Science.gov

Sample records for research laboratory progress

  1. Annual Progress Report (SEATO Medical Research Laboratory)

    DTIC Science & Technology

    1975-03-01

    Dengue Shock Syndrome ," in Amos, B. (ed): Progress in Immunology, New York, Academic Press, 1971, pp 831 -838. 2. Halstead, S.B. : Observations Related...transmission is primarily genital to oral. The fact that oropharyngeal Infections of N. gonorrhoeae were detected in women visiting a dental clinic on a...causative in 8096 of female genital tract Infections (9). These organisms have also been found in normal vaginal secretiors (10). Therefore, they should

  2. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    SciTech Connect

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  3. Laboratory directed research and development: FY 1997 progress report

    SciTech Connect

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  4. Laboratory Directed Research and Development FY 1998 Progress Report

    SciTech Connect

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  5. Laboratory directed research and development. FY 1995 progress report

    SciTech Connect

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  6. Laboratory-directed research and development: FY 1996 progress report

    SciTech Connect

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  7. Research Laboratory of Electronics Progress Report Number 133

    DTIC Science & Technology

    1991-08-01

    The substantial labora- ZnSe tory renovation was completed in February; the CBE system hardware was delivered in March and Sponsors installed...laboratories of E.N.E.A. ( Energia ceedings of the International Sherwood Theory Nucleare e Energie Alternative), as well as in- Meeting, Williamsburg, Virginia

  8. RLE (Research Laboratory of Electronics) Progress Report Number 129.

    DTIC Science & Technology

    1987-01-01

    0002 Big. A00DRESS (City. Stste aid ZIP Cod", 10. SOURCE OP PUNDING NO&. P.O. Box 12211 PROGRAM PROJECT TASK WORK UNIT Research Triangle Park, NC...3.1 Focused Ion Beam Program ................................................... 21 ’*- 3.2 Fabrication of Graded Channel FETs in GaAs and Si...Information Processing . ................................... 203 • 25.1 Advanced Television Research Program

  9. Progress of applied superconductivity research at Materials Research Laboratories, ITRI (Taiwan)

    NASA Technical Reports Server (NTRS)

    Liu, R. S.; Wang, C. M.

    1995-01-01

    A status report based on the applied high temperature superconductivity (HTS) research at Materials Research Laboratories (MRL), Industrial Technology Research Institute (ITRI) is given. The aim is to develop fabrication technologies for the high-TC materials appropriate to the industrial application requirements. To date, the majorities of works have been undertaken in the areas of new materials, wires/tapes with long length, prototypes of magnets, large-area thin films, SQUID's and microwave applications.

  10. The latest progress in sugarcane molecular genetics research at the USDA-ARS, Sugarcane Research Laboratory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2005, two sugar molecular genetics tools were developed in the USDA-ARS, Southeast Area, Sugarcane Research Laboratory at Houma, LA. One is the high throughput fluorescence- and capillary electrophoregrams (CE)-based SSR genotyping tool and the other is single pollen collection and SSR genotyping...

  11. High sulfur coal research at the SIUC Coal Technology Laboratory. Quarterly progress report

    SciTech Connect

    Not Available

    1984-01-01

    The research effort addressed in this cooperative agreement includes the conduct of a high-sulfur coal research program and the establishment of a research facility, the Coal Technology Laboratory at the site of the former Carbondale Mining Technology Center. The associated research program is broadly based and directed toward high-sulfur coal, the goal being expand the technology to allow for the increased use of high-sulfur coal in an environmentally acceptable manner. Progress continues to be made on the research in the four areas of coal science, coal preparation, coal conversion, and coal utilization. In the Coal Science area, the maceral separation laboratory is about 90% operational. In the area of coal preparation, a mechanical auger feeder device for introducing material into an experimental hydrocyclone along its axis was constructed and incorporated. A froth flotation pilot plant has been acquired and renovated. Coal conversion studies included experiments to examine the effects of chemical pretreatment on supercritical extraction and desulfurization of coal. It was found that with pretreatment a high-sulfur coal containing predominantly organic sulfur experienced a 57% reduction in sulfur on a concentration basis. Without pretreatment, the sulfur reduction was only 40%. In the work examining the mechanism of hydrogen sulfide formation from iron sulfides, it was found that hydrogen sulfide is formed from hydrogen and iron sulfides by a Langmuir-Hinselwood mechanism. Mixtures of H/sub 2/ and D/sub 2/ produce (H,D)H/sub 2/S with random distributions of H and D. Preliminary studies have been conducted in a 10 cm diameter laboratory scale AFBC unit preparatory to the tests to be conducted on waste fuels.

  12. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    SciTech Connect

    Not Available

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry.

  13. Savannah River Ecology Laboratory, Annual Technical Progress Report of Ecological Research, June 30, 2002

    SciTech Connect

    Paul M. Bertsch,

    2002-06-30

    The Savannah River Ecology Laboratory (SREL) is a research unit of The University of Georgia (UGA) and has been conducting ecological research on the Savannah River Site (SRS) near Aiken, South Carolina for 50 years. The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts fundamental and applied ecological research, as well as education and outreach programs, under a Cooperative Agreement with the U.S. Department of Energy (DOE). The Laboratory's research mission during the 2002 fiscal year was fulfilled with the publication of 76 journal articles and book chapters by faculty, technical staff, students, and visiting scientists. An additional 50 journal articles have been submitted or are in press. Other noteworthy events took place as faculty members, staff, and graduate students received awards. These are described in the section titled Special Accomplishments of Faculty, Staff, Students, and Administration on page 51. Notable scientific accomplishments include work conducted on contaminant transport, stable isotopes, sandhills ecology, and phytoremediation: (1) A collaborative study between Dr. Tom Hinton at SREL and scientists at SRTC demonstrated the feasibility of using illite clay to sequester 137Cs in sediments along the P and R reactor cooling canal system, where approximately 3,000 acres of land are contaminated. Overall, the study showed significant decreases in cesium concentrations and bioavailability following the addition of illite with no sign of harm to the ecosystem. While the cesium remains sequestered from the biosphere, its radioactivity decays and the process progresses from contaminant immobilization to remediation. (2) SREL's stable isotope laboratory is now fully functional. Stable isotope distributions in nature can provide important insights into many historical and current environmental processes. Dr. Christopher Romanek is leading SREL's research in this area

  14. U.S. Army Aeromedical Research Laboratory Annual Progress Report Fiscal Year 2011

    DTIC Science & Technology

    2012-06-01

    Calibration Labs and ISO 9001 Laboratory Accreditation Program Requirements). The ACE Quality Manual, Procedure Manual, and Training Manual drafts as well...60  U.S. Army Aeromedical Research Laboratory — Fiscal Year 2011 v Resources Management ...Administrator Dr. M. Lattimore B-9 6915 Deputy Commander LTC B. Almquist B-2 6882 Resource Management Branch Ms. J. Montgomery F-3

  15. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    SciTech Connect

    Not Available

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  16. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  17. Savannah River Ecology Laboratory annual technical progress report of ecological research, period ending July 31, 1993

    SciTech Connect

    Vaitkus, M.R.; Wein, G.R.; Johnson, G.

    1993-11-01

    This progress report gives an overview of research programs at the Savannah River Site. Topics include; environmental operations support, wood stork foraging and breeding, defense waste processing, environmental stresses, alterations in the environment due to pollutants, wetland ecology, biodiversity, pond drawdown studies, and environmental toxicology.

  18. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    SciTech Connect

    Smith, M.H.

    1996-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).

  19. The Research Laboratory of Electronics Progress Report Number 133, January 1-December 1990

    DTIC Science & Technology

    1990-12-31

    form of a working Beam Epitaxy (MOMBE) of research facility in 1990. The substantial labora- ZnSe tory renovation was completed in February; the CBE...colleagues at Bernstein Waves in Toroidal Plasmas." Pro- the Italian laboratories of E.N.E.A. ( Energia ceedings of the International Sherwood Theory

  20. Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994

    SciTech Connect

    Not Available

    1994-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University`s Institute of Ecology. The laboratory`s overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M&O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the following areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give.

  1. US Army Medical Bioengineering Research and Development Laboratory Annual Progress Report FY 85. Volume 2.

    DTIC Science & Technology

    1985-10-01

    Bti. This program is directly related to the Laboratory’s mission for research in military vector control. 24. (U) Mosquito larvae ( Aedes aegypti...H-14). Vorgetts, L. J. Factors influencing amplification of Bacillus thuringiensis (serotype H-14) endotoxin in Aedes aegypti larvae. Presentations by...in Aedes aegypti larvae. Proceedings, 72nd Annual Meeting, New Jersey Mosquito Control Association. (In Press) DD FORM 1498 EDITION OF MAR 68 IS

  2. Progress in Laser Propagation in a Maritime Environment at the Naval Research Laboratory

    DTIC Science & Technology

    2005-01-01

    maritime propagation 1. INTRODUCTION The Naval Research Laboratory (NRL) investigations into free space optical communications ( FSO ) span a number...and telescope -based receivers at each end of the link. Links from kbps to 100 Mbps are investigated using asymmetric architectures where one end of...modulators, and in advanced telescope concepts. We also design, develop and test advanced techniques in coding and system architectures which are required

  3. Savannah River Ecology Laboratory Annual Technical Progress Report of Ecological Research, June 30, 2001

    SciTech Connect

    Bertsch, Paul M.; Janecek, Laura; Rosier, Brenda

    2001-06-30

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) and has been conducting ecological research on the Savannah River Site (SRS) in South Carolina for 50 years. The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts fundamental and applied ecological research, as well as education and outreach programs, under a Cooperative Agreement with the U.S. Department of Energy (DOE) SRS near Aiken, South Carolina. The Laboratory's research mission during the 2001 fiscal year was fulfilled with the publication of one book and 83 journal articles and book chapters by faculty, technical staff, students, and visiting scientists. An additional 77 journal articles have been submitted or are in press. Other noteworthy events took place as faculty members and graduate students received awards. These are described in the section Special Accomplishments of Faculty, Staff, Students, and Administration on page 54. Notable scientific accomplishments include work conducted on contaminant transport, global reptile decline, phytoremediation, and radioecology. Dr. Domy Adriano authored the second edition of his book ''Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals'', which was recently published by Springer-Verlag. The book provides a comprehensive treatment of many important aspects of trace elements in the environment. The first edition of the book, published in 1986, has become a widely acclaimed and cited reference. International attention was focused on the problem of reptile species decline with the publication of an article on this topic in the journal ''Bioscience'' in August, 2000. The article's authors included Dr. Whit Gibbons and a number of other SREL herpetologists who researched the growing worldwide problem of decline of reptile species. Factors related to these declines include habitat loss and

