normal citrus and serious abnormality, with a classification rate superior to 91.2%. The global correct classification rate is 89.77%, and our method is more effective than traditional method. The global result can meet the request of fruit grading.
Stereo reconstruction from multiperspective panoramas.
Li, Yin; Shum, Heung-Yeung; Tang, Chi-Keung; Szeliski, Richard
2004-01-01
A new approach to computing a panoramic (360 degrees) depth map is presented in this paper. Our approach uses a large collection of images taken by a camera whose motion has been constrained to planar concentric circles. We resample regular perspective images to produce a set of multiperspective panoramas and then compute depth maps directly from these resampled panoramas. Our panoramas sample uniformly in three dimensions: rotation angle, inverse radial distance, and vertical elevation. The use of multiperspective panoramas eliminates the limited overlap present in the original input images and, thus, problems as in conventional multibaseline stereo can be avoided. Our approach differs from stereo matching of single-perspective panoramic images taken from different locations, where the epipolar constraints are sine curves. For our multiperspective panoramas, the epipolar geometry, to the first order approximation, consists of horizontal lines. Therefore, any traditional stereo algorithm can be applied to multiperspective panoramas with little modification. In this paper, we describe two reconstruction algorithms. The first is a cylinder sweep algorithm that uses a small number of resampled multiperspective panoramas to obtain dense 3D reconstruction. The second algorithm, in contrast, uses a large number of multiperspective panoramas and takes advantage of the approximate horizontal epipolar geometry inherent in multiperspective panoramas. It comprises a novel and efficient 1D multibaseline matching technique, followed by tensor voting to extract the depth surface. Experiments show that our algorithms are capable of producing comparable high quality depth maps which can be used for applications such as view interpolation.
Watermarking on 3D mesh based on spherical wavelet transform.
Jin, Jian-Qiu; Dai, Min-Ya; Bao, Hu-Jun; Peng, Qun-Sheng
2004-03-01
In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and the robustness of watermarking against attacks.
A Downloadable Three-Dimensional Virtual Model of the Visible Ear
Wang, Haobing; Merchant, Saumil N.; Sorensen, Mads S.
2008-01-01
Purpose To develop a three-dimensional (3-D) virtual model of a human temporal bone and surrounding structures. Methods A fresh-frozen human temporal bone was serially sectioned and digital images of the surface of the tissue block were recorded (the ‘Visible Ear’). The image stack was resampled at a final resolution of 50 × 50 × 50/100 µm/voxel, registered in custom software and segmented in PhotoShop® 7.0. The segmented image layers were imported into Amira® 3.1 to generate smooth polygonal surface models. Results The 3-D virtual model presents the structures of the middle, inner and outer ears in their surgically relevant surroundings. It is packaged within a cross-platform freeware, which allows for full rotation, visibility and transparency control, as well as the ability to slice the 3-D model open at any section. The appropriate raw image can be superimposed on the cleavage plane. The model can be downloaded at https://research.meei.harvard.edu/Otopathology/3dmodels/ PMID:17124433
Preacher, Kristopher J; Hayes, Andrew F
2008-08-01
Hypotheses involving mediation are common in the behavioral sciences. Mediation exists when a predictor affects a dependent variable indirectly through at least one intervening variable, or mediator. Methods to assess mediation involving multiple simultaneous mediators have received little attention in the methodological literature despite a clear need. We provide an overview of simple and multiple mediation and explore three approaches that can be used to investigate indirect processes, as well as methods for contrasting two or more mediators within a single model. We present an illustrative example, assessing and contrasting potential mediators of the relationship between the helpfulness of socialization agents and job satisfaction. We also provide SAS and SPSS macros, as well as Mplus and LISREL syntax, to facilitate the use of these methods in applications.
A modification of the fusion model for log polar coordinates
NASA Technical Reports Server (NTRS)
Griswold, N. C.; Weiman, Carl F. R.
1990-01-01
The fusion mechanism for application in stereo analysis of range restricted the depth of field and therefore required a shift variant mechanism in the peripheral area to find disparity. Misregistration was prevented by restricting the disparity detection range to a neighborhood spanned by the directional edge detection filters. This transformation was essentially accomplished by a nonuniform resampling of the original image in a horizontal direction. While this is easily implemented for digital processing, the approach does not (in the peripheral vision area) model the log-conformal mapping which is known to occur in the human mechanism. This paper therefore modifies the original fusion concept in the peripheral area to include the polar exponential grid-to-log conformal tesselation. Examples of the fusion process resulting in accurate disparity values are given.
Determination of Time Dependent Virus Inactivation Rates
NASA Astrophysics Data System (ADS)
Chrysikopoulos, C. V.; Vogler, E. T.
2003-12-01
A methodology is developed for estimating temporally variable virus inactivation rate coefficients from experimental virus inactivation data. The methodology consists of a technique for slope estimation of normalized virus inactivation data in conjunction with a resampling parameter estimation procedure. The slope estimation technique is based on a relatively flexible geostatistical method known as universal kriging. Drift coefficients are obtained by nonlinear fitting of bootstrap samples and the corresponding confidence intervals are obtained by bootstrap percentiles. The proposed methodology yields more accurate time dependent virus inactivation rate coefficients than those estimated by fitting virus inactivation data to a first-order inactivation model. The methodology is successfully applied to a set of poliovirus batch inactivation data. Furthermore, the importance of accurate inactivation rate coefficient determination on virus transport in water saturated porous media is demonstrated with model simulations.
Resampling procedures to identify important SNPs using a consensus approach.
Pardy, Christopher; Motyer, Allan; Wilson, Susan
2011-11-29
Our goal is to identify common single-nucleotide polymorphisms (SNPs) (minor allele frequency > 1%) that add predictive accuracy above that gained by knowledge of easily measured clinical variables. We take an algorithmic approach to predict each phenotypic variable using a combination of phenotypic and genotypic predictors. We perform our procedure on the first simulated replicate and then validate against the others. Our procedure performs well when predicting Q1 but is less successful for the other outcomes. We use resampling procedures where possible to guard against false positives and to improve generalizability. The approach is based on finding a consensus regarding important SNPs by applying random forests and the least absolute shrinkage and selection operator (LASSO) on multiple subsamples. Random forests are used first to discard unimportant predictors, narrowing our focus to roughly 100 important SNPs. A cross-validation LASSO is then used to further select variables. We combine these procedures to guarantee that cross-validation can be used to choose a shrinkage parameter for the LASSO. If the clinical variables were unavailable, this prefiltering step would be essential. We perform the SNP-based analyses simultaneously rather than one at a time to estimate SNP effects in the presence of other causal variants. We analyzed the first simulated replicate of Genetic Analysis Workshop 17 without knowledge of the true model. Post-conference knowledge of the simulation parameters allowed us to investigate the limitations of our approach. We found that many of the false positives we identified were substantially correlated with genuine causal SNPs.
Kolmogorov-Smirnov test for spatially correlated data
Olea, R.A.; Pawlowsky-Glahn, V.
2009-01-01
The Kolmogorov-Smirnov test is a convenient method for investigating whether two underlying univariate probability distributions can be regarded as undistinguishable from each other or whether an underlying probability distribution differs from a hypothesized distribution. Application of the test requires that the sample be unbiased and the outcomes be independent and identically distributed, conditions that are violated in several degrees by spatially continuous attributes, such as topographical elevation. A generalized form of the bootstrap method is used here for the purpose of modeling the distribution of the statistic D of the Kolmogorov-Smirnov test. The innovation is in the resampling, which in the traditional formulation of bootstrap is done by drawing from the empirical sample with replacement presuming independence. The generalization consists of preparing resamplings with the same spatial correlation as the empirical sample. This is accomplished by reading the value of unconditional stochastic realizations at the sampling locations, realizations that are generated by simulated annealing. The new approach was tested by two empirical samples taken from an exhaustive sample closely following a lognormal distribution. One sample was a regular, unbiased sample while the other one was a clustered, preferential sample that had to be preprocessed. Our results show that the p-value for the spatially correlated case is always larger that the p-value of the statistic in the absence of spatial correlation, which is in agreement with the fact that the information content of an uncorrelated sample is larger than the one for a spatially correlated sample of the same size. ?? Springer-Verlag 2008.
Comparing apples and oranges: the Community Intercomparison Suite
NASA Astrophysics Data System (ADS)
Schutgens, Nick; Stier, Philip; Pascoe, Stephen
2014-05-01
Visual representation and comparison of geoscientific datasets presents a huge challenge due to the large variety of file formats and spatio-temporal sampling of data (be they observations or simulations). The Community Intercomparison Suite attempts to greatly simplify these tasks for users by offering an intelligent but simple command line tool for visualisation and colocation of diverse datasets. In addition, CIS can subset and aggregate large datasets into smaller more manageable datasets. Our philosophy is to remove as much as possible the need for specialist knowledge by the user of the structure of a dataset. The colocation of observations with model data is as simple as: "cis col
Kafeshani, Farzaneh Alizadeh; Rajabpour, Ali; Aghajanzadeh, Sirous; Gholamian, Esmaeil; Farkhari, Mohammad
2018-04-02
Aphis spiraecola Patch, Aphis gossypii Glover, and Toxoptera aurantii Boyer de Fonscolombe are three important aphid pests of citrus orchards. In this study, spatial distributions of the aphids on two orange species, Satsuma mandarin and Thomson navel, were evaluated using Taylor's power law and Iwao's patchiness. In addition, a fixed-precision sequential sampling plant was developed for each species on the host plant by Green's model at precision levels of 0.25 and 0.1. The results revealed that spatial distribution parameters and therefore the sampling plan were significantly different according to aphid and host plant species. Taylor's power law provides a better fit for the data than Iwao's patchiness regression. Except T. aurantii on Thomson navel orange, spatial distribution patterns of the aphids were aggregative on both citrus. T. aurantii had regular dispersion pattern on Thomson navel orange. Optimum sample size of the aphids varied from 30-2061 and 1-1622 shoots on Satsuma mandarin and Thomson navel orange based on aphid species and desired precision level. Calculated stop lines of the aphid species on Satsuma mandarin and Thomson navel orange ranged from 0.48 to 19 and 0.19 to 80.4 aphids per 24 shoots according to aphid species and desired precision level. The performance of the sampling plan was validated by resampling analysis using resampling for validation of sampling plans (RVSP) software. This sampling program is useful for IPM program of the aphids in citrus orchards.
NASA Astrophysics Data System (ADS)
Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry
2017-07-01
Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF of Schaap et al. (2001) applied to the SoilGrids1km data set of Hengl et al. (2014). The example data set is provided at a global resolution of 0.25° at https://doi.org/10.1594/PANGAEA.870605.
Predicting and adapting to the agricultural impacts of large-scale drought (Invited)
NASA Astrophysics Data System (ADS)
Elliott, J. W.; Glotter, M.; Best, N.; Ruane, A. C.; Boote, K.; Hatfield, J.; Jones, J.; Rosenzweig, C.; Smith, L. A.; Foster, I.
2013-12-01
The impact of drought on agriculture is an important socioeconomic consequence of climate extremes. Drought affects millions of people globally each year, causing an average of 6-8 billion of damage annually in the U.S. alone. The 1988 U.S. drought is estimated to have cost 79 billion in 2013 dollars, behind only Hurricane Katrina as the most costly U.S. climate-related disaster in recent decades. The 2012 U.S. drought is expected to cost about 30 billion. Droughts and heat waves accounted for 12% of all billion-dollar disaster events in the U.S. from 1980-2011 but almost one quarter of total monetary damages. To make matters worse, the frequency and severity of large-scale droughts in important agricultural regions is expected to increase as temperatures rise and precipitation patterns shift, leading some researchers to suggest that extended drought will harm more people than any other climate-related impact, specifically in the area of food security. Improved understanding and forecasts of drought would have both immediate and long-term implications for the global economy and food security. We show that mechanistic agricultural models, applied in novel ways, can reproduce historical crop yield anomalies, especially in seasons for which drought is the overriding factor. With more accurate observations and forecasts for temperature and precipitation, the accuracy and lead times of drought impact predictions could be improved further. We provide evidence that changes in agricultural technologies and management have reduced system-level drought sensitivity in US maize production in recent decades, adaptations that could be applied elsewhere. This work suggests a new approach to modeling, monitoring, and forecasting drought impacts on agriculture. Simulated (dashed line), observed (solid line), and observed linear trend (dashed straight green line) of national average maize yield in tonnes per hectare from 1979-2012. The red dot indicates the USDA estimate for 2012 released in November 2012. We use shading to show the central 95% (lighter bands) and 75% (darker bands) of the resampled forecast error distribution. The June-August Palmer Z-Index (by US climate division) for b) 1988 and c) 2012.
Linear regression in astronomy. II
NASA Technical Reports Server (NTRS)
Feigelson, Eric D.; Babu, Gutti J.
1992-01-01
A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.
Autoregressive statistical pattern recognition algorithms for damage detection in civil structures
NASA Astrophysics Data System (ADS)
Yao, Ruigen; Pakzad, Shamim N.
2012-08-01
Statistical pattern recognition has recently emerged as a promising set of complementary methods to system identification for automatic structural damage assessment. Its essence is to use well-known concepts in statistics for boundary definition of different pattern classes, such as those for damaged and undamaged structures. In this paper, several statistical pattern recognition algorithms using autoregressive models, including statistical control charts and hypothesis testing, are reviewed as potentially competitive damage detection techniques. To enhance the performance of statistical methods, new feature extraction techniques using model spectra and residual autocorrelation, together with resampling-based threshold construction methods, are proposed. Subsequently, simulated acceleration data from a multi degree-of-freedom system is generated to test and compare the efficiency of the existing and proposed algorithms. Data from laboratory experiments conducted on a truss and a large-scale bridge slab model are then used to further validate the damage detection methods and demonstrate the superior performance of proposed algorithms.
A Stochastic Climate Generator for Agriculture in Southeast Asian Domains
NASA Astrophysics Data System (ADS)
Greene, A. M.; Allis, E. C.
2014-12-01
We extend a previously-described method for generating future climate scenarios, suitable for driving agricultural models, to selected domains in Lao PDR, Bangladesh and Indonesia. There are notable differences in climatology among the study regions, most importantly the inverse seasonal relationship of southeast Asian and Australian monsoons. These differences necessitate a partially-differentiated modeling approach, utilizing common features for better estimation while allowing independent modeling of divergent attributes. The method attempts to constrain uncertainty due to both anthropogenic and natural influences, providing a measure of how these effects may combine during specified future decades. Seasonal climate fields are downscaled to the daily time step by resampling the AgMERRA dataset, providing a full suite of agriculturally relevant variables and enabling the propagation of climate uncertainty to agricultural outputs. The role of this research in a broader project, conducted under the auspices of the International Fund for Agricultural Development (IFAD), is discussed.
NASA Astrophysics Data System (ADS)
Savage, James; Pianosi, Francesca; Bates, Paul; Freer, Jim; Wagener, Thorsten
2015-04-01
Predicting flood inundation extents using hydraulic models is subject to a number of critical uncertainties. For a specific event, these uncertainties are known to have a large influence on model outputs and any subsequent analyses made by risk managers. Hydraulic modellers often approach such problems by applying uncertainty analysis techniques such as the Generalised Likelihood Uncertainty Estimation (GLUE) methodology. However, these methods do not allow one to attribute which source of uncertainty has the most influence on the various model outputs that inform flood risk decision making. Another issue facing modellers is the amount of computational resource that is available to spend on modelling flood inundations that are 'fit for purpose' to the modelling objectives. Therefore a balance needs to be struck between computation time, realism and spatial resolution, and effectively characterising the uncertainty spread of predictions (for example from boundary conditions and model parameterisations). However, it is not fully understood how much of an impact each factor has on model performance, for example how much influence changing the spatial resolution of a model has on inundation predictions in comparison to other uncertainties inherent in the modelling process. Furthermore, when resampling fine scale topographic data in the form of a Digital Elevation Model (DEM) to coarser resolutions, there are a number of possible coarser DEMs that can be produced. Deciding which DEM is then chosen to represent the surface elevations in the model could also influence model performance. In this study we model a flood event using the hydraulic model LISFLOOD-FP and apply Sobol' Sensitivity Analysis to estimate which input factor, among the uncertainty in model boundary conditions, uncertain model parameters, the spatial resolution of the DEM and the choice of resampled DEM, have the most influence on a range of model outputs. These outputs include whole domain maximum inundation indicators and flood wave travel time in addition to temporally and spatially variable indicators. This enables us to assess whether the sensitivity of the model to various input factors is stationary in both time and space. Furthermore, competing models are assessed against observations of water depths from a historical flood event. Consequently we are able to determine which of the input factors has the most influence on model performance. Initial findings suggest the sensitivity of the model to different input factors varies depending on the type of model output assessed and at what stage during the flood hydrograph the model output is assessed. We have also found that initial decisions regarding the characterisation of the input factors, for example defining the upper and lower bounds of the parameter sample space, can be significant in influencing the implied sensitivities.
Round Robin evaluation of soil moisture retrieval models for the MetOp-A ASCAT Instrument
NASA Astrophysics Data System (ADS)
Gruber, Alexander; Paloscia, Simonetta; Santi, Emanuele; Notarnicola, Claudia; Pasolli, Luca; Smolander, Tuomo; Pulliainen, Jouni; Mittelbach, Heidi; Dorigo, Wouter; Wagner, Wolfgang
2014-05-01
Global soil moisture observations are crucial to understand hydrologic processes, earth-atmosphere interactions and climate variability. ESA's Climate Change Initiative (CCI) project aims to create a global consistent long-term soil moisture data set based on the merging of the best available active and passive satellite-based microwave sensors and retrieval algorithms. Within the CCI, a Round Robin evaluation of existing retrieval algorithms for both active and passive instruments was carried out. In this study we present the comparison of five different retrieval algorithms covering three different modelling principles applied to active MetOp-A ASCAT L1 backscatter data. These models include statistical models (Bayesian Regression and Support Vector Regression, provided by the Institute for Applied Remote Sensing, Eurac Research Viale Druso, Italy, and an Artificial Neural Network, provided by the Institute of Applied Physics, CNR-IFAC, Italy), a semi-empirical model (provided by the Finnish Meteorological Institute), and a change detection model (provided by the Vienna University of Technology). The algorithms were applied on L1 backscatter data within the period of 2007-2011, resampled to a 12.5 km grid. The evaluation was performed over 75 globally distributed, quality controlled in situ stations drawn from the International Soil Moisture Network (ISMN) using surface soil moisture data from the Global Land Data Assimilation System (GLDAS-) Noah land surface model as second independent reference. The temporal correlation between the data sets was analyzed and random errors of the the different algorithms were estimated using the triple collocation method. Absolute soil moisture values as well as soil moisture anomalies were considered including both long-term anomalies from the mean seasonal cycle and short-term anomalies from a five weeks moving average window. Results show a very high agreement between all five algorithms for most stations. A slight vegetation dependency of the errors and a spatial decorrelation of the performance patterns of the different algorithms was found. We conclude that future research should focus on understanding, combining and exploiting the advantages of all available modelling approaches rather than trying to optimize one approach to fit every possible condition.
Ranjbar, Mansour; Shoghli, Alireza; Kolifarhood, Goodarz; Tabatabaei, Seyed Mehdi; Amlashi, Morteza; Mohammadi, Mahdi
2016-03-02
Malaria re-introduction is a challenge in elimination settings. To prevent re-introduction, receptivity, vulnerability, and health system capacity of foci should be monitored using appropriate tools. This study aimed to design an applicable model to monitor predicting factors of re-introduction of malaria in highly prone areas. This exploratory, descriptive study was conducted in a pre-elimination setting with a high-risk of malaria transmission re-introduction. By using nominal group technique and literature review, a list of predicting indicators for malaria re-introduction and outbreak was defined. Accordingly, a checklist was developed and completed in the field for foci affected by re-introduction and for cleared-up foci as a control group, for a period of 12 weeks before re-introduction and for the same period in the previous year. Using field data and analytic hierarchical process (AHP), each variable and its sub-categories were weighted, and by calculating geometric means for each sub-category, score of corresponding cells of interaction matrices, lower and upper threshold of different risks strata, including low and mild risk of re-introduction and moderate and high risk of malaria outbreaks, were determined. The developed predictive model was calibrated through resampling with different sets of explanatory variables using R software. Sensitivity and specificity of the model were calculated based on new samples. Twenty explanatory predictive variables of malaria re-introduction were identified and a predictive model was developed. Unpermitted immigrants from endemic neighbouring countries were determined as a pivotal factor (AHP score: 0.181). Moreover, quality of population movement (0.114), following malaria transmission season (0.088), average daily minimum temperature in the previous 8 weeks (0.062), an outdoor resting shelter for vectors (0.045), and rainfall (0.042) were determined. Positive and negative predictive values of the model were 81.8 and 100 %, respectively. This study introduced a new, simple, yet reliable model to forecast malaria re-introduction and outbreaks eight weeks in advance in pre-elimination and elimination settings. The model incorporates comprehensive deterministic factors that can easily be measured in the field, thereby facilitating preventive measures.
Speckle reduction in digital holography with resampling ring masks
NASA Astrophysics Data System (ADS)
Zhang, Wenhui; Cao, Liangcai; Jin, Guofan
2018-01-01
One-shot digital holographic imaging has the advantages of high stability and low temporal cost. However, the reconstruction is affected by the speckle noise. Resampling ring-mask method in spectrum domain is proposed for speckle reduction. The useful spectrum of one hologram is divided into several sub-spectra by ring masks. In the reconstruction, angular spectrum transform is applied to guarantee the calculation accuracy which has no approximation. N reconstructed amplitude images are calculated from the corresponding sub-spectra. Thanks to speckle's random distribution, superimposing these N uncorrelated amplitude images would lead to a final reconstructed image with lower speckle noise. Normalized relative standard deviation values of the reconstructed image are used to evaluate the reduction of speckle. Effect of the method on the spatial resolution of the reconstructed image is also quantitatively evaluated. Experimental and simulation results prove the feasibility and effectiveness of the proposed method.
An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication
MinhHai, Tran; Rie, Saotome; Suzuki, Taisaku; Wada, Tomohisa
2016-01-01
We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1) estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2) symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically. PMID:27057558
NASA Astrophysics Data System (ADS)
Lu, Siliang; Wang, Xiaoxian; He, Qingbo; Liu, Fang; Liu, Yongbin
2016-12-01
Transient signal analysis (TSA) has been proven an effective tool for motor bearing fault diagnosis, but has yet to be applied in processing bearing fault signals with variable rotating speed. In this study, a new TSA-based angular resampling (TSAAR) method is proposed for fault diagnosis under speed fluctuation condition via sound signal analysis. By applying the TSAAR method, the frequency smearing phenomenon is eliminated and the fault characteristic frequency is exposed in the envelope spectrum for bearing fault recognition. The TSAAR method can accurately estimate the phase information of the fault-induced impulses using neither complicated time-frequency analysis techniques nor external speed sensors, and hence it provides a simple, flexible, and data-driven approach that realizes variable-speed motor bearing fault diagnosis. The effectiveness and efficiency of the proposed TSAAR method are verified through a series of simulated and experimental case studies.
Simulation and statistics: Like rhythm and song
NASA Astrophysics Data System (ADS)
Othman, Abdul Rahman
2013-04-01
Simulation has been introduced to solve problems in the form of systems. By using this technique the following two problems can be overcome. First, a problem that has an analytical solution but the cost of running an experiment to solve is high in terms of money and lives. Second, a problem exists but has no analytical solution. In the field of statistical inference the second problem is often encountered. With the advent of high-speed computing devices, a statistician can now use resampling techniques such as the bootstrap and permutations to form pseudo sampling distribution that will lead to the solution of the problem that cannot be solved analytically. This paper discusses how a Monte Carlo simulation was and still being used to verify the analytical solution in inference. This paper also discusses the resampling techniques as simulation techniques. The misunderstandings about these two techniques are examined. The successful usages of both techniques are also explained.
Bishara, Anthony J; Hittner, James B
2012-09-01
It is well known that when data are nonnormally distributed, a test of the significance of Pearson's r may inflate Type I error rates and reduce power. Statistics textbooks and the simulation literature provide several alternatives to Pearson's correlation. However, the relative performance of these alternatives has been unclear. Two simulation studies were conducted to compare 12 methods, including Pearson, Spearman's rank-order, transformation, and resampling approaches. With most sample sizes (n ≥ 20), Type I and Type II error rates were minimized by transforming the data to a normal shape prior to assessing the Pearson correlation. Among transformation approaches, a general purpose rank-based inverse normal transformation (i.e., transformation to rankit scores) was most beneficial. However, when samples were both small (n ≤ 10) and extremely nonnormal, the permutation test often outperformed other alternatives, including various bootstrap tests.
A scale-invariant change detection method for land use/cover change research
NASA Astrophysics Data System (ADS)
Xing, Jin; Sieber, Renee; Caelli, Terrence
2018-07-01
Land Use/Cover Change (LUCC) detection relies increasingly on comparing remote sensing images with different spatial and spectral scales. Based on scale-invariant image analysis algorithms in computer vision, we propose a scale-invariant LUCC detection method to identify changes from scale heterogeneous images. This method is composed of an entropy-based spatial decomposition, two scale-invariant feature extraction methods, Maximally Stable Extremal Region (MSER) and Scale-Invariant Feature Transformation (SIFT) algorithms, a spatial regression voting method to integrate MSER and SIFT results, a Markov Random Field-based smoothing method, and a support vector machine classification method to assign LUCC labels. We test the scale invariance of our new method with a LUCC case study in Montreal, Canada, 2005-2012. We found that the scale-invariant LUCC detection method provides similar accuracy compared with the resampling-based approach but this method avoids the LUCC distortion incurred by resampling.
Efficient high-quality volume rendering of SPH data.
Fraedrich, Roland; Auer, Stefan; Westermann, Rüdiger
2010-01-01
High quality volume rendering of SPH data requires a complex order-dependent resampling of particle quantities along the view rays. In this paper we present an efficient approach to perform this task using a novel view-space discretization of the simulation domain. Our method draws upon recent work on GPU-based particle voxelization for the efficient resampling of particles into uniform grids. We propose a new technique that leverages a perspective grid to adaptively discretize the view-volume, giving rise to a continuous level-of-detail sampling structure and reducing memory requirements compared to a uniform grid. In combination with a level-of-detail representation of the particle set, the perspective grid allows effectively reducing the amount of primitives to be processed at run-time. We demonstrate the quality and performance of our method for the rendering of fluid and gas dynamics SPH simulations consisting of many millions of particles.
Efficient geometric rectification techniques for spectral analysis algorithm
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Pang, S. S.; Curlander, J. C.
1992-01-01
The spectral analysis algorithm is a viable technique for processing synthetic aperture radar (SAR) data in near real time throughput rates by trading the image resolution. One major challenge of the spectral analysis algorithm is that the output image, often referred to as the range-Doppler image, is represented in the iso-range and iso-Doppler lines, a curved grid format. This phenomenon is known to be the fanshape effect. Therefore, resampling is required to convert the range-Doppler image into a rectangular grid format before the individual images can be overlaid together to form seamless multi-look strip imagery. An efficient algorithm for geometric rectification of the range-Doppler image is presented. The proposed algorithm, realized in two one-dimensional resampling steps, takes into consideration the fanshape phenomenon of the range-Doppler image as well as the high squint angle and updates of the cross-track and along-track Doppler parameters. No ground reference points are required.
