Science.gov

Sample records for research emphasizing low-rank

  1. Energy and environmental (JSR) research emphasizing low-rank coal

    SciTech Connect

    Sharp, L.L.

    1994-12-01

    The products of plastic thermal depolymerization can be used for the manufacture of new plastics or various other hydrocarbon-based products. One thermal depolymerization development effort is ongoing at the Energy & Environmental Research Center (EERC) of the University of North Dakota, under joint sponsorship of the American Plastics Council, the 3M corporation, and the Department of Energy. Thermal depolymerization process development began at the EERC with a benchscale program that ran from 9/92 to 6/93 (1). Testing was conducted in a 1-4-lb/hr continuous fluid-bed reactor (CFBR) unit using individual virgin resins and resin blends and was intended to determine rough operating parameters and product yields and to identify product stream components. Process variables examined included temperature and bed material, with a lesser emphasis on gas fluidization velocity and feed material mix. The following work was performed: (1) a short program to determine the suitability of using CaO in a postreactor, fixed bed for chlorine remediation, (2) thermal depolymerization of postconsumer plastics, and (3) testing of industrial (3M) products and wastes to determine their suitability as feed to a thermal depolymerization process. The involvement of DOE in the development of the plastics thermal depolymerization process has helped to facilitate the transfer of coal conversion technology to a new and growing technology area -- waste conversion. These two technology areas are complementary. The application of known coal conversion technology has accelerated the development of plastics conversion technology, and findings from the plastics depolymerization process development, such as the development of chlorine remediation techniques and procedures for measurement of organically associated chlorine, can be applied to new generations of coal conversion processes.

  2. Energy and environmental research emphasizing low-rank coal -- Task 5.1, Stability issues

    SciTech Connect

    Anderson, C.M.; Musich, M.A.; Dewall, R.A.; Richter, J.J.

    1995-04-01

    Low-sulfur subbituminous and lignite coals have high moisture content and, consequently, low heating value, leading to boiler derating in US midwestern and eastern utilities as well as switching and/or blending coals to achieve SO{sub 2} compliance. In the drive to develop cost-effective coal-drying processes, coal developers have focused on heat content of the products and generally neglected the critical stability issues of friability and dusting, moisture reabsorption, and spontaneous heating. The Energy and Environmental Research Center (EERC), in an effort to establish new standards for dried products, has used established methods and has developed new ones to evaluate the propensity of lump western coals, raw and dried, to produce dust and absorb water. Three drying methods--air, hydrothermal, and saturated steam--were used to generate low-moisture upgraded products. New indices for dust generation and friability were determined to assess the effects of moisture removal and upgrading methodology on coal stability. Analysis of the dried coals using various strength tests indicated that the reduction in moisture made the lump coal unstable, yielding substantially higher dust and friability indices relative to those of the raw coals.

  3. Low-rank coal research

    SciTech Connect

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  4. Energy and environmental research emphasizing low-rank coal -- Task 3.10, Gas separation and hot-gas cleanup

    SciTech Connect

    Swanson, M.L.

    1995-08-01

    Catalytic gasification of coal to produce H{sub 2}-, CO-, and CH{sub 4}-rich mixtures of gases for consumption in molten carbonate fuel cells is currently under development; however, to optimize the fuel cell performance and extend its operating life, it is desired to separate as much of the inert components (i.e., CO{sub 2} and N{sub 2}) and impurities (i.e., H{sub 2}S and NH{sub 3}) as possible from the fuel gas before it enters the fuel cell. In addition, the economics of the integrated gasification combined cycle (IGCC) can be improved by separating as much of the hydrogen as possible from the fuel, since hydrogen is a high-value product. Researchers at the Energy and Environmental Research Center (EERC) and Bend Research, Inc., investigated pressure-driven membranes as a method for accomplishing this gas separation and hot-gas cleanup. These membranes are operated at temperatures as high as 800 C and at pressures up to 300 psig. They have very small pore sizes that separate the undesirable gases by operating in the Knudsen diffusion region of mass transport or in the molecular sieving region of mass transport phenomena. In addition, H{sub 2} separation through a palladium metal membrane proceeds via a solution-diffusion mechanism for atomic hydrogen. This allows the membranes to exhibit extremely high selectivity for hydrogen separation. Specific questions to be answered in this project include: what are the effects of membrane properties (i.e., surface area, pore size, and coating thickness) on permeability and selectivity of the desired gases; what are the effects of operating conditions (i.e., temperature, pressure, and flow rate) on permeability and selectivity; what are the effects of impurities (i.e., small particulate, H{sub 2}S, HCl, NH{sub 3}, etc.) on membrane performance?

  5. Energy and environmental research emphasizing low-rank coal: Task 6.1. Corrosion of advanced structural materials

    SciTech Connect

    Nowok, J.W.; Strobel, T.M.; Bieber, J.A.; Hurley, J.P.

    1995-04-01

    In order to increase national energy self-sufficiency for the near future, energy systems will be required to fire low-grade fuels and use more efficient energy cycles than those available today. The steam cycle used at present is limited to a maximum steam temperature of 550{degrees}C and thus a conversion efficiency of 35%. To boost efficiency significantly, much higher working fluid temperatures are required, compelling subsystems to operate at much higher temperatures and, therefore, in much more corrosive environments than those currently used. Problems of special concern are corrosion and fatigue of direct-fired turbine blades, corrosion and blinding of hot-gas cleanup filters, catastrophic failure of high-temperature heat exchangers, and spalling and dissolution of refractory materials. The extreme conditions will require the use of advanced structural materials such as high-temperature ceramics for the construction of the subsystems. Unfortunately, little is known of the performance of these materials in actual coal combustion environments. Although some corrosion testing has been performed in the past, most has been done by groups experimenting with ash or slag stimulants composed of only one or two simple compounds. For this project performed at the Energy & Environmental Research Center (EERC), actual coal ash and slag will be used in simulated combustion conditions so that more realistic determinations of the mechanisms of corrosion can be made. The work includes three main research areas focusing on two fossil energy subsystems: high-temperature heat exchangers and hot-gas cleanup filters. The first area involves developing existing abilities in thermodynamic equilibrium calculations to determine the most appropriate corroding agents to include in the tests; the second area involves coal slag corrosion of high temperature heat exchangers; and the third, lower-temperature ash and gas corrosion hot-gas cleanup filters.

  6. Energy and environmental research emphasizing low-rank coal: Task 7.2, Resource data evaluation. Topical report, July 1994--May 1995

    SciTech Connect

    Hartman, J.H.

    1995-06-01

    The Resource Data Evaluation subtask of the US Department of Energy (DOE) base program represents an Energy & Environmental Research Center (EERC) initiative to promote the integration of geographic information system (GIS) technologies with other ongoing and planned EERC research in the areas of resource utilization, remediation, land use planning, and regulatory and policy assessment. Significant demand for GIS-based information already exists for energy resource evaluation, interpretation of remote sensing data, environmental assessment at the state and local levels, and use in strategic planning. The objective of this task was to determine the appropriate platform and approach upon which to develop GIS applications for optimizing resource evaluation and integrating this information with related areas of interest. Activities associated with Task 7.2, Resource Data Evaluation, were conducted primarily during the first half of the project year. These activities included tasks associated with the development and implementation of GIS databases and construction of digitized files for research pertaining to energy studies. As previously noted, database design was undertaken for two EERC projects: 1) coal occurrence in Bowman and adjacent counties in the Fort Union Coal Region of southwestern North Dakota and 2) energy resource utilization concerns for selected sites in Alaska.

  7. Energy and environmental research emphasizing low-rank coal: Task 3.4 -- Hot-gas cleaning. Topical report (includes semiannual report for January--June 1995)

    SciTech Connect

    Weber, G.F.; Swanson, M.L.

    1995-06-01

    This report summarizes the accomplishments of three subtasks completed in support of the current and future hot-gas cleanup activities at the Energy and Environmental Research Center (EERC). The overall objective of the EERC hot-gas cleanup task is to develop reliable methods to remove particulate matter from high-temperature, high-pressure gas streams produced from coal combustion and/or gasification. Near-term task objectives include (1) design, fabrication, and assembly of a high-temperature, high-pressure bench-scale filter vessel; (2) design, fabrication, and assembly of a high-temperature, high-pressure sampling train; and (3) the preliminary design of a pilot-scale high-temperature, high-pressure filter vessel and support systems. Bench-scale hot-gas filter research will be performed with the pressurized fluid-bed reactor (PFBR) or the continuous fluid-bed reactor (CFBR) and a hot-gas filter vessel. The objectives of future work with the bench-scale system will be to determine particulate and vapor-phase alkali degradation of candidate ceramic filter structures as well as filter performance relative to particulate collection efficiency, differential pressure, and filter cleanability. Construction of the high-temperature, high-pressure sampling system was intended to support bench- and pilot-scale activities with respect to conventional particulate sampling (total mass and particle-size distribution) and hazardous air pollutant (HAP) sampling. Finally, pilot-scale tests will be performed to evaluate filter performance and determine alkali corrosion of ceramic materials with a hot-gas filter vessel attached to the EERC Transport Reactor Development Unit (TRDU).

  8. Low-rank coal research: Volume 3, Combustion research: Final report. [Great Plains

    SciTech Connect

    Mann, M. D.; Hajicek, D. R.; Zobeck, B. J.; Kalmanovitch, D. P.; Potas, T. A.; Maas, D. J.; Malterer, T. J.; DeWall, R. A.; Miller, B. G.; Johnson, M. D.

    1987-04-01

    Volume III, Combustion Research, contains articles on fluidized bed combustion, advanced processes for low-rank coal slurry production, low-rank coal slurry combustion, heat engine utilization of low-rank coals, and Great Plains Gasification Plant. These articles have been entered individually into EDB and ERA. (LTN)

  9. Low-rank coal research. Quarterly report, January--March 1990

    SciTech Connect

    Not Available

    1990-08-01

    This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

  10. Low-rank coal research, Task 5.1. Topical report, April 1986--December 1992

    SciTech Connect

    Not Available

    1993-02-01

    This document is a topical progress report for Low-Rank Coal Research performed April 1986 - December 1992. Control Technology and Coal Preparation Research is described for Flue Gas Cleanup, Waste Management, Regional Energy Policy Program for the Northern Great Plains, and Hot-Gas Cleanup. Advanced Research and Technology Development was conducted on Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Combustion Research is described for Atmospheric Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Fuels (completed 10/31/90), Diesel Utilization of Low-Rank Coals (completed 12/31/90), Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications (completed 10/31/90), Nitrous Oxide Emission, and Pressurized Fluidized-Bed Combustion. Liquefaction Research in Low-Rank Coal Direct Liquefaction is discussed. Gasification Research was conducted in Production of Hydrogen and By-Products from Coals and in Sulfur Forms in Coal.

  11. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, April 1983-June 1983

    SciTech Connect

    Wiltsee, Jr., G. A.

    1983-01-01

    Progress reports are presented for the following tasks: (1) gasification wastewater treatment and reuse; (2) fine coal cleaning; (3) coal-water slurry preparation; (4) low-rank coal liquefaction; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization; (8) combustion research and ash fowling; (9) fluidized-bed combustion of low-rank coals; (10) ash and slag characterization; (11) organic structure of coal; (12) distribution of inorganics in low-rank coals; (13) physical properties and moisture of low-rank coals; (14) supercritical solvent extraction; and (15) pyrolysis and devolatilization.

  12. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    SciTech Connect

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

    1987-04-01

    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  13. Low-rank coal research: Volume 1, Control technology, liquefaction, and gasification: Final report

    SciTech Connect

    Weber, G.F.; Collings, M.E.; Schelkoph, G.L.; Steadman, E.N.; Moretti, C.J.; Henke, K.R.; Rindt, J.R.; Hetland, M.D.; Knudson, C.L.; Willson, W.G.

    1987-04-01

    Volume I contains articles on SO/sub x//NO/sub x/ control, waste management, low-rank direct liquefaction, hydrogen production from low-rank coals, and advanced wastewater treatment. These articles have been entered individually into EDB and ERA. (LTN)

  14. Energy and environmental research emphasizing low-rank coal: Task 3.7, Fuel utilization properties

    SciTech Connect

    Zygarlicke, C.J.

    1995-08-01

    Gasification-type entrained ash and deposits were produced in a pressurized test furnace at high temperature. For the subbituminous Black Thunder coal, the effect of fuel-rich conditions was an increase in quartz, calcite, dolomite, and calcium-rich phases in the entrained ash. Lower particle temperatures, as compared to full air conventional combustion, and the oxygen-lean atmosphere may have caused a reduction in the interaction and assimilation of pure quartz and organically bound calcium into calcium aluminosilicate phases. For the Illinois No. 6 entrained fly ash fuel-rich conditions prevented the oxidation of pyrite and pyrrhotite to iron oxide. Lower temperatures within and surrounding char particles during reducing conditions combustion may have prevented the decomposition of pyrrhotite and enhanced the reaction of iron with aluminosilicate phases. The deposits show similar trends, with the Illinois No. 6 deposit grown under pressurized conditions at a lower temperature having Na and (Ca, Mg, Fe, Na, K) aluminosilicates, calcium carbonate, and an iron sulfide, probably pyrrohotite, present. At higher temperature, loss of sulfur occurs with the increased formation of iron aluminosilicate phases. The Illinois No. 6 and Black Thunder coals were tested with kaolin and lime additives under highly reducing conditions to simulate a gasification environment. The deposit collection zone temperature was varied from 750{degree}C to 1OOO{degree}C. Although no clear trends were evident for the interaction of kaolin or lime with the deposits, the deposits did become more porous, with greatly reduced strength shown for both additives.

  15. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    SciTech Connect

    Not Available

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  16. Low-rank coal research semiannual report, January 1992--June 1992

    SciTech Connect

    Not Available

    1992-12-31

    This semiannual report is a compilation of seventeen reports on ongoing coal research at the University of North Dakota. The following research areas are covered: control technology and coal preparation; advanced research and technology development; combustion; liquefaction and gasification. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  17. Energy and environmental research emphasizing low-rank coal. Semi-annual report, January--June 1994

    SciTech Connect

    1994-09-01

    Summaries of progress on the following tasks are presented: Mixed waste treatment; Hot water extraction of nonpolar organic pollutant from soils; Aqueous phase thermal oxidation wastewater treatment; Review of results from comprehensive characterization of air toxic emissions from coal-fired power plants; Air toxic fine particulate control; Effectiveness of sorbents for trace elements; Catalyst for utilization of methane in selective catalytic reduction of NOx; Fuel utilization properties; Hot gas cleaning; PFBC; catalytic tar cracking; sulfur forms in coal; resid and bitumen desulfurization; biodesulfurization; diesel fuel desulfurization; stability issues; Sorbent carbon development; Evaluation of carbon products; Stable and supercritical chars; Briquette binders; Carbon molecular sieves; Coal char fuel evaporation canister sorbent; Development of a coal by-product classification protocol for utilization; Use of coal ash in recycled plastics and composite materials; Corrosion of advanced structural materials; Joining of advanced structural materials; Resource data evaluation; and the Usti and Labem (Czech Republic) coal-upgrading program.

  18. Energy and environmental research emphasizing low-rank coal: Task 5.7, Coal char fuel evaporation canister sorbent

    SciTech Connect

    Aulich, T.R.; Grisanti, A.A.; Knudson, C.L.

    1995-08-01

    Atomobile evaporative emission canisters contain activated carbon sorbents that trap and store fuel vapors emitted from automobile fuel tanks during periods of hot ambient temperatures and after engine operation. When a vehicle is started, combustion air is pulled through the canister, and adsorbed vapors are removed from the sorbent and routed to the intake manifold for combustion along with fuel from the tank. The two primary requirements of an effective canister sorbent are that (1) it must be a strong enough adsorbent to hold on to the fuel vapors that contact it and (2) it must be a weak enough adsorbent to release the captured vapors in the presence of the airflow required by the engine for fuel combustion. Most currently available commercial canister sorbents are made from wood, which is reacted with phosphoric acid and heat to yield an activated carbon with optimum pore size for gasoline vapor adsorption. The objectives of Task 5.7 were to (1) design and construct a test system for evaluating the performance of different sorbents in trapping and releasing butane, gasoline, and other organic vapors; (2) investigate the use of lignite char as an automobile fuel evaporation canister sorbent; (3) compare the adsorbing and desorbing characteristics of lignite chars with those of several commercial sorbents; and (4) investigate whether the presence of ethanol in fuel vapors affects sorbent performance in any way. Tests with two different sorbents (a wood-derived activated carbon and a lignite char) showed that with both sorbents, ethanol vapor breakthrough took about twice as long as hydrocarbon vapor breakthrough. Possible reasons for this, including an increased sorbent affinity for ethanol vapors, will be investigated. If this effect is real (i.e., reproducible over an extensive series of tests under varying conditions), it may help explain why ethanol vapor concentrations in SHED test evaporative emissions are often lower than would be expected.

  19. Low-rank coal research annual report, July 1, 1989--June 30, 1990 including quarterly report, April--June 1990

    SciTech Connect

    Not Available

    1990-11-01

    Research programs in the following areas are presented: control technology and coal preparation; advance research and technology development; combustion; liquefaction; and gasification. Sixteen projects are included. Selected items have been processed separately for inclusion in the Energy Science and Technology Database.

  20. Global Low-Rank Image Restoration With Gaussian Mixture Model.

    PubMed

    Zhang, Sibo; Jiao, Licheng; Liu, Fang; Wang, Shuang

    2017-06-27

    Low-rank restoration has recently attracted a lot of attention in the research of computer vision. Empirical studies show that exploring the low-rank property of the patch groups can lead to superior restoration performance, however, there is limited achievement on the global low-rank restoration because the rank minimization at image level is too strong for the natural images which seldom match the low-rank condition. In this paper, we describe a flexible global low-rank restoration model which introduces the local statistical properties into the rank minimization. The proposed model can effectively recover the latent global low-rank structure via nuclear norm, as well as the fine details via Gaussian mixture model. An alternating scheme is developed to estimate the Gaussian parameters and the restored image, and it shows excellent convergence and stability. Besides, experiments on image and video sequence datasets show the effectiveness of the proposed method in image inpainting problems.

  1. Energy and environmental research emphasizing low-rank coal: Task 1.7, Hot-water extraction of nonpolar organic pollutants from soils

    SciTech Connect

    Hawthorne, S.B.

    1995-01-01

    Supercritical water extraction of organic pollutants from solids is extremely effective because supercritical water has a low dielectric constant and can, therefore, efficiently solvate organics. However, the decrease in the dielectric constant of water can be achieved at much milder conditions (pressures of a few bar and temperatures of ca. 200{degrees}{minus}250{degrees}C) than the conditions used for supercritical water (pressure > 221 bar and temperature > 374{degrees}C) extractions. Polycyclic aromatic hydrocarbons (PAHs) were extracted from a highly contaminated soil using using water at temperatures ranging from 50{degrees} to 400{degrees}C, and pressures from 5 to 600 bar. Most PAHs could not be extracted at 50{degrees}C but were completely removed at a temperature of 250{degrees}C. Additional increases to 300{degrees}C (still subcritical conditions) and 400{degrees}C (supercritical water) did not increase the recoveries significantly. The removal of PAHs had very little dependence on pressure when the temperature was 250{degrees}C, except that steam extraction (at 5 bar) yielded lower recoveries than the liquid water extractions (at 50, 350, and 600 bar). Therefore, the optimal conditions for extracting PAHs using water were 50 bar and 250{degrees}C (hot water). Based on the extraction rates obtained for several of the PAHs, the solubility of high molecular weight PAHs increased at least several thousandfold by increasing the water temperature to 200{degrees}{minus}300{degrees}C. Polychlorinated biphenyls (PCBs) were extracted from an industry soil and a sediment using hot-water (subcritical) extraction at 50 bar and 250{degrees}C. The high removal efficiencies of PCBs from soil and sediment agree very well with those obtained for PAHs from highly contaminated soil at the same extraction conditions, demonstrating that water is a potentially useful extraction solvent for many organics.

  2. [Energy and environmental research emphasizing low-rank coal]: Task 7.1, Strategic planning. Topical report, February 1, 1994--June 30, 1995

    SciTech Connect

    1996-01-01

    The nations of East Central Europe regained their political and economic freedom in 1989, ending nearly a half century of centrally planned economies under the hegemony of the former Soviet Union (FSU). These nations are now emerging from economic conditions marked by price distortions and a focus on heavy industry, isolation from world markets, and a lack of occupational health and environmental safeguards. Economic recovery, environmental restoration, and political stability, as well as eventual entrance into the European Community (EC), require a reordering of policies and priorities, including those bearing on energy and the environment. This report, prepared as a background document for the Second International Conference on Energy and Environment to be held in Prague in November 1994, is composed of a summary table (Table 1) and supporting text and is intended to provide a concise review of issues related to energy and the environment for the Czech and Slovak Republics, Hungary, Poland, and Bulgaria. Organized by subject and country, Table 1 contains country profiles (Row A), information on the economy (Row B), primary energy consumption, environmental priorities, energy resources, production, and utilization (Rows C, D, F, G, H, and I), electrical generation and transmission (Rows J and K), district heating (Row L), briquettes (Row M), and environmental regulations (Row N). Pertinent policy goals, issues, and trends are noted. The reports is based largely on a review of documents published by the International Energy Agency (IEA) and the U.S. Department of Energy (DOE), as well as selected sources obtained from the countries of the region. Reference citations are keyed to information presented in Table 1.

  3. Research in Counseling Psychology: Changing Emphases in a Canadian Perspective.

    ERIC Educational Resources Information Center

    LeComte, Conrad; And Others

    1981-01-01

    Presents a brief survey of contemporary research in psychology within a tripartite schema: remediation, developmental counseling, and prevention. Addresses methodological issues that focus on designs and trends. Offers suggestions for future research. (Author/RC)

  4. Biological degradation of low-rank coal: Final report

    SciTech Connect

    Jones, W.J.

    1989-06-01

    The principal objective of this research project as to investigate the potential for anaerobic bioconversion of low-rank coal. The research was divided into three phases, including: (a) assessment of biodegradation and coal chemistry, (b) anaerobic bioconversion of ''model'' low-rank coal constituents; and (c) anaerobic bioconversion of coal. A literature review of coal chemistry and microbially-mediated processes related to coal bioconversion was performed. Initial lab studies were conducted with selected ''model'' compounds, including simple aromatic constituents (phenol, cresol, catechol) as well as more complex aromatic compounds (naphthol, 9-phenanthrol, dibenzothiophene) which may be components of low-rank coal. Analytical procedures were developed for efficient extraction, separation and quantitation of the test ''model'' compounds. Additional studies with a benzene-derived extract of a low-rank coal sample were performed. Extraction and quantitation procedures were developed to assess bioconversion potential. Preliminary toxicity experiments with ''model'' compounds revealed partial inhibition of growth of selected pure bacterial cultres as well as inhibition of microbial consortia at concentrations above those used in our test system. For most of the test compounds, little or no inhibition (toxicity) was noted. Overall results suggest that complex aromatic constituents which may be representative of low-rank coal structure are relatively recalcitrant to microbial attack by natural microbial populations. 88 refs., 14 figs., 23 tabs.

  5. Low-rank coal oil agglomeration

    DOEpatents

    Knudson, Curtis L.; Timpe, Ronald C.

    1991-01-01

    A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

  6. A Classroom Research Skills Development Emphasizing Data Analysis and Result of SSRU Students by RBL

    ERIC Educational Resources Information Center

    Waree, Chaiwat

    2017-01-01

    The purpose of the study is the learning using research as a base. To strengthen the skills of classroom research Emphasizing Data Analysis and Result and to study the development of research skills in the class Emphasizing Data Analysis and Result of SSRU' Students by learning using research base. The target group are students in the 2nd semester…

  7. Adjoints and Low-rank Covariance Representation

    NASA Technical Reports Server (NTRS)

    Tippett, Michael K.; Cohn, Stephen E.

    2000-01-01

    Quantitative measures of the uncertainty of Earth System estimates can be as important as the estimates themselves. Second moments of estimation errors are described by the covariance matrix, whose direct calculation is impractical when the number of degrees of freedom of the system state is large. Ensemble and reduced-state approaches to prediction and data assimilation replace full estimation error covariance matrices by low-rank approximations. The appropriateness of such approximations depends on the spectrum of the full error covariance matrix, whose calculation is also often impractical. Here we examine the situation where the error covariance is a linear transformation of a forcing error covariance. We use operator norms and adjoints to relate the appropriateness of low-rank representations to the conditioning of this transformation. The analysis is used to investigate low-rank representations of the steady-state response to random forcing of an idealized discrete-time dynamical system.

  8. Low-rank coal oil agglomeration

    DOEpatents

    Knudson, C.L.; Timpe, R.C.

    1991-07-16

    A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

  9. Beyond Low Rank + Sparse: Multi-scale Low Rank Matrix Decomposition

    PubMed Central

    Ong, Frank; Lustig, Michael

    2016-01-01

    We present a natural generalization of the recent low rank + sparse matrix decomposition and consider the decomposition of matrices into components of multiple scales. Such decomposition is well motivated in practice as data matrices often exhibit local correlations in multiple scales. Concretely, we propose a multi-scale low rank modeling that represents a data matrix as a sum of block-wise low rank matrices with increasing scales of block sizes. We then consider the inverse problem of decomposing the data matrix into its multi-scale low rank components and approach the problem via a convex formulation. Theoretically, we show that under various incoherence conditions, the convex program recovers the multi-scale low rank components either exactly or approximately. Practically, we provide guidance on selecting the regularization parameters and incorporate cycle spinning to reduce blocking artifacts. Experimentally, we show that the multi-scale low rank decomposition provides a more intuitive decomposition than conventional low rank methods and demonstrate its effectiveness in four applications, including illumination normalization for face images, motion separation for surveillance videos, multi-scale modeling of the dynamic contrast enhanced magnetic resonance imaging and collaborative filtering exploiting age information. PMID:28450978

  10. Beyond Low Rank + Sparse: Multi-scale Low Rank Matrix Decomposition.

    PubMed

    Ong, Frank; Lustig, Michael

    2016-06-01

    We present a natural generalization of the recent low rank + sparse matrix decomposition and consider the decomposition of matrices into components of multiple scales. Such decomposition is well motivated in practice as data matrices often exhibit local correlations in multiple scales. Concretely, we propose a multi-scale low rank modeling that represents a data matrix as a sum of block-wise low rank matrices with increasing scales of block sizes. We then consider the inverse problem of decomposing the data matrix into its multi-scale low rank components and approach the problem via a convex formulation. Theoretically, we show that under various incoherence conditions, the convex program recovers the multi-scale low rank components either exactly or approximately. Practically, we provide guidance on selecting the regularization parameters and incorporate cycle spinning to reduce blocking artifacts. Experimentally, we show that the multi-scale low rank decomposition provides a more intuitive decomposition than conventional low rank methods and demonstrate its effectiveness in four applications, including illumination normalization for face images, motion separation for surveillance videos, multi-scale modeling of the dynamic contrast enhanced magnetic resonance imaging and collaborative filtering exploiting age information.

  11. Probabilistic Low-Rank Multitask Learning.

    PubMed

    Kong, Yu; Shao, Ming; Li, Kang; Fu, Yun

    2017-01-04

    In this paper, we consider the problem of learning multiple related tasks simultaneously with the goal of improving the generalization performance of individual tasks. The key challenge is to effectively exploit the shared information across multiple tasks as well as preserve the discriminative information for each individual task. To address this, we propose a novel probabilistic model for multitask learning (MTL) that can automatically balance between low-rank and sparsity constraints. The former assumes a low-rank structure of the underlying predictive hypothesis space to explicitly capture the relationship of different tasks and the latter learns the incoherent sparse patterns private to each task. We derive and perform inference via variational Bayesian methods. Experimental results on both regression and classification tasks on real-world applications demonstrate the effectiveness of the proposed method in dealing with the MTL problems.

  12. Anaerobic bioprocessing of low-rank coals

    SciTech Connect

    Jain, M.K.; Narayan, R.; Han, O.

    1992-04-15

    The overall goal of this project is to find biological methods to remove carboxylic functionalities from low-rank coals and to assess the properties of the modified coal towards coal liquefaction. The main objectives for this quarter were: (1) continuation of microbial consortia development and maintenance, (2) crude enzyme study using best decarboxylating organisms, (3) decarboxylation of lignite, demineralized Wyodak coal and model polymers, and (4) characterization of biotreated coals.

  13. A low rank approach to automatic differentiation.

    SciTech Connect

    Abdel-Khalik, H. S.; Hovland, P. D.; Lyons, A.; Stover, T. E.; Utke, J.; Mathematics and Computer Science; North Carolina State Univ.; Univ. of Chicago

    2008-01-01

    This manuscript introduces a new approach for increasing the efficiency of automatic differentiation (AD) computations for estimating the first order derivatives comprising the Jacobian matrix of a complex large-scale computational model. The objective is to approximate the entire Jacobian matrix with minimized computational and storage resources. This is achieved by finding low rank approximations to a Jacobian matrix via the Efficient Subspace Method (ESM). Low rank Jacobian matrices arise in many of today's important scientific and engineering problems, e.g. nuclear reactor calculations, weather climate modeling, geophysical applications, etc. A low rank approximation replaces the original Jacobian matrix J (whose size is dictated by the size of the input and output data streams) with matrices of much smaller dimensions (determined by the numerical rank of the Jacobian matrix). This process reveals the rank of the Jacobian matrix and can be obtained by ESM via a series of r randomized matrix-vector products of the form: Jq, and J{sup T} {omega} which can be evaluated by the AD forward and reverse modes, respectively.

  14. Robust Generalized Low Rank Approximations of Matrices.

    PubMed

    Shi, Jiarong; Yang, Wei; Zheng, Xiuyun

    2015-01-01

    In recent years, the intrinsic low rank structure of some datasets has been extensively exploited to reduce dimensionality, remove noise and complete the missing entries. As a well-known technique for dimensionality reduction and data compression, Generalized Low Rank Approximations of Matrices (GLRAM) claims its superiority on computation time and compression ratio over the SVD. However, GLRAM is very sensitive to sparse large noise or outliers and its robust version does not have been explored or solved yet. To address this problem, this paper proposes a robust method for GLRAM, named Robust GLRAM (RGLRAM). We first formulate RGLRAM as an l1-norm optimization problem which minimizes the l1-norm of the approximation errors. Secondly, we apply the technique of Augmented Lagrange Multipliers (ALM) to solve this l1-norm minimization problem and derive a corresponding iterative scheme. Then the weak convergence of the proposed algorithm is discussed under mild conditions. Next, we investigate a special case of RGLRAM and extend RGLRAM to a general tensor case. Finally, the extensive experiments on synthetic data show that it is possible for RGLRAM to exactly recover both the low rank and the sparse components while it may be difficult for previous state-of-the-art algorithms. We also discuss three issues on RGLRAM: the sensitivity to initialization, the generalization ability and the relationship between the running time and the size/number of matrices. Moreover, the experimental results on images of faces with large corruptions illustrate that RGLRAM obtains the best denoising and compression performance than other methods.

  15. Robust Generalized Low Rank Approximations of Matrices

    PubMed Central

    Shi, Jiarong; Yang, Wei; Zheng, Xiuyun

    2015-01-01

    In recent years, the intrinsic low rank structure of some datasets has been extensively exploited to reduce dimensionality, remove noise and complete the missing entries. As a well-known technique for dimensionality reduction and data compression, Generalized Low Rank Approximations of Matrices (GLRAM) claims its superiority on computation time and compression ratio over the SVD. However, GLRAM is very sensitive to sparse large noise or outliers and its robust version does not have been explored or solved yet. To address this problem, this paper proposes a robust method for GLRAM, named Robust GLRAM (RGLRAM). We first formulate RGLRAM as an l1-norm optimization problem which minimizes the l1-norm of the approximation errors. Secondly, we apply the technique of Augmented Lagrange Multipliers (ALM) to solve this l1-norm minimization problem and derive a corresponding iterative scheme. Then the weak convergence of the proposed algorithm is discussed under mild conditions. Next, we investigate a special case of RGLRAM and extend RGLRAM to a general tensor case. Finally, the extensive experiments on synthetic data show that it is possible for RGLRAM to exactly recover both the low rank and the sparse components while it may be difficult for previous state-of-the-art algorithms. We also discuss three issues on RGLRAM: the sensitivity to initialization, the generalization ability and the relationship between the running time and the size/number of matrices. Moreover, the experimental results on images of faces with large corruptions illustrate that RGLRAM obtains the best denoising and compression performance than other methods. PMID:26367116

  16. Anaerobic processing of low-rank coals

    SciTech Connect

    Jain, M.K.; Narayan, R.; Han, O.

    1992-01-01

    The overall goal of this project is to find biological methods to remove carboxylic functionalities from low-rank coals and to assess the properties of the modified coal towards coal liquefaction. The main objectives for this quarter were: (i) continuation of microbial consortia maintenance and completion of coal decarboxylation using batch reactor system, (ii) decarboxylation of model polymer, (iii) characterization of biotreated coals, and (iv) microautoclave liquefaction of the botreated coal. Progress is reported on the thermogravimetric analysis of coal biotreated in the absence of methanogens and under 5% hydrogen gas exhibits increased volatile carbon to fixed carbon ratio; that the microbial consortia developed on coal are being adapted to two different model polymers containing free carboxylic groups to examine decarboxylation ability of consortium; completion of experiments to decarboxylate two model polymers, polyacrylic acid and polymethyl methacrylate, have been completed; that the biotreated coal showed increase in THF-solubles.

  17. Anaerobic bioprocessing of low-rank coals

    SciTech Connect

    Jain, M.K.; Narayan, R.; Han, O.

    1992-07-14

    We are seeking to find biological methods to remove carboxylic functionalities from low-rank coals and to assess the properties of the modified coal towards coal liquefaction. The main objectives for this quarter were : continuation of microbial consortia development and maintenance, evaluation of commercial decarboxylase, decarboxylation of lignite, demineralized Wyodak coal and model polymer, and characterization of biotreated coals. Specifically we report that two batch fermentor systems were completed and three other fermentors under optimum conditions for coal decarboxylation are in progress; that inhibition of growth of methanogens in the batch fermentor system enhanced the carbon dioxide production; that adapted microbial consortium produced more gas from lignite than Wyodak subbituminous coal; that phenylalanine decarboxylase exhibited insignificant coal decarboxylation activity; that two different microbial consortia developed on coal seem to be effective in decarboxylation of a polymer containing free carboxylic groups; and that CHN analyses of additional biotreated coals reconfirm increase in H/C ratio by 3--6%.

  18. Low-rank-coal study national needs for resource development. Volume 1. Executive summary

    SciTech Connect

    Elliot, Dr., Martin A.; Hill, George R.; Jonakin, James; Crutchfield, Paul W.; Severson, Donald E.; White, David M.; Yeager, Kurt

    1980-11-01

    Low-rank coals - lignite and subbituminous - are those which have been subjected to the least amount of metamorphic change during the coal-forming process. As such, they retain greater fractions of moisture and volatile matter from the original peat material, and contain less fixed carbon, than the high-rank coals - bituminous and anthracite. The primary measure used to classify the lower ranks of coal is heating value. Other important characteristics which distinguish the low-rank coals from high-rank coals are discussed in this report. Low-rank coals represent a major, and largely untapped, energy resource for this country. Very extensive deposits of lignite and subbituminous coal exist in the western states, the Gulf coast, and Alaska. Major deposits of low-rank coal are also found in many other countries, most notably the USSR, Australia, Canada, and the central and eastern European nations. Worldwide coal statistics indicate that low-rank coals account for roughly one-third of the total resource and current production tonnages. This report recommends a comprehensive national research, development, and demonstration (RD and D) program to enhance the development of low-rank coals. The major conclusion of this study is that the unique properties of these coals affect the technologies for their extraction, preparation, direct use, and conversion and justify a separate focus on low-rank coals in the national RD and D efforts.

  19. Method for stabilizing dried low rank coals

    SciTech Connect

    Yan, T.Y.

    1987-03-17

    A method is described for protection of heated and dried pyrophoric particles, such as low rank coals, containing a reduced moisture content by treating the particles with a pyrophoric protection fluid within a vessel having a gas-solid separator in combination with a cooling fluid comprising: (a) introducing the heated and dried pyrophoric particles into a vessel which vessel lacks a means for supporting the particles during cooling thereof; (b) fluidizing the particles with the cooling fluid at ambient temperature; (c) applying a pyrophoric protection fluid to the fluidized particles thereby coating the particles sufficiently to cause at least a substantial portion of the particles to agglomerate and fall while simultaneously cooling the agglomerated particles; and (d) removing continuously the agglomerated cooled particles and the cooling fluid from the vessel. The method is also described where in step (b) the pyrophoric protection fluid is at least one member selected from the group consisting of petroleum residual oil, heavy oil, a mixture of tall oil and rosin, and gelatinized starch, in an amount of from about 0.01 weight percent to about 5 weight percent of the particles.

  20. Direct liquefaction of low-rank coals

    SciTech Connect

    Rindt, J.R.; Hetland, M.D.; Knudson, C.L.; Willson, W.G.

    1988-04-01

    Co-processing of low-rank coals (LRCs) with petroleum resids under mild conditions may produce a product that extends petroleum refinery feeds with a partially coal-derived material. These co-processing products may also provide a lower-cost way to introduce coal-derived materials into the commercial market. In this staged process, the petroleum resid acts as a solvent, aiding in the solubilization of the coal during the first stage, and both the dissolved coal and the resid are upgraded during a second-stage catalytic hydrogenation. Another method of upgrading coal in a liquefaction process is the ChemCoal Process. The process uses chemical methods to transform coal into clean solid and liquid products. It features low-severity conversion of coal in a phenolic solvent, using an alkali promotor and carbon monoxide as the reductant. Oil agglomeration has been used to reduce the ash and mineral matter in bituminous coals to obtain a product with increased heating value, reduced moisture, and lower sulfur content. This method can be used to produce a clean coal feedstock for liquefaction. During agglomeration, an oil is used to preferentially wet the organic phases of the coal, and water is used to wet the minerals, resulting in a separation of ash and water from the coal. The primary objective of this project is to expand the scientific and engineering data base of LRC liquefaction by investigating direct liquefaction processes that will produce the most competitive feedstocks or liquid fuels. The work effort which was proposed for the second year of this cooperative agreement dealt primarily with co-processing and the ChemCoal Process.

  1. Proceedings of the sixteenth biennial low-rank fuels symposium

    SciTech Connect

    Not Available

    1991-01-01

    Low-rank coals represent a major energy resource for the world. The Low-Rank Fuels Symposium, building on the traditions established by the Lignite Symposium, focuses on the key opportunities for this resource. This conference offers a forum for leaders from industry, government, and academia to gather to share current information on the opportunities represented by low-rank coals. In the United States and throughout the world, the utility industry is the primary user of low-rank coals. As such, current experiences and future opportunities for new technologies in this industry were the primary focuses of the symposium.

  2. Low-Rank Matrix Factorization With Adaptive Graph Regularizer.

    PubMed

    Lu, Gui-Fu; Wang, Yong; Zou, Jian

    2016-05-01

    In this paper, we present a novel low-rank matrix factorization algorithm with adaptive graph regularizer (LMFAGR). We extend the recently proposed low-rank matrix with manifold regularization (MMF) method with an adaptive regularizer. Different from MMF, which constructs an affinity graph in advance, LMFAGR can simultaneously seek graph weight matrix and low-dimensional representations of data. That is, graph construction and low-rank matrix factorization are incorporated into a unified framework, which results in an automatically updated graph rather than a predefined one. The experimental results on some data sets demonstrate that the proposed algorithm outperforms the state-of-the-art low-rank matrix factorization methods.

  3. Chemical comminution and deashing of low-rank coals

    DOEpatents

    Quigley, David R.

    1992-01-01

    A method of chemically comminuting a low-rank coal while at the same time increasing the heating value of the coal. A strong alkali solution is added to a low-rank coal to solubilize the carbonaceous portion of the coal, leaving behind the noncarbonaceous mineral matter portion. The solubilized coal is precipitated from solution by a multivalent cation, preferably calcium.

  4. Chemical comminution and deashing of low-rank coals

    DOEpatents

    Quigley, David R.

    1992-12-01

    A method of chemically comminuting a low-rank coal while at the same time increasing the heating value of the coal. A strong alkali solution is added to a low-rank coal to solubilize the carbonaceous portion of the coal, leaving behind the noncarbonaceous mineral matter portion. The solubilized coal is precipitated from solution by a multivalent cation, preferably calcium.

  5. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect

    Duane McVay; Walter Ayers, Jr.; Jerry Jensen; Jorge Garduno; Gonzola Hernandez; Rasheed Bello; Rahila Ramazanova

    2006-08-31

    Injection of CO{sub 2} in coalbeds is a plausible method of reducing atmospheric emissions of CO{sub 2}, and it can have the additional benefit of enhancing methane recovery from coal. Most previous studies have evaluated the merits of CO{sub 2} disposal in high-rank coals. The objective of this research was to determine the technical and economic feasibility of CO{sub 2} sequestration in, and enhanced coalbed methane (ECBM) recovery from, low-rank coals in the Texas Gulf Coast area. Our research included an extensive coal characterization program, including acquisition and analysis of coal core samples and well transient test data. We conducted deterministic and probabilistic reservoir simulation and economic studies to evaluate the effects of injectant fluid composition (pure CO{sub 2} and flue gas), well spacing, injection rate, and dewatering on CO{sub 2} sequestration and ECBM recovery in low-rank coals of the Calvert Bluff formation of the Texas Wilcox Group. Shallow and deep Calvert Bluff coals occur in two, distinct, coalbed gas petroleum systems that are separated by a transition zone. Calvert Bluff coals < 3,500 ft deep are part of a biogenic coalbed gas system. They have low gas content and are part of a freshwater aquifer. In contrast, Wilcox coals deeper than 3,500 ft are part of a thermogenic coalbed gas system. They have high gas content and are part of a saline aquifer. CO{sub 2} sequestration and ECBM projects in Calvert Bluff low-rank coals of East-Central Texas must be located in the deeper, unmineable coals, because shallow Wilcox coals are part of a protected freshwater aquifer. Probabilistic simulation of 100% CO{sub 2} injection into 20 feet of Calvert Bluff coal in an 80-acre 5-spot pattern indicates that these coals can store 1.27 to 2.25 Bcf of CO{sub 2} at depths of 6,200 ft, with an ECBM recovery of 0.48 to 0.85 Bcf. Simulation results of flue gas injection (87% N{sub 2}-13% CO{sub 2}) indicate that these same coals can store 0.34 to 0

  6. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2006-07-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to (1) estimate the potential for CO{sub 2} sequestration in, and methane production from, low-rank coals of the Lower Calvert Bluff Formation of the Wilcox Group in the east-central Texas region, (2) quantify uncertainty associated with these estimates, (3) conduct reservoir and economic analyses of CO{sub 2} sequestration and ECBM production using horizontal wells, and (4) compare the results with those obtained from previous studies of vertical wells. To estimate the total volumes of CO{sub 2} that may be sequestered in, and total volumes of methane that can be produced from, the Wilcox Group low-rank coals in east-central Texas, we used data provided by Anadarko Petroleum Corporation, data obtained during this research, and results of probabilistic simulation modeling studies we conducted. For the analysis, we applied our base-case coal seam characteristics to a 2,930-mi{sup 2} (1,875,200-ac) area where Calvert Bluff coal seams range between 4,000 and 6,200 ft deep. Results of the probabilistic analysis indicate that potential CO{sub 2} sequestration capacity of the coals ranges between 27.2 and 49.2 Tcf (1.57 and 2.69 billion tons), with a mean value of 38 Tcf (2.2 billion tons), assuming a 72.4% injection efficiency. Estimates of recoverable methane resources, assuming a 71.3% recovery factor, range between 6.3 and 13.6 Tcf, with a mean of 9.8 Tcf. As part of the technology transfer for this project, we presented the paper SPE 100584 at the 2006 SPE Gas Technology Symposium held in Calgary, Alberta, Canada, on May 15-18, 2006. Also, we submitted an abstract to be considered for inclusion in a special volume dedicated to CO{sub 2} sequestration in geologic media, which

  7. Low-rank coal study. Volume 5. RD and D program evaluation

    SciTech Connect

    Not Available

    1980-11-01

    A national program is recommended for research, development, and demonstration (RD and D) of improved technologies for the enviromentally acceptable use of low-rank coals. RD and D project recommendations are outlined in all applicable technology areas, including extraction, transportation, preparation, handling and storage, conventional combustion and environmental control technology, fluidized bed combustion, gasification, liquefaction, and pyrolysis. Basic research topics are identified separately, as well as a series of crosscutting research activities addressing environmental, economic, and regulatory issues. The recommended RD and D activities are classified into Priority I and Priority II categories, reflecting their relative urgency and potential impact on the advancement of low-rank coal development. Summaries of ongoing research projects on low-rank coals in the US are presented in an Appendix, and the relationships of these ongoing efforts to the recommended RD and D program are discussed.

  8. A Nonconvex Optimization Framework for Low Rank Matrix Estimation*

    PubMed Central

    Zhao, Tuo; Wang, Zhaoran; Liu, Han

    2016-01-01

    We study the estimation of low rank matrices via nonconvex optimization. Compared with convex relaxation, nonconvex optimization exhibits superior empirical performance for large scale instances of low rank matrix estimation. However, the understanding of its theoretical guarantees are limited. In this paper, we define the notion of projected oracle divergence based on which we establish sufficient conditions for the success of nonconvex optimization. We illustrate the consequences of this general framework for matrix sensing. In particular, we prove that a broad class of nonconvex optimization algorithms, including alternating minimization and gradient-type methods, geometrically converge to the global optimum and exactly recover the true low rank matrices under standard conditions. PMID:28316458

  9. Weighted Discriminative Dictionary Learning based on Low-rank Representation

    NASA Astrophysics Data System (ADS)

    Chang, Heyou; Zheng, Hao

    2017-01-01

    Low-rank representation has been widely used in the field of pattern classification, especially when both training and testing images are corrupted with large noise. Dictionary plays an important role in low-rank representation. With respect to the semantic dictionary, the optimal representation matrix should be block-diagonal. However, traditional low-rank representation based dictionary learning methods cannot effectively exploit the discriminative information between data and dictionary. To address this problem, this paper proposed weighted discriminative dictionary learning based on low-rank representation, where a weighted representation regularization term is constructed. The regularization associates label information of both training samples and dictionary atoms, and encourages to generate a discriminative representation with class-wise block-diagonal structure, which can further improve the classification performance where both training and testing images are corrupted with large noise. Experimental results demonstrate advantages of the proposed method over the state-of-the-art methods.

  10. Low-rank coal study: national needs for resource development. Volume 3. Technology evaluation

    SciTech Connect

    Not Available

    1980-11-01

    Technologies applicable to the development and use of low-rank coals are analyzed in order to identify specific needs for research, development, and demonstration (RD and D). Major sections of the report address the following technologies: extraction; transportation; preparation, handling and storage; conventional combustion and environmental control technology; gasification; liquefaction; and pyrolysis. Each of these sections contains an introduction and summary of the key issues with regard to subbituminous coal and lignite; description of all relevant technology, both existing and under development; a description of related environmental control technology; an evaluation of the effects of low-rank coal properties on the technology; and summaries of current commercial status of the technology and/or current RD and D projects relevant to low-rank coals.

  11. CWM production from upgraded young low rank coals

    SciTech Connect

    Tsurui, Masao; Katagiri, Tsutomu; Yanagimachik, Harumitsu; Tokuda, Shinichi; Hashimoto, Noboru; Yui, Masayuki; Sugiyama, Takeshi

    1997-12-31

    CWM is a mixture of pulverized coal (60 to 70%) and water (30 to 40%) with a very small quantity of dispersant. It is stable under storage conditions and is sufficiently fluid to be transported by means of long-distance pipelines, and ocean going tankers. In order to overcome the economic difficulties of CWM, the authors started the development of a new type of CWM based on abundant non-utilized young low grade coal. This R and D aims at developing and demonstrating an economical clean coal fuel manufacturing technology to ensure safe transportation and storage. To this end, it is necessary to develop a technology to irreversibly dewater coals while maintaining volatility as far as possible, and to convert dewatered coals to high-concentration coal water mixtures (CWM). Japan COM Company Limited and JGC Corporation have been jointly conducting research and development of low rank coals upgrading technology to establish CWM production and utilization technologies from upgraded coals at lower cost and higher quality. In the first phase, the authors investigated available low rank coals upgrading technologies and selected the hot water drying (HWD) process as suited for the conversion of coals to CWM. In the second phase, they conducted HWD upgrading tests using an autoclave and a continuous type bench plant for laboratory-scale tests to convert upgraded coals to CWM, and thus confirmed upgrading effects. In the third phase, they constructed an upgrading pilot plant of 8.4 t/d (dry coal) processing capacity and have conducted upgrading tests. They have also conducted CWM production tests using a CWM production facility of 500 kg/h, and assessed the combustibility of upgraded coal CWM. The operation is carried out using three coals, two Indonesian sub-bituminous coals and one Australian brown coal, which were selected through the bench-scale testing. The following tests were carried out from Dec. of 1994 to March 1996: (1) Continuous upgrading tests by newly

  12. Catalysts, Emphases, and Elements of Virtual Learning Communities: Implications for Research and Practice.

    ERIC Educational Resources Information Center

    Schwier, Richard A.

    2001-01-01

    Examines theoretical and conceptual issues around promoting the growth of virtual learning communities and considers issues around using communication technologies in formal and informal learning environments. Highlights include: the theoretical context of community; categories for examining virtual learning communities; emphases of virtual…

  13. Learning Robust and Discriminative Subspace With Low-Rank Constraints.

    PubMed

    Li, Sheng; Fu, Yun

    2016-11-01

    In this paper, we aim at learning robust and discriminative subspaces from noisy data. Subspace learning is widely used in extracting discriminative features for classification. However, when data are contaminated with severe noise, the performance of most existing subspace learning methods would be limited. Recent advances in low-rank modeling provide effective solutions for removing noise or outliers contained in sample sets, which motivates us to take advantage of low-rank constraints in order to exploit robust and discriminative subspace for classification. In particular, we present a discriminative subspace learning method called the supervised regularization-based robust subspace (SRRS) approach, by incorporating the low-rank constraint. SRRS seeks low-rank representations from the noisy data, and learns a discriminative subspace from the recovered clean data jointly. A supervised regularization function is designed to make use of the class label information, and therefore to enhance the discriminability of subspace. Our approach is formulated as a constrained rank-minimization problem. We design an inexact augmented Lagrange multiplier optimization algorithm to solve it. Unlike the existing sparse representation and low-rank learning methods, our approach learns a low-dimensional subspace from recovered data, and explicitly incorporates the supervised information. Our approach and some baselines are evaluated on the COIL-100, ALOI, Extended YaleB, FERET, AR, and KinFace databases. The experimental results demonstrate the effectiveness of our approach, especially when the data contain considerable noise or variations.

  14. Relations Among Some Low-Rank Subspace Recovery Models.

    PubMed

    Zhang, Hongyang; Lin, Zhouchen; Zhang, Chao; Gao, Junbin

    2015-09-01

    Recovering intrinsic low-dimensional subspaces from data distributed on them is a key preprocessing step to many applications. In recent years, a lot of work has modeled subspace recovery as low-rank minimization problems. We find that some representative models, such as robust principal component analysis (R-PCA), robust low-rank representation (R-LRR), and robust latent low-rank representation (R-LatLRR), are actually deeply connected. More specifically, we discover that once a solution to one of the models is obtained, we can obtain the solutions to other models in closed-form formulations. Since R-PCA is the simplest, our discovery makes it the center of low-rank subspace recovery models. Our work has two important implications. First, R-PCA has a solid theoretical foundation. Under certain conditions, we could find globally optimal solutions to these low-rank models at an overwhelming probability, although these models are nonconvex. Second, we can obtain significantly faster algorithms for these models by solving R-PCA first. The computation cost can be further cut by applying low-complexity randomized algorithms, for example, our novel l2,1 filtering algorithm, to R-PCA. Although for the moment the formal proof of our l2,1 filtering algorithm is not yet available, experiments verify the advantages of our algorithm over other state-of-the-art methods based on the alternating direction method.

  15. Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning.

    PubMed

    Peng, Yong; Lu, Bao-Liang; Wang, Suhang

    2015-05-01

    Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labeled and unlabeled samples, where the edge weights are calculated based on the LRR coefficients. However, most of existing LRR related approaches fail to consider the geometrical structure of data, which has been shown beneficial for discriminative tasks. In this paper, we propose an enhanced LRR via sparse manifold adaption, termed manifold low-rank representation (MLRR), to learn low-rank data representation. MLRR can explicitly take the data local manifold structure into consideration, which can be identified by the geometric sparsity idea; specifically, the local tangent space of each data point was sought by solving a sparse representation objective. Therefore, the graph to depict the relationship of data points can be built once the manifold information is obtained. We incorporate a regularizer into LRR to make the learned coefficients preserve the geometric constraints revealed in the data space. As a result, MLRR combines both the global information emphasized by low-rank property and the local information emphasized by the identified manifold structure. Extensive experimental results on semi-supervised classification tasks demonstrate that MLRR is an excellent method in comparison with several state-of-the-art graph construction approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The DEPOSIT computer code based on the low rank approximations

    NASA Astrophysics Data System (ADS)

    Litsarev, Mikhail S.; Oseledets, Ivan V.

    2014-10-01

    We present a new version of the DEPOSIT computer code based on the low rank approximations. This approach is based on the two dimensional cross decomposition of matrices and separated representations of analytical functions. The cross algorithm is available in the distributed package and can be used independently. All integration routines related to the computation of the deposited energy T(b) are implemented in a new way (low rank separated representation format on homogeneous meshes). By using this approach a bug in integration routines of previous version of the code was found and fixed in the current version. The total computational time was significantly accelerated and is about several minutes.

  17. The Effects of Different Teaching, Research, and Service Emphases on Individual and Organizational Outcomes in Higher Education Institutions

    ERIC Educational Resources Information Center

    Terpstra, David E.; Honoree, Andre L.

    2009-01-01

    The authors investigated the relative emphasis that educators give to teaching, research, and service in the business discipline and 4 other academic disciplines. The authors also investigated the effects of different faculty activity emphases on faculty teaching effectiveness, research performance, service levels, job and pay satisfaction,…

  18. Stabilized thermally beneficiated low rank coal and method of manufacture

    DOEpatents

    Viall, Arthur J.; Richards, Jeff M.

    2000-01-01

    A process for reducing the spontaneous combustion tendencies of thermally beneficiated low rank coals employing heat, air or an oxygen containing gas followed by an optional moisture addition. Specific reaction conditions are supplied along with knowledge of equipment types that may be employed on a commercial scale to complete the process.

  19. Stabilized thermally beneficiated low rank coal and method of manufacture

    DOEpatents

    Viall, Arthur J.; Richards, Jeff M.

    1999-01-01

    A process for reducing the spontaneous combustion tendencies of thermally beneficiated low rank coals employing heat, air or an oxygen containing gas followed by an optional moisture addition. Specific reaction conditions are supplied along with knowledge of equipment types that may be employed on a commercial scale to complete the process.

  20. Stabilized thermally beneficiated low rank coal and method of manufacture

    DOEpatents

    Viall, A.J.; Richards, J.M.

    1999-01-26

    A process is described for reducing the spontaneous combustion tendencies of thermally beneficiated low rank coals employing heat, air or an oxygen containing gas followed by an optional moisture addition. Specific reaction conditions are supplied along with knowledge of equipment types that may be employed on a commercial scale to complete the process. 3 figs.

  1. The Two-Semester Thesis Model: Emphasizing Research in Undergraduate Technical Communication Curricula

    ERIC Educational Resources Information Center

    Ford, Julie Dyke; Bracken, Jennifer L.; Wilson, Gregory D.

    2009-01-01

    This article addresses previous arguments that call for increased emphasis on research in technical communication programs. Focusing on the value of scholarly-based research at the undergraduate level, we present New Mexico Tech's thesis model as an example of helping students develop familiarity with research skills and methods. This two-semester…

  2. The Two-Semester Thesis Model: Emphasizing Research in Undergraduate Technical Communication Curricula

    ERIC Educational Resources Information Center

    Ford, Julie Dyke; Bracken, Jennifer L.; Wilson, Gregory D.

    2009-01-01

    This article addresses previous arguments that call for increased emphasis on research in technical communication programs. Focusing on the value of scholarly-based research at the undergraduate level, we present New Mexico Tech's thesis model as an example of helping students develop familiarity with research skills and methods. This two-semester…

  3. A Graduate Laboratory Course on Biodiesel Production Emphasizing Professional, Teamwork, and Research Skills

    ERIC Educational Resources Information Center

    Leavesley, West

    2011-01-01

    In this article we report on the use of a graduate "Special Topics" course to provide vital research and practical laboratory experience, within the context of developing a chemical process to manufacture biodiesel from algal sources. This course contained several key components that we believe are necessary skills in graduate research: 1) a…

  4. A Graduate Laboratory Course on Biodiesel Production Emphasizing Professional, Teamwork, and Research Skills

    ERIC Educational Resources Information Center

    Leavesley, West

    2011-01-01

    In this article we report on the use of a graduate "Special Topics" course to provide vital research and practical laboratory experience, within the context of developing a chemical process to manufacture biodiesel from algal sources. This course contained several key components that we believe are necessary skills in graduate research: 1) a…

  5. Denoising MR spectroscopic imaging data with low-rank approximations.

    PubMed

    Nguyen, Hien M; Peng, Xi; Do, Minh N; Liang, Zhi-Pei

    2013-01-01

    This paper addresses the denoising problem associated with magnetic resonance spectroscopic imaging (MRSI), where signal-to-noise ratio (SNR) has been a critical problem. A new scheme is proposed, which exploits two low-rank structures that exist in MRSI data, one due to partial separability and the other due to linear predictability. Denoising is performed by arranging the measured data in appropriate matrix forms (i.e., Casorati and Hankel) and applying low-rank approximations by singular value decomposition (SVD). The proposed method has been validated using simulated and experimental data, producing encouraging results. Specifically, the method can effectively denoise MRSI data in a wide range of SNR values while preserving spatial-spectral features. The method could prove useful for denoising MRSI data and other spatial-spectral and spatial-temporal imaging data as well.

  6. Brain electrical responses to high- and low-ranking buildings.

    PubMed

    Oppenheim, Ilan; Mühlmann, Heiner; Blechinger, Gerhard; Mothersill, Ian W; Hilfiker, Peter; Jokeit, Hennric; Kurthen, Martin; Krämer, Günter; Grunwald, Thomas

    2009-07-01

    Since the ancient world, architecture generally distinguishes two categories of buildings with either high- or low-ranking design. High-ranking buildings are supposed to be more prominent and, therefore, more memorable. Here, we recorded event-related potentials (ERPs) to drawings of buildings with either high- or low-ranking architectural ornaments and found that ERP responses between 300 and 600 ms after stimulus presentation recorded over both frontal lobes were significantly more positive in amplitude to high-ranking buildings. Thus, ERPs differentiated reliably between both classes of architectural stimuli although subjects were not aware of the two categories. We take our data to suggest that neurophysiological correlates of building perception reflect aspects of an architectural rule system that adjust the appropriateness of style and content ("decorum"). Since this rule system is ubiquitous in Western architecture, it may define architectural prototypes that can elicit familiarity memory processes.

  7. AFBC bed material performance with low-rank coals

    SciTech Connect

    Goblirsch, G.M.; Benson, S.A.; Karner, F.R.; Rindt, D.K.; Hajicek, D.R.

    1983-01-01

    The purpose of this paper is to describe the reasons for carefully screening any candidate bed material for use in low-rank coal atmospheric fluidized-bed combustion, before the final selection is made. The sections of this paper describe: (1) the experimental equipment used to obtain the data, as well as the experimental and analytical procedures used in evaluation; (2) the results of tests utilizing various bed materials with particular emphasis on the problem of bed material agglomeration; and (3) the conclusions and recommendations for bed material selection and control for use with low-rank coal. Bed materials of aluminum oxide, quartz, limestone, dolomite, granite, gabbro, and mixtures of some of these materials have been used in the testing. Of these materials, gabbro appears most suitable for use with high available sodium lignites. 17 figures, 8 tables. (DMC)

  8. Secondary School to Work Transition Research Project Emphasizing Transitions to Work and Leisure Roles. Final Report.

    ERIC Educational Resources Information Center

    Edwards, Jean P.; And Others

    The purpose of the project described in this paper was to conduct research on curricular strategies that would facilitate successful transition of handicapped youth from public school to postsecondary work and leisure environments. The curriculum strategies involved teaching skills in searching for leisure activities prior to introducing a job…

  9. Ion exchange and adsorption on low rank coals for liquefaction

    SciTech Connect

    Vorres, K.S.

    1995-08-01

    The objectives of this program involve the study of the catalysis of liquefaction of low rank coals. Ion exchange and adsorption techniques are being used or modified to incorporate catalytically active metals into coal samples. Relative oil yields will be determined by Sandia National Laboratory and PETC collaborators to establish the effectiveness of the catalyst incorporation techniques. This report describes work done over the past 12 months of an on-going project.

  10. Low-rank coal oil agglomeration product and process

    DOEpatents

    Knudson, Curtis L.; Timpe, Ronald C.; Potas, Todd A.; DeWall, Raymond A.; Musich, Mark A.

    1992-01-01

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  11. Constrained low-rank gamut completion for robust illumination estimation

    NASA Astrophysics Data System (ADS)

    Zhou, Jianshen; Yuan, Jiazheng; Liu, Hongzhe

    2017-02-01

    Illumination estimation is an important component of color constancy and automatic white balancing. According to recent survey and evaluation work, the supervised methods with a learning phase are competitive for illumination estimation. However, the robustness and performance of any supervised algorithm suffer from an incomplete gamut in training image sets because of limited reflectance surfaces in a scene. In order to address this problem, we present a constrained low-rank gamut completion algorithm, which can replenish gamut from limited surfaces in an image, for robust illumination estimation. In the proposed algorithm, we first discuss why the gamut completion is actually a low-rank matrix completion problem. Then a constrained low-rank matrix completion framework is proposed by adding illumination similarities among the training images as an additional constraint. An optimization algorithm is also given out by extending the augmented Lagrange multipliers. Finally, the completed gamut based on the proposed algorithm is fed into the support vector regression (SVR)-based illumination estimation method to evaluate the effect of gamut completion. The experimental results on both synthetic and real-world image sets show that the proposed gamut completion model not only can effectively improve the performance of the original SVR method but is also robust to the surface insufficiency in training samples.