  4. The Integration of Clinical Care and Laboratory Research. A Model for Medical Progress.

    DTIC Science & Technology

    1995-05-01

    in the inhalation injury studies, the use of stable apparent problems then become topics of research isotopes and electron microscopy in the metabolic...microbiology technician, an anesthesiologist, a appendicitis, gallbladder disease, gastric and duodenal physical therapist, and an occupational therapy

  5. U.S. Army Aeromedical Research Laboratory Annual Progress Report Fiscal Year 2010

    DTIC Science & Technology

    2011-03-01

    S. (2010). Epidermal growth factor receptor transactivation by the cannabinoid receptor (CB1) and transient receptor potential vanilloid 1 ( TRPV1 ...induced by TRPV1 in human corneal epithelial cells. Proceedings of the Association for Research in Vision and Ophthalmology Annual Meeting, 5899/A94...presented “Novel TRPV1 -linked cell signaling pathways mediating inflammatory responses and wound healing in human corneal epithelial cells” at the Fouth

  6. US Army Medical Bioengineering Research and Development Laboratory Annual Progress Report for FY 84. Volume 2

    DTIC Science & Technology

    2015-12-24

    Chronic 153 Mammalian Toxicological Effects of TNT 290 (84PP4870) Continuation of Field Ecological 154 Assessment Procedures to Evaluate the...text oIf each with Securi t -y Classification Code) (U) PO 23. (IT) The objective of this research is to define the fate and ecological effects of...Precede kA ’II uith S.cunly (lassificationi Code (U) Environmental Fate; (U) Ecological Effects; (11) rorpn~ng mAlc; (I) T"prritrrl Fffrt :. (IT) Fflh

  7. National Exposure Research Laboratory

    EPA Pesticide Factsheets

    The Ecosystems Research Division of EPA’s National Exposure Research Laboratory, conducts research on organic and inorganic chemicals, greenhouse gas biogeochemical cycles, and land use perturbations that create stressor exposures and potentia risk

  8. Naval Research Laboratory 1983 Review.

    DTIC Science & Technology

    1983-01-01

    U.S. military, industry , and academia. During 1983, NRL celebrated 60 years of research. To keep pace with naval and national needs, the Laboratory has...that the Laboratory is a dynamic family working together to promote the programs, progress, and innovations that will continue to foster discoveries...inventiveness, and scientific advances for the Navy of the future. v’- . . ..,-. . . . . . . . . o ., .- A .7 . ;-..-. DEDICATION iii PREFACE v Capt

  9. Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1997

    SciTech Connect

    Wein, G.; Rosier, B.

    1997-12-31

    This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

  10. Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1998

    SciTech Connect

    Wein, G.; Rosier, B.

    1998-12-31

    This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

  11. Savannah River Ecology Laboratory annual technical progress report of ecological research for the year ending July 31, 1995

    SciTech Connect

    Smith, M.H.

    1995-07-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the US Department of Energy (DOE) at the Savannah River Site near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. Major additions to SREL Facilities were completed that will enhance the Laboratory`s work in the future. Following several years of planning, opening ceremonies were held for the 5000 ft{sup 2} multi-purpose conference center that was funded by the University of Georgia Research Foundation (UGARF). The center is located on 68 acres of land that was provided by the US Department of Energy. This joint effort between DOE and UGARF supports DOE`s new initiative to develop partnerships with the private sector and universities. The facility is being used for scientific meetings and environmental education programs for students, teachers and the general public. A 6000 ft{sup 2} office and library addition to S@s main building officially opened this year, and construction plans are underway on a new animal care facility, laboratory addition, and receiving building.

  12. Uranium recovery research sponsored by the Nuclear Regulatory Commission at Pacific Northwest Laboratory. Quarterly progress report, June-September 1983

    SciTech Connect

    Foley, M.G.; Deutsch, W.J.; Gee, G.W.; Hartley, J.N.; Kalkwarf, D.R.; Mayer, D.W.; Nelson, R.W.; Opitz, B.E.; Peterson, S.R.; Serne, R.J.

    1983-11-01

    This report documents progress for the following major research projects: stabilization, engineering, and monitoring alternatives assessment for improving regulation of uranium recovery operations and waste management; attenuation of radon emission from uranium tailings; assessment of leachate movement from uranium mill tailings; and methods of minimizing ground-water contaminants from in-situ leach uranium mining.

  13. Chemistry and Materials Science progress report, first half FY 1992. Weapons-Supporting Research and Laboratory Directed Research and Development

    SciTech Connect

    Not Available

    1992-07-01

    This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy.

  14. Air Force Research Laboratory

    DTIC Science & Technology

    2009-06-08

    Air Force Research Laboratory 8 June 2009 Mr. Leo Marple Ai F R h L b t r orce esearc a ora ory Leo.Marple@wpafb.af.mil DISTRIBUTION STATEMENT A...TITLE AND SUBTITLE Air Force Research Laboratory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory ,Wright

  15. NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  16. Green Building Research Laboratory

    SciTech Connect

    Sailor, David Jean

    2013-12-29

    This project provided support to the Green Building Research Laboratory at Portland State University (PSU) so it could work with researchers and industry to solve technical problems for the benefit of the green building industry. It also helped to facilitate the development of PSU’s undergraduate and graduate-level training in building science across the curriculum.

  17. Uranium recovery research sponsored by the Nuclear Regulatory Commission at Pacific Northwest Laboratory. Annual progress report, May 1982-May 1983

    SciTech Connect

    Foley, M.G.; Opitz, B.E.; Deutsch, W.J.; Peterson, S.R.; Gee, G.W.; Serne, R.J.; Hartley, J.N.; Thomas, V.W.; Kalkwarf, D.R.; Walters, W.H.

    1983-06-01

    Pacific Northwest Laboratory (PNL) is currently conducting research for the US Nuclear Regulatory Commission (NRC) on uranium recovery process wastes for both active and inactive operations. NRC-sponsored uranium recovery research at PNL is focused on NRC regulatory responsibilities for uranium-recovery operations: license active milling and in situ extraction operations; concur on the acceptability of DOE remedial-action plans for inactive sites; and license DOE to maintain inactive sites following remedial actions. PNL's program consists of four coordinated projects comprised of a program management task and nine research tasks that address the critical technical and safety issues for uranium recovery. Specifically, the projects endeavor to find and evaluate methods to: prevent erosion of tailings piles and prevent radon release from tailings piles; evaluate the effectiveness of interim stabilization techniques to prevent wind erosion and transport of dry tailings from active piles; estimate the dewatering and consolidation behavior of slurried tailings to promote early cover placement; design a cover-protection system to prevent erosion of the cover by expected environmental stresses; reduce seepage into ground water and prevent ground-water degradation; control solution movement and reaction with ground water in in-situ extraction operations; evaluate natural and induced restoration of ground water in in-situ extraction operations; and monitor releases to the environment from uranium recovery facilities.

  18. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1993 and research proposal for FY 1994

    SciTech Connect

    Birnbaum, H.K.

    1993-03-01

    The materials research laboratory program is about 30% of total Materials Science and Engineering effort on the Univ. of Illinois campus. Coordinated efforts are being carried out in areas of structural ceramics, grain boundaries, field responsive polymeric and organic materials, molecular structure of solid-liquid interfaces and its relation to corrosion, and x-ray scattering science.

  19. Chemistry and Materials Science Weapons-Supporting Research and Laboratory-Directed Research and Development. Second half progress report, FY 1993

    SciTech Connect

    Not Available

    1994-02-01

    Thrust areas of the weapons-supporting research are surface research, uranium research, physics and processing of metals, energetic materials. Group study areas included strength of Al and Al-Mg/alumina bonds, advanced synchrotron radiation study of materials, and theory, modeling, and computation. Individual projects were life prediction for composites and thermoelectric materials with exceptional figures of merit. The laboratory-directed R and D include director`s initiatives (aerogel-based electronic devices, molecular levels of energetic materials), individual projects, and transactinium institute studies. An author index is provided.

  20. Communication Sciences Laboratory Quarterly Progress Report, Volume 9, Number 3: Research Programs of Some of the Newer Members of CSL.

    ERIC Educational Resources Information Center

    Feinstein, Stephen H.; And Others

    The research reported in these papers covers a variety of communication problems. The first paper covers research on sound navigation by the blind and involves echo perception research and relevant aspects of underwater sound localization. The second paper describes a research program in acoustic phonetics and concerns such related issues as…

  1. Progress In Electromagnetics Research Symposium (PIERS)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The third Progress In Electromagnetics Research Symposium (PIERS) was held 12-16 Jul. 1993, at the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California. More than 800 presentations were made, and those abstracts are included in this publication.

  2. Uranium recovery research sponsored by the Nuclear Regulatory Commission at Pacific Northwest Laboratory. Quarterly progress report, April-June 1984

    SciTech Connect

    Foley, M.G.; Deutsch, W.J.; Gee, G.W.; Hartley, J.N.; Kalkwarf, D.R.; Fayer, M.J.; Nelson, R.W.; Opitz, B.E.; Peterson, S.R.; Serne, R.J.; thomas, V.W.; Walters, W.H.; Wogman, N.A.

    1984-08-01

    Progress is reported on the following studies dealing with mill tailings: long-term stabilization; interim stabilization of mill tailings piles; tailings dewatering techniques; tailings neutralization and other alternatives in immobilizing toxic materials in tailings; evaluation of seepage and leachate transport from tailings disposal facilities; effluent and environmental monitoring methods and equipment and instrument testing; attenuation of radon emissions; assessment of leachate movement from uranium mill tailings; and methods of minimizing ground water contamination in in-situ leach uranium mining. 1 figure.

  3. Uranium recovery research sponsored by the Nuclear Regulatory Commission at Pacific Northwest Laboratory. Quarterly progress report, January-March 1984

    SciTech Connect

    Foley, M.G.; Opitz, B.E.; Deutsch, W.J.; Peterson, S.R.; Gee, G.W.; Serne, R.J.; Hartley, J.N.; Thomas, V.W.; Kalkwarf, D.R.; Walters, W.H.; Fayer, M.J.; Wogman, N.A.; Nelson, R.W.