Modeling and docking antibody structures with Rosetta
Weitzner, Brian D.; Jeliazkov, Jeliazko R.; Lyskov, Sergey; Marze, Nicholas; Kuroda, Daisuke; Frick, Rahel; Adolf-Bryfogle, Jared; Biswas, Naireeta; Dunbrack, Roland L.; Gray, Jeffrey J.
2017-01-01
We describe Rosetta-based computational protocols for predicting the three-dimensional structure of an antibody from sequence (RosettaAntibody) and then docking the antibody to protein antigens (SnugDock). Antibody modeling leverages canonical loop conformations to graft large segments from experimentally-determined structures as well as (1) energetic calculations to minimize loops, (2) docking methodology to refine the VL–VH relative orientation, and (3) de novo prediction of the elusive complementarity determining region (CDR) H3 loop. To alleviate model uncertainty, antibody–antigen docking resamples CDR loop conformations and can use multiple models to represent an ensemble of conformations for the antibody, the antigen or both. These protocols can be run fully-automated via the ROSIE web server (http://rosie.rosettacommons.org/) or manually on a computer with user control of individual steps. For best results, the protocol requires roughly 1,000 CPU-hours for antibody modeling and 250 CPU-hours for antibody–antigen docking. Tasks can be completed in under a day by using public supercomputers. PMID:28125104
The balanced survivor average causal effect.
Greene, Tom; Joffe, Marshall; Hu, Bo; Li, Liang; Boucher, Ken
2013-05-07
Statistical analysis of longitudinal outcomes is often complicated by the absence of observable values in patients who die prior to their scheduled measurement. In such cases, the longitudinal data are said to be "truncated by death" to emphasize that the longitudinal measurements are not simply missing, but are undefined after death. Recently, the truncation by death problem has been investigated using the framework of principal stratification to define the target estimand as the survivor average causal effect (SACE), which in the context of a two-group randomized clinical trial is the mean difference in the longitudinal outcome between the treatment and control groups for the principal stratum of always-survivors. The SACE is not identified without untestable assumptions. These assumptions have often been formulated in terms of a monotonicity constraint requiring that the treatment does not reduce survival in any patient, in conjunction with assumed values for mean differences in the longitudinal outcome between certain principal strata. In this paper, we introduce an alternative estimand, the balanced-SACE, which is defined as the average causal effect on the longitudinal outcome in a particular subset of the always-survivors that is balanced with respect to the potential survival times under the treatment and control. We propose a simple estimator of the balanced-SACE that compares the longitudinal outcomes between equivalent fractions of the longest surviving patients between the treatment and control groups and does not require a monotonicity assumption. We provide expressions for the large sample bias of the estimator, along with sensitivity analyses and strategies to minimize this bias. We consider statistical inference under a bootstrap resampling procedure.
NASA Astrophysics Data System (ADS)
Khoshkbar Sadigh, Arash
Part I: Dynamic Voltage Restorer In the present power grids, voltage sags are recognized as a serious threat and a frequently occurring power-quality problem and have costly consequence such as sensitive loads tripping and production loss. Consequently, the demand for high power quality and voltage stability becomes a pressing issue. Dynamic voltage restorer (DVR), as a custom power device, is more effective and direct solutions for "restoring" the quality of voltage at its load-side terminals when the quality of voltage at its source-side terminals is disturbed. In the first part of this thesis, a DVR configuration with no need of bulky dc link capacitor or energy storage is proposed. This fact causes to reduce the size of the DVR and increase the reliability of the circuit. In addition, the proposed DVR topology is based on high-frequency isolation transformer resulting in the size reduction of transformer. The proposed DVR circuit, which is suitable for both low- and medium-voltage applications, is based on dc-ac converters connected in series to split the main dc link between the inputs of dc-ac converters. This feature makes it possible to use modular dc-ac converters and utilize low-voltage components in these converters whenever it is required to use DVR in medium-voltage application. The proposed configuration is tested under different conditions of load power factor and grid voltage harmonic. It has been shown that proposed DVR can compensate the voltage sag effectively and protect the sensitive loads. Following the proposition of the DVR topology, a fundamental voltage amplitude detection method which is applicable in both single/three-phase systems for DVR applications is proposed. The advantages of proposed method include application in distorted power grid with no need of any low-pass filter, precise and reliable detection, simple computation and implementation without using a phased locked loop and lookup table. The proposed method has been verified by simulation and experimental tests under various conditions considering all possible cases such as different amounts of voltage sag depth (VSD), different amounts of point-on-wave (POW) at which voltage sag occurs, harmonic distortion, line frequency variation, and phase jump (PJ). Furthermore, the ripple amount of fundamental voltage amplitude calculated by the proposed method and its error is analyzed considering the line frequency variation together with harmonic distortion. The best and worst detection time of proposed method were measured 1ms and 8.8ms, respectively. Finally, the proposed method has been compared with other voltage sag detection methods available in literature. Part 2: Power System Modeling for Renewable Energy Integration: As power distribution systems are evolving into more complex networks, electrical engineers have to rely on software tools to perform circuit analysis. There are dozens of powerful software tools available in the market to perform the power system studies. Although their main functions are similar, there are differences in features and formatting structures to suit specific applications. This creates challenges for transferring power system circuit models data (PSCMD) between different software and rebuilding the same circuit in the second software environment. The objective of this part of thesis is to develop a Unified Platform (UP) to facilitate transferring PSCMD among different software packages and relieve the challenges of the circuit model conversion process. UP uses a commonly available spreadsheet file with a defined format, for any home software to write data to and for any destination software to read data from, via a script-based application called PSCMD transfer application. The main considerations in developing the UP are to minimize manual intervention and import a one-line diagram into the destination software or export it from the source software, with all details to allow load flow, short circuit and other analyses. In this study, ETAP, OpenDSS, and GridLab-D are considered, and PSCMD transfer applications written in MATLAB have been developed for each of these to read the circuit model data provided in the UP spreadsheet. In order to test the developed PSCMD transfer applications, circuit model data of a test circuit and a power distribution circuit from Southern California Edison (SCE) - a utility company - both built in CYME, were exported into the spreadsheet file according to the UP format. Thereafter, circuit model data were imported successfully from the spreadsheet files into above mentioned software using the PSCMD transfer applications developed for each software. After the SCE studied circuit is transferred into OpenDSS software using the proposed UP scheme and developed application, it has been studied to investigate the impacts of large-scale solar energy penetration. The main challenge of solar energy integration into power grid is its intermittency (i.e., discontinuity of output power) nature due to cloud shading of photovoltaic panels which depends on weather conditions. In order to conduct this study, OpenDSS time-series simulation feature, which is required due to intermittency of solar energy, is utilized. In this study, the impacts of intermittency of solar energy penetration, especially high-variability points, on voltage fluctuation and operation of capacitor bank and voltage regulator is provided. In addition, the necessity to interpolate and resample unequally spaced time-series measurement data and convert them to equally spaced time-series data as well as the effect of resampling time-interval on the amount of error is discussed. Two applications are developed in Matlab to do interpolation and resampling as well as to calculate the amount of error for different resampling time-intervals to figure out the suitable resampling time-interval. Furthermore, an approach based on cumulative distribution, regarding the length for lines/cables types and the power rating for loads, is presented to prioritize which loads, lines and cables the meters should be installed at to have the most effect on model validation.
Automatic aortic root segmentation in CTA whole-body dataset
NASA Astrophysics Data System (ADS)
Gao, Xinpei; Kitslaar, Pieter H.; Scholte, Arthur J. H. A.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke; Reiber, Johan H. C.
2016-03-01
Trans-catheter aortic valve replacement (TAVR) is an evolving technique for patients with serious aortic stenosis disease. Typically, in this application a CTA data set is obtained of the patient's arterial system from the subclavian artery to the femoral arteries, to evaluate the quality of the vascular access route and analyze the aortic root to determine if and which prosthesis should be used. In this paper, we concentrate on the automated segmentation of the aortic root. The purpose of this study was to automatically segment the aortic root in computed tomography angiography (CTA) datasets to support TAVR procedures. The method in this study includes 4 major steps. First, the patient's cardiac CTA image was resampled to reduce the computation time. Next, the cardiac CTA image was segmented using an atlas-based approach. The most similar atlas was selected from a total of 8 atlases based on its image similarity to the input CTA image. Third, the aortic root segmentation from the previous step was transferred to the patient's whole-body CTA image by affine registration and refined in the fourth step using a deformable subdivision surface model fitting procedure based on image intensity. The pipeline was applied to 20 patients. The ground truth was created by an analyst who semi-automatically corrected the contours of the automatic method, where necessary. The average Dice similarity index between the segmentations of the automatic method and the ground truth was found to be 0.965±0.024. In conclusion, the current results are very promising.
Estimation and correction of visibility bias in aerial surveys of wintering ducks
Pearse, A.T.; Gerard, P.D.; Dinsmore, S.J.; Kaminski, R.M.; Reinecke, K.J.
2008-01-01
Incomplete detection of all individuals leading to negative bias in abundance estimates is a pervasive source of error in aerial surveys of wildlife, and correcting that bias is a critical step in improving surveys. We conducted experiments using duck decoys as surrogates for live ducks to estimate bias associated with surveys of wintering ducks in Mississippi, USA. We found detection of decoy groups was related to wetland cover type (open vs. forested), group size (1?100 decoys), and interaction of these variables. Observers who detected decoy groups reported counts that averaged 78% of the decoys actually present, and this counting bias was not influenced by either covariate cited above. We integrated this sightability model into estimation procedures for our sample surveys with weight adjustments derived from probabilities of group detection (estimated by logistic regression) and count bias. To estimate variances of abundance estimates, we used bootstrap resampling of transects included in aerial surveys and data from the bias-correction experiment. When we implemented bias correction procedures on data from a field survey conducted in January 2004, we found bias-corrected estimates of abundance increased 36?42%, and associated standard errors increased 38?55%, depending on species or group estimated. We deemed our method successful for integrating correction of visibility bias in an existing sample survey design for wintering ducks in Mississippi, and we believe this procedure could be implemented in a variety of sampling problems for other locations and species.
Scalable and balanced dynamic hybrid data assimilation
NASA Astrophysics Data System (ADS)
Kauranne, Tuomo; Amour, Idrissa; Gunia, Martin; Kallio, Kari; Lepistö, Ahti; Koponen, Sampsa
2017-04-01
Scalability of complex weather forecasting suites is dependent on the technical tools available for implementing highly parallel computational kernels, but to an equally large extent also on the dependence patterns between various components of the suite, such as observation processing, data assimilation and the forecast model. Scalability is a particular challenge for 4D variational assimilation methods that necessarily couple the forecast model into the assimilation process and subject this combination to an inherently serial quasi-Newton minimization process. Ensemble based assimilation methods are naturally more parallel, but large models force ensemble sizes to be small and that results in poor assimilation accuracy, somewhat akin to shooting with a shotgun in a million-dimensional space. The Variational Ensemble Kalman Filter (VEnKF) is an ensemble method that can attain the accuracy of 4D variational data assimilation with a small ensemble size. It achieves this by processing a Gaussian approximation of the current error covariance distribution, instead of a set of ensemble members, analogously to the Extended Kalman Filter EKF. Ensemble members are re-sampled every time a new set of observations is processed from a new approximation of that Gaussian distribution which makes VEnKF a dynamic assimilation method. After this a smoothing step is applied that turns VEnKF into a dynamic Variational Ensemble Kalman Smoother VEnKS. In this smoothing step, the same process is iterated with frequent re-sampling of the ensemble but now using past iterations as surrogate observations until the end result is a smooth and balanced model trajectory. In principle, VEnKF could suffer from similar scalability issues as 4D-Var. However, this can be avoided by isolating the forecast model completely from the minimization process by implementing the latter as a wrapper code whose only link to the model is calling for many parallel and totally independent model runs, all of them implemented as parallel model runs themselves. The only bottleneck in the process is the gathering and scattering of initial and final model state snapshots before and after the parallel runs which requires a very efficient and low-latency communication network. However, the volume of data communicated is small and the intervening minimization steps are only 3D-Var, which means their computational load is negligible compared with the fully parallel model runs. We present example results of scalable VEnKF with the 4D lake and shallow sea model COHERENS, assimilating simultaneously continuous in situ measurements in a single point and infrequent satellite images that cover a whole lake, with the fully scalable VEnKF.
NASA Astrophysics Data System (ADS)
Kim, Young-Rok; Park, Eunseo; Choi, Eun-Jung; Park, Sang-Young; Park, Chandeok; Lim, Hyung-Chul
2014-09-01
In this study, genetic resampling (GRS) approach is utilized for precise orbit determination (POD) using the batch filter based on particle filtering (PF). Two genetic operations, which are arithmetic crossover and residual mutation, are used for GRS of the batch filter based on PF (PF batch filter). For POD, Laser-ranging Precise Orbit Determination System (LPODS) and satellite laser ranging (SLR) observations of the CHAMP satellite are used. Monte Carlo trials for POD are performed by one hundred times. The characteristics of the POD results by PF batch filter with GRS are compared with those of a PF batch filter with minimum residual resampling (MRRS). The post-fit residual, 3D error by external orbit comparison, and POD repeatability are analyzed for orbit quality assessments. The POD results are externally checked by NASA JPL’s orbits using totally different software, measurements, and techniques. For post-fit residuals and 3D errors, both MRRS and GRS give accurate estimation results whose mean root mean square (RMS) values are at a level of 5 cm and 10-13 cm, respectively. The mean radial orbit errors of both methods are at a level of 5 cm. For POD repeatability represented as the standard deviations of post-fit residuals and 3D errors by repetitive PODs, however, GRS yields 25% and 13% more robust estimation results than MRRS for post-fit residual and 3D error, respectively. This study shows that PF batch filter with GRS approach using genetic operations is superior to PF batch filter with MRRS in terms of robustness in POD with SLR observations.
Jodice, Patrick G.R.; Garman, S.L.; Collopy, Michael W.
2001-01-01
Marbled Murrelets (Brachyramphus marmoratus) are threatened seabirds that nest in coastal old-growth coniferous forests throughout much of their breeding range. Currently, observer-based audio-visual surveys are conducted at inland forest sites during the breeding season primarily to determine nesting distribution and breeding status and are being used to estimate temporal or spatial trends in murrelet detections. Our goal was to assess the feasibility of using audio-visual survey data for such monitoring. We used an intensive field-based survey effort to record daily murrelet detections at seven survey stations in the Oregon Coast Range. We then used computer-aided resampling techniques to assess the effectiveness of twelve survey strategies with varying scheduling and a sampling intensity of 4-14 surveys per breeding season to estimate known means and SDs of murrelet detections. Most survey strategies we tested failed to provide estimates of detection means and SDs that were within A?20% of actual means and SDs. Estimates of daily detections were, however, frequently estimated to within A?50% of field data with sampling efforts of 14 days/breeding season. Additional resampling analyses with statistically generated detection data indicated that the temporal variability in detection data had a great effect on the reliability of the mean and SD estimates calculated from the twelve survey strategies, while the value of the mean had little effect. Effectiveness at estimating multi-year trends in detection data was similarly poor, indicating that audio-visual surveys might be reliably used to estimate annual declines in murrelet detections of the order of 50% per year.
Geologic Materials Center - General Information | Alaska Division of
effective November 9, 2017. Set by DGGS Director's Order, the fees will help offset operational costs and -effective alternative to the tremendous expense of core drilling and resampling in the field. One foot of
NASA Astrophysics Data System (ADS)
Zhang, Yu-Ying; Reiprich, Thomas H.; Schneider, Peter; Clerc, Nicolas; Merloni, Andrea; Schwope, Axel; Borm, Katharina; Andernach, Heinz; Caretta, César A.; Wu, Xiang-Ping
2017-03-01
We present the relation of X-ray luminosity versus dynamical mass for 63 nearby clusters of galaxies in a flux-limited sample, the HIghest X-ray FLUx Galaxy Cluster Sample (HIFLUGCS, consisting of 64 clusters). The luminosity measurements are obtained based on 1.3 Ms of clean XMM-Newton data and ROSAT pointed observations. The masses are estimated using optical spectroscopic redshifts of 13647 cluster galaxies in total. We classify clusters into disturbed and undisturbed based on a combination of the X-ray luminosity concentration and the offset between the brightest cluster galaxy and X-ray flux-weighted center. Given sufficient numbers (I.e., ≥45) of member galaxies when the dynamical masses are computed, the luminosity versus mass relations agree between the disturbed and undisturbed clusters. The cool-core clusters still dominate the scatter in the luminosity versus mass relation even when a core-corrected X-ray luminosity is used, which indicates that the scatter of this scaling relation mainly reflects the structure formation history of the clusters. As shown by the clusters with only few spectroscopically confirmed members, the dynamical masses can be underestimated and thus lead to a biased scaling relation. To investigate the potential of spectroscopic surveys to follow up high-redshift galaxy clusters or groups observed in X-ray surveys for the identifications and mass calibrations, we carried out Monte Carlo resampling of the cluster galaxy redshifts and calibrated the uncertainties of the redshift and dynamical mass estimates when only reduced numbers of galaxy redshifts per cluster are available. The resampling considers the SPIDERS and 4MOST configurations, designed for the follow-up of the eROSITA clusters, and was carried out for each cluster in the sample at the actual cluster redshift as well as at the assigned input cluster redshifts of 0.2, 0.4, 0.6, and 0.8. To follow up very distant clusters or groups, we also carried out the mass calibration based on the resampling with only ten redshifts per cluster, and redshift calibration based on the resampling with only five and ten redshifts per cluster, respectively. Our results demonstrate the power of combining upcoming X-ray and optical spectroscopic surveys for mass calibration of clusters. The scatter in the dynamical mass estimates for the clusters with at least ten members is within 50%.
NASA Astrophysics Data System (ADS)
Brown, James D.; Wu, Limin; He, Minxue; Regonda, Satish; Lee, Haksu; Seo, Dong-Jun
2014-11-01
Retrospective forecasts of precipitation, temperature, and streamflow were generated with the Hydrologic Ensemble Forecast Service (HEFS) of the U.S. National Weather Service (NWS) for a 20-year period between 1979 and 1999. The hindcasts were produced for two basins in each of four River Forecast Centers (RFCs), namely the Arkansas-Red Basin RFC, the Colorado Basin RFC, the California-Nevada RFC, and the Middle Atlantic RFC. Precipitation and temperature forecasts were produced with the HEFS Meteorological Ensemble Forecast Processor (MEFP). Inputs to the MEFP comprised ;raw; precipitation and temperature forecasts from the frozen (circa 1997) version of the NWS Global Forecast System (GFS) and a climatological ensemble, which involved resampling historical observations in a moving window around the forecast valid date (;resampled climatology;). In both cases, the forecast horizon was 1-14 days. This paper outlines the hindcasting and verification strategy, and then focuses on the quality of the temperature and precipitation forecasts from the MEFP. A companion paper focuses on the quality of the streamflow forecasts from the HEFS. In general, the precipitation forecasts are more skillful than resampled climatology during the first week, but comprise little or no skill during the second week. In contrast, the temperature forecasts improve upon resampled climatology at all forecast lead times. However, there are notable differences among RFCs and for different seasons, aggregation periods and magnitudes of the observed and forecast variables, both for precipitation and temperature. For example, the MEFP-GFS precipitation forecasts show the highest correlations and greatest skill in the California Nevada RFC, particularly during the wet season (November-April). While generally reliable, the MEFP forecasts typically underestimate the largest observed precipitation amounts (a Type-II conditional bias). As a statistical technique, the MEFP cannot detect, and thus appropriately correct for, conditions that are undetected by the GFS. The calibration of the MEFP to provide reliable and skillful forecasts of a range of precipitation amounts (not only large amounts) is a secondary factor responsible for these Type-II conditional biases. Interpretation of the verification results leads to guidance on the expected performance and limitations of the MEFP, together with recommendations on future enhancements.
Serra, Gerardo V.; Porta, Norma C. La; Avalos, Susana; Mazzuferi, Vilma
2013-01-01
The alfalfa caterpillar, Colias lesbia (Fabricius) (Lepidoptera: Pieridae), is a major pest of alfalfa, Medicago sativa L. (Fabales: Fabaceae), crops in Argentina. Its management is based mainly on chemical control of larvae whenever the larvae exceed the action threshold. To develop and validate fixed-precision sequential sampling plans, an intensive sampling programme for C. lesbia eggs was carried out in two alfalfa plots located in the Province of Córdoba, Argentina, from 1999 to 2002. Using Resampling for Validation of Sampling Plans software, 12 additional independent data sets were used to validate the sequential sampling plan with precision levels of 0.10 and 0.25 (SE/mean), respectively. For a range of mean densities of 0.10 to 8.35 eggs/sample, an average sample size of only 27 and 26 sample units was required to achieve a desired precision level of 0.25 for the sampling plans of Green and Kuno, respectively. As the precision level was increased to 0.10, average sample size increased to 161 and 157 sample units for the sampling plans of Green and Kuno, respectively. We recommend using Green's sequential sampling plan because it is less sensitive to changes in egg density. These sampling plans are a valuable tool for researchers to study population dynamics and to evaluate integrated pest management strategies. PMID:23909840
Multilayered nonuniform sampling for three-dimensional scene representation
NASA Astrophysics Data System (ADS)
Lin, Huei-Yung; Xiao, Yu-Hua; Chen, Bo-Ren
2015-09-01
The representation of a three-dimensional (3-D) scene is essential in multiview imaging technologies. We present a unified geometry and texture representation based on global resampling of the scene. A layered data map representation with a distance-dependent nonuniform sampling strategy is proposed. It is capable of increasing the details of the 3-D structure locally and is compact in size. The 3-D point cloud obtained from the multilayered data map is used for view rendering. For any given viewpoint, image synthesis with different levels of detail is carried out using the quadtree-based nonuniformly sampled 3-D data points. Experimental results are presented using the 3-D models of reconstructed real objects.
Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods.
Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J Sunil
2014-08-01
We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called "Patient Recursive Survival Peeling" is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called "combined" cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication.
Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods
Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil
2015-01-01
We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called “Patient Recursive Survival Peeling” is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called “combined” cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication. PMID:26997922
Small area estimation for estimating the number of infant mortality in West Java, Indonesia
NASA Astrophysics Data System (ADS)
Anggreyani, Arie; Indahwati, Kurnia, Anang
2016-02-01
Demographic and Health Survey Indonesia (DHSI) is a national designed survey to provide information regarding birth rate, mortality rate, family planning and health. DHSI was conducted by BPS in cooperation with National Population and Family Planning Institution (BKKBN), Indonesia Ministry of Health (KEMENKES) and USAID. Based on the publication of DHSI 2012, the infant mortality rate for a period of five years before survey conducted is 32 for 1000 birth lives. In this paper, Small Area Estimation (SAE) is used to estimate the number of infant mortality in districts of West Java. SAE is a special model of Generalized Linear Mixed Models (GLMM). In this case, the incidence of infant mortality is a Poisson distribution which has equdispersion assumption. The methods to handle overdispersion are binomial negative and quasi-likelihood model. Based on the results of analysis, quasi-likelihood model is the best model to overcome overdispersion problem. The basic model of the small area estimation used basic area level model. Mean square error (MSE) which based on resampling method is used to measure the accuracy of small area estimates.
Shahbi, M; Rajabpour, A
2017-08-01
Phthorimaea operculella Zeller is an important pest of potato in Iran. Spatial distribution and fixed-precision sequential sampling for population estimation of the pest on two potato cultivars, Arinda ® and Sante ® , were studied in two separate potato fields during two growing seasons (2013-2014 and 2014-2015). Spatial distribution was investigated by Taylor's power law and Iwao's patchiness. Results showed that the spatial distribution of eggs and larvae was random. In contrast to Iwao's patchiness, Taylor's power law provided a highly significant relationship between variance and mean density. Therefore, fixed-precision sequential sampling plan was developed by Green's model at two precision levels of 0.25 and 0.1. The optimum sample size on Arinda ® and Sante ® cultivars at precision level of 0.25 ranged from 151 to 813 and 149 to 802 leaves, respectively. At 0.1 precision level, the sample sizes varied from 5083 to 1054 and 5100 to 1050 leaves for Arinda ® and Sante ® cultivars, respectively. Therefore, the optimum sample sizes for the cultivars, with different resistance levels, were not significantly different. According to the calculated stop lines, the sampling must be continued until cumulative number of eggs + larvae reached to 15-16 or 96-101 individuals at precision levels of 0.25 or 0.1, respectively. The performance of the sampling plan was validated by resampling analysis using resampling for validation of sampling plans software. The sampling plant provided in this study can be used to obtain a rapid estimate of the pest density with minimal effort.
Trends and Correlation Estimation in Climate Sciences: Effects of Timescale Errors
NASA Astrophysics Data System (ADS)
Mudelsee, M.; Bermejo, M. A.; Bickert, T.; Chirila, D.; Fohlmeister, J.; Köhler, P.; Lohmann, G.; Olafsdottir, K.; Scholz, D.
2012-12-01
Trend describes time-dependence in the first moment of a stochastic process, and correlation measures the linear relation between two random variables. Accurately estimating the trend and correlation, including uncertainties, from climate time series data in the uni- and bivariate domain, respectively, allows first-order insights into the geophysical process that generated the data. Timescale errors, ubiquitious in paleoclimatology, where archives are sampled for proxy measurements and dated, poses a problem to the estimation. Statistical science and the various applied research fields, including geophysics, have almost completely ignored this problem due to its theoretical almost-intractability. However, computational adaptations or replacements of traditional error formulas have become technically feasible. This contribution gives a short overview of such an adaptation package, bootstrap resampling combined with parametric timescale simulation. We study linear regression, parametric change-point models and nonparametric smoothing for trend estimation. We introduce pairwise-moving block bootstrap resampling for correlation estimation. Both methods share robustness against autocorrelation and non-Gaussian distributional shape. We shortly touch computing-intensive calibration of bootstrap confidence intervals and consider options to parallelize the related computer code. Following examples serve not only to illustrate the methods but tell own climate stories: (1) the search for climate drivers of the Agulhas Current on recent timescales, (2) the comparison of three stalagmite-based proxy series of regional, western German climate over the later part of the Holocene, and (3) trends and transitions in benthic oxygen isotope time series from the Cenozoic. Financial support by Deutsche Forschungsgemeinschaft (FOR 668, FOR 1070, MU 1595/4-1) and the European Commission (MC ITN 238512, MC ITN 289447) is acknowledged.
NASA Astrophysics Data System (ADS)
Dostálová, Alena; Naeimi, Vahid; Wagner, Wolfgang; Elefante, Stefano; Cao, Senmao; Persson, Henrik
2016-10-01
One of the major advantages of the Sentinel-1 data is its capability to provide very high spatio-temporal coverage allowing the mapping of large areas as well as creation of dense time-series of the Sentinel-1 acquisitions. The SGRT software developed at TU Wien aims at automated processing of Sentinel-1 data for global and regional products. The first step of the processing consists of the Sentinel-1 data geocoding with the help of S1TBX software and their resampling to a common grid. These resampled images serve as an input for the product derivation. Thus, it is very important to select the most reliable processing settings and assess the geocoding uncertainty for both backscatter and projected local incidence angle images. Within this study, selection of Sentinel-1 acquisitions over 3 test areas in Europe were processed manually in the S1TBX software, testing multiple software versions, processing settings and digital elevation models (DEM) and the accuracy of the resulting geocoded images were assessed. Secondly, all available Sentinel-1 data over the areas were processed using selected settings and detailed quality check was performed. Overall, strong influence of the used DEM on the geocoding quality was confirmed with differences up to 80 meters in areas with higher terrain variations. In flat areas, the geocoding accuracy of backscatter images was overall good, with observed shifts between 0 and 30m. Larger systematic shifts were identified in case of projected local incidence angle images. These results encourage the automated processing of large volumes of Sentinel-1 data.