  12. Low-rank approximation pursuit for matrix completion

    NASA Astrophysics Data System (ADS)

    Xu, An-Bao; Xie, Dongxiu

    2017-10-01

    We consider the matrix completion problem that aims to construct a low rank matrix X that approximates a given large matrix Y from partially known sample data in Y . In this paper we introduce an efficient greedy algorithm for such matrix completions. The greedy algorithm generalizes the orthogonal rank-one matrix pursuit method (OR1MP) by creating s ⩾ 1 candidates per iteration by low-rank matrix approximation. Due to selecting s ⩾ 1 candidates in each iteration step, our approach uses fewer iterations than OR1MP to achieve the same results. Our algorithm is a randomized low-rank approximation method which makes it computationally inexpensive. The algorithm comes in two forms, the standard one which uses the Lanzcos algorithm to find partial SVDs, and another that uses a randomized approach for this part of its work. The storage complexity of this algorithm can be reduced by using an weight updating rule as an economic version algorithm. We prove that all our algorithms are linearly convergent. Numerical experiments on image reconstruction and recommendation problems are included that illustrate the accuracy and efficiency of our algorithms.

  13. Low-rank coal oil agglomeration product and process

    DOEpatents

    Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.

    1992-11-10

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  14. Emphasizing Spectrum Management for Sustainable Development Research and Applications in Disaster Management

    NASA Technical Reports Server (NTRS)

    Ambrose, Stephen; Habib, Shahid

    2007-01-01

    NASA's spaceborne Earth and Heliospheric Observatories and airborne sensors provide a plethora of measurements. These measurements are used in science research to understand the climatology of our home planet and the solar fluxes and cycle of the only star in our solar system 'Sun' which is critical driver for the retention of life on Earth. Specifically, these measurements help us to understand the water and energy cycle, the carbon cycle, weather and climate, atmospheric chemistry, solar variability, and solid Earth and interior to feed into sophisticated mathematical models to analyze and predict the Earth's behavior as an integrated system. The main thrust of this research is on improving the prediction capability in the areas of weather, long term climate and solid Earth processes, and further help the humanity and future generations in terms of societal benefits in managing natural disasters, sustainability issues and many more. This work is further linked with our contributions in the Global Earth Observing System of Systems (GEOSS) Specifically, the data and knowledge resulting from the Earth observing systems and analytical models of the Earth can be made available for assimilation into decision support systems to serve society for disaster management. Through partnerships with national and international agencies and organizations, NASA's Science Mission Directorate's, Applied Sciences Program contributes to benchmarking practical uses of observations and predictions from Earth science remote sensing systems research. The objective is to establish innovative solutions using Earth observations and science information to provide decision support that can be adapted in applications of national and international priority. We along with the international community will continue this critical field of investigation by using our existing and future sensors from space, airborne and insitue environment. In our quest to expanding our knowledge, there will be a need

  15. Emphasizing Spectrum Management for Sustainable Development Research and Applications in Disaster Management

    NASA Technical Reports Server (NTRS)

    Ambrose, Stephen; Habib, Shahid

    2007-01-01

    NASA's spaceborne Earth and Heliospheric Observatories and airborne sensors provide a plethora of measurements. These measurements are used in science research to understand the climatology of our home planet and the solar fluxes and cycle of the only star in our solar system 'Sun' which is critical driver for the retention of life on Earth. Specifically, these measurements help us to understand the water and energy cycle, the carbon cycle, weather and climate, atmospheric chemistry, solar variability, and solid Earth and interior to feed into sophisticated mathematical models to analyze and predict the Earth's behavior as an integrated system. The main thrust of this research is on improving the prediction capability in the areas of weather, long term climate and solid Earth processes, and further help the humanity and future generations in terms of societal benefits in managing natural disasters, sustainability issues and many more. This work is further linked with our contributions in the Global Earth Observing System of Systems (GEOSS) Specifically, the data and knowledge resulting from the Earth observing systems and analytical models of the Earth can be made available for assimilation into decision support systems to serve society for disaster management. Through partnerships with national and international agencies and organizations, NASA's Science Mission Directorate's, Applied Sciences Program contributes to benchmarking practical uses of observations and predictions from Earth science remote sensing systems research. The objective is to establish innovative solutions using Earth observations and science information to provide decision support that can be adapted in applications of national and international priority. We along with the international community will continue this critical field of investigation by using our existing and future sensors from space, airborne and insitue environment. In our quest to expanding our knowledge, there will be a need

  16. Moving object detection via low-rank total variation regularization

    NASA Astrophysics Data System (ADS)

    Wang, Pengcheng; Chen, Qian; Shao, Na

    2016-09-01

    Moving object detection is a challenging task in video surveillance. Recently proposed Robust Principal Component Analysis (RPCA) can recover the outlier patterns from the low-rank data under some mild conditions. However, the l-penalty in RPCA doesn't work well in moving object detection because the irrepresentable condition is often not satisfied. In this paper, a method based on total variation (TV) regularization scheme is proposed. In our model, image sequences captured with a static camera are highly related, which can be described using a low-rank matrix. Meanwhile, the low-rank matrix can absorb background motion, e.g. periodic and random perturbation. The foreground objects in the sequence are usually sparsely distributed and drifting continuously, and can be treated as group outliers from the highly-related background scenes. Instead of l-penalty, we exploit the total variation of the foreground. By minimizing the total variation energy, the outliers tend to collapse and finally converge to be the exact moving objects. The TV-penalty is superior to the l-penalty especially when the outlier is in the majority for some pixels, and our method can estimate the outlier explicitly with less bias but higher variance. To solve the problem, a joint optimization function is formulated and can be effectively solved through the inexact Augmented Lagrange Multiplier (ALM) method. We evaluate our method along with several state-of-the-art approaches in MATLAB. Both qualitative and quantitative results demonstrate that our proposed method works effectively on a large range of complex scenarios.

  17. Motion object tracking based on the low-rank matrix representation

    NASA Astrophysics Data System (ADS)

    Kong, Xiaofang; Chen, Qian; Xu, Fuyuan; Gu, Guohua; Ren, Kan; Qian, Weixian

    2015-10-01

    Motion object tracking is one of the most important research directions in computer vision. Challenges in designing a tracking method are usually caused by occlusions, noise, or illumination changes. In this paper, a robust visual tracking algorithm is proposed in order to cope with the occlusion by introducing the motion object tracking issue as a low-rank matrix representation problem. First, being the main contribution of this paper, the observation matrix composed by image sequences is decomposed into a low-rank matrix and a sparse matrix. The motion object in the image sequence forms the low-rank matrix and the occlusion on the motion object forms the sparse matrix. Then the motion object tracking is carried out using a Bayesian state under the particle filter framework. Finally, an effective alternating algorithm is utilized to solve the proposed optimization formulation. The proposed algorithm has been examined throughout several challenging image sequences, and experiment results show that it works effectively and efficiently in different situations.

  18. Constrained Low-Rank Representation for Robust Subspace Clustering.

    PubMed

    Wang, Jing; Wang, Xiao; Tian, Feng; Liu, Chang Hong; Yu, Hongchuan

    2016-10-31

    Subspace clustering aims to partition the data points drawn from a union of subspaces according to their underlying subspaces. For accurate semisupervised subspace clustering, all data that have a must-link constraint or the same label should be grouped into the same underlying subspace. However, this is not guaranteed in existing approaches. Moreover, these approaches require additional parameters for incorporating supervision information. In this paper, we propose a constrained low-rank representation (CLRR) for robust semisupervised subspace clustering, based on a novel constraint matrix constructed in this paper. While seeking the low-rank representation of data, CLRR explicitly incorporates supervision information as hard constraints for enhancing the discriminating power of optimal representation. This strategy can be further extended to other state-of-the-art methods, such as sparse subspace clustering. We theoretically prove that the optimal representation matrix has both a block-diagonal structure with clean data and a semisupervised grouping effect with noisy data. We have also developed an efficient optimization algorithm based on alternating the direction method of multipliers for CLRR. Our experimental results have demonstrated that CLRR outperforms existing methods.

  19. Accelerating Parameter Mapping with a Locally Low Rank Constraint

    PubMed Central

    Zhang, Tao; Pauly, John M.; Levesque, Ives R.

    2014-01-01

    Purpose To accelerate MR parameter mapping (MRPM) using a locally low rank (LLR) constraint, and the combination of parallel imaging (PI) and the LLR constraint. Theory and Methods An LLR method is developed for MRPM and compared with a globally low rank (GLR) method in a multi-echo spin-echo T2 mapping experiment. For acquisition with coil arrays, a combined LLR and PI method is proposed. The proposed method is evaluated in a variable flip angle T1 mapping experiment and compared with the LLR method and PI alone. Results In the multi-echo spin-echo T2 mapping experiment, the LLR method is more accurate than the GLR method for acceleration factors 2 and 3, especially for tissues with high T2 values. Variable flip angle T1 mapping is achieved by acquiring datasets with 10 flip angles, each dataset accelerated by a factor of 6, and reconstructed by the proposed method with a small normalized root mean square error of 0.025. Conclusion The LLR method is likely superior to the GLR method for MRPM. The proposed combined LLR and PI method has better performance than the two methods alone, especially with highly accelerated acquisition. PMID:24500817

  20. Integrated Low-Rank-Based Discriminative Feature Learning for Recognition.

    PubMed

    Zhou, Pan; Lin, Zhouchen; Zhang, Chao

    2016-05-01

    Feature learning plays a central role in pattern recognition. In recent years, many representation-based feature learning methods have been proposed and have achieved great success in many applications. However, these methods perform feature learning and subsequent classification in two separate steps, which may not be optimal for recognition tasks. In this paper, we present a supervised low-rank-based approach for learning discriminative features. By integrating latent low-rank representation (LatLRR) with a ridge regression-based classifier, our approach combines feature learning with classification, so that the regulated classification error is minimized. In this way, the extracted features are more discriminative for the recognition tasks. Our approach benefits from a recent discovery on the closed-form solutions to noiseless LatLRR. When there is noise, a robust Principal Component Analysis (PCA)-based denoising step can be added as preprocessing. When the scale of a problem is large, we utilize a fast randomized algorithm to speed up the computation of robust PCA. Extensive experimental results demonstrate the effectiveness and robustness of our method.

  1. Low-rank coal thermal properties and diffusivity: Final report

    SciTech Connect

    Ramirez, W.F.

    1987-06-01

    This project developed techniques for measuring thermal properties and mass diffusivities of low-rank coals and coal powders. Using the concept of volume averaging, predictive models have been developed for these porous media properties. The Hot Wire Method was used for simultaneously measuring the thermal conductivity and thermal diffusivity of both consolidated and unconsolidated low-rank coals. A new computer-interfaced experiment is presented and sample container designs developed for both coal powders and consolidated coals. A new mathematical model, based upon volume averaging, is presented for the prediction of these porous media properties. Velocity and temperature effects on liquid-phase dispersion through unconsolidated coal were determined. Radioactive tracer data were used to determine mass diffusivities. A new predictive mathematical model is presented based upon volume averaging. Vapor-phase diffusivity measurements of organic solvents in consolidated lignite coal are reported. An unsteady-state pressure response experiment with microcomputed-based data acquisition was developed to estimate dispersion coefficients through consolidated lignite coals. The mathematical analysis of the pressure response data provides the dispersion coefficient and the adsorption coefficient. 48 refs., 59 figs., 17 tabs.

  2. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    SciTech Connect

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

  3. Low rank approximation in G0W0 calculations

    DOE PAGES

    Shao, MeiYue; Lin, Lin; Yang, Chao; ...

    2016-06-04

    The single particle energies obtained in a Kohn-Sham density functional theory (DFT) calculation are generally known to be poor approximations to electron excitation energies that are measured in tr ansport, tunneling and spectroscopic experiments such as photo-emission spectroscopy. The correction to these energies can be obtained from the poles of a single particle Green’s function derived from a many-body perturbation theory. From a computational perspective, the accuracy and efficiency of such an approach depends on how a self energy term that properly accounts for dynamic screening of electrons is approximated. The G0W0 approximation is a widely used technique in whichmore » the self energy is expressed as the convolution of a noninteracting Green’s function (G0) and a screened Coulomb interaction (W0) in the frequency domain. The computational cost associated with such a convolution is high due to the high complexity of evaluating W 0 at multiple frequencies. In this paper, we discuss how the cost of G0W0 calculation can be reduced by constructing a low rank approximation to the frequency dependent part of W 0 . In particular, we examine the effect of such a low rank approximation on the accuracy of the G0W0 approximation. We also discuss how the numerical convolution of G0 and W0 can be evaluated efficiently and accurately by using a contour deformation technique with an appropriate choice of the contour.« less

  4. Low-Rank Linear Dynamical Systems for Motor Imagery EEG

    PubMed Central

    Tan, Chuanqi; Liu, Shaobo

    2016-01-01

    The common spatial pattern (CSP) and other spatiospectral feature extraction methods have become the most effective and successful approaches to solve the problem of motor imagery electroencephalography (MI-EEG) pattern recognition from multichannel neural activity in recent years. However, these methods need a lot of preprocessing and postprocessing such as filtering, demean, and spatiospectral feature fusion, which influence the classification accuracy easily. In this paper, we utilize linear dynamical systems (LDSs) for EEG signals feature extraction and classification. LDSs model has lots of advantages such as simultaneous spatial and temporal feature matrix generation, free of preprocessing or postprocessing, and low cost. Furthermore, a low-rank matrix decomposition approach is introduced to get rid of noise and resting state component in order to improve the robustness of the system. Then, we propose a low-rank LDSs algorithm to decompose feature subspace of LDSs on finite Grassmannian and obtain a better performance. Extensive experiments are carried out on public dataset from “BCI Competition III Dataset IVa” and “BCI Competition IV Database 2a.” The results show that our proposed three methods yield higher accuracies compared with prevailing approaches such as CSP and CSSP. PMID:28096809

  5. Low-Rank Linear Dynamical Systems for Motor Imagery EEG.

    PubMed

    Zhang, Wenchang; Sun, Fuchun; Tan, Chuanqi; Liu, Shaobo

    2016-01-01

    The common spatial pattern (CSP) and other spatiospectral feature extraction methods have become the most effective and successful approaches to solve the problem of motor imagery electroencephalography (MI-EEG) pattern recognition from multichannel neural activity in recent years. However, these methods need a lot of preprocessing and postprocessing such as filtering, demean, and spatiospectral feature fusion, which influence the classification accuracy easily. In this paper, we utilize linear dynamical systems (LDSs) for EEG signals feature extraction and classification. LDSs model has lots of advantages such as simultaneous spatial and temporal feature matrix generation, free of preprocessing or postprocessing, and low cost. Furthermore, a low-rank matrix decomposition approach is introduced to get rid of noise and resting state component in order to improve the robustness of the system. Then, we propose a low-rank LDSs algorithm to decompose feature subspace of LDSs on finite Grassmannian and obtain a better performance. Extensive experiments are carried out on public dataset from "BCI Competition III Dataset IVa" and "BCI Competition IV Database 2a." The results show that our proposed three methods yield higher accuracies compared with prevailing approaches such as CSP and CSSP.

  6. DEVELOPMENT OF CARBON PRODUCTS FROM LOW-RANK COALS

    SciTech Connect

    Edwin S. Olson

    2001-07-01

    The goal of this project is to facilitate the production of carbon fibers from low-rank coal (LRC) tars. To this end, the effect of demineralization on the tar yields and composition was investigated using high-sodium and high-calcium lignites commonly mined in North Dakota. These coals were demineralized by ion exchange with ammonium acetate and by cation dissolution with nitric acid. Two types of thermal processing were investigated for obtaining suitable precursors for pitch and fiber production. Initially, tars were produced by simple pyrolysis of the set of samples at 650 C. Since these experiments produced little usable material from any of the samples, the coals were heated at moderate temperatures (380 and 400 C) in tetralin solvent to form and extract the plastic material (metaplast) that forms at these temperatures.

  7. Ion exchange and adsorption on low rank coals for liquefaction

    SciTech Connect

    Vorres, K.S.

    1994-09-01

    The objectives of this program are to study the application of catalysts and the catalysis of liquefaction of low rank coals. Ion exchange and adsorption techniques are being used or modified to incorporate catalytically active metals (Fe, Co, Ni and Mo) in relatively small (100-2000 ppM) quantities into coal samples. Relative oil yields are being determined by PETC and Auburn University workers as collaborators to establish the effectiveness of the catalyst incorporation techniques. It is hoped that these techniques will provide highly active forms of the catalyst in low concentrations to minimize the need for metals recovery. A two step preparation of the coal is used to (1) remove material which both limits oil conversion and prepares for the addition of exchangeable catalyst, and (2) add catalytically active material which enhances the conversion of the coal matter to the oil fraction in the processing.

  8. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect

    Duane A. McVay; Walter B. Ayers, Jr; Jerry L. Jensen

    2006-05-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to (1) determine the effects of permeability anisotropy on performance of CO{sub 2} sequestration and ECBM production in the Lower Calvert Bluff Formation (LCB) of the Wilcox Group coals in east-central Texas, and (2) begin reservoir and economic analyses of CO{sub 2} sequestration and ECBM production using horizontal wells. To evaluate the effects of permeability anisotropy on CO{sub 2} sequestration and ECBM in LCB coal beds, we conducted deterministic reservoir modeling studies of 100% CO{sub 2} gas injection for the 6,200-ft depth base case (Case 1b) using the most likely values of the reservoir parameters. Simulation results show significant differences in the cumulative volumes of CH{sub 4} produced and CO{sub 2} injected due to permeability anisotropy, depending on the orientation of injection patterns relative to the orientation of permeability anisotropy. This indicates that knowledge of the magnitude and orientation of permeability anisotropy will be an important consideration in the design of CO{sub 2} sequestration and ECBM projects. We continued discussions with Anadarko Petroleum regarding plans for additional coal core acquisition and laboratory work to further characterize Wilcox low-rank coals. As part of the technology transfer for this project, we submitted the paper SPE 100584 for presentation at the 2006 SPE Gas Technology Symposium to be held in Calgary, Alberta, Canada on May 15-18, 2006.

  9. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect

    Duane A. Mcvay; Walter B. Ayers, Jr.; Jerry L. Jensen

    2004-02-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The primary objectives for this reporting period were to construct a coal geological model for reservoir analysis and to continue modeling studies of CO{sub 2} sequestration performance in coalbed methane reservoirs under various operational conditions. Detailed correlation of coal zones is important for reservoir analysis and modeling. Therefore, we interpreted and created isopleth maps of coal occurrences, and correlated individual coal seams within the coal bearing subdivisions of the Wilcox Group--the Hooper, Simsboro and Calvert Bluff formations. Preliminary modeling studies were run to determine if gravity effects would affect the performance of CO{sub 2} sequestration in coalbed methane reservoirs. Results indicated that gravity could adversely affect sweep efficiency and, thus, volumes of CO{sub 2} sequestered and methane produced in thick, vertically continuous coals. Preliminary modeling studies were also run to determine the effect of injection gas composition on sequestration in low-rank coalbeds. Injected gas composition was varied from pure CO{sub 2} to pure N{sub 2}, and results show that increasing N{sub 2} content degrades CO{sub 2} sequestration and methane production performance. We have reached a Data Exchange Agreement with Anadarko Petroleum Corporation. We are currently incorporating the Anadarko data into our work, and expect these data to greatly enhance the accuracy and value of our studies.

  10. Low-rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging

    PubMed Central

    Ravishankar, Saiprasad; Moore, Brian E.; Nadakuditi, Raj Rao; Fessler, Jeffrey A.

    2017-01-01

    Sparsity-based approaches have been popular in many applications in image processing and imaging. Compressed sensing exploits the sparsity of images in a transform domain or dictionary to improve image recovery from undersampled measurements. In the context of inverse problems in dynamic imaging, recent research has demonstrated the promise of sparsity and low-rank techniques. For example, the patches of the underlying data are modeled as sparse in an adaptive dictionary domain, and the resulting image and dictionary estimation from undersampled measurements is called dictionary-blind compressed sensing, or the dynamic image sequence is modeled as a sum of low-rank and sparse (in some transform domain) components (L+S model) that are estimated from limited measurements. In this work, we investigate a data-adaptive extension of the L+S model, dubbed LASSI, where the temporal image sequence is decomposed into a low-rank component and a component whose spatiotemporal (3D) patches are sparse in some adaptive dictionary domain. We investigate various formulations and efficient methods for jointly estimating the underlying dynamic signal components and the spatiotemporal dictionary from limited measurements. We also obtain efficient sparsity penalized dictionary-blind compressed sensing methods as special cases of our LASSI approaches. Our numerical experiments demonstrate the promising performance of LASSI schemes for dynamic magnetic resonance image reconstruction from limited k-t space data compared to recent methods such as k-t SLR and L+S, and compared to the proposed dictionary-blind compressed sensing method. PMID:28092528

  11. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect

    Duane A. McVay; Walter B. Ayers, Jr.; Jerry L. Jensen

    2004-04-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The primary objectives for this reporting period were to construct a coal geological model for reservoir analysis and to continue acquisition of data pertinent to coal characterization that would help in determining the feasibility of carbon dioxide sequestration. Structural analysis and detailed correlation of coal zones are important for reservoir analysis and modeling. Evaluation of existing well logs indicates local structural complexity that complicates interpretations of continuity of the Wilcox Group coal zones. Therefore, we have begun searching for published structural maps for the areas of potential injection CO{sub 2}, near the coal-fired power plants. Preliminary evaluations of data received from Anadarko Petroleum Corporation suggest that coal properties and gas content and chemical composition vary greatly among coal seams. We are assessing the stratigraphic and geographic distributions and the weight of coal samples that Anadarko has provided to select samples for further laboratory analysis. Our goal is to perform additional isotherm analyses with various pure and/or mixed gases to enhance our characterization model. Additionally, we are evaluating opportunities for field determination of permeability with Anadarko, utilizing one of their wells.

  12. Fast Low-Rank Shared Dictionary Learning for Image Classification.

    PubMed

    Vu, Tiep Huu; Monga, Vishal

    2017-11-01

    Despite the fact that different objects possess distinct class-specific features, they also usually share common patterns. This observation has been exploited partially in a recently proposed dictionary learning framework by separating the particularity and the commonality (COPAR). Inspired by this, we propose a novel method to explicitly and simultaneously learn a set of common patterns as well as class-specific features for classification with more intuitive constraints. Our dictionary learning framework is hence characterized by both a shared dictionary and particular (class-specific) dictionaries. For the shared dictionary, we enforce a low-rank constraint, i.e., claim that its spanning subspace should have low dimension and the coefficients corresponding to this dictionary should be similar. For the particular dictionaries, we impose on them the well-known constraints stated in the Fisher discrimination dictionary learning (FDDL). Furthermore, we develop new fast and accurate algorithms to solve the subproblems in the learning step, accelerating its convergence. The said algorithms could also be applied to FDDL and its extensions. The efficiencies of these algorithms are theoretically and experimentally verified by comparing their complexities and running time with those of other well-known dictionary learning methods. Experimental results on widely used image data sets establish the advantages of our method over the state-of-the-art dictionary learning methods.

  13. Statistically efficient tomography of low rank states with incomplete measurements

    NASA Astrophysics Data System (ADS)

    Acharya, Anirudh; Kypraios, Theodore; Guţă, Mădălin

    2016-04-01

    The construction of physically relevant low dimensional state models, and the design of appropriate measurements are key issues in tackling quantum state tomography for large dimensional systems. We consider the statistical problem of estimating low rank states in the set-up of multiple ions tomography, and investigate how the estimation error behaves with a reduction in the number of measurement settings, compared with the standard ion tomography setup. We present extensive simulation results showing that the error is robust with respect to the choice of states of a given rank, the random selection of settings, and that the number of settings can be significantly reduced with only a negligible increase in error. We present an argument to explain these findings based on a concentration inequality for the Fisher information matrix. In the more general setup of random basis measurements we use this argument to show that for certain rank r states it suffices to measure in O(r{log}d) bases to achieve the average Fisher information over all bases. We present numerical evidence for random states of up to eight atoms, which suggests that a similar behaviour holds in the case of Pauli bases measurements, for randomly chosen states. The relation to similar problems in compressed sensing is also discussed.

  14. Enhanced low-rank + sparsity decomposition for speckle reduction in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kopriva, Ivica; Shi, Fei; Chen, Xinjian

    2016-07-01

    Speckle artifacts can strongly hamper quantitative analysis of optical coherence tomography (OCT), which is necessary to provide assessment of ocular disorders associated with vision loss. Here, we introduce a method for speckle reduction, which leverages from low-rank + sparsity decomposition (LRpSD) of the logarithm of intensity OCT images. In particular, we combine nonconvex regularization-based low-rank approximation of an original OCT image with a sparsity term that incorporates the speckle. State-of-the-art methods for LRpSD require a priori knowledge of a rank and approximate it with nuclear norm, which is not an accurate rank indicator. As opposed to that, the proposed method provides more accurate approximation of a rank through the use of nonconvex regularization that induces sparse approximation of singular values. Furthermore, a rank value is not required to be known a priori. This, in turn, yields an automatic and computationally more efficient method for speckle reduction, which yields the OCT image with improved contrast-to-noise ratio, contrast and edge fidelity. The source code will be available at www.mipav.net/English/research/research.html.

  15. Statistical analysis of compressive low rank tomography with random measurements

    NASA Astrophysics Data System (ADS)

    Acharya, Anirudh; Guţă, Mădălin

    2017-05-01

    We consider the statistical problem of ‘compressive’ estimation of low rank states (r\\ll d ) with random basis measurements, where r, d are the rank and dimension of the state respectively. We investigate whether for a fixed sample size N, the estimation error associated with a ‘compressive’ measurement setup is ‘close’ to that of the setting where a large number of bases are measured. We generalise and extend previous results, and show that the mean square error (MSE) associated with the Frobenius norm attains the optimal rate rd/N with only O(r log{d}) random basis measurements for all states. An important tool in the analysis is the concentration of the Fisher information matrix (FIM). We demonstrate that although a concentration of the MSE follows from a concentration of the FIM for most states, the FIM fails to concentrate for states with eigenvalues close to zero. We analyse this phenomenon in the case of a single qubit and demonstrate a concentration of the MSE about its optimal despite a lack of concentration of the FIM for states close to the boundary of the Bloch sphere. We also consider the estimation error in terms of a different metric-the quantum infidelity. We show that a concentration in the mean infidelity (MINF) does not exist uniformly over all states, highlighting the importance of loss function choice. Specifically, we show that for states that are nearly pure, the MINF scales as 1/\\sqrt{N} but the constant converges to zero as the number of settings is increased. This demonstrates a lack of ‘compressive’ recovery for nearly pure states in this metric.

  16. Ultrafine grinding of low-rank coal: Final report

    SciTech Connect

    Bouchillon, C.W.; Steele, W.G.

    1986-08-01

    A study of ultrafine grinding of low-rank coals in a fluid-energy mill was undertaken. This report presents the results of the Phase I effort which included a review of the literature on ultrafine grinding, a review of theories of grinding, a combined grinding and drying experiment on Martin Lake Texas lignite, an evaluation of the energy requirements for the process, and an evaluation of the properties of the products from the grinding tests. A sample of Martin Lake Texas lignite was obtained and a series of tests were conducted in a fluid-energy mill at the Ergon, Inc., Micro-Energy Division development facility at Vicksburg, MS. The grinding fluids used were air at 116 F and steam at 225, 310, 350, 400, and 488 F as measured in the mill. The products of these tests were analyzed for volatile mattr, ash, total moisture, equilibrium moisture, heating value, density distribution, aerodynamic particle size classification, angle of repose, porosity, density, and particle size distribution. ASTM test procedures were followed where applicable. Ultimate and ash mineral analyses were also conducted on the samples. Results of the various tests are presented in detail in the report. In general, the fluid energy mill was used succssfully in simultaneous grinding and drying of the lignite. Particle size reduction to less than 10 microns on a population basis was achieved. The equilibrium moisture of the samples decreased with increasing grinding fluid temperatures. Density distribution studies showed that a significant fraction of the ash appeared in the >1.6 specific gravity particles. The energy required for the grinding/drying process increased with increasing mill temperatures. 29 refs., 18 figs., 13 tabs.

  17. Investigation of oxygen functional groups in low rank coal

    SciTech Connect

    Hagaman, E.W.; Lee, S.K.

    1993-07-01

    The distribution of the organic oxygen content of coals among the principal oxygen containing functional groups typically is determined by a combination of chemical and spectroscopic methods (1,2) and results in a classification scheme such as % carboxyl, % hydroxyl, % carbonyl, and % ether. A notable subdivision in this classification scheme is the differentiation of phenols in a coal on the basis of their ortho-substitution pattern (3). Apart from this distinction, the further classification of oxygen into functional group subsets is virtually nonexistent. This paper presents initial experiments that indicate a fuller characterization of oxygen distribution in low rank coal is possible. The experimental approach couples selective chemical perturbation and solid state NMR analysis of the material, specifically, the fluorination of Argonne Premium Coal {number_sign}8, North Dakota lignite, and spectroscopic examination by high resolution solid state {sup 19}F NMR (4). The fluorination reagent is diethylaminosulfur trifluoride (DAST), (Et){sub 2}NSF{sub 3}, which promotes a rich slate of oxygen functional group interconversions that introduce fluorine into the coal matrix (5). The virtual absence of this element in coals make {sup 19}F an attractive NMR nuclei for this application (6). The present experiments use direct detection of the {sup 19}F nucleus under conditions of proton ({sup 1}H) heteronuclear dipolar decoupling and magic angle spinning (MAS). The ca 300 ppm range of {sup 19}F chemical shifts in common carbon-fluorine bonding configurations and high {sup 19}F nuclear sensitivity permit the identification of unique and chemically dilute functional groups in the coal milieu. The unique detection of aromatic and aliphatic carboxylic acids and primary and secondary alcohols provide examples of the exquisite functional group detail that is revealed by this combination of techniques.

  18. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect

    Duane A. McVay; Walter B. Ayers, Jr.; Jerry L. Jensen

    2004-07-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main tasks for this reporting period were to correlate well logs and refine coal property maps, evaluate methane content and gas composition of Wilcox Group coals, and initiate discussions concerning collection of additional, essential data with Anadarko. To assess the volume of CO{sub 2} that may be sequestered and volume of methane that can be produced in the vicinity of the proposed Sam Seymour sequestration site, we used approximately 200 additional wells logs from Anadarko Petroleum Corp. to correlate and map coal properties of the 3 coal-bearing intervals of Wilcox group. Among the maps we are making are maps of the number of coal beds, number of coal beds greater than 5 ft thick, and cumulative coal thickness for each coal interval. This stratigraphic analysis validates the presence of abundant coal for CO{sub 2} sequestration in the Wilcox Group in the vicinity of Sam Seymour power plant. A typical wellbore in this region may penetrate 20 to 40 coal beds with cumulative coal thickness between 80 and 110 ft. Gas desorption analyses of approximately 75 coal samples from the 3 Wilcox coal intervals indicate that average methane content of Wilcox coals in this area ranges between 216 and 276 scf/t, basinward of the freshwater boundary indicated on a regional hydrologic map. Vitrinite reflectance data indicate that Wilcox coals are thermally immature for gas generation in this area. Minor amounts of biogenic gas may be present, basinward of the freshwater line, but we infer that most of the Wilcox coalbed gas in the deep coal beds is migrated thermogenic gas. Analysis based on limited data suggest that sites for CO{sub 2} sequestration and enhanced coalbed gas recovery should be located basinward of the Wilcox

  19. 30 CFR 870.20 - How to calculate excess moisture in LOW-rank coals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coals. 870.20 Section 870.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... COAL PRODUCTION REPORTING § 870.20 How to calculate excess moisture in LOW-rank coals. Here are the requirements for calculating the excess moisture in low-rank coals for a calendar quarter. ASTM standards...

  20. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2004-11-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. there were two main objectives for this reporting period. first, they wanted to collect wilcox coal samples from depths similar to those of probable sequestration sites, with the objective of determining accurate parameters for reservoir model description and for reservoir simulation. The second objective was to pursue opportunities for determining permeability of deep Wilcox coal to use as additional, necessary data for modeling reservoir performance during CO{sub 2} sequestration and enhanced coalbed methane recovery. In mid-summer, Anadarko Petroleum Corporation agreed to allow the authors to collect Wilcox Group coal samples from a well that was to be drilled to the Austin Chalk, which is several thousand feet below the Wilcox. In addition, they agreed to allow them to perform permeability tests in coal beds in an existing shut-in well. Both wells are in the region of the Sam K. Seymour power station, a site that they earlier identified as a major point source of CO{sub 2}. They negotiated contracts for sidewall core collection and core analyses, and they began discussions with a service company to perform permeability testing. To collect sidewall core samples of the Wilcox coals, they made structure and isopach maps and cross sections to select coal beds and to determine their depths for coring. On September 29, 10 sidewall core samples were obtained from 3 coal beds of the Lower Calvert Bluff Formation of the Wilcox Group. The samples were desorbed in 4 sidewall core canisters. Desorbed gas samples were sent to a laboratory for gas compositional analyses, and the coal samples were sent to another laboratory to measure CO{sub 2}, CH{sub 4}, and N{sub 2} sorption isotherms. All analyses should be finished by the end of

  1. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2005-10-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to perform reservoir simulation and economic sensitivity studies to (1) determine the effects of injection gas composition, (2) determine the effects of injection rate, and (3) determine the effects of coal dewatering prior to CO{sub 2} injection on CO{sub 2} sequestration in the Lower Calvert Bluff Formation (LCB) of the Wilcox Group coals in east-central Texas. To predict CO{sub 2} sequestration and ECBM in LCB coal beds for these three sensitivity studies, we constructed a 5-spot pattern reservoir simulation model and selected reservoir parameters representative of a typical depth, approximately 6,200-ft, of potential LCB coalbed reservoirs in the focus area of East-Central Texas. Simulation results of flue gas injection (13% CO{sub 2} - 87% N{sub 2}) in an 80-acre 5-spot pattern (40-ac well spacing) indicate that LCB coals with average net thickness of 20 ft can store a median value of 0.46 Bcf of CO{sub 2} at depths of 6,200 ft, with a median ECBM recovery of 0.94 Bcf and median CO{sub 2} breakthrough time of 4,270 days (11.7 years). Simulation of 100% CO{sub 2} injection in an 80-acre 5-spot pattern indicated that these same coals with average net thickness of 20 ft can store a median value of 1.75 Bcf of CO{sub 2} at depths of 6,200 ft with a median ECBM recovery of 0.67 Bcf and median CO{sub 2} breakthrough time of 1,650 days (4.5 years). Breakthrough was defined as the point when CO{sub 2} comprised 5% of the production stream for all cases. The injection rate sensitivity study for pure CO{sub 2} injection in an 80-acre 5-spot pattern at 6,200-ft depth shows that total volumes of CO{sub 2} sequestered and methane produced do not have significant sensitivity to

  2. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect

    Constance Senior

    2004-10-29

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  3. Low-Rank and Joint Sparse Representations for Multi-Modal Recognition.

    PubMed

    Zhang, Heng; Patel, Vishal M; Chellappa, Rama

    2017-10-01

    We propose multi-task and multivariate methods for multi-modal recognition based on low-rank and joint sparse representations. Our formulations can be viewed as generalized versions of multivariate low-rank and sparse regression, where sparse and low-rank representations across all modalities are imposed. One of our methods simultaneously couples information within different modalities by enforcing the common low-rank and joint sparse constraints among multi-modal observations. We also modify our formulations by including an occlusion term that is assumed to be sparse. The alternating direction method of multipliers is proposed to efficiently solve the resulting optimization problems. Extensive experiments on three publicly available multi-modal biometrics and object recognition data sets show that our methods compare favorably with other feature-level fusion methods.

  4. Emphasizing Research (Further) in Undergraduate Technical Communication Curricula: Involving Undergraduate Students with an Academic Journal's Publication and Management

    ERIC Educational Resources Information Center

    Ford, Julie Dyke; Newmark, Julianne

    2011-01-01

    This article presents follow-up information to a previous publication regarding ways to increase emphasis on research skills in undergraduate Technical Communication curricula. We detail the ways our undergraduate program highlights research by requiring majors to complete senior thesis projects that culminate in submission to an online…

  5. The utilization of Indonesia`s low rank coal: Its potential, challenges and prospects

    SciTech Connect

    Panaka, P.

    1997-07-01

    It has known that there are around 36 billion tons of coal resources potential in Indonesia, however over 21 billion tons (58.7%) is classified as low-rank (lignite) coal. Due to their properties, these coals are not economical to be transported for a long distance and are therefore unexportable. That`s why these low-rank coals still under-utilized at present. As the utilization of low-rank coals is expected to grow in importance as the domestic`s demand for energy increases in the near future, efforts should also be directed to find the possible upgrading technology for low-rank coals by reducing the total moisture of it, once the possible upgrading technology has been adopted, then those coal can be converted into coal water mixture, coal liquefaction, gasification, briquetting, etc., even for mine mouth power-plant. The challenges facing low-rank coals are: low conversion efficiency resulting from the high moisture content and relatively low in calorific values, the risk of spontaneous combustion, ash deposit formation and higher CO{sub 2} emission To response to these challenges, the adoption of new and advanced technologies for the utilization of low-rank coals from the third countries is therefore required. Combined cycle technologies such as CFBC, PFBC and IGCC, etc. combined with coal up-grading technology are applicable to low-rank coals and are expected to become a major future power plant for Indonesia. The main question for low-rank coals is whether these plants can be competitive when the extra costs involved in up-grading (drying) the coal are taken into account.

  6. Efficiency improved scalar wave low-rank extrapolation with an effective perfectly matched layer

    NASA Astrophysics Data System (ADS)

    Chen, Hanming; Zhou, Hui; Xia, Muming

    2017-02-01

    Low-rank extrapolation is a relatively new method for seismic wave simulation. However, the low-rank method involved requires several fast Fourier transforms (FFTs) per time step, and the number of FFTs increases with the time-stepping size and complexity of the model, which leads to high computational cost at each step. To reduce the cost per time step, a more efficient low-rank extrapolation scheme is presented by splitting the original wave propagator into two parts. The first part represents the traditional pseudo-spectral operator, and is calculated by FFT directly. The residual part compensates the time-stepping error, and is approximated by low-rank decomposition. Compared with the conventional low-rank extrapolation scheme, the improved extrapolation scheme enables using a lower rank for the decomposition to attain similar approximation accuracy, which reduces the number of floating-point operations per time step, and thus reduces the total computational cost. To avoid the wraparound effect caused by FFTs, we develop an effective split perfectly matched layer (PML) to absorb outgoing waves near the boundary. Numerical examples verify the accuracy of the developed low-rank extrapolation scheme and the effectiveness of the PML.

  7. Low-rank coal study. Volume 4. Regulatory, environmental, and market analyses

    SciTech Connect

    Not Available

    1980-11-01

    The regulatory, environmental, and market constraints to development of US low-rank coal resources are analyzed. Government-imposed environmental and regulatory requirements are among the most important factors that determine the markets for low-rank coal and the technology used in the extraction, delivery, and utilization systems. Both state and federal controls are examined, in light of available data on impacts and effluents associated with major low-rank coal development efforts. The market analysis examines both the penetration of existing markets by low-rank coal and the evolution of potential markets in the future. The electric utility industry consumes about 99 percent of the total low-rank coal production. This use in utility boilers rose dramatically in the 1970's and is expected to continue to grow rapidly. In the late 1980's and 1990's, industrial direct use of low-rank coal and the production of synthetic fuels are expected to start growing as major new markets.

  8. Enhancing Women's Undergraduate Experience in Physics and Chemistry Through a PUI/MRSEC Collaboration Emphasizing Materials Research

    NASA Astrophysics Data System (ADS)

    Goldberg, Velda; Malliaras, George; Schember, Helene; Singhota, Nevjinder

    2002-04-01

    This three-year collaboration between a predominately undergraduate women's college (Simmons College) and a NSF-supported Materials Research Science and Engineering Center (the Cornell Center for Materials Research (CCMR)) provides opportunities for physics and chemistry students to participate in materials-related research throughout their undergraduate careers, have access to sophisticated instrumentation, and gain related work experience in industrial settings. As part of the project, undergraduate students are involved in all aspects of a collaborative Simmons/Cornell research program concentrating on degradation processes in electroluminescent materials. This work is particularly interesting because an understanding and control of these processes will ultimately influence the use of these materials in various types of consumer products.

  9. Middle/high school students in the research laboratory: A summer internship program emphasizing the interdisciplinary nature of biology.

    PubMed

    McMiller, Tracee; Lee, Tameshia; Saroop, Ria; Green, Tyra; Johnson, Casonya M

    2006-03-01

    We describe an eight-week summer Young Scientist in Training (YSIT) internship program involving middle and high school students. This program exposed students to current basic research in molecular genetics, while introducing or reinforcing principles of the scientific method and demonstrating the uses of mathematics and chemistry in biology. For the laboratory-based program, selected students from Baltimore City Schools working in groups of three were teamed with undergraduate research assistants at Morgan State University. Teams were assigned a project that was indirectly related to our laboratory research on the characterization of gene expression in Caenorhabditis elegans. At the end of the program, teams prepared posters detailing their accomplishments, and presented their findings to parents and faculty members during a mini-symposium. The posters were also submitted to the respective schools and the interns were offered a presentation of their research at local high school science fairs. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.

  10. Middle/High School Students in the Research Laboratory: A Summer Internship Program Emphasizing the Interdisciplinary Nature of Biology

    ERIC Educational Resources Information Center

    McMiller, Tracee; Lee, Tameshia; Saroop, Ria; Green, Tyra; Johnson, Casonya M.

    2006-01-01

    We describe an eight-week summer Young Scientist in Training (YSIT) internship program involving middle and high school students. This program exposed students to current basic research in molecular genetics, while introducing or reinforcing principles of the scientific method and demonstrating the uses of mathematics and chemistry in biology. For…

  11. Middle/High School Students in the Research Laboratory: A Summer Internship Program Emphasizing the Interdisciplinary Nature of Biology

    ERIC Educational Resources Information Center

    McMiller, Tracee; Lee, Tameshia; Saroop, Ria; Green, Tyra; Johnson, Casonya M.

    2006-01-01

    We describe an eight-week summer Young Scientist in Training (YSIT) internship program involving middle and high school students. This program exposed students to current basic research in molecular genetics, while introducing or reinforcing principles of the scientific method and demonstrating the uses of mathematics and chemistry in biology. For…

  12. The Ivory Tower and the Community: A New Approach to Emphasizing the Relevance of Environmental Science Research

    NASA Astrophysics Data System (ADS)

    Cuff, K. E.; Corazza, L.

    2006-12-01

    Over the past eight years we have developed and implemented several U.C. Berkeley-based outreach programs that provide opportunities for grades nine through eleven students in the East San Francisco Bay Area to gain skills and understandings that increase their capacity to enroll and perform successfully in science, technology, engineering, and mathematics (STEM) courses in the future, which enhances their capacity to decide to pursue STEM careers. A common element of these programs is the opportunity they provide participants to engage in environmental science research projects that are directly linked to relevant, real-world environmental problems and issues facing their communities. Analysis of evidence gleaned from questionnaires, interviews and specific assessment instruments indicates that these programs have consistently achieved a high degree of success in that they have: significantly increased participants' understanding of the process and nature of science; enhanced their intellectual self-confidence with regard to STEM; developed deeper appreciation of how scientific research can contribute to the maintenance of healthy local environments; developed a greater interest in participating in STEM-related courses of study and after school programs; and improved attitudes toward STEM. These results corroborate recent research studies that indicate a close relationship between educational activities that promote the perception of STEM as being relevant and the ability to foster development of deeper conceptual understandings among teens. Moreover, they support the notion that providing opportunities for students to develop personal connections with particular issues discussed, and real-world STEM experiences that make STEM more relevant and interesting can help to bring about changes in attitude, which is a key component in improving STEM learning and understanding particularly among urban youth. Overall, our work suggests that in order for a given STEM

  13. Studies of low rank coal stabilities. Final report

    SciTech Connect

    1998-03-01

    The National Institute for Occupational Safety and Health (NIOSH), Pittsburgh Research Center, tested feed coal and product samples from Wyoming and Montana for thermal stability in the adiabatic oven and sealed flask apparatus. The results indicated that the products had higher thermal stabilities in comparison with the feed coals. However, both the products samples and feed coals exhibited high spontaneous combustion potentials. A report on these studies was submitted in December 1995. Experiments were also completed in the adiabatic oven to determine the rate of decrease in the heating rate of a reactive sample on exposure to pulses of moist air, and moist nitrogen. The results indicated that with each succeeding pulse, longer time were required to reach selected elevated temperatures. The results also indicated some level of synergy between water and oxygen in the heat generation reaction. The data and results were transmitted to Dr. Dennis Finseth upon completion of the experiments.

  14. Indonesian low rank coal oxidation: The effect of H2O2 concentration and oxidation temperature

    NASA Astrophysics Data System (ADS)

    Rahayu, S. S.; Findiati, F.; Aprilia, F.

    2016-11-01

    Extraction of Indonesian low rank coals by alkaline solution has been performed to isolate the humic substances. Pretreatments of the coals by oxidation using H2O2 prior to extraction are required to have higher yield of humic substances. In the previous research, only the extraction process was considered. Therefore, the effects of reaction temperature and residence time on coal oxidation and composition of extract residues are also investigated in this research. The oxidation temperatures studied were 40°C, 50°C, and 70°C and the H2O2 concentrations studied were 5%, 15%, 20 %, and 30 %. All the oxidation variables were studied for 90 minutes. The results show that the higher the concentration of H2O2 used, the less oxidized coal produced. The same trend was obtained by using higher oxidation temperature. The effect of H2O2 concentration, oxidation temperature and reaction time to the yield of humic substances extraction have positive trends.

  15. Low-rank coal study : national needs for resource development. Volume 2. Resource characterization

    SciTech Connect

    Not Available

    1980-11-01

    Comprehensive data are presented on the quantity, quality, and distribution of low-rank coal (subbituminous and lignite) deposits in the United States. The major lignite-bearing areas are the Fort Union Region and the Gulf Lignite Region, with the predominant strippable reserves being in the states of North Dakota, Montana, and Texas. The largest subbituminous coal deposits are in the Powder River Region of Montana and Wyoming, The San Juan Basin of New Mexico, and in Northern Alaska. For each of the low-rank coal-bearing regions, descriptions are provided of the geology; strippable reserves; active and planned mines; classification of identified resources by depth, seam thickness, sulfur content, and ash content; overburden characteristics; aquifers; and coal properties and characteristics. Low-rank coals are distinguished from bituminous coals by unique chemical and physical properties that affect their behavior in extraction, utilization, or conversion processes. The most characteristic properties of the organic fraction of low-rank coals are the high inherent moisture and oxygen contents, and the correspondingly low heating value. Mineral matter (ash) contents and compositions of all coals are highly variable; however, low-rank coals tend to have a higher proportion of the alkali components CaO, MgO, and Na/sub 2/O. About 90% of the reserve base of US low-rank coal has less than one percent sulfur. Water resources in the major low-rank coal-bearing regions tend to have highly seasonal availabilities. Some areas appear to have ample water resources to support major new coal projects; in other areas such as Texas, water supplies may be constraining factor on development.

  16. Annihilating Filter-Based Low-Rank Hankel Matrix Approach for Image Inpainting.

    PubMed

    Jin, Kyong Hwan; Ye, Jong Chul

    2015-11-01

    In this paper, we propose a patch-based image inpainting method using a low-rank Hankel structured matrix completion approach. The proposed method exploits the annihilation property between a shift-invariant filter and image data observed in many existing inpainting algorithms. In particular, by exploiting the commutative property of the convolution, the annihilation property results in a low-rank block Hankel structure data matrix, and the image inpainting problem becomes a low-rank structured matrix completion problem. The block Hankel structured matrices are obtained patch-by-patch to adapt to the local changes in the image statistics. To solve the structured low-rank matrix completion problem, we employ an alternating direction method of multipliers with factorization matrix initialization using the low-rank matrix fitting algorithm. As a side product of the matrix factorization, locally adaptive dictionaries can be also easily constructed. Despite the simplicity of the algorithm, the experimental results using irregularly subsampled images as well as various images with globally missing patterns showed that the proposed method outperforms existing state-of-the-art image inpainting methods.

  17. Low-Rank Modeling of Local k-Space Neighborhoods (LORAKS) for Constrained MRI

    PubMed Central

    Haldar, Justin P.

    2014-01-01

    Recent theoretical results on low-rank matrix reconstruction have inspired significant interest in low-rank modeling of MRI images. Existing approaches have focused on higher-dimensional scenarios with data available from multiple channels, timepoints, or image contrasts. The present work demonstrates that single-channel, single-contrast, single-timepoint k-space data can also be mapped to low-rank matrices when the image has limited spatial support or slowly varying phase. Based on this, we develop a novel and flexible framework for constrained image reconstruction that uses low-rank matrix modeling of local k-space neighborhoods (LORAKS). A new regularization penalty and corresponding algorithm for promoting low-rank are also introduced. The potential of LORAKS is demonstrated with simulated and experimental data for a range of denoising and sparse-sampling applications. LORAKS is also compared against state-of-the-art methods like homodyne reconstruction, ℓ1-norm minimization, and total variation minimization, and is demonstrated to have distinct features and advantages. In addition, while calibration-based support and phase constraints are commonly used in existing methods, the LORAKS framework enables calibrationless use of these constraints. PMID:24595341

  18. Block-Diagonal Constrained Low-Rank and Sparse Graph for Discriminant Analysis of Image Data

    PubMed Central

    Guo, Tan; Tan, Xiaoheng; Zhang, Lei; Xie, Chaochen; Deng, Lu

    2017-01-01

    Recently, low-rank and sparse model-based dimensionality reduction (DR) methods have aroused lots of interest. In this paper, we propose an effective supervised DR technique named block-diagonal constrained low-rank and sparse-based embedding (BLSE). BLSE has two steps, i.e., block-diagonal constrained low-rank and sparse representation (BLSR) and block-diagonal constrained low-rank and sparse graph embedding (BLSGE). Firstly, the BLSR model is developed to reveal the intrinsic intra-class and inter-class adjacent relationships as well as the local neighborhood relations and global structure of data. Particularly, there are mainly three items considered in BLSR. First, a sparse constraint is required to discover the local data structure. Second, a low-rank criterion is incorporated to capture the global structure in data. Third, a block-diagonal regularization is imposed on the representation to promote discrimination between different classes. Based on BLSR, informative and discriminative intra-class and inter-class graphs are constructed. With the graphs, BLSGE seeks a low-dimensional embedding subspace by simultaneously minimizing the intra-class scatter and maximizing the inter-class scatter. Experiments on public benchmark face and object image datasets demonstrate the effectiveness of the proposed approach. PMID:28640206

  19. CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition

    PubMed Central

    Gou, Shuiping; Wang, Yueyue; Wang, Zhilong; Peng, Yong; Zhang, Xiaopeng; Jiao, Licheng; Wu, Jianshe

    2013-01-01

    Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper, we propose a low-rank decomposition-based method for computed tomography (CT) image sequence restoration, where the CT image sequence is decomposed into a sparse component and a low-rank component. A new point spread function of Weiner filter is employed to efficiently remove blur in the sparse component; a wiener filtering with the Gaussian PSF is used to recover the average image of the low-rank component. And then we get the recovered CT image sequence by combining the recovery low-rank image with all recovery sparse image sequence. Our method achieves restoration results with higher contrast, sharper organ boundaries and richer soft tissue structure information, compared with existing CT image restoration methods. The robustness of our method was assessed with numerical experiments using three different low-rank models: Robust Principle Component Analysis (RPCA), Linearized Alternating Direction Method with Adaptive Penalty (LADMAP) and Go Decomposition (GoDec). Experimental results demonstrated that the RPCA model was the most suitable for the small noise CT images whereas the GoDec model was the best for the large noisy CT images. PMID:24023764

  20. Low-rank approximations with sparse factors II: Penalized methods with discrete Newton-like iterations

    SciTech Connect

    Zhang, Zhenyue; Zha, Hongyuan; Simon, Horst

    2006-07-31

    In this paper, we developed numerical algorithms for computing sparse low-rank approximations of matrices, and we also provided a detailed error analysis of the proposed algorithms together with some numerical experiments. The low-rank approximations are constructed in a certain factored form with the degree of sparsity of the factors controlled by some user-specified parameters. In this paper, we cast the sparse low-rank approximation problem in the framework of penalized optimization problems. We discuss various approximation schemes for the penalized optimization problem which are more amenable to numerical computations. We also include some analysis to show the relations between the original optimization problem and the reduced one. We then develop a globally convergent discrete Newton-like iterative method for solving the approximate penalized optimization problems. We also compare the reconstruction errors of the sparse low-rank approximations computed by our new methods with those obtained using the methods in the earlier paper and several other existing methods for computing sparse low-rank approximations. Numerical examples show that the penalized methods are more robust and produce approximations with factors which have fewer columns and are sparser.

  1. Patch-Based Image Inpainting via Two-Stage Low Rank Approximation.

    PubMed

    Guo, Qiang; Gao, Shanshan; Zhang, Xiaofeng; Yin, Yilong; Zhang, Caiming

    2017-05-09

    To recover the corrupted pixels, traditional inpainting methods based on low-rank priors generally need to solve a convex optimization problem by an iterative singular value shrinkage algorithm. In this paper, we propose a simple method for image inpainting using low rank approximation, which avoids the time-consuming iterative shrinkage. Specifically, if similar patches of a corrupted image are identified and reshaped as vectors, then a patch matrix can be constructed by collecting these similar patch-vectors. Due to its columns being highly linearly correlated, this patch matrix is low-rank. Instead of using an iterative singular value shrinkage scheme, the proposed method utilizes low rank approximation with truncated singular values to derive a closed-form estimate for each patch matrix. Depending upon an observation that there exists a distinct gap in the singular spectrum of patch matrix, the rank of each patch matrix is empirically determined by a heuristic procedure. Inspired by the inpainting algorithms with component decomposition, a two-stage low rank approximation (TSLRA) scheme is designed to recover image structures and refine texture details of corrupted images. Experimental results on various inpainting tasks demonstrate that the proposed method is comparable and even superior to some state-of-the-art inpainting algorithms.

  2. Robust visual tracking via L 0 regularized local low-rank feature learning

    NASA Astrophysics Data System (ADS)

    Liu, Risheng; Bai, Shanshan; Su, Zhixun; Zhang, Changcheng; Sun, Chunhai

    2015-05-01

    Visual tracking is a fundamental task and has many applications in computer vision. We incorporate local dictionary and L0 regularized low-rank features into the particle filter framework to address this problem. Specifically, by developing an efficient L0 regularized sparse coding model to incrementally learn low-rank features for the tracking target and incorporating a local dictionary into low-rank features to build the observation model, we establish a robust online object tracking system. As a nontrivial byproduct, we also develop numerical algorithms to efficiently solve the resulting nonconvex optimization problems. Compared with conventional methods, which often directly use corrupted observations to form the dictionary, our low-rank feature-based dictionary successfully removes occlusions and exactly represents the intrinsic structure of the object. Furthermore, in contrast to the traditional holistic methods, the local strategy contains abundant partial and spatial information, thus enhancing the discrimination of our observation model. More importantly, the L0 norm-based hard sparse coding can successfully reduce the redundant information while preserving the intrinsic low-rank features of the target object, leading to a better appearance subspace updating scheme. Experimental results on challenging sequences show that our method consistently outperforms several state-of-the-art methods.

  3. Similarity preserving low-rank representation for enhanced data representation and effective subspace learning.

    PubMed

    Zhang, Zhao; Yan, Shuicheng; Zhao, Mingbo

    2014-05-01

    Latent Low-Rank Representation (LatLRR) delivers robust and promising results for subspace recovery and feature extraction through mining the so-called hidden effects, but the locality of both similar principal and salient features cannot be preserved in the optimizations. To solve this issue for achieving enhanced performance, a boosted version of LatLRR, referred to as Regularized Low-Rank Representation (rLRR), is proposed through explicitly including an appropriate Laplacian regularization that can maximally preserve the similarity among local features. Resembling LatLRR, rLRR decomposes given data matrix from two directions by seeking a pair of low-rank matrices. But the similarities of principal and salient features can be effectively preserved by rLRR. As a result, the correlated features are well grouped and the robustness of representations is also enhanced. Based on the outputted bi-directional low-rank codes by rLRR, an unsupervised subspace learning framework termed Low-rank Similarity Preserving Projections (LSPP) is also derived for feature learning. The supervised extension of LSPP is also discussed for discriminant subspace learning. The validity of rLRR is examined by robust representation and decomposition of real images. Results demonstrated the superiority of our rLRR and LSPP in comparison to other related state-of-the-art algorithms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Low-rank and eigenface based sparse representation for face recognition.

    PubMed

    Hou, Yi-Fu; Sun, Zhan-Li; Chong, Yan-Wen; Zheng, Chun-Hou

    2014-01-01

    In this paper, based on low-rank representation and eigenface extraction, we present an improvement to the well known Sparse Representation based Classification (SRC). Firstly, the low-rank images of the face images of each individual in training subset are extracted by the Robust Principal Component Analysis (Robust PCA) to alleviate the influence of noises (e.g., illumination difference and occlusions). Secondly, Singular Value Decomposition (SVD) is applied to extract the eigenfaces from these low-rank and approximate images. Finally, we utilize these eigenfaces to construct a compact and discriminative dictionary for sparse representation. We evaluate our method on five popular databases. Experimental results demonstrate the effectiveness and robustness of our method.

  5. Low-Rank and Sparsity Analysis Applied to Speech Enhancement Via Online Estimated Dictionary

    NASA Astrophysics Data System (ADS)

    Sun, Pengfei; Qin, Jun

    2016-12-01

    We propose an online estimated dictionary based single channel speech enhancement algorithm, which focuses on low rank and sparse matrix decomposition. In this proposed algorithm, a noisy speech spectral matrix is considered as the summation of low rank background noise components and an activation of the online speech dictionary, on which both low rank and sparsity constraints are imposed. This decomposition takes the advantage of local estimated dictionary high expressiveness on speech components. The local dictionary can be obtained through estimating the speech presence probability by applying Expectation Maximal algorithm, in which a generalized Gamma prior for speech magnitude spectrum is used. The evaluation results show that the proposed algorithm achieves significant improvements when compared to four other speech enhancement algorithms.

  6. Low-Rank and Eigenface Based Sparse Representation for Face Recognition

    PubMed Central

    Hou, Yi-Fu; Sun, Zhan-Li; Chong, Yan-Wen; Zheng, Chun-Hou

    2014-01-01

    In this paper, based on low-rank representation and eigenface extraction, we present an improvement to the well known Sparse Representation based Classification (SRC). Firstly, the low-rank images of the face images of each individual in training subset are extracted by the Robust Principal Component Analysis (Robust PCA) to alleviate the influence of noises (e.g., illumination difference and occlusions). Secondly, Singular Value Decomposition (SVD) is applied to extract the eigenfaces from these low-rank and approximate images. Finally, we utilize these eigenfaces to construct a compact and discriminative dictionary for sparse representation. We evaluate our method on five popular databases. Experimental results demonstrate the effectiveness and robustness of our method. PMID:25334027

  7. [Study on Microwave Co-Pyrolysis of Low Rank Coal and Circulating Coal Gas].

    PubMed

    Zhou, Jun; Yang, Zhe; Liu, Xiao-feng; Wu, Lei; Tian, Yu-hong; Zhao, Xi-cheng

    2016-02-01

    The pyrolysis of low rank coal to produce bluecoke, coal tar and gas is considered to be the optimal method to realize its clean and efficient utilization. However, the current mainstream pyrolysis production technology generally has a certain particle size requirements for raw coal, resulting in lower yield and poorer quality of coal tar, lower content of effective components in coal gas such as H₂, CH₄, CO, etc. To further improve the yield of coal tar obtained from the pyrolysis of low rank coal and explore systematically the effect of microwave power, pyrolysis time and particle size of coal samples on the yield and composition of microwave pyrolysis products of low rank coal through the analysis and characterization of products with FTIR and GC-MS, introducing microwave pyrolysis of low rank coal into the microwave pyrolysis reactor circularly was suggested to carry out the co-pyrolysis experiment of the low rank coal and coal gas generated by the pyrolysis of low rank coal. The results indicated that the yield of the bluecoke and liquid products were up to 62.2% and 26.8% respectively when the optimal pyrolysis process conditions with the microwave power of 800W, pyrolysis time of 40 min, coal samples particle size of 5-10 mm and circulating coal gas flow rate of 0.4 L · min⁻¹ were selected. The infrared spectrogram of the bluecoke under different microwave power and pyrolysis time overlapped roughly. The content of functional groups with -OH, C==O, C==C and C−O from the bluecoke through the pyrolysis of particle size coal samples had a larger difference. To improve microwave power, prolonging pyrolysis time and reducing particle size of coal samples were conducive to converting heavy component to light one into coal tar.

  8. An Algorithm for Improving Non-Local Means Operators via Low-Rank Approximation.

    PubMed

    May, Victor; Keller, Yosi; Sharon, Nir; Shkolnisky, Yoel

    2016-03-01

    We present a method for improving a non-local means (NLM) operator by computing its low-rank approximation. The low-rank operator is constructed by applying a filter to the spectrum of the original NLM operator. This results in an operator, which is less sensitive to noise while preserving important properties of the original operator. The method is efficiently implemented based on Chebyshev polynomials and is demonstrated on the application of natural images denoising. For this application, we provide a comparison of our method with other denoising methods.

  9. Process to improve boiler operation by supplemental firing with thermally beneficiated low rank coal

    DOEpatents

    Sheldon, Ray W.

    2001-01-01

    The invention described is a process for improving the performance of a commercial coal or lignite fired boiler system by supplementing its normal coal supply with a controlled quantity of thermally beneficiated low rank coal, (TBLRC). This supplemental TBLRC can be delivered either to the solid fuel mill (pulverizer) or directly to the coal burner feed pipe. Specific benefits are supplied based on knowledge of equipment types that may be employed on a commercial scale to complete the process. The thermally beneficiated low rank coal can be delivered along with regular coal or intermittently with regular coal as the needs require.