    1984-05-01

    Progress is reported on the following studies dealing with mill tailings: long-term stabilizaton; interim stabilization of mill tailings piles; tailings dewatering techniques; tailings neutralization and other alternatives in immobilizing toxic materials in tailings; evaluation of seepage and leachate transport from tailings disposal facilities; effluent and environmental monitoring methods and equipment and instrument testing; attenuation of radon emissions; assessment of leachate movement from uranium mill tailings; and methods of minimizing ground water contamination in in-situ leach uranium mining.

  4. Uranium recovery research sponsored by the Nuclear Regulatory Commission at Pacific Northwest Laboratory. Quarterly progress report, January-March 1982. Interim report

    SciTech Connect

    Schwendiman, L.C.; Gee, G.W.; Hartley, J.N.; Mishima, J.; Sherwood, D.R.; Silker, W.B.; Serne, R.J.; Nelson, R.W.; Wogman, N.A.; Deutsch, W.J.

    1982-04-01

    Pacific Northwest Laboratory (PNL) has in progress several discrete investigations for the US Nuclear Regulatory Commission (NRC) concerned with process wastes during the active life of uranium mills and during an extended period following their shutdown. The overall objective of this research is to provide NRC and their licensees with technical guidance on several issues related to management of wastes from uranium mills and in situ recovery operations. Principal issues addressed in these studies are designs and performance of radon-suppression covers, the incentives, and constraints in using rock covers (riprap) as well as their design for armoring tailings pile covers, shorter term stabilization options for controlling windblown particles, leachate movement in soil, tailings dewatering, disposal deliberately below the water table, neutralization incentives, contamination control and restoration in in situ uranium recovery and effluent and environmental measurements, instrumentation and protocols. It is expected that many results of these studies will be used in developing regulatory guides and better evaluation of environmental impacts during and following the active life of a uranium recovery facility. Progress on each of several separately identified areas is reported. The information reported is preliminary and conclusions should be regarded as tentative. About 20 topical reports are scheduled during the year to provide detailed description of phases of the work and conclusions therefrom.

  5. Alternative Fuels Research Laboratory

    NASA Technical Reports Server (NTRS)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Nakley, Leah M.; Yen, Chia H.

    2012-01-01

    NASA Glenn has invested over $1.5 million in engineering, and infrastructure upgrades to renovate an existing test facility at the NASA Glenn Research Center (GRC), which is now being used as an Alternative Fuels Laboratory. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch (F-T) synthesis and thermal stability testing. This effort is supported by the NASA Fundamental Aeronautics Subsonic Fixed Wing project. The purpose of this test facility is to conduct bench scale F-T catalyst screening experiments. These experiments require the use of a synthesis gas feedstock, which will enable the investigation of F-T reaction kinetics, product yields and hydrocarbon distributions. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor for catalyst activation studies. Product gas composition and performance data can be continuously obtained with an automated gas sampling system, which directly connects the reactors to a micro-gas chromatograph (micro GC). Liquid and molten product samples are collected intermittently and are analyzed by injecting as a diluted sample into designated gas chromatograph units. The test facility also has the capability of performing thermal stability experiments of alternative aviation fuels with the use of a Hot Liquid Process Simulator (HLPS) (Ref. 1) in accordance to ASTM D 3241 "Thermal Oxidation Stability of Aviation Fuels" (JFTOT method) (Ref. 2). An Ellipsometer will be used to study fuel fouling thicknesses on heated tubes from the HLPS experiments. A detailed overview of the test facility systems and capabilities are described in this paper.

  6. Annual Continuation And Progress Report For Low-Energy Nuclear Physics Research At Lawrence Livermore National Laboratory

    SciTech Connect

    Scielzo, N. D.; Wu, C.

    2015-10-27

    (I)In this project, the Beta-­decay Paul Trap, an open-­geometry RFQ ion trap that can be instrumented with sophisticated radiation detection arrays, is used for precision β-­decay studies. Measurements of β-­decay angular correlations, which are sensitive to exotic particles and other phenomena beyond the Standard Model (SM) of particle physics that may occur at the TeV-­energy scale, are being performed by taking advantage of the favorable properties of the mirror 8Li and 8B β± decays and the benefits afforded by using trapped ions. By detecting the β and two α particles emitted in these decays, the complete kinematics can be reconstructed. This allows a simultaneous measurement of the β-­n, β-­n-­α, and β-α correlations and a determination of the neutrino energy and momentum event by event. In addition, the 8B neutrino spectrum, of great interest in solar neutrino oscillation studies, can be determined in a new way. Beta-­delayed neutron spectroscopy is also being performed on neutron-­rich isotopes by studying the β-­decay recoil ions that emerge from the trap with high efficiency, good energy resolution, and practically no backgrounds. This novel technique is being used to study isotopes of mass-­number A~130 in the vicinity of the N=82 neutron magic number to help understand the rapid neutron-­capture process (r-­process) that creates many of the heavy isotopes observed in the cosmos. (II)A year-long CHICO2 campaign at ANL/ATLAS together with GRETINA included a total of 10 experiments, seven with the radioactive beams from CARIBU and three with stable beams, with 82 researchers involved from 27 institutions worldwide. CHICO2 performed flawlessly during this long campaign with achieved position resolution matching to that of GRETINA, which greatly enhances the sensitivity in the study of nuclear γ-­ray spectroscopy. This can be demonstrated in our results on 144Ba and 146

  7. Laboratory directed research and development 2006 annual report.

    SciTech Connect

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  8. Edge Simulation Laboratory Progress and Plans

    SciTech Connect

    Cohen, R

    2007-06-05

    The Edge Simulation Laboratory (ESL) is a project to develop a gyrokinetic code for MFE edge plasmas based on continuum (Eulerian) techniques. ESL is a base-program activity of OFES, with an allied algorithm research activity funded by the OASCR base math program. ESL OFES funds directly support about 0.8 FTE of career staff at LLNL, a postdoc and a small fraction of an FTE at GA, and a graduate student at UCSD. In addition the allied OASCR program funds about 1/2 FTE each in the computations directorates at LBNL and LLNL. OFES ESL funding for LLNL and UCSD began in fall 2005, while funding for GA and the math team began about a year ago. ESL's continuum approach is a complement to the PIC-based methods of the CPES Project, and was selected (1) because of concerns about noise issues associated with PIC in the high-density-contrast environment of the edge pedestal, (2) to be able to exploit advanced numerical methods developed for fluid codes, and (3) to build upon the successes of core continuum gyrokinetic codes such as GYRO, GS2 and GENE. The ESL project presently has three components: TEMPEST, a full-f, full-geometry (single-null divertor, or arbitrary-shape closed flux surfaces) code in E, {mu} (energy, magnetic-moment) coordinates; EGK, a simple-geometry rapid-prototype code, presently of; and the math component, which is developing and implementing algorithms for a next-generation code. Progress would be accelerated if we could find funding for a fourth, computer science, component, which would develop software infrastructure, provide user support, and address needs for data handing and analysis. We summarize the status and plans for the three funded activities.

  9. Naval Research Laboratory Overview

    DTIC Science & Technology

    2012-10-01

    1930 1940 1950 1960 1920 Aqueous Film Forming Foam 1966 Plan-Position Indicator Gamma - Ray Radiography Liquid Thermal Diffusion Process...Synthetic lubricants Improved Aircraft Canopy Deep Ocean Search First U.S. radar patents Submarine, airborne & OTH radars & IFF First Detection of X... Rays from the Sun submarine life support Over the Horizon Radar The Navy and Marine Corps Corporate Laboratory Dragon Eye UAV 2002 Navy

  10. Virtual robotics laboratory for research

    NASA Astrophysics Data System (ADS)

    McKee, Gerard T.

    1995-09-01

    We report on work currently underway to put a robotics laboratory onto the Internet in support of teaching and research in robotics and artificial intelligence in higher education institutions in the UK. The project is called Netrolab. The robotics laboratory comprises a set of robotics resources including a manipulator, a mobile robot with an on-board monocular active vision head and a set of sonar sensing modules, and a set of laboratory cameras to allow the user to see into the laboratory. The paper will report on key aspect of the project aimed at using multimedia tools and object-oriented techniques to network the robotics resources and to allow them to be configured into complex teaching and experimental modules. The paper will outline both the current developments of Netrolab and provide a perspective on the future development of networked virtual laboratories for research.

  11. US Naval Research Laboratory focus issue: introduction.

    PubMed

    Hoffman, Craig A

    2015-11-01

    Rather than concentrate on a single topic, this feature issue presents the wide variety of research in optics that takes place at a single institution, the United States Naval Research Laboratory (NRL) and is analogous to an NRL feature issue published in Applied Optics in 1967. NRL is the corporate research laboratory for the Navy and Marine Corps. It conducts a broadly based multidisciplinary program of scientific research and advanced technological development in the physical, engineering, space, and environmental sciences related to maritime, atmospheric, and space domains. NRL's research is directed toward new and improved materials, techniques, equipment, and systems in response to identified and anticipated Navy needs. A number of articles in this issue review progress in broader research areas while other articles present the latest results on specific topics.

  12. Research and Development. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    Research and Development is a laboratory-oriented course that includes the appropriate common essential elements for industrial technology education plus concepts and skills related to research and development. This guide provides teachers of the course with learning activities for secondary students. Introductory materials include an…

  13. 1999 LDRD Laboratory Directed Research and Development

    SciTech Connect

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  14. Laboratory directed research and development

    SciTech Connect

    Not Available

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  15. SESAME/Environmental Research Laboratories

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Environmental Research Laboratories (ERL) have been designated as the basic research group of the National Oceanic and Atmospheric Administration (NOAA). ERL performs an integrated program of research and research services directed toward understanding the geophysical environment, protecting the environment, and improving the forecasting ability of NOAA. Twenty-four laboratories located throughout the United States comprise ERL. The Project SESAME (Severe Environmental Storms and Mesoscale Experiment) Planning Office is a project office within ERL. SESAME is conceived as a joint effort involving NOAA, NASA, NSF, and the atmospheric science community to lay the foundation for improved prediction of severe convective storms. The scientific plan for SESAME includes a phased buildup of analysis, modeling, instrumentation development and procurement, and limited-scale observational activities.