Menke, S.B.; Holway, D.A.; Fisher, R.N.; Jetz, W.
2009-01-01
Aim: Species distribution models (SDMs) or, more specifically, ecological niche models (ENMs) are a useful and rapidly proliferating tool in ecology and global change biology. ENMs attempt to capture associations between a species and its environment and are often used to draw biological inferences, to predict potential occurrences in unoccupied regions and to forecast future distributions under environmental change. The accuracy of ENMs, however, hinges critically on the quality of occurrence data. ENMs often use haphazardly collected data rather than data collected across the full spectrum of existing environmental conditions. Moreover, it remains unclear how processes affecting ENM predictions operate at different spatial scales. The scale (i.e. grain size) of analysis may be dictated more by the sampling regime than by biologically meaningful processes. The aim of our study is to jointly quantify how issues relating to region and scale affect ENM predictions using an economically important and ecologically damaging invasive species, the Argentine ant (Linepithema humile). Location: California, USA. Methods: We analysed the relationship between sampling sufficiency, regional differences in environmental parameter space and cell size of analysis and resampling environmental layers using two independently collected sets of presence/absence data. Differences in variable importance were determined using model averaging and logistic regression. Model accuracy was measured with area under the curve (AUC) and Cohen's kappa. Results: We first demonstrate that insufficient sampling of environmental parameter space can cause large errors in predicted distributions and biological interpretation. Models performed best when they were parametrized with data that sufficiently sampled environmental parameter space. Second, we show that altering the spatial grain of analysis changes the relative importance of different environmental variables. These changes apparently result from how environmental constraints and the sampling distributions of environmental variables change with spatial grain. Conclusions: These findings have clear relevance for biological inference. Taken together, our results illustrate potentially general limitations for ENMs, especially when such models are used to predict species occurrences in novel environments. We offer basic methodological and conceptual guidelines for appropriate sampling and scale matching. ?? 2009 The Authors Journal compilation ?? 2009 Blackwell Publishing.
LANDSAT-D investigations in snow hydrology
NASA Technical Reports Server (NTRS)
Dozier, J. (Principal Investigator)
1984-01-01
Thematic mapper radiometric characteristics, snow/cloud reflectance, and atmospheric correction are discussed with application to determining the spectral albedo of snow. The geometric characterics of TM and digital elevation data are examined. The geometric transformations and resampling required to coregister these data are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fave, X; Court, L; UT Health Science Center, Graduate School of Biomedical Sciences, Houston, TX
Purpose: To determine how radiomics features change during radiation therapy and whether those changes (delta-radiomics features) can improve prognostic models built with clinical factors. Methods: 62 radiomics features, including histogram, co-occurrence, run-length, gray-tone difference, and shape features, were calculated from pretreatment and weekly intra-treatment CTs for 107 stage III NSCLC patients (5–9 images per patient). Image preprocessing for each feature was determined using the set of pretreatment images: bit-depth resample and/or a smoothing filter were tested for their impact on volume-correlation and significance of each feature in univariate cox regression models to maximize their information content. Next, the optimized featuresmore » were calculated from the intratreatment images and tested in linear mixed-effects models to determine which features changed significantly with dose-fraction. The slopes in these significant features were defined as delta-radiomics features. To test their prognostic potential multivariate cox regression models were fitted, first using only clinical features and then clinical+delta-radiomics features for overall-survival, local-recurrence, and distant-metastases. Leave-one-out cross validation was used for model-fitting and patient predictions. Concordance indices(c-index) and p-values for the log-rank test with patients stratified at the median were calculated. Results: Approximately one-half of the 62 optimized features required no preprocessing, one-fourth required smoothing, and one-fourth required smoothing and resampling. From these, 54 changed significantly during treatment. For overall-survival, the c-index improved from 0.52 for clinical factors alone to 0.62 for clinical+delta-radiomics features. For distant-metastases, the c-index improved from 0.53 to 0.58, while for local-recurrence it did not improve. Patient stratification significantly improved (p-value<0.05) for overallsurvival and distant-metastases when delta-radiomics features were included. The delta-radiomics versions of autocorrelation, kurtosis, and compactness were selected most frequently in leave-one-out iterations. Conclusion: Weekly changes in radiomics features can potentially be used to evaluate treatment response and predict patient outcomes. High-risk patients could be recommended for dose escalation or consolidation chemotherapy. This project was funded in part by grants from the National Cancer Institute (NCI) and the Cancer Prevention Research Institute of Texas (CPRIT).« less
Kück, Patrick; Meusemann, Karen; Dambach, Johannes; Thormann, Birthe; von Reumont, Björn M; Wägele, Johann W; Misof, Bernhard
2010-03-31
Methods of alignment masking, which refers to the technique of excluding alignment blocks prior to tree reconstructions, have been successful in improving the signal-to-noise ratio in sequence alignments. However, the lack of formally well defined methods to identify randomness in sequence alignments has prevented a routine application of alignment masking. In this study, we compared the effects on tree reconstructions of the most commonly used profiling method (GBLOCKS) which uses a predefined set of rules in combination with alignment masking, with a new profiling approach (ALISCORE) based on Monte Carlo resampling within a sliding window, using different data sets and alignment methods. While the GBLOCKS approach excludes variable sections above a certain threshold which choice is left arbitrary, the ALISCORE algorithm is free of a priori rating of parameter space and therefore more objective. ALISCORE was successfully extended to amino acids using a proportional model and empirical substitution matrices to score randomness in multiple sequence alignments. A complex bootstrap resampling leads to an even distribution of scores of randomly similar sequences to assess randomness of the observed sequence similarity. Testing performance on real data, both masking methods, GBLOCKS and ALISCORE, helped to improve tree resolution. The sliding window approach was less sensitive to different alignments of identical data sets and performed equally well on all data sets. Concurrently, ALISCORE is capable of dealing with different substitution patterns and heterogeneous base composition. ALISCORE and the most relaxed GBLOCKS gap parameter setting performed best on all data sets. Correspondingly, Neighbor-Net analyses showed the most decrease in conflict. Alignment masking improves signal-to-noise ratio in multiple sequence alignments prior to phylogenetic reconstruction. Given the robust performance of alignment profiling, alignment masking should routinely be used to improve tree reconstructions. Parametric methods of alignment profiling can be easily extended to more complex likelihood based models of sequence evolution which opens the possibility of further improvements.
Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; ...
2014-06-03
A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO₂ saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO₂ saturation, but we focus on how the ERT observation errors propagate to the estimated CO₂ saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the priormore » information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO₂ saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO₂ saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO₂ saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO₂ saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO₂ saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed on a laptop or desktop PC.« less
Dwivedi, Alok Kumar; Mallawaarachchi, Indika; Alvarado, Luis A
2017-06-30
Experimental studies in biomedical research frequently pose analytical problems related to small sample size. In such studies, there are conflicting findings regarding the choice of parametric and nonparametric analysis, especially with non-normal data. In such instances, some methodologists questioned the validity of parametric tests and suggested nonparametric tests. In contrast, other methodologists found nonparametric tests to be too conservative and less powerful and thus preferred using parametric tests. Some researchers have recommended using a bootstrap test; however, this method also has small sample size limitation. We used a pooled method in nonparametric bootstrap test that may overcome the problem related with small samples in hypothesis testing. The present study compared nonparametric bootstrap test with pooled resampling method corresponding to parametric, nonparametric, and permutation tests through extensive simulations under various conditions and using real data examples. The nonparametric pooled bootstrap t-test provided equal or greater power for comparing two means as compared with unpaired t-test, Welch t-test, Wilcoxon rank sum test, and permutation test while maintaining type I error probability for any conditions except for Cauchy and extreme variable lognormal distributions. In such cases, we suggest using an exact Wilcoxon rank sum test. Nonparametric bootstrap paired t-test also provided better performance than other alternatives. Nonparametric bootstrap test provided benefit over exact Kruskal-Wallis test. We suggest using nonparametric bootstrap test with pooled resampling method for comparing paired or unpaired means and for validating the one way analysis of variance test results for non-normal data in small sample size studies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Motion vector field phase-to-amplitude resampling for 4D motion-compensated cone-beam CT
NASA Astrophysics Data System (ADS)
Sauppe, Sebastian; Kuhm, Julian; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc
2018-02-01
We propose a phase-to-amplitude resampling (PTAR) method to reduce motion blurring in motion-compensated (MoCo) 4D cone-beam CT (CBCT) image reconstruction, without increasing the computational complexity of the motion vector field (MVF) estimation approach. PTAR is able to improve the image quality in reconstructed 4D volumes, including both regular and irregular respiration patterns. The PTAR approach starts with a robust phase-gating procedure for the initial MVF estimation and then switches to a phase-adapted amplitude gating method. The switch implies an MVF-resampling, which makes them amplitude-specific. PTAR ensures that the MVFs, which have been estimated on phase-gated reconstructions, are still valid for all amplitude-gated reconstructions. To validate the method, we use an artificially deformed clinical CT scan with a realistic breathing pattern and several patient data sets acquired with a TrueBeamTM integrated imaging system (Varian Medical Systems, Palo Alto, CA, USA). Motion blurring, which still occurs around the area of the diaphragm or at small vessels above the diaphragm in artifact-specific cyclic motion compensation (acMoCo) images based on phase-gating, is significantly reduced by PTAR. Also, small lung structures appear sharper in the images. This is demonstrated both for simulated and real patient data. A quantification of the sharpness of the diaphragm confirms these findings. PTAR improves the image quality of 4D MoCo reconstructions compared to conventional phase-gated MoCo images, in particular for irregular breathing patterns. Thus, PTAR increases the robustness of MoCo reconstructions for CBCT. Because PTAR does not require any additional steps for the MVF estimation, it is computationally efficient. Our method is not restricted to CBCT but could rather be applied to other image modalities.
Dudoit, Sandrine; Gilbert, Houston N.; van der Laan, Mark J.
2014-01-01
Summary This article proposes resampling-based empirical Bayes multiple testing procedures for controlling a broad class of Type I error rates, defined as generalized tail probability (gTP) error rates, gTP(q, g) = Pr(g(Vn, Sn) > q), and generalized expected value (gEV) error rates, gEV(g) = E[g(Vn, Sn)], for arbitrary functions g(Vn, Sn) of the numbers of false positives Vn and true positives Sn. Of particular interest are error rates based on the proportion g(Vn, Sn) = Vn/(Vn + Sn) of Type I errors among the rejected hypotheses, such as the false discovery rate (FDR), FDR = E[Vn/(Vn + Sn)]. The proposed procedures offer several advantages over existing methods. They provide Type I error control for general data generating distributions, with arbitrary dependence structures among variables. Gains in power are achieved by deriving rejection regions based on guessed sets of true null hypotheses and null test statistics randomly sampled from joint distributions that account for the dependence structure of the data. The Type I error and power properties of an FDR-controlling version of the resampling-based empirical Bayes approach are investigated and compared to those of widely-used FDR-controlling linear step-up procedures in a simulation study. The Type I error and power trade-off achieved by the empirical Bayes procedures under a variety of testing scenarios allows this approach to be competitive with or outperform the Storey and Tibshirani (2003) linear step-up procedure, as an alternative to the classical Benjamini and Hochberg (1995) procedure. PMID:18932138
Testing non-inferiority of a new treatment in three-arm clinical trials with binary endpoints.
Tang, Nian-Sheng; Yu, Bin; Tang, Man-Lai
2014-12-18
A two-arm non-inferiority trial without a placebo is usually adopted to demonstrate that an experimental treatment is not worse than a reference treatment by a small pre-specified non-inferiority margin due to ethical concerns. Selection of the non-inferiority margin and establishment of assay sensitivity are two major issues in the design, analysis and interpretation for two-arm non-inferiority trials. Alternatively, a three-arm non-inferiority clinical trial including a placebo is usually conducted to assess the assay sensitivity and internal validity of a trial. Recently, some large-sample approaches have been developed to assess the non-inferiority of a new treatment based on the three-arm trial design. However, these methods behave badly with small sample sizes in the three arms. This manuscript aims to develop some reliable small-sample methods to test three-arm non-inferiority. Saddlepoint approximation, exact and approximate unconditional, and bootstrap-resampling methods are developed to calculate p-values of the Wald-type, score and likelihood ratio tests. Simulation studies are conducted to evaluate their performance in terms of type I error rate and power. Our empirical results show that the saddlepoint approximation method generally behaves better than the asymptotic method based on the Wald-type test statistic. For small sample sizes, approximate unconditional and bootstrap-resampling methods based on the score test statistic perform better in the sense that their corresponding type I error rates are generally closer to the prespecified nominal level than those of other test procedures. Both approximate unconditional and bootstrap-resampling test procedures based on the score test statistic are generally recommended for three-arm non-inferiority trials with binary outcomes.
Ozçift, Akin
2011-05-01
Supervised classification algorithms are commonly used in the designing of computer-aided diagnosis systems. In this study, we present a resampling strategy based Random Forests (RF) ensemble classifier to improve diagnosis of cardiac arrhythmia. Random forests is an ensemble classifier that consists of many decision trees and outputs the class that is the mode of the class's output by individual trees. In this way, an RF ensemble classifier performs better than a single tree from classification performance point of view. In general, multiclass datasets having unbalanced distribution of sample sizes are difficult to analyze in terms of class discrimination. Cardiac arrhythmia is such a dataset that has multiple classes with small sample sizes and it is therefore adequate to test our resampling based training strategy. The dataset contains 452 samples in fourteen types of arrhythmias and eleven of these classes have sample sizes less than 15. Our diagnosis strategy consists of two parts: (i) a correlation based feature selection algorithm is used to select relevant features from cardiac arrhythmia dataset. (ii) RF machine learning algorithm is used to evaluate the performance of selected features with and without simple random sampling to evaluate the efficiency of proposed training strategy. The resultant accuracy of the classifier is found to be 90.0% and this is a quite high diagnosis performance for cardiac arrhythmia. Furthermore, three case studies, i.e., thyroid, cardiotocography and audiology, are used to benchmark the effectiveness of the proposed method. The results of experiments demonstrated the efficiency of random sampling strategy in training RF ensemble classification algorithm. Copyright © 2011 Elsevier Ltd. All rights reserved.
Enhancing clinical concept extraction with distributional semantics
Cohen, Trevor; Wu, Stephen; Gonzalez, Graciela
2011-01-01
Extracting concepts (such as drugs, symptoms, and diagnoses) from clinical narratives constitutes a basic enabling technology to unlock the knowledge within and support more advanced reasoning applications such as diagnosis explanation, disease progression modeling, and intelligent analysis of the effectiveness of treatment. The recent release of annotated training sets of de-identified clinical narratives has contributed to the development and refinement of concept extraction methods. However, as the annotation process is labor-intensive, training data are necessarily limited in the concepts and concept patterns covered, which impacts the performance of supervised machine learning applications trained with these data. This paper proposes an approach to minimize this limitation by combining supervised machine learning with empirical learning of semantic relatedness from the distribution of the relevant words in additional unannotated text. The approach uses a sequential discriminative classifier (Conditional Random Fields) to extract the mentions of medical problems, treatments and tests from clinical narratives. It takes advantage of all Medline abstracts indexed as being of the publication type “clinical trials” to estimate the relatedness between words in the i2b2/VA training and testing corpora. In addition to the traditional features such as dictionary matching, pattern matching and part-of-speech tags, we also used as a feature words that appear in similar contexts to the word in question (that is, words that have a similar vector representation measured with the commonly used cosine metric, where vector representations are derived using methods of distributional semantics). To the best of our knowledge, this is the first effort exploring the use of distributional semantics, the semantics derived empirically from unannotated text often using vector space models, for a sequence classification task such as concept extraction. Therefore, we first experimented with different sliding window models and found the model with parameters that led to best performance in a preliminary sequence labeling task. The evaluation of this approach, performed against the i2b2/VA concept extraction corpus, showed that incorporating features based on the distribution of words across a large unannotated corpus significantly aids concept extraction. Compared to a supervised-only approach as a baseline, the micro-averaged f-measure for exact match increased from 80.3% to 82.3% and the micro-averaged f-measure based on inexact match increased from 89.7% to 91.3%. These improvements are highly significant according to the bootstrap resampling method and also considering the performance of other systems. Thus, distributional semantic features significantly improve the performance of concept extraction from clinical narratives by taking advantage of word distribution information obtained from unannotated data. PMID:22085698
Integrated hydrologic modeling: Effects of spatial scale, discretization and initialization
NASA Astrophysics Data System (ADS)
Seck, A.; Welty, C.; Maxwell, R. M.
2011-12-01
Groundwater discharge contributes significantly to the annual flows of Chesapeake Bay tributaries and is presumed to contribute to the observed lag time between the implementation of management actions and the environmental response in the Chesapeake Bay. To investigate groundwater fluxes and flow paths and interaction with surface flow, we have developed a fully distributed integrated hydrologic model of the Chesapeake Bay Watershed using ParFlow. Here we present a comparison of model spatial resolution and initialization methods. We have studied the effect of horizontal discretization on overland flow processes at a range of scales. Three nested model domains have been considered: the Monocacy watershed (5600 sq. km), the Potomac watershed (92000 sq. km) and the Chesapeake Bay watershed (400,000 sq. km). Models with homogeneous subsurface and topographically-derived slopes were evaluated at 500-m, 1000-m, 2000-m, and 4000-m grid resolutions. Land surface slopes were derived from resampled DEMs and corrected using stream networks. Simulation results show that the overland flow processes are reasonably well represented with a resolution up to 2000 m. We observe that the effects of horizontal resolution dissipate with larger scale models. Using a homogeneous model that includes subsurface and surface terrain characteristics, we have evaluated various initialization methods for the integrated Monocacy watershed model. This model used several options for water table depths and two rainfall forcing methods including (1) a synthetic rainfall-recession cycle corresponding to the region's average annual rainfall rate, and (2) an initial shut-off of rainfall forcing followed by a rainfall-recession cycling. Results show the dominance of groundwater generated runoff during a first phase of the simulation followed by a convergence towards more balanced runoff generation mechanisms. We observe that the influence of groundwater runoff increases in dissected relief areas characterized by high slope magnitudes. This is due to the increase in initial water table gradients in these regions. As a result, in the domain conditions for this study, an initial shut-off of rainfall forcing proved to be the more efficient initialization method. The initialized model is then coupled with a Land Surface Model (CLM). Ongoing work includes coupling a heterogeneous subsurface field with spatially variable meteorological forcing using the National Land Data Assimilation System (NLDAS) data products. Seasonal trends of groundwater levels for current and pre-development conditions of the basin will be compared.
Incremental terrain processing for large digital elevation models
NASA Astrophysics Data System (ADS)
Ye, Z.
2012-12-01
Incremental terrain processing for large digital elevation models Zichuan Ye, Dean Djokic, Lori Armstrong Esri, 380 New York Street, Redlands, CA 92373, USA (E-mail: zye@esri.com, ddjokic@esri.com , larmstrong@esri.com) Efficient analyses of large digital elevation models (DEM) require generation of additional DEM artifacts such as flow direction, flow accumulation and other DEM derivatives. When the DEMs to analyze have a large number of grid cells (usually > 1,000,000,000) the generation of these DEM derivatives is either impractical (it takes too long) or impossible (software is incapable of processing such a large number of cells). Different strategies and algorithms can be put in place to alleviate this situation. This paper describes an approach where the overall DEM is partitioned in smaller processing units that can be efficiently processed. The processed DEM derivatives for each partition can then be either mosaicked back into a single large entity or managed on partition level. For dendritic terrain morphologies, the way in which partitions are to be derived and the order in which they are to be processed depend on the river and catchment patterns. These patterns are not available until flow pattern of the whole region is created, which in turn cannot be established upfront due to the size issues. This paper describes a procedure that solves this problem: (1) Resample the original large DEM grid so that the total number of cells is reduced to a level for which the drainage pattern can be established. (2) Run standard terrain preprocessing operations on the resampled DEM to generate the river and catchment system. (3) Define the processing units and their processing order based on the river and catchment system created in step (2). (4) Based on the processing order, apply the analysis, i.e., flow accumulation operation to each of the processing units, at the full resolution DEM. (5) As each processing unit is processed based on the processing order defined in (3), compare the resulting drainage pattern with the drainage pattern established at the coarser scale and adjust the drainage boundaries and rivers if necessary.
SAMPLE SIZE FOR SEASONAL MEAN CONCENTRATION, DEPOSITION VELOCITY AND DEPOSITION: A RESAMPLING STUDY
Methodologies are described to assign confidence statements to seasonal means of concentration (C), deposition velocity (V J, and deposition categorized by species/parameters, sites, and seasons in the presence of missing data. Estimators of seasonal means with missing weekly dat...
MISR Level 1 Near Real Time Products
Atmospheric Science Data Center
2016-10-31
Level 1 Near Real Time The MISR Near Real Time Level 1 data products ... km MISR swath and projected onto a Space-Oblique Mercator (SOM) map grid. The Ellipsoid-projected and Terrain-projected top-of-atmosphere (TOA) radiance products provide measurements respectively resampled onto the ...
Using and Evaluating Resampling Simulations in SPSS and Excel.
ERIC Educational Resources Information Center
Smith, Brad
2003-01-01
Describes and evaluates three computer-assisted simulations used with Statistical Package for the Social Sciences (SPSS) and Microsoft Excel. Designed the simulations to reinforce and enhance student understanding of sampling distributions, confidence intervals, and significance tests. Reports evaluations revealed improved student comprehension of…
Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian
2015-07-01
In a previous report, we demonstrated master-slave optical coherence tomography (MS-OCT), an OCT method that does not need resampling of data and can be used to deliver en face images from several depths simultaneously. In a separate report, we have also demonstrated MS-OCT's capability of producing cross-sectional images of a quality similar to those provided by the traditional Fourier domain (FD) OCT technique, but at a much slower rate. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real time. We analyze the conditions that ensure a true real-time B-scan imaging operation and demonstrate in vivo real-time images from human fovea and the optic nerve, with resolution and sensitivity comparable to those produced using the traditional FD-based method, however, without the need of data resampling.
Resampling approach for anomalous change detection
NASA Astrophysics Data System (ADS)
Theiler, James; Perkins, Simon
2007-04-01
We investigate the problem of identifying pixels in pairs of co-registered images that correspond to real changes on the ground. Changes that are due to environmental differences (illumination, atmospheric distortion, etc.) or sensor differences (focus, contrast, etc.) will be widespread throughout the image, and the aim is to avoid these changes in favor of changes that occur in only one or a few pixels. Formal outlier detection schemes (such as the one-class support vector machine) can identify rare occurrences, but will be confounded by pixels that are "equally rare" in both images: they may be anomalous, but they are not changes. We describe a resampling scheme we have developed that formally addresses both of these issues, and reduces the problem to a binary classification, a problem for which a large variety of machine learning tools have been developed. In principle, the effects of misregistration will manifest themselves as pervasive changes, and our method will be robust against them - but in practice, misregistration remains a serious issue.
Clausen, J L; Georgian, T; Gardner, K H; Douglas, T A
2018-01-01
Research shows grab sampling is inadequate for evaluating military ranges contaminated with energetics because of their highly heterogeneous distribution. Similar studies assessing the heterogeneous distribution of metals at small-arms ranges (SAR) are lacking. To address this we evaluated whether grab sampling provides appropriate data for performing risk analysis at metal-contaminated SARs characterized with 30-48 grab samples. We evaluated the extractable metal content of Cu, Pb, Sb, and Zn of the field data using a Monte Carlo random resampling with replacement (bootstrapping) simulation approach. Results indicate the 95% confidence interval of the mean for Pb (432 mg/kg) at one site was 200-700 mg/kg with a data range of 5-4500 mg/kg. Considering the U.S. Environmental Protection Agency screening level for lead is 400 mg/kg, the necessity of cleanup at this site is unclear. Resampling based on populations of 7 and 15 samples, a sample size more realistic for the area yielded high false negative rates.
Uncertainties in the cluster-cluster correlation function
NASA Astrophysics Data System (ADS)
Ling, E. N.; Frenk, C. S.; Barrow, J. D.
1986-12-01
The bootstrap resampling technique is applied to estimate sampling errors and significance levels of the two-point correlation functions determined for a subset of the CfA redshift survey of galaxies and a redshift sample of 104 Abell clusters. The angular correlation function for a sample of 1664 Abell clusters is also calculated. The standard errors in xi(r) for the Abell data are found to be considerably larger than quoted 'Poisson errors'. The best estimate for the ratio of the correlation length of Abell clusters (richness class R greater than or equal to 1, distance class D less than or equal to 4) to that of CfA galaxies is 4.2 + 1.4 or - 1.0 (68 percentile error). The enhancement of cluster clustering over galaxy clustering is statistically significant in the presence of resampling errors. The uncertainties found do not include the effects of possible systematic biases in the galaxy and cluster catalogs and could be regarded as lower bounds on the true uncertainty range.
Confidence limit calculation for antidotal potency ratio derived from lethal dose 50
Manage, Ananda; Petrikovics, Ilona
2013-01-01
AIM: To describe confidence interval calculation for antidotal potency ratios using bootstrap method. METHODS: We can easily adapt the nonparametric bootstrap method which was invented by Efron to construct confidence intervals in such situations like this. The bootstrap method is a resampling method in which the bootstrap samples are obtained by resampling from the original sample. RESULTS: The described confidence interval calculation using bootstrap method does not require the sampling distribution antidotal potency ratio. This can serve as a substantial help for toxicologists, who are directed to employ the Dixon up-and-down method with the application of lower number of animals to determine lethal dose 50 values for characterizing the investigated toxic molecules and eventually for characterizing the antidotal protections by the test antidotal systems. CONCLUSION: The described method can serve as a useful tool in various other applications. Simplicity of the method makes it easier to do the calculation using most of the programming software packages. PMID:25237618
A hybrid correlation analysis with application to imaging genetics
NASA Astrophysics Data System (ADS)
Hu, Wenxing; Fang, Jian; Calhoun, Vince D.; Wang, Yu-Ping
2018-03-01
Investigating the association between brain regions and genes continues to be a challenging topic in imaging genetics. Current brain region of interest (ROI)-gene association studies normally reduce data dimension by averaging the value of voxels in each ROI. This averaging may lead to a loss of information due to the existence of functional sub-regions. Pearson correlation is widely used for association analysis. However, it only detects linear correlation whereas nonlinear correlation may exist among ROIs. In this work, we introduced distance correlation to ROI-gene association analysis, which can detect both linear and nonlinear correlations and overcome the limitation of averaging operations by taking advantage of the information at each voxel. Nevertheless, distance correlation usually has a much lower value than Pearson correlation. To address this problem, we proposed a hybrid correlation analysis approach, by applying canonical correlation analysis (CCA) to the distance covariance matrix instead of directly computing distance correlation. Incorporating CCA into distance correlation approach may be more suitable for complex disease study because it can detect highly associated pairs of ROI and gene groups, and may improve the distance correlation level and statistical power. In addition, we developed a novel nonlinear CCA, called distance kernel CCA, which seeks the optimal combination of features with the most significant dependence. This approach was applied to imaging genetic data from the Philadelphia Neurodevelopmental Cohort (PNC). Experiments showed that our hybrid approach produced more consistent results than conventional CCA across resampling and both the correlation and statistical significance were increased compared to distance correlation analysis. Further gene enrichment analysis and region of interest (ROI) analysis confirmed the associations of the identified genes with brain ROIs. Therefore, our approach provides a powerful tool for finding the correlation between brain imaging and genomic data.