  10. Constrained Low-Rank Learning Using Least Squares-Based Regularization.

    PubMed

    Li, Ping; Yu, Jun; Wang, Meng; Zhang, Luming; Cai, Deng; Li, Xuelong

    2016-11-10

    Low-rank learning has attracted much attention recently due to its efficacy in a rich variety of real-world tasks, e.g., subspace segmentation and image categorization. Most low-rank methods are incapable of capturing low-dimensional subspace for supervised learning tasks, e.g., classification and regression. This paper aims to learn both the discriminant low-rank representation (LRR) and the robust projecting subspace in a supervised manner. To achieve this goal, we cast the problem into a constrained rank minimization framework by adopting the least squares regularization. Naturally, the data label structure tends to resemble that of the corresponding low-dimensional representation, which is derived from the robust subspace projection of clean data by low-rank learning. Moreover, the low-dimensional representation of original data can be paired with some informative structure by imposing an appropriate constraint, e.g., Laplacian regularizer. Therefore, we propose a novel constrained LRR method. The objective function is formulated as a constrained nuclear norm minimization problem, which can be solved by the inexact augmented Lagrange multiplier algorithm. Extensive experiments on image classification, human pose estimation, and robust face recovery have confirmed the superiority of our method.

  11. Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization.

    PubMed

    Lu, Canyi; Lin, Zhouchen; Yan, Shuicheng

    2015-02-01

    This paper presents a general framework for solving the low-rank and/or sparse matrix minimization problems, which may involve multiple nonsmooth terms. The iteratively reweighted least squares (IRLSs) method is a fast solver, which smooths the objective function and minimizes it by alternately updating the variables and their weights. However, the traditional IRLS can only solve a sparse only or low rank only minimization problem with squared loss or an affine constraint. This paper generalizes IRLS to solve joint/mixed low-rank and sparse minimization problems, which are essential formulations for many tasks. As a concrete example, we solve the Schatten-p norm and l2,q-norm regularized low-rank representation problem by IRLS, and theoretically prove that the derived solution is a stationary point (globally optimal if p,q ≥ 1). Our convergence proof of IRLS is more general than previous one that depends on the special properties of the Schatten-p norm and l2,q-norm. Extensive experiments on both synthetic and real data sets demonstrate that our IRLS is much more efficient.

  12. Depth Image Inpainting: Improving Low Rank Matrix Completion With Low Gradient Regularization.

    PubMed

    Xue, Hongyang; Zhang, Shengming; Cai, Deng

    2017-09-01

    We address the task of single depth image inpainting. Without the corresponding color images, previous or next frames, depth image inpainting is quite challenging. One natural solution is to regard the image as a matrix and adopt the low rank regularization just as color image inpainting. However, the low rank assumption does not make full use of the properties of depth images. A shallow observation inspires us to penalize the nonzero gradients by sparse gradient regularization. However, statistics show that though most pixels have zero gradients, there is still a non-ignorable part of pixels, whose gradients are small but nonzero. Based on this property of depth images, we propose a low gradient regularization method in which we reduce the penalty for small gradients while penalizing the nonzero gradients to allow for gradual depth changes. The proposed low gradient regularization is integrated with the low rank regularization into the low rank low gradient approach for depth image inpainting. We compare our proposed low gradient regularization with the sparse gradient regularization. The experimental results show the effectiveness of our proposed approach.

  13. Depth Image Inpainting: Improving Low Rank Matrix Completion With Low Gradient Regularization

    NASA Astrophysics Data System (ADS)

    Xue, Hongyang; Zhang, Shengming; Cai, Deng

    2017-09-01

    We consider the case of inpainting single depth images. Without corresponding color images, previous or next frames, depth image inpainting is quite challenging. One natural solution is to regard the image as a matrix and adopt the low rank regularization just as inpainting color images. However, the low rank assumption does not make full use of the properties of depth images. A shallow observation may inspire us to penalize the non-zero gradients by sparse gradient regularization. However, statistics show that though most pixels have zero gradients, there is still a non-ignorable part of pixels whose gradients are equal to 1. Based on this specific property of depth images , we propose a low gradient regularization method in which we reduce the penalty for gradient 1 while penalizing the non-zero gradients to allow for gradual depth changes. The proposed low gradient regularization is integrated with the low rank regularization into the low rank low gradient approach for depth image inpainting. We compare our proposed low gradient regularization with sparse gradient regularization. The experimental results show the effectiveness of our proposed approach.

  14. Proceedings of the Australian/USA workshop on low rank coals

    SciTech Connect

    Not Available

    1991-01-01

    The current commercial use of the low-rank coals in both Australia (total production of 53 million short tons in 1989) and the US (318 million tons) is predominantly in electric power generation. The few important exceptions include 2.5 million tons of Victorian brown coal used annually in the production of briquettes, 6 million tons of North Dakota lignite gasified to produce substitute natural gas, and 0.2 millions tons of Wyoming subbituminous coal used to produce formcoke for phosphorus manufacture. The large potential for increased utilization of low-rank coals as raw materials for synthetic liquid fuels and high-value-added carbons has not been realized in either Australia or the US, owing largely to energy economics dominated by low world prices for petroleum. At present, a number of initiatives affecting energy policies, markets, and technologies are underway in both countries that will help to improve the prospects for future commercial development, notably the Clean Coal Technology program in the US and the Coal Corporation of Victoria in Australia. The occasion of the 1991 Low-Rank Fuels Symposium, therefore, represented a particularly appropriate time for invited scientists and technologist from the two countries to meet to assess the status of technologies for producing liquid fuels and value-added carbon products from low-rank coals. Nine papers have been abstracted separately for inclusion on the data base.

  15. Anomaly detection in hyperspectral imagery based on low-rank and sparse decomposition

    NASA Astrophysics Data System (ADS)

    Cui, Xiaoguang; Tian, Yuan; Weng, Lubin; Yang, Yiping

    2014-01-01

    This paper presents a novel low-rank and sparse decomposition (LSD) based model for anomaly detection in hyperspectral images. In our model, a local image region is represented as a low-rank matrix plus spares noises in the spectral space, where the background can be explained by the low-rank matrix, and the anomalies are indicated by the sparse noises. The detection of anomalies in local image regions is formulated as a constrained LSD problem, which can be solved efficiently and robustly with a modified "Go Decomposition" (GoDec) method. To enhance the validity of this model, we adapts a "simple linear iterative clustering" (SLIC) superpixel algorithm to efficiently generate homogeneous local image regions i.e. superpixels in hyperspectral imagery, thus ensures that the background in local image regions satisfies the condition of low-rank. Experimental results on real hyperspectral data demonstrate that, compared with several known local detectors including RX detector, kernel RX detector, and SVDD detector, the proposed model can comfortably achieves better performance in satisfactory computation time.

  16. 30 CFR 870.20 - How to calculate excess moisture in LOW-rank coals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for calculating the excess moisture in low-rank coals for a calendar quarter. ASTM standards D2234... Annual Book of ASTM Standards, Volume 05.05. The Director of the Federal Register approved this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Each applicable ASTM standard...

  17. 30 CFR 870.20 - How to calculate excess moisture in LOW-rank coals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for calculating the excess moisture in low-rank coals for a calendar quarter. ASTM standards D2234... Annual Book of ASTM Standards, Volume 05.05. The Director of the Federal Register approved this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Each applicable ASTM standard...

  18. 30 CFR 870.20 - How to calculate excess moisture in LOW-rank coals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for calculating the excess moisture in low-rank coals for a calendar quarter. ASTM standards D2234... Annual Book of ASTM Standards, Volume 05.05. The Director of the Federal Register approved this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Each applicable ASTM standard...

  19. 30 CFR 870.20 - How to calculate excess moisture in LOW-rank coals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for calculating the excess moisture in low-rank coals for a calendar quarter. ASTM standards D2234... Annual Book of ASTM Standards, Volume 05.05. The Director of the Federal Register approved this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Each applicable ASTM standard...

  20. A Novel Graph Constructor for Semisupervised Discriminant Analysis: Combined Low-Rank and k-Nearest Neighbor Graph

    PubMed Central

    Pan, Yongke; Niu, Wenjia

    2017-01-01

    Semisupervised Discriminant Analysis (SDA) is a semisupervised dimensionality reduction algorithm, which can easily resolve the out-of-sample problem. Relative works usually focus on the geometric relationships of data points, which are not obvious, to enhance the performance of SDA. Different from these relative works, the regularized graph construction is researched here, which is important in the graph-based semisupervised learning methods. In this paper, we propose a novel graph for Semisupervised Discriminant Analysis, which is called combined low-rank and k-nearest neighbor (LRKNN) graph. In our LRKNN graph, we map the data to the LR feature space and then the kNN is adopted to satisfy the algorithmic requirements of SDA. Since the low-rank representation can capture the global structure and the k-nearest neighbor algorithm can maximally preserve the local geometrical structure of the data, the LRKNN graph can significantly improve the performance of SDA. Extensive experiments on several real-world databases show that the proposed LRKNN graph is an efficient graph constructor, which can largely outperform other commonly used baselines. PMID:28316616

  1. A Novel Graph Constructor for Semisupervised Discriminant Analysis: Combined Low-Rank and k-Nearest Neighbor Graph.

    PubMed

    Zu, Baokai; Xia, Kewen; Pan, Yongke; Niu, Wenjia

    2017-01-01

    Semisupervised Discriminant Analysis (SDA) is a semisupervised dimensionality reduction algorithm, which can easily resolve the out-of-sample problem. Relative works usually focus on the geometric relationships of data points, which are not obvious, to enhance the performance of SDA. Different from these relative works, the regularized graph construction is researched here, which is important in the graph-based semisupervised learning methods. In this paper, we propose a novel graph for Semisupervised Discriminant Analysis, which is called combined low-rank and k-nearest neighbor (LRKNN) graph. In our LRKNN graph, we map the data to the LR feature space and then the kNN is adopted to satisfy the algorithmic requirements of SDA. Since the low-rank representation can capture the global structure and the k-nearest neighbor algorithm can maximally preserve the local geometrical structure of the data, the LRKNN graph can significantly improve the performance of SDA. Extensive experiments on several real-world databases show that the proposed LRKNN graph is an efficient graph constructor, which can largely outperform other commonly used baselines.

  2. Constrained low-rank matrix estimation: phase transitions, approximate message passing and applications

    NASA Astrophysics Data System (ADS)

    Lesieur, Thibault; Krzakala, Florent; Zdeborová, Lenka

    2017-07-01

    This article is an extended version of previous work of Lesieur et al (2015 IEEE Int. Symp. on Information Theory Proc. pp 1635-9 and 2015 53rd Annual Allerton Conf. on Communication, Control and Computing (IEEE) pp 680-7) on low-rank matrix estimation in the presence of constraints on the factors into which the matrix is factorized. Low-rank matrix factorization is one of the basic methods used in data analysis for unsupervised learning of relevant features and other types of dimensionality reduction. We present a framework to study the constrained low-rank matrix estimation for a general prior on the factors, and a general output channel through which the matrix is observed. We draw a parallel with the study of vector-spin glass models—presenting a unifying way to study a number of problems considered previously in separate statistical physics works. We present a number of applications for the problem in data analysis. We derive in detail a general form of the low-rank approximate message passing (Low-RAMP) algorithm, that is known in statistical physics as the TAP equations. We thus unify the derivation of the TAP equations for models as different as the Sherrington-Kirkpatrick model, the restricted Boltzmann machine, the Hopfield model or vector (xy, Heisenberg and other) spin glasses. The state evolution of the Low-RAMP algorithm is also derived, and is equivalent to the replica symmetric solution for the large class of vector-spin glass models. In the section devoted to result we study in detail phase diagrams and phase transitions for the Bayes-optimal inference in low-rank matrix estimation. We present a typology of phase transitions and their relation to performance of algorithms such as the Low-RAMP or commonly used spectral methods.

  3. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect

    Constance Senior; Temi Linjewile

    2003-07-25

    This is the first Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Ceramics GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, analysis of the coal, ash and mercury speciation data from the first test series was completed. Good agreement was shown between different methods of measuring mercury in the flue gas: Ontario Hydro, semi-continuous emission monitor (SCEM) and coal composition. There was a loss of total mercury across the commercial catalysts, but not across the blank monolith. The blank monolith showed no oxidation. The data from the first test series show the same trend in mercury oxidation as a function of space velocity that has been seen elsewhere. At space velocities in the range of 6,000-7,000 hr{sup -1} the blank monolith did not show any mercury oxidation, with or without ammonia present. Two of the commercial catalysts clearly showed an effect of ammonia. Two other commercial catalysts showed an effect of ammonia, although the error bars for the no-ammonia case are large. A test plan was written for the second test series and is being reviewed.

  4. Investigation of mechanisms of ash deposit formation from low-rank coal combustion: Final report

    SciTech Connect

    Greene, F.T.; O'Donnell, J.E.

    1987-08-01

    This project was undertaken to determine the chemical behavior of alkali metal and other species implicated in the ash fouling which can occur during the combustion of low rank coals. The coal combustion was studied in unaugmented premixed pulverized coal flames. Vapor species were measured by molecular beam mass spectrometry. Temperatures were also measured, and time-resolved coal/ash particulate samples were collected and analyzed. A major part of the research on this project was devoted to: (1) the development and refinement of techniques for the MBMS analysis of trace quantities of unstable and reactive high temperature vapor species from the pulverized coal flames; and (2) the time-resolved sampling and collection of particulates. The equipment is now operating very satisfactorily. Inorganic species, some of which were present at parts-per-million levels, were quantitatively sampled and measured in the pulverized coal flames. Time-resolved particulate samples which were free of vapor deposited contaminants were collected without the use of an interfering substrate. Profiles of the alkali metal species in Beulah lignite and Decker subbituminous coal flames were obtained. It was found in both flames that sodium is volatilized as the atomic species early (milliseconds) in the combustion process. The gaseous Na reacts, also in milliseconds, to form an unknown species which is probably an oxide fume, but which is not NaOH or Na/sub 2/SO/sub 4/. This is probably the mechanism for the formation of the alkali ''fumes'' observed in other systems. Measurements were also made of a number of other gaseous species, and time-resolved coal/ash samples were obtained and analyzed. 27 refs., 23 figs., 8 tabs.

  5. Non-Convex Sparse and Low-Rank Based Robust Subspace Segmentation for Data Mining

    PubMed Central

    Zhao, Mingbo; Chui, Kwok Tai

    2017-01-01

    Parsimony, including sparsity and low-rank, has shown great importance for data mining in social networks, particularly in tasks such as segmentation and recognition. Traditionally, such modeling approaches rely on an iterative algorithm that minimizes an objective function with convex l1-norm or nuclear norm constraints. However, the obtained results by convex optimization are usually suboptimal to solutions of original sparse or low-rank problems. In this paper, a novel robust subspace segmentation algorithm has been proposed by integrating lp-norm and Schatten p-norm constraints. Our so-obtained affinity graph can better capture local geometrical structure and the global information of the data. As a consequence, our algorithm is more generative, discriminative and robust. An efficient linearized alternating direction method is derived to realize our model. Extensive segmentation experiments are conducted on public datasets. The proposed algorithm is revealed to be more effective and robust compared to five existing algorithms. PMID:28714886

  6. Low-rank factorization of electron integral tensors and its application in electronic structure theory

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Kowalski, Karol

    2017-03-01

    In this letter, we apply reverse Cuthill-McKee (RCM) algorithm to transform two-electron integral tensors to their block diagonal forms. By further applying Cholesky decomposition (CD) on each of the diagonal blocks, we are able to represent the high-dimensional two-electron integral tensors in terms of permutation matrices and low-rank Cholesky vectors. This representation facilitates low-rank factorizations of high-dimensional tensor contractions in post-Hartree-Fock calculations. Here, we discuss the second-order Møller-Plesset (MP2) method and the linear coupled-cluster model with doubles (L-CCD) as examples to demonstrate the efficiency of this technique in representing the two-electron integrals in a compact form.

  7. On low-rank updates to the singular value and Tucker decompositions

    SciTech Connect

    O'Hara, M J

    2009-10-06

    The singular value decomposition is widely used in signal processing and data mining. Since the data often arrives in a stream, the problem of updating matrix decompositions under low-rank modification has been widely studied. Brand developed a technique in 2006 that has many advantages. However, the technique does not directly approximate the updated matrix, but rather its previous low-rank approximation added to the new update, which needs justification. Further, the technique is still too slow for large information processing problems. We show that the technique minimizes the change in error per update, so if the error is small initially it remains small. We show that an updating algorithm for large sparse matrices should be sub-linear in the matrix dimension in order to be practical for large problems, and demonstrate a simple modification to the original technique that meets the requirements.

  8. Highly accelerated cardiac cine parallel MRI using low-rank matrix completion and partial separability model

    NASA Astrophysics Data System (ADS)

    Lyu, Jingyuan; Nakarmi, Ukash; Zhang, Chaoyi; Ying, Leslie

    2016-05-01

    This paper presents a new approach to highly accelerated dynamic parallel MRI using low rank matrix completion, partial separability (PS) model. In data acquisition, k-space data is moderately randomly undersampled at the center kspace navigator locations, but highly undersampled at the outer k-space for each temporal frame. In reconstruction, the navigator data is reconstructed from undersampled data using structured low-rank matrix completion. After all the unacquired navigator data is estimated, the partial separable model is used to obtain partial k-t data. Then the parallel imaging method is used to acquire the entire dynamic image series from highly undersampled data. The proposed method has shown to achieve high quality reconstructions with reduction factors up to 31, and temporal resolution of 29ms, when the conventional PS method fails.

  9. Hyperspectral image denoising using the robust low-rank tensor recovery.

    PubMed

    Li, Chang; Ma, Yong; Huang, Jun; Mei, Xiaoguang; Ma, Jiayi

    2015-09-01

    Denoising is an important preprocessing step to further analyze the hyperspectral image (HSI), and many denoising methods have been used for the denoising of the HSI data cube. However, the traditional denoising methods are sensitive to outliers and non-Gaussian noise. In this paper, by utilizing the underlying low-rank tensor property of the clean HSI data and the sparsity property of the outliers and non-Gaussian noise, we propose a new model based on the robust low-rank tensor recovery, which can preserve the global structure of HSI and simultaneously remove the outliers and different types of noise: Gaussian noise, impulse noise, dead lines, and so on. The proposed model can be solved by the inexact augmented Lagrangian method, and experiments on simulated and real hyperspectral images demonstrate that the proposed method is efficient for HSI denoising.

  10. A geometric method for eigenvalue problems with low-rank perturbations

    PubMed Central

    Anastasio, Thomas J.; Bronski, Jared C.

    2017-01-01

    We consider the problem of finding the spectrum of an operator taking the form of a low-rank (rank one or two) non-normal perturbation of a well-understood operator, motivated by a number of problems of applied interest which take this form. We use the fact that the system is a low-rank perturbation of a solved problem, together with a simple idea of classical differential geometry (the envelope of a family of curves) to completely analyse the spectrum. We use these techniques to analyse three problems of this form: a model of the oculomotor integrator due to Anastasio & Gad (2007 J. Comput. Neurosci. 22, 239–254. (doi:10.1007/s10827-006-0010-x)), a continuum integrator model, and a non-local model of phase separation due to Rubinstein & Sternberg (1992 IMA J. Appl. Math. 48, 249–264. (doi:10.1093/imamat/48.3.249)). PMID:28989749

  11. Low-rank factorization of electron integral tensors and its application in electronic structure theory

    DOE PAGES

    Peng, Bo; Kowalski, Karol

    2017-01-25

    In this paper, we apply reverse Cuthill-McKee (RCM) algorithm to transform two-electron integral tensors to their block diagonal forms. By further applying Cholesky decomposition (CD) on each of the diagonal blocks, we are able to represent the high-dimensional two-electron integral tensors in terms of permutation matrices and low-rank Cholesky vectors. This representation facilitates low-rank factorizations of high-dimensional tensor contractions in post-Hartree-Fock calculations. Finally, we discuss the second-order Møller-Plesset (MP2) method and the linear coupled-cluster model with doubles (L-CCD) as examples to demonstrate the efficiency of this technique in representing the two-electron integrals in a compact form.

  12. Simultaneous Reconstruction and Segmentation of Dynamic PET via Low-Rank and Sparse Matrix Decomposition.

    PubMed

    Chen, Shuhang; Liu, Huafeng; Hu, Zhenghui; Zhang, Heye; Shi, Pengcheng; Chen, Yunmei

    2015-07-01

    Although of great clinical value, accurate and robust reconstruction and segmentation of dynamic positron emission tomography (PET) images are great challenges due to low spatial resolution and high noise. In this paper, we propose a unified framework that exploits temporal correlations and variations within image sequences based on low-rank and sparse matrix decomposition. Thus, the two separate inverse problems, PET image reconstruction and segmentation, are accomplished in a simultaneous fashion. Considering low signal to noise ratio and piece-wise constant assumption of PET images, we also propose to regularize low-rank and sparse matrices with vectorial total variation norm. The resulting optimization problem is solved by augmented Lagrangian multiplier method with variable splitting. The effectiveness of proposed approach is validated on realistic Monte Carlo simulation datasets and the real patient data.

  13. Target detection in GPR data using joint low-rank and sparsity constraints

    NASA Astrophysics Data System (ADS)

    Bouzerdoum, Abdesselam; Tivive, Fok Hing Chi; Abeynayake, Canicious

    2016-05-01

    In ground penetrating radars, background clutter, which comprises the signals backscattered from the rough, uneven ground surface and the background noise, impairs the visualization of buried objects and subsurface inspections. In this paper, a clutter mitigation method is proposed for target detection. The removal of background clutter is formulated as a constrained optimization problem to obtain a low-rank matrix and a sparse matrix. The low-rank matrix captures the ground surface reflections and the background noise, whereas the sparse matrix contains the target reflections. An optimization method based on split-Bregman algorithm is developed to estimate these two matrices from the input GPR data. Evaluated on real radar data, the proposed method achieves promising results in removing the background clutter and enhancing the target signature.

  14. Anaerobic bioprocessing of low-rank coals. Quarterly progress report, January 1--March 31, 1992

    SciTech Connect

    Jain, M.K.; Narayan, R.; Han, O.

    1992-04-15

    The overall goal of this project is to find biological methods to remove carboxylic functionalities from low-rank coals and to assess the properties of the modified coal towards coal liquefaction. The main objectives for this quarter were: (1) continuation of microbial consortia development and maintenance, (2) crude enzyme study using best decarboxylating organisms, (3) decarboxylation of lignite, demineralized Wyodak coal and model polymers, and (4) characterization of biotreated coals.

  15. Process for clean-burning fuel from low-rank coal

    DOEpatents

    Merriam, Norman W.; Sethi, Vijay; Brecher, Lee E.

    1994-01-01

    A process for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage.

  16. Anaerobic bioprocessing of low-rank coals. Quarterly progress report, October 1--December 31, 1991

    SciTech Connect

    Jain, M.K.; Narayan, R.; Han, O.

    1992-01-30

    The overall goal of this project is to find biological methods to remove carboxylic functionalities from low-rank coals under ambient conditions and to assess the properties of these modified coals towards coal liquefaction. The main objectives of this quarter were: (1) continuation of microbial consortia development, (2) evaluation of the isolated organisms for decarboxylation, (3) selection of best performing culture (known cultures vs. new isolates), and (4) coal decarboxylation using activated carbon as blanks. The project began on September 12, 1990.

  17. Anaerobic bioprocessing of low-rank coals. [Veillonella alcalescens and Propionibacterium acidipropionici

    SciTech Connect

    Jain, M.K.; Narayan, R.; Han, O.

    1992-01-30

    The overall goal of this project is to find biological methods to remove carboxylic functionalities from low-rank coals under ambient conditions and to assess the properties of these modified coals towards coal liquefaction. The main objectives of this quarter were: (1) continuation of microbial consortia development, (2) evaluation of the isolated organisms for decarboxylation, (3) selection of best performing culture (known cultures vs. new isolates), and (4) coal decarboxylation using activated carbon as blanks. The project began on September 12, 1990.

  18. Method for producing a dried coal fuel having a reduced tendency to spontaneously ignite from a low rank coal

    SciTech Connect

    Li, Y.H.; Bonnecaze, B.F.; Matthews, J.D.; Skinner, J.L.; Wunderlich, D.K.

    1983-08-02

    A method is disclosed for producing a dried coal fuel having a reduced tendency to spontaneously ignite from a low rank coal by drying the low rank coal and thereafter cooling the dried coal to a temperature below about 100/sup 0/F. Optionally the dried coal is partially oxidized prior to cooling and optionally the dried coal is mixed with a deactivating fluid.

  19. Color correction with blind image restoration based on multiple images using a low-rank model

    NASA Astrophysics Data System (ADS)

    Li, Dong; Xie, Xudong; Lam, Kin-Man

    2014-03-01

    We present a method that can handle the color correction of multiple photographs with blind image restoration simultaneously and automatically. We prove that the local colors of a set of images of the same scene exhibit the low-rank property locally both before and after a color-correction operation. This property allows us to correct all kinds of errors in an image under a low-rank matrix model without particular priors or assumptions. The possible errors may be caused by changes of viewpoint, large illumination variations, gross pixel corruptions, partial occlusions, etc. Furthermore, a new iterative soft-segmentation method is proposed for local color transfer using color influence maps. Due to the fact that the correct color information and the spatial information of images can be recovered using the low-rank model, more precise color correction and many other image-restoration tasks-including image denoising, image deblurring, and gray-scale image colorizing-can be performed simultaneously. Experiments have verified that our method can achieve consistent and promising results on uncontrolled real photographs acquired from the Internet and that it outperforms current state-of-the-art methods.

  20. OCT despeckling via weighted nuclear norm constrained non-local low-rank representation

    NASA Astrophysics Data System (ADS)

    Tang, Chang; Zheng, Xiao; Cao, Lijuan

    2017-10-01

    As a non-invasive imaging modality, optical coherence tomography (OCT) plays an important role in medical sciences. However, OCT images are always corrupted by speckle noise, which can mask image features and pose significant challenges for medical analysis. In this work, we propose an OCT despeckling method by using non-local, low-rank representation with weighted nuclear norm constraint. Unlike previous non-local low-rank representation based OCT despeckling methods, we first generate a guidance image to improve the non-local group patches selection quality, then a low-rank optimization model with a weighted nuclear norm constraint is formulated to process the selected group patches. The corrupted probability of each pixel is also integrated into the model as a weight to regularize the representation error term. Note that each single patch might belong to several groups, hence different estimates of each patch are aggregated to obtain its final despeckled result. Both qualitative and quantitative experimental results on real OCT images show the superior performance of the proposed method compared with other state-of-the-art speckle removal techniques.

  1. Task 27 -- Alaskan low-rank coal-water fuel demonstration project

    SciTech Connect

    1995-10-01

    Development of coal-water-fuel (CWF) technology has to-date been predicated on the use of high-rank bituminous coal only, and until now the high inherent moisture content of low-rank coal has precluded its use for CWF production. The unique feature of the Alaskan project is the integration of hot-water-drying (HWD) into CWF technology as a beneficiation process. Hot-water-drying is an EERC developed technology unavailable to the competition that allows the range of CWF feedstock to be extended to low-rank coals. The primary objective of the Alaskan Project, is to promote interest in the CWF marketplace by demonstrating the commercial viability of low-rank coal-water-fuel (LRCWF). While commercialization plans cannot be finalized until the implementation and results of the Alaskan LRCWF Project are known and evaluated, this report has been prepared to specifically address issues concerning business objectives for the project, and outline a market development plan for meeting those objectives.

  2. High-Resolution Dynamic Speech Imaging with Joint Low-Rank and Sparsity Constraints

    PubMed Central

    Fu, Maojing; Zhao, Bo; Carignan, Christopher; Shosted, Ryan K.; Perry, Jamie L.; Kuehn, David P.; Liang, Zhi-Pei; Sutton, Bradley P.

    2014-01-01

    Purpose To enable dynamic speech imaging with high spatiotemporal resolution and full-vocal-tract spatial coverage, leveraging recent advances in sparse sampling. Methods An imaging method is developed to enable high-speed dynamic speech imaging exploiting low-rank and sparsity of the dynamic images of articulatory motion during speech. The proposed method includes: a) a novel data acquisition strategy that collects navigators with high temporal frame rate, and b) an image reconstruction method that derives temporal subspaces from navigators and reconstructs high-resolution images from sparsely sampled data with joint low-rank and sparsity constraints. Results The proposed method has been systematically evaluated and validated through several dynamic speech experiments. A nominal imaging speed of 102 frames per second (fps) was achieved for a single-slice imaging protocol with a spatial resolution of 2.2 × 2.2 × 6.5 mm3. An eight-slice imaging protocol covering the entire vocal tract achieved a nominal imaging speed of 12.8 fps with the identical spatial resolution. The effectiveness of the proposed method and its practical utility was also demonstrated in a phonetic investigation. Conclusion High spatiotemporal resolution with full-vocal-tract spatial coverage can be achieved for dynamic speech imaging experiments with low-rank and sparsity constraints. PMID:24912452

  3. Constructing a Nonnegative Low-Rank and Sparse Graph With Data-Adaptive Features.

    PubMed

    Zhuang, Liansheng; Gao, Shenghua; Tang, Jinhui; Wang, Jingjing; Lin, Zhouchen; Ma, Yi; Yu, Nenghai

    2015-11-01

    This paper aims at constructing a good graph to discover the intrinsic data structures under a semisupervised learning setting. First, we propose to build a nonnegative low-rank and sparse (referred to as NNLRS) graph for the given data representation. In particular, the weights of edges in the graph are obtained by seeking a nonnegative low-rank and sparse reconstruction coefficients matrix that represents each data sample as a linear combination of others. The so-obtained NNLRS-graph captures both the global mixture of subspaces structure (by the low-rankness) and the locally linear structure (by the sparseness) of the data, hence it is both generative and discriminative. Second, as good features are extremely important for constructing a good graph, we propose to learn the data embedding matrix and construct the graph simultaneously within one framework, which is termed as NNLRS with embedded features (referred to as NNLRS-EF). Extensive NNLRS experiments on three publicly available data sets demonstrate that the proposed method outperforms the state-of-the-art graph construction method by a large margin for both semisupervised classification and discriminative analysis, which verifies the effectiveness of our proposed method.

  4. Discriminative Dictionary Learning With Two-Level Low Rank and Group Sparse Decomposition for Image Classification.

    PubMed

    Wen, Zaidao; Hou, Biao; Jiao, Licheng

    2016-06-30

    Discriminative dictionary learning (DDL) framework has been widely used in image classification which aims to learn some class-specific feature vectors as well as a representative dictionary according to a set of labeled training samples. However, interclass similarities and intraclass variances among input samples and learned features will generally weaken the representability of dictionary and the discrimination of feature vectors so as to degrade the classification performance. Therefore, how to explicitly represent them becomes an important issue. In this paper, we present a novel DDL framework with two-level low rank and group sparse decomposition model. In the first level, we learn a class-shared and several class-specific dictionaries, where a low rank and a group sparse regularization are, respectively, imposed on the corresponding feature matrices. In the second level, the class-specific feature matrix will be further decomposed into a low rank and a sparse matrix so that intraclass variances can be separated to concentrate the corresponding feature vectors. Extensive experimental results demonstrate the effectiveness of our model. Compared with the other state-of-the-arts on several popular image databases, our model can achieve a competitive or better performance in terms of the classification accuracy.

  5. The application of low-rank and sparse decomposition method in the field of climatology

    NASA Astrophysics Data System (ADS)

    Gupta, Nitika; Bhaskaran, Prasad K.

    2017-03-01

    The present study reports a low-rank and sparse decomposition method that separates the mean and the variability of a climate data field. Until now, the application of this technique was limited only in areas such as image processing, web data ranking, and bioinformatics data analysis. In climate science, this method exactly separates the original data into a set of low-rank and sparse components, wherein the low-rank components depict the linearly correlated dataset (expected or mean behavior), and the sparse component represents the variation or perturbation in the dataset from its mean behavior. The study attempts to verify the efficacy of this proposed technique in the field of climatology with two examples of real world. The first example attempts this technique on the maximum wind-speed (MWS) data for the Indian Ocean (IO) region. The study brings to light a decadal reversal pattern in the MWS for the North Indian Ocean (NIO) during the months of June, July, and August (JJA). The second example deals with the sea surface temperature (SST) data for the Bay of Bengal region that exhibits a distinct pattern in the sparse component. The study highlights the importance of the proposed technique used for interpretation and visualization of climate data.

  6. Efficient completion for corrupted low-rank images via alternating direction method

    NASA Astrophysics Data System (ADS)

    Li, Wei; Zhao, Lei; Xu, Duanqing; Lu, Dongming

    2014-05-01

    We propose an efficient and easy-to-implement method to settle the inpainting problem for low-rank images following the recent studies about low-rank matrix completion. In general, our method has three steps: first, corresponding to the three channels of RGB color space, an incomplete image is split into three incomplete matrices; second, each matrix is restored by solving a convex problem derived from the nuclear norm relaxation; at last, the three recovered matrices are merged to produce the final output. During the process, in order to efficiently solve the nuclear norm minimization problem, we employ the alternating direction method. Except for the basic image inpainting problem, we also enable our method to handle cases where corrupted images not only have missing values but also have noisy entries. Our experiments show that our method outperforms the existing inpainting techniques both quantitatively and qualitatively. We also demonstrate that our method is capable of processing many other situations, including block-wise low-rank image completion, large-scale image restoration, and object removal.

  7. Low-rank coal drying technologies current status and new developments

    SciTech Connect

    Karthikeyan, M.; Wu, Z.H.; Mujumdar, A.S.

    2009-07-01

    Despite their vast reserves, low-rank coals are considered undesirable because their high moisture content entails high transportation costs, potential safety hazards in transportation and storage, and the low thermal efficiency obtained in combustion of such coals. Their high moisture content, greater tendency to combust spontaneously, high degree of weathering, and the dusting characteristics restrict widespread use of such coals. The price of coal sold to utilities depends upon the heating value of the coal. Thus, removal of moisture from low-rank coals (LRC) is an important operation. Furthermore, LRC can be used cost effectively for pyrolysis, gasification, and liquefaction processes. This article provides an overview the diverse processes both those that utilize conventional drying technologies and those that are not yet commercialized and hence in need of RD. Relative merits and limitations of the various technologies and the current state of their development are presented. Drying characteristics of low-rank coal as well as factors affecting drying characteristics of coal samples are also discussed.

  8. Low rank approximation methods for MR fingerprinting with large scale dictionaries.

    PubMed

    Yang, Mingrui; Ma, Dan; Jiang, Yun; Hamilton, Jesse; Seiberlich, Nicole; Griswold, Mark A; McGivney, Debra

    2017-08-13

    This work proposes new low rank approximation approaches with significant memory savings for large scale MR fingerprinting (MRF) problems. We introduce a compressed MRF with randomized singular value decomposition method to significantly reduce the memory requirement for calculating a low rank approximation of large sized MRF dictionaries. We further relax this requirement by exploiting the structures of MRF dictionaries in the randomized singular value decomposition space and fitting them to low-degree polynomials to generate high resolution MRF parameter maps. In vivo 1.5T and 3T brain scan data are used to validate the approaches. T1 , T2 , and off-resonance maps are in good agreement with that of the standard MRF approach. Moreover, the memory savings is up to 1000 times for the MRF-fast imaging with steady-state precession sequence and more than 15 times for the MRF-balanced, steady-state free precession sequence. The proposed compressed MRF with randomized singular value decomposition and dictionary fitting methods are memory efficient low rank approximation methods, which can benefit the usage of MRF in clinical settings. They also have great potentials in large scale MRF problems, such as problems considering multi-component MRF parameters or high resolution in the parameter space. Magn Reson Med 000:000-000, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect

    Constance Senior

    2004-12-31

    The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  10. Dynamic PET reconstruction using temporal patch-based low rank penalty for ROI-based brain kinetic analysis

    NASA Astrophysics Data System (ADS)

    Kim, Kyungsang; Son, Young Don; Bresler, Yoram; Cho, Zang Hee; Ra, Jong Beom; Ye, Jong Chul

    2015-03-01

    Dynamic positron emission tomography (PET) is widely used to measure changes in the bio-distribution of radiopharmaceuticals within particular organs of interest over time. However, to retain sufficient temporal resolution, the number of photon counts in each time frame must be limited. Therefore, conventional reconstruction algorithms such as the ordered subset expectation maximization (OSEM) produce noisy reconstruction images, thus degrading the quality of the extracted time activity curves (TACs). To address this issue, many advanced reconstruction algorithms have been developed using various spatio-temporal regularizations. In this paper, we extend earlier results and develop a novel temporal regularization, which exploits the self-similarity of patches that are collected in dynamic images. The main contribution of this paper is to demonstrate that the correlation of patches can be exploited using a low-rank constraint that is insensitive to global intensity variations. The resulting optimization framework is, however, non-Lipschitz and non-convex due to the Poisson log-likelihood and low-rank penalty terms. Direct application of the conventional Poisson image deconvolution by an augmented Lagrangian (PIDAL) algorithm is, however, problematic due to its large memory requirements, which prevents its parallelization. Thus, we propose a novel optimization framework using the concave-convex procedure (CCCP) by exploiting the Legendre-Fenchel transform, which is computationally efficient and parallelizable. In computer simulation and a real in vivo experiment using a high-resolution research tomograph (HRRT) scanner, we confirm that the proposed algorithm can improve image quality while also extracting more accurate region of interests (ROI) based kinetic parameters. Furthermore, we show that the total reconstruction time for HRRT PET is significantly accelerated using our GPU implementation, which makes the algorithm very practical in clinical environments.

  11. Remote sensing image segmentation using local sparse structure constrained latent low rank representation

    NASA Astrophysics Data System (ADS)

    Tian, Shu; Zhang, Ye; Yan, Yimin; Su, Nan; Zhang, Junping

    2016-09-01

    Latent low-rank representation (LatLRR) has been attached considerable attention in the field of remote sensing image segmentation, due to its effectiveness in exploring the multiple subspace structures of data. However, the increasingly heterogeneous texture information in the high spatial resolution remote sensing images, leads to more severe interference of pixels in local neighborhood, and the LatLRR fails to capture the local complex structure information. Therefore, we present a local sparse structure constrainted latent low-rank representation (LSSLatLRR) segmentation method, which explicitly imposes the local sparse structure constraint on LatLRR to capture the intrinsic local structure in manifold structure feature subspaces. The whole segmentation framework can be viewed as two stages in cascade. In the first stage, we use the local histogram transform to extract the texture local histogram features (LHOG) at each pixel, which can efficiently capture the complex and micro-texture pattern. In the second stage, a local sparse structure (LSS) formulation is established on LHOG, which aims to preserve the local intrinsic structure and enhance the relationship between pixels having similar local characteristics. Meanwhile, by integrating the LSS and the LatLRR, we can efficiently capture the local sparse and low-rank structure in the mixture of feature subspace, and we adopt the subspace segmentation method to improve the segmentation accuracy. Experimental results on the remote sensing images with different spatial resolution show that, compared with three state-of-the-art image segmentation methods, the proposed method achieves more accurate segmentation results.

  12. Low-rank matrix decomposition and spatio-temporal sparse recovery for STAP radar

    DOE PAGES

    Sen, Satyabrata

    2015-08-04

    We develop space-time adaptive processing (STAP) methods by leveraging the advantages of sparse signal processing techniques in order to detect a slowly-moving target. We observe that the inherent sparse characteristics of a STAP problem can be formulated as the low-rankness of clutter covariance matrix when compared to the total adaptive degrees-of-freedom, and also as the sparse interference spectrum on the spatio-temporal domain. By exploiting these sparse properties, we propose two approaches for estimating the interference covariance matrix. In the first approach, we consider a constrained matrix rank minimization problem (RMP) to decompose the sample covariance matrix into a low-rank positivemore » semidefinite and a diagonal matrix. The solution of RMP is obtained by applying the trace minimization technique and the singular value decomposition with matrix shrinkage operator. Our second approach deals with the atomic norm minimization problem to recover the clutter response-vector that has a sparse support on the spatio-temporal plane. We use convex relaxation based standard sparse-recovery techniques to find the solutions. With extensive numerical examples, we demonstrate the performances of proposed STAP approaches with respect to both the ideal and practical scenarios, involving Doppler-ambiguous clutter ridges, spatial and temporal decorrelation effects. As a result, the low-rank matrix decomposition based solution requires secondary measurements as many as twice the clutter rank to attain a near-ideal STAP performance; whereas the spatio-temporal sparsity based approach needs a considerably small number of secondary data.« less

  13. Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine

    PubMed Central

    Jiang, Jingyu; Cheng, Yuanping; Mou, Junhui; Jin, Kan; Cui, Jie

    2015-01-01

    To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index). Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption) index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar occurrence conditions

  14. Video Saliency Detection via Spatial-Temporal Fusion and Low-Rank Coherency Diffusion.

    PubMed

    Chen, Chenglizhao; Li, Shuai; Wang, Yongguang; Qin, Hong; Hao, Aimin

    2017-07-01

    This paper advocates a novel video saliency detection method based on the spatial-temporal saliency fusion and low-rank coherency guided saliency diffusion. In sharp contrast to the conventional methods, which conduct saliency detection locally in a frame-by-frame way and could easily give rise to incorrect low-level saliency map, in order to overcome the existing difficulties, this paper proposes to fuse the color saliency based on global motion clues in a batch-wise fashion. And we also propose low-rank coherency guided spatial-temporal saliency diffusion to guarantee the temporal smoothness of saliency maps. Meanwhile, a series of saliency boosting strategies are designed to further improve the saliency accuracy. First, the original long-term video sequence is equally segmented into many short-term frame batches, and the motion clues of the individual video batch are integrated and diffused temporally to facilitate the computation of color saliency. Then, based on the obtained saliency clues, inter-batch saliency priors are modeled to guide the low-level saliency fusion. After that, both the raw color information and the fused low-level saliency are regarded as the low-rank coherency clues, which are employed to guide the spatial-temporal saliency diffusion with the help of an additional permutation matrix serving as the alternative rank selection strategy. Thus, it could guarantee the robustness of the saliency map's temporal consistence, and further boost the accuracy of the computed saliency map. Moreover, we conduct extensive experiments on five public available benchmarks, and make comprehensive, quantitative evaluations between our method and 16 state-of-the-art techniques. All the results demonstrate the superiority of our method in accuracy, reliability, robustness, and versatility.

  15. Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine.

    PubMed

    Jiang, Jingyu; Cheng, Yuanping; Mou, Junhui; Jin, Kan; Cui, Jie

    2015-01-01

    To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index). Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption) index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar occurrence conditions

  16. SAR moving target imaging using sparse and low-rank decomposition

    NASA Astrophysics Data System (ADS)

    Ni, Kang-Yu; Rao, Shankar

    2014-05-01

    We propose a method to image a complex scene with spotlight synthetic aperture radar (SAR) despite the presence of multiple moving targets. Many recent methods use sparsity-based reconstruction coupled with phase error corrections of moving targets to reconstruct stationary scenes. However, these methods rely on the assumption that the scene itself is sparse and thus unfortunately cannot handle realistic SAR scenarios with complex backgrounds consisting of more than just a few point targets. Our method makes use of sparse and low-rank (SLR) matrix decomposition, an efficient method for decomposing a low-rank matrix and sparse matrix from their sum. For detecting the moving targets and reconstructing the stationary background, SLR uses a convex optimization model that penalizes the nuclear norm of the low rank background structure and the L1 norm of the sparse moving targets. We propose an L1-norm regularization reconstruction method to form the input data matrix, which is grossly corrupted by the moving targets. Each column of the input matrix is a reconstructed SAR image with measurements from a small number of azimuth angles. The use of the L1-norm regularization and a sparse transform permits us to reconstruct the scene with significantly fewer measurements so that moving targets are approximately stationary. We demonstrate our SLR-based approach using simulations adapted from the GOTCHA Volumetric SAR data set. These simulations show that SLR can accurately image multiple moving targets with different individual motions in complex scenes where methods that assume a sparse scene would fail.

  17. Low-rank matrix decomposition and spatio-temporal sparse recovery for STAP radar

    SciTech Connect

    Sen, Satyabrata

    2015-08-04

    We develop space-time adaptive processing (STAP) methods by leveraging the advantages of sparse signal processing techniques in order to detect a slowly-moving target. We observe that the inherent sparse characteristics of a STAP problem can be formulated as the low-rankness of clutter covariance matrix when compared to the total adaptive degrees-of-freedom, and also as the sparse interference spectrum on the spatio-temporal domain. By exploiting these sparse properties, we propose two approaches for estimating the interference covariance matrix. In the first approach, we consider a constrained matrix rank minimization problem (RMP) to decompose the sample covariance matrix into a low-rank positive semidefinite and a diagonal matrix. The solution of RMP is obtained by applying the trace minimization technique and the singular value decomposition with matrix shrinkage operator. Our second approach deals with the atomic norm minimization problem to recover the clutter response-vector that has a sparse support on the spatio-temporal plane. We use convex relaxation based standard sparse-recovery techniques to find the solutions. With extensive numerical examples, we demonstrate the performances of proposed STAP approaches with respect to both the ideal and practical scenarios, involving Doppler-ambiguous clutter ridges, spatial and temporal decorrelation effects. As a result, the low-rank matrix decomposition based solution requires secondary measurements as many as twice the clutter rank to attain a near-ideal STAP performance; whereas the spatio-temporal sparsity based approach needs a considerably small number of secondary data.

  18. Robust cardiac motion estimation using ultrafast ultrasound data: a low-rank-topology-preserving approach.

    PubMed

    Aviles, Angelica I; Widlak, Thomas; Casals, Alicia; Nillesen, Maartje; Ammari, Habib

    2017-03-24

    Cardiac motion estimation is an important diagnostic tool to detect heart diseases and it has been explored with modalities such as MRI and conventional ultrasound (US) sequences. US cardiac motion estimation still presents challenges because of the complex motion patterns and the presence of noise. In this work, we propose a novel approach to estimate the cardiac motion using ultrafast ultrasound data. -- Our solution is based on a variational formulation characterized by the L2-regularized class. The displacement is represented by a lattice of b-splines and we ensure robustness by applying a maximum likelihood type estimator. While this is an important part of our solution, the main highlight of this work is to combine a low-rank data representation with topology preservation. Low-rank data representation (achieved by finding the k-dominant singular values of a Casorati Matrix arranged from the data sequence) speeds up the global solution and achieves noise reduction. On the other hand, topology preservation (achieved by monitoring the Jacobian determinant) allows to radically rule out distortions while carefully controlling the size of allowed expansions and contractions. Our variational approach is carried out on a realistic dataset as well as on a simulated one. We demonstrate how our proposed variational solution deals with complex deformations through careful numerical experiments. While maintaining the accuracy of the solution, the low-rank preprocessing is shown to speed up the convergence of the variational problem. Beyond cardiac motion estimation, our approach is promising for the analysis of other organs that experience motion.

  19. Robust cardiac motion estimation using ultrafast ultrasound data: a low-rank topology-preserving approach

    NASA Astrophysics Data System (ADS)

    Aviles, Angelica I.; Widlak, Thomas; Casals, Alicia; Nillesen, Maartje M.; Ammari, Habib

    2017-06-01

    Cardiac motion estimation is an important diagnostic tool for detecting heart diseases and it has been explored with modalities such as MRI and conventional ultrasound (US) sequences. US cardiac motion estimation still presents challenges because of complex motion patterns and the presence of noise. In this work, we propose a novel approach to estimate cardiac motion using ultrafast ultrasound data. Our solution is based on a variational formulation characterized by the L 2-regularized class. Displacement is represented by a lattice of b-splines and we ensure robustness, in the sense of eliminating outliers, by applying a maximum likelihood type estimator. While this is an important part of our solution, the main object of this work is to combine low-rank data representation with topology preservation. Low-rank data representation (achieved by finding the k-dominant singular values of a Casorati matrix arranged from the data sequence) speeds up the global solution and achieves noise reduction. On the other hand, topology preservation (achieved by monitoring the Jacobian determinant) allows one to radically rule out distortions while carefully controlling the size of allowed expansions and contractions. Our variational approach is carried out on a realistic dataset as well as on a simulated one. We demonstrate how our proposed variational solution deals with complex deformations through careful numerical experiments. The low-rank constraint speeds up the convergence of the optimization problem while topology preservation ensures a more accurate displacement. Beyond cardiac motion estimation, our approach is promising for the analysis of other organs that exhibit motion.

  20. Large-scale 3-D EM modelling with a Block Low-Rank multifrontal direct solver

    NASA Astrophysics Data System (ADS)

    Shantsev, Daniil V.; Jaysaval, Piyoosh; de la Kethulle de Ryhove, Sébastien; Amestoy, Patrick R.; Buttari, Alfredo; L'Excellent, Jean-Yves; Mary, Theo

    2017-06-01

    We put forward the idea of using a Block Low-Rank (BLR) multifrontal direct solver to efficiently solve the linear systems of equations arising from a finite-difference discretization of the frequency-domain Maxwell equations for 3-D electromagnetic (EM) problems. The solver uses a low-rank representation for the off-diagonal blocks of the intermediate dense matrices arising in the multifrontal method to reduce the computational load. A numerical threshold, the so-called BLR threshold, controlling the accuracy of low-rank representations was optimized by balancing errors in the computed EM fields against savings in floating point operations (flops). Simulations were carried out over large-scale 3-D resistivity models representing typical scenarios for marine controlled-source EM surveys, and in particular the SEG SEAM model which contains an irregular salt body. The flop count, size of factor matrices and elapsed run time for matrix factorization are reduced dramatically by using BLR representations and can go down to, respectively, 10, 30 and 40 per cent of their full-rank values for our largest system with N = 20.6 million unknowns. The reductions are almost independent of the number of MPI tasks and threads at least up to 90 × 10 = 900 cores. The BLR savings increase for larger systems, which reduces the factorization flop complexity from O(N2) for the full-rank solver to O(Nm) with m = 1.4-1.6. The BLR savings are significantly larger for deep-water environments that exclude the highly resistive air layer from the computational domain. A study in a scenario where simulations are required at multiple source locations shows that the BLR solver can become competitive in comparison to iterative solvers as an engine for 3-D controlled-source electromagnetic Gauss-Newton inversion that requires forward modelling for a few thousand right-hand sides.

  1. High-resolution dynamic (31) P-MRSI using a low-rank tensor model.

    PubMed

    Ma, Chao; Clifford, Bryan; Liu, Yuchi; Gu, Yuning; Lam, Fan; Yu, Xin; Liang, Zhi-Pei

    2017-08-01

    To develop a rapid (31) P-MRSI method with high spatiospectral resolution using low-rank tensor-based data acquisition and image reconstruction. The multidimensional image function of (31) P-MRSI is represented by a low-rank tensor to capture the spatial-spectral-temporal correlations of data. A hybrid data acquisition scheme is used for sparse sampling, which consists of a set of "training" data with limited k-space coverage to capture the subspace structure of the image function, and a set of sparsely sampled "imaging" data for high-resolution image reconstruction. An explicit subspace pursuit approach is used for image reconstruction, which estimates the bases of the subspace from the "training" data and then reconstructs a high-resolution image function from the "imaging" data. We have validated the feasibility of the proposed method using phantom and in vivo studies on a 3T whole-body scanner and a 9.4T preclinical scanner. The proposed method produced high-resolution static (31) P-MRSI images (i.e., 6.9 × 6.9 × 10 mm(3) nominal resolution in a 15-min acquisition at 3T) and high-resolution, high-frame-rate dynamic (31) P-MRSI images (i.e., 1.5 × 1.5 × 1.6 mm(3) nominal resolution, 30 s/frame at 9.4T). Dynamic spatiospectral variations of (31) P-MRSI signals can be efficiently represented by a low-rank tensor. Exploiting this mathematical structure for data acquisition and image reconstruction can lead to fast (31) P-MRSI with high resolution, frame-rate, and SNR. Magn Reson Med 78:419-428, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver

    NASA Astrophysics Data System (ADS)

    Shantsev, Daniil V.; Jaysaval, Piyoosh; de la Kethulle de Ryhove, Sébastien; Amestoy, Patrick R.; Buttari, Alfredo; L'Excellent, Jean-Yves; Mary, Theo

    2017-03-01

    We put forward the idea of using a Block Low-Rank (BLR) multifrontal direct solver to efficiently solve the linear systems of equations arising from a finite-difference discretization of the frequency-domain Maxwell equations for 3D electromagnetic (EM) problems. The solver uses a low-rank representation for the off-diagonal blocks of the intermediate dense matrices arising in the multifrontal method to reduce the computational load. A numerical threshold, the so called BLR threshold, controlling the accuracy of low-rank representations was optimized by balancing errors in the computed EM fields against savings in floating point operations (flops). Simulations were carried out over large-scale 3D resistivity models representing typical scenarios for marine controlled-source EM surveys, and in particular the SEG SEAM model which contains an irregular salt body. The flop count, size of factor matrices and elapsed run time for matrix factorization are reduced dramatically by using BLR representations and can go down to, respectively, 10%, 30% and 40% of their full rank values for our largest system with N = 20.6 million unknowns. The reductions are almost independent of the number of MPI tasks and threads at least up to 90 × 10 = 900 cores. The BLR savings increase for larger systems, which reduces the factorization flop complexity from O( {{N^2}} ) for the full-rank solver to O( {{N^m}} ) with m = 1.4 - 1.6 . The BLR savings are significantly larger for deep-water environments that exclude the highly resistive air layer from the computational domain. A study in a scenario where simulations are required at multiple source locations shows that the BLR solver can become competitive in comparison to iterative solvers as an engine for 3D CSEM Gauss-Newton inversion that requires forward modelling for a few thousand right-hand sides.

  3. Low-rank spectral expansions of two electron excitations for the acceleration of quantum chemistry calculations

    NASA Astrophysics Data System (ADS)

    Schwerdtfeger, Christine A.; Mazziotti, David A.

    2012-12-01

    Treatment of two-electron excitations is a fundamental but computationally expensive part of ab initio calculations of many-electron correlation. In this paper we develop a low-rank spectral expansion of two-electron excitations for accelerated electronic-structure calculations. The spectral expansion differs from previous approaches by relying upon both (i) a sum of three expansions to increase the rank reduction of the tensor and (ii) a factorization of the tensor into geminal (rank-two) tensors rather than orbital (rank-one) tensors. We combine three spectral expansions from the three distinct forms of the two-electron reduced density matrix (2-RDM), (i) the two-particle 2D, (ii) the two-hole 2Q, and the (iii) particle-hole 2G matrices, to produce a single spectral expansion with significantly accelerated convergence. While the resulting expansion is applicable to any quantum-chemistry calculation with two-particle excitation amplitudes, it is employed here in the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], 10.1103/PhysRevLett.101.253002. The low-rank parametric 2-RDM method scales quartically with the basis-set size, but like its full-rank version it can capture multi-reference correlation effects that are difficult to treat efficiently by traditional single-reference wavefunction methods. Applications are made to computing potential energy curves of HF and triplet OH+, equilibrium bond distances and frequencies, the HCN-HNC isomerization, and the energies of hydrocarbon chains. Computed 2-RDMs nearly satisfy necessary N-representability conditions. The low-rank spectral expansion has the potential to expand the applicability of the parametric 2-RDM method as well as other ab initio methods to large-scale molecular systems that are often only treatable by mean-field or density functional theories.

  4. Parrallel Implementation of Fast Randomized Algorithms for Low Rank Matrix Decomposition

    SciTech Connect

    Lucas, Andrew J.; Stalizer, Mark; Feo, John T.

    2014-03-01

    We analyze the parallel performance of randomized interpolative decomposition by de- composing low rank complex-valued Gaussian random matrices larger than 100 GB. We chose a Cray XMT supercomputer as it provides an almost ideal PRAM model permitting quick investigation of parallel algorithms without obfuscation from hardware idiosyncrasies. We obtain that on non-square matrices performance scales almost linearly with runtime about 100 times faster on 128 processors. We also verify that numerically discovered error bounds still hold on matrices two orders of magnitude larger than those previously tested.

  5. Feature transformation of neural activity with sparse and low-rank decomposition

    NASA Astrophysics Data System (ADS)

    Ni, Kang-Yu; Benvenuto, James; Bhattacharyya, Rajan; Millin, Rachel

    2015-03-01

    We propose a novel application of the sparse and low-rank (SLR) decomposition method to decode cognitive states for concept activity measured using fMRI BOLD. Current decoding methods attempt to reduce the dimensionality of fMRI BOLD signals to increase classification rate, but do not address the separable issues of multiple noise sources and complexity in the underlying data. Our feature transformation method extends SLR to separate task activity from the resting state and extract concept specific cognitive state. We show a significant increase in single trial decoding of concepts from fMRI BOLD using SLR to extract task specific cognitive state.

  6. On matrices with low-rank-plus-shift structure: Partial SVD and latent semantic indexing

    SciTech Connect

    Zha, H.; Zhang, Z.

    1998-08-01

    The authors present a detailed analysis of matrices satisfying the so-called low-rank-plus-shift property in connection with the computation of their partial singular value decomposition. The application they have in mind is Latent Semantic Indexing for information retrieval where the term-document matrices generated from a text corpus approximately satisfy this property. The analysis is motivated by developing more efficient methods for computing and updating partial SVD of large term-document matrices and gaining deeper understanding of the behavior of the methods in the presence of noise.

  7. Illumination Compensation and Normalization Using Low-Rank Decomposition of Multispectral Images in Dermatology.

    PubMed

    Duliu, Alexandru; Brosig, Richard; Ognawala, Saahil; Lasser, Tobias; Ziai, Mahzad; Navab, Nassir

    2015-01-01

    When attempting to recover the surface color from an image, modelling the illumination contribution per-pixel is essential. In this work we present a novel approach for illumination compensation using multispectral image data. This is done by means of a low-rank decomposition of representative spectral bands with prior knowledge of the reflectance spectra of the imaged surface. Experimental results on synthetic data, as well as on images of real lesions acquired at the university clinic, show that the proposed method significantly improves the contrast between the lesion and the background.

  8. Improvement of stability and efficiency of combustion for low rank anthracite

    SciTech Connect

    Chen, G.; Qiu, J.; Zhang, Z.; Li, F.; Sun, X.

    1994-12-31

    A new kind of burner, bluff-body with cavity burner, which is based on the bluff-body burner is developed in this paper. The three dimension mean velocity and turbulent characteristics have been measured in the burner`s recirculation zone by using three dimension laser dynamics analysis. For a low rank anthracite, combustion test shows this burner is better than bluff-body in ignition and flame stability. 50 MW(220T/H) boiler operation show that the temperature in the flame zone is high, combustion is very stable and the efficiency is increased when this burner is used.

  9. Process for clean-burning fuel from low-rank coal

    DOEpatents

    Merriam, N.W.; Sethi, V.; Brecher, L.E.

    1994-06-21

    A process is described for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage. 1 fig.

  10. Towards estimating cardiac motion using low-rank representation and topology preservation for ultrafast ultrasound data.

    PubMed

    Aviles, Angelica I; Widlak, Thomas; Casals, Alicia; Ammari, Habib

    2016-08-01

    Estimation of the cardiac motion is very important in order to detect heart diseases. This work presents a cardiac motion estimation approach using ultrafast ultrasound data. We optimize a variational framework which has the benefits of combining low-rank data representation with topology preservation. We show through the analysis of experimental results that this combination offers a radical reduction in computational time and noise while ensuring preservation of the anatomical structure of the heart under complex deformations. Although in this work we use the heart as a study case, our solution is promising to analyze other organs experiencing motion.

  11. Low-rank Quasi-Newton updates for Robust Jacobian lagging in Newton methods

    SciTech Connect

    Brown, J.; Brune, P.

    2013-07-01

    Newton-Krylov methods are standard tools for solving nonlinear problems. A common approach is to 'lag' the Jacobian when assembly or preconditioner setup is computationally expensive, in exchange for some degradation in the convergence rate and robustness. We show that this degradation may be partially mitigated by using the lagged Jacobian as an initial operator in a quasi-Newton method, which applies unassembled low-rank updates to the Jacobian until the next full reassembly. We demonstrate the effectiveness of this technique on problems in glaciology and elasticity. (authors)

  12. A Low-Rank Method for Characterizing High-Level Neural Computations

    PubMed Central

    Kaardal, Joel T.; Theunissen, Frédéric E.; Sharpee, Tatyana O.

    2017-01-01

    The signal transformations that take place in high-level sensory regions of the brain remain enigmatic because of the many nonlinear transformations that separate responses of these neurons from the input stimuli. One would like to have dimensionality reduction methods that can describe responses of such neurons in terms of operations on a large but still manageable set of relevant input features. A number of methods have been developed for this purpose, but often these methods rely on the expansion of the input space to capture as many relevant stimulus components as statistically possible. This expansion leads to a lower effective sampling thereby reducing the accuracy of the estimated components. Alternatively, so-called low-rank methods explicitly search for a small number of components in the hope of achieving higher estimation accuracy. Even with these methods, however, noise in the neural responses can force the models to estimate more components than necessary, again reducing the methods' accuracy. Here we describe how a flexible regularization procedure, together with an explicit rank constraint, can strongly improve the estimation accuracy compared to previous methods suitable for characterizing neural responses to natural stimuli. Applying the proposed low-rank method to responses of auditory neurons in the songbird brain, we find multiple relevant components making up the receptive field for each neuron and characterize their computations in terms of logical OR and AND computations. The results highlight potential differences in how invariances are constructed in visual and auditory systems. PMID:28824408

  13. Performance of low-rank QR approximation of the finite element Biot-Savart law

    SciTech Connect

    White, D; Fasenfest, B

    2006-10-16

    In this paper we present a low-rank QR method for evaluating the discrete Biot-Savart law. Our goal is to develop an algorithm that is easily implemented on parallel computers. It is assumed that the known current density and the unknown magnetic field are both expressed in a finite element expansion, and we wish to compute the degrees-of-freedom (DOF) in the basis function expansion of the magnetic field. The matrix that maps the current DOF to the field DOF is full, but if the spatial domain is properly partitioned the matrix can be written as a block matrix, with blocks representing distant interactions being low rank and having a compressed QR representation. While an octree partitioning of the matrix may be ideal, for ease of parallel implementation we employ a partitioning based on number of processors. The rank of each block (i.e. the compression) is determined by the specific geometry and is computed dynamically. In this paper we provide the algorithmic details and present computational results for large-scale computations.