  16. Summer Research Program (1992). Graduate Student Research Program (GSRP) Reports. Volume 8. Phillips Laboratory.

    DTIC Science & Technology

    1992-12-28

    Research Program Starfire Optical Range, Phillips Laboratory /LITE Kirtland Air Force Base, Albuquerque, NM 87117 Sponsored by: Air ... Phillips Laboratory Sponsored by: Air Force Office of Scientific Research Kirtland Air Force Base, Albuquerque, New Mexico September, 1992 18-1 PROGRESS...Report for: Summer Research Program Phillips Laboratory Sponsored by: Air

  17. Progress at the Jefferson Laboratory FEL

    SciTech Connect

    Tennant, Christopher

    2009-01-01

    As the only currently operating free electron laser (FEL) based on a CW superconducting energy recovering linac (ERL), the Jefferson Laboratory FEL Upgrade remains unique as an FEL driver. The present system represents the culmination of years of effort in the areas of SRF technology, ERL operation, lattice design, high power optics and DC photocathode gun technology. In 2001 the FEL Demo generated 2.1 kW of laser power. Following extensive upgrades, in 2006 the FEL Upgrade generated 14.3 kW of laser power breaking the previous world record. The FEL Upgrade remains a valuable testbed for studying a variety of collective effects, such as the beam breakup instability, longitudinal space charge and coherent synchrotron radiation. Additionally, there has been exploration of operation with lower injection energy and higher bunch charge. Recent progress and achievements in these areas will be presented, and two recent milestones â installation of a UV FEL and establishment of a DC gun test s

  18. MSU-DOE Plant Research Laboratory

    SciTech Connect

    Not Available

    1991-01-01

    This document is the compiled progress reports of research funded through the Michigan State University/Department of Energy Plant Research Laboratory. Fourteen reports are included, covering the molecular basis of plant/microbe symbiosis, cell wall biosynthesis and proteins, gene expression, stress responses, plant hormone biosynthesis, interactions between the nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and trafficking, regulation of lipid metabolism, molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria, and hormonal involvement in environmental control of plant growth. 320 refs., 26 figs., 3 tabs. (MHB)

  19. Network Science Research Laboratory (NSRL) Telemetry Warehouse

    DTIC Science & Technology

    2016-06-01

    ARL-TR-7710 ● JUNE 2016 US Army Research Laboratory Network Science Research Laboratory (NSRL) Telemetry Warehouse by Theron...longer needed. Do not return it to the originator. ARL-TR-7710 ● JUNE 2016 US Army Research Laboratory Network Science Research...Laboratory (NSRL) Telemetry Warehouse by Andrew J Toth Computational and Information Sciences Directorate, ARL and Theron Trout Stormfish

  20. Progressing towards laboratory accreditation in developing countries.

    PubMed

    Young, D S

    2010-12-01

    Laboratory testing is of great value in the diagnosis and management of diseases. Good quality of results is essential if test results are to be meaningful. Uniformly high standards of laboratory practice are required to ensure that physicians may consistently rely on test results. Accreditation provides a way whereby a laboratory may meet international standards and provide assurance to a hospital's administration, medical and laboratory staff and patients that the laboratory is providing high quality results. In the absence of a national accreditation program, laboratories should undertake the low-cost or no cost actions that are elements of all accreditation programs. National societies concerned with the field of laboratory medicine or clinical pathology should work together with the appropriate government agencies to establish aNational Accrediting Body. Institution of an accrediting program will raise the visibility of clinical laboratory testing and ensure enhanced quality of testing for the entire population,

  1. Research Performance Progress Report

    SciTech Connect

    Park, Hye -Sook

    2014-09-10

    The major goals of this project is to develop a suite of diagnostics to probe magnetic fields generated by the dynamics of high velocity interpenetrating plasma flows relevant to astrophysical collisionless shocks. Collisionless shocks are common in the universe and are responsible for decelerating and thermalizing supersonic plasma flows and accelerating a fraction of the incident particles to high energies. When high velocity, low density, plasma flows interact in astrophysics, turbulent electrostatic and electromagnetic waves are generated due to plasma instabilities, such as the Weibel instability. This can lead to localized pockets of very strong magnetic field generation. The net result is that the plasmas stagnate in what is called a collisionless shock. Understanding these enigmatic interactions requires well-controlled laboratory experiments able to validate the theory and the simulations. Time and spatially resolved magnetic field diagnostics are key to probing these frontier plasma dynamics, relevant to both astrophysics and laboratory applications of plasma physics. This project will enable us to develop the necessary diagnostics for this experiment on NIF. Our team has vast experience in performing laser experiments, theory, simulations and diagnostic development and is ideally suited for carrying out this work.

  2. Photobiology Research Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2012-06-01

    This fact sheet provides information about Photobiology Research Laboratory capabilities and applications at NREL. The photobiology group's research is in four main areas: (1) Comprehensive studies of fuel-producing photosynthetic, fermentative, and chemolithotrophic model microorganisms; (2) Characterization and engineering of redox enzymes and proteins for fuel production; (3) Genetic and pathway engineering of model organisms to improve production of hydrogen and hydrocarbon fuels; and (4) Studies of nanosystems using biological and non-biological materials in hybrid generation. NREL's photobiology research capabilities include: (1) Controlled and automated photobioreactors and fermenters for growing microorganisms under a variety of environmental conditions; (2) High-and medium-throughput screening of H{sub 2}-producing organisms; (3) Homologous and heterologous expression, purification, and biochemical/biophysical characterization of redox enzymes and proteins; (4) Qualitative and quantitative analyses of gases, metabolites, carbohydrates, lipids, and proteins; (5) Genetic and pathway engineering and development of novel genetic toolboxes; and (6) Design and spectroscopic characterization of enzyme-based biofuel cells and energy conversion nanodevices.

  3. Analytical Chemistry Laboratory progress report for FY 1998.

    SciTech Connect

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-03-29

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  4. Analytical Chemistry Laboratory progress report for FY 1999

    SciTech Connect

    Green, D. W.; Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.

    2000-06-15

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1999 (October 1998 through September 1999). This annual progress report, which is the sixteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  5. [Research progress on wetland ecotourism].

    PubMed

    Wang, Li-Long; Lu, Lin

    2009-06-01

    Wetland is rich in biodiversity and cultural diversity, possessing higher tourism value and environmental education and community participation functions. Wetland ecotourism reflects the sustainable development of tourism economy and wetland protection, having received great concern from governments and scholars at home and abroad. This paper summarized the related theories and practices, discussed the research advances in wetland ecotourism from the aspects of significance, progress, contents, methods and results, and pointed out the important research fields in the future, aimed to accelerate the development of wetland ecotourism research and to provide reference about the resources exploitation, environment protection, and scientific administration of wetland and related scenic areas.

  6. [Research Progress on Forensic Entomotoxicology].

    PubMed

    Liu, Zhi-jiang; Zhai, Xian-dun; Guan, Ling; Mo, Yao-nan

    2015-06-01

    Forensic entomotoxicology is a branch of forensic medicine, which applies entomology, toxicology and other related studies to solve the poisoning cases. It has an obvious advantage in the investigation on poisoning death. Based on the expounding definition and research of entomotoxicology, this paper reviews research progress and application value in some aspects of forensic medicine, such as the effects of drugs/toxins on the growth and development of sarcosaphagous insects and the qualitative and quantitative analysis of the drugs/toxins in the poisoned body tissue.

  7. Earth Resources Laboratory research and technology

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The accomplishments of the Earth Resources Laboratory's research and technology program are reported. Sensors and data systems, the AGRISTARS project, applied research and data analysis, joint research projects, test and evaluation studies, and space station support activities are addressed.

  8. Research on Speech Perception. Progress Report No. 13.

    ERIC Educational Resources Information Center

    Pisoni, David B.; And Others

    Summarizing research activities in 1987, this is the thirteenth annual report of research on speech perception, analysis, synthesis, and recognition conducted in the Speech Research Laboratory of the Department of Psychology at Indiana University. The report includes extended manuscripts, short reports, progress reports, and information on…

  9. Research on Speech Perception. Progress Report No. 14.

    ERIC Educational Resources Information Center

    Pisoni, David B.; And Others

    Summarizing research activities in 1988, this is the fourteenth annual report of research on speech perception, analysis, synthesis, and recognition conducted in the Speech Research Laboratory of the Department of Psychology at Indiana University. The report includes extended manuscripts, short reports, and progress reports. The report contains…

  10. Air Force Research Laboratory Technology Milestones 2008

    DTIC Science & Technology

    2008-01-01

    Air Force Research Laboratory ( AFRL ) is the only science and technology (S&T) organization for the Air Force . Accordingly, AFRL fulfills a mission to...Readership survey is sponsored by the Air Force Research Laboratory ( AFRL ), Wright-Patterson Air Force Base, Ohio. Thank you in advance for your...Base Defense AFRL researchers participated in the Robotic Physical Security Experiment, conducted at

  11. Analytical chemistry laboratory. Progress report for FY 1997

    SciTech Connect

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1997-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1997 (October 1996 through September 1997). This annual progress report is the fourteenth in this series for the ACL, and it describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  12. Research project on nanospace laboratory and related topics

    NASA Astrophysics Data System (ADS)

    Yamada, Isao

    1996-04-01

    The research project on Nano-Space Laboratory and related topics are reviewed. This project has been funded by the Special Coordination Funds for Promoting Science and Technology since 1994. The project is classified into three major topics: (1) materials development by atom lab, (2) materials development by molecular lab and (3) development of theory and basic technology for nano-space research. The paper describes progress of the research with emphasis placed especially on new process technologies.

  13. NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY - AN ANNUAL REPORT OF ACCOMPLISHMENTS FOR FISCAL YEAR 2000

    EPA Science Inventory

    This Annual Report showcases some of the research activities of the National Health and Environmental Effects Research Laboratory (NHEERL) in various health and environmental effects research areas. The report is an indicator of the examples of progress and accomplishments that ...

  14. Cookstove Laboratory Research - Fiscal Year 2016 Report

    EPA Science Inventory

    This report provides an overview of the work conducted by the EPA cookstove laboratory research team in Fiscal Year 2016. The report describes research and activities including (1) ISO standards development, (2) capacity building for international testing and knowledge centers, ...

  15. Research Laboratories and Centers Fact Sheet

    EPA Pesticide Factsheets

    The Office of Research and Development is the research arm of the U.S. Environmental Protection Agency. It has three national laboratories and four national centers located in 14 facilities across the country.

  16. Stanford Aerospace Research Laboratory research overview

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. L.; Alder, L. J.; Chen, V. W.; Dickson, W. C.; Ullman, M. A.