Giglio, Norberto D; Caruso, Martín; Castellano, Vanesa E; Choque, Liliana; Sandoval, Silvia; Micone, Paula; Gentile, Ángela
2017-12-01
To assess direct medical costs, outof-pocket expenses, and indirect costs in cases of hospitalizations for acute diarrhea among children <5 years of age at Hospital de Niños "Héctor Quintana" in the province of Jujuy during the period of rotavirus circulation in the Northwest region of Argentina. Cross-sectional study on diseaserelated costs. All children <5 years of age, hospitalized with the diagnosis of acute diarrhea and dehydration during the period of rotavirus circulation between May 1st and October 31st of 2013, were included. The assessment of direct medical costs was done by reviewing medical records whereas out-of-pocket expenses and indirect costs were determined using a survey. For the 95% confidence interval of the average cost per patient, a probabilistic bootstrapping analysis of 10 000 simulations by resampling was done. One hundred and five patients were enrolled. Their average age was 18 months (standard deviation: 12); 62 (59%) were boys. The average direct medical cost, out-of-pocket expense, and lost income per case was ARS 3413.6 (2856.35-3970.93) (USD 577.59), ARS 134.92 (85.95-213.57) (USD 22.82), and ARS 301 (223.28-380.02) (USD 50.93), respectively. The total cost per hospitalization event was ARS 3849.52 (3298-4402.25) (USD 651.35). The total cost per hospitalization event was within what is expected for Latin America. Costs are broken down into direct medical costs (significant share), compared to out-of-pocket expenses (3.5%) and indirect costs (7.8%). Sociedad Argentina de Pediatría
Parasitic worms: how many really?
Strona, Giovanni; Fattorini, Simone
2014-04-01
Accumulation curves are useful tools to estimate species diversity. Here we argue that they can also be used in the study of global parasite species richness. Although this basic idea is not completely new, our approach differs from the previous ones as it treats each host species as an independent sample. We show that randomly resampling host-parasite records from the existing databases makes it possible to empirically model the relationship between the number of investigated host species, and the corresponding number of parasite species retrieved from those hosts. This method was tested on 21 inclusive lists of parasitic worms occurring on vertebrate hosts. All of the obtained models conform well to a power law curve. These curves were then used to estimate global parasite species richness. Results obtained with the new method suggest that current predictions are likely to severely overestimate parasite diversity. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Chen, Ling; Feng, Yanqin; Sun, Jianguo
2017-10-01
This paper discusses regression analysis of clustered failure time data, which occur when the failure times of interest are collected from clusters. In particular, we consider the situation where the correlated failure times of interest may be related to cluster sizes. For inference, we present two estimation procedures, the weighted estimating equation-based method and the within-cluster resampling-based method, when the correlated failure times of interest arise from a class of additive transformation models. The former makes use of the inverse of cluster sizes as weights in the estimating equations, while the latter can be easily implemented by using the existing software packages for right-censored failure time data. An extensive simulation study is conducted and indicates that the proposed approaches work well in both the situations with and without informative cluster size. They are applied to a dental study that motivated this study.
Measuring earthquakes from optical satellite images.
Van Puymbroeck, N; Michel, R; Binet, R; Avouac, J P; Taboury, J
2000-07-10
Système pour l'Observation de la Terre images are used to map ground displacements induced by earthquakes. Deformations (offsets) induced by stereoscopic effect and roll, pitch, and yaw of satellite and detector artifacts are estimated and compensated. Images are then resampled in a cartographic projection with a low-bias interpolator. A subpixel correlator in the Fourier domain provides two-dimensional offset maps with independent measurements approximately every 160 m. Biases on offsets are compensated from calibration. High-frequency noise (0.125 m(-1)) is approximately 0.01 pixels. Low-frequency noise (lower than 0.001 m(-1)) exceeds 0.2 pixels and is partially compensated from modeling. Applied to the Landers earthquake, measurements show the fault with an accuracy of a few tens of meters and yields displacement on the fault with an accuracy of better than 20 cm. Comparison with a model derived from geodetic data shows that offsets bring new insights into the faulting process.
Robust Audio Watermarking Scheme Based on Deterministic Plus Stochastic Model
NASA Astrophysics Data System (ADS)
Dhar, Pranab Kumar; Kim, Cheol Hong; Kim, Jong-Myon
Digital watermarking has been widely used for protecting digital contents from unauthorized duplication. This paper proposes a new watermarking scheme based on spectral modeling synthesis (SMS) for copyright protection of digital contents. SMS defines a sound as a combination of deterministic events plus a stochastic component that makes it possible for a synthesized sound to attain all of the perceptual characteristics of the original sound. In our proposed scheme, watermarks are embedded into the highest prominent peak of the magnitude spectrum of each non-overlapping frame in peak trajectories. Simulation results indicate that the proposed watermarking scheme is highly robust against various kinds of attacks such as noise addition, cropping, re-sampling, re-quantization, and MP3 compression and achieves similarity values ranging from 17 to 22. In addition, our proposed scheme achieves signal-to-noise ratio (SNR) values ranging from 29 dB to 30 dB.
Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.
2015-01-01
In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotrans- piration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404–1905 period for the Upper Colorado River Basin.
Gebreyesus, Grum; Lund, Mogens S; Buitenhuis, Bart; Bovenhuis, Henk; Poulsen, Nina A; Janss, Luc G
2017-12-05
Accurate genomic prediction requires a large reference population, which is problematic for traits that are expensive to measure. Traits related to milk protein composition are not routinely recorded due to costly procedures and are considered to be controlled by a few quantitative trait loci of large effect. The amount of variation explained may vary between regions leading to heterogeneous (co)variance patterns across the genome. Genomic prediction models that can efficiently take such heterogeneity of (co)variances into account can result in improved prediction reliability. In this study, we developed and implemented novel univariate and bivariate Bayesian prediction models, based on estimates of heterogeneous (co)variances for genome segments (BayesAS). Available data consisted of milk protein composition traits measured on cows and de-regressed proofs of total protein yield derived for bulls. Single-nucleotide polymorphisms (SNPs), from 50K SNP arrays, were grouped into non-overlapping genome segments. A segment was defined as one SNP, or a group of 50, 100, or 200 adjacent SNPs, or one chromosome, or the whole genome. Traditional univariate and bivariate genomic best linear unbiased prediction (GBLUP) models were also run for comparison. Reliabilities were calculated through a resampling strategy and using deterministic formula. BayesAS models improved prediction reliability for most of the traits compared to GBLUP models and this gain depended on segment size and genetic architecture of the traits. The gain in prediction reliability was especially marked for the protein composition traits β-CN, κ-CN and β-LG, for which prediction reliabilities were improved by 49 percentage points on average using the MT-BayesAS model with a 100-SNP segment size compared to the bivariate GBLUP. Prediction reliabilities were highest with the BayesAS model that uses a 100-SNP segment size. The bivariate versions of our BayesAS models resulted in extra gains of up to 6% in prediction reliability compared to the univariate versions. Substantial improvement in prediction reliability was possible for most of the traits related to milk protein composition using our novel BayesAS models. Grouping adjacent SNPs into segments provided enhanced information to estimate parameters and allowing the segments to have different (co)variances helped disentangle heterogeneous (co)variances across the genome.
Improving the quality of extracting dynamics from interspike intervals via a resampling approach
NASA Astrophysics Data System (ADS)
Pavlova, O. N.; Pavlov, A. N.
2018-04-01
We address the problem of improving the quality of characterizing chaotic dynamics based on point processes produced by different types of neuron models. Despite the presence of embedding theorems for non-uniformly sampled dynamical systems, the case of short data analysis requires additional attention because the selection of algorithmic parameters may have an essential influence on estimated measures. We consider how the preliminary processing of interspike intervals (ISIs) can increase the precision of computing the largest Lyapunov exponent (LE). We report general features of characterizing chaotic dynamics from point processes and show that independently of the selected mechanism for spike generation, the performed preprocessing reduces computation errors when dealing with a limited amount of data.
Scanner imaging systems, aircraft
NASA Technical Reports Server (NTRS)
Ungar, S. G.
1982-01-01
The causes and effects of distortion in aircraft scanner data are reviewed and an approach to reduce distortions by modelling the effect of aircraft motion on the scanner scene is discussed. With the advent of advanced satellite borne scanner systems, the geometric and radiometric correction of aircraft scanner data has become increasingly important. Corrections are needed to reliably simulate observations obtained by such systems for purposes of evaluation. It is found that if sufficient navigational information is available, aircraft scanner coordinates may be related very precisely to planimetric ground coordinates. However, the potential for a multivalue remapping transformation (i.e., scan lines crossing each other), adds an inherent uncertainty, to any radiometric resampling scheme, which is dependent on the precise geometry of the scan and ground pattern.
Modelling road accident blackspots data with the discrete generalized Pareto distribution.
Prieto, Faustino; Gómez-Déniz, Emilio; Sarabia, José María
2014-10-01
This study shows how road traffic networks events, in particular road accidents on blackspots, can be modelled with simple probabilistic distributions. We considered the number of crashes and the number of fatalities on Spanish blackspots in the period 2003-2007, from Spanish General Directorate of Traffic (DGT). We modelled those datasets, respectively, with the discrete generalized Pareto distribution (a discrete parametric model with three parameters) and with the discrete Lomax distribution (a discrete parametric model with two parameters, and particular case of the previous model). For that, we analyzed the basic properties of both parametric models: cumulative distribution, survival, probability mass, quantile and hazard functions, genesis and rth-order moments; applied two estimation methods of their parameters: the μ and (μ+1) frequency method and the maximum likelihood method; used two goodness-of-fit tests: Chi-square test and discrete Kolmogorov-Smirnov test based on bootstrap resampling; and compared them with the classical negative binomial distribution in terms of absolute probabilities and in models including covariates. We found that those probabilistic models can be useful to describe the road accident blackspots datasets analyzed. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fengler, Felipe; Ribeiro, Admilson; Longo, Regina; Merides, Marcela; Soares, Herlon; Melo, Wanderley
2017-04-01
Although reclamation techniques for forest ecosystems recovery have been developed over the past decades, there is still a great difficulty in the establishment on environment assessment, especially when compared to the non-disturbed ecosystems. This work evaluated the results and limitations on cassiterite-mined areas in reclamation, at Brazilian Amazônia. Floristic variables from 29 plots located on 15-year-old native species reforestation sites and two plots from preserved open/closed canopy forests were analyzed in a chronosequece way (2010-2015). Regeneration density, species richness, average girth, and average height were evaluated every year, by means of cluster analysis (Euclidian distance, Ward method) and submitted to multiscale bootstrap resampling (a=5%). It was conduced the regression analysis for each identified group in 2015 in order to verify differences between the chronosequece development. The results showed the existence of two main groups in 2010, one witch all mined plots were allocated and other with open/closed canopy plots. After 2011 some mined areas became allocated in the open/closed canopy plots group. From 2013 and on open/closed canopy plots appeared shuffled in the formed groups, indicating the reclamation sites conditions became similar to natural areas. Finally, in 2015 three main groups were formed. The regression analysis showed that group three had a higher trend of development for regeneration density, with higher angular coefficient and higher values. For species richness all the groups had a similar trend, with values lower than open/closed canopy forest. In average girth higher trends were observed in group one and all values were near to open canopy forest in 2015. Average height showed better trends and higher values in group two. It was concluded that all mined sites had a forest recovery process. However, different responses to reclamation process were observed due to the differences in the degraded soils characteristics. Keywords: Recovery, Restoration, Forest, Chronosequece, Cassiterite.
A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards
Wright, Daniel B.; Mantilla, Ricardo; Peters-Lidard, Christa D.
2018-01-01
RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. RainyDay can be useful for hazard modeling under nonstationary conditions. PMID:29657544
A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards.
Wright, Daniel B; Mantilla, Ricardo; Peters-Lidard, Christa D
2017-04-01
RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. RainyDay can be useful for hazard modeling under nonstationary conditions.
A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards
NASA Technical Reports Server (NTRS)
Wright, Daniel B.; Mantilla, Ricardo; Peters-Lidard, Christa D.
2017-01-01
RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, Rainy Day can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, Rainy Day can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. Rainy Day can be useful for hazard modeling under nonstationary conditions.
Building Intuitions about Statistical Inference Based on Resampling
ERIC Educational Resources Information Center
Watson, Jane; Chance, Beth
2012-01-01
Formal inference, which makes theoretical assumptions about distributions and applies hypothesis testing procedures with null and alternative hypotheses, is notoriously difficult for tertiary students to master. The debate about whether this content should appear in Years 11 and 12 of the "Australian Curriculum: Mathematics" has gone on…
ERIC Educational Resources Information Center
Peterson, Ivars
1991-01-01
A method that enables people to obtain the benefits of statistics and probability theory without the shortcomings of conventional methods because it is free of mathematical formulas and is easy to understand and use is described. A resampling technique called the "bootstrap" is discussed in terms of application and development. (KR)
Testing variance components by two jackknife methods
USDA-ARS?s Scientific Manuscript database
The jacknife method, a resampling technique, has been widely used for statistical tests for years. The pseudo value based jacknife method (defined as pseudo jackknife method) is commonly used to reduce the bias for an estimate; however, sometimes it could result in large variaion for an estmimate a...
Fine-resolution voxel S values for constructing absorbed dose distributions at variable voxel size.
Dieudonné, Arnaud; Hobbs, Robert F; Bolch, Wesley E; Sgouros, George; Gardin, Isabelle
2010-10-01
This article presents a revised voxel S values (VSVs) approach for dosimetry in targeted radiotherapy, allowing dose calculation for any voxel size and shape of a given SPECT or PET dataset. This approach represents an update to the methodology presented in MIRD pamphlet no. 17. VSVs were generated in soft tissue with a fine spatial sampling using the Monte Carlo (MC) code MCNPX for particle emissions of 9 radionuclides: (18)F, (90)Y, (99m)Tc, (111)In, (123)I, (131)I, (177)Lu, (186)Re, and (201)Tl. A specific resampling algorithm was developed to compute VSVs for desired voxel dimensions. The dose calculation was performed by convolution via a fast Hartley transform. The fine VSVs were calculated for cubic voxels of 0.5 mm for electrons and 1.0 mm for photons. Validation studies were done for (90)Y and (131)I VSV sets by comparing the revised VSV approach to direct MC simulations. The first comparison included 20 spheres with different voxel sizes (3.8-7.7 mm) and radii (4-64 voxels) and the second comparison a hepatic tumor with cubic voxels of 3.8 mm. MC simulations were done with MCNPX for both. The third comparison was performed on 2 clinical patients with the 3D-RD (3-Dimensional Radiobiologic Dosimetry) software using the EGSnrc (Electron Gamma Shower National Research Council Canada)-based MC implementation, assuming a homogeneous tissue-density distribution. For the sphere model study, the mean relative difference in the average absorbed dose was 0.20% ± 0.41% for (90)Y and -0.36% ± 0.51% for (131)I (n = 20). For the hepatic tumor, the difference in the average absorbed dose to tumor was 0.33% for (90)Y and -0.61% for (131)I and the difference in average absorbed dose to the liver was 0.25% for (90)Y and -1.35% for (131)I. The comparison with the 3D-RD software showed an average voxel-to-voxel dose ratio between 0.991 and 0.996. The calculation time was below 10 s with the VSV approach and 50 and 15 h with 3D-RD for the 2 clinical patients. This new VSV approach enables the calculation of absorbed dose based on a SPECT or PET cumulated activity map, with good agreement with direct MC methods, in a faster and more clinically compatible manner.
Climate-induced range contraction of a rare alpine aquatic invertebrate
Giersch, J. Joseph; Jordan, Steve; Luikart, Gordon; Jones, Leslie A.; Hauer, F. Richard; Muhlfeld, Clint C.
2015-01-01
Climate warming poses a serious threat to alpine-restricted species worldwide, yet few studies have empirically documented climate-induced changes in distributions. The rare stonefly, Zapada glacier (Baumann and Gaufin), endemic to alpine streams of Glacier National Park (GNP), Montana, was recently petitioned for listing under the US Endangered Species Act because of climate-change-induced glacier loss, yet little was known about its current status and distribution. We resampled streams throughout the historical distribution of Z. glacier to investigate trends in occurrence associated with changes in temperature and glacial extent. The current geographic distribution of the species was assessed using morphological characteristics of adults and DNA barcoding of nymphs. Bayesian phylogenetic analysis of mtDNA data revealed 8 distinct clades of the genus corresponding with 7 known species from GNP, and one potentially cryptic species. Climate model simulations indicate that average summer air temperature increased (0.67–1.00°C) during the study period (1960–2012), and glacial surface area decreased by ∼35% from 1966 to 2005. We detected Z. glacier in only 1 of the 6 historically occupied streams and at 2 new locations in GNP. These results suggest that an extremely restricted historical distribution of Z. glacierin GNP has been further reduced over the past several decades by an upstream retreat to higher, cooler sites as water temperatures increased and glacial masses decreased. More research is urgently needed to determine the status, distribution, and vulnerability of Z. glacier and other alpine stream invertebrates threatened by climate change in mountainous ecosystems.
Kenney, Shannon R; Anderson, Bradley J; Stein, Michael D
2018-05-01
It is well-established that drinking to cope with negative affective states mediates the relationship between depressed mood and alcohol risk outcomes among college students. Whether non-college emerging adults exhibit a similar pathway remains unknown. In the current study, we compared the mediating role of coping motives in the relationship between depressive symptoms and drinking risk outcomes (heavy episodic drinking and alcohol problems) in college and non-college emerging adult subgroups. Participants were three hundred forty-one community-recruited 18-25year olds reporting past month alcohol use. We used a structural equation modeling (SEM) for our primary mediation analysis and bias-corrected bootstrap resampling for testing the statistical significance of mediation. Participants averaged 20.8 (±1.97) years of age, 49% were female, 67.7% were White, 34.6% were college students, and 65.4% were non-college emerging adults. College and non-college emerging adults reported similar levels of drinking, alcohol problems, and drinking to cope with negative affect, and drinking to cope was associated with alcohol-related problems in both samples. However, while drinking to cope mediated the relationship between depressed mood and alcohol problems among students, it did not mediate the pathway among non-college emerging adults. These findings caution against extending college-based findings to non-college populations and underscore the need to better understand the role of coping motives and other intervening factors in pathways linking depressed mood and alcohol-related risk in non-college emerging adults. Copyright © 2018 Elsevier Ltd. All rights reserved.
Efficacy of Guided iCBT for Depression and Mediation of Change by Cognitive Skill Acquisition.
Forand, Nicholas R; Barnett, Jeffrey G; Strunk, Daniel R; Hindiyeh, Mohammed U; Feinberg, Jason E; Keefe, John R
2018-03-01
Guided internet CBT (iCBT) is a promising treatment for depression; however, it is less well known through what mechanisms iCBT works. Two possible mediators of change are the acquisition of cognitive skills and increases in behavioral activation. We report results of an 8-week waitlist controlled trial of guided iCBT, and test whether early change in cognitive skills or behavioral activation mediated subsequent change in depression. The sample was 89 individuals randomized to guided iCBT (n = 59) or waitlist (n = 30). Participants were 75% female, 72% Caucasian, and 33 years old on average. The PHQ9 was the primary outcome measure. Mediators were the Competencies of Cognitive Therapy Scale-Self Report and the Behavioral Activation Scale for Depression-Short Form. Treatment was Beating the Blues plus manualized coaching. Outcomes were analyzed using linear mixed models, and mediation with a bootstrap resampling approach. The iCBT group was superior to waitlist, with large effect sizes at posttreatment (Hedges' g = 1.45). Dropout of iCBT was 29% versus 10% for waitlist. In the mediation analyses, the acquisition of cognitive skills mediated subsequent depression change (indirect effect = -.61, 95% bootstrapped biased corrected CI: -1.47, -0.09), but increases in behavioral activation did not. iCBT is an effective treatment for depression, but dropout rates remain high. Change in iCBT appears to be mediated by improvements in the use of cognitive skills, such as critically evaluating and restructuring negative thoughts. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Bonifácio, Paulo; Grémare, Antoine; Gauthier, Olivier; Romero-Ramirez, Alicia; Bichon, Sabrina; Amouroux, Jean-Michel; Labrune, Céline
2018-01-01
We achieved a long term (i.e., 1998 vs. 2010) large scale (i.e., whole Gulf of Lions) study of benthic macrofauna composition in the Gulf of Lions based on the resampling of 91 stations located along 21 inshore-offshore transects. Results show that the 3 main benthic communities identified in 1998 were still present in 2010 although their composition changed. Using only year and station of sampling we found a significant space-time interaction explaining changes in macrofaunal community composition, and, in this study, stations differ primarily in terms of depth and distance to the Rhône river mouth. Temporal changes in benthic macrofauna composition were clearly most important at shallow stations (i.e., in the Littoral Fine Sand community) than at deep ones (i.e., Terrigenous Coastal Mud community). These results are in good agreement with the current paradigm according to which climatic oscillations such as NAO (North Atlantic Oscillation) and WeMO (Western Mediterranean Oscillation) are indirectly (i.e., through changes in the frequency of occurrence and the intensity of storms) controlling benthic macrofauna composition in the Gulf of Lions. This hypothesis is further supported by a meta-analysis of changes in the average and maximal yearly abundances of the polychaete Ditrupa arietina. At last, the spatial modelling of 1998 and 2010 benthic macrofauna compositions both suggested a significant effect of Rhône River inputs on the spatial distribution of benthic macrofauna in the Gulf of Lions.
Beever, Erik A.; Pyke, D.A.
2004-01-01
In contrast to the more incised riparian channels of central Nevada, we observed knickzones, downcutting, and incision only rarely and usually with limited extent in the walking surveys. Downcutting occurred most frequently and extensively in Strawberry and Snake creeks, due in part to their more erodible soils. According to a hydrogeomorphologist with extensive experience in Great Basin riparian systems, the sediment-delivery and hydrologic systems appeared relatively undisturbed in most reaches, with respect to grazing animals and other types of anthropogenic alteration. Site elevation of the 31 transects ranged from 1,950-2,987 m, and stream slope (i.e., gradient) was relatively steep (mean = 9.3%, range 3-16%). Strawberry Creek averaged the lowest maximum water depth, and correspondingly had greatest width/depth ratios. Baker Creek sites averaged the smallest amount of tree-canopy gaps, whereas Snake Creek sites on average had the largest proportion of gaps in understory vegetation. Sites in terrace-bound valley types averaged the lowest slope in the channel as well as the least cover of trees, litter, and vegetation overall, whereas alluviated, boulder-bed canyon sites averaged the greatest widths of the active channel. Sites in Lehman Creek averaged nearly twice as much coarse woody debris as sites from any other creek, whereas Baker Creek sites averaged greatest tree cover (mean = 67%, range 40 – 96%) and species richness (mean = 17.3 species). Multivariate ordinations suggested that sites in leveed outwash valleys and alluvial-fan-influenced valleys had the greatest inter-site heterogeneity in plant composition, whereas sites in incised moraine-filled valleys appeared most homogeneous. Differences among homogeneity of sites within vegetation types were less pronounced, but sites dominated by either aspen and Woodsʼ rose or narrow-leaved cottonwood had the most similar plant communities among sites of the same vegetation type. A number of species were faithful indicators of various valley and vegetation types, using either set of plant-frequency data. We estimate that all 31 sites could be subsequently re-sampled in 14-18 field days by individuals possessing familiarity of the riparian flora of the southern Snake Range. As with any research, monitoring-focused investigations must balance the concerns for number of ecosystem attributes measured, extensiveness in time and space of sampling periods and locations, and the time and cost of sampling.
Publications - GMC 366 | Alaska Division of Geological & Geophysical
Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information DGGS GMC 366 Publication Details Title: Makushin Geothermal Project ST-1R Core 2009 re-sampling and analysis: Analytical results for anomalous precious and base metals associated with geothermal systems
Tracking the Gender Pay Gap: A Case Study
ERIC Educational Resources Information Center
Travis, Cheryl B.; Gross, Louis J.; Johnson, Bruce A.
2009-01-01
This article provides a short introduction to standard considerations in the formal study of wages and illustrates the use of multiple regression and resampling simulation approaches in a case study of faculty salaries at one university. Multiple regression is especially beneficial where it provides information on strength of association, specific…
Testing the Difference of Correlated Agreement Coefficients for Statistical Significance
ERIC Educational Resources Information Center
Gwet, Kilem L.
2016-01-01
This article addresses the problem of testing the difference between two correlated agreement coefficients for statistical significance. A number of authors have proposed methods for testing the difference between two correlated kappa coefficients, which require either the use of resampling methods or the use of advanced statistical modeling…
Rainy Day: A Remote Sensing-Driven Extreme Rainfall Simulation Approach for Hazard Assessment
NASA Astrophysics Data System (ADS)
Wright, Daniel; Yatheendradas, Soni; Peters-Lidard, Christa; Kirschbaum, Dalia; Ayalew, Tibebu; Mantilla, Ricardo; Krajewski, Witold
2015-04-01
Progress on the assessment of rainfall-driven hazards such as floods and landslides has been hampered by the challenge of characterizing the frequency, intensity, and structure of extreme rainfall at the watershed or hillslope scale. Conventional approaches rely on simplifying assumptions and are strongly dependent on the location, the availability of long-term rain gage measurements, and the subjectivity of the analyst. Regional and global-scale rainfall remote sensing products provide an alternative, but are limited by relatively short (~15-year) observational records. To overcome this, we have coupled these remote sensing products with a space-time resampling framework known as stochastic storm transposition (SST). SST "lengthens" the rainfall record by resampling from a catalog of observed storms from a user-defined region, effectively recreating the regional extreme rainfall hydroclimate. This coupling has been codified in Rainy Day, a Python-based platform for quickly generating large numbers of probabilistic extreme rainfall "scenarios" at any point on the globe. Rainy Day is readily compatible with any gridded rainfall dataset. The user can optionally incorporate regional rain gage or weather radar measurements for bias correction using the Precipitation Uncertainties for Satellite Hydrology (PUSH) framework. Results from Rainy Day using the CMORPH satellite precipitation product are compared with local observations in two examples. The first example is peak discharge estimation in a medium-sized (~4000 square km) watershed in the central United States performed using CUENCAS, a parsimonious physically-based distributed hydrologic model. The second example is rainfall frequency analysis for Saint Lucia, a small volcanic island in the eastern Caribbean that is prone to landslides and flash floods. The distinct rainfall hydroclimates of the two example sites illustrate the flexibility of the approach and its usefulness for hazard analysis in data-poor regions.