  14. Low-Rank Positive Semidefinite Matrix Recovery From Corrupted Rank-One Measurements

    NASA Astrophysics Data System (ADS)

    Li, Yuanxin; Sun, Yue; Chi, Yuejie

    2017-01-01

    We study the problem of estimating a low-rank positive semidefinite (PSD) matrix from a set of rank-one measurements using sensing vectors composed of i.i.d. standard Gaussian entries, which are possibly corrupted by arbitrary outliers. This problem arises from applications such as phase retrieval, covariance sketching, quantum space tomography, and power spectrum estimation. We first propose a convex optimization algorithm that seeks the PSD matrix with the minimum $\\ell_1$-norm of the observation residual. The advantage of our algorithm is that it is free of parameters, therefore eliminating the need for tuning parameters and allowing easy implementations. We establish that with high probability, a low-rank PSD matrix can be exactly recovered as soon as the number of measurements is large enough, even when a fraction of the measurements are corrupted by outliers with arbitrary magnitudes. Moreover, the recovery is also stable against bounded noise. With the additional information of an upper bound of the rank of the PSD matrix, we propose another non-convex algorithm based on subgradient descent that demonstrates excellent empirical performance in terms of computational efficiency and accuracy.

  15. MsLRR: a unified multiscale low-rank representation for image segmentation.

    PubMed

    Liu, Xiaobai; Xu, Qian; Ma, Jiayi; Jin, Hai; Zhang, Yanduo

    2014-05-01

    In this paper, we present an efficient multiscale low-rank representation for image segmentation. Our method begins with partitioning the input images into a set of superpixels, followed by seeking the optimal superpixel-pair affinity matrix, both of which are performed at multiple scales of the input images. Since low-level superpixel features are usually corrupted by image noise, we propose to infer the low-rank refined affinity matrix. The inference is guided by two observations on natural images. First, looking into a single image, local small-size image patterns tend to recur frequently within the same semantic region, but may not appear in semantically different regions. The internal image statistics are referred to as replication prior, and we quantitatively justified it on real image databases. Second, the affinity matrices at different scales should be consistently solved, which leads to the cross-scale consistency constraint. We formulate these two purposes with one unified formulation and develop an efficient optimization procedure. The proposed representation can be used for both unsupervised or supervised image segmentation tasks. Our experiments on public data sets demonstrate the presented method can substantially improve segmentation accuracy.

  16. Low-Rank Decomposition Based Restoration of Compressed Images via Adaptive Noise Estimation.

    PubMed

    Zhang, Xinfeng; Lin, Weisi; Xiong, Ruiqin; Liu, Xianming; Ma, Siwei; Gao, Wen

    2016-07-07

    Images coded at low bit rates in real-world applications usually suffer from significant compression noise, which significantly degrades the visual quality. Traditional denoising methods are not suitable for the content-dependent compression noise, which usually assume that noise is independent and with identical distribution. In this paper, we propose a unified framework of content-adaptive estimation and reduction for compression noise via low-rank decomposition of similar image patches. We first formulate the framework of compression noise reduction based upon low-rank decomposition. Compression noises are removed by soft-thresholding the singular values in singular value decomposition (SVD) of every group of similar image patches. For each group of similar patches, the thresholds are adaptively determined according to compression noise levels and singular values. We analyze the relationship of image statistical characteristics in spatial and transform domains, and estimate compression noise level for every group of similar patches from statistics in both domains jointly with quantization steps. Finally, quantization constraint is applied to estimated images to avoid over-smoothing. Extensive experimental results show that the proposed method not only improves the quality of compressed images obviously for post-processing, but are also helpful for computer vision tasks as a pre-processing method.

  17. Target detection from MPEG video based on low-rank filtering in the compressed domain

    NASA Astrophysics Data System (ADS)

    Viangteeravat, Teeradache; Krootjohn, Soradech; Wilkes, D. M.

    2010-04-01

    There are advantages of using the motion vector obtained from the MPEG video coding to perform target of interest identification in the field. In practice, however, environment noise, time-varying, and uncertainty factors affect their performance reliably and accurately detecting targets of interest. In this paper, we proposed a novel low rank filtering based on L1 norm in order to straighten up single rogue or outliers that might show up fairly often. Finally, a simple average smoothing filter was applied to reduce vector quantization noise. By using the low rank filtering based on L1 norm, the dominant motion vectors from the MPEG video coding can be extracted appropriately with respect to target operational responses and can be used for robust identification of moving target. The performance of the proposed approach was evaluated based on a set of experimental camera motion. The motions, including pan, tilt, and zoom, was computed from the motion vectors, and the residual vectors which are not described by the camera motion are regarded as generated by moving blobs. Events, as a result, can be detected from these moving blobs. It is demonstrated that the approach yields very promising results where motion vectors obtained from the MPEG video coding can be used efficiently to detect and identify moving target in the field.

  18. Bayesian Framework with Non-local and Low-rank Constraint for Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Tang, Zhonghe; Wang, Shengzhe; Huo, Jianliang; Guo, Hang; Zhao, Haibo; Mei, Yuan

    2017-01-01

    Built upon the similar methodology of 'grouping and collaboratively filtering', the proposed algorithm recovers image patches from the array of similar noisy patches based on the assumption that their noise-free versions or approximation lie in a low dimensional subspace and has a low rank. Based on the analysis of the effect of noise and perturbation on the singular value, a weighted nuclear norm is defined to replace the conventional nuclear norm. Corresponding low-rank decomposition model and singular value shrinkage operator are derived. Taking into account the difference between the distribution of the signal and the noise, the weight depends not only on the standard deviation of noise, but also on the rank of the noise-free matrix and the singular value itself. Experimental results in image reconstruction tasks show that at relatively low computational cost the performance of proposed method is very close to state-of-the-art reconstruction methods BM3D and LSSC even outperforms them in restoring and preserving structure

  19. Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling.

    PubMed

    Zhao, Bo; Setsompop, Kawin; Adalsteinsson, Elfar; Gagoski, Borjan; Ye, Huihui; Ma, Dan; Jiang, Yun; Ellen Grant, P; Griswold, Mark A; Wald, Lawrence L

    2017-04-15

    This article introduces a constrained imaging method based on low-rank and subspace modeling to improve the accuracy and speed of MR fingerprinting (MRF). A new model-based imaging method is developed for MRF to reconstruct high-quality time-series images and accurate tissue parameter maps (e.g., T1 , T2 , and spin density maps). Specifically, the proposed method exploits low-rank approximations of MRF time-series images, and further enforces temporal subspace constraints to capture magnetization dynamics. This allows the time-series image reconstruction problem to be formulated as a simple linear least-squares problem, which enables efficient computation. After image reconstruction, tissue parameter maps are estimated via dictionary-based pattern matching, as in the conventional approach. The effectiveness of the proposed method was evaluated with in vivo experiments. Compared with the conventional MRF reconstruction, the proposed method reconstructs time-series images with significantly reduced aliasing artifacts and noise contamination. Although the conventional approach exhibits some robustness to these corruptions, the improved time-series image reconstruction in turn provides more accurate tissue parameter maps. The improvement is pronounced especially when the acquisition time becomes short. The proposed method significantly improves the accuracy of MRF, and also reduces data acquisition time. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Robust Adaptive Beamforming Based on Low-Rank and Cross-Correlation Techniques

    NASA Astrophysics Data System (ADS)

    Ruan, Hang; de Lamare, Rodrigo C.

    2016-08-01

    This work presents cost-effective low-rank techniques for designing robust adaptive beamforming (RAB) algorithms. The proposed algorithms are based on the exploitation of the cross-correlation between the array observation data and the output of the beamformer. Firstly, we construct a general linear equation considered in large dimensions whose solution yields the steering vector mismatch. Then, we employ the idea of the full orthogonalization method (FOM), an orthogonal Krylov subspace based method, to iteratively estimate the steering vector mismatch in a reduced-dimensional subspace, resulting in the proposed orthogonal Krylov subspace projection mismatch estimation (OKSPME) method. We also devise adaptive algorithms based on stochastic gradient (SG) and conjugate gradient (CG) techniques to update the beamforming weights with low complexity and avoid any costly matrix inversion. The main advantages of the proposed low-rank and mismatch estimation techniques are their cost-effectiveness when dealing with high dimension subspaces or large sensor arrays. Simulations results show excellent performance in terms of the output signal-to-interference-plus-noise ratio (SINR) of the beamformer among all the compared RAB methods.

  1. Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

    DOE PAGES

    Ganguli, Rajive; Bandopadhyay, Sukumar

    2012-01-01

    Tmore » he impact of particle size distribution (PSD) of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal), emissions (SO 2 , NO x , CO), and carbon content of ash (fly ash and bottom ash).he study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions.he PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns.here was negligible correlation between PSD and the followings factors: efficiency, SO 2 , NO x , and CO. Additionally, two tests where stack mercury (Hg) data was collected, did not demonstrate any real difference in Hg emissions with PSD.he results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal).hese plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency) and thereby, increasing their marketability.« less

  2. Anaerobic processing of low-rank coals. Quarterly progress report, July 1--September 30, 1992

    SciTech Connect

    Jain, M.K.; Narayan, R.; Han, O.

    1992-12-31

    The overall goal of this project is to find biological methods to remove carboxylic functionalities from low-rank coals and to assess the properties of the modified coal towards coal liquefaction. The main objectives for this quarter were: (i) continuation of microbial consortia maintenance and completion of coal decarboxylation using batch reactor system, (ii) decarboxylation of model polymer, (iii) characterization of biotreated coals, and (iv) microautoclave liquefaction of the botreated coal. Progress is reported on the thermogravimetric analysis of coal biotreated in the absence of methanogens and under 5% hydrogen gas exhibits increased volatile carbon to fixed carbon ratio; that the microbial consortia developed on coal are being adapted to two different model polymers containing free carboxylic groups to examine decarboxylation ability of consortium; completion of experiments to decarboxylate two model polymers, polyacrylic acid and polymethyl methacrylate, have been completed; that the biotreated coal showed increase in THF-solubles.

  3. Anaerobic bioprocessing of low-rank coals. Progress report, April 1--June 30, 1992

    SciTech Connect

    Jain, M.K.; Narayan, R.; Han, O.

    1992-07-14

    We are seeking to find biological methods to remove carboxylic functionalities from low-rank coals and to assess the properties of the modified coal towards coal liquefaction. The main objectives for this quarter were : continuation of microbial consortia development and maintenance, evaluation of commercial decarboxylase, decarboxylation of lignite, demineralized Wyodak coal and model polymer, and characterization of biotreated coals. Specifically we report that two batch fermentor systems were completed and three other fermentors under optimum conditions for coal decarboxylation are in progress; that inhibition of growth of methanogens in the batch fermentor system enhanced the carbon dioxide production; that adapted microbial consortium produced more gas from lignite than Wyodak subbituminous coal; that phenylalanine decarboxylase exhibited insignificant coal decarboxylation activity; that two different microbial consortia developed on coal seem to be effective in decarboxylation of a polymer containing free carboxylic groups; and that CHN analyses of additional biotreated coals reconfirm increase in H/C ratio by 3--6%.

  4. Sparse and low-rank feature extraction for the classification of target's tracking capability

    NASA Astrophysics Data System (ADS)

    Rasti, Behnood; Gudmundsson, Karl S.

    2016-09-01

    A feature extraction-based classification method is proposed in this paper for verifying the capability of human's neck in target tracking. Here, the target moves in predefined trajectory patterns in three difficulty levels. Dataset used for each pattern is obtained from two groups of people, one with whiplash associated disorder (WAD) and asymptomatic group, who behave in both sincere and feign manner. The aim is to verify the WAD group from asymptomatic one and also to discriminate the sincere behavior from the feigned one. Sparse and low-rank feature extraction is proposed to extract the most informative feature from training samples and then each sample is classified into the group which has the highest correlation coefficient with. The classification results are improved by fusing the results of the three patterns.

  5. Desulfurization of low-rank Turkish coals by multi-gravity separator

    SciTech Connect

    Aydin, M.E.; Yildirim, I.; Dogan, M.Z.; Onal, G.; Celik, M.S.

    1996-12-31

    The Istanbul Region coals are characterized by high moisture contents (avg. 35%), high volatile matter values (avg. 45%), and more importantly high levels of sulfur in the range of 1 to 5%. These lignitic coals generally have relatively low ash (10%), and higher levels of calorific values over 5,000 Kcal/kg. The Multi-Gravity Separator (MGS), a new fine size gravity separation equipment, was tested to evaluate its potential for the desulfurization of these low-rank coals. Systematic tests conducted on two different samples of minus 1 mm size indicate that despite the finely distributed nature of coal and relatively small difference between coal and its associated gangue minerals, the degree of pyritic sulfur removal is 65.7% and 85.9% for the respective coals.

  6. Discovering low-rank shared concept space for adapting text mining models.

    PubMed

    Chen, Bo; Lam, Wai; Tsang, Ivor W; Wong, Tak-Lam

    2013-06-01

    We propose a framework for adapting text mining models that discovers low-rank shared concept space. Our major characteristic of this concept space is that it explicitly minimizes the distribution gap between the source domain with sufficient labeled data and the target domain with only unlabeled data, while at the same time it minimizes the empirical loss on the labeled data in the source domain. Our method is capable of conducting the domain adaptation task both in the original feature space as well as in the transformed Reproducing Kernel Hilbert Space (RKHS) using kernel tricks. Theoretical analysis guarantees that the error of our adaptation model can be bounded with respect to the embedded distribution gap and the empirical loss in the source domain. We have conducted extensive experiments on two common text mining problems, namely, document classification and information extraction, to demonstrate the efficacy of our proposed framework.

  7. Liquefaction/solubilization of low-rank Turkish coals by white-rot fungus (Phanerochaete chrysosporium)

    SciTech Connect

    Elbeyli, I.Y.; Palantoken, A.; Piskin, S.; Kuzu, H.; Peksel, A.

    2006-08-15

    Microbial coal liquefaction/solubilization of three low-rank Turkish coals (Bursa-Kestelek, Kutahya-Seyitomer and Mugla-Yatagan lignite) was attempted by using a white-rot fungus (Phanerochaete chrysosporium DSM No. 6909); chemical compositions of the products were investigated. The lignite samples were oxidized by nitric acid under moderate conditions and then oxidized samples were placed on the agar medium of Phanerochaete chrysosporium. FTIR spectra of raw lignites, oxidized lignites and liquid products were recorded, and the acetone-soluble fractions of these samples were identified by GC-MS technique. Results show that the fungus affects the nitro and carboxyl/carbonyl groups in oxidized lignite sample, the liquid products obtained by microbial effects are the mixture of water-soluble compounds, and show limited organic solubility.

  8. Investigation of pyrolysis kinetics of humic acids from low rank Anatolian coal by thermal analysis

    SciTech Connect

    Tonbul, Y.; Erdogan, S.

    2007-07-01

    Thermogravimetric analysis (TGA) of humic acid samples from low rank Anatolian (east of Turkey, Bingol) coal were investigated under atmospheric pressure. The samples were subjected for the decomposition of organic matter ambient to 800{sup o} C at four different heating rates (5, 10, 15, and 20 degrees C min{sup -1}). The humic acid samples were started at decomposition between 170 - 206{sup o}C and amount of residues varied 55-60% according to heating rate. Each of samples showed a single step mass loss. TG/DTG data of samples were analyzed to determine activation energy values by Coats and Redfern method and Arrhenius method. Activation energy values are similar obtained from Coats and Redfern method and Arrhenius method and varied from 25 to 29 kJ mol{sup -1}.

  9. Compressed Sensing of Multichannel EEG Signals: The Simultaneous Cosparsity and Low-Rank Optimization.

    PubMed

    Liu, Yipeng; De Vos, Maarten; Van Huffel, Sabine

    2015-08-01

    This paper deals with the problems that some EEG signals have no good sparse representation and single-channel processing is not computationally efficient in compressed sensing of multichannel EEG signals. An optimization model with L0 norm and Schatten-0 norm is proposed to enforce cosparsity and low-rank structures in the reconstructed multichannel EEG signals. Both convex relaxation and global consensus optimization with alternating direction method of multipliers are used to compute the optimization model. The performance of multichannel EEG signal reconstruction is improved in term of both accuracy and computational complexity. The proposed method is a better candidate than previous sparse signal recovery methods for compressed sensing of EEG signals. The proposed method enables successful compressed sensing of EEG signals even when the signals have no good sparse representation. Using compressed sensing would much reduce the power consumption of wireless EEG system.

  10. A dynamical low-rank approach to the chemical master equation.

    PubMed

    Jahnke, Tobias; Huisinga, Wilhelm

    2008-11-01

    Stochastic reaction kinetics have increasingly been used to study cellular systems, with applications ranging from viral replication to gene regulatory networks and to signaling pathways. The underlying evolution equation, known as the chemical master equation (CME), can rarely be solved with traditional methods due to the huge number of degrees of freedom. We present a new approach to directly solve the CME by a dynamical low-rank approximation based on the Dirac-Frenkel-McLachlan variational principle. The new approach has the capability to substantially reduce the number of degrees of freedom, and to turn the CME into a computationally tractable problem. We illustrate the accuracy and efficiency of our methods in application to two examples of biological interest.

  11. An integrated approach to the utilization of low rank coals and biofuel

    SciTech Connect

    Sen, S.; Sen, M.; Moitra, N.

    1999-08-01

    While suggesting an integrated approach for utilization of inferior low rank coals for power in India, the importance of low temperature carbonization followed by retrieval of all value-based products has been stressed. It is further suggested that tar, obtained in the process, could be hydrogenated and fractionated in a central plant for conversion to hydrocarbons. High ash char, the principal product of pyrolysis, has been experimentally found to be amenable to beneficiation, yielding suitable fractions for power generation, briquetting, or blending. Experimental studies have shown that forest litters and agricultural wastes, containing significant proportions of spore, cuticle, and exine--considered as precursors of hydrocarbon-generating coal macerals--also yield large quantities of tar, ammonical liquor, and the principal product, char, which can be respectively utilized for the production of petroleum substitutes, value-based chemicals, and source material for blending, briquette making, and char-water slurries, opening up new avenues for fuel utilization and conservation.

  12. Solving block linear systems with low-rank off-diagonal blocks is easily parallelizable

    SciTech Connect

    Menkov, V.

    1996-12-31

    An easily and efficiently parallelizable direct method is given for solving a block linear system Bx = y, where B = D + Q is the sum of a non-singular block diagonal matrix D and a matrix Q with low-rank blocks. This implicitly defines a new preconditioning method with an operation count close to the cost of calculating a matrix-vector product Qw for some w, plus at most twice the cost of calculating Qw for some w. When implemented on a parallel machine the processor utilization can be as good as that of those operations. Order estimates are given for the general case, and an implementation is compared to block SSOR preconditioning.

  13. Low rank approximation in G0W0 calculations

    SciTech Connect

    Shao, MeiYue; Lin, Lin; Yang, Chao; Liu, Fang; Da Jornada, Felipe H.; Deslippe, Jack; Louie, Steven G.

    2016-06-04

    The single particle energies obtained in a Kohn-Sham density functional theory (DFT) calculation are generally known to be poor approximations to electron excitation energies that are measured in tr ansport, tunneling and spectroscopic experiments such as photo-emission spectroscopy. The correction to these energies can be obtained from the poles of a single particle Green’s function derived from a many-body perturbation theory. From a computational perspective, the accuracy and efficiency of such an approach depends on how a self energy term that properly accounts for dynamic screening of electrons is approximated. The G0W0 approximation is a widely used technique in which the self energy is expressed as the convolution of a noninteracting Green’s function (G0) and a screened Coulomb interaction (W0) in the frequency domain. The computational cost associated with such a convolution is high due to the high complexity of evaluating W 0 at multiple frequencies. In this paper, we discuss how the cost of G0W0 calculation can be reduced by constructing a low rank approximation to the frequency dependent part of W 0 . In particular, we examine the effect of such a low rank approximation on the accuracy of the G0W0 approximation. We also discuss how the numerical convolution of G0 and W0 can be evaluated efficiently and accurately by using a contour deformation technique with an appropriate choice of the contour.

  14. A Novel Fixed Low-Rank Constrained EEG Spatial Filter Estimation with Application to Movie-Induced Emotion Recognition.

    PubMed

    Yano, Ken; Suyama, Takayuki

    2016-01-01

    This paper proposes a novel fixed low-rank spatial filter estimation for brain computer interface (BCI) systems with an application that recognizes emotions elicited by movies. The proposed approach unifies such tasks as feature extraction, feature selection, and classification, which are often independently tackled in a "bottom-up" manner, under a regularized loss minimization problem. The loss function is explicitly derived from the conventional BCI approach and solves its minimization by optimization with a nonconvex fixed low-rank constraint. For evaluation, an experiment was conducted to induce emotions by movies for dozens of young adult subjects and estimated the emotional states using the proposed method. The advantage of the proposed method is that it combines feature selection, feature extraction, and classification into a monolithic optimization problem with a fixed low-rank regularization, which implicitly estimates optimal spatial filters. The proposed method shows competitive performance against the best CSP-based alternatives.

  15. A Novel Riemannian Metric Based on Riemannian Structure and Scaling Information for Fixed Low-Rank Matrix Completion.

    PubMed

    Mao, Shasha; Xiong, Lin; Jiao, Licheng; Feng, Tian; Yeung, Sai-Kit

    2016-07-26

    Riemannian optimization has been widely used to deal with the fixed low-rank matrix completion problem, and Riemannian metric is a crucial factor of obtaining the search direction in Riemannian optimization. This paper proposes a new Riemannian metric via simultaneously considering the Riemannian geometry structure and the scaling information, which is smoothly varying and invariant along the equivalence class. The proposed metric can make a tradeoff between the Riemannian geometry structure and the scaling information effectively. Essentially, it can be viewed as a generalization of some existing metrics. Based on the proposed Riemanian metric, we also design a Riemannian nonlinear conjugate gradient algorithm, which can efficiently solve the fixed low-rank matrix completion problem. By experimenting on the fixed low-rank matrix completion, collaborative filtering, and image and video recovery, it illustrates that the proposed method is superior to the state-of-the-art methods on the convergence efficiency and the numerical performance.

  16. Rough ground surface clutter removal in air-coupled ground penetrating radar data using low-rank and sparse representation

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Burns, Dylan; Orfeo, Dan; Huston, Dryver R.; Xia, Tian

    2017-04-01

    This paper explores a low-rank and sparse representation based technique to remove the clutter produced by rough ground surface for air-coupled ground penetrating radar (GPR). For rough ground surface, the surface clutter components in different A-Scan traces are not aligned on the depth axis. To compensate for the misalignment effect and facilitate clutter removal, the A-Scan traces are aligned using cross-correlation technique first. Then the low-rank and sparse representation approach is applied to decompose the GPR data into a low-rank matrix whose columns record the ground clutter in A-Scan traces upon alignment adjustment, and a sparse matrix that features the subsurface object under test. The effectiveness of the proposed clutter removal method has been evaluated through simulations.

  17. Weighted low-rank sparse model via nuclear norm minimization for bearing fault detection

    NASA Astrophysics Data System (ADS)

    Du, Zhaohui; Chen, Xuefeng; Zhang, Han; Yang, Boyuan; Zhai, Zhi; Yan, Ruqiang

    2017-07-01

    It is a fundamental task in the machine fault diagnosis community to detect impulsive signatures generated by the localized faults of bearings. The main goal of this paper is to exploit the low-rank physical structure of periodic impulsive features and further establish a weighted low-rank sparse model for bearing fault detection. The proposed model mainly consists of three basic components: an adaptive partition window, a nuclear norm regularization and a weighted sequence. Firstly, due to the periodic repetition mechanism of impulsive feature, an adaptive partition window could be designed to transform the impulsive feature into a data matrix. The highlight of partition window is to accumulate all local feature information and align them. Then, all columns of the data matrix share similar waveforms and a core physical phenomenon arises, i.e., these singular values of the data matrix demonstrates a sparse distribution pattern. Therefore, a nuclear norm regularization is enforced to capture that sparse prior. However, the nuclear norm regularization treats all singular values equally and thus ignores one basic fact that larger singular values have more information volume of impulsive features and should be preserved as much as possible. Therefore, a weighted sequence with adaptively tuning weights inversely proportional to singular amplitude is adopted to guarantee the distribution consistence of large singular values. On the other hand, the proposed model is difficult to solve due to its non-convexity and thus a new algorithm is developed to search one satisfying stationary solution through alternatively implementing one proximal operator operation and least-square fitting. Moreover, the sensitivity analysis and selection principles of algorithmic parameters are comprehensively investigated through a set of numerical experiments, which shows that the proposed method is robust and only has a few adjustable parameters. Lastly, the proposed model is applied to the

  18. LRTV: MR Image Super-Resolution With Low-Rank and Total Variation Regularizations.

    PubMed

    Shi, Feng; Cheng, Jian; Wang, Li; Yap, Pew-Thian; Shen, Dinggang

    2015-12-01

    Image super-resolution (SR) aims to recover high-resolution images from their low-resolution counterparts for improving image analysis and visualization. Interpolation methods, widely used for this purpose, often result in images with blurred edges and blocking effects. More advanced methods such as total variation (TV) retain edge sharpness during image recovery. However, these methods only utilize information from local neighborhoods, neglecting useful information from remote voxels. In this paper, we propose a novel image SR method that integrates both local and global information for effective image recovery. This is achieved by, in addition to TV, low-rank regularization that enables utilization of information throughout the image. The optimization problem can be solved effectively via alternating direction method of multipliers (ADMM). Experiments on MR images of both adult and pediatric subjects demonstrate that the proposed method enhances the details in the recovered high-resolution images, and outperforms methods such as the nearest-neighbor interpolation, cubic interpolation, iterative back projection (IBP), non-local means (NLM), and TV-based up-sampling.

  19. LRTV: MR Image Super-Resolution with Low-Rank and Total Variation Regularizations

    PubMed Central

    Shi, Feng; Cheng, Jian; Wang, Li; Yap, Pew-Thian

    2017-01-01

    Image super-resolution (SR) aims to recover high-resolution images from their low-resolution counterparts for improving image analysis and visualization. Interpolation methods, widely used for this purpose, often result in images with blurred edges and blocking effects. More advanced methods such as total variation (TV) retain edge sharpness during image recovery. However, these methods only utilize information from local neighborhoods, neglecting useful information from remote voxels. In this paper, we propose a novel image SR method that integrates both local and global information for effective image recovery. This is achieved by, in addition to TV, low-rank regularization that enables utilization of information throughout the image. The optimization problem can be solved effectively via alternating direction method of multipliers (ADMM). Experiments on MR images of both adult and pediatric subjects demonstrate that the proposed method enhances the details in the recovered high-resolution images, and outperforms methods such as the nearest-neighbor interpolation, cubic interpolation, iterative back projection (IBP), non-local means (NLM), and TV-based up-sampling. PMID:26641727

  20. Characteristics and Thermal Behaviour of Low Rank Malaysian Coals towards Liquefaction Performance via Thermogravimetric Analysis

    NASA Astrophysics Data System (ADS)

    Ishak, M. A. M.; Ismail, K.; Nawawi, W. I.; Jawad, A. H.; Abdullah, M. F.; Kasim, M. N.; Ani, A. Y.

    2016-07-01

    In this study, thermal behaviour of two low-rank Malaysian coals namely Mukah Balingian (MB) and Batu Arang (BA) were obtained under pyrolysis conditions via Thermogravimetric analysis (TGA) at a heating rate of 20°C min-1. The thermal characteristics of the coals were investigated prior to direct liquefaction in order to determine the liquefaction performance, i.e. coal conversion and oil yield. The differential weight loss (DTG) results for both coals showed that there are three main stages evolved which consists of moisture, volatile matter and heavier hydrocarbons that correspond to temperature range of 150, 200-500 and 550-800°C, respectively. Apparently, the DTG curves of BA coal reveals a similar pattern of thermal evolution profile in comparison to that of the MB coal. However, the calculated mean reactivity of BA coal is higher than that of MB, which implied that BA would probably enhance coal conversion and oil yield in comparison to MB coal. Interestingly, results showed that under the same liquefaction conditions (i.e. at 4MPa pressure and 420°C), conversion and oil yield of both coals were well correlated with their reactivity and petrofactor value obtained.

  1. Distributed Compressive Sensing of Hyperspectral Images Using Low Rank and Structure Similarity Property

    NASA Astrophysics Data System (ADS)

    Huang, Bingchao; Xu, Ke; Wan, Jianwei; Liu, Xu

    2015-11-01

    An efficient method and system for distributed compressive sensing of hyperspectral images is presented, which exploit the low rank and structure similarity property of hyperspectral imagery. In this paper, by integrating the respective characteristics of DSC and CS, a distributed compressive sensing framework is proposed to simultaneously capture and compress hyperspectral images. At the encoder, every band image is measured independently, where almost all computation burdens can be shifted to the decoder, resulting in a very low-complexity encoder. It is simple to operate and easy to hardware implementation. At the decoder, each band image is reconstructed by the method of total variation norm minimize. During each band reconstruction, the low rand structure of band images and spectrum structure similarity are used to give birth to the new regularizers. With combining the new regularizers and other regularizer, we can sufficiently exploit the spatial correlation, spectral correlation and spectral structural redundancy in hyperspectral imagery. A numerical optimization algorithm is also proposed to solve the reconstruction model by augmented Lagrangian multiplier method. Experimental results show that this method can effectively improve the reconstruction quality of hyperspectral images.

  2. PCLR: Phase-Constrained Low-Rank Model for Compressive Diffusion-Weighted MRI

    PubMed Central

    Zhang, Kai; Zhou, Weifeng; Hu, Xiaoping

    2015-01-01

    Purpose This work develops a compressive sensing approach for diffusion-weighted (DW) MRI. Methods A phase-constrained low-rank (PCLR) approach was developed using the image coherence across the DW directions for efficient compressive DW MRI, while accounting for drastic phase changes across the DW directions, possibly as a result of eddy current, and rigid and non-rigid motions. In PCLR, a low-resolution phase estimation was used for removing phase inconsistency between DW directions. In our implementation, GRAPPA was incorporated for better phase estimation while allowing higher undersampling factor. An efficient and easy-to-implement image reconstruction algorithm, consisting mainly of partial Fourier update and singular value decomposition, was developed for solving PCLR. Results The error measures based on diffusion-tensor-derived metrics and tractography indicated that PCLR, with its joint reconstruction of all DW images using the image coherence, outperformed the frame-independent reconstruction through zero-padding FFT. Furthermore, using GRAPPA for phase estimation, PCLR readily achieved a 4-fold undersampling. Conclusion The PCLR is developed and demonstrated for compressive DW MRI. A 4-fold reduction in k-space sampling could be readily achieved without substantial degradation of reconstructed images and diffusion tensor measures, making it possible to significantly reduce the data acquisition in DW MRI and/or improve spatial and angular resolutions. PMID:24327553

  3. Nonlocal image restoration with bilateral variance estimation: a low-rank approach.

    PubMed

    Dong, Weisheng; Shi, Guangming; Li, Xin

    2013-02-01

    Simultaneous sparse coding (SSC) or nonlocal image representation has shown great potential in various low-level vision tasks, leading to several state-of-the-art image restoration techniques, including BM3D and LSSC. However, it still lacks a physically plausible explanation about why SSC is a better model than conventional sparse coding for the class of natural images. Meanwhile, the problem of sparsity optimization, especially when tangled with dictionary learning, is computationally difficult to solve. In this paper, we take a low-rank approach toward SSC and provide a conceptually simple interpretation from a bilateral variance estimation perspective, namely that singular-value decomposition of similar packed patches can be viewed as pooling both local and nonlocal information for estimating signal variances. Such perspective inspires us to develop a new class of image restoration algorithms called spatially adaptive iterative singular-value thresholding (SAIST). For noise data, SAIST generalizes the celebrated BayesShrink from local to nonlocal models; for incomplete data, SAIST extends previous deterministic annealing-based solution to sparsity optimization through incorporating the idea of dictionary learning. In addition to conceptual simplicity and computational efficiency, SAIST has achieved highly competent (often better) objective performance compared to several state-of-the-art methods in image denoising and completion experiments. Our subjective quality results compare favorably with those obtained by existing techniques, especially at high noise levels and with a large amount of missing data.

  4. Compartmentalized low-rank recovery for high-resolution lipid unsuppressed MRSI.

    PubMed

    Bhattacharya, Ipshita; Jacob, Mathews

    2017-10-01

    To introduce a novel algorithm for the recovery of high-resolution magnetic resonance spectroscopic imaging (MRSI) data with minimal lipid leakage artifacts, from dual-density spiral acquisition. The reconstruction of MRSI data from dual-density spiral data is formulated as a compartmental low-rank recovery problem. The MRSI dataset is modeled as the sum of metabolite and lipid signals, each of which is support limited to the brain and extracranial regions, respectively, in addition to being orthogonal to each other. The reconstruction problem is formulated as an optimization problem, which is solved using iterative reweighted nuclear norm minimization. The comparisons of the scheme against dual-resolution reconstruction algorithm on numerical phantom and in vivo datasets demonstrate the ability of the scheme to provide higher spatial resolution and lower lipid leakage artifacts. The experiments demonstrate the ability of the scheme to recover the metabolite maps, from lipid unsuppressed datasets with echo time (TE) = 55 ms. The proposed reconstruction method and data acquisition strategy provide an efficient way to achieve high-resolution metabolite maps without lipid suppression. This algorithm would be beneficial for fast metabolic mapping and extension to multislice acquisitions. Magn Reson Med 78:1267-1280, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Data Compression for the Tomo-e Gozen Using Low-rank Matrix Approximation

    NASA Astrophysics Data System (ADS)

    Morii, Mikio; Ikeda, Shiro; Sako, Shigeyuki; Ohsawa, Ryou

    2017-01-01

    Optical wide-field surveys with a high cadence are expected to create a new field of astronomy, so-called “movie astronomy,” in the near future. The amount of data from the observations will be huge, and hence efficient data compression will be indispensable. Here we propose a low-rank matrix approximation with sparse matrix decomposition as a promising solution to reduce the data size effectively while preserving sufficient scientific information. We apply one of the methods to the movie data obtained with the prototype model of the Tomo-e Gozen mounted on the 1.0 m Schmidt telescope of Kiso Observatory. Once full-scale observation with the Tomo-e Gozen commences, it will generate ∼30 TB of data per night. We demonstrate that the data are compressed by a factor of about 10 in size without losing transient events like optical short transient point sources and meteors. The intensity of point sources can be recovered from the compressed data. The processing runs sufficiently fast, compared with the expected data-acquisition rate in the actual observing runs.

  6. PCLR: phase-constrained low-rank model for compressive diffusion-weighted MRI.

    PubMed

    Gao, Hao; Li, Longchuan; Zhang, Kai; Zhou, Weifeng; Hu, Xiaoping

    2014-11-01

    This work develops a compressive sensing approach for diffusion-weighted (DW) MRI. A phase-constrained low-rank (PCLR) approach was developed using the image coherence across the DW directions for efficient compressive DW MRI, while accounting for drastic phase changes across the DW directions, possibly as a result of eddy current, and rigid and nonrigid motions. In PCLR, a low-resolution phase estimation was used for removing phase inconsistency between DW directions. In our implementation, GRAPPA (generalized autocalibrating partial parallel acquisition) was incorporated for better phase estimation while allowing higher undersampling factor. An efficient and easy-to-implement image reconstruction algorithm, consisting mainly of partial Fourier update and singular value decomposition, was developed for solving PCLR. The error measures based on diffusion-tensor-derived metrics and tractography indicated that PCLR, with its joint reconstruction of all DW images using the image coherence, outperformed the frame-independent reconstruction through zero-padding FFT. Furthermore, using GRAPPA for phase estimation, PCLR readily achieved a four-fold undersampling. The PCLR is developed and demonstrated for compressive DW MRI. A four-fold reduction in k-space sampling could be readily achieved without substantial degradation of reconstructed images and diffusion tensor measures, making it possible to significantly reduce the data acquisition in DW MRI and/or improve spatial and angular resolutions. Copyright © 2013 Wiley Periodicals, Inc.

  7. Calibrationless Parallel Imaging Reconstruction Based on Structured Low-Rank Matrix Completion

    PubMed Central

    Shin, Peter J.; Larson, Peder E.Z.; Ohliger, Michael A.; Elad, Michael; Pauly, John M.; Vigneron, Daniel B.; Lustig, Michael

    2013-01-01

    Purpose A calibrationless parallel imaging reconstruction method, termed simultaneous auto-calibrating and k-space estimation (SAKE), is presented. It is a data-driven, coil-by-coil reconstruction method that does not require a separate calibration step for estimating coil sensitivity information. Methods In SAKE, an under-sampled multi-channel dataset is structured into a single data matrix. Then the reconstruction is formulated as a structured low-rank matrix completion problem. An iterative solution that implements a projection-onto-sets algorithm with singular value thresholding is described. Results Reconstruction results are demonstrated for retrospectively and prospectively under-sampled, multi-channel Cartesian data having no calibration signals. Additionally, non-Cartesian data reconstruction is presented. Finally, improved image quality is demonstrated by combining SAKE with wavelet-based compressed sensing. Conclusion As estimation of coil sensitivity information is not needed, the proposed method could potentially benefit MR applications where acquiring accurate calibration data is limiting or not possible at all. PMID:24248734

  8. Soil attenuation of leachates from low-rank coal combustion wastes: a literature survey. [116 references

    SciTech Connect

    Gauntt, R. O.; DeOtte, R. E.; Slowey, J. F.; McFarland, A. R.

    1984-01-01

    In parallel with pursuing the goal of increased utilization of low-rank solid fuels, the US Department of Energy is investigating various aspects associated with the disposal of coal-combustion solid wastes. Concern has been expressed relative to the potential hazards presented by leachates from fly ash, bottom ash and scrubber wastes. This is of particular interest in some regions where disposal areas overlap aquifer recharge regions. The western regions of the United States are characterized by relatively dry alkaline soils which may effect substantial attenuation of contaminants in the leachates thereby reducing the pollution potential. A project has been initiated to study the contaminant uptake of western soils. This effort consists of two phases: (1) preparation of a state-of-the-art document on soil attenuation; and (2) laboratory experimental studies to characterize attenuation of a western soil. The state-of-the-art document, represented herein, presents the results of studies on the characteristics of selected wastes, reviews the suggested models which account for the uptake, discusses the specialized columnar laboratory studies on the interaction of leachates and soils, and gives an overview of characteristics of Texas and Wyoming soils. 116 references, 10 figures, 29 tables.

  9. Low-rank separated representation surrogates of high-dimensional stochastic functions: Application in Bayesian inference

    SciTech Connect

    Validi, AbdoulAhad

    2014-03-01

    This study introduces a non-intrusive approach in the context of low-rank separated representation to construct a surrogate of high-dimensional stochastic functions, e.g., PDEs/ODEs, in order to decrease the computational cost of Markov Chain Monte Carlo simulations in Bayesian inference. The surrogate model is constructed via a regularized alternative least-square regression with Tikhonov regularization using a roughening matrix computing the gradient of the solution, in conjunction with a perturbation-based error indicator to detect optimal model complexities. The model approximates a vector of a continuous solution at discrete values of a physical variable. The required number of random realizations to achieve a successful approximation linearly depends on the function dimensionality. The computational cost of the model construction is quadratic in the number of random inputs, which potentially tackles the curse of dimensionality in high-dimensional stochastic functions. Furthermore, this vector-valued separated representation-based model, in comparison to the available scalar-valued case, leads to a significant reduction in the cost of approximation by an order of magnitude equal to the vector size. The performance of the method is studied through its application to three numerical examples including a 41-dimensional elliptic PDE and a 21-dimensional cavity flow.

  10. Anaerobic biprocessing of low rank coals. Final technical report, September 12, 1990--August 10, 1993

    SciTech Connect

    Jain, M.K.; Narayan, R.

    1993-08-05

    Coal solubilization under aerobic conditions results in oxygenated coal product which, in turn, makes the coal poorer fuel than the starting material. A novel approach has been made in this project is to remove oxygen from coal by reductive decarboxylation. In Wyodak subbituminous coal the major oxygen functionality is carboxylic groups which exist predominantly as carboxylate anions strongly chelating metal cations like Ca{sup 2+} and forming strong macromolecular crosslinks which contribute in large measure to network polymer structure. Removal of the carboxylic groups at ambient temperature by anaerobic organisms would unravel the macromoleculer network, resulting in smaller coal macromolecules with increased H/C ratio which has better fuel value and better processing prospects. These studies described here sought to find biological methods to remove carboxylic functionalities from low rank coals under ambient conditions and to assess the properties of these modified coals towards coal liquefaction. Efforts were made to establish anaerobic microbial consortia having decarboxylating ability, decarboxylate coal with the adapted microbial consortia, isolate the organisms, and characterize the biotreated coal products. Production of CO{sup 2} was used as the primary indicator for possible coal decarboxylation.

  11. Accelerated cardiac cine MRI using locally low rank and finite difference constraints.

    PubMed

    Miao, Xin; Lingala, Sajan Goud; Guo, Yi; Jao, Terrence; Usman, Muhammad; Prieto, Claudia; Nayak, Krishna S

    2016-07-01

    To evaluate the potential value of combining multiple constraints for highly accelerated cardiac cine MRI. A locally low rank (LLR) constraint and a temporal finite difference (FD) constraint were combined to reconstruct cardiac cine data from highly undersampled measurements. Retrospectively undersampled 2D Cartesian reconstructions were quantitatively evaluated against fully-sampled data using normalized root mean square error, structural similarity index (SSIM) and high frequency error norm (HFEN). This method was also applied to 2D golden-angle radial real-time imaging to facilitate single breath-hold whole-heart cine (12 short-axis slices, 9-13s single breath hold). Reconstruction was compared against state-of-the-art constrained reconstruction methods: LLR, FD, and k-t SLR. At 10 to 60 spokes/frame, LLR+FD better preserved fine structures and depicted myocardial motion with reduced spatio-temporal blurring in comparison to existing methods. LLR yielded higher SSIM ranking than FD; FD had higher HFEN ranking than LLR. LLR+FD combined the complimentary advantages of the two, and ranked the highest in all metrics for all retrospective undersampled cases. Single breath-hold multi-slice cardiac cine with prospective undersampling was enabled with in-plane spatio-temporal resolutions of 2×2mm(2) and 40ms. Highly accelerated cardiac cine is enabled by the combination of 2D undersampling and the synergistic use of LLR and FD constraints. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Motion adaptive patch-based low-rank approach for compressed sensing cardiac cine MRI.

    PubMed

    Yoon, Huisu; Kim, Kyung Sang; Kim, Daniel; Bresler, Yoram; Ye, Jong Chul

    2014-11-01

    One of the technical challenges in cine magnetic resonance imaging (MRI) is to reduce the acquisition time to enable the high spatio-temporal resolution imaging of a cardiac volume within a short scan time. Recently, compressed sensing approaches have been investigated extensively for highly accelerated cine MRI by exploiting transform domain sparsity using linear transforms such as wavelets, and Fourier. However, in cardiac cine imaging, the cardiac volume changes significantly between frames, and there often exist abrupt pixel value changes along time. In order to effectively sparsify such temporal variations, it is necessary to exploit temporal redundancy along motion trajectories. This paper introduces a novel patch-based reconstruction method to exploit geometric similarities in the spatio-temporal domain. In particular, we use a low rank constraint for similar patches along motion, based on the observation that rank structures are relatively less sensitive to global intensity changes, but make it easier to capture moving edges. A Nash equilibrium formulation with relaxation is employed to guarantee convergence. Experimental results show that the proposed algorithm clearly reconstructs important anatomical structures in cardiac cine image and provides improved image quality compared to existing state-of-the-art methods such as k-t FOCUSS, k-t SLR, and MASTeR.

  13. Low-rank network decomposition reveals structural characteristics of small-world networks

    NASA Astrophysics Data System (ADS)

    Barranca, Victor J.; Zhou, Douglas; Cai, David

    2015-12-01

    Small-world networks occur naturally throughout biological, technological, and social systems. With their prevalence, it is particularly important to prudently identify small-world networks and further characterize their unique connection structure with respect to network function. In this work we develop a formalism for classifying networks and identifying small-world structure using a decomposition of network connectivity matrices into low-rank and sparse components, corresponding to connections within clusters of highly connected nodes and sparse interconnections between clusters, respectively. We show that the network decomposition is independent of node indexing and define associated bounded measures of connectivity structure, which provide insight into the clustering and regularity of network connections. While many existing network characterizations rely on constructing benchmark networks for comparison or fail to describe the structural properties of relatively densely connected networks, our classification relies only on the intrinsic network structure and is quite robust with respect to changes in connection density, producing stable results across network realizations. Using this framework, we analyze several real-world networks and reveal new structural properties, which are often indiscernible by previously established characterizations of network connectivity.

  14. Fast dynamic electron paramagnetic resonance (EPR) oxygen imaging using low-rank tensors

    NASA Astrophysics Data System (ADS)

    Christodoulou, Anthony G.; Redler, Gage; Clifford, Bryan; Liang, Zhi-Pei; Halpern, Howard J.; Epel, Boris

    2016-09-01

    Hypoxic tumors are resistant to radiotherapy, motivating the development of tools to image local oxygen concentrations. It is generally believed that stable or chronic hypoxia is the source of resistance, but more recent work suggests a role for transient hypoxia. Conventional EPR imaging (EPRI) is capable of imaging tissue pO2in vivo, with high pO2 resolution and 1 mm spatial resolution but low imaging speed (10 min temporal resolution for T1-based pO2 mapping), which makes it difficult to investigate the oxygen changes, e.g., transient hypoxia. Here we describe a new imaging method which accelerates dynamic EPR oxygen imaging, allowing 3D imaging at 2 frames per minute, fast enough to image transient hypoxia at the "speed limit" of observed pO2 change. The method centers on a low-rank tensor model that decouples the tradeoff between imaging speed, spatial coverage/resolution, and number of inversion times (pO2 accuracy). We present a specialized sparse sampling strategy and image reconstruction algorithm for use with this model. The quality and utility of the method is demonstrated in simulations and in vivo experiments in tumor bearing mice.

  15. L1 -norm low-rank matrix factorization by variational Bayesian method.

    PubMed

    Zhao, Qian; Meng, Deyu; Xu, Zongben; Zuo, Wangmeng; Yan, Yan

    2015-04-01

    The L1 -norm low-rank matrix factorization (LRMF) has been attracting much attention due to its wide applications to computer vision and pattern recognition. In this paper, we construct a new hierarchical Bayesian generative model for the L1 -norm LRMF problem and design a mean-field variational method to automatically infer all the parameters involved in the model by closed-form equations. The variational Bayesian inference in the proposed method can be understood as solving a weighted LRMF problem with different weights on matrix elements based on their significance and with L2 -regularization penalties on parameters. Throughout the inference process of our method, the weights imposed on the matrix elements can be adaptively fitted so that the adverse influence of noises and outliers embedded in data can be largely suppressed, and the parameters can be appropriately regularized so that the generalization capability of the problem can be statistically guaranteed. The robustness and the efficiency of the proposed method are substantiated by a series of synthetic and real data experiments, as compared with the state-of-the-art L1 -norm LRMF methods. Especially, attributed to the intrinsic generalization capability of the Bayesian methodology, our method can always predict better on the unobserved ground truth data than existing methods.

  16. Alaska low-rank coal-water fuel -- Diesel demonstration Phase 2: Construction

    SciTech Connect

    Wilson, W.; Benson, C.; Wilson, R.; Krier, G.; Ruckhaus, M.; Walsh, D.; Ward, C.

    1998-07-01

    The technical feasibility of producing and utilizing a premium low-rank coal-water fuel (LRCWF) made from ultra-low sulfur Alaskan subbituminous coal following hydrothermal treatment (HT) has been demonstrated in pilot plants in Australia, Japan and the US. Preliminary process economics suggest that LRCWF produced from subbituminous coal from the Beluga coal field near Anchorage, Alaska, with measured coal reserves approaching 2 billion tons, would be competitive with heavy oil priced above about $18 per barrel in Japan. Consequently, a consortium led by Usibelli Coal Mine, Inc. (UCM), the University of Alaska Fairbanks (UAF) and Coal-Water Fuel Services (CWFS) was formed to seek funding for a commercial-scale demonstration project to be built at UAF. Arthur D. Little, Inc. (ADL), with support from the US Department of Energy (DOE), led a team that demonstrated the feasibility of using CWFs in medium speed diesel engines. They were awarded funding in DOE's fifth and final Clean Coal Technology Program solicitation to demonstrate the technology at commercial scale in a Maryland utility. Due to reduced power demands, the utility withdrew and project developers sought a new location. ADL was familiar with the potential synergism with the proposed Alaskan LRCWF project and have joined with the Alaskan team to formulate the LRCWF-Diesel Demonstration Project to be located at UAF. Coltec Industries, Fairbanks Morse Engine Division, will provide commercial CWF diesel technology.

  17. Hydrothermal extraction and gasification of low rank coal with catalyst Al2O3 and Pd/Al2O3

    NASA Astrophysics Data System (ADS)

    Fachruzzaki, Handayani, Ismi; Mursito, Anggoro Tri

    2017-01-01

    Increasing coal quality is very important in order to utilize low-rank coal. This research is attempted to increase the quality of low-rank coal using hydrothermal process with hot compressed water (HCW) at 200 °C and 3 MPa. The product from this process were solid residue and liquid filtrate with organic component. Product from gasification of the filtrate was synthetic gas. The result showed that higher water flow rate could increase organic component in the filtrate. When a catalyst was used, the extraction process was faster, the organic component in the filtrate was increased while its content was decreased in the residue. Fourier transform infrared spectroscopy (FTIR) analysis indicated that coal extraction using HCW was more effective with catalyst Pd/Al2O3. Increasing the process temperature will increase the amounts CO and H2 gas. In this research, highest net heating value at 800°C using K2CO3 solution and Pd/Al2O3 catalyst was 17,774.36 kJ/kg. The highest cold gas efficiency was 91.29% and the best carbon conversion was 34.78%.

  18. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    SciTech Connect

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri, John; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Liber, Pawel; Lopez-Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-03-30

    The purpose of this project was to evaluate the ability of advanced low rank coal gasification technology to cause a significant reduction in the COE for IGCC power plants with 90% carbon capture and sequestration compared with the COE for similarly configured IGCC plants using conventional low rank coal gasification technology. GE’s advanced low rank coal gasification technology uses the Posimetric Feed System, a new dry coal feed system based on GE’s proprietary Posimetric Feeder. In order to demonstrate the performance and economic benefits of the Posimetric Feeder in lowering the cost of low rank coal-fired IGCC power with carbon capture, two case studies were completed. In the Base Case, the gasifier was fed a dilute slurry of Montana Rosebud PRB coal using GE’s conventional slurry feed system. In the Advanced Technology Case, the slurry feed system was replaced with the Posimetric Feed system. The process configurations of both cases were kept the same, to the extent possible, in order to highlight the benefit of substituting the Posimetric Feed System for the slurry feed system.

  19. Low-dose cerebral perfusion computed tomography image restoration via low-rank and total variation regularizations

    PubMed Central

    Niu, Shanzhou; Zhang, Shanli; Huang, Jing; Bian, Zhaoying; Chen, Wufan; Yu, Gaohang; Liang, Zhengrong; Ma, Jianhua

    2016-01-01

    Cerebral perfusion x-ray computed tomography (PCT) is an important functional imaging modality for evaluating cerebrovascular diseases and has been widely used in clinics over the past decades. However, due to the protocol of PCT imaging with repeated dynamic sequential scans, the associative radiation dose unavoidably increases as compared with that used in conventional CT examinations. Minimizing the radiation exposure in PCT examination is a major task in the CT field. In this paper, considering the rich similarity redundancy information among enhanced sequential PCT images, we propose a low-dose PCT image restoration model by incorporating the low-rank and sparse matrix characteristic of sequential PCT images. Specifically, the sequential PCT images were first stacked into a matrix (i.e., low-rank matrix), and then a non-convex spectral norm/regularization and a spatio-temporal total variation norm/regularization were then built on the low-rank matrix to describe the low rank and sparsity of the sequential PCT images, respectively. Subsequently, an improved split Bregman method was adopted to minimize the associative objective function with a reasonable convergence rate. Both qualitative and quantitative studies were conducted using a digital phantom and clinical cerebral PCT datasets to evaluate the present method. Experimental results show that the presented method can achieve images with several noticeable advantages over the existing methods in terms of noise reduction and universal quality index. More importantly, the present method can produce more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps. PMID:27440948

  20. Advanced CO{sub 2} Capture Technology for Low Rank Coal IGCC System

    SciTech Connect

    Alptekin, Gokhan

    2013-09-30

    The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in bituminous coal the net plant efficiency is about 2.4 percentage points higher than an Integrated Gasification Combined Cycle (IGCC) plant equipped with SelexolTM to capture CO{sub 2}. We also previously completed two successful field demonstrations: one at the National Carbon Capture Center (Southern- Wilsonville, AL) in 2011, and a second demonstration in fall of 2012 at the Wabash River IGCC plant (Terra Haute, IN). In this project, we first optimized the sorbent to catalyst ratio used in the combined WGS and CO{sub 2} capture

  1. CO{sub 2} SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2005-02-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. There were three main objectives for this reporting period, which related to obtaining accurate parameters for reservoir model description and modeling reservoir performance of CO{sub 2} sequestration and enhanced coalbed methane recovery. The first objective was to collect and desorb gas from 10 sidewall core coal samples from an Anadarko Petroleum Corporation well (APCL2 well) at approximately 6,200-ft depth in the Lower Calvert Bluff Formation of the Wilcox Group in east-central Texas. The second objective was to measure sorptive capacities of these Wilcox coal samples for CO{sub 2}, CH{sub 4}, and N{sub 2}. The final objective was to contract a service company to perform pressure transient testing in Wilcox coal beds in a shut-in well, to determine permeability of deep Wilcox coal. Bulk density of the APCL2 well sidewall core samples averaged 1.332 g/cc. The 10 sidewall core samples were placed in 4 sidewall core canisters and desorbed. Total gas content of the coal (including lost gas and projected residual gas) averaged 395 scf/ton on an as-received basis. The average lost gas estimations were approximately 45% of the bulk sample total gas. Projected residual gas was 5% of in-situ gas content. Six gas samples desorbed from the sidewall cores were analyzed to determine gas composition. Average gas composition was approximately 94.3% methane, 3.0% ethane, and 0.7% propane, with traces of heavier hydrocarbon gases. Carbon dioxide averaged 1.7%. Coal from the 4 canisters was mixed to form one composite sample that was used for pure CO{sub 2}, CH{sub 4}, and N{sub 2} isotherm analyses. The composite sample was 4.53% moisture, 37.48% volatile matter, 9.86% ash, and 48.12% fixed carbon. Mean vitrinite reflectance was 0

  2. Co-pyrolysis of low rank coals and biomass: Product distributions

    SciTech Connect

    Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.

    2013-10-01

    Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

  3. Upgrading low-rank coals using the liquids from coal (LFC) process

    SciTech Connect

    Nickell, R.E.; Hoften, S.A. van

    1993-12-31

    Three unmistakable trends characterize national and international coal markets today that help to explain coal`s continuing and, in some cases, increasing share of the world`s energy mix: the downward trend in coal prices is primarily influenced by an excess of increasing supply relative to increasing demand. Associated with this trend are the availability of capital to expand coal supplies when prices become firm and the role of coal exports in international trade, especially for developing nations; the global trend toward reducing the transportation cost component relative to the market, preserves or enhances the producer`s profit margins in the face of lower prices. The strong influence of transportation costs is due to the geographic relationships between coal producers and coal users. The trend toward upgrading low grade coals, including subbituminous and lignite coals, that have favorable environmental characteristics, such as low sulfur, compensates in some measure for decreasing coal prices and helps to reduce transportation costs. The upgrading of low grade coal includes a variety of precombustion clean coal technologies, such as deep coal cleaning. Also included in this grouping are the coal drying and mild pyrolysis (or mild gasification) technologies that remove most of the moisture and a substantial portion of the volatile matter, including organic sulfur, while producing two or more saleable coproducts with considerable added value. SGI International`s Liquids From Coal (LFC) process falls into this category. In the following sections, the LFC process is described and the coproducts of the mild pyrolysis are characterized. Since the process can be applied widely to low rank coals all around the world, the characteristics of coproducts from three different regions around the Pacific Rim-the Powder River Basin of Wyoming, the Beluga Field in Alaska near the Cook Inlet, and the Bukit Asam region in south Sumatra, Indonesia - are compared.

  4. Microbial and chemical factors influencing methane production in laboratory incubations of low-rank subsurface coals

    USGS Publications Warehouse

    Harris, Stephen H.; Smith, Richard L.; Barker, Charles E.

    2008-01-01

    Lignite and subbituminous coals were investigated for their ability to support microbial methane production in laboratory incubations. Results show that naturally-occurring microorganisms associated with the coals produced substantial quantities of methane, although the factors influencing this process were variable among different samples tested. Methanogenic microbes in two coals from the Powder River Basin, Wyoming, USA, produced 140.5-374.6 mL CH4/kg ((4.5-12.0 standard cubic feet (scf)/ton) in response to an amendment of H2/CO2. The addition of high concentrations (5-10 mM) of acetate did not support substantive methane production under the laboratory conditions. However, acetate accumulated in control incubations where methanogenesis was inhibited, indicating that acetate was produced and consumed during the course of methane production. Acetogenesis from H2/CO2 was evident in these incubations and may serve as a competing metabolic mode influencing the cumulative amount of methane produced in coal. Two low-rank (lignite A) coals from Fort Yukon, Alaska, USA, demonstrated a comparable level of methane production (131.1-284.0 mL CH4/kg (4.2-9.1 scf/ton)) in the presence of an inorganic nutrient amendment, indicating that the source of energy and organic carbon was derived from the coal. The concentration of chloroform-extractable organic matter varied by almost three orders of magnitude among all the coals tested, and appeared to be related to methane production potential. These results indicate that substrate availability within the coal matrix and competition between different groups of microorganisms are two factors that may exert a profound influence on methanogenesis in subsurface coal beds.

  5. Improved Parker's method for topographic models using Chebyshev series and low rank approximation

    NASA Astrophysics Data System (ADS)

    Wu, Leyuan; Lin, Qiang

    2017-03-01

    We present a new method to improve the convergence of the well-known Parker's formula for the modelling of gravity and magnetic fields caused by sources with complex topography. In the original Parker's formula, two approximations are made, which may cause considerable numerical errors and instabilities: 1) the approximation of the forward and inverse continuous Fourier transforms using their discrete counterparts, the forward and inverse Fast Fourier Transform (FFT) algorithms; 2) the approximation of the exponential function with its Taylor series expansion. In a previous paper of ours, we have made an effort addressing the first problem by applying the Gauss-FFT method instead of the standard FFT algorithm. The new Gauss-FFT based method shows improved numerical efficiency and agrees well with space-domain analytical or hybrid analytical-numerical algorithms. However, even under the simplifying assumption of a calculation surface being a level plane above all topographic sources, the method may still fail or become inaccurate under certain circumstances. When the peaks of the topography approach the observation surface too closely, the number of terms of the Taylor series expansion needed to reach a suitable precision becomes large and slows the calculation. We show in this paper that this problem is caused by the second approximation mentioned above, and it is due to the convergence property of the Taylor series expansion that the algorithm becomes inaccurate for certain topographic models with large amplitudes. Based on this observation, we present a modified Parker's method using low rank approximation (LRA) of the exponential function in virtue of the Chebfun software system. In this way, the optimal rate of convergence is achieved. Some pre-computation is needed but will not cause significant computational overheads. Synthetic and real model tests show that the method now works well for almost any practical topographic model, provided that the assumption

  6. Alaska low-rank coal-water fuel diesel demonstration project

    SciTech Connect

    Benson, C.; Wilson, R.; Walsh, D.; Ward, C.; Willson, W.

    1997-12-31

    A Coal-Water Fuel (CWF)-Diesel Demonstration Project developed by ADLittle (ADL) and Cooper-Energy Systems (CES) was selected for funding in US Dept. of Energy`s (DOE`s) Clean Coal Technology Program (CCT). The $38.3 million demonstration was originally planned for a utility in Maryland using CWF made from cleaned Ohio bituminous coal. When the host utility withdrew from the project, the sponsors sought a new location. During this time the technical feasibility of producing a premium low-rank coal-water fuel (LRCWF) from hydrothermally treated (HT) ultra-low S Alaskan subbituminous coal had been demonstrated at the pilot-scale. Since preliminary cost analyses showed Alaskan LRCWF to be competitive with Chinese bituminous CWF and oil priced at about $18 per barrel, an Alaskan consortium was seeking funding for a commercial-scale LRCWF demonstration project proposed for the University of Alaska Fairbanks (UAF). Since the engine developers at CES were already familiar with the features of LRCWF, the projects were combined and DOE approved relocating the LRCWF-Diesel CCT Project to UAF. The combined project will feature a 6.3 MWe diesel generation set with advanced emission controls capable of operating with either LRCWF or diesel, an oil-designed boiler also modified to use LRCWF or oil, and a nominal 120 tpd LRCWF production plant. Key project objectives are to develop commercial-scale LRCWF production costs, determine derating requirements and deratings for oil-designed boilers fired with LRCWF and to operate a LRCWF-fired diesel engine long enough to establish operating and wear characteristics.

  7. Improved Parker's method for topographic models using Chebyshev series and low rank approximation

    NASA Astrophysics Data System (ADS)

    Wu, Leyuan; Lin, Qiang

    2017-05-01

    We present a new method to improve the convergence of the well-known Parker's formula for the modelling of gravity and magnetic fields caused by sources with complex topography. In the original Parker's formula, two approximations are made, which may cause considerable numerical errors and instabilities: (1) the approximation of the forward and inverse continuous Fourier transforms using their discrete counterparts, the forward and inverse Fast Fourier Transform (FFT) algorithms; (2) the approximation of the exponential function with its Taylor series expansion. In a previous paper of ours, we have made an effort addressing the first problem by applying the Gauss-FFT method instead of the standard FFT algorithm. The new Gauss-FFT based method shows improved numerical efficiency and agrees well with space-domain analytical or hybrid analytical-numerical algorithms. However, even under the simplifying assumption of a calculation surface being a level plane above all topographic sources, the method may still fail or become inaccurate under certain circumstances. When the peaks of the topography approach the observation surface too closely, the number of terms of the Taylor series expansion needed to reach a suitable precision becomes large and slows the calculation. We show in this paper that this problem is caused by the second approximation mentioned above, and it is due to the convergence property of the Taylor series expansion that the algorithm becomes inaccurate for certain topographic models with large amplitudes. Based on this observation, we present a modified Parker's method using low rank approximation of the exponential function in virtue of the Chebfun software system. In this way, the optimal rate of convergence is achieved. Some pre-computation is needed but will not cause significant computational overheads. Synthetic and real model tests show that the method now works well for almost any practical topographic model, provided that the assumption, that

  8. Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition.