    1993-01-01

    Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be, addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modelling and control of extremely flexible space structures. The ARL has designed and built several semi-autonomous free-flying robots that perform numerous tasks in a zero-gravity, drag-free, two-dimensional environment. It is envisioned that future generations of these robots will be part of a human-robot team, in which the robots will operate under the task-level commands of astronauts. To make this possible, the ARL has developed a graphical user interface (GUI) with an intuitive object-level motion-direction capability. Using this interface, the ARL has demonstrated autonomous navigation, intercept and capture of moving and spinning objects, object transport, multiple-robot cooperative manipulation, and simple assemblies from both free-flying and fixed bases. The ARL has also built a number of experimental test beds on which the modelling and control of flexible manipulators has been studied. Early ARL experiments in this arena demonstrated for the first time the capability to control the end-point position of both single-link and multi-link flexible manipulators using end-point sensing. Building on these accomplishments, the ARL has been able to control payloads with unknown dynamics at the end of a flexible manipulator, and to achieve high-performance control of a multi-link flexible manipulator.

  17. Virtual Instruction: A Qualitative Research Laboratory Course

    ERIC Educational Resources Information Center

    Stadtlander, Lee M.; Giles, Martha J.

    2010-01-01

    Online graduate programs in psychology are becoming common; however, a concern has been whether instructors in the programs provide adequate research mentoring. One issue surrounding research mentoring is the absence of research laboratories in the virtual university. Students attending online universities often do research without peer or lab…

  18. Recent progress in henipavirus research.

    PubMed

    Halpin, Kim; Mungall, Bruce A

    2007-09-01

    Following the discovery of two new paramyxoviruses in the 1990s, much effort has been placed on rapidly finding the reservoir hosts, characterising the genomes, identifying the viral receptors and formulating potential vaccines and therapeutic options for these viruses, Hendra and Nipah viruses caused zoonotic disease on a scale not seen before with other paramyxoviruses. Nipah virus particularly caused high morbidity and mortality in humans and high morbidity in pig populations in the first outbreak in Malaysia. Both viruses continue to pose a threat with sporadic outbreaks continuing into the 21st century. Experimental and surveillance studies identified that pteropus bats are the reservoir hosts. Research continues in an attempt to understand events that precipitated spillover of these viruses. Discovered on the cusp of the molecular technology revolution, much progress has been made in understanding these new viruses. This review endeavours to capture the depth and breadth of these recent advances.

  19. Idaho National Engineering Laboratory radioecology and ecology programs. 1983 progress report

    SciTech Connect

    Markham, O. D.

    1983-06-01

    Progress is reported in research on: the baseline ecology of the Idaho National Engineering Laboratory (INEL), the effects of disturbance on animal and plant communities, and the behavior of radionuclides in the environment surrounding radioactive waste sites. Separate abstracts have been prepared for individual reports. (ACR)

  20. Crime Laboratory Proficiency Testing Research Program.

    ERIC Educational Resources Information Center

    Peterson, Joseph L.; And Others

    A three-year research effort was conducted to design a crime laboratory proficiency testing program encompassing the United States. The objectives were to: (1) determine the feasibility of preparation and distribution of different classes of physical evidence; (2) assess the accuracy of criminalistics laboratories in the processing of selected…

  1. 1996 Laboratory directed research and development annual report

    SciTech Connect

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P.

    1997-04-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  2. Naval Research Laboratory Arctic Initiatives

    DTIC Science & Technology

    2011-06-01

    Initiatives • Naval Arctic Environmental Research – Improved Physical Understanding – Integrated Arctic Modeling and Prediction – Developing New ...of the Arctic environment and important coupled processes operating in the Arctic region • Development of a new , dynamic, fully-integrated Arctic...longer lead times, including the use of satellite SAR data for assimilation into integrated models • Generation of new technologies (platforms

  3. Lawrence Berkeley Laboratory catalog of research projects

    SciTech Connect

    Not Available

    1991-01-01

    Research from Lawrence Berkeley Laboratory is briefly presented. Topics include: (1) Applied Science; (2) Chemical Sciences; (3) Earth Sciences; (4) Materials Sciences; (5) Accelerator and Fusion Research; (6) Nuclear Science; (7) Physics; (8) Cell and Molecular Biology; (9) Chemical Biodynamics; (10) Research Medicine and Radiation Biophysics; (11) Engineering; (12) Environmental Protection, Health and Safety; and (13) Information and Computing Sciences. (WET)

  4. Naval Research Laboratory 1986 Review

    DTIC Science & Technology

    1986-01-01

    Lanzano, P., Earth , Moon, and Planets 25:27- 2763 34:283-304 Temperature Measurements of Shocked Water Using a Fluorescence Probe, by Jus- INSTRUMENTATION...51 Steep and Breaking Deep Water Waves 53 ,. Rapid Three-Dimensional Ocean Acoustic Computations 56 " Inertial Wave Dynamics 58 * Nonlinear Salt...itability, lubricants, shipbuilding materials, fire use in microsurgery. On Earth . NRL researchers figihting. along with the study of sound in the sea. helped

  5. Naval Research Laboratory 1984 Review.

    DTIC Science & Technology

    1985-07-16

    M.E. . A Method for Measuring the Frequency Haran and B.D. Cool [J. Acoust. Soc. Am. Dispersion for Broadband Pulses 73, 774-779 (1983)], by Trivett...Sound, pioneered in the fields of transferred to this office, NRL thus became the high - frequency radio and underwater sound prop- corporate research...and a scanning/transmission tion facility, and facilities for high frequency electron microscope; an ion implantation facility; (HF) and signal analysis

  6. 1980 Naval Research Laboratory Review

    DTIC Science & Technology

    1981-07-01

    the highest sensitivity and drive level possi- 10000 psi and at temperatures from 0 to 35C. ble, consistent with omnidirectional characteris...height swell separately, but not both simultaneously. measurements from nadir-looking radars. Efforts have been made to remove the effects of An airborne ...efficiently is a dynamic process that requires con- tinual attention from managers at all levels . One pioneered naval research into space, from atmos

  7. Stirling laboratory research engine survey report

    NASA Technical Reports Server (NTRS)

    Anderson, J. W.; Hoehn, F. W.

    1979-01-01

    As one step in expanding the knowledge relative to and accelerating the development of Stirling engines, NASA, through the Jet Propulsion Laboratory (JPL), is sponsoring a program which will lead to a versatile Stirling Laboratory Research Engine (SLRE). An objective of this program is to lay the groundwork for a commercial version of this engine. It is important to consider, at an early stage in the engine's development, the needs of the potential users so that the SLRE can support the requirements of educators and researchers in academic, industrial, and government laboratories. For this reason, a survey was performed, the results of which are described.

  8. Analytical Chemistry Laboratory. Progress report for FY 1996

    SciTech Connect

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1996-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

  9. Stirling Laboratory Research Engine: Preprototype configuration report

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.

    1982-01-01

    The concept of a simple Stirling research engine that could be used by industrial, university, and government laboratories was studied. The conceptual and final designs, hardware fabrication and the experimental validation of a preprototype stirling laboratory research engine (SLRE) were completed. Also completed was a task to identify the potential markets for research engines of this type. An analytical effort was conducted to provide a stirling cycle computer model. The versatile engine is a horizontally opposed, two piston, single acting stirling engine with a split crankshaft drive mechanism; special instrumentation is installed at all component interfaces. Results of a thermodynamic energy balance for the system are reported. Also included are the engine performance results obtained over a range of speeds, working pressures, phase angles and gas temperatures. The potential for a stirling research engine to support the laboratory requirements of educators and researchers was demonstrated.

  10. Artist's Concept of NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications.

  11. Chemical research at Argonne National Laboratory

    SciTech Connect

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  12. NASA Ames Fluid Mechanics Laboratory research briefs

    NASA Technical Reports Server (NTRS)

    Davis, Sanford (Editor)

    1994-01-01

    The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.

  13. Basic Research and Progress against Cancer

    Cancer.gov

    An infographic about the importance of basic research for making progress against cancer. The graphic shows the research milestones that led to the development and approval of crizotinib (Xalkori®) to treat certain non-small cell lung cancers.

  14. 1997 Laboratory directed research and development. Annual report

    SciTech Connect

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P.

    1997-12-31

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  15. Laboratory directed research and development annual report 2004.

    SciTech Connect

    Not Available

    2005-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2004. In addition to a programmatic and financial overview, the report includes progress reports from 352 individual R and D projects in 15 categories. The 15 categories are: (1) Advanced Concepts; (2) Advanced Manufacturing; (3) Biotechnology; (4) Chemical and Earth Sciences; (5) Computational and Information Sciences; (6) Differentiating Technologies; (7) Electronics and Photonics; (8) Emerging Threats; (9) Energy and Critical Infrastructures; (10) Engineering Sciences; (11) Grand Challenges; (12) Materials Science and Technology; (13) Nonproliferation and Materials Control; (14) Pulsed Power and High Energy Density Sciences; and (15) Corporate Objectives.

  16. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Researchers perform tests at Kennedy Space Center. New facilities for such research will be provided at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  17. Laboratory Directed Research and Development Program Activities for FY 2007.

    SciTech Connect

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of

  18. Measuring research progress in photovoltaics

    NASA Technical Reports Server (NTRS)

    Jackson, B.; Mcguire, P.

    1986-01-01

    The role and some results of the project analysis and integration function in the Flat-plate Solar Array (FSA) Project are presented. Activities included supporting the decision-making process, preparation of plans for project direction, setting goals for project activities, measuring progress within the project, and the development and maintenance of analytical models.

  19. Analytical Chemistry Laboratory progress report for FY 1989

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1989-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1989 (October 1988 through September 1989). The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  20. Analytical Chemistry Laboratory progress report for FY 1985

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.

    1985-12-01

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab.

  1. Analytical Chemistry Laboratory progress report for FY 1991

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Boparai, A.S.

    1991-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1991 (October 1990 through September 1991). This is the eighth annual report for the ACL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  2. Idaho National Laboratory Research & Development Impacts

    SciTech Connect

    Stricker, Nicole

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  3. Optics at the naval research laboratory.