Fast Generation of Ensembles of Cosmological N-Body Simulations via Mode-Resampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, M D; Cole, S; Frenk, C S
2011-02-14
We present an algorithm for quickly generating multiple realizations of N-body simulations to be used, for example, for cosmological parameter estimation from surveys of large-scale structure. Our algorithm uses a new method to resample the large-scale (Gaussian-distributed) Fourier modes in a periodic N-body simulation box in a manner that properly accounts for the nonlinear mode-coupling between large and small scales. We find that our method for adding new large-scale mode realizations recovers the nonlinear power spectrum to sub-percent accuracy on scales larger than about half the Nyquist frequency of the simulation box. Using 20 N-body simulations, we obtain a powermore » spectrum covariance matrix estimate that matches the estimator from Takahashi et al. (from 5000 simulations) with < 20% errors in all matrix elements. Comparing the rates of convergence, we determine that our algorithm requires {approx}8 times fewer simulations to achieve a given error tolerance in estimates of the power spectrum covariance matrix. The degree of success of our algorithm indicates that we understand the main physical processes that give rise to the correlations in the matter power spectrum. Namely, the large-scale Fourier modes modulate both the degree of structure growth through the variation in the effective local matter density and also the spatial frequency of small-scale perturbations through large-scale displacements. We expect our algorithm to be useful for noise modeling when constraining cosmological parameters from weak lensing (cosmic shear) and galaxy surveys, rescaling summary statistics of N-body simulations for new cosmological parameter values, and any applications where the influence of Fourier modes larger than the simulation size must be accounted for.« less
Assessing paleo-biodiversity using low proxy influx.
Blarquez, Olivier; Finsinger, Walter; Carcaillet, Christopher
2013-01-01
We developed an algorithm to improve richness assessment based on paleoecological series, considering sample features such as their temporal resolutions or their volumes. Our new method can be applied to both high- and low-count size proxies, i.e. pollen and plant macroremain records, respectively. While pollen generally abounds in sediments, plant macroremains are generally rare, thus leading to difficulties to compute paleo-biodiversity indices. Our approach uses resampled macroremain influxes that enable the computation of the rarefaction index for the low influx records. The raw counts are resampled to a constant resolution and sample volume by interpolating initial sample ages at a constant time interval using the age∼depth model. Then, the contribution of initial counts and volume to each interpolated sample is determined by calculating a proportion matrix that is in turn used to obtain regularly spaced time series of pollen and macroremain influx. We applied this algorithm to sedimentary data from a subalpine lake situated in the European Alps. The reconstructed total floristic richness at the study site increased gradually when both pollen and macroremain records indicated a decrease in relative abundances of shrubs and an increase in trees from 11,000 to 7,000 cal BP. This points to an ecosystem change that favored trees against shrubs, whereas herb abundance remained stable. Since 6,000 cal BP, local richness decreased based on plant macroremains, while pollen-based richness was stable. The reconstructed richness and evenness are interrelated confirming the difficulty to distinguish these two aspects for the studies in paleo-biodiversity. The present study shows that low-influx bio-proxy records (here macroremains) can be used to reconstruct stand diversity and address ecological issues. These developments on macroremain and pollen records may contribute to bridge the gap between paleoecology and biodiversity studies.
Harada, Ryuhei; Nakamura, Tomotake; Shigeta, Yasuteru
2016-03-30
As an extension of the Outlier FLOODing (OFLOOD) method [Harada et al., J. Comput. Chem. 2015, 36, 763], the sparsity of the outliers defined by a hierarchical clustering algorithm, FlexDice, was considered to achieve an efficient conformational search as sparsity-weighted "OFLOOD." In OFLOOD, FlexDice detects areas of sparse distribution as outliers. The outliers are regarded as candidates that have high potential to promote conformational transitions and are employed as initial structures for conformational resampling by restarting molecular dynamics simulations. When detecting outliers, FlexDice defines a rank in the hierarchy for each outlier, which relates to sparsity in the distribution. In this study, we define a lower rank (first ranked), a medium rank (second ranked), and the highest rank (third ranked) outliers, respectively. For instance, the first-ranked outliers are located in a given conformational space away from the clusters (highly sparse distribution), whereas those with the third-ranked outliers are nearby the clusters (a moderately sparse distribution). To achieve the conformational search efficiently, resampling from the outliers with a given rank is performed. As demonstrations, this method was applied to several model systems: Alanine dipeptide, Met-enkephalin, Trp-cage, T4 lysozyme, and glutamine binding protein. In each demonstration, the present method successfully reproduced transitions among metastable states. In particular, the first-ranked OFLOOD highly accelerated the exploration of conformational space by expanding the edges. In contrast, the third-ranked OFLOOD reproduced local transitions among neighboring metastable states intensively. For quantitatively evaluations of sampled snapshots, free energy calculations were performed with a combination of umbrella samplings, providing rigorous landscapes of the biomolecules. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yan, D.; Scott, R. L.; Moore, D. J.; Biederman, J. A.; Smith, W. K.
2017-12-01
Land surface phenology (LSP) - defined as remotely sensed seasonal variations in vegetation greenness - is intrinsically linked to seasonal carbon uptake, and is thus commonly used as a proxy for vegetation productivity (gross primary productivity; GPP). Yet, the relationship between LSP and GPP remains uncertain, particularly for understudied dryland ecosystems characterized by relatively large spatial and temporal variability. Here, we explored the relationship between LSP and the phenology of GPP for three dominant dryland ecosystem types, and we evaluated how these relationships change as a function of spatial and temporal scale. We focused on three long-term dryland eddy covariance flux tower sites: Walnut Gulch Lucky Hills Shrubland (WHS), Walnut Gulch Kendall Grassland (WKG), and Santa Rita Mesquite (SRM). We analyzed daily canopy-level, 16-day 30m, and 8-day 500m time series of greenness indices from PhenoCam, Landsat 7 ETM+/Landsat 8 OLI, and MODIS, respectively. We first quantified the impact of spatial scale by temporally resampling canopy-level PhenoCam, 30m Landsat, and 500m MODIS to 16-day intervals and then comparing against flux tower GPP estimates. We next quantified the impact of temporal scale by spatially resampling daily PhenoCam, 16-day Landsat, and 8-day MODIS to 500m time series and then comparing against flux tower GPP estimates. We find evidence of critical periods of decoupling between LSP and the phenology of GPP that vary according to the spatial and temporal scale, and as a function of ecosystem type. Our results provide key insight into dryland LSP and GPP dynamics that can be used in future efforts to improve ecosystem process models and satellite-based vegetation productivity algorithms.
Hydrological model parameter dimensionality is a weak measure of prediction uncertainty
NASA Astrophysics Data System (ADS)
Pande, S.; Arkesteijn, L.; Savenije, H.; Bastidas, L. A.
2015-04-01
This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is analyzed in a step by step manner. This is done measuring differences between simulations of a model under different realizations of input forcings. Algorithms are then suggested to estimate model complexity. Model complexities of the two model structures, SAC-SMA (Sacramento Soil Moisture Accounting) and its simplified version SIXPAR (Six Parameter Model), are computed on resampled input data sets from basins that span across the continental US. The model complexities for SIXPAR are estimated for various parameter ranges. It is shown that complexity of SIXPAR increases with lower storage capacity and/or higher recession coefficients. Thus it is argued that a conceptually simple model structure, such as SIXPAR, can be more complex than an intuitively more complex model structure, such as SAC-SMA for certain parameter ranges. We therefore contend that magnitudes of feasible model parameters influence the complexity of the model selection problem just as parameter dimensionality (number of parameters) does and that parameter dimensionality is an incomplete indicator of stability of hydrological model selection and prediction problems.
Dunham, Kylee; Grand, James B.
2016-10-11
The Alaskan breeding population of Steller’s eiders (Polysticta stelleri) was listed as threatened under the Endangered Species Act in 1997 in response to perceived declines in abundance throughout their breeding and nesting range. Aerial surveys suggest the breeding population is small and highly variable in number, with zero birds counted in 5 of the last 25 years. Research was conducted to evaluate competing population process models of Alaskan-breeding Steller’s eiders through comparison of model projections to aerial survey data. To evaluate model efficacy and estimate demographic parameters, a Bayesian state-space modeling framework was used and each model was fit to counts from the annual aerial surveys, using sequential importance sampling and resampling. The results strongly support that the Alaskan breeding population experiences population level nonbreeding events and is open to exchange with the larger Russian-Pacific breeding population. Current recovery criteria for the Alaskan breeding population rely heavily on the ability to estimate population viability. The results of this investigation provide an informative model of the population process that can be used to examine future population states and assess the population in terms of the current recovery and reclassification criteria.
Devenish Nelson, Eleanor S.; Harris, Stephen; Soulsbury, Carl D.; Richards, Shane A.; Stephens, Philip A.
2010-01-01
Background Demographic models are widely used in conservation and management, and their parameterisation often relies on data collected for other purposes. When underlying data lack clear indications of associated uncertainty, modellers often fail to account for that uncertainty in model outputs, such as estimates of population growth. Methodology/Principal Findings We applied a likelihood approach to infer uncertainty retrospectively from point estimates of vital rates. Combining this with resampling techniques and projection modelling, we show that confidence intervals for population growth estimates are easy to derive. We used similar techniques to examine the effects of sample size on uncertainty. Our approach is illustrated using data on the red fox, Vulpes vulpes, a predator of ecological and cultural importance, and the most widespread extant terrestrial mammal. We show that uncertainty surrounding estimated population growth rates can be high, even for relatively well-studied populations. Halving that uncertainty typically requires a quadrupling of sampling effort. Conclusions/Significance Our results compel caution when comparing demographic trends between populations without accounting for uncertainty. Our methods will be widely applicable to demographic studies of many species. PMID:21049049
The American Climate Prospectus: a risk-centered analysis of the economic impacts of climate change
NASA Astrophysics Data System (ADS)
Jina, A.; Houser, T.; Hsiang, S. M.; Kopp, R. E., III; Delgado, M.; Larsen, K.; Mohan, S.; Rasmussen, D.; Rising, J.; Wilson, P. S.; Muir-Wood, R.
2014-12-01
The American Climate Prospectus (ACP), the analysis underlying the Risky Business project, quantitatively assessed the climate risks posed to the United States' economy in six sectors - crop yields, energy demand, coastal property, crime, labor productivity, and mortality [1]. The ACP is unique in its characterization of the full probability distribution of economic impacts of climate change throughout the 21st century, making it an extremely useful basis for risk assessments. Three key innovations allow for this characterization. First, climate projections from CMIP5 models are scaled to a temperature probability distribution derived from a coarser climate model (MAGICC). This allows a more accurate representation of the whole distribution of future climates (in particular the tails) than a simple ensemble average. These are downscaled both temporally and spatially. Second, a set of local sea level rise and tropical cyclone projections are used in conjunction with the most detailed dataset of coastal property in the US in order to capture the risks of rising seas and storm surge. Third, we base many of our sectors on empirically-derived responses to temperature and precipitation. Each of these dose-response functions is resampled many times to populate a statistical distribution. Combining these with uncertainty in emissions scenario, climate model, and weather, we create the full probability distribution of climate impacts from county up to national levels, as well as model the effects upon the economy as a whole. Results are presented as likelihood ranges, as well as changes to return intervals of extreme events. The ACP analysis allows us to compare between sectors to understand the magnitude of required policy responses, and also to identify risks through time. Many sectors displaying large impacts at the end of the century, like those of mortality, have smaller changes in the near-term, due to non-linearities in the response functions. Other sectors, like coastal damages, have monotonically increasing costs throughout the 21st century. Taken together, the results from the ACP presents a unique and novel view of the short-, medium-, and long-term economic risks of climate change in the US. References: [1] T. Houser et al (2014), American Climate Prospectus, www.climateprospectus.org.
NASA Astrophysics Data System (ADS)
Serinaldi, Francesco; Kilsby, Chris G.
2013-06-01
The information contained in hyetographs and hydrographs is often synthesized by using key properties such as the peak or maximum value Xp, volume V, duration D, and average intensity I. These variables play a fundamental role in hydrologic engineering as they are used, for instance, to define design hyetographs and hydrographs as well as to model and simulate the rainfall and streamflow processes. Given their inherent variability and the empirical evidence of the presence of a significant degree of association, such quantities have been studied as correlated random variables suitable to be modeled by multivariate joint distribution functions. The advent of copulas in geosciences simplified the inference procedures allowing for splitting the analysis of the marginal distributions and the study of the so-called dependence structure or copula. However, the attention paid to the modeling task has overlooked a more thorough study of the true nature and origin of the relationships that link Xp,V,D, and I. In this study, we apply a set of ad hoc bootstrap algorithms to investigate these aspects by analyzing the hyetographs and hydrographs extracted from 282 daily rainfall series from central eastern Europe, three 5 min rainfall series from central Italy, 80 daily streamflow series from the continental United States, and two sets of 200 simulated universal multifractal time series. Our results show that all the pairwise dependence structures between Xp,V,D, and I exhibit some key properties that can be reproduced by simple bootstrap algorithms that rely on a standard univariate resampling without resort to multivariate techniques. Therefore, the strong similarities between the observed dependence structures and the agreement between the observed and bootstrap samples suggest the existence of a numerical generating mechanism based on the superposition of the effects of sampling data at finite time steps and the process of summing realizations of independent random variables over random durations. We also show that the pairwise dependence structures are weakly dependent on the internal patterns of the hyetographs and hydrographs, meaning that the temporal evolution of the rainfall and runoff events marginally influences the mutual relationships of Xp,V,D, and I. Finally, our findings point out that subtle and often overlooked deterministic relationships between the properties of the event hyetographs and hydrographs exist. Confusing these relationships with genuine stochastic relationships can lead to an incorrect application of multivariate distributions and copulas and to misleading results.
Estimation of Symptom Severity During Chemotherapy From Passively Sensed Data: Exploratory Study
Dey, Anind K; Ferreira, Denzil; Kamarck, Thomas; Sun, Weijing; Bae, Sangwon; Doryab, Afsaneh
2017-01-01
Background Physical and psychological symptoms are common during chemotherapy in cancer patients, and real-time monitoring of these symptoms can improve patient outcomes. Sensors embedded in mobile phones and wearable activity trackers could be potentially useful in monitoring symptoms passively, with minimal patient burden. Objective The aim of this study was to explore whether passively sensed mobile phone and Fitbit data could be used to estimate daily symptom burden during chemotherapy. Methods A total of 14 patients undergoing chemotherapy for gastrointestinal cancer participated in the 4-week study. Participants carried an Android phone and wore a Fitbit device for the duration of the study and also completed daily severity ratings of 12 common symptoms. Symptom severity ratings were summed to create a total symptom burden score for each day, and ratings were centered on individual patient means and categorized into low, average, and high symptom burden days. Day-level features were extracted from raw mobile phone sensor and Fitbit data and included features reflecting mobility and activity, sleep, phone usage (eg, duration of interaction with phone and apps), and communication (eg, number of incoming and outgoing calls and messages). We used a rotation random forests classifier with cross-validation and resampling with replacement to evaluate population and individual model performance and correlation-based feature subset selection to select nonredundant features with the best predictive ability. Results Across 295 days of data with both symptom and sensor data, a number of mobile phone and Fitbit features were correlated with patient-reported symptom burden scores. We achieved an accuracy of 88.1% for our population model. The subset of features with the best accuracy included sedentary behavior as the most frequent activity, fewer minutes in light physical activity, less variable and average acceleration of the phone, and longer screen-on time and interactions with apps on the phone. Mobile phone features had better predictive ability than Fitbit features. Accuracy of individual models ranged from 78.1% to 100% (mean 88.4%), and subsets of relevant features varied across participants. Conclusions Passive sensor data, including mobile phone accelerometer and usage and Fitbit-assessed activity and sleep, were related to daily symptom burden during chemotherapy. These findings highlight opportunities for long-term monitoring of cancer patients during chemotherapy with minimal patient burden as well as real-time adaptive interventions aimed at early management of worsening or severe symptoms. PMID:29258977
Estimation of Symptom Severity During Chemotherapy From Passively Sensed Data: Exploratory Study.
Low, Carissa A; Dey, Anind K; Ferreira, Denzil; Kamarck, Thomas; Sun, Weijing; Bae, Sangwon; Doryab, Afsaneh
2017-12-19
Physical and psychological symptoms are common during chemotherapy in cancer patients, and real-time monitoring of these symptoms can improve patient outcomes. Sensors embedded in mobile phones and wearable activity trackers could be potentially useful in monitoring symptoms passively, with minimal patient burden. The aim of this study was to explore whether passively sensed mobile phone and Fitbit data could be used to estimate daily symptom burden during chemotherapy. A total of 14 patients undergoing chemotherapy for gastrointestinal cancer participated in the 4-week study. Participants carried an Android phone and wore a Fitbit device for the duration of the study and also completed daily severity ratings of 12 common symptoms. Symptom severity ratings were summed to create a total symptom burden score for each day, and ratings were centered on individual patient means and categorized into low, average, and high symptom burden days. Day-level features were extracted from raw mobile phone sensor and Fitbit data and included features reflecting mobility and activity, sleep, phone usage (eg, duration of interaction with phone and apps), and communication (eg, number of incoming and outgoing calls and messages). We used a rotation random forests classifier with cross-validation and resampling with replacement to evaluate population and individual model performance and correlation-based feature subset selection to select nonredundant features with the best predictive ability. Across 295 days of data with both symptom and sensor data, a number of mobile phone and Fitbit features were correlated with patient-reported symptom burden scores. We achieved an accuracy of 88.1% for our population model. The subset of features with the best accuracy included sedentary behavior as the most frequent activity, fewer minutes in light physical activity, less variable and average acceleration of the phone, and longer screen-on time and interactions with apps on the phone. Mobile phone features had better predictive ability than Fitbit features. Accuracy of individual models ranged from 78.1% to 100% (mean 88.4%), and subsets of relevant features varied across participants. Passive sensor data, including mobile phone accelerometer and usage and Fitbit-assessed activity and sleep, were related to daily symptom burden during chemotherapy. These findings highlight opportunities for long-term monitoring of cancer patients during chemotherapy with minimal patient burden as well as real-time adaptive interventions aimed at early management of worsening or severe symptoms. ©Carissa A Low, Anind K Dey, Denzil Ferreira, Thomas Kamarck, Weijing Sun, Sangwon Bae, Afsaneh Doryab. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 19.12.2017.
NASA Astrophysics Data System (ADS)
Feeney, Christopher; Smith, Hugh; Chiverrell, Richard; Hooke, Janet; Cooper, James
2017-04-01
Sediment residence time represents the duration of particle storage, from initial deposition to remobilisation, within reservoirs such as floodplains. Residence time influences rates of downstream redistribution of sediment and associated contaminants and is a useful indicator of landform stability and hence, preservation potential of alluvial archives of environmental change. River channel change controls residence times, reworking sediments via lateral migration, avulsion and incision through floodplain deposits. As reworking progresses, the floodplain age distribution is 'updated', reflecting the time since 'older' sediments were removed and replaced with 'younger' ones. The relationship between ages and the spatial extents they occupy can be used to estimate the average floodplain sediment residence times. While dating techniques, historic maps and remote sensing can reconstruct age distributions from historic reworking, modelling provides advantages, including: i) capturing detailed river channel changes and resulting floodplain ages over longer timescales and higher resolutions than from historic mapping, and ii) control over inputs to simulate hypothetical scenarios to investigate the effects of different environmental drivers on residence times. CAESAR-Lisflood is a landform evolution model capable of simulating variable channel width, divergent flow, and both braided and meandering planforms. However, the model's ability to accurately simulate channel changes requires evaluation if it is to be useful for quantitative evaluation of floodplain sediment residence times. This study aims to simulate recent historic river channel changes along ten 1 km reaches in northern England. Simulation periods were defined by available overlapping historic map and mean daily flow datasets, ranging 27-39 years. LiDAR-derived 2 m DEMs were modified to smooth out present-day channels and burn in historic channel locations. To reduce run times, DEMs were resampled to coarser resolutions based on the size of the channel and historic rate of lateral channel migration. Separate pre-defined coarse and finer channel bed and floodplain grain size distributions were used, respectively, in combination with constructed reach DEMs for model simulations. Calibration was performed by modifying selected parameters to obtain best fits between observed and modelled channel planforms. Initial simulations suggest the model can broadly reproduce observed planform change and is comparable in terms of channel sinuosities and the mean radius of curvature. As such, CAESAR-Lisflood may provide a useful tool for evaluating floodplain sediment residence times under environmental change scenarios.
2011-03-01
resampling a second time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 70 Plot of RSA bitgroup exponentiation with DAILMOM after a...14 DVFS Dynamic Voltage and Frequency Switching . . . . . . . . . . . . . . . . . . . 14 MDPL Masked Dual-Rail...algorithms to prevent whole-sale discovery of PINs and other simple methods to prevent employee tampering [5]. In time , cryptographic systems have
On the estimation of spread rate for a biological population
Jim Clark; Lajos Horváth; Mark Lewis
2001-01-01
We propose a nonparametric estimator for the rate of spread of an introduced population. We prove that the limit distribution of the estimator is normal or stable, depending on the behavior of the moment generating function. We show that resampling methods can also be used to approximate the distribution of the estimators.
ERIC Educational Resources Information Center
Du, Yunfei
This paper discusses the impact of sampling error on the construction of confidence intervals around effect sizes. Sampling error affects the location and precision of confidence intervals. Meta-analytic resampling demonstrates that confidence intervals can haphazardly bounce around the true population parameter. Special software with graphical…
Applying Bootstrap Resampling to Compute Confidence Intervals for Various Statistics with R
ERIC Educational Resources Information Center
Dogan, C. Deha
2017-01-01
Background: Most of the studies in academic journals use p values to represent statistical significance. However, this is not a good indicator of practical significance. Although confidence intervals provide information about the precision of point estimation, they are, unfortunately, rarely used. The infrequent use of confidence intervals might…
Exploring the Replicability of a Study's Results: Bootstrap Statistics for the Multivariate Case.
ERIC Educational Resources Information Center
Thompson, Bruce
Conventional statistical significance tests do not inform the researcher regarding the likelihood that results will replicate. One strategy for evaluating result replication is to use a "bootstrap" resampling of a study's data so that the stability of results across numerous configurations of the subjects can be explored. This paper…
Statistical process control for residential treated wood
Patricia K. Lebow; Timothy M. Young; Stan Lebow
2017-01-01
This paper is the first stage of a study that attempts to improve the process of manufacturing treated lumber through the use of statistical process control (SPC). Analysis of industrial and auditing agency data sets revealed there are differences between the industry and agency probability density functions (pdf) for normalized retention data. Resampling of batches of...
NASA Technical Reports Server (NTRS)
Park, Steve
1990-01-01
A large and diverse number of computational techniques are routinely used to process and analyze remotely sensed data. These techniques include: univariate statistics; multivariate statistics; principal component analysis; pattern recognition and classification; other multivariate techniques; geometric correction; registration and resampling; radiometric correction; enhancement; restoration; Fourier analysis; and filtering. Each of these techniques will be considered, in order.
DOT National Transportation Integrated Search
2004-02-01
Researchers and practitioners are commonly faced with the problem of limited data in the evaluation of ITS systems. Due to high data collection costs and limited resources, they are often forced to make decisions about the efficacy of a system or tec...
USDA-ARS?s Scientific Manuscript database
Satellite-based passive microwave remote sensing typically involves a scanning antenna that makes measurements at irregularly spaced locations. These locations can change on a day to day basis. Soil moisture products derived from satellite-based passive microwave remote sensing are usually resampled...
Resampling-Based Gap Analysis for Detecting Nodes with High Centrality on Large Social Network
2015-05-22
University, Shiga, Japan kimura@rins.ryukoku.ac.jp 4 Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan 5 School of...second one is a network extracted from a Japanese word-of-mouth communication site for cosmetics , “@cosme”2, consist- ing of 45, 024 nodes
Confidence Intervals for Effect Sizes: Applying Bootstrap Resampling
ERIC Educational Resources Information Center
Banjanovic, Erin S.; Osborne, Jason W.
2016-01-01
Confidence intervals for effect sizes (CIES) provide readers with an estimate of the strength of a reported statistic as well as the relative precision of the point estimate. These statistics offer more information and context than null hypothesis statistic testing. Although confidence intervals have been recommended by scholars for many years,…
Bersanelli, Matteo; Mosca, Ettore; Remondini, Daniel; Castellani, Gastone; Milanesi, Luciano
2016-01-01
A relation exists between network proximity of molecular entities in interaction networks, functional similarity and association with diseases. The identification of network regions associated with biological functions and pathologies is a major goal in systems biology. We describe a network diffusion-based pipeline for the interpretation of different types of omics in the context of molecular interaction networks. We introduce the network smoothing index, a network-based quantity that allows to jointly quantify the amount of omics information in genes and in their network neighbourhood, using network diffusion to define network proximity. The approach is applicable to both descriptive and inferential statistics calculated on omics data. We also show that network resampling, applied to gene lists ranked by quantities derived from the network smoothing index, indicates the presence of significantly connected genes. As a proof of principle, we identified gene modules enriched in somatic mutations and transcriptional variations observed in samples of prostate adenocarcinoma (PRAD). In line with the local hypothesis, network smoothing index and network resampling underlined the existence of a connected component of genes harbouring molecular alterations in PRAD. PMID:27731320
McRoy, Susan; Jones, Sean; Kurmally, Adam
2016-09-01
This article examines methods for automated question classification applied to cancer-related questions that people have asked on the web. This work is part of a broader effort to provide automated question answering for health education. We created a new corpus of consumer-health questions related to cancer and a new taxonomy for those questions. We then compared the effectiveness of different statistical methods for developing classifiers, including weighted classification and resampling. Basic methods for building classifiers were limited by the high variability in the natural distribution of questions and typical refinement approaches of feature selection and merging categories achieved only small improvements to classifier accuracy. Best performance was achieved using weighted classification and resampling methods, the latter yielding an accuracy of F1 = 0.963. Thus, it would appear that statistical classifiers can be trained on natural data, but only if natural distributions of classes are smoothed. Such classifiers would be useful for automated question answering, for enriching web-based content, or assisting clinical professionals to answer questions. © The Author(s) 2015.
A hybrid method with deviational particles for spatial inhomogeneous plasma
NASA Astrophysics Data System (ADS)
Yan, Bokai
2016-03-01
In this work we propose a Hybrid method with Deviational Particles (HDP) for a plasma modeled by the inhomogeneous Vlasov-Poisson-Landau system. We split the distribution into a Maxwellian part evolved by a grid based fluid solver and a deviation part simulated by numerical particles. These particles, named deviational particles, could be both positive and negative. We combine the Monte Carlo method proposed in [31], a Particle in Cell method and a Macro-Micro decomposition method [3] to design an efficient hybrid method. Furthermore, coarse particles are employed to accelerate the simulation. A particle resampling technique on both deviational particles and coarse particles is also investigated and improved. This method is applicable in all regimes and significantly more efficient compared to a PIC-DSMC method near the fluid regime.
The elevation and its distribution in geomorphological regions of the European Russia
NASA Astrophysics Data System (ADS)
Kharchenko, S. V.; Ermolaev, O. P.; Mukharamova, S. S.
2018-01-01
Spatial differences of elevation were analysed by side of view of geomorphological boundaries on the European Russia territory. Geomorphological pattern of the studied territory was taken from Geomorphological Map of the USSR at scale of 1: 2 500 000. There 2401 fragments for combinations of 58 types of structural landforms and 22 types of sculptural landforms were allocated. The elevation values computed by digital elevation model (cell size - 200 m, number of cells - 322M) based on SRTM (south of 60 nl.) and GDEM 2010 (north of 60 nl.) resampled data. It was founded that some types of structural (16 types) and sculptural (6 types) landforms located in the relatively thin intervals of elevation. Using of elevation above sea level is needed for effective automatic recognizing these landform regions.
Epistemic uncertainty in the location and magnitude of earthquakes in Italy from Macroseismic data
Bakun, W.H.; Gomez, Capera A.; Stucchi, M.