    PubMed

    Tang, Xin; Feng, Guo-Can; Li, Xiao-Xin; Cai, Jia-Xin

    2015-01-01

    Face recognition is challenging especially when the images from different persons are similar to each other due to variations in illumination, expression, and occlusion. If we have sufficient training images of each person which can span the facial variations of that person under testing conditions, sparse representation based classification (SRC) achieves very promising results. However, in many applications, face recognition often encounters the small sample size problem arising from the small number of available training images for each person. In this paper, we present a novel face recognition framework by utilizing low-rank and sparse error matrix decomposition, and sparse coding techniques (LRSE+SC). Firstly, the low-rank matrix recovery technique is applied to decompose the face images per class into a low-rank matrix and a sparse error matrix. The low-rank matrix of each individual is a class-specific dictionary and it captures the discriminative feature of this individual. The sparse error matrix represents the intra-class variations, such as illumination, expression changes. Secondly, we combine the low-rank part (representative basis) of each person into a supervised dictionary and integrate all the sparse error matrix of each individual into a within-individual variant dictionary which can be applied to represent the possible variations between the testing and training images. Then these two dictionaries are used to code the query image. The within-individual variant dictionary can be shared by all the subjects and only contribute to explain the lighting conditions, expressions, and occlusions of the query image rather than discrimination. At last, a reconstruction-based scheme is adopted for face recognition. Since the within-individual dictionary is introduced, LRSE+SC can handle the problem of the corrupted training data and the situation that not all subjects have enough samples for training. Experimental results show that our method achieves the

  9. Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition

    PubMed Central

    Tang, Xin; Feng, Guo-can; Li, Xiao-xin; Cai, Jia-xin

    2015-01-01

    Face recognition is challenging especially when the images from different persons are similar to each other due to variations in illumination, expression, and occlusion. If we have sufficient training images of each person which can span the facial variations of that person under testing conditions, sparse representation based classification (SRC) achieves very promising results. However, in many applications, face recognition often encounters the small sample size problem arising from the small number of available training images for each person. In this paper, we present a novel face recognition framework by utilizing low-rank and sparse error matrix decomposition, and sparse coding techniques (LRSE+SC). Firstly, the low-rank matrix recovery technique is applied to decompose the face images per class into a low-rank matrix and a sparse error matrix. The low-rank matrix of each individual is a class-specific dictionary and it captures the discriminative feature of this individual. The sparse error matrix represents the intra-class variations, such as illumination, expression changes. Secondly, we combine the low-rank part (representative basis) of each person into a supervised dictionary and integrate all the sparse error matrix of each individual into a within-individual variant dictionary which can be applied to represent the possible variations between the testing and training images. Then these two dictionaries are used to code the query image. The within-individual variant dictionary can be shared by all the subjects and only contribute to explain the lighting conditions, expressions, and occlusions of the query image rather than discrimination. At last, a reconstruction-based scheme is adopted for face recognition. Since the within-individual dictionary is introduced, LRSE+SC can handle the problem of the corrupted training data and the situation that not all subjects have enough samples for training. Experimental results show that our method achieves the

  10. CO2 Adsorption in Low-Rank Coals: Progress Toward Assessing the National Capacity to Store CO2 in the Subsurface

    NASA Astrophysics Data System (ADS)

    Stanton, R. W.; Burruss, R. C.; Flores, R. M.; Warwick, P. D.

    2001-05-01

    Subsurface environments for geologic storage of CO2 from combustion of fossil fuel include saline formations, depleted oil and gas reservoirs, and unmineable coalbeds. Of these environments, storage in petroleum reservoirs and coal beds offers a potential economic benefit of enhanced recovery of energy resources. Meaningful assessment of the volume and geographic distribution of storage sites requires quantitative estimates of geologic factors that control storage capacity. The factors that control the storage capacity of unmineable coalbeds are poorly understood. In preparation for a USGS assessment of CO2 storage capacity we have begun new measurements of CO2 and CH4 adsorption isotherms of low-rank coal samples from 4 basins. Initial results for 13 samples of low-rank coal beds from the Powder River Basin (9 subbituminous coals), Greater Green River Basin (1 subbituminous coal), Williston Basin (2 lignites) and the Gulf Coast (1 lignite) indicate that their adsorption capacity is up to 10 times higher than it is for CH4. These values contrast with published measurements of the CO2 adsorption capacity of bituminous coals from the Fruitland Formation, San Juan basin, and Gates Formation, British Columbia, that indicate about twice as much carbon dioxide as methane can be adsorbed on coals. Because CH4 adsorption isotherms are commonly measured on coals, CO2 adsorption capacity can be estimated if thecorrect relationship between the gases is known. However, use a factor to predict CO2 adsorption that is twice that of CH4 adsorption, which is common in the published literature, grossly underestimates the storage capacity of widely distributed, thick low-rank coal beds. Complete petrographic and chemical characterization of these low-rank coal samples is in progress. Significant variations in adsorption measurements among samples are depicted depending on the reporting basis used. Properties were measured on an "as received" (moist) basis but can be converted to a

  11. A parallel computer implementation of fast low-rank QR approximation of the Biot-Savart law

    SciTech Connect

    White, D A; Fasenfest, B J; Stowell, M L

    2005-11-07

    In this paper we present a low-rank QR method for evaluating the discrete Biot-Savart law on parallel computers. It is assumed that the known current density and the unknown magnetic field are both expressed in a finite element expansion, and we wish to compute the degrees-of-freedom (DOF) in the basis function expansion of the magnetic field. The matrix that maps the current DOF to the field DOF is full, but if the spatial domain is properly partitioned the matrix can be written as a block matrix, with blocks representing distant interactions being low rank and having a compressed QR representation. The matrix partitioning is determined by the number of processors, the rank of each block (i.e. the compression) is determined by the specific geometry and is computed dynamically. In this paper we provide the algorithmic details and present computational results for large-scale computations.

  12. Improving synthesis and analysis prior blind compressed sensing with low-rank constraints for dynamic MRI reconstruction.

    PubMed

    Majumdar, Angshul

    2015-01-01

    In blind compressed sensing (BCS), both the sparsifying dictionary and the sparse coefficients are estimated simultaneously during signal recovery. A recent study adopted the BCS framework for recovering dynamic MRI sequences from under-sampled K-space measurements; the results were promising. Previous works in dynamic MRI reconstruction showed that, recovery accuracy can be improved by incorporating low-rank penalties into the standard compressed sensing (CS) optimization framework. Our work is motivated by these studies, and we improve upon the basic BCS framework by incorporating low-rank penalties into the optimization problem. The resulting optimization problem has not been solved before; hence we derive a Split Bregman type technique to solve the same. Experiments were carried out on real dynamic contrast enhanced MRI sequences. Results show that, with our proposed improvement, the reconstruction accuracy is better than BCS and other state-of-the-art dynamic MRI recovery algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Simultaneously sparse and low-rank hyperspectral image recovery from coded aperture compressive measurements via convex optimization

    NASA Astrophysics Data System (ADS)

    Gélvez, Tatiana C.; Rueda, Hoover F.; Arguello, Henry

    2016-05-01

    A hyperspectral image (HSI) can be described as a set of images with spatial information across different spectral bands. Compressive spectral imaging techniques (CSI) permit to capture a 3-dimensional hyperspectral scene using 2 dimensional coded and multiplexed projections. Recovering the original scene from a very few projections can be valuable in applications such as remote sensing, video surveillance and biomedical imaging. Typically, HSI exhibit high correlations both, in the spatial and spectral dimensions. Thus, exploiting these correlations allows to accurately recover the original scene from compressed measurements. Traditional approaches exploit the sparsity of the scene when represented in a proper basis. For this purpose, an optimization problem that seeks to minimize a joint l2 - l1 norm is solved to obtain the original scene. However, there exist some HSI with an important feature which does not have been widely exploited; HSI are commonly low rank, thus only a few number of spectral signatures are presented in the image. Therefore, this paper proposes an approach to recover a simultaneous sparse and low rank hyperspectral image by exploiting both features at the same time. The proposed approach solves an optimization problem that seeks to minimize the l2-norm, penalized by the l1-norm, to force the solution to be sparse, and penalized by the nuclear norm to force the solution to be low rank. Theoretical analysis along with a set of simulations over different data sets show that simultaneously exploiting low rank and sparse structures enhances the performance of the recovery algorithm and the quality of the recovered image with an average improvement of around 3 dB in terms of the peak-signal to noise ratio (PSNR).

  14. ℓ1/2-norm regularized nonnegative low-rank and sparse affinity graph for remote sensing image segmentation

    NASA Astrophysics Data System (ADS)

    Tian, Shu; Zhang, Ye; Yan, Yiming; Su, Nan

    2016-10-01

    Segmentation of real-world remote sensing images is a challenge due to the complex texture information with high heterogeneity. Thus, graph-based image segmentation methods have been attracting great attention in the field of remote sensing. However, most of the traditional graph-based approaches fail to capture the intrinsic structure of the feature space and are sensitive to noises. A ℓ-norm regularization-based graph segmentation method is proposed to segment remote sensing images. First, we use the occlusion of the random texture model (ORTM) to extract the local histogram features. Then, a ℓ-norm regularized low-rank and sparse representation (LNNLRS) is implemented to construct a ℓ-regularized nonnegative low-rank and sparse graph (LNNLRS-graph), by the union of feature subspaces. Moreover, the LNNLRS-graph has a high ability to discriminate the manifold intrinsic structure of highly homogeneous texture information. Meanwhile, the LNNLRS representation takes advantage of the low-rank and sparse characteristics to remove the noises and corrupted data. Last, we introduce the LNNLRS-graph into the graph regularization nonnegative matrix factorization to enhance the segmentation accuracy. The experimental results using remote sensing images show that when compared to five state-of-the-art image segmentation methods, the proposed method achieves more accurate segmentation results.

  15. Patch-based denoising method using low-rank technique and targeted database for optical coherence tomography image.

    PubMed

    Liu, Xiaoming; Yang, Zhou; Wang, Jia; Liu, Jun; Zhang, Kai; Hu, Wei

    2017-01-01

    Image denoising is a crucial step before performing segmentation or feature extraction on an image, which affects the final result in image processing. In recent years, utilizing the self-similarity characteristics of the images, many patch-based image denoising methods have been proposed, but most of them, named the internal denoising methods, utilized the noisy image only where the performances are constrained by the limited information they used. We proposed a patch-based method, which uses a low-rank technique and targeted database, to denoise the optical coherence tomography (OCT) image. When selecting the similar patches for the noisy patch, our method combined internal and external denoising, utilizing the other images relevant to the noisy image, in which our targeted database is made up of these two kinds of images and is an improvement compared with the previous methods. Next, we leverage the low-rank technique to denoise the group matrix consisting of the noisy patch and the corresponding similar patches, for the fact that a clean image can be seen as a low-rank matrix and rank of the noisy image is much larger than the clean image. After the first-step denoising is accomplished, we take advantage of Gabor transform, which considered the layer characteristic of the OCT retinal images, to construct a noisy image before the second step. Experimental results demonstrate that our method compares favorably with the existing state-of-the-art methods.

  16. Speckle noise reduction for optical coherence tomography images via non-local weighted group low-rank representation

    NASA Astrophysics Data System (ADS)

    Tang, Chang; Cao, Lijuan; Chen, Jiajia; Zheng, Xiao

    2017-05-01

    In this work, a non-local weighted group low-rank representation (WGLRR) model is proposed for speckle noise reduction in optical coherence tomography (OCT) images. It is based on the observation that the similarity between patches within the noise-free OCT image leads to a high correlation between them, which means that the data matrix grouped by these similar patches is low-rank. Thus, the low-rank representation (LRR) is used to recover the noise-free group data matrix. In order to maintain the fidelity of the recovered image, the corrupted probability of each pixel is integrated into the LRR model as a weight to regularize the error term. Considering that each single patch might belong to several groups, and multiple estimates of this patch can be obtained, different estimates of each patch is aggregated to obtain its denoised result. The aggregating weights are exploited depending on the rank of each group data matrix, which can assign higher weights to those better estimates. Both qualitative and quantitative experimental results on real OCT images show the superior performance of the WGLRR model compared with other state-of-the-art speckle removal techniques.

  17. Effect of pretreatment with carbonic acid on 'Hypercoal' (ash-free coal) production from low-rank coals

    SciTech Connect

    Kensuke Masaki; Nao Kashimura; Toshimasa Takanohashi; Shinya Sato; Akimitsu Matsumura; Ikuo Saito

    2005-10-01

    The use of 'HyperCoal' (ash-free coal) as feedstock for gas turbines results in higher net power output with lower CO{sub 2} emissions. HyperCoal can be produced by thermal extraction from low-rank coals with industrial organic solvents in an inert atmosphere, providing raw materials. The pretreatment of low-rank coals with carbonic acid (CO{sub 2} dissolved in water - CO{sub 2}/H{sub 2}O) produced a strong increase in HyperCoal yields at relatively lower CO{sub 2} pressures of 0.1-0.5 MPa; the thermal extraction yields at 360{sup o}C increased by 7%-15% with extraction yields of 52% and 45% obtained for Wyodak sub-bituminous coal and Beulah-Zap lignite, respectively. In the range of 320-360{sup o}C, crude methylnaphthalene oil (CMNO) extraction yields of pretreated Wyodak coal increased significantly (by 4%-11%) over those of raw coal. The enhanced extraction yields of these low-rank coals are attributed to disruption of cation-bridging crosslinks on acid pretreatment, and the release of the hydrogen bonds by CMNO extraction. 18 refs., 4 figs., 4 tabs.

  18. Liquid CO{sub 2}/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    SciTech Connect

    Marasigan, Jose; Goldstein, Harvey; Dooher, John

    2013-09-30

    This study investigates the practicality of using a liquid CO{sub 2}/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO{sub 2} has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO{sub 2} is much lower than water. This means it should take less energy to pump liquid CO{sub 2} through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, which should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO{sub 2} is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO{sub 2} is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO{sub 2} slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO{sub 2} has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO{sub 2} over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO{sub 2}/coal slurry properties. This low-rank coal study extends the existing knowledge base to evaluate the liquid CO{sub 2}/coal slurry concept on an E-Gas™-based IGCC plant with full 90% CO{sub 2} capture. The overall objective is to determine if this

  19. Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA

    NASA Astrophysics Data System (ADS)

    Chakraborty, Jayeeta; Varonka, Matthew; Orem, William; Finkelman, Robert B.; Manton, William

    2017-06-01

    The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.

  20. Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA

    USGS Publications Warehouse

    Chakraborty, Jayeeta; Varonka, Matthew S.; Orem, William H.; Finkelman, Robert B.; Manton, William

    2017-01-01

    The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.

  1. Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA

    NASA Astrophysics Data System (ADS)

    Chakraborty, Jayeeta; Varonka, Matthew; Orem, William; Finkelman, Robert B.; Manton, William

    2017-01-01

    The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.

  2. Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Nagarajaiah, Satish

    2016-06-01

    Randomly missing data of structural vibration responses time history often occurs in structural dynamics and health monitoring. For example, structural vibration responses are often corrupted by outliers or erroneous measurements due to sensor malfunction; in wireless sensing platforms, data loss during wireless communication is a common issue. Besides, to alleviate the wireless data sampling or communication burden, certain accounts of data are often discarded during sampling or before transmission. In these and other applications, recovery of the randomly missing structural vibration responses from the available, incomplete data, is essential for system identification and structural health monitoring; it is an ill-posed inverse problem, however. This paper explicitly harnesses the data structure itself-of the structural vibration responses-to address this (inverse) problem. What is relevant is an empirical, but often practically true, observation, that is, typically there are only few modes active in the structural vibration responses; hence a sparse representation (in frequency domain) of the single-channel data vector, or, a low-rank structure (by singular value decomposition) of the multi-channel data matrix. Exploiting such prior knowledge of data structure (intra-channel sparse or inter-channel low-rank), the new theories of ℓ1-minimization sparse recovery and nuclear-norm-minimization low-rank matrix completion enable recovery of the randomly missing or corrupted structural vibration response data. The performance of these two alternatives, in terms of recovery accuracy and computational time under different data missing rates, is investigated on a few structural vibration response data sets-the seismic responses of the super high-rise Canton Tower and the structural health monitoring accelerations of a real large-scale cable-stayed bridge. Encouraging results are obtained and the applicability and limitation of the presented methods are discussed.

  3. Dynamic PET reconstruction using temporal patch-based low rank penalty for ROI-based brain kinetic analysis.

    PubMed

    Kim, Kyungsang; Son, Young Don; Bresler, Yoram; Cho, Zang Hee; Ra, Jong Beom; Ye, Jong Chul

    2015-03-07

    Dynamic positron emission tomography (PET) is widely used to measure changes in the bio-distribution of radiopharmaceuticals within particular organs of interest over time. However, to retain sufficient temporal resolution, the number of photon counts in each time frame must be limited. Therefore, conventional reconstruction algorithms such as the ordered subset expectation maximization (OSEM) produce noisy reconstruction images, thus degrading the quality of the extracted time activity curves (TACs). To address this issue, many advanced reconstruction algorithms have been developed using various spatio-temporal regularizations. In this paper, we extend earlier results and develop a novel temporal regularization, which exploits the self-similarity of patches that are collected in dynamic images. The main contribution of this paper is to demonstrate that the correlation of patches can be exploited using a low-rank constraint that is insensitive to global intensity variations. The resulting optimization framework is, however, non-Lipschitz and nonconvex due to the Poisson log-likelihood and low-rank penalty terms. Direct application of the conventional Poisson image deconvolution by an augmented Lagrangian (PIDAL) algorithm is, however, problematic due to its large memory requirements, which prevents its parallelization. Thus, we propose a novel optimization framework using the concave-convex procedure (CCCP)

  4. Low-rank and Sparse Matrix Decomposition for Accelerated Dynamic MRI with Separation of Background and Dynamic Components

    PubMed Central

    Otazo, Ricardo; Candès, Emmanuel; Sodickson, Daniel K.

    2014-01-01

    Purpose To apply the low-rank plus sparse (L+S) matrix decomposition model to reconstruct undersampled dynamic MRI as a superposition of background and dynamic components in various problems of clinical interest. Theory and Methods The L+S model is natural to represent dynamic MRI data. Incoherence between k−t space (acquisition) and the singular vectors of L and the sparse domain of S is required to reconstruct undersampled data. Incoherence between L and S is required for robust separation of background and dynamic components. Multicoil L+S reconstruction is formulated using a convex optimization approach, where the nuclear-norm is used to enforce low-rank in L and the l1-norm to enforce sparsity in S. Feasibility of the L+S reconstruction was tested in several dynamic MRI experiments with true acceleration including cardiac perfusion, cardiac cine, time-resolved angiography, abdominal and breast perfusion using Cartesian and radial sampling. Results The L+S model increased compressibility of dynamic MRI data and thus enabled high acceleration factors. The inherent background separation improved background suppression performance compared to conventional data subtraction, which is sensitive to motion. Conclusion The high acceleration and background separation enabled by L+S promises to enhance spatial and temporal resolution and to enable background suppression without the need of subtraction or modeling. PMID:24760724

  5. A low-rank matrix factorization approach for joint harmonic and baseline noise suppression in biopotential signals.

    PubMed

    Zivanovic, Miroslav; Niegowski, Maciej; Lecumberri, Pablo; Gómez, Marisol

    2017-04-01

    In this paper we propose a novel single-channel harmonic and baseline noise removal approach based on the low-rank matrix factorization theory. It aims to enhance spectrogram sparsity in order to significantly reduce the dimensionality of the underlying sources in the input data. Such a low-rank non-negative representation approach admits efficient noise removal. The sparsity is improved by a modification of the time-frequency basis through the following signal processing steps: (1) spectrograms segmentation, (2) non-negative rank estimation, and (3) source grouping. The source waveforms are retrieved by means of non-negative matrix factorization and the overlap-add method. The proposed method was tested on real electrocardiogram and electromyogram signals for different analysis scenarios, against two state-of-the-art reference methods. Performance evaluation was carried out by means of the output signal-to-interference ratio. In the electrocardiogram analysis scenarios, for the input signal-to-interference ratio as low as -15dB, the proposed method outperforms the reference methods by 8dB and 17dB respectively. Regarding electromyogram denoising, the performance improvement is about 3dB. The proposed method was shown to be very efficient in harmonic and baseline simultaneous removing from electrocardiogram and electromyogram signals. Its structure allows for a straightforward extension to other biopotential signals e.g. electroencephalograms and multichannel processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Comparison of different eigensolvers for calculating vibrational spectra using low-rank, sum-of-product basis functions

    NASA Astrophysics Data System (ADS)

    Leclerc, Arnaud; Thomas, Phillip S.; Carrington, Tucker

    2017-08-01

    Vibrational spectra and wavefunctions of polyatomic molecules can be calculated at low memory cost using low-rank sum-of-product (SOP) decompositions to represent basis functions generated using an iterative eigensolver. Using a SOP tensor format does not determine the iterative eigensolver. The choice of the interative eigensolver is limited by the need to restrict the rank of the SOP basis functions at every stage of the calculation. We have adapted, implemented and compared different reduced-rank algorithms based on standard iterative methods (block-Davidson algorithm, Chebyshev iteration) to calculate vibrational energy levels and wavefunctions of the 12-dimensional acetonitrile molecule. The effect of using low-rank SOP basis functions on the different methods is analyzed and the numerical results are compared with those obtained with the reduced rank block power method introduced in J. Chem. Phys. 140, 174111 (2014). Relative merits of the different algorithms are presented, showing that the advantage of using a more sophisticated method, although mitigated by the use of reduced-rank sum-of-product functions, is noticeable in terms of CPU time.

  7. A low-rank control variate for multilevel Monte Carlo simulation of high-dimensional uncertain systems

    NASA Astrophysics Data System (ADS)

    Fairbanks, Hillary R.; Doostan, Alireza; Ketelsen, Christian; Iaccarino, Gianluca

    2017-07-01

    Multilevel Monte Carlo (MLMC) is a recently proposed variation of Monte Carlo (MC) simulation that achieves variance reduction by simulating the governing equations on a series of spatial (or temporal) grids with increasing resolution. Instead of directly employing the fine grid solutions, MLMC estimates the expectation of the quantity of interest from the coarsest grid solutions as well as differences between each two consecutive grid solutions. When the differences corresponding to finer grids become smaller, hence less variable, fewer MC realizations of finer grid solutions are needed to compute the difference expectations, thus leading to a reduction in the overall work. This paper presents an extension of MLMC, referred to as multilevel control variates (MLCV), where a low-rank approximation to the solution on each grid, obtained primarily based on coarser grid solutions, is used as a control variate for estimating the expectations involved in MLMC. Cost estimates as well as numerical examples are presented to demonstrate the advantage of this new MLCV approach over the standard MLMC when the solution of interest admits a low-rank approximation and the cost of simulating finer grids grows fast.

  8. LOW-RANK SMOOTHING SPLINES ON COMPLEX DOMAINS. (R829095C002)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. LOW-RANK SMOOTHING SPLINES ON COMPLEX DOMAINS. (R829095C002)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. Low-rank coal study: national needs for resource development. Volume 6. Peat

    SciTech Connect

    Not Available

    1980-11-01

    The requirements and potential for development of US peat resources for energy use are reviewed. Factors analyzed include the occurrence and properties of major peat deposits; technologies for extraction, dewatering, preparation, combustion, and conversion of peat to solid, liquid, or gaseous fuels; environmental, regulatory, and market constraints; and research, development, and demonstration (RD and D) needs. Based on a review of existing research efforts, recommendations are made for a comprehensive national RD and D program to enhance the use of peat as an energy source.

  11. Improving residue-residue contact prediction via low-rank and sparse decomposition of residue correlation matrix.

    PubMed

    Zhang, Haicang; Gao, Yujuan; Deng, Minghua; Wang, Chao; Zhu, Jianwei; Li, Shuai Cheng; Zheng, Wei-Mou; Bu, Dongbo

    2016-03-25

    Strategies for correlation analysis in protein contact prediction often encounter two challenges, namely, the indirect coupling among residues, and the background correlations mainly caused by phylogenetic biases. While various studies have been conducted on how to disentangle indirect coupling, the removal of background correlations still remains unresolved. Here, we present an approach for removing background correlations via low-rank and sparse decomposition (LRS) of a residue correlation matrix. The correlation matrix can be constructed using either local inference strategies (e.g., mutual information, or MI) or global inference strategies (e.g., direct coupling analysis, or DCA). In our approach, a correlation matrix was decomposed into two components, i.e., a low-rank component representing background correlations, and a sparse component representing true correlations. Finally the residue contacts were inferred from the sparse component of correlation matrix. We trained our LRS-based method on the PSICOV dataset, and tested it on both GREMLIN and CASP11 datasets. Our experimental results suggested that LRS significantly improves the contact prediction precision. For example, when equipped with the LRS technique, the prediction precision of MI and mfDCA increased from 0.25 to 0.67 and from 0.58 to 0.70, respectively (Top L/10 predicted contacts, sequence separation: 5 AA, dataset: GREMLIN). In addition, our LRS technique also consistently outperforms the popular denoising technique APC (average product correction), on both local (MI_LRS: 0.67 vs MI_APC: 0.34) and global measures (mfDCA_LRS: 0.70 vs mfDCA_APC: 0.67). Interestingly, we found out that when equipped with our LRS technique, local inference strategies performed in a comparable manner to that of global inference strategies, implying that the application of LRS technique narrowed down the performance gap between local and global inference strategies. Overall, our LRS technique greatly facilitates

  12. Fast iterative solution of the Bethe-Salpeter eigenvalue problem using low-rank and QTT tensor approximation

    NASA Astrophysics Data System (ADS)

    Benner, Peter; Dolgov, Sergey; Khoromskaia, Venera; Khoromskij, Boris N.

    2017-04-01

    In this paper, we propose and study two approaches to approximate the solution of the Bethe-Salpeter equation (BSE) by using structured iterative eigenvalue solvers. Both approaches are based on the reduced basis method and low-rank factorizations of the generating matrices. We also propose to represent the static screen interaction part in the BSE matrix by a small active sub-block, with a size balancing the storage for rank-structured representations of other matrix blocks. We demonstrate by various numerical tests that the combination of the diagonal plus low-rank plus reduced-block approximation exhibits higher precision with low numerical cost, providing as well a distinct two-sided error estimate for the smallest eigenvalues of the Bethe-Salpeter operator. The complexity is reduced to O (Nb2) in the size of the atomic orbitals basis set, Nb, instead of the practically intractable O (Nb6) scaling for the direct diagonalization. In the second approach, we apply the quantized-TT (QTT) tensor representation to both, the long eigenvectors and the column vectors in the rank-structured BSE matrix blocks, and combine this with the ALS-type iteration in block QTT format. The QTT-rank of the matrix entities possesses almost the same magnitude as the number of occupied orbitals in the molecular systems, No

  13. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    SciTech Connect

    Polyakov, Oleg

    2013-12-31

    Under the cooperative agreement program of DOE and funding from Wyoming State’s Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly relevant to practice. During the Phase I, catalytic direct liquefaction of sub-bituminous Wyoming coals was investigated. The process conditions and catalysts were identified that lead to a significant increase of desirable oil fraction in the products. The Phase II work focused on systematic study of solvothermal depolymerization (STD) and direct liquefaction (DCL) of carbonaceous feedstocks. The effect of the reaction conditions (the nature of solvent, solvent/lignin ratio, temperature, pressure, heating rate, and residence time) on STD was investigated. The effect of a number of various additives (including lignin, model lignin compounds, lignin-derivable chemicals, and inorganic radical initiators), solvents, and catalysts on DCL has been studied. Although a significant progress has been achieved in developing solvothermal depolymerization, the side reactions – formation of considerable amounts of char and gaseous products – as well as other drawbacks do not render aqueous media as the most appropriate choice for commercial implementation of STD for processing coals and lignins. The trends and effects discovered in DCL point at the specific features of liquefaction mechanism that are currently underutilized yet could be exploited to intensify the process. A judicious choice of catalysts, solvents, and additives might enable practical and economically efficient direct conversion of Wyoming coals into liquid fuels.

  14. Low-rank plus sparse decomposition for exoplanet detection in direct-imaging ADI sequences. The LLSG algorithm

    NASA Astrophysics Data System (ADS)

    Gomez Gonzalez, C. A.; Absil, O.; Absil, P.-A.; Van Droogenbroeck, M.; Mawet, D.; Surdej, J.

    2016-05-01

    Context. Data processing constitutes a critical component of high-contrast exoplanet imaging. Its role is almost as important as the choice of a coronagraph or a wavefront control system, and it is intertwined with the chosen observing strategy. Among the data processing techniques for angular differential imaging (ADI), the most recent is the family of principal component analysis (PCA) based algorithms. It is a widely used statistical tool developed during the first half of the past century. PCA serves, in this case, as a subspace projection technique for constructing a reference point spread function (PSF) that can be subtracted from the science data for boosting the detectability of potential companions present in the data. Unfortunately, when building this reference PSF from the science data itself, PCA comes with certain limitations such as the sensitivity of the lower dimensional orthogonal subspace to non-Gaussian noise. Aims: Inspired by recent advances in machine learning algorithms such as robust PCA, we aim to propose a localized subspace projection technique that surpasses current PCA-based post-processing algorithms in terms of the detectability of companions at near real-time speed, a quality that will be useful for future direct imaging surveys. Methods: We used randomized low-rank approximation methods recently proposed in the machine learning literature, coupled with entry-wise thresholding to decompose an ADI image sequence locally into low-rank, sparse, and Gaussian noise components (LLSG). This local three-term decomposition separates the starlight and the associated speckle noise from the planetary signal, which mostly remains in the sparse term. We tested the performance of our new algorithm on a long ADI sequence obtained on β Pictoris with VLT/NACO. Results: Compared to a standard PCA approach, LLSG decomposition reaches a higher signal-to-noise ratio and has an overall better performance in the receiver operating characteristic space

  15. Changes in the chemical structure of low rank coal after low temperature oxidation or demineralisation by acid treatment: Analysis by FTIR and UV fluorescence

    SciTech Connect

    Kister, J.; Guiliano, M.; Mille, G.; Dou, H.

    1987-04-01

    The studies have been conducted on low rank coal: Flambant de Provence, France, PRV=0.44 FTIR and UV synchronous fluorescence spectroscopy are used to study structural changes in low rank coal after natural oxidation or acid (HCl/HF) demineralization. The observed variations deal mainly with a decrease in aliphatic structures and an increase in the oxygenated species. A quantitative oxidation study of the effect of temperature, time, mineral matter and oxygen concentrations has been conducted by FTIR. An attempt to describe the oxygenated species by FTIR and to compare their evolution has been conducted. Various oxidation mechanisms are proposed according to the results.

  16. Low-rank filter and detector for multidimensional data based on an alternative unfolding HOSVD: application to polarimetric STAP

    NASA Astrophysics Data System (ADS)

    Boizard, Maxime; Ginolhac, Guillaume; Pascal, Fréderic; Forster, Philippe

    2014-12-01

    This paper proposes an extension of the higher order singular value decomposition (HOSVD), namely the alternative unfolding HOSVD (AU-HOSVD), in order to exploit the correlated information in multidimensional data. We show that the properties of the AU-HOSVD are proven to be the same as those for HOSVD: the orthogonality and the low-rank (LR) decomposition. We next derive LR filters and LR detectors based on AU-HOSVD for multidimensional data composed of one LR structure contribution. Finally, we apply our new LR filters and LR detectors in polarimetric space-time adaptive processing (STAP). In STAP, it is well known that the response of the background is correlated in time and space and has a LR structure in space-time. Therefore, our approach based on AU-HOSVD seems to be appropriate when a dimension (like polarimetry in this paper) is added. Simulations based on signal-to-interferenceplus-noise ratio (SINR) losses, probability of detection (Pd), and probability of false alarm (Pfa) show the interest of our approach: LR filters and LR detectors which can be obtained only from AU-HOSVD outperform the vectorial approach and those obtained from a single HOSVD.

  17. Reconstruction of Undersampled Big Dynamic MRI Data Using Non-Convex Low-Rank and Sparsity Constraints.

    PubMed

    Liu, Ryan Wen; Shi, Lin; Yu, Simon Chun Ho; Xiong, Naixue; Wang, Defeng

    2017-03-03

    Dynamic magnetic resonance imaging (MRI) has been extensively utilized for enhancing medical living environment visualization, however, in clinical practice it often suffers from long data acquisition times. Dynamic imaging essentially reconstructs the visual image from raw (k,t)-space measurements, commonly referred to as big data. The purpose of this work is to accelerate big medical data acquisition in dynamic MRI by developing a non-convex minimization framework. In particular, to overcome the inherent speed limitation, both non-convex low-rank and sparsity constraints were combined to accelerate the dynamic imaging. However, the non-convex constraints make the dynamic reconstruction problem difficult to directly solve through the commonly-used numerical methods. To guarantee solution efficiency and stability, a numerical algorithm based on Alternating Direction Method of Multipliers (ADMM) is proposed to solve the resulting non-convex optimization problem. ADMM decomposes the original complex optimization problem into several simple sub-problems. Each sub-problem has a closed-form solution or could be efficiently solved using existing numerical methods. It has been proven that the quality of images reconstructed from fewer measurements can be significantly improved using non-convex minimization. Numerous experiments have been conducted on two in vivo cardiac datasets to compare the proposed method with several state-of-the-art imaging methods. Experimental results illustrated that the proposed method could guarantee the superior imaging performance in terms of quantitative and visual image quality assessments.

  18. Super-Resolution Reconstruction of Diffusion-Weighted Images using 4D Low-Rank and Total Variation

    PubMed Central

    Shi, Feng; Cheng, Jian; Wang, Li; Yap, Pew-Thian; Shen, Dinggang

    2016-01-01

    Diffusion-weighted imaging (DWI) provides invaluable information in white matter microstructure and is widely applied in neurological applications. However, DWI is largely limited by its relatively low spatial resolution. In this paper, we propose an image post-processing method, referred to as super-resolution reconstruction, to estimate a high spatial resolution DWI from the input low-resolution DWI, e.g., at a factor of 2. Instead of requiring specially designed DWI acquisition of multiple shifted or orthogonal scans, our method needs only a single DWI scan. To do that, we propose to model both the blurring and downsampling effects in the image degradation process where the low-resolution image is observed from the latent high-resolution image, and recover the latent high-resolution image with the help of two regularizations. The first regularization is 4-dimensional (4D) low-rank, proposed to gather self-similarity information from both the spatial domain and the diffusion domain of 4D DWI. The second regularization is total variation, proposed to depress noise and preserve local structures such as edges in the image recovery process. Extensive experiments were performed on 20 subjects, and results show that the proposed method is able to recover the fine details of white matter structures, and outperform other approaches such as interpolation methods, non-local means based upsampling, and total variation based upsampling. PMID:27845833

  19. Low-rank approximation based non-negative multi-way array decomposition on event-related potentials.

    PubMed

    Cong, Fengyu; Zhou, Guoxu; Astikainen, Piia; Zhao, Qibin; Wu, Qiang; Nandi, Asoke K; Hietanen, Jari K; Ristaniemi, Tapani; Cichocki, Andrzej

    2014-12-01

    Non-negative tensor factorization (NTF) has been successfully applied to analyze event-related potentials (ERPs), and shown superiority in terms of capturing multi-domain features. However, the time-frequency representation of ERPs by higher-order tensors are usually large-scale, which prevents the popularity of most tensor factorization algorithms. To overcome this issue, we introduce a non-negative canonical polyadic decomposition (NCPD) based on low-rank approximation (LRA) and hierarchical alternating least square (HALS) techniques. We applied NCPD (LRAHALS and benchmark HALS) and CPD to extract multi-domain features of a visual ERP. The features and components extracted by LRAHALS NCPD and HALS NCPD were very similar, but LRAHALS NCPD was 70 times faster than HALS NCPD. Moreover, the desired multi-domain feature of the ERP by NCPD showed a significant group difference (control versus depressed participants) and a difference in emotion processing (fearful versus happy faces). This was more satisfactory than that by CPD, which revealed only a group difference.

  20. Reconstruction of Undersampled Big Dynamic MRI Data Using Non-Convex Low-Rank and Sparsity Constraints

    PubMed Central

    Liu, Ryan Wen; Shi, Lin; Yu, Simon Chun Ho; Xiong, Naixue; Wang, Defeng

    2017-01-01

    Dynamic magnetic resonance imaging (MRI) has been extensively utilized for enhancing medical living environment visualization, however, in clinical practice it often suffers from long data acquisition times. Dynamic imaging essentially reconstructs the visual image from raw (k,t)-space measurements, commonly referred to as big data. The purpose of this work is to accelerate big medical data acquisition in dynamic MRI by developing a non-convex minimization framework. In particular, to overcome the inherent speed limitation, both non-convex low-rank and sparsity constraints were combined to accelerate the dynamic imaging. However, the non-convex constraints make the dynamic reconstruction problem difficult to directly solve through the commonly-used numerical methods. To guarantee solution efficiency and stability, a numerical algorithm based on Alternating Direction Method of Multipliers (ADMM) is proposed to solve the resulting non-convex optimization problem. ADMM decomposes the original complex optimization problem into several simple sub-problems. Each sub-problem has a closed-form solution or could be efficiently solved using existing numerical methods. It has been proven that the quality of images reconstructed from fewer measurements can be significantly improved using non-convex minimization. Numerous experiments have been conducted on two in vivo cardiac datasets to compare the proposed method with several state-of-the-art imaging methods. Experimental results illustrated that the proposed method could guarantee the superior imaging performance in terms of quantitative and visual image quality assessments. PMID:28273827

  1. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    SciTech Connect

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri,; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-11-30

    This report describes the development of the design of an advanced dry feed system that was carried out under Task 4.0 of Cooperative Agreement DE-FE0007902 with the US DOE, “Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the use of Low- Rank Coal.” The resulting design will be used for the advanced technology IGCC case with 90% carbon capture for sequestration to be developed under Task 5.0 of the same agreement. The scope of work covered coal preparation and feeding up through the gasifier injector. Subcomponents have been broken down into feed preparation (including grinding and drying), low pressure conveyance, pressurization, high pressure conveyance, and injection. Pressurization of the coal feed is done using Posimetric1 Feeders sized for the application. In addition, a secondary feed system is described for preparing and feeding slag additive and recycle fines to the gasifier injector. This report includes information on the basis for the design, requirements for down selection of the key technologies used, the down selection methodology and the final, down selected design for the Posimetric Feed System, or PFS.

  2. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, July-September 1983

    SciTech Connect

    Wiltsee, G.A. Jr.

    1983-01-01

    Two long gasification tests were accomplished (66 and 72 hours of slagging operation) this quarter, and the balance of the wastewater needed for the second cooling tower (CT) test (approx. 11,000 gallons) was generated. Eleven thousand gallons of slagging fixed-bed gasifier (SFBG) wastewater were solvent extracted and ammonia stripped (AS) to nominal levels of 160 mg/1 phenol and 600 mg/1 NH/sub 3/. This wastewater is being further treated by activated sludge (AS) and granular activated carbon (GAC) processing to prepare a high quality makeup for the second CT test. Phenol mass balances indicated that > 90 pct of the phenol was stripped from the tower, indicating that previous assumptions of high levels of biodegradation were erroneous. Over 80 pct of the ammonia and about 25 pct of the methanol were also stripped. Data collected during steady state operation of the bench-scale rotating biological contractor indicate complete removal of phenolics and alcohols, and 94 pct removal of BOD. Nitrification also occurred in this unit, with over 30 pct removal of ammonia. Problems due to individual bacteria, present in the biotreated wastewater, passing through the multi-media filter and thus decreasing the carbon adsorption efficiency of the GAC system, have resulted in lower treatment rates than originally anticipated. As a result, to achieve the desired treatment, the contact time of the wastewater with the carbon in the granular activated carbon system has been increased. Since this has decreased the treatment rate, a larger carbon adsorption system has been designed and is presently being constructed.

  3. Motion-compensated compressed sensing for dynamic contrast-enhanced MRI using regional spatiotemporal sparsity and region tracking: Block LOw-rank Sparsity with Motion-guidance (BLOSM)

    PubMed Central

    Chen, Xiao; Salerno, Michael; Yang, Yang; Epstein, Frederick H.

    2014-01-01

    Purpose Dynamic contrast-enhanced MRI of the heart is well-suited for acceleration with compressed sensing (CS) due to its spatiotemporal sparsity; however, respiratory motion can degrade sparsity and lead to image artifacts. We sought to develop a motion-compensated CS method for this application. Methods A new method, Block LOw-rank Sparsity with Motion-guidance (BLOSM), was developed to accelerate first-pass cardiac MRI, even in the presence of respiratory motion. This method divides the images into regions, tracks the regions through time, and applies matrix low-rank sparsity to the tracked regions. BLOSM was evaluated using computer simulations and first-pass cardiac datasets from human subjects. Using rate-4 acceleration, BLOSM was compared to other CS methods such as k-t SLR that employs matrix low-rank sparsity applied to the whole image dataset, with and without motion tracking, and to k-t FOCUSS with motion estimation and compensation that employs spatial and temporal-frequency sparsity. Results BLOSM was qualitatively shown to reduce respiratory artifact compared to other methods. Quantitatively, using root mean squared error and the structural similarity index, BLOSM was superior to other methods. Conclusion BLOSM, which exploits regional low rank structure and uses region tracking for motion compensation, provides improved image quality for CS-accelerated first-pass cardiac MRI. PMID:24243528

  4. Investigation of the role of aromatic carboxylic acids in cross-linking processes in low-rank coals

    SciTech Connect

    Eskay, T.P.; Britt, P.F.; Buchanan, A.C. III

    1997-03-01

    In the pyrolysis and liquefaction of low-rank coals, low-temperature cross-linking reactions have been correlated with the loss of carboxyl groups and the evolution of CO{sub 2} and H{sub 2}O. It is not clearly understood how decarboxylation leads to cross-linking beyond the suggestion that decarboxylation could be a radical process that involves radical recombination or radical addition reactions. We have recently conducted a study of the pyrolysis of 1,2-(3,3{prime}-dicarboxyphenyl)ethane (1) and 1,2-(4,4{prime}-dicarboxyphenyl)ethane (2) and found that decarboxylation occurs readily between 350-425 {degrees}C with no evidence of coupling products or products representative of cross-links. We proposed that decarboxylation occurred primarily by an acid-promoted cationic pathway, and the source of acid was a second carboxylic acid. The decarboxylation of 1 and 2 was investigated in diphenyl ether and naphthalene as inert diluents. In each solvent, the rate of decarboxylation dropped by roughly a factor of 2 upon dilution from the neat liquid to ca. 0.4 mole fraction of acid, but further dilution had no effect on the rate. This could be a consequence of hydrogen bonding or an intramolecular protonation. Molecular mechanics calculations indicated that 1 and 2 can adopt an appropriate conformation for internal proton transfer from a carboxy group on one ring to the second aryl ring without a significant energy penalty. In addition, the dicarboxylic acid could internally hydrogen bond, which may further complicate the reaction mechanism. Therefore, we have conducted a study of the pyrolysis of a monocarboxybibenzyl, 1-(3-carboxyphenyl)-2-(4-biphenyl)ethane (3), to determine if decarboxylation occurs by an ionic pathway in the absence of intramolecular pathways.

  5. Low-rank and sparse decomposition based shape model and probabilistic atlas for automatic pathological organ segmentation.

    PubMed

    Shi, Changfa; Cheng, Yuanzhi; Wang, Jinke; Wang, Yadong; Mori, Kensaku; Tamura, Shinichi

    2017-05-01

    One major limiting factor that prevents the accurate delineation of human organs has been the presence of severe pathology and pathology affecting organ borders. Overcoming these limitations is exactly what we are concerned in this study. We propose an automatic method for accurate and robust pathological organ segmentation from CT images. The method is grounded in the active shape model (ASM) framework. It leverages techniques from low-rank and sparse decomposition (LRSD) theory to robustly recover a subspace from grossly corrupted data. We first present a population-specific LRSD-based shape prior model, called LRSD-SM, to handle non-Gaussian gross errors caused by weak and misleading appearance cues of large lesions, complex shape variations, and poor adaptation to the finer local details in a unified framework. For the shape model initialization, we introduce a method based on patient-specific LRSD-based probabilistic atlas (PA), called LRSD-PA, to deal with large errors in atlas-to-target registration and low likelihood of the target organ. Furthermore, to make our segmentation framework more efficient and robust against local minima, we develop a hierarchical ASM search strategy. Our method is tested on the SLIVER07 database for liver segmentation competition, and ranks 3rd in all the published state-of-the-art automatic methods. Our method is also evaluated on some pathological organs (pathological liver and right lung) from 95 clinical CT scans and its results are compared with the three closely related methods. The applicability of the proposed method to segmentation of the various pathological organs (including some highly severe cases) is demonstrated with good results on both quantitative and qualitative experimentation; our segmentation algorithm can delineate organ boundaries that reach a level of accuracy comparable with those of human raters. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Study of Indonesia low rank coal utilization on modified fixed bed gasification for combined cycle power plant

    NASA Astrophysics Data System (ADS)

    Hardianto, T.; Amalia, A. R.; Suwono, A.; Riauwindu, P.

    2015-09-01

    Gasification is a conversion process converting carbon-based solid fuel into gaseous products that have considerable amount of calorific value. One of the carbon-based solid fuel that serves as feed for gasification is coal. Gasification gaseous product is termed as syngas (synthetic gas) that is composed of several different gases. Syngas produced from gasification vary from one process to another, this is due to several factors which are: feed characteristics, operation condition, gasified fluid condition, and gasification method or technology. One of the utilization of syngas is for combined cycle power plant fuel. In order to meet the need to convert carbon-based solid fuel into gaseous fuel for combined cycle power plant, engineering adjustment for gasification was done using related software to create the syngas with characteristics of natural gas that serve as fuel for combined cycle power plant in Indonesia. Feed used for the gasification process in this paper was Indonesian Low Rank Coal and the method used to obtain syngas was Modified Fixed Bed Gasifier. From the engineering adjustment process, the yielded syngas possessed lower heating value as much as 31828.32 kJ/kg in gasification condition of 600°C, 3.5 bar, and steam to feed ratio was 1 kg/kg. Syngas characteristics obtained from the process was used as a reference for the adjustment of the fuel system modification in combined cycle power plant that will have the same capacity with the conversion of the system's fuel from natural gas to syngas.

  7. Emphases of Parenting in the Light of Three Comparison Groups

    ERIC Educational Resources Information Center

    Laukkanen, Ella; Karppinen, Sanna; Määttä, Kaarina; Uusiautti, Satu

    2014-01-01

    Parenthood is a phenomenon that is not easy to research. This study analyzed the emphases of parenting in the light of three comparison groups. The research was grounded on Bradley's (2007) theory of six fundamental parenting tasks. This was a case study focusing in one second-grade classroom. The teacher, 18 parents, and 19 pupils were recruited…

  8. Two-in-one fuel combining sugar cane with low rank coal and its CO₂ reduction effects in pulverized-coal power plants.

    PubMed

    Lee, Dong-Wook; Bae, Jong-Soo; Lee, Young-Joo; Park, Se-Joon; Hong, Jai-Chang; Lee, Byoung-Hwa; Jeon, Chung-Hwan; Choi, Young-Chan

    2013-02-05

    Coal-fired power plants are facing to two major independent problems, namely, the burden to reduce CO(2) emission to comply with renewable portfolio standard (RPS) and cap-and-trade system, and the need to use low-rank coal due to the instability of high-rank coal supply. To address such unresolved issues, integrated gasification combined cycle (IGCC) with carbon capture and storage (CCS) has been suggested, and low rank coal has been upgraded by high-pressure and high-temperature processes. However, IGCC incurs huge construction costs, and the coal upgrading processes require fossil-fuel-derived additives and harsh operation condition. Here, we first show a hybrid coal that can solve these two problems simultaneously while using existing power plants. Hybrid coal is defined as a two-in-one fuel combining low rank coal with a sugar cane-derived bioliquid, such as molasses and sugar cane juice, by bioliquid diffusion into coal intrapores and precarbonization of the bioliquid. Unlike the simple blend of biomass and coal showing dual combustion behavior, hybrid coal provided a single coal combustion pattern. If hybrid coal (biomass/coal ratio = 28 wt %) is used as a fuel for 500 MW power generation, the net CO(2) emission is 21.2-33.1% and 12.5-25.7% lower than those for low rank coal and designed coal, and the required coal supply can be reduced by 33% compared with low rank coal. Considering high oil prices and time required before a stable renewable energy supply can be established, hybrid coal could be recognized as an innovative low-carbon-emission energy technology that can bridge the gulf between fossil fuels and renewable energy, because various water-soluble biomass could be used as an additive for hybrid coal through proper modification of preparation conditions.

  9. A Novel Multi-Sensor Environmental Perception Method Using Low-Rank Representation and a Particle Filter for Vehicle Reversing Safety.

    PubMed

    Zhang, Zutao; Li, Yanjun; Wang, Fubing; Meng, Guanjun; Salman, Waleed; Saleem, Layth; Zhang, Xiaoliang; Wang, Chunbai; Hu, Guangdi; Liu, Yugang

    2016-06-09

    Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety.

  10. A Novel Multi-Sensor Environmental Perception Method Using Low-Rank Representation and a Particle Filter for Vehicle Reversing Safety

    PubMed Central

    Zhang, Zutao; Li, Yanjun; Wang, Fubing; Meng, Guanjun; Salman, Waleed; Saleem, Layth; Zhang, Xiaoliang; Wang, Chunbai; Hu, Guangdi; Liu, Yugang

    2016-01-01

    Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. PMID:27294931

  11. Circulating fluidized bed gasification of low rank coal: Influence of O2/C molar ratio on gasification performance and sulphur transformation

    NASA Astrophysics Data System (ADS)

    Zhang, Haixia; Zhang, Yukui; Zhu, Zhiping; Lu, Qinggang

    2016-08-01

    To promote the utilization efficiency of coal resources, and to assist with the control of sulphur during gasification and/or downstream processes, it is essential to gain basic knowledge of sulphur transformation associated with gasification performance. In this research we investigated the influence of O2/C molar ratio both on gasification performance and sulphur transformation of a low rank coal, and the sulphur transformation mechanism was also discussed. Experiments were performed in a circulating fluidized bed gasifier with O2/C molar ratio ranging from 0.39 to 0.78 mol/mol. The results showed that increasing the O2/C molar ratio from 0.39 to 0.78 mol/mol can increase carbon conversion from 57.65% to 91.92%, and increase sulphur release ratio from 29.66% to 63.11%. The increase of O2/C molar ratio favors the formation of H2S, and also favors the retained sulphur transforming to more stable forms. Due to the reducing conditions of coal gasification, H2S is the main form of the released sulphur, which could be formed by decomposition of pyrite and by secondary reactions. Bottom char shows lower sulphur content than fly ash, and mainly exist as sulphates. X-ray photoelectron spectroscopy (XPS) measurements also show that the intensity of pyrite declines and the intensity of sulphates increases for fly ash and bottom char, and the change is more obvious for bottom char. During CFB gasification process, bigger char particles circulate in the system and have longer residence time for further reaction, which favors the release of sulphur species and can enhance the retained sulphur transforming to more stable forms.

  12. Polynomial meta-models with canonical low-rank approximations: Numerical insights and comparison to sparse polynomial chaos expansions

    NASA Astrophysics Data System (ADS)

    Konakli, Katerina; Sudret, Bruno

    2016-09-01

    The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the "curse of dimensionality", namely the exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor-product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input dimension, a

  13. Polynomial meta-models with canonical low-rank approximations: Numerical insights and comparison to sparse polynomial chaos expansions

    SciTech Connect

    Konakli, Katerina Sudret, Bruno

    2016-09-15

    The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the “curse of dimensionality”, namely the exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor–product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input

  14. Multi-stage classification method oriented to aerial image based on low-rank recovery and multi-feature fusion sparse representation.

    PubMed

    Ma, Xu; Cheng, Yongmei; Hao, Shuai

    2016-12-10

    Automatic classification of terrain surfaces from an aerial image is essential for an autonomous unmanned aerial vehicle (UAV) landing at an unprepared site by using vision. Diverse terrain surfaces may show similar spectral properties due to the illumination and noise that easily cause poor classification performance. To address this issue, a multi-stage classification algorithm based on low-rank recovery and multi-feature fusion sparse representation is proposed. First, color moments and Gabor texture feature are extracted from training data and stacked as column vectors of a dictionary. Then we perform low-rank matrix recovery for the dictionary by using augmented Lagrange multipliers and construct a multi-stage terrain classifier. Experimental results on an aerial map database that we prepared verify the classification accuracy and robustness of the proposed method.

  15. Rule emphasizes quality and cost savings.

    PubMed

    2011-10-01

    The Centers for Medicare and Medicaid Services (CMS) emphasizes improving quality and efficiencies across settings in the Inpatient Prospective Payment System (IPPS) final rule for 2012. Hospitals will receive a 1% market basket increase in reimbursement. CMS announced a Medicare spending-per-beneficiary measures that will be used in the Value-Based Purchasing program and the Hospital Inpatient Quality Reporting program. CMS is adding new quality measures involving infection control in 2014 and 2015.

  16. Multicontrast reconstruction using compressed sensing with low rank and spatially varying edge-preserving constraints for high-resolution MR characterization of myocardial infarction.

    PubMed

    Zhang, Li; Athavale, Prashant; Pop, Mihaela; Wright, Graham A

    2017-08-01

    To enable robust reconstruction for highly accelerated three-dimensional multicontrast late enhancement imaging to provide improved MR characterization of myocardial infarction with isotropic high spatial resolution. A new method using compressed sensing with low rank and spatially varying edge-preserving constraints (CS-LASER) is proposed to improve the reconstruction of fine image details from highly undersampled data. CS-LASER leverages the low rank feature of the multicontrast volume series in MR relaxation and integrates spatially varying edge preservation into the explicit low rank constrained compressed sensing framework using weighted total variation. With an orthogonal temporal basis pre-estimated, a multiscale iterative reconstruction framework is proposed to enable the practice of CS-LASER with spatially varying weights of appropriate accuracy. In in vivo pig studies with both retrospective and prospective undersamplings, CS-LASER preserved fine image details better and presented tissue characteristics with a higher degree of consistency with histopathology, particularly in the peri-infarct region, than an alternative technique for different acceleration rates. An isotropic resolution of 1.5 mm was achieved in vivo within a single breath-hold using the proposed techniques. Accelerated three-dimensional multicontrast late enhancement with CS-LASER can achieve improved MR characterization of myocardial infarction with high spatial resolution. Magn Reson Med 78:598-610, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Low-rank canonical-tensor decomposition of potential energy surfaces: application to grid-based diagrammatic vibrational Green's function theory

    DOE PAGES

    Rai, Prashant; Sargsyan, Khachik; Najm, Habib; ...

    2017-03-07

    Here, a new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrationalmore » zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss–Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm-1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.« less

  18. Physics in perspective: Recommendations and program emphases

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Exerpted material from Physics in Perspective, Vol. 1, is presented on recommendations, priorities, and program emphases. The major recommendations are addressed to the Federal Government and support agencies, the physics community, and the educational community, including precollege, undergraduate, and graduate sectors. Approaches to the questions involved in establishing scientific priorities are discussed, and an approach is evolved which is based on the jury rating application of certain criteria to the program elements of a subfield. The question of national support level for the physics enterprise is also considered, and contingency alternatives are suggested such that whatever the level of available support, it may be used with maximum effectiveness.

  19. New technology emphasizes international offshore effort

    SciTech Connect

    1997-07-01

    While the offshore industry is focusing its major development efforts on the deeper waters of the US Gulf, West Africa and Brazil, technology has not stood still in the world`s many other established and frontier offshore development areas. These selected items drawn from contributions by UK companies and a major joint-venture development in Eastern Canada emphasize this effort. Included here are: (1) announcement of a major six-field, 3 Tcf gas development off Nova Scotia`s Sable Island and award of two drilling contracts; (2) a comprehensive study of mobile production units in the UK by Smith Rea Energy Analysts; (3) four applications of an option to high-pressure swivels on an FPSO with multiple subsea inlet lines; (4) a contract to supply a DC bus drive for 17 ESPs on Texaco`s Captain field; and (5) review of an environmental study of the Falkland Islands in preparation for exploration activity.

  20. Emphasizing the process of science in biology

    NASA Astrophysics Data System (ADS)

    D'Augustino, Tracy Marie

    The purpose of this project was to emphasize the process of science which is used in all aspects of life. Students in an Introductory Biology class practiced making observations, identifying patterns and asking questions based on observed patterns. The questions led to the development of multiple hypotheses with students predicting possible results. Students had opportunities to discuss their predictions with peers and the instructor. They discussed additional steps, alternative observations and questions, further exploring the process of science. To objectively evaluate the increased knowledge, students were given a pre-test and post-test that covered the points presented. Data analysis indicated that participation in unit activities successfully increased the students' understanding of the process of science.

  1. Rhytidectomy: principles and practice emphasizing safety.

    PubMed

    Rodriguez-Bruno, Krista; Papel, Ira D

    2011-02-01

    There is an unprecedented acceptance of rhytidectomy by today's society. No longer limited to the affluent few, middle class citizens are devoting their expendable income to achieve a more youthful appearance that is natural and inconspicuous. Despite recent difficult economic times, the mindset of the working population continues to be welcoming of rhytidectomy as a way to achieve a refreshed look while expecting minimal downtime and morbidity. To achieve these results, the current literature has described an array of techniques; however, there is no consensus on a preferred method, which reflects limitations and advantages inherent to every style of face-lifting. Each individual patient will have specific needs, and it is key for the facial plastic surgeon to select a technique that can address those areas most affected by the aging process. Whichever method used, an emphasis on safety is of the utmost importance. A solid understanding of the relevant anatomy is imperative as is the awareness of how to best avoid complications. Rhytidectomy can be a challenging procedure, and although complications are fortunately rare, they can be cosmetically devastating and poorly accepted by the elective cosmetic patient. This article aims at providing a summary of the history, the anatomy, and the currently accepted methods in rhytidectomy, emphasizing principles and practices of safety. © Thieme Medical Publishers.

  2. Bilingual Hispanic Children on the U.S. Mainland: A Review of Research on Their Cognitive, Linguistic, and Scholastic Development. Emphasizing Studies Involving the English- and Spanish-Language Versions of the Peabody Picture Vocabulary Test--Revised.

    ERIC Educational Resources Information Center

    Dunn, Lloyd M.

    A review of research on the cognitive, linguistic, and scholastic development of mainland Hispanic-American children paints a dismal overall picture. Hispanics are the fastest growing ethnic group in the United States, 11% of the population in 1986; about 75% have Mexican ancestry. Less than half of Latin adults speak English well enough for the…

  3. Software design studies emphasizing Project LOGOS

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results of a research project on the development of computer software are presented. Research funds of $200,000 were expended over a three year period for software design and projects in connection with Project LOGOS (computer-aided design and certification of computing systems). Abstracts of theses prepared during the project are provided.

  4. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas.

    PubMed

    Li, Hailong; Wu, Chang-Yu; Li, Ying; Zhang, Junying

    2011-09-01

    CeO(2)-TiO(2) (CeTi) catalysts synthesized by an ultrasound-assisted impregnation method were employed to oxidize elemental mercury (Hg(0)) in simulated low-rank (sub-bituminous and lignite) coal combustion flue gas. The CeTi catalysts with a CeO(2)/TiO(2) weight ratio of 1-2 exhibited high Hg(0) oxidation activity from 150 to 250 °C. The high concentrations of surface cerium and oxygen were responsible for their superior performance. Hg(0) oxidation over CeTi catalysts was proposed to follow the Langmuir-Hinshelwood mechanism whereby reactive species from adsorbed flue gas components react with adjacently adsorbed Hg(0). In the presence of O(2), a promotional effect of HCl, NO, and SO(2) on Hg(0) oxidation was observed. Without O(2), HCl and NO still promoted Hg(0) oxidation due to the surface oxygen, while SO(2) inhibited Hg(0) adsorption and subsequent oxidation. Water vapor also inhibited Hg(0) oxidation. HCl was the most effective flue gas component responsible for Hg(0) oxidation. However, the combination of SO(2) and NO without HCl also resulted in high Hg(0) oxidation efficiency. This superior oxidation capability is advantageous to Hg(0) oxidation in low-rank coal combustion flue gas with low HCl concentration.

  5. A primer on the occurrence of coalbed methane in low-rank coals, with special reference to its potential occurrence in Pakistan

    USGS Publications Warehouse

    SanFilipo, John R.

    2000-01-01

    Introduction: This report compiles and updates a series of correspondence that took place between 1998 and early 2000 among the author and representatives of various consulting groups operating in the coal sector of Pakistan. The purpose of the original correspondence was to introduce basic concepts of coalbed methane (CBM) in low-rank coals to planners and other parties interested in the development of Pakistan's coal, particularly the large deposits of the Thar desert area of Sindh Province that were recently discovered (SanFilipo and Khan, 1994) by the Geological Survey of Pakistan (GSP) and the U.S. Geological Survey (USGS). The author tested two shallow boreholes in Sindh Province for CBM in 1992, including one in Thar, with very marginal results. Additional targets with better CBM prospects were recommended shortly thereafter (SanFilipo and others, 1994), but these were not followed up during subsequent drilling, nor were any other sites tested. Recent events, notably the rapid pace of CBM development in low-rank coals of the Powder River Basin of the U.S., and a show of CBM in commercial quantities in the Cambay Basin of India - both of which are similar in age and rank to most of Pakistan's coal - have indicated a need for reevaluating the initial CBM investigations made in Pakistan in 1992 and for a reassessment of the CBM prospects for the country at large.

  6. An advanced laboratory course that emphasizes communication

    NASA Astrophysics Data System (ADS)

    Rieger, Georg

    2012-10-01

    I will introduce a fourth-year laboratory course that has a strong focus on communication skills. The course is meant to give students a preview of how experimental physics is performed in an academic or industrial research lab. The design is such that the course approximates the experience of a graduate student in a research group, which I regard as an ideal learning environment. I will contrast this with the learning experience in a typical first- or second-year lab. Results from a small survey are also presented.