    PubMed

    Sanderson, J A

    1967-12-01

    Edward O. Hulburt initiated optical research at The Naval Research Laboratory in June 1924, choosing, fields of investigation such as the upper atmosphere of the earth, especially the ionosphere, gas discharges, the optical properties of the atmosphere and of the sea, visibility, ultraviolet and infrared physics, photoelasticity, and similar subjects. Ultraviolet and x-ray experiments from rockets were an outgrowth from continuing interest in the upper atmosphere, ultimately leading to the establishment of the E. O. Hulburt Center for Space Research in February 1963. Several divisions of the NRL conduct optical research in chemical spectroscopy, the properties of solids, and plasma physics, in addition to broad programs in the Optical Physics Division.

  4. Research Traditions, Diversity, and Progress.

    ERIC Educational Resources Information Center

    Buchmann, Margret; Floden, Robert E.

    1989-01-01

    An assessment is provided of two papers responding to an article by P. Atkinson, S. Delamont, and M. Hammersley (1988) critiquing papers by E. Jacob (1987, 1988) on qualitative research traditions. Definitions of "tradition" and "research tradition," and the necessity to include British research in Jacob's meta-analysis are…

  5. Air Force Research Laboratory Technology Milestones 2007

    DTIC Science & Technology

    2007-01-01

    Earpiece System, or ACCES®, under a Cooperative Research and Development Agreement with Westone Laboratories, Inc. The innovative technology improves...trained in creating impressions for the custom-molded earpieces . Often this meant contacting researchers at AFRL. With hundreds of sets of this product...the flyers’ ears. By integrating specialized electronics into custom-molded earpieces , ACCES allows wearers to experience clear audio communications

  6. Mobile robotics research at Sandia National Laboratories

    SciTech Connect

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  7. Perspectives from Former Executives of the DOD Corporate Research Laboratories

    DTIC Science & Technology

    2009-03-01

    Research Laboratory (NRL) in Washington, DC; and the Air Force Research Laboratory ( AFRL ) in Dayton, Ohio respectively. These individuals are: John Lyons...13 Vincent Russo and the Air Force Research Laboratory The Air Force Research Laboratory ( AFRL ) was activated in 1997. Prior to the creation of... AFRL , the Air Force conducted its research at four major

  8. Progress in Impulse Approach Research

    DTIC Science & Technology

    1992-10-30

    and the largest laboratory scattering angles, is the rainbow-like singularity called edge effect . This nmechalnism becomes operative when the recoil...calculated differential cross section. These two rainbows-like singularities, called the edge effect [11], correspond to a lower and an upper bound for the...and are distinct from the rainbows due to the dynamical effects discussed previously [ 121. In the appendix the Jacobian for the edge effect is shown

  9. Nuclear Physics Laboratory, University of Colorado, Final Progress Report

    SciTech Connect

    Kinney, E.R., ed.

    2004-05-12

    OAK-B135 The results and progress of research funded by DOE grant number DOE-FG03-95ER40913 at the University of Colorado at Boulder is described. Includes work performed at the HERMES experiment at DESY to study the quark structure of the nucleon and the hadronization process in nuclei, as well as hadronic reactions studied at LAMPF, KEK, and Fermilab.

  10. Laboratory Directed Research and Development Program

    SciTech Connect

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  11. Development of Research Projects in Advanced Laboratory

    NASA Astrophysics Data System (ADS)

    Yu, Ping; Guha, Suchi

    2008-04-01

    Advanced laboratory serves as a bridge spanning primary physics laboratory and scientific research or industrial activities for undergraduate students. Students not only study modern physics experiments and techniques but also acquire the knowledge of advanced instrumentation. It is of interest to encourage students using the knowledge into research projects at a later stage of the course. We have designed several scientific projects for advanced laboratory to promote student's abilities of independent research. Students work as a team to select the project and search literatures, to perform experiments, and to give presentations. During the research project, instructor only provides necessary equipment for the project without any pre-knowledge of results, giving students a real flavor of scientific research. Our initial attempt has shown some interesting results. We found that students showed a very strong motivation in these projects, and student performances exceeded our expectation. Almost all the students in our first batch of the course have now joined graduate school in Physics and Materials Science. In the future we will also arrange graduate students working with undergraduate students to build a collaborative environment. In addition, a more comprehensive method will be used to evaluate student achievements.

  12. Stirling engine research at Argonne National Laboratory

    SciTech Connect

    Holtz, R.E.; Daley, J.G.; Roach, P.D.

    1986-06-01

    Stirling engine research at Argonne National Laboratory has been focused at (1) development of mathematical models and analytical tools for predicting component and engine performance, and (2) experimental research into fundamental heat transfer and fluid flow phenomena occurring in Stirling cycle devices. A result of the analytical effort has been the formation of a computer library specifically for Stirling engine researchers and developers. The library contains properties of structural materials commonly used, thermophysical properties of several working fluids, correlations for heat transfer calculations and general specifications of mechanical arrangements (including various drive mechanisms) that can be utilized to model a particular engine. The library also contains alternative modules to perform analysis at different levels of sophistication, including design optimization. A reversing flow heat transfer facility is operating at Argonne to provide data at prototypic Stirling engine operating conditions under controlled laboratory conditions. This information is needed to validate analytical models.

  13. Basic Research and Progress against Pediatric Cancer

    Cancer.gov

    An infographic about the importance of basic research for making progress against childhood cancers. Shows the milestones that led to development and approval of dinutuximab (Unituxin®) to treat neuroblastoma, a cancer seen mainly in children.

  14. Research Progress on Vertebrobasilar Dolichoectasia

    PubMed Central

    Yuan, Yong-Jie; Xu, Kan; Luo, Qi; Yu, Jin-Lu

    2014-01-01

    Vertebrobasilar dolichoectasia (VBD) is a rare disease characterized by significant expansion, elongation, and tortuosity of the vertebrobasilar arteries. Current data regarding VBD are very limited. Here we systematically review VBD incidence, etiology, characteristics, clinical manifestations, treatment strategies, and prognosis. The exact incidence rate of VBD remains unclear, but is estimated to be 1.3% of the population. The occurrence of VBD is thought to be due to the cooperation of multiple factors, including congenital factors, infections and immune status, and degenerative diseases. The VBD clinical manifestations are complex with ischemic stroke as the most common, followed by progressive compression of cranial nerves and the brain stem, cerebral hemorrhage, and hydrocephalus. Treatment of VBD remains difficult. Currently, there are no precise and effective treatments, and available treatments mainly target the complications of VBD. With the development of stent technology, however, it may become an effective treatment for VBD. PMID:25136259

  15. Laboratory Directed Research and Development FY 2000

    SciTech Connect

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  16. National Renewable Energy Laboratory 2005 Research Review

    SciTech Connect

    Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

    2006-06-01

    Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

  17. Cookstove Laboratory Research - Fiscal Year 2016 Report ...

    EPA Pesticide Factsheets

    This report provides an overview of the work conducted by the EPA cookstove laboratory research team in Fiscal Year 2016. The report describes research and activities including (1) ISO standards development, (2) capacity building for international testing and knowledge centers, (3) laboratory assessments of cookstove systems, (4) journal publications, and (5) cookstove events. The U.S. Environmental Protection Agency’s (EPA’s) cookstove laboratory research program was first developed to assist the EPA-led Partnership for Clean Indoor Air and is now part of the U.S. Government’s commitment to the Global Alliance for Clean Cookstoves (the Alliance). Goals of the program are to: (1) support the development of testing protocols and standards for cookstoves through ISO (International Organization for Standardization) TC (Technical Committee) 285: Clean Cookstoves and Clean Cooking Solutions, (2) support the development of international Regional Testing and Knowledge Centers (many sponsored by the Alliance) for scientifically evaluating and certifying cookstoves to international standards, and (3) provide an independent source of data to Alliance partners. This work supports EPA’s mission to protect human health and the environment. Household air pollution, mainly from solid-fuel cookstoves in the developing world, is estimated to cause approximately 4 million premature deaths per year, and emissions of black carbon and other pollutants from cookstoves aff

  18. Progress in knowledge representation research

    NASA Technical Reports Server (NTRS)

    Lum, Henry

    1985-01-01

    Brief descriptions are given of research being carried out in the field of knowledge representation. Dynamic simulation and modelling of planning systems with real-time sensor inputs; development of domain-independent knowledge representation tools which can be used in the development of application-specific expert and planning systems; and development of a space-borne very high speed integrated circuit processor are among the projects discussed.

  19. FY2007 Laboratory Directed Research and Development Annual Report

    SciTech Connect

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  20. Health and Safety Research Division progress report for the period October 1, 1991--March 31, 1993

    SciTech Connect

    Berven, B.A.

    1993-09-01

    This is a progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology, Biological and Radiation Physics, Chemical Physics, Biomedical and Environmental Information Analysis, Risk Analysis, Center for Risk Management, Associate Laboratories for Excellence in Radiation Technology (ALERT), and Contributions to National and Lead Laboratory Programs and Assignments--Environmental Restoration.

  1. [Research progress on malaria vector control].

    PubMed

    Zhu, Guo-Ding; Cao, Jun; Zhou, Hua-Yun; Gao, Qi

    2013-06-01

    Vector control plays a crucial role in the stages of malaria control and elimination. Currently, it mainly relies on the chemical control methods for adult mosquitoes in malaria endemic areas, however, it is undergoing the serious threat by insecticide resistance. In recent years, the transgenic technologies of malaria vectors have made a great progress in the laboratory. This paper reviews the challenges of the traditional methods and the rapid developed genetic modified technology in the application of vector control.

  2. Analytical Chemistry Laboratory, progress report for FY 1993

    SciTech Connect

    Not Available

    1993-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

  3. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 3: Laboratory descriptions

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The following study objectives are covered: (1) identification of major laboratory equipment; (2) systems and operations analysis in support of the laboratory design; and (3) conceptual design of the comm/nav research laboratory.

  4. Air Force Research Laboratory Preparation for Year 2000.

    DTIC Science & Technology

    2007-11-02

    Air Force Research Laboratory , Phillips Research Site , Kirkland Air Force Base, New...Pentagon, Washington, D.C. 20301-1900. The identity of each writer and caller is fully protected. Acronym AFRL Air Force Research Laboratory INSPECTOR...completion of the implementation phase was May 31, 1999. Air Force Research Laboratory . The Air Force Research

  5. Investigation on non-glass laser fusion targets: their fabrication, characterization, and transport. Charged Particle Research Laboratory report No. 2-81, progress report, June 1, 1980-January 31, 1981

    SciTech Connect

    Kim, K.