2011-01-01
Three independent techniques (Bakun and Wentworth, 1997; Boxer from Gasperini et al., 1999; and Macroseismic Estimation of Earthquake Parameters [MEEP; see Data and Resources section, deliverable D3] from R.M.W. Musson and M.J. Jimenez) have been proposed for estimating an earthquake location and magnitude from intensity data alone. The locations and magnitudes obtained for a given set of intensity data are almost always different, and no one technique is consistently best at matching instrumental locations and magnitudes of recent well-recorded earthquakes in Italy. Rather than attempting to select one of the three solutions as best, we use all three techniques to estimate the location and the magnitude and the epistemic uncertainties among them. The estimates are calculated using bootstrap resampled data sets with Monte Carlo sampling of a decision tree. The decision-tree branch weights are based on goodness-of-fit measures of location and magnitude for recent earthquakes. The location estimates are based on the spatial distribution of locations calculated from the bootstrap resampled data. The preferred source location is the locus of the maximum bootstrap location spatial density. The location uncertainty is obtained from contours of the bootstrap spatial density: 68% of the bootstrap locations are within the 68% confidence region, and so on. For large earthquakes, our preferred location is not associated with the epicenter but with a location on the extended rupture surface. For small earthquakes, the epicenters are generally consistent with the location uncertainties inferred from the intensity data if an epicenter inaccuracy of 2-3 km is allowed. The preferred magnitude is the median of the distribution of bootstrap magnitudes. As with location uncertainties, the uncertainties in magnitude are obtained from the distribution of bootstrap magnitudes: the bounds of the 68% uncertainty range enclose 68% of the bootstrap magnitudes, and so on. The instrumental magnitudes for large and small earthquakes are generally consistent with the confidence intervals inferred from the distribution of bootstrap resampled magnitudes.
Effect of match-run frequencies on the number of transplants and waiting times in kidney exchange.
Ashlagi, Itai; Bingaman, Adam; Burq, Maximilien; Manshadi, Vahideh; Gamarnik, David; Murphey, Cathi; Roth, Alvin E; Melcher, Marc L; Rees, Michael A
2018-05-01
Numerous kidney exchange (kidney paired donation [KPD]) registries in the United States have gradually shifted to high-frequency match-runs, raising the question of whether this harms the number of transplants. We conducted simulations using clinical data from 2 KPD registries-the Alliance for Paired Donation, which runs multihospital exchanges, and Methodist San Antonio, which runs single-center exchanges-to study how the frequency of match-runs impacts the number of transplants and the average waiting times. We simulate the options facing each of the 2 registries by repeated resampling from their historical pools of patient-donor pairs and nondirected donors, with arrival and departure rates corresponding to the historical data. We find that longer intervals between match-runs do not increase the total number of transplants, and that prioritizing highly sensitized patients is more effective than waiting longer between match-runs for transplanting highly sensitized patients. While we do not find that frequent match-runs result in fewer transplanted pairs, we do find that increasing arrival rates of new pairs improves both the fraction of transplanted pairs and waiting times. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Performance of internal covariance estimators for cosmic shear correlation functions
Friedrich, O.; Seitz, S.; Eifler, T. F.; ...
2015-12-31
Data re-sampling methods such as the delete-one jackknife are a common tool for estimating the covariance of large scale structure probes. In this paper we investigate the concepts of internal covariance estimation in the context of cosmic shear two-point statistics. We demonstrate how to use log-normal simulations of the convergence field and the corresponding shear field to carry out realistic tests of internal covariance estimators and find that most estimators such as jackknife or sub-sample covariance can reach a satisfactory compromise between bias and variance of the estimated covariance. In a forecast for the complete, 5-year DES survey we show that internally estimated covariance matrices can provide a large fraction of the true uncertainties on cosmological parameters in a 2D cosmic shear analysis. The volume inside contours of constant likelihood in themore » $$\\Omega_m$$-$$\\sigma_8$$ plane as measured with internally estimated covariance matrices is on average $$\\gtrsim 85\\%$$ of the volume derived from the true covariance matrix. The uncertainty on the parameter combination $$\\Sigma_8 \\sim \\sigma_8 \\Omega_m^{0.5}$$ derived from internally estimated covariances is $$\\sim 90\\%$$ of the true uncertainty.« less
Wavelet-based characterization of gait signal for neurological abnormalities.
Baratin, E; Sugavaneswaran, L; Umapathy, K; Ioana, C; Krishnan, S
2015-02-01
Studies conducted by the World Health Organization (WHO) indicate that over one billion suffer from neurological disorders worldwide, and lack of efficient diagnosis procedures affects their therapeutic interventions. Characterizing certain pathologies of motor control for facilitating their diagnosis can be useful in quantitatively monitoring disease progression and efficient treatment planning. As a suitable directive, we introduce a wavelet-based scheme for effective characterization of gait associated with certain neurological disorders. In addition, since the data were recorded from a dynamic process, this work also investigates the need for gait signal re-sampling prior to identification of signal markers in the presence of pathologies. To benefit automated discrimination of gait data, certain characteristic features are extracted from the wavelet-transformed signals. The performance of the proposed approach was evaluated using a database consisting of 15 Parkinson's disease (PD), 20 Huntington's disease (HD), 13 Amyotrophic lateral sclerosis (ALS) and 16 healthy control subjects, and an average classification accuracy of 85% is achieved using an unbiased cross-validation strategy. The obtained results demonstrate the potential of the proposed methodology for computer-aided diagnosis and automatic characterization of certain neurological disorders. Copyright © 2015 Elsevier B.V. All rights reserved.
Yield variability prediction by remote sensing sensors with different spatial resolution
NASA Astrophysics Data System (ADS)
Kumhálová, Jitka; Matějková, Štěpánka
2017-04-01
Currently, remote sensing sensors are very popular for crop monitoring and yield prediction. This paper describes how satellite images with moderate (Landsat satellite data) and very high (QuickBird and WorldView-2 satellite data) spatial resolution, together with GreenSeeker hand held crop sensor, can be used to estimate yield and crop growth variability. Winter barley (2007 and 2015) and winter wheat (2009 and 2011) were chosen because of cloud-free data availability in the same time period for experimental field from Landsat satellite images and QuickBird or WorldView-2 images. Very high spatial resolution images were resampled to worse spatial resolution. Normalised difference vegetation index was derived from each satellite image data sets and it was also measured with GreenSeeker handheld crop sensor for the year 2015 only. Results showed that each satellite image data set can be used for yield and plant variability estimation. Nevertheless, better results, in comparison with crop yield, were obtained for images acquired in later phenological phases, e.g. in 2007 - BBCH 59 - average correlation coefficient 0.856, and in 2011 - BBCH 59-0.784. GreenSeeker handheld crop sensor was not suitable for yield estimation due to different measuring method.
The Link Between Nutrition and Physical Activity in Increasing Academic Achievement.
Asigbee, Fiona M; Whitney, Stephen D; Peterson, Catherine E
2018-06-01
Research demonstrates a link between decreased cognitive function in overweight school-aged children and improved cognitive function among students with high fitness levels and children engaging in regular physical activity (PA). The purpose of this study was to examine whether regular PA and proper nutrition together had a significant effect on academic achievement. Using the seventh wave of the Early Childhood Longitudinal Study, Kindergarten Class 1998-99 (ECLS-K) dataset, linear regression analysis with a Jackknife resampling correction was conducted to analyze the relationship among nutrition, PA, and academic achievement, while controlling for socioeconomic status, age, and sex. A nonactive, unhealthy nutrition group and a physically active, healthy nutrition group were compared on standardized tests of academic achievement. Findings indicated that PA levels and proper nutrition significantly predicted achievement scores. Thus, the active, healthy nutrition group scored higher on reading, math, and science standardized achievement tests scores. There is a strong connection between healthy nutrition and adequate PA, and the average performance within the population. Thus, results from this study suggest a supporting relationship between students' health and academic achievement. Findings also provide implications for school and district policy changes. © 2018, American School Health Association.
NASA Astrophysics Data System (ADS)
Tosi, Luigi; Da Lio, Cristina; Strozzi, Tazio; Teatini, Pietro
2016-08-01
We present the result of a test aimed at evaluating the capability of RADARSAT-2 and COSMO-SkyMed to map the natural subsidence and ground movements induced by anthropogenic activities in the historical center of Venice. Firstly, ground movements have been retrieved at quite long- and short-term by the Persistent Scattered Interferometry (PSI) on 2008-2015 RADARSA T-2 and 2013-2015 COSMO-SkyMed image stacks, respectively. Secondly, PSI has been calibrated at regional scale using the records of permanent GPS stations. Thirdly, considering that over the last two decades "in the historical center of Venice" natural land movements are primarily ascribed to long- term processes, and those induced by human activities act at short-term, we have properly resampled 83-month RADARSA T-2 C-band and 27-month COSMO- SkyMed X-band interferometric products by a common grid and processed the outcome to estimate the two components of the displacements. Results show that the average natural subsidence is generally in the range of 0.9 - 1.1 mm/yr and the anthropogenic ground movements are up to 2 mm/yr.
Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images
NASA Astrophysics Data System (ADS)
Hengl, Tomislav; Heuvelink, Gerard B. M.; Perčec Tadić, Melita; Pebesma, Edzer J.
2012-01-01
A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations (159) in Croatia. The input data set contains 57,282 ground measurements of daily temperature for the year 2008. Temperature was modeled as a function of latitude, longitude, distance from the sea, elevation, time, insolation, and the MODIS LST images. The original rasters were first converted to principal components to reduce noise and filter missing pixels in the LST images. The residual were next analyzed for spatio-temporal auto-correlation; sum-metric separable variograms were fitted to account for zonal and geometric space-time anisotropy. The final predictions were generated for time-slices of a 3D space-time cube, constructed in the R environment for statistical computing. The results show that the space-time regression model can explain a significant part of the variation in station-data (84%). MODIS LST 8-day (cloud-free) images are unbiased estimator of the daily temperature, but with relatively low precision (±4.1°C); however their added value is that they systematically improve detection of local changes in land surface temperature due to local meteorological conditions and/or active heat sources (urban areas, land cover classes). The results of 10-fold cross-validation show that use of spatio-temporal regression-kriging and incorporation of time-series of remote sensing images leads to significantly more accurate maps of temperature than if plain spatial techniques were used. The average (global) accuracy of mapping temperature was ±2.4°C. The regression-kriging explained 91% of variability in daily temperatures, compared to 44% for ordinary kriging. Further software advancement—interactive space-time variogram exploration and automated retrieval, resampling and filtering of MODIS images—are anticipated.
Korenromp, Eline L; Mahiané, Guy; Rowley, Jane; Nagelkerke, Nico; Abu-Raddad, Laith; Ndowa, Francis; El-Kettani, Amina; El-Rhilani, Houssine; Mayaud, Philippe; Chico, R Matthew; Pretorius, Carel; Hecht, Kendall; Wi, Teodora
2017-01-01
Objective To develop a tool for estimating national trends in adult prevalence of sexually transmitted infections by low- and middle-income countries, using standardised, routinely collected programme indicator data. Methods The Spectrum-STI model fits time trends in the prevalence of active syphilis through logistic regression on prevalence data from antenatal clinic-based surveys, routine antenatal screening and general population surveys where available, weighting data by their national coverage and representativeness. Gonorrhoea prevalence was fitted as a moving average on population surveys (from the country, neighbouring countries and historic regional estimates), with trends informed additionally by urethral discharge case reports, where these were considered to have reasonably stable completeness. Prevalence data were adjusted for diagnostic test performance, high-risk populations not sampled, urban/rural and male/female prevalence ratios, using WHO's assumptions from latest global and regional-level estimations. Uncertainty intervals were obtained by bootstrap resampling. Results Estimated syphilis prevalence (in men and women) declined from 1.9% (95% CI 1.1% to 3.4%) in 2000 to 1.5% (1.3% to 1.8%) in 2016 in Zimbabwe, and from 1.5% (0.76% to 1.9%) to 0.55% (0.30% to 0.93%) in Morocco. At these time points, gonorrhoea estimates for women aged 15–49 years were 2.5% (95% CI 1.1% to 4.6%) and 3.8% (1.8% to 6.7%) in Zimbabwe; and 0.6% (0.3% to 1.1%) and 0.36% (0.1% to 1.0%) in Morocco, with male gonorrhoea prevalences 14% lower than female prevalence. Conclusions This epidemiological framework facilitates data review, validation and strategic analysis, prioritisation of data collection needs and surveillance strengthening by national experts. We estimated ongoing syphilis declines in both Zimbabwe and Morocco. For gonorrhoea, time trends were less certain, lacking recent population-based surveys. PMID:28325771
Sub-seasonal predictability of water scarcity at global and local scale
NASA Astrophysics Data System (ADS)
Wanders, N.; Wada, Y.; Wood, E. F.
2016-12-01
Forecasting the water demand and availability for agriculture and energy production has been neglected in previous research, partly due to the fact that most large-scale hydrological models lack the skill to forecast human water demands at sub-seasonal time scale. We study the potential of a sub-seasonal water scarcity forecasting system for improved water management decision making and improved estimates of water demand and availability. We have generated 32 years of global sub-seasonal multi-model water availability, demand and scarcity forecasts. The quality of the forecasts is compared to a reference forecast derived from resampling historic weather observations. The newly developed system has been evaluated for both the global scale and in a real-time local application in the Sacramento valley for the Trinity, Shasta and Oroville reservoirs, where the water demand for agriculture and hydropower is high. On the global scale we find that the reference forecast shows high initial forecast skill (up to 8 months) for water scarcity in the eastern US, Central Asia and Sub-Saharan Africa. Adding dynamical sub-seasonal forecasts results in a clear improvement for most regions in the world, increasing the forecasts' lead time by 2 or more months on average. The strongest improvements are found in the US, Brazil, Central Asia and Australia. For the Sacramento valley we can accurately predict anomalies in the reservoir inflow, hydropower potential and the downstream irrigation water demand 6 months in advance. This allow us to forecast potential water scarcity in the Sacramento valley and adjust the reservoir management to prevent deficits in energy or irrigation water availability. The newly developed forecast system shows that it is possible to reduce the vulnerability to upcoming water scarcity events and allows optimization of the distribution of the available water between the agricultural and energy sector half a year in advance.
Improving the analysis of composite endpoints in rare disease trials.
McMenamin, Martina; Berglind, Anna; Wason, James M S
2018-05-22
Composite endpoints are recommended in rare diseases to increase power and/or to sufficiently capture complexity. Often, they are in the form of responder indices which contain a mixture of continuous and binary components. Analyses of these outcomes typically treat them as binary, thus only using the dichotomisations of continuous components. The augmented binary method offers a more efficient alternative and is therefore especially useful for rare diseases. Previous work has indicated the method may have poorer statistical properties when the sample size is small. Here we investigate small sample properties and implement small sample corrections. We re-sample from a previous trial with sample sizes varying from 30 to 80. We apply the standard binary and augmented binary methods and determine the power, type I error rate, coverage and average confidence interval width for each of the estimators. We implement Firth's adjustment for the binary component models and a small sample variance correction for the generalized estimating equations, applying the small sample adjusted methods to each sub-sample as before for comparison. For the log-odds treatment effect the power of the augmented binary method is 20-55% compared to 12-20% for the standard binary method. Both methods have approximately nominal type I error rates. The difference in response probabilities exhibit similar power but both unadjusted methods demonstrate type I error rates of 6-8%. The small sample corrected methods have approximately nominal type I error rates. On both scales, the reduction in average confidence interval width when using the adjusted augmented binary method is 17-18%. This is equivalent to requiring a 32% smaller sample size to achieve the same statistical power. The augmented binary method with small sample corrections provides a substantial improvement for rare disease trials using composite endpoints. We recommend the use of the method for the primary analysis in relevant rare disease trials. We emphasise that the method should be used alongside other efforts in improving the quality of evidence generated from rare disease trials rather than replace them.
Estimation of stochastic volatility with long memory for index prices of FTSE Bursa Malaysia KLCI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kho Chia; Kane, Ibrahim Lawal; Rahman, Haliza Abd
In recent years, modeling in long memory properties or fractionally integrated processes in stochastic volatility has been applied in the financial time series. A time series with structural breaks can generate a strong persistence in the autocorrelation function, which is an observed behaviour of a long memory process. This paper considers the structural break of data in order to determine true long memory time series data. Unlike usual short memory models for log volatility, the fractional Ornstein-Uhlenbeck process is neither a Markovian process nor can it be easily transformed into a Markovian process. This makes the likelihood evaluation and parametermore » estimation for the long memory stochastic volatility (LMSV) model challenging tasks. The drift and volatility parameters of the fractional Ornstein-Unlenbeck model are estimated separately using the least square estimator (lse) and quadratic generalized variations (qgv) method respectively. Finally, the empirical distribution of unobserved volatility is estimated using the particle filtering with sequential important sampling-resampling (SIR) method. The mean square error (MSE) between the estimated and empirical volatility indicates that the performance of the model towards the index prices of FTSE Bursa Malaysia KLCI is fairly well.« less
Estimation of stochastic volatility with long memory for index prices of FTSE Bursa Malaysia KLCI
NASA Astrophysics Data System (ADS)
Chen, Kho Chia; Bahar, Arifah; Kane, Ibrahim Lawal; Ting, Chee-Ming; Rahman, Haliza Abd
2015-02-01
In recent years, modeling in long memory properties or fractionally integrated processes in stochastic volatility has been applied in the financial time series. A time series with structural breaks can generate a strong persistence in the autocorrelation function, which is an observed behaviour of a long memory process. This paper considers the structural break of data in order to determine true long memory time series data. Unlike usual short memory models for log volatility, the fractional Ornstein-Uhlenbeck process is neither a Markovian process nor can it be easily transformed into a Markovian process. This makes the likelihood evaluation and parameter estimation for the long memory stochastic volatility (LMSV) model challenging tasks. The drift and volatility parameters of the fractional Ornstein-Unlenbeck model are estimated separately using the least square estimator (lse) and quadratic generalized variations (qgv) method respectively. Finally, the empirical distribution of unobserved volatility is estimated using the particle filtering with sequential important sampling-resampling (SIR) method. The mean square error (MSE) between the estimated and empirical volatility indicates that the performance of the model towards the index prices of FTSE Bursa Malaysia KLCI is fairly well.
Learning and Information Approaches for Inference in Dynamic Data-Driven Geophysical Applications
NASA Astrophysics Data System (ADS)
Ravela, S.
2015-12-01
Many Geophysical inference problems are characterized by non-linear processes, high-dimensional models and complex uncertainties. A dynamic coupling between models, estimation, and sampling is typically sought to efficiently characterize and reduce uncertainty. This process is however fraught with several difficulties. Among them, the key difficulties are the ability to deal with model errors, efficacy of uncertainty quantification and data assimilation. In this presentation, we present three key ideas from learning and intelligent systems theory and apply them to two geophysical applications. The first idea is the use of Ensemble Learning to compensate for model error, the second is to develop tractable Information Theoretic Learning to deal with non-Gaussianity in inference, and the third is a Manifold Resampling technique for effective uncertainty quantification. We apply these methods, first to the development of a cooperative autonomous observing system using sUAS for studying coherent structures. We apply this to Second, we apply this to the problem of quantifying risk from hurricanes and storm surges in a changing climate. Results indicate that learning approaches can enable new effectiveness in cases where standard approaches to model reduction, uncertainty quantification and data assimilation fail.
Joint scale-change models for recurrent events and failure time.
Xu, Gongjun; Chiou, Sy Han; Huang, Chiung-Yu; Wang, Mei-Cheng; Yan, Jun
2017-01-01
Recurrent event data arise frequently in various fields such as biomedical sciences, public health, engineering, and social sciences. In many instances, the observation of the recurrent event process can be stopped by the occurrence of a correlated failure event, such as treatment failure and death. In this article, we propose a joint scale-change model for the recurrent event process and the failure time, where a shared frailty variable is used to model the association between the two types of outcomes. In contrast to the popular Cox-type joint modeling approaches, the regression parameters in the proposed joint scale-change model have marginal interpretations. The proposed approach is robust in the sense that no parametric assumption is imposed on the distribution of the unobserved frailty and that we do not need the strong Poisson-type assumption for the recurrent event process. We establish consistency and asymptotic normality of the proposed semiparametric estimators under suitable regularity conditions. To estimate the corresponding variances of the estimators, we develop a computationally efficient resampling-based procedure. Simulation studies and an analysis of hospitalization data from the Danish Psychiatric Central Register illustrate the performance of the proposed method.
Kuzawa, Christopher W; Eisenberg, Dan T A
2012-01-01
Birth weight (BW) predicts many health outcomes, but the relative contributions of genes and environmental factors to BW remain uncertain. Some studies report stronger mother-offspring than father-offspring BW correlations, with attenuated father-offspring BW correlations when the mother is stunted. These findings have been interpreted as evidence that maternal genetic or environmental factors play an important role in determining birth size, with small maternal size constraining paternal genetic contributions to offspring BW. Here we evaluate mother-offspring and father-offspring birth weight (BW) associations and evaluate whether maternal stunting constrains genetic contributions to offspring birth size. Data include BW of offspring (n = 1,101) born to female members (n = 382) and spouses of male members (n = 275) of a birth cohort (born 1983-84) in Metropolitan Cebu, Philippines. Regression was used to relate parental and offspring BW adjusting for confounders. Resampling testing was used to evaluate whether false paternity could explain any evidence for excess matrilineal inheritance. In a pooled model adjusting for maternal height and confounders, parental BW was a borderline-significantly stronger predictor of offspring BW in mothers compared to fathers (sex of parent interaction p = 0.068). In separate multivariate models, each kg in mother's and father's BW predicted a 271±53 g (p<0.00001) and 132±55 g (p = 0.017) increase in offspring BW, respectively. Resampling statistics suggested that false paternity rates of >25% and likely 50% would be needed to explain these differences. There was no interaction between maternal stature and maternal BW (interaction p = 0.520) or paternal BW (p = 0.545). Each kg change in mother's BW predicted twice the change in offspring BW as predicted by a change in father's BW, consistent with an intergenerational maternal effect on offspring BW. Evidence for excess matrilineal BW heritability at all levels of maternal stature points to indirect genetic, mitochondrial, or epigenetic maternal contributions to offspring fetal growth.
Kim, Hyoungrae; Jang, Cheongyun; Yadav, Dharmendra K; Kim, Mi-Hyun
2017-03-23
The accuracy of any 3D-QSAR, Pharmacophore and 3D-similarity based chemometric target fishing models are highly dependent on a reasonable sample of active conformations. Since a number of diverse conformational sampling algorithm exist, which exhaustively generate enough conformers, however model building methods relies on explicit number of common conformers. In this work, we have attempted to make clustering algorithms, which could find reasonable number of representative conformer ensembles automatically with asymmetric dissimilarity matrix generated from openeye tool kit. RMSD was the important descriptor (variable) of each column of the N × N matrix considered as N variables describing the relationship (network) between the conformer (in a row) and the other N conformers. This approach used to evaluate the performance of the well-known clustering algorithms by comparison in terms of generating representative conformer ensembles and test them over different matrix transformation functions considering the stability. In the network, the representative conformer group could be resampled for four kinds of algorithms with implicit parameters. The directed dissimilarity matrix becomes the only input to the clustering algorithms. Dunn index, Davies-Bouldin index, Eta-squared values and omega-squared values were used to evaluate the clustering algorithms with respect to the compactness and the explanatory power. The evaluation includes the reduction (abstraction) rate of the data, correlation between the sizes of the population and the samples, the computational complexity and the memory usage as well. Every algorithm could find representative conformers automatically without any user intervention, and they reduced the data to 14-19% of the original values within 1.13 s per sample at the most. The clustering methods are simple and practical as they are fast and do not ask for any explicit parameters. RCDTC presented the maximum Dunn and omega-squared values of the four algorithms in addition to consistent reduction rate between the population size and the sample size. The performance of the clustering algorithms was consistent over different transformation functions. Moreover, the clustering method can also be applied to molecular dynamics sampling simulation results.
Pinder, John E; Rowan, David J; Smith, Jim T
2016-02-01
Data from published studies and World Wide Web sources were combined to develop a regression model to predict (137)Cs concentration ratios for saltwater fish. Predictions were developed from 1) numeric trophic levels computed primarily from random resampling of known food items and 2) K concentrations in the saltwater for 65 samplings from 41 different species from both the Atlantic and Pacific Oceans. A number of different models were initially developed and evaluated for accuracy which was assessed as the ratios of independently measured concentration ratios to those predicted by the model. In contrast to freshwater systems, were K concentrations are highly variable and are an important factor in affecting fish concentration ratios, the less variable K concentrations in saltwater were relatively unimportant in affecting concentration ratios. As a result, the simplest model, which used only trophic level as a predictor, had comparable accuracies to more complex models that also included K concentrations. A test of model accuracy involving comparisons of 56 published concentration ratios from 51 species of marine fish to those predicted by the model indicated that 52 of the predicted concentration ratios were within a factor of 2 of the observed concentration ratios. Copyright © 2015 Elsevier Ltd. All rights reserved.
Choi, Ickwon; Kattan, Michael W; Wells, Brian J; Yu, Changhong
2012-01-01
In medical society, the prognostic models, which use clinicopathologic features and predict prognosis after a certain treatment, have been externally validated and used in practice. In recent years, most research has focused on high dimensional genomic data and small sample sizes. Since clinically similar but molecularly heterogeneous tumors may produce different clinical outcomes, the combination of clinical and genomic information, which may be complementary, is crucial to improve the quality of prognostic predictions. However, there is a lack of an integrating scheme for clinic-genomic models due to the P ≥ N problem, in particular, for a parsimonious model. We propose a methodology to build a reduced yet accurate integrative model using a hybrid approach based on the Cox regression model, which uses several dimension reduction techniques, L₂ penalized maximum likelihood estimation (PMLE), and resampling methods to tackle the problem. The predictive accuracy of the modeling approach is assessed by several metrics via an independent and thorough scheme to compare competing methods. In breast cancer data studies on a metastasis and death event, we show that the proposed methodology can improve prediction accuracy and build a final model with a hybrid signature that is parsimonious when integrating both types of variables.
NASA Astrophysics Data System (ADS)
Frommholz, D.; Linkiewicz, M.; Poznanska, A. M.
2016-06-01
This paper proposes an in-line method for the simplified reconstruction of city buildings from nadir and oblique aerial images that at the same time are being used for multi-source texture mapping with minimal resampling. Further, the resulting unrectified texture atlases are analyzed for façade elements like windows to be reintegrated into the original 3D models. Tests on real-world data of Heligoland/ Germany comprising more than 800 buildings exposed a median positional deviation of 0.31 m at the façades compared to the cadastral map, a correctness of 67% for the detected windows and good visual quality when being rendered with GPU-based perspective correction. As part of the process building reconstruction takes the oriented input images and transforms them into dense point clouds by semi-global matching (SGM). The point sets undergo local RANSAC-based regression and topology analysis to detect adjacent planar surfaces and determine their semantics. Based on this information the roof, wall and ground surfaces found get intersected and limited in their extension to form a closed 3D building hull. For texture mapping the hull polygons are projected into each possible input bitmap to find suitable color sources regarding the coverage and resolution. Occlusions are detected by ray-casting a full-scale digital surface model (DSM) of the scene and stored in pixel-precise visibility maps. These maps are used to derive overlap statistics and radiometric adjustment coefficients to be applied when the visible image parts for each building polygon are being copied into a compact texture atlas without resampling whenever possible. The atlas bitmap is passed to a commercial object-based image analysis (OBIA) tool running a custom rule set to identify windows on the contained façade patches. Following multi-resolution segmentation and classification based on brightness and contrast differences potential window objects are evaluated against geometric constraints and conditionally grown, fused and filtered morphologically. The output polygons are vectorized and reintegrated into the previously reconstructed buildings by sparsely ray-tracing their vertices. Finally the enhanced 3D models get stored as textured geometry for visualization and semantically annotated "LOD-2.5" CityGML objects for GIS applications.