  7. The Need to Emphasize Epistemology in Teaching and Research

    ERIC Educational Resources Information Center

    Kalman, Calvin

    2009-01-01

    The views on epistemology by philosophers of science are developed through an historical lens. Enabling students to develop a scientific mindset is complicated by student's views on the Nature of Science. Students need to appreciate the history of science and to contrast different frameworks. In order to do this, students have to be able to follow…

  8. Astronomy Courses which Emphasize Communication Skills

    NASA Astrophysics Data System (ADS)

    Dinerstein, H. L.

    1998-12-01

    The ability to communicate effectively, both in oral and written form, is crucial for success in almost any career path. Furthermore, being able to effectively communicate information requires a high level of conceptual mastery of the material. For these reasons, I have incorporated practice in communication into courses at a variety of levels, ranging from non-science-major undergraduate courses to graduate courses. I briefly describe the content of these courses, particularly the communication-related component. The first, Ast 309N, ``Astronomy Bizarre: Stars and Stellar Evolution," is an elective which follows one semester of general introductory astronomy for non-majors. Instead of homework problems, the students complete a sequence of writing assignments of graduated complexity, beginning with simple tasks such as writing abstracts and critiques of assigned readings, and moving on to writing term papers which require literature research and a short science fiction story incorporating accurate depictions of relativistic effects. In Ast 175/275, a ``Journal Club" course for upper-division astronomy majors, students read articles in the professional literature and give short oral presentations to the rest of the class. To build up their understanding of a topic, we work through the ``paper trail" of key papers on topics with exciting recent developments, such as extrasolar planets, gravitational lenses, or gamma-ray bursts. Finally, in a seminar course for first-semester astronomy graduate students (Ast 185C) that broadly addresses professional development issues, I include a practice AAS oral session, with the students giving 5-minute presentations on a journal paper of their choice. This seminar course also examines career paths and employment trends, the peer review process for papers and proposals, professional norms and ethics, and other topics. Syllabi for these and other courses I teach regularly can be found from my home page (http://www.as.utexas.edu/astronomy/people/dinerstein).

  9. Low-Rank Matrix Recovery Approach for Clutter Rejection in Real-Time IR-UWB Radar-Based Moving Target Detection

    PubMed Central

    Sabushimike, Donatien; Na, Seung You; Kim, Jin Young; Bui, Ngoc Nam; Seo, Kyung Sik; Kim, Gil Gyeom

    2016-01-01

    The detection of a moving target using an IR-UWB Radar involves the core task of separating the waves reflected by the static background and by the moving target. This paper investigates the capacity of the low-rank and sparse matrix decomposition approach to separate the background and the foreground in the trend of UWB Radar-based moving target detection. Robust PCA models are criticized for being batched-data-oriented, which makes them inconvenient in realistic environments where frames need to be processed as they are recorded in real time. In this paper, a novel method based on overlapping-windows processing is proposed to cope with online processing. The method consists of processing a small batch of frames which will be continually updated without changing its size as new frames are captured. We prove that RPCA (via its Inexact Augmented Lagrange Multiplier (IALM) model) can successfully separate the two subspaces, which enhances the accuracy of target detection. The overlapping-windows processing method converges on the optimal solution with its batch counterpart (i.e., processing batched data with RPCA), and both methods prove the robustness and efficiency of the RPCA over the classic PCA and the commonly used exponential averaging method. PMID:27598159

  10. Fast alogorithms for Bayesian uncertainty quantification in large-scale linear inverse problems based on low-rank partial Hessian approximations

    SciTech Connect

    Akcelik, Volkan; Flath, Pearl; Ghattas, Omar; Hill, Judith C; Van Bloemen Waanders, Bart; Wilcox, Lucas

    2011-01-01

    We consider the problem of estimating the uncertainty in large-scale linear statistical inverse problems with high-dimensional parameter spaces within the framework of Bayesian inference. When the noise and prior probability densities are Gaussian, the solution to the inverse problem is also Gaussian, and is thus characterized by the mean and covariance matrix of the posterior probability density. Unfortunately, explicitly computing the posterior covariance matrix requires as many forward solutions as there are parameters, and is thus prohibitive when the forward problem is expensive and the parameter dimension is large. However, for many ill-posed inverse problems, the Hessian matrix of the data misfit term has a spectrum that collapses rapidly to zero. We present a fast method for computation of an approximation to the posterior covariance that exploits the lowrank structure of the preconditioned (by the prior covariance) Hessian of the data misfit. Analysis of an infinite-dimensional model convection-diffusion problem, and numerical experiments on large-scale 3D convection-diffusion inverse problems with up to 1.5 million parameters, demonstrate that the number of forward PDE solves required for an accurate low-rank approximation is independent of the problem dimension. This permits scalable estimation of the uncertainty in large-scale ill-posed linear inverse problems at a small multiple (independent of the problem dimension) of the cost of solving the forward problem.

  11. Low-Rank Matrix Recovery Approach for Clutter Rejection in Real-Time IR-UWB Radar-Based Moving Target Detection.

    PubMed

    Sabushimike, Donatien; Na, Seung You; Kim, Jin Young; Bui, Ngoc Nam; Seo, Kyung Sik; Kim, Gil Gyeom

    2016-09-01

    The detection of a moving target using an IR-UWB Radar involves the core task of separating the waves reflected by the static background and by the moving target. This paper investigates the capacity of the low-rank and sparse matrix decomposition approach to separate the background and the foreground in the trend of UWB Radar-based moving target detection. Robust PCA models are criticized for being batched-data-oriented, which makes them inconvenient in realistic environments where frames need to be processed as they are recorded in real time. In this paper, a novel method based on overlapping-windows processing is proposed to cope with online processing. The method consists of processing a small batch of frames which will be continually updated without changing its size as new frames are captured. We prove that RPCA (via its Inexact Augmented Lagrange Multiplier (IALM) model) can successfully separate the two subspaces, which enhances the accuracy of target detection. The overlapping-windows processing method converges on the optimal solution with its batch counterpart (i.e., processing batched data with RPCA), and both methods prove the robustness and efficiency of the RPCA over the classic PCA and the commonly used exponential averaging method.

  12. VIEW OF CENOTAPHS IN CONTEXT, A VIEW THAT EMPHASIZES THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CENOTAPHS IN CONTEXT, A VIEW THAT EMPHASIZES THE STARK GEOMETRY OF LATROBE'S DESIGN - Congressional Cemetery, Latrobe Cenotaphs, Eighteenth & E Streets, Southeast, Washington, District of Columbia, DC

  13. Articulation of extreme formant patterns for emphasized vowels.

    PubMed

    Erickson, Donna

    2002-01-01

    This study examined formant, jaw and tongue dorsum measurements from X-ray microbeam recordings of American English speakers producing emphasized vs. unemphasized words containing high-front, mid-front and low vowels. For emphasized vowels, the jaw position, regardless of vowel height, was lower, while the tongue dorsum had a more extreme articulation in the direction of the phonological specification of the vowel. For emphasized low vowels, the tongue dorsum position was lower with the acoustic consequence of F1 and F2 bunched closer together. For emphasized high and mid-front vowels, the tongue was more forward with the acoustic consequence of F1 and F2 spread more apart. These findings are interpreted within acoustic models of speech production. They also provide empirical data which have application to the C/D model hypothesis that both increased lowering of jaw and enhanced tongue gesture are consequences of a magnitude increase in the syllable pulse due to emphasis.

  14. Academic Deans' Perceptions of Current and Ideal Curriculum Emphases.

    ERIC Educational Resources Information Center

    Graber, David R.; O'Neil, Edward H.; Bellack, Janis P.; Musham, Catherine; Javed, Tariq

    1998-01-01

    A survey of 57 dental school deans concerning current and ideal curricular emphases in 33 topic areas identified three that were rated highly as ideals: health promotion/disease prevention; primary care; and effective patient-provider relationships/communication. The most significant barrier to reform was an already crowded curriculum. Deans…

  15. Knowledge of Physics Topics Emphasized in Small Missouri High Schools.

    ERIC Educational Resources Information Center

    Frederick, Ronald; Barrow, Lloyd H.

    1999-01-01

    An American Institute of Physics survey was modified to determine major physics topics emphasized in small Missouri high schools and teachers' perceived adequacy to teach them. Data tables show the emphasis that 103 Missouri teachers placed on 38 physics topics, compared to national counterparts, as well as teachers' perceptions of their knowledge…

  16. Emphasizing the Significance of Electrostatic Interactions in Chemical Bonding

    ERIC Educational Resources Information Center

    Venkataraman, Bhawani

    2017-01-01

    This paper describes a pedagogical approach to help students understand chemical bonding by emphasizing the importance of electrostatic interactions between atoms. The approach draws on prior studies that have indicated many misconceptions among students in understanding the nature of the chemical bond and energetics associated with bond formation…

  17. The Literature of Staff Development: Emphases and Shortcomings; [and] Community College Staff Development, an Annotated Bibliography.

    ERIC Educational Resources Information Center

    Wallace, Terry

    The key objectives of this report and bibliography are: (1) to describe the major emphases of literature related to research in the areas of inservice training in 2-year institutions, noting substantive studies, and (2) to delineate significant gaps in the present literature. Three fundamental inservice training questions are discussed: What is…

  18. The Construction and Development of Indicators of Learning Organization at Higher Educational Institutions Emphasizing Graduate Production and Social Development

    ERIC Educational Resources Information Center

    Hanrin, Chanwit; Sri-Amphai, Pissamai; Ruangmontri, Karn; Namwan, Tharinthorn

    2011-01-01

    The Purposes of this research were to construct and develop indicators of learning organization at higher educational institutions emphasize graduate production and social development, and to test the congruence of the structural model of the indicators of learning organization at higher educational institutions emphasizing graduate production and…

  19. Advertising energy saving programs: The potential environmental cost of emphasizing monetary savings.

    PubMed

    Schwartz, Daniel; Bruine de Bruin, Wändi; Fischhoff, Baruch; Lave, Lester

    2015-06-01

    Many consumers have monetary or environmental motivations for saving energy. Indeed, saving energy produces both monetary benefits, by reducing energy bills, and environmental benefits, by reducing carbon footprints. We examined how consumers' willingness and reasons to enroll in energy-savings programs are affected by whether advertisements emphasize monetary benefits, environmental benefits, or both. From a normative perspective, having 2 noteworthy kinds of benefit should not decrease a program's attractiveness. In contrast, psychological research suggests that adding external incentives to an intrinsically motivating task may backfire. To date, however, it remains unclear whether this is the case when both extrinsic and intrinsic motivations are inherent to the task, as with energy savings, and whether removing explicit mention of extrinsic motivation will reduce its importance. We found that emphasizing a program's monetary benefits reduced participants' willingness to enroll. In addition, participants' explanations about enrollment revealed less attention to environmental concerns when programs emphasized monetary savings, even when environmental savings were also emphasized. We found equal attention to monetary motivations in all conditions, revealing an asymmetric attention to monetary and environmental motives. These results also provide practical guidance regarding the positioning of energy-saving programs: emphasize intrinsic benefits; the extrinsic ones may speak for themselves. (c) 2015 APA, all rights reserved).

  20. Accelerating dynamic magnetic resonance imaging (MRI) for lung tumor tracking based on low-rank decomposition in the spatial-temporal domain: a feasibility study based on simulation and preliminary prospective undersampled MRI.

    PubMed

    Sarma, Manoj; Hu, Peng; Rapacchi, Stanislas; Ennis, Daniel; Thomas, Albert; Lee, Percy; Kupelian, Patrick; Sheng, Ke

    2014-03-01

    To evaluate a low-rank decomposition method to reconstruct down-sampled k-space data for the purpose of tumor tracking. Seven retrospective lung cancer patients were included in the simulation study. The fully-sampled k-space data were first generated from existing 2-dimensional dynamic MR images and then down-sampled by 5 × -20 × before reconstruction using a Cartesian undersampling mask. Two methods, a low-rank decomposition method using combined dynamic MR images (k-t SLR based on sparsity and low-rank penalties) and a total variation (TV) method using individual dynamic MR frames, were used to reconstruct images. The tumor trajectories were derived on the basis of autosegmentation of the resultant images. To further test its feasibility, k-t SLR was used to reconstruct prospective data of a healthy subject. An undersampled balanced steady-state free precession sequence with the same undersampling mask was used to acquire the imaging data. In the simulation study, higher imaging fidelity and low noise levels were achieved with the k-t SLR compared with TV. At 10 × undersampling, the k-t SLR method resulted in an average normalized mean square error <0.05, as opposed to 0.23 by using the TV reconstruction on individual frames. Less than 6% showed tracking errors >1 mm with 10 × down-sampling using k-t SLR, as opposed to 17% using TV. In the prospective study, k-t SLR substantially reduced reconstruction artifacts and retained anatomic details. Magnetic resonance reconstruction using k-t SLR on highly undersampled dynamic MR imaging data results in high image quality useful for tumor tracking. The k-t SLR was superior to TV by better exploiting the intrinsic anatomic coherence of the same patient. The feasibility of k-t SLR was demonstrated by prospective imaging acquisition and reconstruction. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Third-party biller compliance guidance emphasizes risk awareness.

    PubMed

    Saner, R J

    1999-03-01

    The voluntary compliance guidance for third-party billing companies released by the HHS Office of Inspector General (OIG) in December 1998, like the OIG's previously released guidance directed at hospitals, home health agencies, and clinical laboratories, identifies seven minimum elements for an effective corporate compliance program: written compliance policies, designation of a compliance officer, ongoing training, open lines of communication, guidelines to ensure the enforcement of compliance standards, internal monitoring and auditing of compliance activity, and procedures to respond to and correct errors. Three areas of concern for third-party billing companies are emphasized in the new guidance document: compliance risk, claims documentation, and disclosure of suspected misconduct or fraud.

  2. Accelerating Dynamic Magnetic Resonance Imaging (MRI) for Lung Tumor Tracking Based on Low-Rank Decomposition in the Spatial–Temporal Domain: A Feasibility Study Based on Simulation and Preliminary Prospective Undersampled MRI

    SciTech Connect

    Sarma, Manoj; Hu, Peng; Rapacchi, Stanislas; Ennis, Daniel; Thomas, Albert; Lee, Percy; Kupelian, Patrick; Sheng, Ke

    2014-03-01

    Purpose: To evaluate a low-rank decomposition method to reconstruct down-sampled k-space data for the purpose of tumor tracking. Methods and Materials: Seven retrospective lung cancer patients were included in the simulation study. The fully-sampled k-space data were first generated from existing 2-dimensional dynamic MR images and then down-sampled by 5 × -20 × before reconstruction using a Cartesian undersampling mask. Two methods, a low-rank decomposition method using combined dynamic MR images (k-t SLR based on sparsity and low-rank penalties) and a total variation (TV) method using individual dynamic MR frames, were used to reconstruct images. The tumor trajectories were derived on the basis of autosegmentation of the resultant images. To further test its feasibility, k-t SLR was used to reconstruct prospective data of a healthy subject. An undersampled balanced steady-state free precession sequence with the same undersampling mask was used to acquire the imaging data. Results: In the simulation study, higher imaging fidelity and low noise levels were achieved with the k-t SLR compared with TV. At 10 × undersampling, the k-t SLR method resulted in an average normalized mean square error <0.05, as opposed to 0.23 by using the TV reconstruction on individual frames. Less than 6% showed tracking errors >1 mm with 10 × down-sampling using k-t SLR, as opposed to 17% using TV. In the prospective study, k-t SLR substantially reduced reconstruction artifacts and retained anatomic details. Conclusions: Magnetic resonance reconstruction using k-t SLR on highly undersampled dynamic MR imaging data results in high image quality useful for tumor tracking. The k-t SLR was superior to TV by better exploiting the intrinsic anatomic coherence of the same patient. The feasibility of k-t SLR was demonstrated by prospective imaging acquisition and reconstruction.

  3. Role of Clinical Endoscopy in Emphasizing Endoscope Disinfection

    PubMed Central

    Ryu, Ji Kon; Kim, Eun Young; Kwon, Kwang An; Choi, Il Ju

    2015-01-01

    Based on the unexpected Middle East respiratory syndrome (MERS) outbreak in Korea, it was established that the virus can spread easily, MERS exposure in hospitals carries an extreme risk for infection as well as mortality, and the sharing of information was essential for infection control. Although the incidence of exogenous infections related to contaminated endoscopes is very low, the majority of published outbreaks have been caused by various shortcomings in reprocessing procedures, including insufficient training or awareness. Ever since the inauguration of "Clinical Endoscopy" as an English-language journal of the Korean Society of Gastrointestinal Endoscopy in 2011, it has published several articles on disinfection of the endoscope and its accessories. Many Science Citation Index journals have also emphasized high-level disinfection of the gastrointestinal endoscope. Many papers have been produced specifically, since the outbreak of carbapenem-resistant Enterobacteriaceae in 2013. The recent review papers concluded that quality control is the most important issue among all the aspects of procedural care, including the efficiency of the gastrointestinal endoscopy unit and reprocessing room. Thorough reprocessing of endoscopes using high-level disinfection and sterilization methods may be essential for reducing the risk of infection. PMID:26473114

  4. Conference emphasizes mitigation of natural disasters through modern instrument systems

    NASA Astrophysics Data System (ADS)

    Bolt, Bruce A.

    Modern instrumentation systems that collect, analyze, distribute, and archive data on earthquakes and associated hazards have already been put in place successfully in a number of countries. These systems have improved the accuracy of long-term assessments of the likelihood of future hazards, including earthquakes and tsunamis, and also have improved the speed of emergency response through rapid determination of earthquake location and the extent and level of damage.Reduced costs are making such interactive communications affordable and cost-effective for Latin American countries and many developing countries. The role of instruments was emphasized at the International Conference on Modern Preparation Response Systems for Earthquake, Tsunami, and Volcanic Hazard held earlier this year in Chile. In the opening address, Philippe Boulle, Director of the United Nations Secretariat for the International Decade for Natural Disaster Reduction, stressed that the most effective approach to reducing losses is prevention. “There is an unfounded tendency to consider that the investigation to strengthen the existing infrastructure before disasters will cost much more than the cost of response after disasters. It is exactly just the reverse,” he said.

  5. Emphasizing employability and practice in remote sensing education and training in today's China

    NASA Astrophysics Data System (ADS)

    Han, Linzhi

    2006-10-01

    Recently, the study and application of GIS, RS and GPS and their integration have developed very quickly in China. Strong employment market demand for RS professional employees is expected and RS education or training becomes urgent. However, when the students graduate, a large amount of them will find it is difficult to gain a proper job in this field. How to change the situations is critical for sustainable development of RS education and training in China today? The problem might be improved by emphasizing employability and practice in RS education. This article has four parts. First section is introduction of current existing condition. In section II, the research will analyze problems of RS education and training in China. There are three main problems as follows. Many students are lack of employability, and their practicing training is insufficient. Students and Staff are less mobile and vocation qualification system is imperfect. Long-Term Interaction is lacking among universities, enterprises, and different areas or countries. Solutions are discussed in section III. It emphasizes promoting employability and international competition by occupation qualification system of RS. And RS education and training should be guided by employment opportunities and promoted by employment market demands. It should increase diverse laboratories and field exercise bases for practice. Finally, strengthening Long-Term Interaction of RS education conclusions should be made. The most important is to carry on the quality education centering on social sustainable development, and to emphasize employability and practice in RS education and training in China today.

  6. Young engineers and scientists - a mentorship program emphasizing space education

    NASA Astrophysics Data System (ADS)

    Boice, Daniel; Asbell, Elaine; Reiff, Patricia

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. The first component of YES is an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. Afterwards, students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  7. Clearinghouse: a teleradiology platform emphasizing security of data and communication.

    PubMed

    Spitzer, Michael; Brinkmann, Lars; Ueckert, Frank

    2007-01-01

    The Clearinghouse application platform is a web based solution for secure digital exchange of radiological images and other clinical documents among authorized researchers and physicians. It implements a sophisticated security and role model to protect privacy and to minimize the risk of eavesdropping of patient data. The Clearinghouse serves as a centralized platform for distributed, distantly located medical research and health care. It is based on Open-Source software, thus ensuring continued support, maintenance, security and last but not least continuity of the platform. The use of the Clearinghouse minimizes turnaround times by superseding comparably slow and insecure conventional communication methods otherwise used for the exchange of radiological images and clinical documents, such as standard mail and courier services. Furthermore, it alleviates the integration of distantly located expert knowledge into diagnostic routines, culminating in an increased health care quality regardless of location of patients or physicians.

  8. [Standardized training of gastrointestinal surgeons should be emphasized].

    PubMed

    Qin, Xinyu; Liu, Fenglin

    2015-02-01

    The standardized training of residents and specialists has just been initiated, and the training for gastrointestinal surgeons also should be standardized. From my personal view, the following aspects should be addressed for standardization including basic theory, medical record, teaching ward-round, the ability of clinical skills and clinical research. After the establishment of systematic standard training and assessment, the sustained development of gastrointestinal surgery may be expected.

  9. Obama Emphasizes Science and Innovation in State of the Union Address

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-02-01

    U.S. president Barack Obama emphasized innovation and competitiveness in his State of the Union address on 25 January. He also raised science and technology early in the hour-long speech, noting that nations like China and India are focusing on math and science education and investing in research and technology. To be competitive with those countries, “we need to out-innovate, out-educate, and out-build the rest of the world,” Obama said. “The first step in winning the future is encouraging American innovation.”

  10. Gas and aerosol fluxes. [emphasizing sulfur, nitrogen, and carbon

    NASA Technical Reports Server (NTRS)

    Martens, C. S.

    1980-01-01

    The development of remote sensing techniques to address the global need for accurate distribution and flux determinations of both man made and natural materials which affect the chemical composition of the atmosphere, the heat budget of the Earth, and the depletion, of stratospheric ozone is considered. Specifically, trace gas fluxes, sea salt aerosol production, and the effect of sea surface microlayer on gas and aerosol fluxes are examined. Volatile sulfur, carbon, nitrogen, and halocarbon compounds are discussed including a statement of the problem associated with each compound or group of compounds, a brief summary of current understanding, and suggestions for needed research.

  11. Combustion reactivity of low rank coal chars

    SciTech Connect

    Young, B.C.

    1983-08-01

    For many years the CSIRO has been involved in studies on the combustion kinetics of coal chars and related materials. Early work included studies on a char produced from a Victorian brown coal. More recently, the combustion kinetics of chars produced during the flash pyrolysis of sub-bituminous coals have been determined. Data are given for the combustion reactivities of four flash pyrolysis chars. Their reactivities are compared with the results for chars produced from low and high rank coals, and petroleum coke. Reactivity is expressed as the rate of combustion of carbon per unit external surface area of the particle, with due correction being made for the effect of the mass transfer of oxygen to the particle. It has been shown that the reactivities to oxygen of chars produced from Millmerran sub-bituminous coal decrease with increasing pyrolysis temperature but are similar in magnitude to the reactivities of chars derived from a brown and a bituminous coal and to the reactivities of anthracites and semi-anthracites. However, Wandoan char, also of sub-bituminous origin, exhibits about twice the reactivity of Millmerran char and about ten times the reactivity of petroleum coke. On the basis of observed activation energy values, particle size and particle density behaviour it is concluded that the combustion rates of Millmerran and Wandoan chars are controlled by the combined effects of pore diffusion and chemical reaction.

  12. Anaerobic bioprocessing of low rank coals

    SciTech Connect

    Jain, M.K.; Narayan, R.; Han, O.

    1991-01-01

    significant achievements were: (1) Coal decarboxylation was achieved by batch bioreactor systems using adapted anaerobic microbial consortium. (2) Two new isolates with coal decarboxylation potential were obtained from adapted microbial consortia. (3) CHN and TG anaysis of anaerobically biotreated coals have shown an increase in the H/C ratio and evolution rate of volatile carbon which could be a better feedstock for the liquefaction process.

  13. Low Rank Sparse Coding for Image Classification

    DTIC Science & Technology

    2013-12-08

    0.8) with macrofeatures and cross-validation. In addition, NBNN (5 desc) [3] (42.0) and Todorovic et al. [32] (49.5) show much better performance due...regularized coding for scene categorization. In CVPR, 2012. [32] S. Todorovic and N. Ahuja. Learning subcategory relevances for category recog

  14. Translational Geroscience: Emphasizing function to achieve optimal longevity

    PubMed Central

    Seals, Douglas R.; Melov, Simon

    2014-01-01

    Among individuals, biological aging leads to cellular and organismal dysfunction and an increased risk of chronic degenerative diseases and disability. This sequence of events in combination with the projected increases in the number of older adults will result in a worldwide healthcare burden with dire consequences. Superimposed on this setting are the adults now reaching traditional retirement ages--the baby boomers--a group that wishes to remain active, productive and physically and cognitively fit as they grow older. Together, these conditions are producing an unprecedented demand for increased healthspan or what might be termed “optimal longevity”—to live long, but well. To meet this demand, investigators with interests in the biological aspects of aging from model organisms to human epidemiology (population aging) must work together within an interactive process that we describe as translational geroscience. An essential goal of this new investigational platform should be the optimization and preservation of physiological function throughout the lifespan, including integrative physical and cognitive function, which would serve to increase healthspan, compress morbidity and disability into a shorter period of late-life, and help achieve optimal longevity. To most effectively utilize this new approach, we must rethink how investigators and administrators working at different levels of the translational research continuum communicate and collaborate with each other, how best to train the next generation of scientists in this new field, and how contemporary biological-biomedical aging research should be organized and funded. PMID:25324468

  15. A Methodology for Examining the Relative Emphases on Four Components of English in Secondary English Elective Programs.

    ERIC Educational Resources Information Center

    Gillis, Candida

    This research concerned two problems: (1) the development of economical procedures that any English department could use to examine the emphases on each area of English; (2) when the procedures were used to collect data in two schools, determining from the findings whether the criticism of elective programs was warranted. The methodology used was…

  16. A Methodology for Examining the Relative Emphases on Four Components of English in Secondary English Elective Programs.

    ERIC Educational Resources Information Center

    Gillis, Candida

    This research concerned two problems: (1) the development of economical procedures that any English department could use to examine the emphases on each area of English; (2) when the procedures were used to collect data in two schools, determining from the findings whether the criticism of elective programs was warranted. The methodology used was…

  17. Measuring intergroup ideologies: positive and negative aspects of emphasizing versus looking beyond group differences.

    PubMed

    Hahn, Adam; Banchefsky, Sarah; Park, Bernadette; Judd, Charles M

    2015-12-01

    Research on interethnic relations has focused on two ideologies, asking whether it is best to de-emphasize social-category differences (colorblind) or emphasize and celebrate differences (multicultural). We argue each of these can manifest with negative outgroup evaluations: Assimilationism demands that subordinate groups adopt dominant group norms to minimize group distinctions; segregationism holds that groups should occupy separate spheres. Parallel versions can be identified for intergender relations. Scales to measure all four ideologies are developed both for ethnicity (Studies 1 and 2) and gender (Studies 3 and 4). Results demonstrate that the ideologies can be reliably measured, that the hypothesized four-factor models are superior to alternative models with fewer factors, and that the ideologies relate as predicted to the importance ascribed to group distinctions, subordinate group evaluations, and solution preferences for intergroup conflict scenarios. We argue that this fourfold model can help clarify theory and measurement, allowing a more nuanced assessment of ideological attitudes. © 2015 by the Society for Personality and Social Psychology, Inc.

  18. A new process for catalytic liquefaction of low-rank coal using dispersed MoS{sub 2} catalyst generating in-situ with added H{sub 2}O

    SciTech Connect

    Song, C.S.; Saini, A.K.; Yoneyama, Yoshiharu

    1997-12-31

    It is known that water deactivates hydrogenation catalysts under conventional coal liquefaction conditions, although the beneficial effect of hydrothermal pretreatment has been reported. However, the authors have recently found that using water and a dispersed Mo catalyst precursor together could dramatically improve coal conversion at temperatures (325--375 C) that are much lower than those used in conventional processes (400--470 C). However, adding water to catalytic reactions at 400--450 C decreased coal conversion, although water addition to the noncatalytic runs was slightly beneficial in this high temperature range. In the present work, the authors examined the effect of water in solvent-mediated runs in addition to ``dry`` tests, and explored a temperature-programmed liquefaction procedure to take advantage of the synergetic effect between water and dispersed Mo catalyst precursor at low temperatures for more efficient coal conversion. It was found that reaction using ATTM (ammonium tetrathiomolybdate) with added water at 350 C, followed by water removal and subsequent reaction at 400 C gave good coal conversion and oil yield. To understand the effect of water, model reactions of dinaphthyl ether, abbreviated as DNE, were also carried out using ATTM in the absence and presence of water. Addition of water to ATTM in the model reactions substantially enhanced DNE conversion at 350 C. The combination of 1-step and 2-step model tests revealed that at a low temperature of 350 C, the main role of water is to promote the formation of highly active Mo sulfide catalyst. The liquefaction results coupled with model tests suggest that the presence of water results in substantially higher activity of the in-situ generated MoS{sub 2} catalyst for coal conversion at 350 C. Temperature-programming may be an effective strategy for developing a better liquefaction process using dispersed catalysts. This new process appears to be more effective for conversion of low-rank

  19. Direct liquefaction of low-rank coals. Annual technical report, April 1, 1987--March 31, 1988 including quarterly technical progress report, January--March 1988: Task 5.1

    SciTech Connect

    Rindt, J.R.; Hetland, M.D.; Knudson, C.L.; Willson, W.G.

    1988-04-01

    Co-processing of low-rank coals (LRCs) with petroleum resids under mild conditions may produce a product that extends petroleum refinery feeds with a partially coal-derived material. These co-processing products may also provide a lower-cost way to introduce coal-derived materials into the commercial market. In this staged process, the petroleum resid acts as a solvent, aiding in the solubilization of the coal during the first stage, and both the dissolved coal and the resid are upgraded during a second-stage catalytic hydrogenation. Another method of upgrading coal in a liquefaction process is the ChemCoal Process. The process uses chemical methods to transform coal into clean solid and liquid products. It features low-severity conversion of coal in a phenolic solvent, using an alkali promotor and carbon monoxide as the reductant. Oil agglomeration has been used to reduce the ash and mineral matter in bituminous coals to obtain a product with increased heating value, reduced moisture, and lower sulfur content. This method can be used to produce a clean coal feedstock for liquefaction. During agglomeration, an oil is used to preferentially wet the organic phases of the coal, and water is used to wet the minerals, resulting in a separation of ash and water from the coal. The primary objective of this project is to expand the scientific and engineering data base of LRC liquefaction by investigating direct liquefaction processes that will produce the most competitive feedstocks or liquid fuels. The work effort which was proposed for the second year of this cooperative agreement dealt primarily with co-processing and the ChemCoal Process.

  20. Estimation of basis line-integrals in a spectral distortion-modeled photon counting detector using low-rank approximation-based x-ray transmittance modeling: K-edge imaging application.

    PubMed

    Lee, Okkyun; Kappler, Steffen; Polster, Christoph; Taguchi, Katsuyuki

    2017-08-29

    Photon counting detectors (PCD) provide multiple energy-dependent measurements for estimating basis lineintegrals. However, the measured spectrum is distorted from the spectral response effect (SRE) via charge sharing, K-fluorescence emission, etc. Thus, in order to avoid bias and artifacts in images, the SRE needs to be compensated. For this purpose, we recently developed a computationally efficient three-step algorithm for PCD-CT without contrast agents by approximating smooth x-ray transmittance using low-order polynomial bases. It compensated the SRE by incorporating the SRE model in a linearized estimation process and achieved nearly the minimum variance and unbiased (MVU) estimator. In this paper, we extend the three-step algorithm to K-edge imaging applications by designing optimal bases using a low-rank approximation to model x-ray transmittances with arbitrary shapes (i.e., smooth without the K-edge or discontinuous with the K-edge). The bases can be used to approximate the x-ray transmittance and to linearize the PCD measurement modeling and then the three-step estimator can be derived as in the previous approach: Estimating the xray transmittance in the first step, estimating basis line-integrals including that of the contrast agent in the second step, and correcting for a bias in the third step. We demonstrate that the proposed method is more accurate and stable than the low-order polynomial-based approaches with extensive simulation studies using gadolinium for the K-edge imaging application. We also demonstrate that the proposed method achieves nearly MVU estimator, and is more stable than the conventional maximum likelihood estimator in high attenuation cases with fewer photon counts.

  1. Food nanotechnology in the news. Coverage patterns and thematic emphases during the last decade.

    PubMed

    Dudo, Anthony; Choi, Doo-Hun; Scheufele, Dietram A

    2011-02-01

    For novel issues like food nanotechnology, media can play an important role in shaping the awareness and mental associations that underlie public opinion. Seeking to complement recent research exploring public opinion formation about food nanotechnology, this study tracks the evolution of U.S. newspaper coverage of food nanotechnology, identifying the descriptive and thematic traits that have characterized this coverage over time. We use a rigorous methodology to examine the levels of coverage, authorship patterns, and thematic emphases exhibited in the American journalistic narrative about this burgeoning application of nanoscience. Our findings indicate that U.S. newspaper coverage of food nanotechnology is relatively modest in terms of how often it has been covered, its thematic diversity, and the level of journalistic expertise from which it was produced. To our knowledge, this is the first study to empirically assess journalistic coverage of food nanotechnology.

  2. Exploring Science Curriculum Emphases in Relation to the Alberta Physics Program-of-Study

    ERIC Educational Resources Information Center

    Chu, Man-Wai

    2012-01-01

    Using Roberts' (1982, 1988, 1995, 1998, 2003) seven science curriculum emphases as its framework, this investigation into Alberta's physics program-of-study found that pre-service and novice teachers reported focusing on four of the emphases--"Structure of Science"; "Scientific Skill Development"; "Science, Technology, and…

  3. Emphasizing the "Literacy" in "Scientific Literacy": A Concise Blueprint for Integrating Writing into Biology Classes

    ERIC Educational Resources Information Center

    Yule, Jeffrey V.; Wolf, William C.; Young, Nolan L.

    2010-01-01

    Effectively integrating writing into biology classes gives students the opportunity to develop a better understanding of and engagement with course content. Yet many instructors remain reluctant to emphasize writing. Some are concerned about the time commitment writing assessment requires. Others shy away from emphasizing writing in their classes…

  4. Unintended Effects of Emphasizing Disparities in Cancer Communication to African-Americans

    PubMed Central

    Nicholson, Robert A.; Kreuter, Matthew W.; Lapka, Christina; Wellborn, Rachel; Clark, Eddie M.; Sanders-Thompson, Vetta; Jacobsen, Heather M.; Casey, Chris

    2009-01-01

    Little is known about how minority groups react to public information that highlights racial disparities in cancer. This double-blind randomized study compared emotional and behavioral reactions to four versions of the same colon cancer (CRC) information presented in mock news articles to a community sample of African-American adults (n = 300). Participants read one of four articles that varied in their framing and interpretation of race-specific CRC mortality data, emphasizing impact (CRC is an important problem for African-Americans), two dimensions of disparity (Blacks are doing worse than Whites and Blacks are improving, but less than Whites), or progress (Blacks are improving over time). Participants exposed to disparity articles reported more negative emotional reactions to the information and were less likely to want to be screened for CRC than those in other groups (both P < 0.001). In contrast, progress articles elicited more positive emotional reactions and participants were more likely to want to be screened. Moreover, negative emotional reaction seemed to mediate the influence of message type on individuals wanting to be screened for CRC. Overall, these results suggest that the way in which disparity research is reported in the medium can influence public attitudes and intentions, with reports about progress yielding a more positive effect on intention. This seems especially important among those with high levels of medical mistrust who are least likely to use the health care system and are thus the primary target of health promotion advertising. PMID:18990735

  5. Unintended effects of emphasizing disparities in cancer communication to African-Americans.

    PubMed

    Nicholson, Robert A; Kreuter, Matthew W; Lapka, Christina; Wellborn, Rachel; Clark, Eddie M; Sanders-Thompson, Vetta; Jacobsen, Heather M; Casey, Chris

    2008-11-01

    Little is known about how minority groups react to public information that highlights racial disparities in cancer. This double-blind randomized study compared emotional and behavioral reactions to four versions of the same colon cancer (CRC) information presented in mock news articles to a community sample of African-American adults (n = 300). Participants read one of four articles that varied in their framing and interpretation of race-specific CRC mortality data, emphasizing impact (CRC is an important problem for African-Americans), two dimensions of disparity (Blacks are doing worse than Whites and Blacks are improving, but less than Whites), or progress (Blacks are improving over time). Participants exposed to disparity articles reported more negative emotional reactions to the information and were less likely to want to be screened for CRC than those in other groups (both P < 0.001). In contrast, progress articles elicited more positive emotional reactions and participants were more likely to want to be screened. Moreover, negative emotional reaction seemed to mediate the influence of message type on individuals wanting to be screened for CRC. Overall, these results suggest that the way in which disparity research is reported in the medium can influence public attitudes and intentions, with reports about progress yielding a more positive effect on intention. This seems especially important among those with high levels of medical mistrust who are least likely to use the health care system and are thus the primary target of health promotion advertising.

  6. Acknowledging individual responsibility while emphasizing social determinants in narratives to promote obesity-reducing public policy: a randomized experiment.

    PubMed

    Niederdeppe, Jeff; Roh, Sungjong; Shapiro, Michael A

    2015-01-01

    This study tests whether policy narratives designed to increase support for obesity-reducing public policies should explicitly acknowledge individual responsibility while emphasizing social, physical, and economic (social) determinants of obesity. We use a web-based, randomized experiment with a nationally representative sample of American adults (n = 718) to test hypotheses derived from theory and research on narrative persuasion. Respondents exposed to narratives that acknowledged individual responsibility while emphasizing obesity's social determinants were less likely to engage in counterargument and felt more empathy for the story's main character than those exposed to a message that did not acknowledge individual responsibility. Counterarguing and affective empathy fully mediated the relationship between message condition and support for policies to reduce rates of obesity. Failure to acknowledge individual responsibility in narratives emphasizing social determinants of obesity may undermine the persuasiveness of policy narratives. Omitting information about individual responsibility, a strongly-held American value, invites the public to engage in counterargument about the narratives and reduces feelings of empathy for a character that experiences the challenges and benefits of social determinants of obesity.

  7. Acknowledging Individual Responsibility while Emphasizing Social Determinants in Narratives to Promote Obesity-Reducing Public Policy: A Randomized Experiment

    PubMed Central

    Niederdeppe, Jeff; Roh, Sungjong; Shapiro, Michael A.

    2015-01-01

    This study tests whether policy narratives designed to increase support for obesity-reducing public policies should explicitly acknowledge individual responsibility while emphasizing social, physical, and economic (social) determinants of obesity. We use a web-based, randomized experiment with a nationally representative sample of American adults (n = 718) to test hypotheses derived from theory and research on narrative persuasion. Respondents exposed to narratives that acknowledged individual responsibility while emphasizing obesity’s social determinants were less likely to engage in counterargument and felt more empathy for the story’s main character than those exposed to a message that did not acknowledge individual responsibility. Counterarguing and affective empathy fully mediated the relationship between message condition and support for policies to reduce rates of obesity. Failure to acknowledge individual responsibility in narratives emphasizing social determinants of obesity may undermine the persuasiveness of policy narratives. Omitting information about individual responsibility, a strongly-held American value, invites the public to engage in counterargument about the narratives and reduces feelings of empathy for a character that experiences the challenges and benefits of social determinants of obesity. PMID:25706743

  8. Multiple scattering in cloud layers; some results. [emphasizing aerosol parameters on global basis

    NASA Technical Reports Server (NTRS)

    Vandehulst, H. C.

    1974-01-01

    Theoretical methods are discussed for calculating radiative effects of aerosols. Experimental determination is emphasized for relevant aerosol parameters on a global basis to arrive at realistic estimates of heating and cooling. Internal radiation fields in very thin and very thick slabs are reviewed. Phase functions, polarization, emission by internal sources, and path length distribution are also considered.

  9. Development and Evaluation of Computerized Problem-based Learning Cases Emphasizing Basic Sciences Concepts.

    ERIC Educational Resources Information Center

    Abate, Marie A.; Meyer-Stout, Paula J.; Stamatakis, Mary K.; Gannett, Peter M.; Dunsworth, Teresa S.; Nardi, Anne H.

    2000-01-01

    Describes development and evaluation of eight computerized problem-based learning (PBL) cases in medicinal chemistry and pharmaceutics concepts. Case versions either incorporated concept maps emphasizing key ideas or did not. Student performance on quizzes did not differ between the different case versions and was similar to that of students who…

  10. Development and Evaluation of Computerized Problem-based Learning Cases Emphasizing Basic Sciences Concepts.

    ERIC Educational Resources Information Center

    Abate, Marie A.; Meyer-Stout, Paula J.; Stamatakis, Mary K.; Gannett, Peter M.; Dunsworth, Teresa S.; Nardi, Anne H.

    2000-01-01

    Describes development and evaluation of eight computerized problem-based learning (PBL) cases in medicinal chemistry and pharmaceutics concepts. Case versions either incorporated concept maps emphasizing key ideas or did not. Student performance on quizzes did not differ between the different case versions and was similar to that of students who…

  11. An Example Emphasizing Mass-Volume Relationships for Problem Solving in Soils

    ERIC Educational Resources Information Center

    Heitman, J. L.; Vepraskas, M. J.

    2009-01-01

    Mass-volume relationships are a useful tool emphasized for problem solving in many geo-science and engineering applications. These relationships also have useful applications in soil science. Developing soils students' ability to utilize mass-volume relationships through schematic diagrams of soil phases (i.e., air, water, and solid) can help to…

  12. An Example Emphasizing Mass-Volume Relationships for Problem Solving in Soils

    ERIC Educational Resources Information Center

    Heitman, J. L.; Vepraskas, M. J.

    2009-01-01

    Mass-volume relationships are a useful tool emphasized for problem solving in many geo-science and engineering applications. These relationships also have useful applications in soil science. Developing soils students' ability to utilize mass-volume relationships through schematic diagrams of soil phases (i.e., air, water, and solid) can help to…

  13. Effect of Accuracy-Emphasized Instructions on Performance on an Attribute-Identification Task

    ERIC Educational Resources Information Center

    Wasilewski, Bohdan K.

    1972-01-01

    Results supported the hypotheses that the emphasis on speed: (a) has a detrimental effect on the performance, (b) is inherent in a test-like situation, and (c) can be reduced by emphasizing in the instructions to Ss the detrimental effects of speed on the achievement of solution. (Author/CB)

  14. HESS Opinions: Advocating process modeling and de-emphasizing parameter estimation

    NASA Astrophysics Data System (ADS)

    Bahremand, Abdolreza

    2016-04-01

    Since its origins as an engineering discipline, with its widespread use of "black box" (empirical) modeling approaches, hydrology has evolved into a scientific discipline that seeks a more "white box" (physics-based) modeling approach to solving problems such as the description and simulation of the rainfall-runoff responses of a watershed. There has been much recent debate regarding the future of the hydrological sciences, and several publications have voiced opinions on this subject. This opinion paper seeks to comment and expand upon some recent publications that have advocated an increased focus on process-based modeling while de-emphasizing the focus on detailed attention to parameter estimation. In particular, it offers a perspective that emphasizes a more hydraulic (more physics-based and less empirical) approach to development and implementation of hydrological models.

  15. [The emphases and basic procedures of genetic counseling in psychotherapeutic model].

    PubMed

    Zhang, Yuan-Zhi; Zhong, Nanbert

    2006-11-01

    The emphases and basic procedures of genetic counseling are all different with those in old models. In the psychotherapeutic model, genetic counseling will not only focus on counselees' genetic disorders and birth defects, but also their psychological problems. "Client-centered therapy" termed by Carl Rogers plays an important role in genetic counseling process. The basic procedures of psychotherapeutic model of genetic counseling include 7 steps: initial contact, introduction, agendas, inquiry of family history, presenting information, closing the session and follow-up.

  16. REHABILITATION OF SUBACROMIAL PAIN SYNDROME EMPHASIZING SCAPULAR DYSKINESIS IN AMATEUR ATHLETES: A CASE SERIES

    PubMed Central

    Moura, Katherinne F.; Monteiro, Renan L.; Lucareli, Paulo R.G.

    2016-01-01

    ABSTRACT Study design Case series Background and Purpose Scapular dyskinesis has been associated with several shoulder injuries. Recent literature has suggested that a greater activation of the scapular muscles can play an important role in reducing subacromial impingement in patients with shoulder pain. Thus, the purpose of this case series was to describe a rehabilitation program that emphasizes scapular dyskinesis correction for those with clinical evidence of subacromial pain syndrome. Case Descriptions The four amateur athletes in this series showed clinical evidence of subacromial pain syndrome and scapular dyskinesis and each underwent a treatment protocol consisting of three phases. Phase 1 emphasized pain relief, scapular control, and recovery of normal range of motion (ROM), Phase 2 focused on muscular strengthening, and Phase 3 emphasized sensory motor training. Outcomes All subjects demonstrated decreased pain, improved sports performance and function, increased muscular strength for shoulder elevation and external rotation, and increased ROM for internal rotation. Improvement in serratus anterior (SA) activation was also noted. Discussion The results of this case series suggest that subjects with clinical tests positive for subacromial pain syndrome can show significant improvement with an intervention focused on scapular dyskinesis correction. SA activation can play an important role in this process given that all subjects presented with better recruitment after rehabilitation, as measured by electromyography. Levels of Evidence Level 4 PMID:27525180

  17. A sensitivity/intrusion comparison of mental workload estimation techniques using a flight task emphasizing perceptual piloting activities

    NASA Technical Reports Server (NTRS)

    Casali, J. G.; Wierwille, W. W.

    1982-01-01

    In a literature review it was found that little research effort has been directly applied to the problem of specifying a viable workload estimation technique for a given pilot/aircrew problem. Furthermore, the relative sensitivity and intrusion of most techniques has not been studied. The present investigation is concerned with a comparative evaluation of eight workload estimation techniques under identical experimental conditions in a flight simulator. The objective of this comparison was to determine the relative sensitivity and intrusion of each estimation technique in applications to a piloting situation which emphasizes the use of perceptual processes. No differential intrusion could be observed, but six of the eight techniques did show sensitivity to changes in perceptual load. All significant techniques displayed monotonic increases in measured values across the three loading levels considered.

  18. History of Thermal Barrier Coatings for Gas Turbine Engines: Emphasizing NASA's Role from 1942 to 1990

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.

    2009-01-01

    NASA has played a central role in the development of thermal barrier coatings (TBCs) for gas turbine applications. This report discusses the history of TBCs emphasizing the role NASA has played beginning with (1) frit coatings in the 1940s and 1950s; (2) thermally sprayed coatings for rocket application in the 1960s and early 1970s; (3) the beginnings of the modern era of turbine section coatings in the mid 1970s; and (4) failure mechanism and life prediction studies in the 1980s and 1990s. More recent efforts are also briefly discussed.

  19. Does arm swing emphasized deliberately increase the trunk stability during walking in the elderly adults?

    PubMed

    Nakakubo, Sho; Doi, Takehiko; Sawa, Ryuichi; Misu, Shogo; Tsutsumimoto, Kota; Ono, Rei

    2014-09-01

    The purpose of this study was to determine whether trunk stability while walking changes when arm swing is deliberately altered in elderly individuals. Participants included 21 community-dwelling elderly individuals (7 men and 14 women; age, 81.8 ± 5.0 years). We measured trunk acceleration by using a wireless miniature sensor unit containing a tri-axial linear accelerometer under 3 walking conditions: normal walking (normal condition), deliberately walking without any arm swing (no swing condition), and walking with a deliberately emphasized arm swing (over swing condition). To evaluate trunk stability during walking, we calculated harmonic ratios (HRs) based on trunk tri-axial acceleration signals (anteroposterior: AP, vertical: VT, and mediolateral: ML). HR-AP and HR-VT were not significantly different across the 3 conditions, but HR-ML in the over swing condition was significantly higher than that in the other 2 conditions by generalized estimating equations (GEE) adjusted for walking speed (p<0.05). These findings indicate that trunk stability in the ML direction increased when the elderly individuals walked with a deliberately emphasized arm swing. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Evaluation of 16 measures of mental workload using a simulated flight task emphasizing mediational activity

    NASA Technical Reports Server (NTRS)

    Wierwille, W. W.; Rahimi, M.; Casali, J. G.

    1985-01-01

    As aircraft and other systems become more automated, a shift is occurring in human operator participation in these systems. This shift is away from manual control and toward activities that tap the higher mental functioning of human operators. Therefore, an experiment was performed in a moving-base flight simulator to assess mediational (cognitive) workload measurement. Specifically, 16 workload estimation techniques were evaluated as to their sensitivity and intrusion in a flight task emphasizing mediational behavior. Task loading, using navigation problems presented on a display, was treated as an independent variable, and workload-measure values were treated as dependent variables. Results indicate that two mediational task measures, two rating scale measures, time estimation, and two eye behavior measures were reliably sensitive to mediational loading. The time estimation measure did, however, intrude on mediational task performance. Several of the remaining measures were completely insensitive to mediational load.

  1. Culture and National Well-Being: Should Societies Emphasize Freedom or Constraint?

    PubMed Central

    Harrington, Jesse R.; Boski, Pawel; Gelfand, Michele J.

    2015-01-01

    Throughout history and within numerous disciplines, there exists a perennial debate about how societies should best be organized. Should they emphasize individual freedom and autonomy or security and constraint? Contrary to proponents who tout the benefits of one over the other, we demonstrate across 32 nations that both freedom and constraint exhibit a curvilinear relationship with many indicators of societal well-being. Relative to moderate nations, very permissive and very constrained nations exhibit worse psychosocial outcomes (lower happiness, greater dysthymia, higher suicide rates), worse health outcomes (lower life expectancy, greater mortality rates from cardiovascular disease and diabetes) and poorer economic and political outcomes (lower gross domestic product per capita, greater risk for political instability). This supports the notion that a balance between freedom and constraint results in the best national outcomes. Accordingly, it is time to shift the debate away from either constraint or freedom and focus on both in moderation. PMID:26046772

  2. Culture and National Well-Being: Should Societies Emphasize Freedom or Constraint?

    PubMed

    Harrington, Jesse R; Boski, Pawel; Gelfand, Michele J

    2015-01-01

    Throughout history and within numerous disciplines, there exists a perennial debate about how societies should best be organized. Should they emphasize individual freedom and autonomy or security and constraint? Contrary to proponents who tout the benefits of one over the other, we demonstrate across 32 nations that both freedom and constraint exhibit a curvilinear relationship with many indicators of societal well-being. Relative to moderate nations, very permissive and very constrained nations exhibit worse psychosocial outcomes (lower happiness, greater dysthymia, higher suicide rates), worse health outcomes (lower life expectancy, greater mortality rates from cardiovascular disease and diabetes) and poorer economic and political outcomes (lower gross domestic product per capita, greater risk for political instability). This supports the notion that a balance between freedom and constraint results in the best national outcomes. Accordingly, it is time to shift the debate away from either constraint or freedom and focus on both in moderation.

  3. Emphasizing humanities in medical education: Promoting the integration of medical scientific spirit and medical humanistic spirit.

    PubMed

    Song, Peipei; Tang, Wei

    2017-05-23

    In the era of the biological-psychological-social medicine model, an ideal of modern medicine is to enhance the humanities in medical education, to foster medical talents with humanistic spirit, and to promote the integration of scientific spirit and humanistic spirit in medicine. Throughout the United States (US), United Kingdom (UK), other Western countries, and some Asian countries like Japan, many medical universities have already integrated the learning of medical humanities in their curricula and recognized their value. While in China, although medical education reform over the past decade has emphasized the topic of medical humanities to increase the professionalism of future physicians, the integration of medical humanity courses in medical universities has lagged behind the pace in Western countries. In addition, current courses in medical humanities were arbitrarily established due to a lack of organizational independence. For various reasons like a shortage of instructors, medical universities have failed to pay sufficient attention to medical humanities education given the urgent needs of society. The medical problems in contemporary Chinese society are not solely the purview of biomedical technology; what matters more is enhancing the humanities in medical education and fostering medical talents with humanistic spirit. Emphasizing the humanities in medical education and promoting the integration of medical scientific spirit and medical humanistic spirit have become one of the most pressing issues China must address. Greater attention should be paid to reasonable integration of humanities into the medical curriculum, creation of medical courses related to humanities and optimization of the curriculum, and actively allocating abundant teaching resources and exploring better methods of instruction.

  4. Emphasizing the History of Genetics in an Explicit and Reflective Approach to Teaching the Nature of Science

    NASA Astrophysics Data System (ADS)

    Williams, Cody Tyler; Rudge, David Wÿss

    2016-05-01

    Science education researchers have long advocated the central role of the nature of science (NOS) for our understanding of scientific literacy. NOS is often interpreted narrowly to refer to a host of epistemological issues associated with the process of science and the limitations of scientific knowledge. Despite its importance, practitioners and researchers alike acknowledge that students have difficulty learning NOS and that this in part reflects how difficult it is to teach. One particularly promising method for teaching NOS involves an explicit and reflective approach using the history of science. The purpose of this study was to determine the influence of a historically based genetics unit on undergraduates' understanding of NOS. The three-class unit developed for this study introduces students to Mendelian genetics using the story of Gregor Mendel's work. NOS learning objectives were emphasized through discussion questions and investigations. The unit was administered to undergraduates in an introductory biology course for pre-service elementary teachers. The influence of the unit was determined by students' responses to the SUSSI instrument, which was administered pre- and post-intervention. In addition, semi-structured interviews were conducted that focused on changes in students' responses from pre- to post-test. Data collected indicated that students showed improved NOS understanding related to observations, inferences, and the influence of culture on science.

  5. Carbon Footprint Reduction in Transportation Activity by Emphasizing the Usage of Public Bus Services Among Adolescents

    NASA Astrophysics Data System (ADS)

    Sukor, Nur Sabahiah Abdul; Khairiyah Basri, Nur; Asmah Hassan, Sitti

    2017-08-01

    Transportation is one of the sectors that contributes to the Greenhouse Gases (GHGs) emissions. In terms of carbon footprint, transportation is among the major contributors of high carbon intensity in the urban area. This study was conducted to reduce the carbon footprint contributed by the transportation sector in Penang Island by emphasizing the use of public buses. Secondary school students were the target group for this study. They were asked to report their daily travel behaviour and fuel consumption in a travel journal. The fuel consumption data from the travel journal were used to calculate each individual’s carbon emission level. After the analyses, the value of carbon emissions was revealed to the students. Next, they were encouraged to use public transport in a motivation session and were asked to record their fuel consumption in the travel journal once again. The results showed that there was a significant difference in fuel consumption before and after the motivation session, as the students preferred to use public buses instead of private vehicles after the motivation session. This indicates that the motivation programme had been successful in creating the awareness towards carbon footprint reduction among the adolescents.

  6. [Functional hemodynamic monitoring should be emphasized in intensive care for burn and trauma patients].

    PubMed

    Guo, Guang-hua; Zhu, Feng

    2014-08-01

    Hemodynamic monitoring is a very important measure for critically ill patients with burn and trauma, and it should be carried out throughout the course of treatment. Functional hemodynamic monitoring consists of the assessment of the dynamic interactions of hemodynamic variables in response to a defined volume change. Accordingly, response of fluid volume can be assessed in a quantitative fashion by measuring variation of both arterial pulse pressure and left ventricular stroke volunime during positive pressure breathing, or the change in cardiac output response to passive leg raising maneuver. Functional hemodynamic monitoring, contrary to that of static condition in order to realize dynamic and individual monitoring, is related to response to treatment, and it is a useful complement to static (routine) hemodynamic monitoring. At present, in the care of sepsis, shock, and mechanical ventilation, etc. related to burn injury and trauma, functional hemodynamic monitoring is more and more accepted and applied by medical personnel of ICU in burn and trauma departments. Therefore, further study on functional hemodynamic monitoring should be emphasized and practised.

  7. Emphasizing Social Features in Information Portals: Effects on New Member Engagement.

    PubMed

    Sharma, Nikhil; Butler, Brian S; Irwin, Jeannie; Spallek, Heiko

    2011-11-01

    Many information portals are adding social features with hopes of enhancing the overall user experience. Invitations to join and welcome pages that highlight these social features are expected to encourage use and participation. While this approach is widespread and seems plausible, the effect of providing and highlighting social features remains to be tested. We studied the effects of emphasizing social features on users' response to invitations, their decisions to join, their willingness to provide profile information, and their engagement with the portal's social features. The results of a quasi-experiment found no significant effect of social emphasis in invitations on receivers' responsiveness. However, users receiving invitations highlighting social benefits were less likely to join the portal and provide profile information. Social emphasis in the initial welcome page for the site also was found to have a significant effect on whether individuals joined the portal, how much profile information they provided and shared, and how much they engaged with social features on the site. Unexpectedly, users who were welcomed in a social manner were less likely to join and provided less profile information; they also were less likely to engage with social features of the portal. This suggests that even in online contexts where social activity is an increasingly common feature, highlighting the presence of social features may not always be the optimal presentation strategy.

  8. A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion

    PubMed Central

    Song, Seungmoon; Geyer, Hartmut

    2015-01-01

    Neural networks along the spinal cord contribute substantially to generating locomotion behaviours in humans and other legged animals. However, the neural circuitry involved in this spinal control remains unclear. We here propose a specific circuitry that emphasizes feedback integration over central pattern generation. The circuitry is based on neurophysiologically plausible muscle-reflex pathways that are organized in 10 spinal modules realizing limb functions essential to legged systems in stance and swing. These modules are combined with a supraspinal control layer that adjusts the desired foot placements and selects the leg that is to transition into swing control during double support. Using physics-based simulation, we test the proposed circuitry in a neuromuscular human model that includes neural transmission delays, musculotendon dynamics and compliant foot–ground contacts. We find that the control network is sufficient to compose steady and transitional 3-D locomotion behaviours including walking and running, acceleration and deceleration, slope and stair negotiation, turning, and deliberate obstacle avoidance. The results suggest feedback integration to be functionally more important than central pattern generation in human locomotion across behaviours. In addition, the proposed control architecture may serve as a guide in the search for the neurophysiological origin and circuitry of spinal control in humans. PMID:25920414

  9. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation.

    PubMed

    Chatterjee, Soumya; Deb, Utsab; Datta, Sibnarayan; Walther, Clemens; Gupta, Dharmendra K

    2017-10-01

    Explosive materials are energetic substances, when released into the environment, contaminate by posing toxic hazards to environment and biota. Throughout the world, soils are contaminated by such contaminants either due to manufacturing operations, military activities, conflicts of different levels, open burning/open detonation (OB/OD), dumping of munitions etc. Among different forms of chemical explosives, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine (HMX) are most common. These explosives are highly toxic as USEPA has recommended restrictions for lifetime contact through drinking water. Although, there are several utilitarian aspects in anthropogenic activities, however, effective remediation of explosives is very important. This review article emphasizes the details of appropriate practices to ameliorate the contamination. Critical evaluation has also been made to encompass the recent knowledge and advancement about bioremediation and phytoremediation of explosives (especially TNT, RDX and HMX) along with the molecular mechanisms of biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Emphasizing Social Features in Information Portals: Effects on New Member Engagement

    PubMed Central

    Sharma, Nikhil; Butler, Brian S.; Irwin, Jeannie; Spallek, Heiko

    2013-01-01

    Many information portals are adding social features with hopes of enhancing the overall user experience. Invitations to join and welcome pages that highlight these social features are expected to encourage use and participation. While this approach is widespread and seems plausible, the effect of providing and highlighting social features remains to be tested. We studied the effects of emphasizing social features on users' response to invitations, their decisions to join, their willingness to provide profile information, and their engagement with the portal's social features. The results of a quasi-experiment found no significant effect of social emphasis in invitations on receivers' responsiveness. However, users receiving invitations highlighting social benefits were less likely to join the portal and provide profile information. Social emphasis in the initial welcome page for the site also was found to have a significant effect on whether individuals joined the portal, how much profile information they provided and shared, and how much they engaged with social features on the site. Unexpectedly, users who were welcomed in a social manner were less likely to join and provided less profile information; they also were less likely to engage with social features of the portal. This suggests that even in online contexts where social activity is an increasingly common feature, highlighting the presence of social features may not always be the optimal presentation strategy. PMID:23626487

  11. Proteins related to the spindle and checkpoint mitotic emphasize the different pathogenesis of hypoplastic MDS.

    PubMed

    Heredia, Fabiola Fernandes; de Sousa, Juliana Cordeiro; Ribeiro Junior, Howard Lopes; Carvalho, Alex Fiorini; Magalhaes, Silvia Maria Meira; Pinheiro, Ronald Feitosa

    2014-02-01

    Some studies show that alterations in expression of proteins related to mitotic spindle (AURORAS KINASE A and B) and mitotic checkpoint (CDC20 and MAD2L1) are involved in chromosomal instability and tumor progression in various solid and hematologic malignancies. This study aimed to evaluate these genes in MDS patients. The cytogenetics analysis was carried out by G-banding, AURKA and AURKB amplification was performed using FISH, and AURKA, AURKB, CDC20 and MAD2L1 gene expression was performed by qRT-PCR in 61 samples of bone marrow from MDS patients. AURKA gene amplification was observed in 10% of the cases, which also showed higher expression levels than the control group (p=0.038). Patients with normo/hypercellular BM presented significantly higher expression levels than hypocellular BM patients, but normo and hypercellular BM groups did not differ. After logistic regression analysis, our results showed that HIGH expression levels were associated with increased risk of developing normo/hypercellular MDS. It also indicated that age is associated with AURKA, CDC20 and MAD2L1 HIGH expression levels. The distinct expression of hypocellular patients emphasizes the prognostic importance of cellularity to MDS. The amplification/high expression of AURKA suggests that the increased expression of this gene may be related to the pathogenesis of disease.

  12. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques

    SciTech Connect

    Tobin, S. J.; Fensin, M. L.; Ludewigt, B. A.; Menlove, H. O.; Quiter, B. J.; Sandoval, N. P.; Swinhoe, M. T.; Thompson, S. J.