    1981-01-01

    A summary is presented of the research progress made under LLNL Subcontract 8320003 for the period of June 1, 1980 through January 31, 1981. The main theme of the research has continued to be the development of techniques for fabricating, characterizing, and transporting laser fusion targets on a continuous basis. The target fabrication techniques are intended mainly for non-glass spherical shell targets, both cryogenic and non-cryogenic. Specifically, progress has been made in each of the following categories. (1) Investigation of liquid hydrogen behavior inside a spherical laser fusion target. (2) Development of automated target characterization scheme. (3) Study of cryogenic target fabrication scheme utilizing cold-gas-levitation and electric field positioning. (4) Development of a cryogenic target fabrication system based on target free-fall method. (5) Generation of hydrogen powder using electro-hydrodynamic spraying. (6) Study of target-charging techniques for application to contactless cryogenic target fabrication. (7) Development of hollow metal sphere production technique. A brief summary of the research progress made in each category is presented.

  6. Environmental Research Division technical progress report, January 1984-December 1985

    SciTech Connect

    Not Available

    1986-05-01

    Technical progress in the various research and assessment activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1984 to 1985. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Environmental Impacts, Fundamental Molecular Physics and Chemistry, and Waste Management Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter.

  7. Engineering research progress report, October 1983-March 1984

    SciTech Connect

    Woo, H.H.; Cherniak, J.C.; Hymer, J.D.; Kamelgarn, M.B.

    1984-08-01

    Our intent in this progress report is to provide a summary of the activities pursued by members of the Mechanical Engineering (ME) Department's Engineering Research Program. The Program's mission is to do research for specific applications in mechanical-engineering fields that are of immediate or potential interest to the Laboratory. The FY84 Program comprises nine projects in four thrust areas in the ME Department. The thrust areas are: Surface Measurements and Characterization; Fabrication Technology; Materials Characterization and Behavior; and Computer-Aided Engineering. In the past, our research was supported almost exclusively by weapons programs; recently, however, we significantly increased our involvement in other Laboratory programs as well. In response to this change, we have established new procedures and guidelines for the submission, review, and selection of research proposals.

  8. Experimental Research Progress of the VASIMR Engine

    NASA Astrophysics Data System (ADS)

    Squire, J. P.; Díaz, F. R. Chang; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.

    2002-01-01

    The Advanced Space Propulsion Laboratory (ASPL) of NASA's Johnson Space Center is performing research on a Variable Specific Impulse MagnetoPlasma Rocket (VASIMR). The VASIMR is a high power, radio frequency (RF) driven magnetoplasma rocket, capable of very high exhaust velocities, > 100 km/s. In addition, its unique architecture allows in- flight mission-optimization of thrust and specific impulse to enhance performance and reduce trip time. A NASA-led research team involving industry, academia and government facilities is pursuing the development of this concept in the United States. The ASPL's experimental research focuses on three major areas: helicon plasma production, ion cyclotron resonant acceleration (ICRA) and plasma expansion in a magnetic nozzle. The VASIMR experiment (VX-10) performs experimental research that demonstrates the thruster concept at a total RF power on the order of 10 kW. A flexible four- magnet system, with a 1.3 Tesla maximum magnetic field strength, is computer controlled to study axial magnetic field profile shape effects. Power generated at 10 - 50 MHz with about 5 kW is used to perform helicon plasma source development. A 3 MHz RF transmitter capable of 100 kW is available for ICRA experiments. The primary diagnostics are: gas mass flow controllers, RF input power, Langmuir probes, Mach probe, retarding potential analyzers (RPA), microwave interferometer, neutral pressure measurements and plasma light emission. In addition, many thermocouples are attached inside the vacuum chamber to measure heat loads around the plasma discharge. Helicon research so far has been done with hydrogen, deuterium, helium, nitrogen, argon, xenon and mixtures of these gases. Optimization studies have been performed with the magnetic field axial profile shape, gas flow rate, gas tube geometry and RF frequency. The highest performing discharges are found with a high magnetic field choke downstream of the helicon antenna. Upwards of a 40% gas utilization is

  9. Laboratory Directed Research and Development Program FY 2005 Annual Report

    SciTech Connect

    Sjoreen, Terrence P

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing

  10. Laboratory Directed Research and Development Program FY 2004 Annual Report

    SciTech Connect

    Sjoreen, Terrence P

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing

  11. Customized laboratory information management system for a clinical and research leukemia cytogenetics laboratory.

    PubMed

    Bakshi, Sonal R; Shukla, Shilin N; Shah, Pankaj M

    2009-01-01

    We developed a Microsoft Access-based laboratory management system to facilitate database management of leukemia patients referred for cytogenetic tests in regards to karyotyping and fluorescence in situ hybridization (FISH). The database is custom-made for entry of patient data, clinical details, sample details, cytogenetics test results, and data mining for various ongoing research areas. A number of clinical research laboratoryrelated tasks are carried out faster using specific "queries." The tasks include tracking clinical progression of a particular patient for multiple visits, treatment response, morphological and cytogenetics response, survival time, automatic grouping of patient inclusion criteria in a research project, tracking various processing steps of samples, turn-around time, and revenue generated. Since 2005 we have collected of over 5,000 samples. The database is easily updated and is being adapted for various data maintenance and mining needs.

  12. Modeling of Army Research Laboratory EMP simulators

    SciTech Connect

    Miletta, J.R.; Chase, R.J.; Luu, B.B. ); Williams, J.W.; Viverito, V.J. )

    1993-12-01

    Models are required that permit the estimation of emitted field signatures from EMP simulators to design the simulator antenna structure, to establish the usable test volumes, and to estimate human exposure risk. This paper presents the capabilities and limitations of a variety of EMP simulator models useful to the Army's EMP survivability programs. Comparisons among frequency and time-domain models are provided for two powerful US Army Research Laboratory EMP simulators: AESOP (Army EMP Simulator Operations) and VEMPS II (Vertical EMP Simulator II).

  13. The Automated Primate Research Laboratory (APRL)

    NASA Technical Reports Server (NTRS)

    Pace, N.; Smith, G. D.

    1972-01-01

    A description is given of a self-contained automated primate research laboratory to study the effects of weightlessness on subhuman primates. Physiological parameters such as hemodynamics, respiration, blood constituents, waste, and diet and nutrition are analyzed for abnormalities in the simulated space environment. The Southeast Asian pig-tailed monkey (Macaca nemistrina) was selected for the experiments owing to its relative intelligence and learning capacity. The objective of the program is to demonstrate the feasibility of a man-tended primate space flight experiment.

  14. Advanced Reactor Safety Research Division. Quarterly progress report, April 1-June 30, 1980

    SciTech Connect

    Romano, A.J.

    1980-01-01

    The Advanced Reactor Safety Research Programs Quarterly Progress Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR safety evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  15. Advanced Reactor Safety Research Division. Quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Agrawal, A.K.; Cerbone, R.J.; Sastre, C.

    1980-06-01

    The Advanced Reactor Safety Research Programs quarterly progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  16. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Lisa Ruffe and Neil Yorio prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  17. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Neil Yorio and Lisa Ruffe prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  18. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated June 22, 1988: 'A dwarf wheat variety known as Yecoro Rojo flourishes in KSC's Biomass Production Chamber. Researchers are gathering information on the crop's ability to produce food, water and oxygen, and then remove carbon dioxide. The confined quarters associated with space travel require researchers to focus on smaller plants that yield proportionately large amounts of biomass. This wheat crop takes about 85 days to grow before harvest.' Plant experiments such as this are the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  19. Light-water-reactor safety research program. Quarterly progress report, January-March 1980

    SciTech Connect

    Massey, W.E.; Kyger, J.A.

    1980-08-01

    This progress report summarizes the Argonne National Laboratory work performed during January, February, and March 1980 on water-reactor-safety problems. The research and development area covered is Transient Fuel Response and Fission-Product Release.

  20. Weapons and Materials Research Directorate (WMRD) Laboratory Demonstration Study

    DTIC Science & Technology

    2015-02-01

    Weapons and Materials Research Directorate (WMRD) Laboratory Demonstration Study by Nora M Eldredge ARL-SR-0311 February 2015...Weapons and Materials Research Directorate (WMRD) Laboratory Demonstration Study Nora M Eldredge Weapons and Materials Research Directorate, ARL...September 2014 4. TITLE AND SUBTITLE Weapons and Materials Research Directorate (WMRD) Laboratory Demonstration Study 5a. CONTRACT NUMBER 5b

  1. Air Force Research Laboratory’s Focused Long Term Challenges

    DTIC Science & Technology

    2008-04-01

    Air Force Research Laboratory ( AFRL ) mission is to provide support to the Air Force (AF) and the warfighters with... Air Force Research Laboratory’s Focused Long Term Challenges Leo J Rose Munitions Directorate, Air Force Research Laboratory , 101 W Eglin Blvd...This technology vision, which was born in our Air Force Research Laboratory , builds on the Air Force’s traditional kill

  2. Analytical Chemistry Laboratory Progress Report for FY 1994

    SciTech Connect

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1994-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

  3. Laboratory Directed Research and Development FY2008 Annual Report

    SciTech Connect

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    , industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission. The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2008 (FY08) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: A broad description of the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY08, and a list of publications that resulted from the research in FY08. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  4. Laboratory Directed Research and Development FY2011 Annual Report

    SciTech Connect

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial

  5. Analytical Chemistry Laboratory progress report for FY 1984

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.; Stetter, J.R.

    1985-03-01

    Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs.

  6. Exploring new frontiers in the pulsed power laboratory: Recent progress

    NASA Astrophysics Data System (ADS)

    Adamenko, S.; Esaulov, A.; Ulmen, B.; Novikov, V.; Ponomarev, S.; Adamenko, A.; Artyuh, V.; Gurin, A.; Prokopenko, V.; Kolomiyets, V.; Belous, V.; Kim, K.-J.; Miley, G.; Bassuney, A.; Novikov, D.

    One of the most fundamental processes in the Universe, nucleosynthesis of elements drives energy production in stars as well as the creation of all atoms heavier than hydrogen. To harness this process and open new ways for energy production, we must recreate some of the extreme conditions in which it occurs. We present results of experiments using a pulsed power facility to induce collective nuclear interactions producing stable nuclei of virtually every element in the periodic table. A high-power electron beam pulse striking a small metallic target is used to create the extreme dynamic environment. Material analysis studies detect an anomalously high presence of new chemical elements in the remnants of the exploded target supporting theoretical conjectures of the experiment. These results provide strong motivation to continue our research looking for additional proofs that heavy element nucleosynthesis is possible in pulsed power laboratory.