A Data Augmentation Approach to Short Text Classification
ERIC Educational Resources Information Center
Rosario, Ryan Robert
2017-01-01
Text classification typically performs best with large training sets, but short texts are very common on the World Wide Web. Can we use resampling and data augmentation to construct larger texts using similar terms? Several current methods exist for working with short text that rely on using external data and contexts, or workarounds. Our focus is…
Mist net effort required to inventory a forest bat species assemblage.
Theodore J. Weller; Danny C. Lee
2007-01-01
Little quantitative information exists about the survey effort necessary to inventory temperate bat species assemblages. We used a bootstrap resampling lgorithm to estimate the number of mist net surveys required to capture individuals from 9 species at both study area and site levels using data collected in a forested watershed in northwestern California, USA, during...
Long-Term Soil Chemistry Changes in Aggrading Forest Ecosystems
Jennifer D. Knoepp; Wayne T. Swank
1994-01-01
Assessing potential long-term forest productivity requires identification of the processes regulating chemical changes in forest soils. We resampled the litter layer and upper two mineral soil horizons, A and AB/BA, in two aggrading southern Appalachian watersheds 20 yr after an earlier sampling. Soils from a mixed-hardwood watershed exhibited a small but significant...
Jeffrey T. Walton
2008-01-01
Three machine learning subpixel estimation methods (Cubist, Random Forests, and support vector regression) were applied to estimate urban cover. Urban forest canopy cover and impervious surface cover were estimated from Landsat-7 ETM+ imagery using a higher resolution cover map resampled to 30 m as training and reference data. Three different band combinations (...
Propagating probability distributions of stand variables using sequential Monte Carlo methods
Jeffrey H. Gove
2009-01-01
A general probabilistic approach to stand yield estimation is developed based on sequential Monte Carlo filters, also known as particle filters. The essential steps in the development of the sampling importance resampling (SIR) particle filter are presented. The SIR filter is then applied to simulated and observed data showing how the 'predictor - corrector'...
The Relationship of Cohabitation and Mental Health: A Study of a Young Adult Cohort.
ERIC Educational Resources Information Center
Horwitz, Allan V.; White, Helene Raskin
1998-01-01
Uses a cohort of unmarried young adults who were sampled when they were 18, 21, or 24 years old and resampled seven years later. Results indicate no differences between cohabitators and married couples in levels of depression. Cohabitating men report more alcohol problems than married and single men; cohabitating women reported more alcohol…
Rangeland exclosures of northeastern Oregon: stories they tell (1936–2004).
Charles Grier Johnson
2007-01-01
Rangeland exclosures installed primarily in the 1960s, but with some from the 1940s, were resampled for changes in plant community structure and composition periodically from 1977 to 2004 on the Malheur, Umatilla, and Wallowa-Whitman National Forests in northeastern Oregon. They allow one to compare vegetation with all-ungulate exclusion (known historically as game...
Collateral Information for Equating in Small Samples: A Preliminary Investigation
ERIC Educational Resources Information Center
Kim, Sooyeon; Livingston, Samuel A.; Lewis, Charles
2011-01-01
This article describes a preliminary investigation of an empirical Bayes (EB) procedure for using collateral information to improve equating of scores on test forms taken by small numbers of examinees. Resampling studies were done on two different forms of the same test. In each study, EB and non-EB versions of two equating methods--chained linear…
Exploring the deep, ancient hydrogeosphere within Precambrian crystalline rocks using noble gases
NASA Astrophysics Data System (ADS)
Warr, O.; Sherwood Lollar, B.; Fellowes, J.; Sutcliffe, C. N.; McDermott, J. M.; Holland, G.; Mabry, J.; Ballentine, C. J.
2016-12-01
Serpentinization is a key long-term water-rock interaction occurring within isolated fractures in Precambrian crystalline rocks and is a significant source of global H2 production. Highly saline fracture fluids, containing in-situ produced dissolved gases (e.g. percent level He, abiogenic CH4 and mM H2), have revealed microbial ecosystems isolated from the surface photosphere for millions of years. Noble gases can provide crucial physical and temporal constraints on these serpentinizing and life-supporting environments via radiogenic-derived fluid residence times, while also providing evidence of isolation. New noble gas data is presented here from four locations on the Canadian Shield. Kidd Creek Mine in Ontario, where fluids with a mean residence time ≥ 1.1 Ga were identified in 2013, was revisited with resampling of the waters from 2.4 km bls (below land surface), and new samples collected from 2.9 km bls. The study was also expanded to include two mines from Sudbury, Ontario at 1.7 (Mine 1) and 1.4 (Mine 2) km bls. The radiogenic excesses within the fluids were greatest for the 2.9 km Kidd Creek samples and provided an average residence time of 1.6 Ga. Consistent with our hypothesis, the resampling of the 2.4 km fluids (80 months after the original study) reveal significantly reduced residence times (1.1 Ga to 390 Ma) due to stress-induced opening of younger, though nonetheless old, fractures. This is supported by recent sulphur isotope, and 2H & 18O data. Additional hydrogeological constraints are provided by the 129Xe & 136Xe data, which suggest distinct fracture networks feed the 2.4 km, and the 2.9 km systems. Fracture fluids in the Sudbury Basin were targeted to investigate the influence of a later 1.8 Ga bolide impact which formed major fractures in the underlying basement. As hypothesised the fluids in the Sudbury Archean basement are younger than those at Kidd Creek, with mean residence times of 313 and 544 Ma for Mine 1 and 2 respectively. Our results demonstrate that ancient fracture fluids in the Precambrian crust represent a previously under-investigated groundwater domain and H2 source. With mean residence times of 0.3-1.6 Ga, they provide an opportunity to explore an unprecedented ancient component of the Earth's hydrogeosphere.
NASA Astrophysics Data System (ADS)
Caras, Tamir; Hedley, John; Karnieli, Arnon
2017-12-01
Remote sensing offers a potential tool for large scale environmental surveying and monitoring. However, remote observations of coral reefs are difficult especially due to the spatial and spectral complexity of the target compared to sensor specifications as well as the environmental implications of the water medium above. The development of sensors is driven by technological advances and the desired products. Currently, spaceborne systems are technologically limited to a choice between high spectral resolution and high spatial resolution, but not both. The current study explores the dilemma of whether future sensor design for marine monitoring should prioritise on improving their spatial or spectral resolution. To address this question, a spatially and spectrally resampled ground-level hyperspectral image was used to test two classification elements: (1) how the tradeoff between spatial and spectral resolutions affects classification; and (2) how a noise reduction by majority filter might improve classification accuracy. The studied reef, in the Gulf of Aqaba (Eilat), Israel, is heterogeneous and complex so the local substrate patches are generally finer than currently available imagery. Therefore, the tested spatial resolution was broadly divided into four scale categories from five millimeters to one meter. Spectral resolution resampling aimed to mimic currently available and forthcoming spaceborne sensors such as (1) Environmental Mapping and Analysis Program (EnMAP) that is characterized by 25 bands of 6.5 nm width; (2) VENμS with 12 narrow bands; and (3) the WorldView series with broadband multispectral resolution. Results suggest that spatial resolution should generally be prioritized for coral reef classification because the finer spatial scale tested (pixel size < 0.1 m) may compensate for some low spectral resolution drawbacks. In this regard, it is shown that the post-classification majority filtering substantially improves the accuracy of all pixel sizes up to the point where the kernel size reaches the average unit size (pixel < 0.25 m). However, careful investigation as to the effect of band distribution and choice could improve the sensor suitability for the marine environment task. This in mind, while the focus in this study was on the technologically limited spaceborne design, aerial sensors may presently provide an opportunity to implement the suggested setup.
Li, Jun; Tibshirani, Robert
2015-01-01
We discuss the identification of features that are associated with an outcome in RNA-Sequencing (RNA-Seq) and other sequencing-based comparative genomic experiments. RNA-Seq data takes the form of counts, so models based on the normal distribution are generally unsuitable. The problem is especially challenging because different sequencing experiments may generate quite different total numbers of reads, or ‘sequencing depths’. Existing methods for this problem are based on Poisson or negative binomial models: they are useful but can be heavily influenced by ‘outliers’ in the data. We introduce a simple, nonparametric method with resampling to account for the different sequencing depths. The new method is more robust than parametric methods. It can be applied to data with quantitative, survival, two-class or multiple-class outcomes. We compare our proposed method to Poisson and negative binomial-based methods in simulated and real data sets, and find that our method discovers more consistent patterns than competing methods. PMID:22127579
Donovan, Rory M.; Tapia, Jose-Juan; Sullivan, Devin P.; Faeder, James R.; Murphy, Robert F.; Dittrich, Markus; Zuckerman, Daniel M.
2016-01-01
The long-term goal of connecting scales in biological simulation can be facilitated by scale-agnostic methods. We demonstrate that the weighted ensemble (WE) strategy, initially developed for molecular simulations, applies effectively to spatially resolved cell-scale simulations. The WE approach runs an ensemble of parallel trajectories with assigned weights and uses a statistical resampling strategy of replicating and pruning trajectories to focus computational effort on difficult-to-sample regions. The method can also generate unbiased estimates of non-equilibrium and equilibrium observables, sometimes with significantly less aggregate computing time than would be possible using standard parallelization. Here, we use WE to orchestrate particle-based kinetic Monte Carlo simulations, which include spatial geometry (e.g., of organelles, plasma membrane) and biochemical interactions among mobile molecular species. We study a series of models exhibiting spatial, temporal and biochemical complexity and show that although WE has important limitations, it can achieve performance significantly exceeding standard parallel simulation—by orders of magnitude for some observables. PMID:26845334
Efficient bootstrap estimates for tail statistics
NASA Astrophysics Data System (ADS)
Breivik, Øyvind; Aarnes, Ole Johan
2017-03-01
Bootstrap resamples can be used to investigate the tail of empirical distributions as well as return value estimates from the extremal behaviour of the sample. Specifically, the confidence intervals on return value estimates or bounds on in-sample tail statistics can be obtained using bootstrap techniques. However, non-parametric bootstrapping from the entire sample is expensive. It is shown here that it suffices to bootstrap from a small subset consisting of the highest entries in the sequence to make estimates that are essentially identical to bootstraps from the entire sample. Similarly, bootstrap estimates of confidence intervals of threshold return estimates are found to be well approximated by using a subset consisting of the highest entries. This has practical consequences in fields such as meteorology, oceanography and hydrology where return values are calculated from very large gridded model integrations spanning decades at high temporal resolution or from large ensembles of independent and identically distributed model fields. In such cases the computational savings are substantial.
NASA Astrophysics Data System (ADS)
Corwin, Ivan; Dimitrov, Evgeni
2018-05-01
We consider the ASEP and the stochastic six vertex model started with step initial data. After a long time, T, it is known that the one-point height function fluctuations for these systems are of order T 1/3. We prove the KPZ prediction of T 2/3 scaling in space. Namely, we prove tightness (and Brownian absolute continuity of all subsequential limits) as T goes to infinity of the height function with spatial coordinate scaled by T 2/3 and fluctuations scaled by T 1/3. The starting point for proving these results is a connection discovered recently by Borodin-Bufetov-Wheeler between the stochastic six vertex height function and the Hall-Littlewood process (a certain measure on plane partitions). Interpreting this process as a line ensemble with a Gibbsian resampling invariance, we show that the one-point tightness of the top curve can be propagated to the tightness of the entire curve.
ISAP: ISO Spectral Analysis Package
NASA Astrophysics Data System (ADS)
Ali, Babar; Bauer, Otto; Brauher, Jim; Buckley, Mark; Harwood, Andrew; Hur, Min; Khan, Iffat; Li, Jing; Lord, Steve; Lutz, Dieter; Mazzarella, Joe; Molinari, Sergio; Morris, Pat; Narron, Bob; Seidenschwang, Karla; Sidher, Sunil; Sturm, Eckhard; Swinyard, Bruce; Unger, Sarah; Verstraete, Laurent; Vivares, Florence; Wieprecht, Ecki
2014-03-01
ISAP, written in IDL, simplifies the process of visualizing, subsetting, shifting, rebinning, masking, combining scans with weighted means or medians, filtering, and smoothing Auto Analysis Results (AARs) from post-pipeline processing of the Infrared Space Observatory's (ISO) Short Wavelength Spectrometer (SWS) and Long Wavelength Spectrometer (LWS) data. It can also be applied to PHOT-S and CAM-CVF data, and data from practically any spectrometer. The result of a typical ISAP session is expected to be a "simple spectrum" (single-valued spectrum which may be resampled to a uniform wavelength separation if desired) that can be further analyzed and measured either with other ISAP functions, native IDL functions, or exported to other analysis package (e.g., IRAF, MIDAS) if desired. ISAP provides many tools for further analysis, line-fitting, and continuum measurements, such as routines for unit conversions, conversions from wavelength space to frequency space, line and continuum fitting, flux measurement, synthetic photometry and models such as a zodiacal light model to predict and subtract the dominant foreground at some wavelengths.
Capellari, Giovanni; Eftekhar Azam, Saeed; Mariani, Stefano
2015-01-01
Health monitoring of lightweight structures, like thin flexible plates, is of interest in several engineering fields. In this paper, a recursive Bayesian procedure is proposed to monitor the health of such structures through data collected by a network of optimally placed inertial sensors. As a main drawback of standard monitoring procedures is linked to the computational costs, two remedies are jointly considered: first, an order-reduction of the numerical model used to track the structural dynamics, enforced with proper orthogonal decomposition; and, second, an improved particle filter, which features an extended Kalman updating of each evolving particle before the resampling stage. The former remedy can reduce the number of effective degrees-of-freedom of the structural model to a few only (depending on the excitation), whereas the latter one allows to track the evolution of damage and to locate it thanks to an intricate formulation. To assess the effectiveness of the proposed procedure, the case of a plate subject to bending is investigated; it is shown that, when the procedure is appropriately fed by measurements, damage is efficiently and accurately estimated. PMID:26703615
NASA Technical Reports Server (NTRS)
Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.
2012-01-01
Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.
Che, W W; Frey, H Christopher; Lau, Alexis K H
2014-12-01
Population and diary sampling methods are employed in exposure models to sample simulated individuals and their daily activity on each simulation day. Different sampling methods may lead to variations in estimated human exposure. In this study, two population sampling methods (stratified-random and random-random) and three diary sampling methods (random resampling, diversity and autocorrelation, and Markov-chain cluster [MCC]) are evaluated. Their impacts on estimated children's exposure to ambient fine particulate matter (PM2.5 ) are quantified via case studies for children in Wake County, NC for July 2002. The estimated mean daily average exposure is 12.9 μg/m(3) for simulated children using the stratified population sampling method, and 12.2 μg/m(3) using the random sampling method. These minor differences are caused by the random sampling among ages within census tracts. Among the three diary sampling methods, there are differences in the estimated number of individuals with multiple days of exposures exceeding a benchmark of concern of 25 μg/m(3) due to differences in how multiday longitudinal diaries are estimated. The MCC method is relatively more conservative. In case studies evaluated here, the MCC method led to 10% higher estimation of the number of individuals with repeated exposures exceeding the benchmark. The comparisons help to identify and contrast the capabilities of each method and to offer insight regarding implications of method choice. Exposure simulation results are robust to the two population sampling methods evaluated, and are sensitive to the choice of method for simulating longitudinal diaries, particularly when analyzing results for specific microenvironments or for exposures exceeding a benchmark of concern. © 2014 Society for Risk Analysis.
Generation and Reworking of Archaean and Hadean Crust
NASA Astrophysics Data System (ADS)
Hawkesworth, C.; Kemp, T.; Storey, C.; Dhuime, B.
2008-12-01
Combined Hf and O isotopes in well-dated zircons are increasingly used to investigate the age of the crustal source rocks of detrital and inherited zircons. O isotopes are used to screen out samples that may have a sediment contribution in the parental magma, since sediments yield hybrid model ages that are difficult to interpret. Mafic and granitic rocks also have different Lu/Hf ratios, and so in principle the Hf isotope ratios of zircons can be used to investigate the broad composition of the average crust. The unradiogenic Hf isotope compositions of the Jack Hills zircons from Western Australia indicate the existence of enriched (crustal) reservoirs by at least 4.3 Ga (Y. Amelin et al., 1998, Nature v. 399, p. 252- 255; T. M. Harrison et al., 2005, Science, v. 310, p. 1947-1950). We report in situ Hf isotope analyses of the Jack Hills zircons in which the Pb isotope age information is measured concurrently with the Hf isotope data. The simple data arrays provide clear evidence for Earth differentiation at 4.5 Ga, with the production of both continental crust-like material and a mafic crustal reservoir with higher Lu/Hf. The continued resampling of this reservoir over at least 1.5 Ga argues for a substantial stabilised volume of mafic crust, and, in tandem with oxygen isotope data, the existence of Hadean continents. Zircons remain poor windows into the upper mantle. We therefore investigate Nd isotopes in well-dated titanites; they have closure temperatures for Pb in the range 600-750oC and they can retain cores with distinct age and REE chemistry to subsequent rim overgrowths. Nd isotopes offer a complementary approach to Hf in zircon that can be used to construct the both depleted mantle evolution and crustal growth curves.
Wong, Mark Lawrence; Lau, Esther Yuet Ying; Wan, Jacky Ho Yin; Cheung, Shu Fai; Hui, C Harry; Mok, Doris Shui Ying
2013-04-01
Existing studies on sleep and behavioral outcomes are mostly correlational. Longitudinal data is limited. The current longitudinal study assessed how sleep duration and sleep quality may be causally linked to daytime functions, including physical health (physical well-being and daytime sleepiness), psychological health (mood and self-esteem) and academic functioning (school grades and study effort). The mediation role of mood in the relationship between sleep quality, sleep duration and these daytime functions is also assessed. A sample of 930 Chinese students (aged 18-25) from Hong Kong/Macau completed self-reported questionnaires online across three academic semesters. Sleep behaviors are assessed by the sleep timing questionnaire (for sleep duration and weekday/weekend sleep discrepancy) and the Pittsburgh sleep quality index (sleep quality); physical health by the World Health Organization quality of life scale-brief version (physical well-being) and Epworth Sleepiness Scale (daytime sleepiness); psychological health by the depression anxiety stress scale (mood) and Rosenberg Self-esteem Scale (self-esteem) and academic functioning by grade-point-average and the college student expectation questionnaire (study effort). Structural equation modeling with a bootstrap resample of 5000 showed that after controlling for demographics and participants' daytime functions at baseline, academic functions, physical and psychological health were predicted by the duration and quality of sleep. While some sleep behaviors directly predicted daytime functions, others had an indirect effect on daytime functions through negative mood, such as anxiety. Sleep duration and quality have direct and indirect (via mood) effects on college students' academic function, physical and psychological health. Our findings underscore the importance of healthy sleep patterns for better adjustment in college years. Copyright © 2012 Elsevier Inc. All rights reserved.
Zha, Chen; Wang, Changlu; Buckley, Brian; Yang, Ill; Wang, Desen; Eiden, Amanda L; Cooper, Richard
2018-04-02
Pest infestations in residential buildings are common, but community-wide pest survey data are lacking. Frequent insecticide applications for controlling indoor pests leave insecticide residues and pose potential health risks to residents. In this study, a community-wide pest survey was carried out in a housing complex consisting of 258 units in 40 buildings in New Brunswick, New Jersey. It was immediately followed by implementation of an integrated pest management (IPM) program in all the cockroach-infested apartments and two bed bug apartments with the goal of eliminating pest infestations, reducing pyrethroid residues, and increasing resident satisfaction with pest control services. The IPM-treated apartments were revisited and treated biweekly or monthly for 7 mo. Initial inspection found the top three pests and their infestation rates to be as follows: German cockroaches (Blattella germanica L. [Blattodea: Blattellidae]), 28%; rodents, 11%; and bed bugs (Cimex lectularius L. [Hemiptera: Cimicidae]), 8%. Floor wipe samples were collected in the kitchens and bedrooms of 20 apartments for pyrethroid residue analysis before the IPM implementation; 17 of the 20 apartments were resampled again at 7 mo. The IPM program reduced cockroach counts per apartment by 88% at 7 wk after initial treatment. At 7 mo, 85% of the cockroach infestations found in the initial survey were eliminated. The average number of pyrethroids detected decreased significantly from 6 ± 1 (mean ± SEM) and 5 ± 1 to 2 ± 1 and 3 ± 1 in the kitchens and bedrooms, respectively. The average concentrations of targeted pyrethroids residue also decreased significantly in the kitchens and bedrooms.
Low-head sea lamprey barrier effects on stream habitat and fish communities in the Great Lakes basin
Dodd, H.R.; Hayes, D.B.; Baylis, J.R.; Carl, L.M.; Goldstein, J.D.; McLaughlin, R.L.; Noakes, D.L.G.; Porto, L.M.; Jones, M.L.
2003-01-01
Low-head barriers are used to block adult sea lamprey (Petromyzon marinus) from upstream spawning habitat. However, these barriers may impact stream fish communities through restriction of fish movement and habitat alteration. During the summer of 1996, the fish community and habitat conditions in twenty-four stream pairs were sampled across the Great Lakes basin. Seven of these stream pairs were re-sampled in 1997. Each pair consisted of a barrier stream with a low-head barrier and a reference stream without a low-head barrier. On average, barrier streams were significantly deeper (df = 179, P = 0.0018) and wider (df = 179, P = 0.0236) than reference streams, but temperature and substrate were similar (df = 183, P = 0.9027; df = 179, P = 0.999). Barrier streams contained approximately four more fish species on average than reference streams. However, streams with low-head barriers showed a greater upstream decline in species richness compared to reference streams with a net loss of 2.4 species. Barrier streams also showed a peak in richness directly downstream of the barriers, indicating that these barriers block fish movement upstream. Using S??renson's similarity index (based on presence/absence), a comparison of fish community assemblages above and below low-head barriers was not significantly different than upstream and downstream sites on reference streams (n = 96, P > 0.05), implying they have relatively little effect on overall fish assemblage composition. Differences in the frequency of occurrence and abundance between barrier and reference streams was apparent for some species, suggesting their sensitivity to barriers.
Tanooka, Masao; Doi, Hiroshi; Miura, Hideharu; Inoue, Hiroyuki; Niwa, Yasue; Takada, Yasuhiro; Fujiwara, Masayuki; Sakai, Toshiyuki; Sakamoto, Kiyoshi; Kamikonya, Norihiko; Hirota, Shozo
2013-11-01
We validated 3D radiochromic film dosimetry for volumetric modulated arc therapy (VMAT) using a newly developed spiral water phantom. The phantom consists of a main body and an insert box, each of which has an acrylic wall thickness of 3 mm and is filled with water. The insert box includes a spiral film box used for dose-distribution measurement, and a film holder for positioning a radiochromic film. The film holder has two parallel walls whose facing inner surfaces are equipped with spiral grooves in a mirrored configuration. The film is inserted into the spiral grooves by its side edges and runs along them to be positioned on a spiral plane. Dose calculation was performed by applying clinical VMAT plans to the spiral water phantom using a commercial Monte Carlo-based treatment-planning system, Monaco, whereas dose was measured by delivering the VMAT beams to the phantom. The calculated dose distributions were resampled on the spiral plane, and the dose distributions recorded on the film were scanned. Comparisons between the calculated and measured dose distributions yielded an average gamma-index pass rate of 87.0% (range, 91.2-84.6%) in nine prostate VMAT plans under 3 mm/3% criteria with a dose-calculation grid size of 2 mm. The pass rates were increased beyond 90% (average, 91.1%; range, 90.1-92.0%) when the dose-calculation grid size was decreased to 1 mm. We have confirmed that 3D radiochromic film dosimetry using the spiral water phantom is a simple and cost-effective approach to VMAT dose verification.
Hierarchical animal movement models for population-level inference
Hooten, Mevin B.; Buderman, Frances E.; Brost, Brian M.; Hanks, Ephraim M.; Ivans, Jacob S.
2016-01-01
New methods for modeling animal movement based on telemetry data are developed regularly. With advances in telemetry capabilities, animal movement models are becoming increasingly sophisticated. Despite a need for population-level inference, animal movement models are still predominantly developed for individual-level inference. Most efforts to upscale the inference to the population level are either post hoc or complicated enough that only the developer can implement the model. Hierarchical Bayesian models provide an ideal platform for the development of population-level animal movement models but can be challenging to fit due to computational limitations or extensive tuning required. We propose a two-stage procedure for fitting hierarchical animal movement models to telemetry data. The two-stage approach is statistically rigorous and allows one to fit individual-level movement models separately, then resample them using a secondary MCMC algorithm. The primary advantages of the two-stage approach are that the first stage is easily parallelizable and the second stage is completely unsupervised, allowing for an automated fitting procedure in many cases. We demonstrate the two-stage procedure with two applications of animal movement models. The first application involves a spatial point process approach to modeling telemetry data, and the second involves a more complicated continuous-time discrete-space animal movement model. We fit these models to simulated data and real telemetry data arising from a population of monitored Canada lynx in Colorado, USA.
Valavanis, Ioannis K; Mougiakakou, Stavroula G; Grimaldi, Keith A; Nikita, Konstantina S
2010-09-08
Obesity is a multifactorial trait, which comprises an independent risk factor for cardiovascular disease (CVD). The aim of the current work is to study the complex etiology beneath obesity and identify genetic variations and/or factors related to nutrition that contribute to its variability. To this end, a set of more than 2300 white subjects who participated in a nutrigenetics study was used. For each subject a total of 63 factors describing genetic variants related to CVD (24 in total), gender, and nutrition (38 in total), e.g. average daily intake in calories and cholesterol, were measured. Each subject was categorized according to body mass index (BMI) as normal (BMI ≤ 25) or overweight (BMI > 25). Two artificial neural network (ANN) based methods were designed and used towards the analysis of the available data. These corresponded to i) a multi-layer feed-forward ANN combined with a parameter decreasing method (PDM-ANN), and ii) a multi-layer feed-forward ANN trained by a hybrid method (GA-ANN) which combines genetic algorithms and the popular back-propagation training algorithm. PDM-ANN and GA-ANN were comparatively assessed in terms of their ability to identify the most important factors among the initial 63 variables describing genetic variations, nutrition and gender, able to classify a subject into one of the BMI related classes: normal and overweight. The methods were designed and evaluated using appropriate training and testing sets provided by 3-fold Cross Validation (3-CV) resampling. Classification accuracy, sensitivity, specificity and area under receiver operating characteristics curve were utilized to evaluate the resulted predictive ANN models. The most parsimonious set of factors was obtained by the GA-ANN method and included gender, six genetic variations and 18 nutrition-related variables. The corresponding predictive model was characterized by a mean accuracy equal of 61.46% in the 3-CV testing sets. The ANN based methods revealed factors that interactively contribute to obesity trait and provided predictive models with a promising generalization ability. In general, results showed that ANNs and their hybrids can provide useful tools for the study of complex traits in the context of nutrigenetics.