    2009-08-03

    There are a variety of motivations for quantifying Pu in spent (used) fuel assemblies by means of nondestructive assay (NDA) including the following: strengthen the capabilities of the International Atomic Energy Agencies to safeguards nuclear facilities, quantifying shipper/receiver difference, determining the input accountability value at reprocessing facilities and providing quantitative input to burnup credit determination for repositories. For the purpose of determining the Pu mass in spent fuel assemblies, twelve NDA techniques were identified that provide information about the composition of an assembly. A key point motivating the present research path is the realization that none of these techniques, in isolation, is capable of both (1) quantifying the elemental Pu mass of an assembly and (2) detecting the diversion of a significant number of pins. As such, the focus of this work is determining how to best integrate 2 or 3 techniques into a system that can quantify elemental Pu and to assess how well this system can detect material diversion. Furthermore, it is important economically to down-select among the various techniques before advancing to the experimental phase. In order to achieve this dual goal of integration and down-selection, a Monte Carlo library of PWR assemblies was created and is described in another paper at Global 2009 (Fensin et al.). The research presented here emphasizes integration among techniques. An overview of a five year research plan starting in 2009 is given. Preliminary modeling results for the Monte Carlo assembly library are presented for 3 NDA techniques: Delayed Neutrons, Differential Die-Away, and Nuclear Resonance Fluorescence. As part of the focus on integration, the concept of"Pu isotopic correlation" is discussed and the role of cooling time determination.

  13. Distillability and PPT entanglement of low-rank quantum states

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Đoković, Dragomir Ž.

    2011-07-01

    The bipartite quantum states ρ, with rank strictly smaller than the maximum of the ranks of the reduced states ρA and ρB, are distillable by local operations and classical communication (Horodecki P, Smolin J A, Terhal B M and Thapliyal A V 2003 Theor. Comput. Sci. 292 589-96 1999 arXiv:quant-ph/9910122). Our first main result is that this is also true for NPT states with rank equal to this maximum. (A state is PPT if the partial transpose of its density matrix is positive semidefinite, and otherwise it is NPT.) This was conjectured first in 1999 in the special case when the ranks of ρA and ρB are equal (see (Horodecki P, Smolin J A, Terhal B M and Thapliyal A V 2003 Theor. Comput. Sci. 292 589-96 1999 arXiv:quant-ph/9910122). Our second main result provides a complete solution of the separability problem for bipartite states of rank 4. Namely, we show that such a state is separable if and only if it is PPT and its range contains at least one product state. We also prove that the so-called checkerboard states are distillable if and only if they are NPT.

  14. What Are Low-Ranked Graduate Programs Good for?

    ERIC Educational Resources Information Center

    Cassuto, Leonard

    2013-01-01

    Professors revel in reputation--and nowhere does that show more clearly than in their concern about educational pedigree. That concern takes complicated forms. The author wondered what might happen if graduate admissions were reduced to a level that would only replace retiring professors. One possible consequence of such a move would be that…

  15. To improve the stability of combustion of low rank coal

    SciTech Connect

    Jing Bin Wei

    1995-03-01

    A new aerothermodynamic method, Bi-Flat Inlet Flow Precombustor with Control Jets, developed for flame stabilization of pulverized-coal and the improvement of the ignition condition of low grade coal is described in this paper. The BI-flat flow precombustor consists of a rectangular combustion chamber which can be installed in the location of the burner in the utility and industrial boilers to be used to advance ignition of fuel and primary air mixture and to increase combustion stability of the furnace flames. This type of precombustor simply constructs with two flattened primary air flow and control jets at the head end of the combustor. The velocity of control jets is higher than that of primary flow. A very large recirculation zone with high temperature burnt gases and high turbulent intensity as an ignition source is created in the center of combustion chamber based upon the principles of the actions of jets entraining and Coanda effect. Meanwhile, the higher velocity air layers with lower concentration of coal characteristics on preventing walls from slagging accumulation. Another very important feature is that coal particles could enter directly into the recirculation zone as their inertia and diffusion forces so that it shows a good compatibility of the flow paths of coal particles and high temperature gases. Finally, it is full of promise to be a low pollution emissions combustor since its staged flow and combustion structures.

  16. Alkaloid-derived molecules in low rank Argonne premium coals.

    SciTech Connect

    Winans, R. E.; Tomczyk, N. A.; Hunt, J. E.

    2000-11-30

    Molecules that are probably derived from alkaloids have been found in the extracts of the subbituminous and lignite Argonne Premium Coals. High resolution mass spectrometry (HRMS) and liquid chromatography mass spectrometry (LCMS) have been used to characterize pyridine and supercritical extracts. The supercritical extraction used an approach that has been successful for extracting alkaloids from natural products. The first indication that there might be these natural products in coals was the large number of molecules found containing multiple nitrogen and oxygen heteroatoms. These molecules are much less abundant in bituminous coals and absent in the higher rank coals.

  17. Moving target imaging using sparse and low-rank structure

    NASA Astrophysics Data System (ADS)

    Mason, Eric; Yazici, Birsen

    2016-05-01

    In this paper we present a method for passive radar detection of ground moving targets using sparsely distributed apertures. We assume the scene is illuminated by a source of opportunity and measure the backscattered signal. We correlate measurements from two different receivers, then form a linear forward model that operates on a rank one, positive semi-definite (PSD) operator, formed by taking the tensor product of the phase-space reflectivity function with its self. Utilizing this structure, image formation and velocity estimation are defined in a constrained optimization framework. Additionally, image formation and velocity estimation are formulated as separate optimization problems, this results in computational savings. Position estimation is posed as a rank one PSD constrained least squares problem. Then, velocity estimation is performed as a cardinality constrained least squares problem, solved using a greedy algorithm. We demonstrate the performance of our method with numerical simulations, demonstrate improvement over back-projection imaging, and evaluate the effect of spatial diversity.

  18. What Are Low-Ranked Graduate Programs Good for?

    ERIC Educational Resources Information Center

    Cassuto, Leonard

    2013-01-01

    Professors revel in reputation--and nowhere does that show more clearly than in their concern about educational pedigree. That concern takes complicated forms. The author wondered what might happen if graduate admissions were reduced to a level that would only replace retiring professors. One possible consequence of such a move would be that…

  19. Case studies on direct liquefaction of low rank Wyoming coal

    SciTech Connect

    Adler, P.; Kramer, S.J.; Poddar, S.K.

    1995-12-31

    Previous Studies have developed process designs, costs, and economics for the direct liquefaction of Illinois No. 6 and Wyoming Black Thunder coals at mine-mouth plants. This investigation concerns two case studies related to the liquefaction of Wyoming Black Thunder coal. The first study showed that reducing the coal liquefaction reactor design pressure from 3300 to 1000 psig could reduce the crude oil equivalent price by 2.1 $/bbl provided equivalent performing catalysts can be developed. The second one showed that incentives may exist for locating a facility that liquifies Wyoming coal on the Gulf Coast because of lower construction costs and higher labor productivity. These incentives are dependent upon the relative values of the cost of shipping the coal to the Gulf Coast and the increased product revenues that may be obtained by distributing the liquid products among several nearby refineries.

  20. Drying low rank coal and retarding spontaneous ignition

    SciTech Connect

    Bellow, E.J. Jr.; Bixel, J.C.; Heaney, W.F.; Yan, T.Y.

    1989-05-09

    A method is described of passivating and cooling heated dried coal comprising: (a) heating particulate coal to a temperature between about 190 and about 230/sup 0/F to dry to the desired level: and (b) coating the resulting heated particulate coal with an aqueous emulsion of a hydrocarbon selected from the group consisting of petroleum resid, light cycle oil, heavy cycle oil, clarified slurry oil, durene, asphaltenes, coal tar and coal tar pitch.

  1. A case study of PFBC for low rank coals

    SciTech Connect

    Jansson, S.A.

    1995-12-01

    Pressurized Fluidized Combined-Cycle (PFBC) technology allows the efficient and environmentally friendly utilization of solid fuels for power and combined heat and power generation. With current PFBC technology, thermal efficiencies near 46%, on an LHV basis and with low condenser pressures, can be reached in condensing power plants. Further efficiency improvements to 50% or more are possible. PFBC plants are characterized by high thermal efficiency, compactness, and extremely good environmental performance. The PFBC plants which are now in operation in Sweden, the U.S. and Japan burn medium-ash, bituminous coal with sulfur contents ranging from 0.7 to 4%. A sub- bituminous {open_quotes}black lignite{close_quotes} with high levels of sulfur, ash and humidity, is used as fuel in a demonstration PFBC plant in Spain. Project discussions are underway, among others in Central and Eastern Europe, for the construction of PFBC plants which will burn lignite, oil-shale and also mixtures of coal and biomass with high efficiency and extremely low emissions. This paper will provide information about the performance data for PFBC plants when operating on a range of low grade coals and other solid fuels, and will summarize other advantages of this leading new clean coal technology.

  2. A comprehensive analysis of myocardial substrate preference emphasizes the need for a synchronized fluxomic/metabolomic research design.

    PubMed

    Ragavan, Mukundan; Kirpich, Alexander; Fu, Xiaorong; Burgess, Shawn C; McIntyre, Lauren M; Merritt, Matthew E

    2017-06-01

    The heart oxidizes fatty acids, carbohydrates, and ketone bodies inside the tricarboxylic acid (TCA) cycle to generate the reducing equivalents needed for ATP production. Competition between these substrates makes it difficult to estimate the extent of pyruvate oxidation. Previously, hyperpolarized pyruvate detected propionate-mediated activation of carbohydrate oxidation, even in the presence of acetate. In this report, the optimal concentration of propionate for the activation of glucose oxidation was measured in mouse hearts perfused in Langendorff mode. This study was performed with a more physiologically relevant perfusate than the previous work. Increasing concentrations of propionate did not cause adverse effects on myocardial metabolism, as evidenced by unchanged O2 consumption, TCA cycle flux, and developed pressures. Propionate at 1 mM was sufficient to achieve significant increases in pyruvate dehydrogenase flux (3×), and anaplerosis (6×), as measured by isotopomer analysis. These results further demonstrate the potential of propionate as an aid for the correct estimation of total carbohydrate oxidative capacity in the heart. However, liquid chromotography/mass spectroscopy-based metabolomics detected large changes (~30-fold) in malate and fumarate pool sizes. This observation leads to a key observation regarding mass balance in the TCA cycle; flux through a portion of the cycle can be drastically elevated without changing the O2 consumption. Copyright © 2017 the American Physiological Society.

  3. Designing Learning as Well as Teaching: A Research-Based Model for Instruction that Emphasizes Learner Practice

    ERIC Educational Resources Information Center

    McAlpine, Lynn

    2004-01-01

    Many teachers of higher education wish to provide instruction that supports student learning while not always finding it easy to implement the desire. The model for a unit of instruction described here provides a mental map to overlay decisions about instructional strategies in order to assess the extent to which they align with theories of…

  4. Examination of two methods for statistical analysis of data with magnitude and direction emphasizing vestibular research applications

    NASA Technical Reports Server (NTRS)

    Calkins, D. S.

    1998-01-01

    When the dependent (or response) variable response variable in an experiment has direction and magnitude, one approach that has been used for statistical analysis involves splitting magnitude and direction and applying univariate statistical techniques to the components. However, such treatment of quantities with direction and magnitude is not justifiable mathematically and can lead to incorrect conclusions about relationships among variables and, as a result, to flawed interpretations. This note discusses a problem with that practice and recommends mathematically correct procedures to be used with dependent variables that have direction and magnitude for 1) computation of mean values, 2) statistical contrasts of and confidence intervals for means, and 3) correlation methods.

  5. Examination of two methods for statistical analysis of data with magnitude and direction emphasizing vestibular research applications

    NASA Technical Reports Server (NTRS)

    Calkins, D. S.

    1998-01-01

    When the dependent (or response) variable response variable in an experiment has direction and magnitude, one approach that has been used for statistical analysis involves splitting magnitude and direction and applying univariate statistical techniques to the components. However, such treatment of quantities with direction and magnitude is not justifiable mathematically and can lead to incorrect conclusions about relationships among variables and, as a result, to flawed interpretations. This note discusses a problem with that practice and recommends mathematically correct procedures to be used with dependent variables that have direction and magnitude for 1) computation of mean values, 2) statistical contrasts of and confidence intervals for means, and 3) correlation methods.

  6. A combined treatment approach emphasizing impairment-based manual physical therapy for plantar heel pain: a case series.

    PubMed

    Young, Brian; Walker, Michael J; Strunce, Joseph; Boyles, Robert

    2004-11-01

    Case series. To describe an impairment-based physical therapy treatment approach for 4 patients with plantar heel pain. There is limited evidence from clinical trials on which to base treatment decision making for plantar heel pain. Four patients completed a course of physical therapy based on an impairment-based model. All patients received manual physical therapy and stretching. Two patients were also treated with custom orthoses, and 1 patient received an additional strengthening program. Outcome measures included a numeric pain rating scale (NPRS) and self-reported functional status. Symptom duration ranged from 6 to 52 weeks (mean duration+/-SD, 33+/-19 weeks). Treatment duration ranged from 8 to 49 days (mean duration+/-SD, 23+/-18 days), with number of treatment sessions ranging from 2 to 7 (mode, 3). All 4 patients reported a decrease in NPRS scores from an average (+/-SD) of 5.8+/-2.2 to 0 (out of 10) during previously painful activities. Additionally, all patients returned to prior activity levels. In this case series, patients with plantar heel pain treated with an impairment-based physical therapy approach emphasizing manual therapy demonstrated complete pain relief and full return to activities. Further research is necessary to determine the effectiveness of impairment-based physical therapy interventions for patients with plantar heel pain/plantar fasciitis.

  7. Connection and Community: Diné College Emphasizes Real-World Experience in Public Health

    ERIC Educational Resources Information Center

    Bauer, Mark

    2016-01-01

    The Summer Research Enhancement Program (SREP) at Diné College provides students with a solid foundation of public health research methods and includes a hands-on internship in their home community to test their newly acquired skills while enhancing the communities' health. Focusing on health issues prioritized by Navajo health leaders, from…

  8. "A Lifelong Aversion to Writing": What if Writing Courses Emphasized Motivation?

    ERIC Educational Resources Information Center

    Sullivan, Patrick

    2011-01-01

    There has been a great deal of groundbreaking research done on motivation during the last twenty-five years, and all of it points to the importance of intrinsic motivation. This research has very significant ramifications for teachers of English. In this essay, the author engages the issue of "aversion" that Linda Brodkey raises in her essay…

  9. Connection and Community: Diné College Emphasizes Real-World Experience in Public Health

    ERIC Educational Resources Information Center

    Bauer, Mark

    2016-01-01

    The Summer Research Enhancement Program (SREP) at Diné College provides students with a solid foundation of public health research methods and includes a hands-on internship in their home community to test their newly acquired skills while enhancing the communities' health. Focusing on health issues prioritized by Navajo health leaders, from…

  10. Why Women: Reflections on the Need to Emphasize Women in Teaching about Development.

    ERIC Educational Resources Information Center

    Segal, Marcia Texler

    A feminist critique of development literature, with specific sub-Saharan examples, shows that development studies and projects are rooted in Western male world views. Researchers, guided by prevailing theory, ask questions about power, control, work, and social life from the point of view of the powerful, i.e., the men. Male research subjects tell…

  11. "A Lifelong Aversion to Writing": What if Writing Courses Emphasized Motivation?

    ERIC Educational Resources Information Center

    Sullivan, Patrick

    2011-01-01

    There has been a great deal of groundbreaking research done on motivation during the last twenty-five years, and all of it points to the importance of intrinsic motivation. This research has very significant ramifications for teachers of English. In this essay, the author engages the issue of "aversion" that Linda Brodkey raises in her essay…

  12. When Diagnosing ADHD in Young Adults Emphasize Informant Reports, DSM Items, and Impairment

    PubMed Central

    Sibley, Margaret H.; Pelham, William E.; Gnagy, Elizabeth M.; Waxmonsky, James G.; Waschbusch, Daniel A.; Derefinko, Karen J.; Garefino, Allison C.; Molina, Brooke S. G.; Wymbs, Brian T.; Babinski, Dara E.; Kuriyan, Aparajita B.

    2012-01-01

    Objective This study examined several questions about the diagnosis of attention-deficit/hyperactivity disorder (ADHD) in young adults using data from a childhood-diagnosed sample of 200 individuals with ADHD (age M = 20.20 years) and 121 demographically similar non-ADHD controls (total N = 321). Method We examined the use of self-versus informant ratings of current and childhood functioning and evaluated the diagnostic utility of adult-specific items versus items from the Diagnostic and Statistical Manuel of Mental Disorders (DSM). Results Results indicated that although a majority of young adults with a childhood diagnosis of ADHD continued to experience elevated ADHD symptoms (75%) and clinically significant impairment (60%), only 9.6%–19.7% of the childhood ADHD group continued to meet DSM–IV–TR (DSM, 4th ed., text rev.) criteria for ADHD in young adulthood. Parent report was more diagnostically sensitive than self-report. Young adults with ADHD tended to underreport current symptoms, while young adults without ADHD tended to overreport symptoms. There was no significant incremental benefit beyond parent report alone to combining self-report with parent report. Non-DSM-based, adult-specific symptoms of ADHD were significantly correlated with functional impairment and endorsed at slightly higher rates than the DSM-IV-TR symptoms. However, DSM-IV-TR items tended to be more predictive of diagnostic group membership than the non-DSM adult-specific items due to elevated control group item endorsement. Conclusions Implications for the assessment and treatment of ADHD in young adults are discussed (i.e., collecting informant reports, lowering the diagnostic threshold, emphasizing impairment, and cautiously interpreting retrospective reports). PMID:22774792

  13. Successful Heliophysical Programs Emphasizing the Relation of Earth and the Sun

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Reiff, P.; Sumners, C.; McKay, G. A.

    2007-05-01

    Heliophysical is defined as the interconnectedness of the entire solar-heliospheric-planetary system. Our goals are to introduce easily accessible programs that introduce the Sun and other solar system processes to the public. The programs emphasize the impact of these processes on Earth and its inhabitants over geological time. These types of programs are important as these topics as generally taught as a secondary concept rather than an integrated approach. Space Weather is an excellent mechanism for integrating Earth and space science. Heliophysics, which includes Space Weather, is traditionally part of space science studies, but most students do not understand the effect of the Sun's atmosphere on Earth or the intense effects energetic particles can have on humans, whether traveling through space or exploring the surfaces of the Moon or Mars. Effects are not only limited to space travel and other planetary surfaces but also include effects on Earth's magnetosphere which, in turn, affect radio transmission, GPS accuracy, and on occasion spacecraft loss and terrestrial power outages. Meteoritic impacts are another topic. Impacts on planetary bodies without strong plate tectonic activities provide ample evidence of their occurrence over geological time. As an analog, impacts have also had an extensive record on Earth, but plate tectonics have been responsible for obliterating most of the evidence. We have developed effective and engaging venues for teaching heliophysics, via the internet, CD-Rom's, museum kiosks, and planetarium shows. We have organized workshops for teachers; "NASA Days" and "Sally Ride Festivals" for students, and "Sun-Earth Day" events for the public. Our goals are both to increase k-16 and public literacy on heliophysical processes and to inspire the next generation to enhance the workforce. We will be offering examples of these programs, as well as distributing CD's and DVD's of some of the creative works.

  14. Crisis-transitions in athletes: current emphases on cognitive and contextual factors.

    PubMed

    Stambulova, Natalia B

    2017-08-01

    During the last decade, the field of athlete career research has seen much expansion. Researchers established the holistic lifespan and ecological approaches, introduced cultural praxis of athletes' careers paradigm, and updated the taxonomy of athletes' transitions. However, recent transition research focused mainly on the transition process and factors contributing to successful transitions, while crisis-transitions and factors contributing to ineffective coping have been largely ignored. The aim of this paper is to facilitate relevant research and practice through (1) positioning athletes' developmental crises within the context of the current transition literature, (2) introducing two new approaches (termed 'cognitive turn' and 'cultural turn') with a potential to enhance our understanding of the phenomenon, and (3) outlining crisis-coping interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Way of Life as Emphasizing Factors in the Progression of Idiophatic Scoliosis in Adolescence Era

    PubMed Central

    Muminagic, Sahib; Bisanovic, Senaida; Mehic, Sanra; Sivic, Suad

    2012-01-01

    Introduction: Idiopathic scoliosis is a significant health problem which occurs in 2%–4% school kids in adolescent age. Reasons of occurrence are not quite clear, there are many theories, but probably it is multifactor disease. Among the theories that are mentioned some of them included environmental and behavioral factors. Aim: Research the impact of some environmental and behavioral factor on development and progression of idiopathic scoliosis in school kids. Methodology: Research was conducted on 421 pupil in adolescent age, where 120 pupils was from urban schools and 301 pupil from rural schools. Environmental factors and habits like the bigger osteomuscular structure mobility at kids from rural schools, longer outdoor time spending, different nutrition, alcoholism and smoking, different obligations, etc. factors which can be cause of scoliosis development. Results: In this research we assumed that different environmental and behavioral factors of school kids, which exist in rural and urban areas, can develop to different expression of scoliosis in these areas. In our research we proved that the scoliosis occurrence is more often in urban areas than in rural (Fisher’s exact test P<0.001). Conclusion: It is necessary to research all factors of lifestyle individually, which are different between the urban and rural kids. PMID:23678322

  16. Differential and functional interactions emphasize the multiple roles of polyamines in plants

    USDA-ARS?s Scientific Manuscript database

    Biogenic amines putrescine, spermidine and spermine are ubiquitous in nature and have interested researchers because they are essential for cell division and viability, and due to a large body of their pharmacological effects on growth and development in most living cells. The genes and enzymes invo...

  17. Sources of Principals' Leadership Practices and Areas Training Should Emphasize: Case Finland

    ERIC Educational Resources Information Center

    Shantal, Kakon Montua Ajua; Halttunen, Leena; Pekka, Kanervio

    2014-01-01

    Quality educational leadership preparation has positive influences on practices of graduates. In the Finnish decentralized education system, little is yet known about the sources of principals' practices. This research explores the sources of principals' self-assessed leadership practices in Central Finland and identifies areas for more emphasis.…

  18. Council Adopts New AERA Code of Ethics: Ethics Committee to Emphasize Ethics Education

    ERIC Educational Resources Information Center

    Herrington, Carolyn D.

    2011-01-01

    At its February 2011 meeting, the AERA Council adopted unanimously a new Code of Ethics. The Code articulates a set of standards for education researchers in education and provides principles and guidance by which they can build ethical practices in professional, scholarly, and scientific activities. The Code reflects the Association's strong…

  19. Council Adopts New AERA Code of Ethics: Ethics Committee to Emphasize Ethics Education

    ERIC Educational Resources Information Center

    Herrington, Carolyn D.

    2011-01-01

    At its February 2011 meeting, the AERA Council adopted unanimously a new Code of Ethics. The Code articulates a set of standards for education researchers in education and provides principles and guidance by which they can build ethical practices in professional, scholarly, and scientific activities. The Code reflects the Association's strong…

  20. Treatment of distal iliotibial band syndrome in a long distance runner with gait re-training emphasizing step rate manipulation.

    PubMed

    Allen, Darrell J

    2014-04-01

    Iliotibial band syndrome (ITBS) is a common injury associated with long distance running. Researchers have previously described biomechanical factors associated with ITBS. The purpose of this case report is to present the treatment outcomes in a runner with distal ITBS utilizing running gait re-training to increase step rate above the runner's preferred or self-chosen step rate. The subject was a 36 year old female runner with a diagnosis of left knee ITBS, whose pain prevented her from running greater than three miles for three months. Treadmill video analysis of running form was utilized to determine that the subject had an excessive stride length, strong heel strike, decreased knee flexion angle at initial foot contact, and excessive vertical displacement. Cadence was 168 steps/minute at a preferred running pace of 6.5 mph. Treatment emphasized gait re-training to increase cadence above preferred. Treatment also included iliotibial band flexibility and multi-plane eccentric lower extremity strengthening. The subject reported running pain free within 6 weeks of the intervention with a maximum running distance of 7 miles and 10-15 miles/week progressing to half marathon distance and 20-25 miles/week at 4 month follow up. Step rate increased 5% to 176 steps/minute and was maintained at both the 6 week and 4 month follow up. 5K run pace improved from 8:45 to 8:20 minutes/Km. LEFS score improved from 71/80 to 80/80 at 4 month follow up. This case demonstrated that a 5% increased step rate above preferred along with a home exercise program for hip strengthening and iliotibial band stretching, improved running mechanics and reduced knee pain in a distance runner. 4-single case report.

  1. Changing emphases in public health and medical education in health care reform.

    PubMed

    Patrick, Walter K; Cadman, Edwin C

    2002-01-01

    Globalisation of economies, diseases and disasters with poverty, emerging infectious diseases, ageing and chronic conditions, violence and terrorism has begun to change the face of public health and medical education. Escalating costs of care and increasing poverty have brought urgency to professional training to improve efficiency, cut costs and maintain gains in life expectancy and morbidity reduction. Technology, genetics research and designer drugs have dramatically changed medical practice. Creatively, educational institutions have adopted the use of: (1) New educational and communication technologies: internet and health informatics; (2) Problem based learning approaches; Integrated Practice and Theory Curricula; Research and Problem Solving methodologies and (3) Partnership and networking of institutions to synergise new trends (e.g. core competencies). Less desirably, changes are inadequate in key areas, e.g., Health Economics, Poverty and Health Development, Disaster Management & Bioterrorism and Ethics. Institutions have begun to adjust and develop new programs of study to meet challenges of emerging diseases, design methodologies to better understand complex social and economic determinants of disease, assess the effects of violence and address cost containment strategies in health. Besides redesigning instruction, professional schools need to conduct research to assess the impact of health reform. Such studies will serve as sentinels for the public's health, and provide key indicators for improvements in training, service provision and policy.

  2. Emphasizing Malleability in the biology of depression: Durable effects on perceived agency and prognostic pessimism.

    PubMed

    Lebowitz, Matthew S; Ahn, Woo-kyoung

    2015-08-01

    Biological attributions for depression, which are currently ascendant, can lead to prognostic pessimism-the perception that symptoms are relatively immutable and unlikely to abate (Kvaale, Haslam, & Gottdiener, 2013; Lebowitz, Ahn, & Nolen-Hoeksema, 2013). Among symptomatic individuals, this may have important clinical ramifications, as reduced confidence in one's own ability to overcome depression carries the risk of becoming a self-fulfilling prophecy. Previous research (Lebowitz, Ahn, et al., 2013) has demonstrated that educational interventions teaching symptomatic individuals about how the effects of genetic and neurobiological factors involved in depression are malleable and can be modified by experiences and environmental factors can reduce prognostic pessimism. While previous research demonstrated such effects only in the immediate term, the present research extends these findings by testing whether such benefits persist six weeks after the intervention. Indeed, among individuals who initially considered biological factors to play a major role in influencing their levels of depression, exposure to malleability-focused psychoeducation reduced levels of depression-related prognostic pessimism and stronger belief in their ability to regulate their moods. Critically, this benefit persisted six weeks after the intervention. Clinical implications of the findings are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. [Environmental health policies emphasizing air pollution and childhood in Colombian cities].

    PubMed

    García-Ubaque, Cesar A; García-Ubaque, Juan C; Vaca-Bohórquez, Martha L

    2012-06-01

    Responding to an initiative advanced by the National Economic and Social Policy Council (CONPES, 3344/2005), this article presents the results of a research project concerned with environmental health in Colombian cities emphasising air pollution. The project was carried out between 2008 and 2009 for the Colombian Ministry of the Environment, Housing and Territorial Development using strategic environmental assessment (SEA) methodology contained in the complementary and decision-centred approach known as analytical strategic environmental assessment (ANSEA), relying on expert participation in different areas. Five key issues were identified to base such policy on: urban planning, mobility and transport, industry and services, energy sources and risk management. Each theme was diagnosed regarding its current state from experts' knowledge and official information. Such diagnosis led to a series of actions or interventions to be implemented at different levels by the state entities involved. Complementary recommendations were made for decision-making relating to the suggested interventions. Methodological guidelines were proposed for research into economic variables and the pertinent epidemiological surveillance.

  4. [Emphasizing the technological specification of glaucoma examination to promote mutual recognition to the results].

    PubMed

    Wang, Ningli

    2014-05-01

    It is very important for us to establish the technological specifications in medical field. Many problems will appear if we neglect them, which include difficulty in approving the results of examination with each other, waste of medical resources and increase of patients' time and expense, lack of guarantee for medical quality and safety and insupportable for further study with collecting medical data, etc. Although many technical operations were included in glaucoma field, unified technical specification was still deficiency in our country, which will have some certain influence on the clinical and research work. Only increasing the understanding of importance of technological specifications and establishing the applications of glaucoma's technical specifications, our whole level of glaucoma diagnosis and treatment will be raised in the whole country.

  5. Effects of metal cations present naturally in coal on the fate of coal-bound nitrogen in the fixed-bed pyrolysis of 25 coals with different ranks: correlation between inherent Fe cations and N{sub 2} formation from low-rank coals

    SciTech Connect

    Yasuo Ohtsuka; Zhiheng Wu

    2009-09-15

    The fate of coal-N in the fixed-bed pyrolysis of 25 coals with 62-81 wt % (daf) C has been studied with a quartz reactor at 1000 C under ambient pressure to examine the effects of metal cations present naturally in these coals on the partitioning of coal-N into N{sub 2}, NH{sub 3}, HCN, tar-N, and char-N. Nitrogen mass balances for all runs fall within the reasonable range of 100 {+-} 5%, and N{sub 2} is the predominant product for all of the coals. As the N{sub 2} yield increases, the sum of NH{sub 3}, HCN, and tar-N is unchanged significantly, whereas the char-N yield decreases almost linearly, showing that most of N{sub 2} originates from char-N. When eight kinds of inherent metals, such as Na, Mg, Al, Si, K, Ca, Fe, and Ti, are determined by the conventional method and related with the N{sub 2} yield, there exists a strong, direct correlation between the Fe content and N{sub 2} formation for low-rank coals with less than 75 wt % (daf) C. Transmission electron microscopy coupled with an energy-dispersive analysis of X-rays (TEM-EDAX) measurements after pyrolysis at 1000{sup o}C of a German brown coal, which provides the highest N{sub 2} yield of about 60%, reveal the existence of lamella structures because of graphitized carbon as well as nanoscale Fe particles with different sizes and shapes. The mechanism for conversion reactions of char-N to N{sub 2} is discussed in terms of the catalysis by nanoparticles of metallic Fe formed from inherent Fe cations. 34 refs., 18 figs., 1 tab.

  6. Design and analysis of a Web-based guideline tutorial system that emphasizes clinical trial evidence.

    PubMed

    Bell, D S; Mangione, C M

    2000-01-01

    To describe a Web-based guideline tutorial system and evaluate its features. A Web-based tutorial system called SAGE (Self-study Acceleration with Graphic Evidence) was constructed to teach knowledge important for care after myocardial infarction. SAGE features a pretest, followed by an overview that coordinates studying resources for a set of learning objectives. Resources include pretest answers, guideline passages, and graphical presentations of clinical trial results. Data on the use of SAGE was obtained from 79 residents participating in a larger trial. Linear regression was used to correlate the amount learned with resource-use, and resource-use with user characteristics. On average, users accessed less than half of the guideline passages and very little of the graphic evidence. Greater use of guideline passages was correlated with greater immediate learning, but use of graphic evidence was not. Further research is needed to motivate more thorough self-study and to integrate clinical trial evidence with guideline-based education.

  7. Earthworms Dilong: Ancient, Inexpensive, Noncontroversial Models May Help Clarify Approaches to Integrated Medicine Emphasizing Neuroimmune Systems

    PubMed Central

    Cooper, Edwin L.; Balamurugan, Mariappan; Huang, Chih-Yang; Tsao, Clara R.; Heredia, Jesus; Tommaseo-Ponzetta, Mila; Paoletti, Maurizio G.

    2012-01-01

    Earthworms have provided ancient cultures with food and sources of medicinal cures. Ayurveda, traditional Chinese medicine (TCM), and practices in Japan, Vietnam, and Korea have focused first on earthworms as sources of food. Gradually fostering an approach to potential beneficial healing properties, there are renewed efforts through bioprospecting and evidence-based research to understand by means of rigorous investigations the mechanisms of action whether earthworms are used as food and/or as sources of potential medicinal products. Focusing on earthworms grew by serendipity from an extensive analysis of the earthworm's innate immune system. Their immune systems are replete with leukocytes and humoral products that exert credible health benefits. Their emerging functions with respect to evolution of innate immunity have long been superseded by their well-known ecological role in soil conservation. Earthworms as inexpensive, noncontroversial animal models (without ethical concerns) are not vectors of disease do not harbor parasites that threaten humans nor are they annoying pests. By recognizing their numerous ecological, environmental, and biomedical roles, substantiated by inexpensive and more comprehensive investigations, we will become more aware of their undiscovered beneficial properties. PMID:22888362

  8. Protecting multimedia data in storage: a survey of techniques emphasizing encryption

    NASA Astrophysics Data System (ADS)

    Stanton, Paul; Yurcik, William; Brumbaugh, Larry

    2004-12-01

    Protecting multimedia data from malicious computer users continues to grow in importance. Whether preventing unauthorized access to digital photographs, ensuring compliance with copyright regulations, or guaranteeing the integrity of a video teleconference, all multimedia applications require increased security in the presence of talented intruders. Specifically, as more and more files are preserved on disk the requirement to provide secure storage has become more important. This paper presents a survey of techniques for securely storing multimedia data, including theoretical approaches, prototype systems, and existing systems ready for employment. Due to the wide variety of potential solutions available, a prospective customer can easily become overwhelmed while researching an appropriate system for multimedia requirements. Since added security measures inevitably result in slower system performance, certain storage solutions provide a better fit for particular applications along a security/performance continuum. This paper provides an overview of the prominent characteristics of several systems to provide a foundation for selecting the most appropriate solution. Initially, the paper establishes a set of criteria for evaluating a storage solution based on confidentiality, integrity, availability, and performance. Then, using these criteria, the paper explains the relevant characteristics of select storage systems providing a comparison of the major differences. Finally, the paper examines specific applications of storage devices in the multimedia environment.

  9. Protecting multimedia data in storage: a survey of techniques emphasizing encryption

    NASA Astrophysics Data System (ADS)

    Stanton, Paul; Yurcik, William; Brumbaugh, Larry

    2005-01-01

    Protecting multimedia data from malicious computer users continues to grow in importance. Whether preventing unauthorized access to digital photographs, ensuring compliance with copyright regulations, or guaranteeing the integrity of a video teleconference, all multimedia applications require increased security in the presence of talented intruders. Specifically, as more and more files are preserved on disk the requirement to provide secure storage has become more important. This paper presents a survey of techniques for securely storing multimedia data, including theoretical approaches, prototype systems, and existing systems ready for employment. Due to the wide variety of potential solutions available, a prospective customer can easily become overwhelmed while researching an appropriate system for multimedia requirements. Since added security measures inevitably result in slower system performance, certain storage solutions provide a better fit for particular applications along a security/performance continuum. This paper provides an overview of the prominent characteristics of several systems to provide a foundation for selecting the most appropriate solution. Initially, the paper establishes a set of criteria for evaluating a storage solution based on confidentiality, integrity, availability, and performance. Then, using these criteria, the paper explains the relevant characteristics of select storage systems providing a comparison of the major differences. Finally, the paper examines specific applications of storage devices in the multimedia environment.

  10. Feasibility of an earth-to-space rail launcher system. [emphasizing nuclear waste disposal application

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Miller, L. A.; Marshall, R. A.; Kerslake, W. R.

    1982-01-01

    The feasibility of earth-to-space electromagnetic (railgun) launchers (ESRL) is considered, in order to determine their technical practicality and economic viability. The potential applications of the launcher include nuclear waste disposal into space, deep space probe launches, and atmospheric research. Examples of performance requirements of the ESRL system are a maximum acceleration of 10,000 g's for nuclear waste disposal in space (NWDS) missions and 2,500 g's for earth orbital missions, a 20 km/sec launch velocity for NWDS missions, and a launch azimuth of 90 degrees E. A brief configuration description is given, and test results indicate that for the 2020-2050 time period, as much as 3.0 MT per day of bulk material could be launched, and about 0.5 MT per day of high-level nuclear waste could be launched. For earth orbital missions, a significant projectile mass was approximately 6.5 MT, and an integral distributed energy store launch system demonstrated a good potential performance. ESRL prove to be economically and environmentally feasible, but an operational ESRL of the proposed size is not considered achievable before the year 2020.

  11. Local Television News Coverage of the Affordable Care Act: Emphasizing Politics Over Consumer Information.

    PubMed

    Gollust, Sarah E; Baum, Laura M; Niederdeppe, Jeff; Barry, Colleen L; Fowler, Erika Franklin

    2017-05-01

    To examine the public health and policy-relevant messages conveyed through local television news during the first stage of Affordable Care Act (ACA) implementation, when about 10 million Americans gained insurance. We conducted a content analysis of 1569 ACA-related local evening television news stories, obtained from sampling local news aired between October 1, 2013, and April 19, 2014. Coders systematically collected data using a coding instrument tracking major messages and information sources cited in the news. Overall, only half of all ACA-related news coverage focused on health insurance products, whereas the remainder discussed political disagreements over the law. Major policy tools of the ACA-the Medicaid expansion and subsidies available-were cited in less than 10% of news stories. Number of enrollees (27%) and Web site glitches (33%) were more common features of coverage. Sources with a political affiliation were by far the most common source of information (> 40%), whereas research was cited in less than 4% of stories. The most common source of news for Americans provided little public health-relevant substance about the ACA during its early implementation, favoring political strategy in coverage.

  12. Feasibility of an earth-to-space rail launcher system. [emphasizing nuclear waste disposal application

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Miller, L. A.; Marshall, R. A.; Kerslake, W. R.

    1982-01-01

    The feasibility of earth-to-space electromagnetic (railgun) launchers (ESRL) is considered, in order to determine their technical practicality and economic viability. The potential applications of the launcher include nuclear waste disposal into space, deep space probe launches, and atmospheric research. Examples of performance requirements of the ESRL system are a maximum acceleration of 10,000 g's for nuclear waste disposal in space (NWDS) missions and 2,500 g's for earth orbital missions, a 20 km/sec launch velocity for NWDS missions, and a launch azimuth of 90 degrees E. A brief configuration description is given, and test results indicate that for the 2020-2050 time period, as much as 3.0 MT per day of bulk material could be launched, and about 0.5 MT per day of high-level nuclear waste could be launched. For earth orbital missions, a significant projectile mass was approximately 6.5 MT, and an integral distributed energy store launch system demonstrated a good potential performance. ESRL prove to be economically and environmentally feasible, but an operational ESRL of the proposed size is not considered achievable before the year 2020.

  13. Faculty Emphases on Alternative Course-Specific Learning Outcomes in Holland's Model Environments: The Role of Environmental Consistency

    ERIC Educational Resources Information Center

    Smart, John C.; Ethington, Corinna A.; Umbach, Paul D.; Rocconi, Louis M.

    2009-01-01

    This study examines variability in the extent to which faculty members in the disciplinary-based academic environments of Holland's theory emphasize different student learning outcomes in their classes and whether such differences are comparable for those in "consistent" versus "inconsistent" environments. The findings show wide variation in the…

  14. Effects of Messages Emphasizing Environmental Determinants of Obesity on Intentions to Engage in Diet and Exercise Behaviors

    PubMed Central

    Roh, Sungjong; Shapiro, Michael A.; Kim, Hye Kyung

    2013-01-01

    Introduction Reducing rates of obesity will require interventions that influence both individual decisions and environmental factors through changes in public policy. Previous work indicates that messages emphasizing environmental determinants increases support for public policies, but some suspect this strategy may undermine motivation to engage in diet and exercise. Methods Study 1 involved 485 adults recruited from a shopping mall in New York. Study 2 involved 718 adult members of a Web-based national panel of US adults. Respondents in both studies were randomly assigned to read a story that emphasized environmental determinants of health or a control condition. The stories varied in the extent to which they described the story character as taking personal responsibility for weight management. Logistic regression and ordered logit models were used to test for differences in intentions to engage in diet and exercise behaviors based on which story the participant read. Analyses were also performed separately by participants’ weight status. Results In both studies, messages that acknowledged personal responsibility while emphasizing environmental causes of obesity increased intentions to engage in healthy behavior for at least 1 weight status group. Conclusion Emphasizing factors outside of personal control appears to enhance rather than undermine motivations to engage in healthy diet and exercise behavior. PMID:24331282

  15. An investigation of MAGSAT and complementary data emphasizing precambrian shields and adjacent areas of West Africa and South America

    NASA Technical Reports Server (NTRS)

    Hastings, D. A. (Principal Investigator)

    1982-01-01

    Both MAGSAT data and preliminary results emphasizing Africa, Latin America, and the Caribbean were presented to geologists in Jamaica, Guyana, Brazil, and Argentina. Preliminary interpretations were discussed. A synopsis tectonic map of South America was completed. Semi-final modeling of northern South America was initiated.

  16. Effects of messages emphasizing environmental determinants of obesity on intentions to engage in diet and exercise behaviors.

    PubMed

    Niederdeppe, Jeff; Roh, Sungjong; Shapiro, Michael A; Kim, Hye Kyung

    2013-12-12

    Reducing rates of obesity will require interventions that influence both individual decisions and environmental factors through changes in public policy. Previous work indicates that messages emphasizing environmental determinants increases support for public policies, but some suspect this strategy may undermine motivation to engage in diet and exercise. Study 1 involved 485 adults recruited from a shopping mall in New York. Study 2 involved 718 adult members of a Web-based national panel of US adults. Respondents in both studies were randomly assigned to read a story that emphasized environmental determinants of health or a control condition. The stories varied in the extent to which they described the story character as taking personal responsibility for weight management. Logistic regression and ordered logit models were used to test for differences in intentions to engage in diet and exercise behaviors based on which story the participant read. Analyses were also performed separately by participants' weight status. In both studies, messages that acknowledged personal responsibility while emphasizing environmental causes of obesity increased intentions to engage in healthy behavior for at least 1 weight status group. Emphasizing factors outside of personal control appears to enhance rather than undermine motivations to engage in healthy diet and exercise behavior.

  17. Faculty Emphases on Alternative Course-Specific Learning Outcomes in Holland's Model Environments: The Role of Environmental Consistency

    ERIC Educational Resources Information Center

    Smart, John C.; Ethington, Corinna A.; Umbach, Paul D.; Rocconi, Louis M.

    2009-01-01

    This study examines variability in the extent to which faculty members in the disciplinary-based academic environments of Holland's theory emphasize different student learning outcomes in their classes and whether such differences are comparable for those in "consistent" versus "inconsistent" environments. The findings show wide variation in the…

  18. Assessing medical students' communication skills by the use of standardized patients: emphasizing standardized patients' quality assurance.

    PubMed

    Shirazi, M; Labaf, A; Monjazebi, F; Jalili, M; Mirzazadeh, M; Ponzer, S; Masiello, I

    2014-06-01

    The objective structured examination is one of the most valid, reliable, and effective tools for assessing clinical and communication skills, often by use of standard patients (SPs). SPs can also be assessors of those skills. One of the crucial areas when utilizing SP-based assessment is the quality and consistency assurance of their portrayal of the case and their ability to fill in checklists in an adequate way. The aim of this study was to assess the validity and reliability of SPs' ability to assess students' communication skill via a Calgary-Cambridge checklist. This cross-sectional and correlational study was conducted at the Tehran University of Medical Science. We first analyzed validity; the criterion validity of the SPs' filling in the checklists was assessed through determining the correlation between the SPs' completed checklists and the checklists filled in by three physician raters individually and then reproducibility: it was assessed by a test-retest approach inter-rater reliability. The mean correlation for assessing the validity of SPs' completed checklists by individual SPs was 0.81. The inter-rater reliability was calculated by kappa coefficient, and the total correlation among the three raters was 0.85. The reliability of the test-retest approach showed no significant differences between the test and re-test results. The increased number of medical students and different faculties' responsibilities such as doing educational, research, and health services duties assessing medical student communication skills is a complex issue. The results of our study showed that trained SPs can be used as a valid tool to assess medical students' communication skills, which is also more cost effective and reduces work load of medical faculties.

  19. Factors which influence Texas biology teachers' decisions to emphasize fundamental concepts of evolution

    NASA Astrophysics Data System (ADS)

    Bilica, Kimberly Lynn

    The teaching of biological evolution in public science classrooms has been mitigated by a lingering and historic climate of controversy (Skoog, 1984; Skoog, 1979). This controversy has successfully stalled attempts to bring authentic science literacy to the American public (Bybee, 1997). The first encouraging signs of the abatement of this controversy occurred during the early 1990s when several prominent science organizations promoted evolution to its appropriate status as a central and unifying concept in biology (National Science Teachers Association, 1992; National Research Council, 1996; American Association for the Advancement of Science, 1990, 1993). The organizations acknowledged that not only should biological evolution be taught, evolution should stand as one of a select group of essential concepts upon which biology curricula should be built. Bandura's Social Learning theory (Bandura, 1997; Lumpe, Haney, & Czerniak, 2000) and Helms' Model of Identity (Helms, 1998) provide the theoretical basis for this study. Both Bandura and Helms explain the actions of teachers by examining the beliefs and values that influence their decisions. The models distinguish between two types of belief systems: capacity beliefs and context beliefs (Lumpe, et al, 2000; Helms, 1998). Both belief types influence and are influenced by individual actions. In this study, the action to be described is the decision that teachers make about the degree of emphasis on evolution in the classroom. The capacity beliefs that will be examined are teachers' beliefs about their capability to teach evolution. The contextual beliefs in this study are perceptions about students' capabilities to learn evolution, the status of evolution in science, the place of evolution in the biology classroom, the influence of textbooks, time, and community/school values. This study contributes to and extends the knowledge base established by studies of evolution education by exploring the relative amount of

  20. Single-Word Recognition Need Not Depend on Single-Word Features: Narrative Coherence Counteracts Effects of Single-Word Features that Lexical Decision Emphasizes.

    PubMed

    Teng, Dan W; Wallot, Sebastian; Kelty-Stephen, Damian G

    2016-12-01

    Research on reading comprehension of connected text emphasizes reliance on single-word features that organize a stable, mental lexicon of words and that speed or slow the recognition of each new word. However, the time needed to recognize a word might not actually be as fixed as previous research indicates, and the stability of the mental lexicon may change with task demands. The present study explores the effects of narrative coherence in self-paced story reading to single-word feature effects in lexical decision. We presented single strings of letters to 24 participants, in both lexical decision and self-paced story reading. Both tasks included the same words composing a set of adjective-noun pairs. Reading times revealed that the tasks, and the order of the presentation of the tasks, changed and/or eliminated familiar effects of single-word features. Specifically, experiencing the lexical-decision task first gradually emphasized the role of single-word features, and experiencing the self-paced story-reading task afterwards counteracted the effect of single-word features. We discuss the implications that task-dependence and narrative coherence might have for the organization of the mental lexicon. Future work will need to consider what architectures suit the apparent flexibility with which task can accentuate or diminish effects of single-word features.

  1. Computational techniques for aerodynamic simulations of multiple objects emphasizing paratrooper-aircraft separation

    NASA Astrophysics Data System (ADS)

    Udoewa, Victor

    Our target is to develop computational techniques for studying aerodynamic interactions between multiple objects with emphasis on studying the fluid mechanics and dynamics of an object exiting and separating from an aircraft. The object could be a paratrooper jumping out of a transport aircraft or a package of emergency aid dropped from a cargo plane. These are applications with major practical significance, and what I learn and what I develop can make a major impact on this technology area. In all these cases, the computational challenge is to predict the dynamic behavior and path of the object, so that the separation process is safe and effective. This is a very complex problem because it has an unsteady, three-dimensional nature and requires the solution of complex equations that govern the fluid dynamics of the object and the aircraft together, with their relative positions changing in time. The gravitational and aerodynamic forces acting on the object determine its dynamics and path. Sometimes those aerodynamic forces are not properly computed due to excessively thick numerical boundary layers (numerical meaning unphysical and unreal). Methods for reducing this thickness are presented here. The aerodynamic forces heavily depend on the unsteady flow field around the aircraft. The computational tools I am developing are based on the simultaneous solution of the time-dependent Navier-Stokes equations governing the airflow around the aircraft and the separating object, as well as the equations governing the motion of that object. These computational methods include suitable mesh update techniques that are essential for simulations with my core computational technique---the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) formulation. In the research I present here, I focus on developing mesh update methods that help me perform my computations with more numerical accuracy and better computational efficiency. These methods range from remeshing tactics with

  2. Methods for DNA barcoding photosynthetic protists emphasizing the macroalgae and diatoms.

    PubMed

    Saunders, Gary W; McDevit, Daniel C

    2012-01-01

    This chapter outlines the current practices used in our laboratory for routine DNA barcode analyses of the three major marine macroalgal groups, viz., brown (Phaeophyceae), red (Rhodophyta), and green (Chlorophyta) algae, as well as for the microscopic diatoms (Bacillariophyta). We start with an outline of current streamlined field protocols, which facilitate the collection of substantial (hundreds to thousands) specimens during short (days to weeks) field excursions. We present the current high-throughput DNA extraction protocols, which can, nonetheless, be easily modified for manual molecular laboratory use. We are advocating a two-marker approach for the DNA barcoding of protists with each major lineage having a designated primary and secondary barcode marker of which one is always the LSU D2/D3 (divergent domains D2/D3 of the nuclear ribosomal large subunit DNA). We provide a listing of the primers that we currently use in our laboratory for amplification of DNA barcode markers from the groups that we study: LSU D2/D3, which we advocate as a eukaryote-wide barcode marker to facilitate broad ecological and environmental surveys (secondary barcode marker in this capacity); COI-5P (the standard DNA barcode region of the mitochondrial cytochrome c oxidase 1 gene) as the primary barcode marker for brown and red algae; rbcL-3P (the 3' region of the plastid large subunit of ribulose-l-5-bisphosphate carboxylase/oxygenase) as the primary barcode marker for diatoms; and tufA (plastid elongation factor Tu gene) as the primary barcode marker for chlorophytan green algae. We outline our polymerase chain reaction and DNA sequencing methodologies, which have been streamlined for efficiency and to reduce unnecessary cleaning steps. The combined information should provide a helpful guide to those seeking to complete barcode research on these and related "protistan" groups (the term protist is not used in a phylogenetic context; it is simply a catch-all term for the bulk of

  3. Improving corrosion resistance of post-tensioned substructures emphasizing high performance grouts

    NASA Astrophysics Data System (ADS)

    Schokker, Andrea Jeanne

    The use of post-tensioning in bridges can provide durability and structural benefits to the system while expediting the construction process. When post-tensioning is combined with precast elements, traffic interference can be greatly reduced through rapid construction. Post-tensioned concrete substructure elements such as bridge piers, hammerhead bents, and straddle bents have become more prevalent in recent years. Chloride induced corrosion of steel in concrete is one of the most costly forms of corrosion each year. Coastal substructure elements are exposed to seawater by immersion or spray, and inland bridges may also be at risk due to the application of deicing salts. Corrosion protection of the post-tensioning system is vital to the integrity of the structure because loss of post-tensioning can result in catastrophic failure. Documentation for durability design of the grout, ducts, and anchorage systems is very limited. The objective of this research is to evaluate the effectiveness of corrosion protection measures for post-tensioned concrete substructures by designing and testing specimens representative of typical substructure elements using state-of-the-art practices in aggressive chloride exposure environments. This was accomplished through exposure testing of twenty-seven large-scale beam specimens and ten large-scale column specimens. High performance grout for post-tensioning tendon injection was also developed through a series of fresh property tests, accelerated exposure tests, and a large-scale pumping test to simulate field conditions. A high performance fly ash grout was developed for applications with small vertical rises, and a high performance anti-bleed grout was developed for applications involving large vertical rises such as tall bridge piers. Long-term exposure testing of the beam and column specimens is ongoing, but preliminary findings indicate increased corrosion protection with increasing levels of post-tensioning, although traditional

  4. An investigation of MAGSAT and complementary data emphasizing precambrian shields and adjacent areas of West Africa and South America

    NASA Technical Reports Server (NTRS)

    Hastings, D. A. (Principal Investigator)

    1982-01-01

    Some MAGSAT data and preliminary results emphasizing Africa, Latin America, and the Caribbean were presented to geologists in Jamaica, Guyana, Brazil, and Argentina who then expressed interest in collaborating on linking computer modeling of MAGSAT data to tectionic and metallogenic interpretation for South America and in making the final interpretation. Modeling continues with the preparation of a synopsis tectonic map of South America and the initiation of semi-final modeling of northern South America.

  5. An inverse methodology for high-frequency RF coil design for MRI with de-emphasized B1 fields.

    PubMed

    Xu, Bin; Wei, Qing; Liu, Feng; Crozier, Stuart

    2005-09-01

    An inverse methodology for the design of biologically loaded radio-frequency (RF) coils for magnetic resonance imaging applications is described. Free space time-harmonic electromagnetic Green's functions and de-emphasized B1 target fields are used to calculate the current density on the coil cylinder. In theory, with the B1 field de-emphasized in the middle of the RF transverse plane, the calculated current distribution can generate an internal magnetic field that can reduce the central overemphasis effect caused by field/tissue interactions at high frequencies. The current distribution of a head coil operating at 4 T (170 MHz) is calculated using an inverse methodology with de-emphasized B1 target fields. An in-house finite-difference time-domain routine is employed to evaluate B1 field and signal intensity inside a homogenous cylindrical phantom and then a complete human head model. A comparison with a conventional RF birdcage coil is carried out and demonstrates that this method can help in decreasing the normal bright region caused by field/tissue interactions in head images at 170 MHz and higher field strengths.

  6. Implementation of a project-based molecular biology laboratory emphasizing protein structure-function relationships in a large introductory biology laboratory course.

    PubMed

    Treacy, Daniel J; Sankaran, Saumya M; Gordon-Messer, Susannah; Saly, Danielle; Miller, Rebecca; Isaac, Stefan R; Kosinski-Collins, Melissa S

    2011-01-01

    In introductory laboratory courses, many universities are turning from traditional laboratories with predictable outcomes to inquiry-inspired, project-based laboratory curricula. In these labs, students are allowed to design at least some portion of their own experiment and interpret new, undiscovered data. We have redesigned the introductory biology laboratory course at Brandeis University into a semester-long project-based laboratory that emphasizes concepts and contains an element of scientific inquiry. In this laboratory, students perform a site-directed mutagenesis experiment on the gene encoding human γD crystallin, a human eye lens protein implicated in cataracts, and assess the stability of their newly created protein with respect to wild-type crystallin. This laboratory utilizes basic techniques in molecular biology to emphasize the importance of connections between DNA and protein. This project lab has helped engage students in their own learning, has improved students' skills in critical thinking and analysis, and has promoted interest in basic research in biology.

  7. Male human papillomavirus vaccine acceptance is enhanced by a brief intervention that emphasizes both male-specific vaccine benefits and altruistic motives.

    PubMed

    Bonafide, Katherine E; Vanable, Peter A

    2015-02-01

    Although female human papillomavirus (HPV) vaccine acceptance has been widely studied, research on vaccine uptake among boys and men is needed. Male HPV vaccination can provide both individual and community-level benefit by offering recipients personal health protection while concurrently minimizing HPV transmission and ultimately providing female health protection. As such, male vaccine acceptance may be enhanced by emphasizing both altruistic motives (female health protection) and personal health benefits. A university-based sample of young men completed computer-administered surveys and viewed informational interventions that varied in the inclusion or exclusion of altruistic motives and in the level of emphasis on male-specific HPV-related illnesses and vaccine benefits. Human papillomavirus vaccine acceptance was assessed immediately after intervention. Participants who received the intervention emphasizing both altruistic motives and male-specific information endorsed the greatest vaccine acceptance (mean [SD], 3.6 [1.0]). Provider and community-level interventions highlighting both altruistic motives and personal health vaccine benefits may enhance HPV vaccine uptake among young men.

  8. Experiences in teaching of modeling and simulation with emphasize on equation-based and acausal modeling techniques.

    PubMed

    Kulhánek, Tomáš; Ježek, Filip; Mateják, Marek; Šilar, Jan; Kofránek, Jří

    2015-08-01

    This work introduces experiences of teaching modeling and simulation for graduate students in the field of biomedical engineering. We emphasize the acausal and object-oriented modeling technique and we have moved from teaching block-oriented tool MATLAB Simulink to acausal and object oriented Modelica language, which can express the structure of the system rather than a process of computation. However, block-oriented approach is allowed in Modelica language too and students have tendency to express the process of computation. Usage of the exemplar acausal domains and approach allows students to understand the modeled problems much deeper. The causality of the computation is derived automatically by the simulation tool.

  9. Clinical Management of Patients with ASXL1 Mutations and Bohring-Opitz Syndrome, Emphasizing the Need for Wilms Tumor Surveillance

    PubMed Central

    Russell, Bianca; Johnston, Jennifer J; Biesecker, Leslie G.; Kramer, Nancy; Pickart, Angela; Rhead, William; Tan, Wen-Hann; Brownstein, Catherine A; Clarkson, L Kate; Dobson, Amy; Rosenberg, Avi Z; Schrier Vergano, Samantha A.; Helm, Benjamin M.; Harrison, Rachel E; Graham, John M

    2016-01-01

    Bohring-Opitz syndrome is a rare genetic condition characterized by distinctive facial features, variable microcephaly, hypertrichosis, nevus flammeus, severe myopia, unusual posture (flexion at the elbows with ulnar deviation, and flexion of the wrists and metacarpophalangeal joints), severe intellectual disability, and feeding issues. Nine patients with Bohring-Opitz syndrome have been identified as having a mutation in ASXL1. We report on eight previously unpublished patients with Bohring-Opitz syndrome caused by an apparent or confirmed de novo mutation in ASXL1. Of note, two patients developed bilateral Wilms tumors. Somatic mutations in ASXL1 are associated with myeloid malignancies, and these reports emphasize the need for Wilms tumor screening in patients with ASXL1 mutations. We discuss clinical management with a focus on their feeding issues, cyclic vomiting, respiratory infections, insomnia, and tumor predisposition. Many patients are noted to have distinctive personalities (interactive, happy, and curious) and rapid hair growth; features not previously reported. PMID:25921057

  10. Effects of altered offshore food webs on coastal ecosystems emphasize the need for cross-ecosystem management.

    PubMed

    Eriksson, Britas Klemens; Sieben, Katrin; Eklöf, Johan; Ljunggren, Lars; Olsson, Jens; Casini, Michele; Bergström, Ulf

    2011-11-01

    By mainly targeting larger predatory fish, commercial fisheries have indirectly promoted rapid increases in densities of their prey; smaller predatory fish like sprat, stickleback and gobies. This process, known as mesopredator release, has effectively transformed many marine offshore basins into mesopredator-dominated ecosystems. In this article, we discuss recent indications of trophic cascades on the Atlantic and Baltic coasts of Sweden, where increased abundances of mesopredatory fish are linked to increased nearshore production and biomass of ephemeral algae. Based on synthesis of monitoring data, we suggest that offshore exploitation of larger predatory fish has contributed to the increase in mesopredator fish also along the coasts, with indirect negative effects on important benthic habitats and coastal water quality. The results emphasize the need to rebuild offshore and coastal populations of larger predatory fish to levels where they regain their control over lower trophic levels and important links between offshore and coastal systems are restored.

  11. The Effect of Emphasizing Mathematical Structure in the Acquisition of Whole Number Computation Skills (Addition and Subtraction) By Seven- and Eight-Year Olds: A Clinical Investigation.

    ERIC Educational Resources Information Center

    Uprichard, A. Edward; Collura, Carolyn

    This investigation sought to determine the effect of emphasizing mathematical structure in the acquisition of computational skills by seven- and eight-year-olds. The meaningful development-of-structure approach emphasized closure, commutativity, associativity, and the identity element of addition; the inverse relationship between addition and…

  12. Emphasizing appearance versus health outcomes in exercise: the influence of the instructor and participants' reasons for exercise.

    PubMed

    O'Hara, Shannon E; Cox, Anne E; Amorose, Anthony J

    2014-03-01

    The objectifying nature of exercise environments may prevent women from reaping psychological benefits of exercise. The present experiment manipulated self-objectification through an exercise class taught by an instructor who emphasized exercise as either a means of acquiring appearance or health outcomes. The purpose of this study was to test for interactions between the class emphasis and participants' reasons for exercise (i.e., appearance, health) predicting participants' state self-objectification, state social physique anxiety, exercise class enjoyment, and future intentions of returning to a similar exercise class. Results, obtained via pre- and post-exercise questionnaires, revealed a significant interaction between class emphasis and health reasons for exercise predicting state self-objectification. Participants with lower health reasons for exercise reported greater state self-objectification in the appearance-focused class compared to those with higher health reasons for exercise. Adopting stronger health reasons for exercise may buffer exercise participants from the more objectifying aspects of the group exercise environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. New family of allomorphic jellyfishes, Drymonematidae (Scyphozoa, Discomedusae), emphasizes evolution in the functional morphology and trophic ecology of gelatinous zooplankton.

    PubMed

    Bayha, Keith M; Dawson, Michael N

    2010-12-01

    Molecular analyses have revealed many cryptic species in the oceans, often permitting small morphological differences to be recognized as diagnosing species, but less commonly leading to consideration of cryptic ecology. Here, based on analyses of three nuclear DNA sequence markers (ribosomal 18S, 28S, and internal transcribed spacer 1 [ITS1]), two mitochondrial DNA markers (cytochrome c oxidase subunit I [COI] and ribosomal 16S), and 55 morphological features, we revise the classification of the enigmatic jellyfish genus Drymonema. We describe a new scyphozoan family, Drymonematidae, elevating the previous subfamily Drymonemidae to accommodate three species: the type species D. dalmatinum from the Mediterranean region, for which we identify a neotype; the western South Atlantic species D. gorgo; and a new species, D. larsoni from the western Atlantic and Caribbean, which also is described here. This revision emphasizes the remarkable morphological disparity of Drymonematidae from all other scyphomedusae, including allometric growth of the bell margin distal of the rhopalia, an annular zone of tentacles on the subumbrella, and ontogenetic loss of gastric filaments. Anatomical innovations are likely functionally related to predatory specialization on large gelatinous zooplankton, most notably the phylogenetically younger moon jellyfish Aurelia, indicating evolution of the feeding niche in Drymonematidae. This family-level revision contributes to the growing body of evidence that scyphomedusae are far more taxonomically rich, their biogeography is a more detailed mosaic, and their phenotypes are more nuanced than traditionally thought. Ecological and evolutionary responses to environmental change, past or future, are likely to be commensurately diverse.

  14. A single session of open kinetic chain movements emphasizing speed improves speed of movement and modifies postural control in stroke.