NASA Astrophysics Data System (ADS)
Gholizadeh, Asa; Kopaekova, Veronika; Rogass, Christian; Mielke, Christian; Misurec, Jan
2016-08-01
Systematic quantification and monitoring of forest biophysical and biochemical variables is required to assess the response of ecosystems to climate change. Remote sensing has been introduced as a time and cost- efficient way to carry out large scale monitoring of vegetation parameters. Red-Edge Position (REP) is a hyperspectrally detectable parameter which is sensitive to vegetation Chl. In the current study, REP was modelled for the Norway spruce forest canopy resampled to HyMap and Sentinel-2 spectral resolution as well as calculated from the real HyMap and Sentinel-2 simulated data. Different REP extraction methods (4PLI, PF, LE, 4PLIH and 4PLIS) were assessed. The study showed the way for effective utilization of the forthcoming hyper and superspectral remote sensing sensors from orbit to monitor vegetation attributes.
Using informative priors in facies inversion: The case of C-ISR method
NASA Astrophysics Data System (ADS)
Valakas, G.; Modis, K.
2016-08-01
Inverse problems involving the characterization of hydraulic properties of groundwater flow systems by conditioning on observations of the state variables are mathematically ill-posed because they have multiple solutions and are sensitive to small changes in the data. In the framework of McMC methods for nonlinear optimization and under an iterative spatial resampling transition kernel, we present an algorithm for narrowing the prior and thus producing improved proposal realizations. To achieve this goal, we cosimulate the facies distribution conditionally to facies observations and normal scores transformed hydrologic response measurements, assuming a linear coregionalization model. The approach works by creating an importance sampling effect that steers the process to selected areas of the prior. The effectiveness of our approach is demonstrated by an example application on a synthetic underdetermined inverse problem in aquifer characterization.
NASA Astrophysics Data System (ADS)
Granade, Christopher; Wiebe, Nathan
2017-08-01
A major challenge facing existing sequential Monte Carlo methods for parameter estimation in physics stems from the inability of existing approaches to robustly deal with experiments that have different mechanisms that yield the results with equivalent probability. We address this problem here by proposing a form of particle filtering that clusters the particles that comprise the sequential Monte Carlo approximation to the posterior before applying a resampler. Through a new graphical approach to thinking about such models, we are able to devise an artificial-intelligence based strategy that automatically learns the shape and number of the clusters in the support of the posterior. We demonstrate the power of our approach by applying it to randomized gap estimation and a form of low circuit-depth phase estimation where existing methods from the physics literature either exhibit much worse performance or even fail completely.
How bootstrap can help in forecasting time series with more than one seasonal pattern
NASA Astrophysics Data System (ADS)
Cordeiro, Clara; Neves, M. Manuela
2012-09-01
The search for the future is an appealing challenge in time series analysis. The diversity of forecasting methodologies is inevitable and is still in expansion. Exponential smoothing methods are the launch platform for modelling and forecasting in time series analysis. Recently this methodology has been combined with bootstrapping revealing a good performance. The algorithm (Boot. EXPOS) using exponential smoothing and bootstrap methodologies, has showed promising results for forecasting time series with one seasonal pattern. In case of more than one seasonal pattern, the double seasonal Holt-Winters methods and the exponential smoothing methods were developed. A new challenge was now to combine these seasonal methods with bootstrap and carry over a similar resampling scheme used in Boot. EXPOS procedure. The performance of such partnership will be illustrated for some well-know data sets existing in software.
Tools and Techniques for Basin-Scale Climate Change Assessment
NASA Astrophysics Data System (ADS)
Zagona, E.; Rajagopalan, B.; Oakley, W.; Wilson, N.; Weinstein, P.; Verdin, A.; Jerla, C.; Prairie, J. R.
2012-12-01
The Department of Interior's WaterSMART Program seeks to secure and stretch water supplies to benefit future generations and identify adaptive measures to address climate change. Under WaterSMART, Basin Studies are comprehensive water studies to explore options for meeting projected imbalances in water supply and demand in specific basins. Such studies could be most beneficial with application of recent scientific advances in climate projections, stochastic simulation, operational modeling and robust decision-making, as well as computational techniques to organize and analyze many alternatives. A new integrated set of tools and techniques to facilitate these studies includes the following components: Future supply scenarios are produced by the Hydrology Simulator, which uses non-parametric K-nearest neighbor resampling techniques to generate ensembles of hydrologic traces based on historical data, optionally conditioned on long paleo reconstructed data using various Markov Chain techniuqes. Resampling can also be conditioned on climate change projections from e.g., downscaled GCM projections to capture increased variability; spatial and temporal disaggregation is also provided. The simulations produced are ensembles of hydrologic inputs to the RiverWare operations/infrastucture decision modeling software. Alternative demand scenarios can be produced with the Demand Input Tool (DIT), an Excel-based tool that allows modifying future demands by groups such as states; sectors, e.g., agriculture, municipal, energy; and hydrologic basins. The demands can be scaled at future dates or changes ramped over specified time periods. Resulting data is imported directly into the decision model. Different model files can represent infrastructure alternatives and different Policy Sets represent alternative operating policies, including options for noticing when conditions point to unacceptable vulnerabilities, which trigger dynamically executing changes in operations or other options. The over-arching Study Manager provides a graphical tool to create combinations of future supply scenarios, demand scenarios, infrastructure and operating policy alternatives; each scenario is executed as an ensemble of RiverWare runs, driven by the hydrologic supply. The Study Manager sets up and manages multiple executions on multi-core hardware. The sizeable are typically direct model outputs, or post-processed indicators of performance based on model outputs. Post processing statistical analysis of the outputs are possible using the Graphical Policy Analysis Tool or other statistical packages. Several Basin Studies undertaken have used RiverWare to evaluate future scenarios. The Colorado River Basin Study, the most complex and extensive to date, has taken advantage of these tools and techniques to generate supply scenarios, produce alternative demand scenarios and to set up and execute the many combinations of supplies, demands, policies, and infrastructure alternatives. The tools and techniques will be described with example applications.
Physically Based Modeling and Simulation with Dynamic Spherical Volumetric Simplex Splines
Tan, Yunhao; Hua, Jing; Qin, Hong
2009-01-01
In this paper, we present a novel computational modeling and simulation framework based on dynamic spherical volumetric simplex splines. The framework can handle the modeling and simulation of genus-zero objects with real physical properties. In this framework, we first develop an accurate and efficient algorithm to reconstruct the high-fidelity digital model of a real-world object with spherical volumetric simplex splines which can represent with accuracy geometric, material, and other properties of the object simultaneously. With the tight coupling of Lagrangian mechanics, the dynamic volumetric simplex splines representing the object can accurately simulate its physical behavior because it can unify the geometric and material properties in the simulation. The visualization can be directly computed from the object’s geometric or physical representation based on the dynamic spherical volumetric simplex splines during simulation without interpolation or resampling. We have applied the framework for biomechanic simulation of brain deformations, such as brain shifting during the surgery and brain injury under blunt impact. We have compared our simulation results with the ground truth obtained through intra-operative magnetic resonance imaging and the real biomechanic experiments. The evaluations demonstrate the excellent performance of our new technique. PMID:20161636
Saunders, Christina T; Blume, Jeffrey D
2017-10-26
Mediation analysis explores the degree to which an exposure's effect on an outcome is diverted through a mediating variable. We describe a classical regression framework for conducting mediation analyses in which estimates of causal mediation effects and their variance are obtained from the fit of a single regression model. The vector of changes in exposure pathway coefficients, which we named the essential mediation components (EMCs), is used to estimate standard causal mediation effects. Because these effects are often simple functions of the EMCs, an analytical expression for their model-based variance follows directly. Given this formula, it is instructive to revisit the performance of routinely used variance approximations (e.g., delta method and resampling methods). Requiring the fit of only one model reduces the computation time required for complex mediation analyses and permits the use of a rich suite of regression tools that are not easily implemented on a system of three equations, as would be required in the Baron-Kenny framework. Using data from the BRAIN-ICU study, we provide examples to illustrate the advantages of this framework and compare it with the existing approaches. © The Author 2017. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
El Naqa, I.; Suneja, G.; Lindsay, P. E.; Hope, A. J.; Alaly, J. R.; Vicic, M.; Bradley, J. D.; Apte, A.; Deasy, J. O.
2006-11-01
Radiotherapy treatment outcome models are a complicated function of treatment, clinical and biological factors. Our objective is to provide clinicians and scientists with an accurate, flexible and user-friendly software tool to explore radiotherapy outcomes data and build statistical tumour control or normal tissue complications models. The software tool, called the dose response explorer system (DREES), is based on Matlab, and uses a named-field structure array data type. DREES/Matlab in combination with another open-source tool (CERR) provides an environment for analysing treatment outcomes. DREES provides many radiotherapy outcome modelling features, including (1) fitting of analytical normal tissue complication probability (NTCP) and tumour control probability (TCP) models, (2) combined modelling of multiple dose-volume variables (e.g., mean dose, max dose, etc) and clinical factors (age, gender, stage, etc) using multi-term regression modelling, (3) manual or automated selection of logistic or actuarial model variables using bootstrap statistical resampling, (4) estimation of uncertainty in model parameters, (5) performance assessment of univariate and multivariate analyses using Spearman's rank correlation and chi-square statistics, boxplots, nomograms, Kaplan-Meier survival plots, and receiver operating characteristics curves, and (6) graphical capabilities to visualize NTCP or TCP prediction versus selected variable models using various plots. DREES provides clinical researchers with a tool customized for radiotherapy outcome modelling. DREES is freely distributed. We expect to continue developing DREES based on user feedback.
NASA Astrophysics Data System (ADS)
Baba, Wassim; Gascoin, Simon; Hanich, Lahoucine; Kinnard, Christophe
2017-04-01
Snow melt from the Atlas Mountains watersheds represent an important water resource for the semi-arid, cultivated, lowlands. Due to the high incoming solar radiation and low precipitation, the spatial-temporal variability of the snowpack is expected to be strongly influenced by the topography. We explore this hypothesis using a distributed energy balance snow model (SnowModel) in the experimental watershed of the Rheraya River in Morocco (225 km2). The digital elevation model (DEM) in SnowModel is used for the computation of the gridded meteorological forcing from the automatic weather stations data. We acquired three Pléiades stereo pairs in to produce an accurate, high resolution DEM of the Rheraya watershed at 4 m posting. Then, the DEM was resampled to different spatial resolutions (8 m, 30 m, 90 m, 250 m and 500 m) to simulate the snowpack evolution over 2008-2009 snow season. As validation data we used a time series of 15 maps of the snow cover area (SCA) from Formosat-2 imagery over the same snow season in the upper Rheraya watershed. These maps have a resolution of 8 m, which enables to capture small-scale variability in the snow cover. We found that the simulations at 90 m, 30 m and 8 m yield similar results at the catchment scale, with significant differences in areas of very steep topography only. From February to April, an overall good agreement was observed between the simulated SCA and the Formosat-2 SCA at 8 m and 90 m. Before the melting season, true positive (TP) column of confusion matrix is close to 1, but it drops to 0.6 during the melting season. Heidke Skill Score is higher than 0.7 for the most of the validation dates and averages 0.8. On the contrary, 500 m simulation underestimates the SCA throughout the snow season and the TP score is always inferior to the one obtained at 8 m and 90 m. We further analyzed the effect of topography by comparing the distribution of meteorological and snowpack variables along north-south and east-west transects. This analysis indicates that the impact of the topography on the simulated SWE and snow melt is mainly driven by changes in the solar radiations and the precipitations.
A comparative test of phylogenetic diversity indices.
Schweiger, Oliver; Klotz, Stefan; Durka, Walter; Kühn, Ingolf
2008-09-01
Traditional measures of biodiversity, such as species richness, usually treat species as being equal. As this is obviously not the case, measuring diversity in terms of features accumulated over evolutionary history provides additional value to theoretical and applied ecology. Several phylogenetic diversity indices exist, but their behaviour has not yet been tested in a comparative framework. We provide a test of ten commonly used phylogenetic diversity indices based on 40 simulated phylogenies of varying topology. We restrict our analysis to a topological fully resolved tree without information on branch lengths and species lists with presence-absence data. A total of 38,000 artificial communities varying in species richness covering 5-95% of the phylogenies were created by random resampling. The indices were evaluated based on their ability to meet a priori defined requirements. No index meets all requirements, but three indices turned out to be more suitable than others under particular conditions. Average taxonomic distinctness (AvTD) and intensive quadratic entropy (J) are calculated by averaging and are, therefore, unbiased by species richness while reflecting phylogeny per se well. However, averaging leads to the violation of set monotonicity, which requires that species extinction cannot increase the index. Total taxonomic distinctness (TTD) sums up distinctiveness values for particular species across the community. It is therefore strongly linked to species richness and reflects phylogeny per se weakly but satisfies set monotonicity. We suggest that AvTD and J are best applied to studies that compare spatially or temporally rather independent communities that potentially vary strongly in their phylogenetic composition-i.e. where set monotonicity is a more negligible issue, but independence of species richness is desired. In contrast, we suggest that TTD be used in studies that compare rather interdependent communities where changes occur more gradually by species extinction or introduction. Calculating AvTD or TTD, depending on the research question, in addition to species richness is strongly recommended.
Contrasting natural regeneration and tree planting in fourteen North American cities
David J. Nowak
2012-01-01
Field data from randomly located plots in 12 cities in the United States and Canada were used to estimate the proportion of the existing tree population that was planted or occurred via natural regeneration. In addition, two cities (Baltimore and Syracuse) were recently re-sampled to estimate the proportion of newly established trees that were planted. Results for the...
NASA Astrophysics Data System (ADS)
Coupon, Jean; Leauthaud, Alexie; Kilbinger, Martin; Medezinski, Elinor
2017-07-01
SWOT (Super W Of Theta) computes two-point statistics for very large data sets, based on “divide and conquer” algorithms, mainly, but not limited to data storage in binary trees, approximation at large scale, parellelization (open MPI), and bootstrap and jackknife resampling methods “on the fly”. It currently supports projected and 3D galaxy auto and cross correlations, galaxy-galaxy lensing, and weighted histograms.
Confidence Limits for the Indirect Effect: Distribution of the Product and Resampling Methods
ERIC Educational Resources Information Center
MacKinnon, David P.; Lockwood, Chondra M.; Williams, Jason
2004-01-01
The most commonly used method to test an indirect effect is to divide the estimate of the indirect effect by its standard error and compare the resulting z statistic with a critical value from the standard normal distribution. Confidence limits for the indirect effect are also typically based on critical values from the standard normal…
Air-to-Air Missile Vector Scoring
2012-03-22
SIR sampling-importance resampling . . . . . . . . . . . . . . 53 EPF extended particle filter . . . . . . . . . . . . . . . . . . . . 54 UPF unscented...particle filter ( EPF ) or a unscented particle fil- ter (UPF) [20]. The basic concept is to apply a bank of N EKF or UKF filters to move particles from...Merwe, Doucet, Freitas and Wan provide a comprehensive discussion on the EPF and UPF, including algorithms for implementation [20]. 2Result based on
Synchronizing data from irregularly sampled sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uluyol, Onder
A system and method include receiving a set of sampled measurements for each of multiple sensors, wherein the sampled measurements are at irregular intervals or different rates, re-sampling the sampled measurements of each of the multiple sensors at a higher rate than one of the sensor's set of sampled measurements, and synchronizing the sampled measurements of each of the multiple sensors.
J. Travis Swaim; Daniel C. Dey; Michael R. Saunders; Dale R. Weigel; Christopher D. Thornton; John M. Kabrick; Michael A. Jenkins
2016-01-01
We resampled plots from a repeated measures study implemented on the Hoosier National Forest (HNF) in southern Indiana in 1988 to investigate the influence of site and seedling physical attributes on height growth and establishment success of oak species (Quercus spp.) reproduction in stands regenerated by the clearcut method. Before harvest, an...
USDA-ARS?s Scientific Manuscript database
Better understanding agriculture’s effect on shallow groundwater quality is needed on the southern Idaho, Twin Falls irrigation tract. In 1999 and 2002-2007 we resampled 10 of the 15 tunnel drains monitored in a late-1960s study to determine the influence of time on NO3-N, dissolved reactive P (DRP)...
ERIC Educational Resources Information Center
Longford, Nicholas T.
Large scale surveys usually employ a complex sampling design and as a consequence, no standard methods for estimation of the standard errors associated with the estimates of population means are available. Resampling methods, such as jackknife or bootstrap, are often used, with reference to their properties of robustness and reduction of bias. A…
Evaluation of burst-mode LDA spectra with implications
NASA Astrophysics Data System (ADS)
Velte, Clara; George, William
2009-11-01
Burst-mode LDA spectra, as described in [1], are compared to spectra obtained from corresponding HWA measurements using the FFT in a round jet and cylinder wake experiment. The phrase ``burst-mode LDA'' refers to an LDA which operates with at most one particle present in the measuring volume at a time. Due to the random sampling and velocity bias of the LDA signal, the Direct Fourier Transform with accompanying weighting by the measured residence times was applied to obtain a correct interpretation of the spectral estimate. Further, the self-noise was removed as described in [2]. In addition, resulting spectra from common interpolation and uniform resampling techniques are compared to the above mentioned estimates. The burst-mode LDA spectra are seen to concur well with the HWA spectra up to the emergence of the noise floor, caused mainly by the intermittency of the LDA signal. The interpolated and resampled counterparts yield unphysical spectra, which are buried in frequency dependent noise and step noise, except at very high LDA data rates where they perform well up to a limited frequency.[4pt] [1] Buchhave, P. PhD Thesis, SUNY/Buffalo, 1979.[0pt] [2] Velte, C.M. PhD Thesis, DTU/Copenhagen, 2009.
NEAT: an efficient network enrichment analysis test.
Signorelli, Mirko; Vinciotti, Veronica; Wit, Ernst C
2016-09-05
Network enrichment analysis is a powerful method, which allows to integrate gene enrichment analysis with the information on relationships between genes that is provided by gene networks. Existing tests for network enrichment analysis deal only with undirected networks, they can be computationally slow and are based on normality assumptions. We propose NEAT, a test for network enrichment analysis. The test is based on the hypergeometric distribution, which naturally arises as the null distribution in this context. NEAT can be applied not only to undirected, but to directed and partially directed networks as well. Our simulations indicate that NEAT is considerably faster than alternative resampling-based methods, and that its capacity to detect enrichments is at least as good as the one of alternative tests. We discuss applications of NEAT to network analyses in yeast by testing for enrichment of the Environmental Stress Response target gene set with GO Slim and KEGG functional gene sets, and also by inspecting associations between functional sets themselves. NEAT is a flexible and efficient test for network enrichment analysis that aims to overcome some limitations of existing resampling-based tests. The method is implemented in the R package neat, which can be freely downloaded from CRAN ( https://cran.r-project.org/package=neat ).
Babamoradi, Hamid; van den Berg, Frans; Rinnan, Åsmund
2016-02-18
In Multivariate Statistical Process Control, when a fault is expected or detected in the process, contribution plots are essential for operators and optimization engineers in identifying those process variables that were affected by or might be the cause of the fault. The traditional way of interpreting a contribution plot is to examine the largest contributing process variables as the most probable faulty ones. This might result in false readings purely due to the differences in natural variation, measurement uncertainties, etc. It is more reasonable to compare variable contributions for new process runs with historical results achieved under Normal Operating Conditions, where confidence limits for contribution plots estimated from training data are used to judge new production runs. Asymptotic methods cannot provide confidence limits for contribution plots, leaving re-sampling methods as the only option. We suggest bootstrap re-sampling to build confidence limits for all contribution plots in online PCA-based MSPC. The new strategy to estimate CLs is compared to the previously reported CLs for contribution plots. An industrial batch process dataset was used to illustrate the concepts. Copyright © 2016 Elsevier B.V. All rights reserved.
Estimator banks: a new tool for direction-of-arrival estimation
NASA Astrophysics Data System (ADS)
Gershman, Alex B.; Boehme, Johann F.
1997-10-01
A new powerful tool for improving the threshold performance of direction-of-arrival (DOA) estimation is considered. The essence of our approach is to reduce the number of outliers in the threshold domain using the so-called estimator bank containing multiple 'parallel' underlying DOA estimators which are based on pseudorandom resampling of the MUSIC spatial spectrum for given data batch or sample covariance matrix. To improve the threshold performance relative to conventional MUSIC, evolutionary principles are used, i.e., only 'successful' underlying estimators (having no failure in the preliminary estimated source localization sectors) are exploited in the final estimate. An efficient beamspace root implementation of the estimator bank approach is developed, combined with the array interpolation technique which enables the application to arbitrary arrays. A higher-order extension of our approach is also presented, where the cumulant-based MUSIC estimator is exploited as a basic technique for spatial spectrum resampling. Simulations and experimental data processing show that our algorithm performs well below the MUSIC threshold, namely, has the threshold performance similar to that of the stochastic ML method. At the same time, the computational cost of our algorithm is much lower than that of stochastic ML because no multidimensional optimization is involved.
Memory and Trend of Precipitation in China during 1966-2013
NASA Astrophysics Data System (ADS)
Du, M.; Sun, F.; Liu, W.
2017-12-01
As climate change has had a significant impact on water cycle, the characteristic and variation of precipitation under climate change turned into a hotspot in hydrology. This study aims to analyze the trend and memory (both short-term and long-term) of precipitation in China. To do that, we apply statistical tests (including Mann-Kendall test, Ljung-Box test and Hurst exponent) to annual precipitation (P), frequency of rainy day (λ) and mean daily rainfall in days when precipitation occurs (α) in China (1966-2013). We also use a resampling approach to determine the field significance. From there, we evaluate the spatial distribution and percentages of stations with significant memory or trend. We find that the percentages of significant downtrends for λ and significant uptrends for α are significantly larger than the critical values at 95% field significance level, probably caused by the global warming. From these results, we conclude that extra care is necessary when significant results are obtained using statistical tests. This is because the null hypothesis could be rejected by chance and this situation is more likely to occur if spatial correlation is ignored according to the results of the resampling approach.
Velpuri, Naga Manohar; Senay, Gabriel B.
2012-01-01
Lake Turkana, the largest desert lake in the world, is fed by ungauged or poorly gauged river systems. To meet the demand of electricity in the East African region, Ethiopia is currently building the Gibe III hydroelectric dam on the Omo River, which supplies more than 80% of the inflows to Lake Turkana. On completion, the Gibe III dam will be the tallest dam in Africa with a height of 241 m. However, the nature of interactions and potential impacts of regulated inflows to Lake Turkana are not well understood due to its remote location and unavailability of reliable in-situ datasets. In this study, we used 12 years (1998–2009) of existing multi-source satellite and model-assimilated global weather data. We use calibrated multi-source satellite data-driven water balance model for Lake Turkana that takes into account model routed runoff, lake/reservoir evapotranspiration, direct rain on lakes/reservoirs and releases from the dam to compute lake water levels. The model evaluates the impact of Gibe III dam using three different approaches such as (a historical approach, a knowledge-based approach, and a nonparametric bootstrap resampling approach) to generate rainfall-runoff scenarios. All the approaches provided comparable and consistent results. Model results indicated that the hydrological impact of the dam on Lake Turkana would vary with the magnitude and distribution of rainfall post-dam commencement. On average, the reservoir would take up to 8–10 months, after commencement, to reach a minimum operation level of 201 m depth of water. During the dam filling period, the lake level would drop up to 2 m (95% confidence) compared to the lake level modelled without the dam. The lake level variability caused by regulated inflows after the dam commissioning were found to be within the natural variability of the lake of 4.8 m. Moreover, modelling results indicated that the hydrological impact of the Gibe III dam would depend on the initial lake level at the time of dam commencement. Areas along the Lake Turkana shoreline that are vulnerable to fluctuations in lake levels were also identified. This study demonstrates the effectiveness of using existing multi-source satellite data in a basic modeling framework to assess the potential hydrological impact of an upstream dam on a terminal downstream lake. The results obtained from this study could also be used to evaluate alternate dam-filling scenarios and assess the potential impact of the dam on Lake Turkana under different operational strategies.
Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease
Shamonin, Denis P.; Bron, Esther E.; Lelieveldt, Boudewijn P. F.; Smits, Marion; Klein, Stefan; Staring, Marius
2013-01-01
Nonrigid image registration is an important, but time-consuming task in medical image analysis. In typical neuroimaging studies, multiple image registrations are performed, i.e., for atlas-based segmentation or template construction. Faster image registration routines would therefore be beneficial. In this paper we explore acceleration of the image registration package elastix by a combination of several techniques: (i) parallelization on the CPU, to speed up the cost function derivative calculation; (ii) parallelization on the GPU building on and extending the OpenCL framework from ITKv4, to speed up the Gaussian pyramid computation and the image resampling step; (iii) exploitation of certain properties of the B-spline transformation model; (iv) further software optimizations. The accelerated registration tool is employed in a study on diagnostic classification of Alzheimer's disease and cognitively normal controls based on T1-weighted MRI. We selected 299 participants from the publicly available Alzheimer's Disease Neuroimaging Initiative database. Classification is performed with a support vector machine based on gray matter volumes as a marker for atrophy. We evaluated two types of strategies (voxel-wise and region-wise) that heavily rely on nonrigid image registration. Parallelization and optimization resulted in an acceleration factor of 4–5x on an 8-core machine. Using OpenCL a speedup factor of 2 was realized for computation of the Gaussian pyramids, and 15–60 for the resampling step, for larger images. The voxel-wise and the region-wise classification methods had an area under the receiver operator characteristic curve of 88 and 90%, respectively, both for standard and accelerated registration. We conclude that the image registration package elastix was substantially accelerated, with nearly identical results to the non-optimized version. The new functionality will become available in the next release of elastix as open source under the BSD license. PMID:24474917
Fire chronology and windstorm effects on persistence of a disjunct oak-shortleaf pine community
Michael D. Jones; Marlin L. Bowles
2012-01-01
We investigated effects of a human-altered fire regime and wind storms on persistence of disjunct oak-shortleaf pine vegetation occurring along 5.5 km of xeric habitat on the east bluffs of the Mississippi River in Union County, IL. In 2009, we resampled vegetation transects established in seven stands in 1954 and obtained 26 cross sections containing fire scars from...
Radar/Sonar and Time Series Analysis
1991-06-27
Davis, William Dunsmuir Fourier and Likelihood Analysis in NMR Spectroscopy .......... David Brillinger and Reinhold Kaiser Resampling Techniques for...Zubelli. 2:30 pm Gunter Meyer The parabolic Fock theory for a convex dielectric Georgia Tech. scatterer Abstract: This talk deals with a high frequency...Lincoln Laboratory, MIT Jun 18 - Jun 29 Gunter Meyer Georgia Institute of Technology Jun 25 - Jun 29 Willard Miller University of Minnesota Ruth Miniowitz
Robust High Data Rate MIMO Underwater Acoustic Communications
2011-09-30
We solved it via exploiting FFTs. The extended CAN algorithm is referred to as periodic CAN ( PeCAN ). Unlike most existing sequence construction...methods which are algebraic and deterministic in nature, we start the iteration of PeCAN from random phase initializations and then proceed to...covert UAC applications. We will use PeCAN sequences for more in-water experimentations to demonstrate their effectiveness. Temporal Resampling: In
Effects of forest management on soil carbon: results of some long-term resampling studies
D.W. Johnson; Jennifer D. Knoepp; Wayne T. Swank; J. Shan; L.A. Morris; David H. D.H. van Lear; P.R. Kapeluck
2002-01-01
The effects of harvest intensity (sawlog, SAW; whole tree, WTH; and complete tree, CTH) on biomass and soil carbon (C) were studied in four forested sites in the Southeastern United States: (mixed deciduous forests at Oak Ridge, TN and Coweeta, NC; Pinus taeda at Clemson, SC; and P. eliottii at Bradford, FL). In general, harvesting had no lasting...