    PubMed

    Gray, Vicki L; Ivanova, Tanya D; Garland, S Jayne

    2016-01-01

    Little attention has been given to training speed of movement, even though functional activities require quick submaximal contractions. Closed kinetic chain (CKC) exercises are considered more functional; however, the best method for training speed is not known. A single bout of open kinetic chain (OKC) exercises emphasizing speed was performed to determine whether movement velocity and muscle activation would improve in a single session and whether the improvements transfer to a physiological balance task. Eleven participants <1 year post-stroke performed an arm raise task before and after a single session of fast OKC exercises. Surface electromyography (EMG) from soleus (SOL), tibialis anterior (TA), biceps femoris (BF) and rectus femoris (RF) muscles, peak velocity and average power were recorded during the OKC exercises. EMG from SOL, TA, BF and RF and center of pressure (COP) velocity were measured during arm raise task. At the end of the OKC exercises, velocity, power and TA, BF and RF EMG area increased. The arm acceleration and BF EMG area increased significantly during the arm raise. The improvements observed at the end of the OKC exercises transferred to the arm raise task. The improvements in balance were comparable to those previously seen after CKC exercises.

  15. The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process

    SciTech Connect

    Elter, M.; Schulz-Wendtland, R.; Wittenberg, T.

    2007-11-15

    Mammography is the most effective method for breast cancer screening available today. However, the low positive predictive value of breast biopsy resulting from mammogram interpretation leads to approximately 70% unnecessary biopsies with benign outcomes. To reduce the high number of unnecessary breast biopsies, several computer-aided diagnosis (CAD) systems have been proposed in the last several years. These systems help physicians in their decision to perform a breast biopsy on a suspicious lesion seen in a mammogram or to perform a short term follow-up examination instead. We present two novel CAD approaches that both emphasize an intelligible decision process to predict breast biopsy outcomes from BI-RADS findings. An intelligible reasoning process is an important requirement for the acceptance of CAD systems by physicians. The first approach induces a global model based on decison-tree learning. The second approach is based on case-based reasoning and applies an entropic similarity measure. We have evaluated the performance of both CAD approaches on two large publicly available mammography reference databases using receiver operating characteristic (ROC) analysis, bootstrap sampling, and the ANOVA statistical significance test. Both approaches outperform the diagnosis decisions of the physicians. Hence, both systems have the potential to reduce the number of unnecessary breast biopsies in clinical practice. A comparison of the performance of the proposed decision tree and CBR approaches with a state of the art approach based on artificial neural networks (ANN) shows that the CBR approach performs slightly better than the ANN approach, which in turn results in slightly better performance than the decision-tree approach. The differences are statistically significant (p value <0.001). On 2100 masses extracted from the DDSM database, the CRB approach for example resulted in an area under the ROC curve of A(z)=0.89{+-}0.01, the decision-tree approach in A(z)=0

  16. VOXEL-LEVEL MAPPING OF TRACER KINETICS IN PET STUDIES: A STATISTICAL APPROACH EMPHASIZING TISSUE LIFE TABLES1

    PubMed Central

    O’Sullivan, Finbarr; Muzi, Mark; Mankoff, David A.; Eary, Janet F.; Spence, Alexander M.; Krohn, Kenneth A.

    2014-01-01

    Most radiotracers used in dynamic positron emission tomography (PET) scanning act in a linear time-invariant fashion so that the measured time-course data are a convolution between the time course of the tracer in the arterial supply and the local tissue impulse response, known as the tissue residue function. In statistical terms the residue is a life table for the transit time of injected radiotracer atoms. The residue provides a description of the tracer kinetic information measurable by a dynamic PET scan. Decomposition of the residue function allows separation of rapid vascular kinetics from slower blood-tissue exchanges and tissue retention. For voxel-level analysis, we propose that residues be modeled by mixtures of nonparametrically derived basis residues obtained by segmentation of the full data volume. Spatial and temporal aspects of diagnostics associated with voxel-level model fitting are emphasized. Illustrative examples, some involving cancer imaging studies, are presented. Data from cerebral PET scanning with 18F fluoro-deoxyglucose (FDG) and 15O water (H2O) in normal subjects is used to evaluate the approach. Cross-validation is used to make regional comparisons between residues estimated using adaptive mixture models with more conventional compartmental modeling techniques. Simulations studies are used to theoretically examine mean square error performance and to explore the benefit of voxel-level analysis when the primary interest is a statistical summary of regional kinetics. The work highlights the contribution that multivariate analysis tools and life-table concepts can make in the recovery of local metabolic information from dynamic PET studies, particularly ones in which the assumptions of compartmental-like models, with residues that are sums of exponentials, might not be certain. PMID:25392718

  17. Research

    ERIC Educational Resources Information Center

    Mathematics Teaching, 1973

    1973-01-01

    Implications for teachers from Piagetian-oriented piagetian-oriented research on problem solving reported in an article by Eleanor Duckworth are presented. Edward de Bono's Children Solve Problems,'' a collection of examples, is also discussed. (MS)

  18. [The new 9 panels display of data from cardiopulmonary exercise test, emphasizing holistic integrative multi-systemic functions].

    PubMed

    Sun, Xing-Guo

    2015-07-01

    inspiratory capacity and vital capacity respectively. New CPET 9 plots emphasizes on the integration of all circulatory, respiratory and metabolic etc functional parameters in human, and is conductive to optimization of clinical medical service and health management.

  19. Kaposiform hemangioendothelioma: a study of 33 cases emphasizing its pathologic, immunophenotypic, and biologic uniqueness from juvenile hemangioma.

    PubMed

    Lyons, Lisa L; North, Paula E; Mac-Moune Lai, Fernand; Stoler, Mark H; Folpe, Andrew L; Weiss, Sharon W

    2004-05-01

    none developed distant metastases. KH is a lesion having both a vascular and lymphatic component. Its common association with KMP probably relates in part to unique architectural features that favor turbulent blood flow and platelet activation. KH can also be reliably separated from JH by GLUT-1 and LeY immunostaining, indicating differences in the morphologic and functional attributes of the endothelium between the two lesions. The absence of HHV-8 in KH underscores a different pathogenesis from Kaposi sarcoma. Our study, the largest to date, emphasizes that mortality is due to KMP and not metastatic disease, which appears limited to regional perinodal soft tissue. Given this behavior, its continued classification as a vascular tumor of intermediate malignancy is warranted.

  20. The new national integrated strategy emphasizing infection sources control for schistosomiasis control in China has made remarkable achievements.

    PubMed

    Liu, Rong; Dong, Hui-Fen; Jiang, Ming-Sen

    2013-04-01

    Schistosomiasis japonica remains one important public health concern that cause great loss of humans' health and social-economic development in the Peoples' Republic of China. At the end of 1990s and the beginning of 2000s, there were still about 0.8 million patients and nearly 85 million people living in the epidemic areas around China. We undertook full analysis of the epidemiological data of schistosomiasis taken from the report of schistosomiasis status in People's Republic of China from 1999 to 2010 for effectiveness assessment of China's new strategy for schistosomiasis control nationwide after its implementation since the beginning the 21st century. The schistosomiasis-endemic uncontrolled counties or towns decreased in number from 1,149 in 2002 to 643 in 2010 at a rate of 44%. The number of schistosomiasis patients decreased from nearly 800,000 to less than 326,000 in 2010 at a decrease rate of more than 50%. The number of acute schistosomiasis patients also decreased significantly, and only 43 cases were reported in 2010. The infection rates of cattle in the endemic uncontrolled provinces decreased greatly though the number of cattle and the actual snail habitat areas remained large with no obvious decline. The schistosome infection rates of human and cattle both decreased significantly by more than 64% and 75%. However, most of the uncontrolled schistosomiasis-endemic areas, schistosomiasis patients, and acute cases are generally located in the four provinces (Hunan, Hubei, Jiangxi, and Anhui) of the lake regions in the middle and lower reach of the Yangtze River, and the egg-positive rates in diagnosed human in endemic Hunan and Hubei remained higher than 10%. Therefore, the new strategy of schistosomiasis control via integrated measures emphasizing infection source control is scientific and successful around China, though it is essential to explore an effective and sustainable strategy for schistosomiasis control in the tough lake and marshland regions

  1. Introducing ADN students to nursing research.

    PubMed

    Thorpe, R; Smutko, P W

    1998-01-01

    Every nurse, regardless of educational preparation, should be involved in and benefit from nursing research. The research process needs to become an integral part of nursing practice. In this article, the authors emphasize the importance of nursing research in the associate degree nursing curriculum, emphasizing strategies that enable the ADN graduate to appreciate research reports and use the knowledge in the clinical practice setting.

  2. De-Emphasizing Gender in Talk about Texts: Literature Response, Discussion, and Gender within a Classroom Community of Practice

    ERIC Educational Resources Information Center

    Brendler, Beth Monica

    2012-01-01

    Drawing on and reexamining theories on gender and literacy, derived from research performed between 1974 and 2002, this qualitative study explored the gender assumptions and expectations of 19 preservice and practicing secondary language arts teachers in a graduate level adolescent literature course. The theoretical framework was structured around…

  3. Emphasizing the History of Genetics in an Explicit and Reflective Approach to Teaching the Nature of Science: A Pilot Study

    ERIC Educational Resources Information Center

    Williams, Cody Tyler; Rudge, David Wÿss

    2016-01-01

    Science education researchers have long advocated the central role of the nature of science (NOS) for our understanding of scientific literacy. NOS is often interpreted narrowly to refer to a host of epistemological issues associated with the process of science and the limitations of scientific knowledge. Despite its importance, practitioners and…

  4. Emphasizing the History of Genetics in an Explicit and Reflective Approach to Teaching the Nature of Science: A Pilot Study

    ERIC Educational Resources Information Center

    Williams, Cody Tyler; Rudge, David Wÿss

    2016-01-01

    Science education researchers have long advocated the central role of the nature of science (NOS) for our understanding of scientific literacy. NOS is often interpreted narrowly to refer to a host of epistemological issues associated with the process of science and the limitations of scientific knowledge. Despite its importance, practitioners and…

  5. De-Emphasizing Gender in Talk about Texts: Literature Response, Discussion, and Gender within a Classroom Community of Practice

    ERIC Educational Resources Information Center

    Brendler, Beth Monica

    2012-01-01

    Drawing on and reexamining theories on gender and literacy, derived from research performed between 1974 and 2002, this qualitative study explored the gender assumptions and expectations of 19 preservice and practicing secondary language arts teachers in a graduate level adolescent literature course. The theoretical framework was structured around…

  6. The Environment Programme for the Whole of the United Nations 1990-95: 13 Broad Programmes, Emphasizing Research, Assessment, Technical Assistance and Training.

    ERIC Educational Resources Information Center

    UNEP News, 1988

    1988-01-01

    Lists titles of 31 environmental programs over 13 broad categories including terrestrial ecosystems, oceans, health and welfare, and energy, industry and transportation. Describes the general objectives, implementing agencies, and the role of UNEP (United Nations Environment Programme). (YP)

  7. The Environment Programme for the Whole of the United Nations 1990-95: 13 Broad Programmes, Emphasizing Research, Assessment, Technical Assistance and Training.

    ERIC Educational Resources Information Center

    UNEP News, 1988

    1988-01-01

    Lists titles of 31 environmental programs over 13 broad categories including terrestrial ecosystems, oceans, health and welfare, and energy, industry and transportation. Describes the general objectives, implementing agencies, and the role of UNEP (United Nations Environment Programme). (YP)

  8. Survey of Peace Research.

    ERIC Educational Resources Information Center

    Newcombe, Hanna

    1984-01-01

    This bibliographic essay discusses peace research. There are four major sections. The first section discusses traditional peace research, i.e., research with relevance to world peace that was carried out before the term "peace research" became widely used. Emphasized are the disciplines of international relations, international…

  9. Teaching of science and language by elementary teachers who emphasize the integrated language approach: A descriptive study

    NASA Astrophysics Data System (ADS)

    Blouch, Kathleen Kennedy

    This research involved investigating the nature of science and language instruction in 13 elementary classrooms where teachers have restructured their language programs to reflect an integrated or holistic view of language instruction. The teachers were identified by school administrators and other professionals as teachers who have implemented instructional reforms described in the Pennsylvania Framework for Reading, Writing and Speaking Across the Curriculum (PCRPII), (Lytle & Botel, 1900). The instruction utilized by these teachers was described as atypical when compared to that of teachers utilizing the more traditional didactic skills oriented approach to language literacy. The research involved observing, recording and categorizing teaching behaviors during both science and language instruction. Videotaped observations were followed by analyses and descriptions of these behaviors. Interviews were also conducted to ascertain the basis for selection of the various instructional approaches. The instruction was compared on four dimensions: participation patterns, time the behaviors were practiced, type of tasks and levels of questioning. The instruction was then described in light of constructivist teaching practices: student collaboration, student autonomy, integration and higher order thinking. Constructivist practices differed among teachers for science and language instruction. During science instruction teachers spent more time involved in teacher-whole group participation patterns with more direct questioning as compared to language instruction in which children participated alone or in groups and had opportunity to initiate conversations and questions. Student inquiry was evidenced during language instruction more so than during science. The 13 teachers asked a variety of levels and types of questions both in science and language instruction. More hands-on science experiences were observed when science was taught separately compared to when integrated with

  10. A Critical Review of Surveys Emphasizing on Routing in Wireless Sensor Networks—An Anatomization under General Survey Design Framework

    PubMed Central

    2017-01-01

    A large number of routing-related surveys are published so far for Wireless Sensor Networks (WSNs) that exhibit either complete or partial emphasis on routing in WSNs. These surveys classify and discuss the relevant routing protocols published mainly in the fields of classical, energy efficient, secure, hierarchical, geographic, intelligent, Quality of Service (QoS)-based and multipath WSNs. However, to the best of our knowledge, no study is presented so far which may clearly categorize the routing-related survey literature for WSNs.To fill this gap, an effort is made in this paper for presenting an in-depth review of already published routing-related survey literature in WSNs. Our review initially proposes a generalized survey design model and afterwards analyzes the routing-related survey literature in the light of the devised General Survey Design Framework (GSDF). Such an analysis describes the design soundness of the published routing-related surveys. Therefore, our review puts forth an original classification based on the frequency-of-survey-publication and taxonomizes the corresponding routing-related fields into high, medium and low focused areas of survey publication in WSNs. Furthermore, the surveys belonging to each main category are sub-categorized into various sub-classes and briefly discussed according to their design characteristics. On the one hand, this review is useful for beginners who may easily explore the already published routing-related survey literature in WSNs in a single document and investigate it by spending less effort. On the other hand, it is useful for expert researchers who may explore the trends and frequency of writing surveys in different areas of routing in WSNs. The experts may explore those areas of routing which are either neglected or least focused or lack in design soundness as per general survey design framework. In the end, insights and future research directions are outlined and a reasonable conclusion is put forth

  11. [Adverse effects of low dose exposures to cadmium below renal damage level should be emphasized for human health effect studies].

    PubMed

    Yang, X F; Wu, Y N

    2016-04-01

    Currently, the pollution of heavy metal, including lead, cadmium (Cd) and mercury, was one of the major environmental problems in China. Cd could cause adverse effects on kidney, bone, lung and reproductive system. Most of the past researches focused on renal damage effect, and some evidences suggestedadverse effects on bone, tumor, cardiovascular diseases, diabetes and mineral elements, etc, which was occurred at low dose exposures to Cd below renal damage level. An important content of human health effect Studies on exposures to Cd is to follow up the development and consequences of adverse effects after long-term exposure to environmental Cd and then reduction or cessation of its exposure among this population. In this paper, the progress and development trend of long-term environmental exposure to Cd and its health damage effect were reviewed.

  12. Bringing meteorology ``alive`` through the use of immersion-based learning activities that emphasize role playing and problem solving

    SciTech Connect

    Glantz, C.S.; Estes, J.C.; Andrews, G.L.

    1993-07-01

    Current research and emerging standards in teaching and learning say that students learning best when information is presented in a meaningful context and when the students are involved in things they care about. At the US Department of Energy`s (DOE) Pacific Northwest Laboratory (PNL), science education programs have been developed that incorporate these concepts. To help students and teachers understand the process of ``doing`` science, we provide immersion-based programs in such technical areas as meteorology, marine sciences, wetland ecology, groundwater hydrology, robotics, lasers materials science, biology, and archaeology. This paper focuses on a meteorology program the authors developed in recent years to support this immersion experience approach. We will discuss how we link meteorology with other subject matter, how we show the relevance of meteorology to real-world problems, and how we immerse student`s and teachers in activities that help them understand how scientists uncover knowledge and solve problems.

  13. Homosexual parents: testing "common sense"--a literature review emphasizing the Golombok and Tasker longitudinal study of lesbians' children.

    PubMed

    Cameron, P

    1999-08-01

    Counter to claims by the American Psychological Association and the National Association of Social Workers as well as numerous reviewers that children raised by homosexuals and married heterosexuals do not differ, the elaborate social-personality theory called "common sense" predicts that because "like produces like" and because psychopathy/sociopathy informs the major expressions of social deviance including homosexuality, children of homosexuals will (1) be more frequently subjected to parental instability (of residence and sexual partners) and (2) have poorer peer and adult relationships. Also, as is held to be true of their parents, homosexuals' children will be more apt to (3) become homosexual, (4) be unstable (have emotional problems and difficulty forming lasting bonds) with reduced interest in natality, and (5) be sexually precocious and promiscuous. Differences between homosexual and heterosexual comparison groups that bore on "common sense" were considered suggestive "bits" of empirical evidence. Differences that emerged within studies conducted by sympathetic researchers utilizing volunteer samples were considered bits of adverse evidence. Of 171 bits, 82 adverse and 55 nonadverse bits supported, while 34 bits fell against "common sense." From this tentative method of counting, support was found for common sense beliefs that children of homosexuals will be more apt to become homosexual and have poorer peer relationships, while weaker support was found for some of the other predictions. As assessed in this way, the empirical evidence in the literature tended to lean against claims of "no differences" between children raised by homosexuals and heterosexuals. In particular, the strongly worded official claims of there being "no differences" are overstatements. They amount to the organizations and some prominent researchers asserting that they have proven the null hypothesis, which is fundamentally impossible. It is likely that the nonsignificant

  14. Occupational Injuries in Germany: Population-Wide National Survey Data Emphasize the Importance of Work-Related Factors.

    PubMed

    Rommel, Alexander; Varnaccia, Gianni; Lahmann, Nils; Kottner, Jan; Kroll, Lars Eric

    2016-01-01

    Unintentional injuries cause much of the global mortality burden, with the workplace being a common accident setting. Even in high-income economies, occupational injury figures remain remarkably high. Because risk factors for occupational injuries are prone to confounding, the present research takes a comprehensive approach. To better understand the occurrence of occupational injuries, sociodemographic factors and work- and health-related factors are tested simultaneously. Thus, the present analysis aims to develop a comprehensive epidemiological model that facilitates the explanation of varying injury rates in the workplace. The representative phone survey German Health Update 2010 provides information on medically treated occupational injuries sustained in the year prior to the interview. Data were collected on sociodemographics, occupation, working conditions, health-related behaviors, and chronic diseases. For the economically active population (18-70 years, n = 14,041), the 12-month prevalence of occupational injuries was calculated with a 95% confidence interval (CI). Blockwise multiple logistic regression was applied to successively include different groups of variables. Overall, 2.8% (95% CI 2.4-3.2) of the gainfully employed population report at least one occupational injury (women: 0.9%; 95% CI 0.7-1.2; men: 4.3%; 95% CI 3.7-5.0). In the fully adjusted model, male gender (OR 3.16) and age 18-29 (OR 1.54), as well as agricultural (OR 5.40), technical (OR 3.41), skilled service (OR 4.24) or manual (OR 5.12), and unskilled service (OR 3.13) or manual (OR 4.97) occupations are associated with higher chances of occupational injuries. The same holds for frequent stressors such as heavy carrying (OR 1.78), working in awkward postures (OR 1.46), environmental stress (OR 1.48), and working under pressure (OR 1.41). Among health-related variables, physical inactivity (OR 1.47) and obesity (OR 1.73) present a significantly higher chance of occupational injuries

  15. Occupational Injuries in Germany: Population-Wide National Survey Data Emphasize the Importance of Work-Related Factors

    PubMed Central

    Rommel, Alexander; Varnaccia, Gianni; Lahmann, Nils; Kottner, Jan; Kroll, Lars Eric

    2016-01-01

    Unintentional injuries cause much of the global mortality burden, with the workplace being a common accident setting. Even in high-income economies, occupational injury figures remain remarkably high. Because risk factors for occupational injuries are prone to confounding, the present research takes a comprehensive approach. To better understand the occurrence of occupational injuries, sociodemographic factors and work- and health-related factors are tested simultaneously. Thus, the present analysis aims to develop a comprehensive epidemiological model that facilitates the explanation of varying injury rates in the workplace. The representative phone survey German Health Update 2010 provides information on medically treated occupational injuries sustained in the year prior to the interview. Data were collected on sociodemographics, occupation, working conditions, health-related behaviors, and chronic diseases. For the economically active population (18–70 years, n = 14,041), the 12-month prevalence of occupational injuries was calculated with a 95% confidence interval (CI). Blockwise multiple logistic regression was applied to successively include different groups of variables. Overall, 2.8% (95% CI 2.4–3.2) of the gainfully employed population report at least one occupational injury (women: 0.9%; 95% CI 0.7–1.2; men: 4.3%; 95% CI 3.7–5.0). In the fully adjusted model, male gender (OR 3.16) and age 18–29 (OR 1.54), as well as agricultural (OR 5.40), technical (OR 3.41), skilled service (OR 4.24) or manual (OR 5.12), and unskilled service (OR 3.13) or manual (OR 4.97) occupations are associated with higher chances of occupational injuries. The same holds for frequent stressors such as heavy carrying (OR 1.78), working in awkward postures (OR 1.46), environmental stress (OR 1.48), and working under pressure (OR 1.41). Among health-related variables, physical inactivity (OR 1.47) and obesity (OR 1.73) present a significantly higher chance of occupational

  16. Neoplasia and neoplasm-associated lesions in laboratory colonies of zebrafish emphasizing key influences of diet and aquaculture system design.

    PubMed

    Spitsbergen, Jan M; Buhler, Donald R; Peterson, Tracy S

    2012-01-01

    During the past decade, the zebrafish has emerged as a leading model for mechanistic cancer research because of its sophisticated genetic and genomic resources, its tractability for tissue targeting of transgene expression, its efficiency for forward genetic approaches to cancer model development, and its cost effectiveness for enhancer and suppressor screens once a cancer model is established. However, in contrast with other laboratory animal species widely used as cancer models, much basic cancer biology information is lacking in zebrafish. As yet, data are not published regarding dietary influences on neoplasm incidences in zebrafish. Little information is available regarding spontaneous tumor incidences or histologic types in wild-type lines of zebrafish. So far, a comprehensive database documenting the full spectrum of neoplasia in various organ systems and tissues is not available for zebrafish as it is for other intensely studied laboratory animal species. This article confirms that, as in other species, diet and husbandry can profoundly influence tumor incidences and histologic spectra in zebrafish. We show that in many laboratory colonies wild-type lines of zebrafish exhibit elevated neoplasm incidences and neoplasm-associated lesions such as heptocyte megalocytosis. We present experimental evidence showing that certain diet and water management regimens can result in high incidences of neoplasia and neoplasm-associated lesions. We document the wide array of benign and malignant neoplasms affecting nearly every organ, tissue, and cell type in zebrafish, in some cases as a spontaneous aging change, and in other cases due to carcinogen treatment or genetic manipulation.

  17. Neoplasia and Neoplasm Associated Lesions in Laboratory Colonies of Zebrafish Emphasizing Key Influences of Diet and Aquaculture System Design

    PubMed Central

    Spitsbergen, Jan M.; Buhler, Donald R.; Peterson, Tracy S.

    2014-01-01

    During the past decade the zebrafish has emerged as a leading model for mechanistic cancer research due to its sophisticated genetic and genomic resources, its tractability for tissue targeting of transgene expression, its efficiency for forward genetic approaches to cancer model development, and its cost-effectiveness for enhancer and suppressor screens once a cancer model is established. However, in contrast to other laboratory animal species widely used as cancer models, much basic cancer biology information is lacking in zebrafish. As yet data are not published regarding dietary influences on neoplasm incidences in zebrafish. Little information is available regarding spontaneous tumor incidences or histologic types in wild-type (wt) lines of zebrafish. So far a comprehensive database documenting the full spectrum of neoplasia in various organ systems and tissues in not available for zebrafish as it is for other intensely studied laboratory animal species. This manuscript confirms that as in other species diet and husbandry can profoundly influence tumor incidences and histologic spectra in zebrafish. We show that in many laboratory colonies wt lines of zebrafish exhibit elevated neoplasm incidences and neoplasm associated lesions such as heptocyte megalocytosis. We present experimental evidence showing that certain diet and water management regimens can result in high incidences of neoplasia and neoplasm associated lesions. We document the wide array of benign and malignant neoplasms affecting nearly every organ, tissue and cell type in zebrafish, in some cases as a spontaneous aging change, and in other cases due to carcinogen treatment or genetic manipulation. PMID:23382343

  18. Human reliability impact on inservice inspection. Review and analysis of human performance in nondestructive testing (emphasizing ultrasonics). Volume 2

    SciTech Connect

    Triggs, T.J.; Rankin, W.L.; Badalamente, R.V.; Spanner, J.C.

    1986-03-01

    This report documents a review of the research literature in the human factors, nondestructive testing (NDT), and related areas that was conducted to develop an understanding of how human performance in NDT can be improved through the application of human factors principles relating to task, training, procedural, individual difference, and environmental variables. A secondary purpose of this project was to develop a satisfactory measure of performance that can be applied in NDT. The report begins with an overview of NDT with special emphasis on ultrasonic testing for inservice inspection (UT/ISI) regarding intergranular stress corrosion cracking (IGSCC). Then, the strengths and weaknesses of typical measures of performance accuracy are discussed. Signal detection theory is then presented, and it is recommended that the relative operating characteristic (ROC) analysis, which follows from signal detection theory, be adopted for specifying human performance in NDT. Human performance in NDT and NDT-related areas is then discussed with respect to the five types of variables outlined above. This study strongly suggests that NDT technician performance could be improved through the systematic application of human factors principles within the framework of ROC analysis, especially in the areas of task, training, and, to a lesser extent, procedural variables. 215 references.

  19. Emphasizing the process of the scientific method in the physical science classroom through altered techniques and procedures

    NASA Astrophysics Data System (ADS)

    Schmachtenberger, Trevor

    High school science requires students to use the scientific method when solving problems. The ability to solve problems in this way is a valuable and necessary skill for the classroom and life experiences. The goal of this study was to fully incorporate scientific thinking and methodology into the current curriculum. The hypothesis for this study was: a gradual release of responsibility from instructor to student will show an improvement in the ability of students to solve critical thinking problems, an integral part of the scientific method. This project was implemented over the period of one semester, 18 weeks and covered eight units of study. The research reported here focused on three particular units: Motion, Heat Energy, and Wave Energy. Students in a Physical Science class participated in making observations, identifying patterns, and asking questions based on the observed patterns, which led to student developed hypotheses and protocols, including data collection and analysis. Students participated in their own scientific practices, which, in turn, led to a sense of ownership and also a more thorough understanding of the scientific method and its practices as measured by lab activity accuracy and improvement in formative scores. Pre-test and post-test results indicated an improvement in students' ability to use scientific methodology.

  20. Changes in Efficacy Beliefs in Mathematics across the Transition to Middle School: Examining the Effects of Perceived Teacher and Parent Goal Emphases

    ERIC Educational Resources Information Center

    Friedel, Jeanne M.; Cortina, Kai S.; Turner, Julianne C.; Midgley, Carol

    2010-01-01

    This study examined the effects of change in teacher goal emphases on students' efficacy beliefs in mathematics across the transition to middle school. The sample (N = 929) included primarily White (65%) and Black (27%) students, and approximately one third received free or reduced-fee lunch. Analyses grouped children by cross-classification of…

  1. The Effect of a Middle School Teacher Inservice Course Emphasizing Science Process Skills on the Development of Integrated Process Skills and Logical Thinking.

    ERIC Educational Resources Information Center

    Norman, John T.

    The purpose of this investigation was to determine the effect of a middle school inservice course emphasizing science process skills on the development of integrated process skills and on logical thinking. Twenty-two middle-school science teachers from the Detroit Public Schools participated in this project. A "Resourcebook of Science Process…

  2. Project R-3; A Motivational Program Emphasizing Student Readiness, Subject Relevance, and Learning Reinforcement Through Individualized Instruction, Intensive Involvement, and Gaming/Simulation.

    ERIC Educational Resources Information Center

    San Jose Unified School District, CA.

    A course intended to upgrade essential reading and mathematics skills in students who show poor performance or negative attitudes towards school has been developed at A. Lincoln High School in San Jose, California. Called Project R-3, it seeks to motivate students by emphasizing student readiness, subject relevance, and learning reinforcement…

  3. Changes in Efficacy Beliefs in Mathematics across the Transition to Middle School: Examining the Effects of Perceived Teacher and Parent Goal Emphases

    ERIC Educational Resources Information Center

    Friedel, Jeanne M.; Cortina, Kai S.; Turner, Julianne C.; Midgley, Carol

    2010-01-01

    This study examined the effects of change in teacher goal emphases on students' efficacy beliefs in mathematics across the transition to middle school. The sample (N = 929) included primarily White (65%) and Black (27%) students, and approximately one third received free or reduced-fee lunch. Analyses grouped children by cross-classification of…

  4. Reform of the Teaching System of Vocational Universities by Emphasizing Practical Teaching: How Guangzhou University's Electronics Engineering Department Trains Professionals in Applied Fields.

    ERIC Educational Resources Information Center

    Zhang, Shixun; Liang, Yongxim

    1991-01-01

    Describes reform of a Chinese vocational teaching program. Emphasizes a teaching structure combining theoretical and practical teaching. Lists prerequisites for an independent teaching system as suitable instructors (usually engineers), equipment for practice, and a transformation of the students' views toward study. Urges revision of teaching…

  5. "Do good and talk about it". A CHRISTUS health study emphasizes the importance of telling our stories to the public.

    PubMed

    Meyer, Donna; Wei, Raymond

    2005-01-01

    In a time of public scrutiny, it is paramount that Catholic health care organizations examine their commitments to their communities and effectively communicate community benefit activities to stakeholders-employees, physicians, patients, and the public. CHRISTUS Academy, a leadership development program at CHRISTUS Health, Irving, TX, conducted two studies regarding community benefit. The first researched community benefit practices at more than 20 highly respected, tax-exempt CHA- and VHA-member organizations, comparing them with the practices of about 40 publicly traded, for-profit organizations. The primary conclusion was that community benefit is not just about measuring the numbers-it is also about "telling the story." Unlike the for-profit organizations, tax-exempt health care organizations tend to struggle with adequately measuring and reporting their community contributions. In a second study, the academy surveyed CHRISTUS Health's employees and physicians regarding their knowledge of the system's commitment vis-à-vis identifying and meeting community needs. The vast majority said the system is important to the community and is actively involved in understanding and meeting the needs of the community. However, they also ranked the system lower in terms of working with other community organizations, being a leader in community health, and being known for sponsoring volunteer activities. These lower rankings indicate that the community benefit activities are not well publicized or known within the organization. Catholic health organizations must take an active approach in communicating their work to the public, the media, and each other. In doing so, they fulfill an integral part their mission.

  6. Planetary magnetism. [emphasizing dynamo theories

    NASA Technical Reports Server (NTRS)

    Stevenson, D.

    1974-01-01

    The origin and maintenance of planetary magnetic fields are discussed. The discussion is not limited to dynamo theories, although these are almost universally favored. Thermoelectric currents are found to be a possible alternative for Jupiter. Two energy sources for dynamos are considered: convection and precessionally induced fluid flow. The earth is the most favorable planet for precessionally driven dynamo, although Neptune is a possibility. Jupiter is likely to have a convectionally driven dynamo, as may Saturn, but the relevant properties of Saturn are not yet well known. Conclusions for each planet are given.

  7. Planetary magnetism. [emphasizing dynamo theories

    NASA Technical Reports Server (NTRS)

    Stevenson, D.

    1974-01-01

    The origin and maintenance of planetary magnetic fields are discussed. The discussion is not limited to dynamo theories, although these are almost universally favored. Thermoelectric currents are found to be a possible alternative for Jupiter. Two energy sources for dynamos are considered: convection and precessionally induced fluid flow. The earth is the most favorable planet for precessionally driven dynamo, although Neptune is a possibility. Jupiter is likely to have a convectionally driven dynamo, as may Saturn, but the relevant properties of Saturn are not yet well known. Conclusions for each planet are given.

  8. Redesigning Research: The Value of Interdisciplinary Research in Undergraduate Education.

    ERIC Educational Resources Information Center

    Saunders, David K.; Keith, Ronald L.; Yanik, Elizabeth G.; Gustafson, Phillip E.

    2003-01-01

    Describes an inquiry-based course that emphasizes integration of the sciences. Student teams pursue research projects of their own design using mathematics and physics to study biological phenomena. (Author/KHR)

  9. Effects of Eccentric and Concentric Emphasized Resistance Exercise on IL-15 Serum Levels and Its Relation to Inflammatory Markers in Athletes and Non-Athletes

    PubMed Central

    Bazgir, Behzad; Salesi, Mohsen; Koushki, Maryam; Amirghofran, Zahra

    2015-01-01

    Background: Cytokines play an important role in modulating the muscle’s metabolic and immunological responses to exercise. Objectives: In the present study, we investigated changes in the serum levels of Interleukin (IL)-15 as well as tumor necrosis factor (TNF)-α and high sensitivity C-reactive protein (hs-CRP), as markers of inflammation, in athlete and non-athlete young men following eccentric (ECC) and concentric (CON) emphasized resistance exercise (RE). Patients and Methods: This study recruited 28 young males, 14 athletes and 14 non-athletes. Subjects completed two bouts of ECC and CON emphasized RE five days apart. Each bout included seven exercises that emphasized all major muscle groups with weight loads of 70% - 80% of one repetition maximum (1RM) for CON RE and 90% - 100% of 1RM for ECC RE. We analyzed subjects’ blood samples before and immediately after each bout of exercise to determine cytokine and hs-CRP serum levels according to enzyme-linked immunosorbent assay. Results: Statistical analysis showed a significant difference between IL-15 serum levels before and after ECC and CON RE in non-athletes (P = 0.03). In athletes, IL-15 serum level only increased after ECC RE (P = 0.01), which was noted to be the highest degree of change in IL-15 levels in all subjects. For athletes, the hs-CRP levels significantly decreased (P < 0.05). The serum levels of both TNF-α and hs-CRP were also significantly down-regulated after ECC RE in non-athletes. Conclusions: These results indicated that fitness level and RE could modulate circulating levels of IL-15 and suggest the potential anti-inflammatory effects of IL-15 during RE. PMID:26448857

  10. Population-level assessments should be emphasized over community/ecosystem-level assessments. Environmental Sciences Division Publication No. 1535. [Concerning the impact of power plants on fish populations

    SciTech Connect

    Van Winkle, W

    1980-01-01

    Arguments are presented in favor of emphasizing population-level assessments over community/ecosystem-level assessments. The two approaches are compared on each of four issues: (1) the nature of entrainment/impingement impacts; (2) the ability to forecast reliably for a single fish population as contrasted to the ability to forecast for an aquatic community or ecosystem; (3) practical considerations involving money, manpower, time, and the need to make decisions; and (4) the nature of societal and economic concerns. The conclusion on each of these four issues is that population-level assessments provide the optimal approach for evaluating the effects of entrainment and impingement mortality.

  11. Efficient volatile metal removal from low rank coal in gasification, combustion, and processing systems and methods

    DOEpatents

    Bland, Alan E.; Sellakumar, Kumar Muthusami; Newcomer, Jesse D.

    2017-03-21

    Efficient coal pre-processing systems (69) integrated with gasification, oxy-combustion, and power plant systems include a drying chamber (28), a volatile metal removal chamber (30), recirculated gases, including recycled carbon dioxide (21), nitrogen (6), and gaseous exhaust (60) for increasing the efficiencies and lowering emissions in various coal processing systems.

  12. A Study of Recognition of the Lesser Achievements of Low Ranking Enlisted Men

    DTIC Science & Technology

    1975-06-06

    BIBLIOGRAPHY Applewhite, Philip B. OrKanizatior^l T ^W^, Englewood Cliff, New Jersey: Prentice HailTnc., 1965, gxewooa Backstrom , Charles H. and Gerald D...DOCUMENTATION PAGE "l. REPORT NUMBER 2, GOVT ACCESSION NO. READ INSTRUCTIONS BEFORg COMPLETING FORM T . RECIPIENT’S CATALOG NUMBER 4...Jhe ^f6 klnd of thin8 t ^s observed in grouns of and intimacy by their common external danger, and who ToLll^lTher throughout a lifetlme L l This

  13. Exact Low-Rank Matrix Completion from Sparsely Corrupted Entries via Adaptive Outlier Pursuit

    DTIC Science & Technology

    2012-05-02

    Recognition. Society for Industrial and Applied Mathematics, Philadephia, PA, 2007. 1 [10] M Fazel, H Hindi , and S P Boyd. A rank minimization heuristic with...Riemannian approach. In 28th International Conference on Machine Learning (ICML), 2011. 2 [20] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo

  14. Cooperative Non-Line-of-Sight Localization Using Low-rank + Sparse Matrix Decomposition

    DTIC Science & Technology

    2012-05-10

    manifold learning where the measurement process can induce large bias errors in some fraction of the distance measurements due to physical effects...manifold learning where the measurement process can induce large bias errors in some fraction of the distance measurements due to physical effects like...analysis, manifold learning etc. In sensor networks, the locations of different sensor nodes need to be estimated, given the distance measurements

  15. Low rank factorization of the Coulomb integrals for periodic coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Hummel, Felix; Tsatsoulis, Theodoros; Grüneis, Andreas

    2017-03-01

    We study a tensor hypercontraction decomposition of the Coulomb integrals of periodic systems where the integrals are factorized into a contraction of six matrices of which only two are distinct. We find that the Coulomb integrals can be well approximated in this form already with small matrices compared to the number of real space grid points. The cost of computing the matrices scales as O (N4) using a regularized form of the alternating least squares algorithm. The studied factorization of the Coulomb integrals can be exploited to reduce the scaling of the computational cost of expensive tensor contractions appearing in the amplitude equations of coupled cluster methods with respect to system size. We apply the developed methodologies to calculate the adsorption energy of a single water molecule on a hexagonal boron nitride monolayer in a plane wave basis set and periodic boundary conditions.

  16. Novel Low-Cost Process for the Gasification of Biomass and Low-Rank Coals

    SciTech Connect

    Thomas Barton

    2009-03-05

    Farm Energy envisaged a phased demonstration program, in which a pilot-scale straw gasifier will be installed on a farm. The synthesis gas product will be used to initially (i) generate electricity in a 300 kW diesel generator, and subsequently (ii) used as a feedstock to produce ethanol or mixed alcohols. They were seeking straw gasification and alcohol synthesis technologies that may be implemented on farm-scale. The consortium, along with the USDA ARS station in Corvallis, OR, expressed interest in the dual-bed gasification concept promoted by WRI and Taylor Energy, LLC. This process operated at atmospheric pressure and employed a solids-circulation type oxidation/reduction cycle significantly different from traditional fluidized-bed or up-draft type gasification reactors. The objectives of this project were to perform bench-scale testing to determine technical feasibility of gasifier concept, to characterize the syngas product, and to determine the optimal operating conditions and configuration. We used the bench-scale test data to complete a preliminary design and cost estimate for a 1-2 ton per hour pilot-scale unit that is also appropriate for on-farm scale applications. The gasifier configuration with the 0.375-inch stainless steel balls recirculating media worked consistently and for periods up to six hours of grass feed. The other principle systems like the boiler, the air pump, and feeder device also worked consistently during all feeding operations. Minor hiccups during operation tended to come from secondary systems like the flare or flammable material buildup in the exit piping. Although we did not complete the extended hour tests to 24 or 48 hours due to time and budget constraints, we developed the confidence that the gasifier in its current configuration could handle those tests. At the modest temperatures we operated the gasifier, slagging was not a problem. The solid wastes were dry and low density. The majority of the fixed carbon from the grass ended up in the solid waste collected in the external cyclone. The volatiles were almost all removed in the gasifier. While the average gas heating value of the collected gas products was 50 BTUs/scf or less, addition a of the second gas exit for combustion gases would increase that value by a factor of two or three. Other changes to the current design such as shortening the gasifier body and draft tube would lead to lower air use and shorter heating times. There was no evidence of steam reforming at the current operating temperature. Likewise there was no indication of significant tar production. Reconfiguration of the gasifier at the on farm site may yet yield more significant results that would better qualify this gasifier for small scale biomass operations.

  17. Ultra fine grinding of low-rank coal. Progress report, April-June 1986

    SciTech Connect

    Bouchillon, C.W.; Steele, W.G.

    1986-07-01

    The lignite used for Phase I of the project was a Texas lignite from the Martin Lake mine obtained from the stockpile for the Martin Lake Power Plant of the Texas Utilities Generating Company. The power requirements for the fluid-energy mill were determined from the measured steam (or air) temperatures, pressures and pressure drops and the lignite flow rate. The instrument locations for the tests are shown on Figure 1. All of the instruments were connected to a microcomputer via an analog input interface board. Data were recorded on disks periodically throughout the tests. Appropriate calibration procedures were followed to assure that reliable data were being obtained. The combined grinding/drying tests were conducted in Vicksbuth, MS at Ergon, Inc.'s fluid-energy-mill facility. both steam and air were used as grinding fluids. With steam, tests were used as grinding fluids. With steam, tests were run with the following temperatures maintained inside the pulverizer: 310/sup 0/F, 350/sup 0/F, 400/sup 0/F, 488/sup 0/F. The materials from the grinding/drying tests have been analyzed. Tests included particle size distribution, density distribution, proximate and ultimate analyses, ash mineral analyses, electron microscope pictures, angle of repose and equilibrium moisture tests. These data have been correlated with the drying temperatures. The pulverized material was separated into different particle size groups with an air classifier. The samples from these tests were used to determine if one particle range had a higher ash content than the others. Very little difference in ash content was noted. Fluids at 1.2, 1.3, 1.4 and 1.6 specific gravities were used in a centrifuge to separate the ultrafine lignite into different density groups.

  18. Ultra fine grinding of low-rank coal. Progress report, January-March 1986

    SciTech Connect

    Bouchillon, C.W.; Steele, W.G.

    1986-04-01

    The specific goals for Phase I of this project were to: (1) select a friable Texas lignite for Phase I investigation. (2) In three separate tests, micropulverize the lignite in a fluid-energy mill utilizing steam as the drying agent and carrier media to produce at three levels of moisture content. (3) Measure the power requirements to micropulverize the lignite at each level of product moisture. (4) Measure the product size distribution, ash content as a function of particle size, particle shape, angle of repose and moisture reabsorption. (5) Submit a technical report on the test lignite. Preliminary results are reported.

  19. Humic substances and nitrogen-containing compounds from low rank brown coals

    SciTech Connect

    Demirbas, A.; Kar, Y.; Deveci, H.

    2006-03-15

    Coal is one of the sources of nitrogen-containing compounds (NCCs). Recovery of NCCs from brown coals in high yield was carried out from tars of stepwise semicoking of brown coals. Humic acids have been shown to contain many types of nitrogen compounds. Humic acids are thought to be complex aromatic macromolecules with amino acids, amino sugars, peptides, and aliphatic compounds that are involved in the linkages between the aromatic groups. Humic acids extracted from peats, brown coals, and lignites, are characterized using different techniques. Humic substances (HSs) have several known benefits to agriculture. The properties of humic substances vary from source to source, because they are heterogeneous mixtures of biochemical degradation products from plant and animal residues, and synthesis activities of microorganisms. HSs have been considered to be a significant floculant in surface water filtration plants for the production of drinking water as well as the processing of water. HSs are produced from chemical and biological degradation of plant and animal residues and from synthetic activities of microorganisms.

  20. Limited-angle reverse helical cone-beam CT for pipeline with low rank decomposition

    NASA Astrophysics Data System (ADS)

    Wu, Dong; Zeng, Li

    2014-10-01

    In this paper, tomographic imaging of pipeline in service by cone-beam computed tomography (CBCT) is studied. With the developed scanning strategy and image model, the quality of reconstructed image is improved. First, a limited-angle reverse helical scanning strategy based on C-arm computed tomography (C-arm CT) is developed for the projection data acquisition of pipeline in service. Then, an image model which considering the resemblance among slices of pipeline is developed. Finally, split Bregman method based algorithm is implemented in solving the model aforementioned. Preliminary results of simulation experiments show that the projection data acquisition strategy and reconstruction method are efficient and feasible, and our method is superior to Feldkamp-Davis-Kress (FDK) algorithm and simultaneous algebraic reconstruction technique (SART).

  1. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    SciTech Connect

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  2. Release of inorganic constituents during rapid pyrolysis of Victorian low-rank coal

    SciTech Connect

    Mackay, G.; Riley, K.W.

    1996-12-31

    It has been shown that the mineral matter contained in Victorian brown coal is released to some extent during rapid pyrolysis. The fate of four inorganic species: sodium, calcium, magnesium, and iron, has been investigated. As expected, sodium is released from the coal during heating. However, the divalent species calcium, magnesium and iron, are all released during pyrolysis, with losses of between 35 and 40% where the total mass loss from the coal reaches at least 70%. A mechanism has been postulated for the loss: these elements are believed to be retained within the large molecular weight tar fraction which makes up between 30 and 40% of the mass loss from the coal during rapid pyrolysis.

  3. Anaerobic bioprocessing of low rank coals. Quarterly progress report, April 1--June 30, 1991

    SciTech Connect

    Jain, M.K.; Narayan, R.; Han, O.

    1991-12-31

    significant achievements were: (1) Coal decarboxylation was achieved by batch bioreactor systems using adapted anaerobic microbial consortium. (2) Two new isolates with coal decarboxylation potential were obtained from adapted microbial consortia. (3) CHN and TG anaysis of anaerobically biotreated coals have shown an increase in the H/C ratio and evolution rate of volatile carbon which could be a better feedstock for the liquefaction process.

  4. STUDIES OF THE SPONTANEOUS COMBUSTION OF LOW RANK COALS AND LIGNITES

    SciTech Connect

    Joseph M. Okoh; Joseph N.D. Dodoo

    2005-07-26

    Spontaneous combustion has always been a problem in coal utilization especially in the storage and transportation of coal. In the United States, approximately 11% of underground coal mine fires are attributed to spontaneous coal combustion. The incidence of such fires is expected to increase with increased consumption of lower rank coals. The cause is usually suspected to be the reabsorption of moisture and oxidation. To understand the mechanisms of spontaneous combustion this study was conducted to (1) define the initial and final products during the low temperature (10 to 60 C) oxidation of coal at different partial pressures of O{sub 2}, (2) determine the rate of oxidation, and (3) measure the reaction enthalpy. The reaction rate (R) and propensity towards spontaneous combustion were evaluated in terms of the initial rate method for the mass gained due to adsorbed O{sub 2}. Equipment that was used consisted of a FT-IR (Fourier Transform-Infrared Spectrometer, Perkin Elmer), an accelerated surface area porosimeter (ASAP, Micromeritics model 2010), thermogravimetric analyzer (TGA, Cahn Microbalance TG 121) and a differential scanning calorimeter (DSC, Q1000, thermal analysis instruments). Their combination yielded data that established a relation between adsorption of oxygen and reaction enthalpy. The head space/ gas chromatograph/ mass spectrometer system (HS/GC/MS) was used to identify volatiles evolved during oxidation. The coal samples used were Beulah lignite and Wyodak (sub-bituminous). Oxygen (O{sub 2}) absorption rates ranged from 0.202 mg O{sub 2}/mg coal hr for coal sample No.20 (Beulah pyrolyzed at 300 C) to 6.05 mg O{sub 2}/mg coal hr for coal sample No.8 (wyodak aged and pyrolyzed at 300 C). Aging of coal followed by pyrolysis was observed to contribute to higher reaction rates. Reaction enthalpies ranged from 0.42 to 1580 kcal/gm/mol O{sub 2}.

  5. Understanding and Evaluating Qualitative Research.

    ERIC Educational Resources Information Center

    Ambert, Anne-Marie; And Others

    1995-01-01

    Presents an overview of the goals and procedures of qualitative research, and discusses linkages between epistemologies and methodology. Reviews possible guidelines involved in the several steps of the evaluation process of qualitative research, emphasizing naturalistic research with families. Reviews common problems with qualitative research.…

  6. Research strategies for addressing uncertainties

    USGS Publications Warehouse

    Busch, David E.; Brekke, Levi D.; Averyt, Kristen; Jardine, Angela; Welling, Leigh; Garfin, Gregg; Jardine, Angela; Merideth, Robert; Black, Mary; LeRoy, Sarah

    2013-01-01

    Research Strategies for Addressing Uncertainties builds on descriptions of research needs presented elsewhere in the book; describes current research efforts and the challenges and opportunities to reduce the uncertainties of climate change; explores ways to improve the understanding of changes in climate and hydrology; and emphasizes the use of research to inform decision making.

  7. Gastrointestinal stromal tumors (GIST) from risk stratification systems to the new TNM proposal: more questions than answers? A review emphasizing the need for a standardized GIST reporting

    PubMed Central

    Agaimy, Abbas

    2010-01-01

    Following the successful introduction of the receptor tyrosine kinase inhibitors (TKI) as the mainstay for the treatment of advanced and metastatic gastrointestinal stromal tumor (GIST), GIST has received a special attention in the recent literature. This resulted in major achievements on the surgical pathology diagnosis and improved our understanding of the molecular biology of the disease. Availability of the effective TKI therapy has emphasized the need for a more reliable and reproducible system for assessment of the malignant potential in GIST to allow for an optimal individualized patient treatment. All of the risk stratification systems proposed so far have emphasized the value of tumor size, mitotic count and anatomic site for risk estimation, at the same time appreciating the difficulty of classifying individual tumors as either benign or malignant. The newly proposed UICC TNM classification for GISTs represents the most recent hallmark on this topic; yet its usefulness remains to be tested in future clinical studies. This review briefly summarizes and discusses the most pertinent risk systems proposed for assessment of the malignant potential of GIST stressing their advantages and limitations and including some critical remarks on the newly proposed UICC TNM system for classifying GIST. Most importantly, an emphasis is made on the urgent need for a standardized approach for histopathological evaluation and reporting of GIST specimens to allow for a reproducible tumor size, mitotic count and tumor growth pattern, and hence for a better risk classification. PMID:20606727

  8. New integrated strategy emphasizing infection source control to curb Schistosomiasis japonica in a marshland area of Hubei Province, China: findings from an eight-year longitudinal survey.

    PubMed

    Chen, Yan-Yan; Liu, Jian-Bing; Huang, Xi-Bao; Cai, Shun-Xiang; Su, Zheng-Ming; Zhong, Rong; Zou, Li; Miao, Xiao-Ping

    2014-01-01

    Schistosomiasis remains a major public health problem in China. The major endemic foci are the lake and marshland regions of southern China, particularly the regions along the middle and lower reach of the Yangtze River in four provinces (Hubei, Hunan, Jiangxi, and Anhui). The purpose of our study is to assess the effect of a new integrated strategy emphasizing infection source control to curb schistosomiasis in marshland regions. In a longitudinal study, we implemented an integrated control strategy emphasizing infection source control in 16 villages from 2005 through 2012 in marshland regions of Hubei province. The interventions included removing cattle from snail-infested grasslands, providing farmers with mechanized farm equipment, improving sanitation by supplying tap water, building lavatories and latrines, praziquantel chemotherapy, controlling snails, and environmental modification. Following the integrated control strategy designed to reduce the role of bovines and humans as sources of Schistosoma japonicum infection, the prevalence of human S. japonicum infection declined from 1.7% in 2005 to 0.4% in 2012 (P<0.001). Reductions were also observed in both sexes, across all age groups, and among high risk occupations. Moreover, the prevalence of bovine S. japonicum infection decreased from 11.7% in 2005 to 0.6% in 2012 (P<0.001). In addition, all the 16 villages achieved the national criteria of infection control in 2008. Our findings indicate that the integrated strategy was likely effective in controlling the transmission of S. japonicum in marshland regions in China.

  9. New Integrated Strategy Emphasizing Infection Source Control to Curb Schistosomiasis japonica in a Marshland Area of Hubei Province, China: Findings from an Eight-Year Longitudinal Survey

    PubMed Central

    Chen, Yan-Yan; Liu, Jian-Bing; Huang, Xi-Bao; Cai, Shun-Xiang; Su, Zheng-Ming; Zhong, Rong; Zou, Li; Miao, Xiao-Ping

    2014-01-01

    Background Schistosomiasis remains a major public health problem in China. The major endemic foci are the lake and marshland regions of southern China, particularly the regions along the middle and lower reach of the Yangtze River in four provinces (Hubei, Hunan, Jiangxi, and Anhui). The purpose of our study is to assess the effect of a new integrated strategy emphasizing infection source control to curb schistosomiasis in marshland regions. Methods In a longitudinal study, we implemented an integrated control strategy emphasizing infection source control in 16 villages from 2005 through 2012 in marshland regions of Hubei province. The interventions included removing cattle from snail-infested grasslands, providing farmers with mechanized farm equipment, improving sanitation by supplying tap water, building lavatories and latrines, praziquantel chemotherapy, controlling snails, and environmental modification. Results Following the integrated control strategy designed to reduce the role of bovines and humans as sources of Schistosoma japonicum infection, the prevalence of human S. japonicum infection declined from 1.7% in 2005 to 0.4% in 2012 (P<0.001). Reductions were also observed in both sexes, across all age groups, and among high risk occupations. Moreover, the prevalence of bovine S. japonicum infection decreased from 11.7% in 2005 to 0.6% in 2012 (P<0.001). In addition, all the 16 villages achieved the national criteria of infection control in 2008. Conclusion Our findings indicate that the integrated strategy was likely effective in controlling the transmission of S. japonicum in marshland regions in China. PMID:24587030

  10. Advocates for Radical Change: Two Research Odysseys.

    ERIC Educational Resources Information Center

    Hall, M. Ann

    1983-01-01

    Research in sport sociology is discussed, especially those studies emphasizing the relationship between sports and class domination. The need for research that pays attention to the power relationships between men and women is pointed out. (PP)

  11. Fire Research at the National Research Council.

    ERIC Educational Resources Information Center

    Shorter, G.W.

    This discussion of fire research emphasizes test procedures and architectural element performance. Measurement and simulation of fire conditions establish "fire load" specifications, structural influences, and corridor surface lining data. Topics studied include--(1) fire endurance of building elements, (2) material flammability, (3)…

  12. A case of tricuspid valve endocarditis due to Cardiobacterium hominis which emphasizes the shift between the poverty of clinical symptoms and the severity of cardiac damages.

    PubMed

    Molet, Lucie; Revest, Matthieu; Fournet, Maxime; Donal, Erwan; Bonnaure-Mallet, Martine; Minet, Jacques; Le Bars, Hervé

    2016-12-01

    Infectious endocarditis due to Cardiobacterium hominis is an uncommon event, accounting for less than 2% of all cases of infectious endocarditis. The infection of the tricuspid valve as it is reported here is extremely rare. We report the case of a tricuspid endocarditis due to Cardiobacterium hominis in a 56 year-old man who was admitted to hospital with pelvic and scapular pain. The diagnosis was established through positive blood cultures and echographic detection of a large tricuspid vegetation. Despite efficient antibiotic therapy, valve replacement was required. The clinical course of Cardiobacterium endocarditis is usually subacute, and the diagnosis may therefore be delayed. This case emphasizes the shift between the poverty of clinical symptoms and severity of cardiac damages, what we could call the Cardiobacterium paradox.

  13. Amniotic band syndrome with sacral agenesis and umbilical cord entrapment: A case report emphasizing the value of evaluation of umbilical cord

    PubMed Central

    Gupta, Kanika; Venkatesan, Bhuvaneswari; Chandra, Tushar; Rajeswari, Kathiah; Devi, Thangammal Kandasamy Renuka

    2015-01-01

    Amniotic band syndrome is a rare congenital disorder caused by entrapment of fetal parts by fibrous amniotic bands in utero. The congenital anomalies seen in this syndrome vary widely and defects may be isolated or multiple and do not follow a specific pattern. Asymmetric distribution of defects is the hallmark of this syndrome. The diagnosis is difficult to make on ultrasound and relies on identification of amniotic bands. We report a case of amniotic band syndrome with sacral agenesis diagnosed on routine antenatal ultrasound scan in the second offspring of a recently diagnosed diabetic mother. The associated features were entrapment of umbilical cord, caudal adhesions and lower limb anomalies. Medical termination of pregnancy was done and all the fetal anomalies as well as umbilical cord abnormalities were confirmed. The importance of meticulous scanning to evaluate for amniotic bands and the umbilical cord in addition to the fetal structures is emphasized. PMID:25926929

  14. Sequence/structural analysis of xylem proteome emphasizes pathogenesis-related proteins, chitinases and β-1, 3-glucanases as key players in grapevine defense against Xylella fastidiosa.

    PubMed

    Chakraborty, Sandeep; Nascimento, Rafael; Zaini, Paulo A; Gouran, Hossein; Rao, Basuthkar J; Goulart, Luiz R; Dandekar, Abhaya M

    2016-01-01

    Background. Xylella fastidiosa, the causative agent of various plant diseases including Pierce's disease in the US, and Citrus Variegated Chlorosis in Brazil, remains a continual source of concern and economic losses, especially since almost all commercial varieties are sensitive to this Gammaproteobacteria. Differential expression of proteins in infected tissue is an established methodology to identify key elements involved in plant defense pathways. Methods. In the current work, we developed a methodology named CHURNER that emphasizes relevant protein functions from proteomic data, based on identification of proteins with similar structures that do not necessarily have sequence homology. Such clustering emphasizes protein functions which have multiple copies that are up/down-regulated, and highlights similar proteins which are differentially regulated. As a working example we present proteomic data enumerating differentially expressed proteins in xylem sap from grapevines that were infected with X. fastidiosa. Results. Analysis of this data by CHURNER highlighted pathogenesis related PR-1 proteins, reinforcing this as the foremost protein function in xylem sap involved in the grapevine defense response to X. fastidiosa. β-1, 3-glucanase, which has both anti-microbial and anti-fungal activities, is also up-regulated. Simultaneously, chitinases are found to be both up and down-regulated by CHURNER, and thus the net gain of this protein function loses its significance in the defense response. Discussion. We demonstrate how structural data can be incorporated in the pipeline of proteomic data analysis prior to making inferences on the importance of individual proteins to plant defense mechanisms. We expect CHURNER to be applicable to any proteomic data set.

  15. Sequence/structural analysis of xylem proteome emphasizes pathogenesis-related proteins, chitinases and β-1, 3-glucanases as key players in grapevine defense against Xylella fastidiosa

    PubMed Central

    Chakraborty, Sandeep; Nascimento, Rafael; Zaini, Paulo A.; Gouran, Hossein; Rao, Basuthkar J.; Goulart, Luiz R.

    2016-01-01

    Background. Xylella fastidiosa, the causative agent of various plant diseases including Pierce’s disease in the US, and Citrus Variegated Chlorosis in Brazil, remains a continual source of concern and economic losses, especially since almost all commercial varieties are sensitive to this Gammaproteobacteria. Differential expression of proteins in infected tissue is an established methodology to identify key elements involved in plant defense pathways. Methods. In the current work, we developed a methodology named CHURNER that emphasizes relevant protein functions from proteomic data, based on identification of proteins with similar structures that do not necessarily have sequence homology. Such clustering emphasizes protein functions which have multiple copies that are up/down-regulated, and highlights similar proteins which are differentially regulated. As a working example we present proteomic data enumerating differentially expressed proteins in xylem sap from grapevines that were infected with X. fastidiosa. Results. Analysis of this data by CHURNER highlighted pathogenesis related PR-1 proteins, reinforcing this as the foremost protein function in xylem sap involved in the grapevine defense response to X. fastidiosa. β-1, 3-glucanase, which has both anti-microbial and anti-fungal activities, is also up-regulated. Simultaneously, chitinases are found to be both up and down-regulated by CHURNER, and thus the net gain of this protein function loses its significance in the defense response. Discussion. We demonstrate how structural data can be incorporated in the pipeline of proteomic data analysis prior to making inferences on the importance of individual proteins to plant defense mechanisms. We expect CHURNER to be applicable to any proteomic data set. PMID:27257535

  16. Structural mechanics research at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Stephens, W. B.

    1976-01-01

    The contributions of NASA's Langley Research Center in areas of structural mechanics were traced from its NACA origins in 1917 to the present. The developments in structural mechanics technology since 1940 were emphasized. A brief review of some current research topics were discussed as well as anticipated near-term research projects.

  17. Education in a Research University

    ERIC Educational Resources Information Center

    Arrow, Kenneth J. Ed.; And Others

    This collection of 30 essays on the character, administration, and management of research universities research university emphasizes the perspective of statistics and operations research: The essays are: "A Robust Faculty Planning Model" (Frederick Biedenweg); "Looking Back at Computer Models Employed in the Stanford University…

  18. Education in a Research University

    ERIC Educational Resources Information Center

    Arrow, Kenneth J. Ed.; And Others

    This collection of 30 essays on the character, administration, and management of research universities research university emphasizes the perspective of statistics and operations research: The essays are: "A Robust Faculty Planning Model" (Frederick Biedenweg); "Looking Back at Computer Models Employed in the Stanford University…

  19. Mendelian Genetics: Paradigm, Conjecture, or Research Program.

    ERIC Educational Resources Information Center

    Oldham, V.; Brouwer, W.

    1984-01-01

    Applies Kuhn's model of the structure of scientific revolutions, Popper's hypothetic-deductive model of science, and Lakatos' methodology of competing research programs to a historical biological episode. Suggests using Kuhn's model (emphasizing the nonrational basis of science) and Popper's model (emphasizing the rational basis of science) in…

  20. Mendelian Genetics: Paradigm, Conjecture, or Research Program.

    ERIC Educational Resources Information Center

    Oldham, V.; Brouwer, W.

    1984-01-01

    Applies Kuhn's model of the structure of scientific revolutions, Popper's hypothetic-deductive model of science, and Lakatos' methodology of competing research programs to a historical biological episode. Suggests using Kuhn's model (emphasizing the nonrational basis of science) and Popper's model (emphasizing the rational basis of science) in…