  7. Bringing ayahuasca to the clinical research laboratory.

    PubMed

    Riba, Jordi; Barbanoj, Manel J

    2005-06-01

    Since the winter of 1999, the authors and their research team have been conducting clinical studies involving the administration of ayahuasca to healthy volunteers. The rationale for conducting this kind of research is twofold. First, the growing interest of many individuals for traditional indigenous practices involving the ingestion of natural psychotropic drugs such as ayahuasca demands the systematic study of their pharmacological profiles in the target species, i.e., human beings. The complex nature of ayahuasca brews combining a large number of pharmacologically active compounds requires that research be carried out to establish the safety and overall pharmacological profile of these products. Second, the authors believe that the study of psychedelics in general calls for renewed attention. Although the molecular and electrophysiological level effects of these drugs are relatively well characterized, current knowledge of the mechanisms by which these compounds modify the higher order cognitive processes in the way they do is still incomplete, to say the least. The present article describes the development of the research effort carried out at the Autonomous University of Barcelona, commenting on several methodological aspects and reviewing the basic clinical findings. It also describes the research currently underway in our laboratory, and briefly comments on two new studies we plan to undertake in order to further our knowledge of the pharmacology of ayahuasca.

  8. Laboratory Directed Research and Development FY 1992

    SciTech Connect

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A.

    1992-12-31

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

  9. Career research opportunities for the medical laboratory scientist.

    PubMed

    McGlasson, David L

    2011-01-01

    Medical Laboratory Scientists (MLS) typically practice in hospital laboratories; however there are multiple alternatives in research. This article details the advantages of working in a variety of research laboratory settings. These include public institutions, federal laboratory workplaces, private facilities, and industry settings. A view of the different research laboratory settings such as public institutions, federal laboratory workplaces, private facilities, and industry settings will be provided. An assessment on how MLS professionals can prepare for a career in research is outlined and the report concludes with a brief summary of the various aspects of the research setting.

  10. Laboratory Directed Research and Development Program Activities for FY 2008.

    SciTech Connect

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  11. Private Pay Progression. Research Brief. Edition 6

    ERIC Educational Resources Information Center

    Anders, Jake

    2015-01-01

    While the issue of access to the professions is relatively well understood, there is limited understanding of the impact of entrants' backgrounds on success once in graduate employment. The research looks at the way social background continues to influence graduate pay and career progression once in professional employment. Key findings include:…

  12. Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96

    SciTech Connect

    Chase, L.

    1997-03-01

    This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

  13. 41 CFR 109-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Laboratory and research... PROCUREMENT 25-GENERAL 25.1-General Policies § 109-25.109 Laboratory and research equipment. The provisions of 41 CFR 101-25.109 and this section apply to laboratory and research equipment in the possession...

  14. 41 CFR 101-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal...

  15. 41 CFR 109-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Laboratory and research... PROCUREMENT 25-GENERAL 25.1-General Policies § 109-25.109 Laboratory and research equipment. The provisions of 41 CFR 101-25.109 and this section apply to laboratory and research equipment in the possession...

  16. 41 CFR 109-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Laboratory and research... PROCUREMENT 25-GENERAL 25.1-General Policies § 109-25.109 Laboratory and research equipment. The provisions of 41 CFR 101-25.109 and this section apply to laboratory and research equipment in the possession...

  17. 41 CFR 101-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal...

  18. 41 CFR 109-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Laboratory and research... PROCUREMENT 25-GENERAL 25.1-General Policies § 109-25.109 Laboratory and research equipment. The provisions of 41 CFR 101-25.109 and this section apply to laboratory and research equipment in the possession...

  19. 41 CFR 109-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Laboratory and research... PROCUREMENT 25-GENERAL 25.1-General Policies § 109-25.109 Laboratory and research equipment. The provisions of 41 CFR 101-25.109 and this section apply to laboratory and research equipment in the possession...

  20. 41 CFR 101-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal...

  1. 41 CFR 101-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal...

  2. 41 CFR 101-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal...

  3. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    SciTech Connect

    W. Wester

    2016-05-26

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals that were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.

  4. Laboratory Plasma Astrophysics Research with Intense Lasers

    NASA Astrophysics Data System (ADS)

    Takabe, Hideaki; Kato, Tsunehiko; Kuramitsu, Yasuhiro; Sakawa, Yuichi

    2008-12-01

    Large scale laser facilities mainly constructed for fusion research can be used to produce high-energy-density plasmas like the interior of stars and planets. They can be also used to reproduce the extreme phenomena of explosion and high Mach number flow in mimic scale in laboratory. With advanced diagnostic technique, we can study the physics of plasma phenomena expected to control a variety of phenomena in Universe. The subjects studied so far are reviewed, for example, in [1], [2]. The project to promote the laboratory astrophysics with Gekko XII laser facility has been initiated from April 1st this year as a project of our institute. It consists of four sub-projects. They are 1. Physics of collisionless shock and particle acceleration, 2. Physics of Non LTE (local thermodynamic equilibrium) photo-ionized plasma, 3. Physics of planets and meteor impact, 4. Development of superconducting Terahertz device. I will briefly explain what the laser astrophysics means and introduce what are the targets of our project. Regarding the first sub-project, we have carried out hydrodynamic and PIC simulation to design the experiments with intense laser. We clarified the physical mechanism of generation of the magnetic field in non-magnetized plasma and the collsionless shock formation caused by the ion orbit modifications by the magnetic fields generated as the result of plasma instability. Note from Publisher: This article contains the abstract only.

  5. NASA/WVU Software Research Laboratory, 1995

    NASA Technical Reports Server (NTRS)

    Sabolish, George J.; Callahan, John R.

    1995-01-01

    In our second year, the NASA/WVU Software Research Lab has made significant strides toward analysis and solution of major software problems related to V&V activities. We have established working relationships with many ongoing efforts within NASA and continue to provide valuable input into policy and decision-making processes. Through our publications, technical reports, lecture series, newsletters, and resources on the World-Wide-Web, we provide information to many NASA and external parties daily. This report is a summary and overview of some of our activities for the past year. This report is divided into 6 chapters: Introduction, People, Support Activities, Process, Metrics, and Testing. The Introduction chapter (this chapter) gives an overview of our project beginnings and targets. The People chapter focuses on new people who have joined the Lab this year. The Support chapter briefly lists activities like our WWW pages, Technical Report Series, Technical Lecture Series, and Research Quarterly newsletter. Finally, the remaining four chapters discuss the major research areas that we have made significant progress towards producing meaningful task reports. These chapters can be regarded as portions of drafts of our task reports.

  6. Progress of research on water vapor lidar

    NASA Technical Reports Server (NTRS)

    Wilkerson, Thomas D.; Singh, U. N.

    1989-01-01

    Research is summarized on applications of stimulated Raman scattering (SRS) of laser light into near infrared wavelengths suitable for atmospheric monitoring. Issues addressed are conversion efficiency, spectral purity, optimization of operating conditions, and amplification techniques. A Raman cell was developed and built for the laboratory program, and is now available to NASA-Langley, either as a design or as a completed cell for laboratory or flight applications. The Raman cell has been approved for flight in NASA's DC-8 aircraft. The self-seeding SRS technique developed here is suggested as an essential improvement for tunable near-IR DIAL applications at wavelengths of order 1 micrometer or greater.

  7. Battery research at Argonne National Laboratory

    SciTech Connect

    Thackeray, M.M.

    1997-10-01

    Argonne National Laboratory (ANL) has, for many years, been engaged in battery-related R and D programs for DOE and the transportation industry. In particular, from 1973 to 1995, ANL played a pioneering role in the technological development of the high-temperature (400 C) lithium-iron disulfide battery. With the emphasis of battery research moving away from high temperature systems toward ambient temperature lithium-based systems for the longer term, ANL has redirected its efforts toward the development of a lithium-polymer battery (60--80 C operation) and room temperature systems based on lithium-ion technologies. ANL`s lithium-polymer battery program is supported by the US Advanced Battery Consortium (USABC), 3M and Hydro-Quebec, and the lithium-ion battery R and D efforts by US industry and by DOE.

  8. Prognosis Research Strategy (PROGRESS) 2: prognostic factor research.

    PubMed

    Riley, Richard D; Hayden, Jill A; Steyerberg, Ewout W; Moons, Karel G M; Abrams, Keith; Kyzas, Panayiotis A; Malats, Núria; Briggs, Andrew; Schroter, Sara; Altman, Douglas G; Hemingway, Harry

    2013-01-01

    Prognostic factor research aims to identify factors associated with subsequent clinical outcome in people with a particular disease or health condition. In this article, the second in the PROGRESS series, the authors discuss the role of prognostic factors in current clinical practice, randomised trials, and developing new interventions, and explain why and how prognostic factor research should be improved.

  9. [Landscape classification: research progress and development trend].

    PubMed

    Liang, Fa-Chao; Liu, Li-Ming

    2011-06-01

    Landscape classification is the basis of the researches on landscape structure, process, and function, and also, the prerequisite for landscape evaluation, planning, protection, and management, directly affecting the precision and practicability of landscape research. This paper reviewed the research progress on the landscape classification system, theory, and methodology, and summarized the key problems and deficiencies of current researches. Some major landscape classification systems, e. g. , LANMAP and MUFIC, were introduced and discussed. It was suggested that a qualitative and quantitative comprehensive classification based on the ideology of functional structure shape and on the integral consideration of landscape classification utility, landscape function, landscape structure, physiogeographical factors, and human disturbance intensity should be the major research directions in the future. The integration of mapping, 3S technology, quantitative mathematics modeling, computer artificial intelligence, and professional knowledge to enhance the precision of landscape classification would be the key issues and the development trend in the researches of landscape classification.

  10. Eagleworks Laboratories: Advanced Propulsion Physics Research

    NASA Technical Reports Server (NTRS)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (<1 uN), and commission the facility with an existing Quantum Vacuum Plasma Thruster. To date, the QVPT line of research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  11. 78 FR 22622 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... medical specialties within the general areas of biomedical, behavioral and clinical science research....

  12. 76 FR 19188 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... medical specialties within the general areas of biomedical, behavioral and clinical science research....

  13. 77 FR 23810 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to...

  14. 76 FR 66367 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... medical specialties within the general areas of biomedical, behavioral and clinical science research....

  15. 78 FR 66992 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... specialties within the general areas of biomedical, behavioral, and clinical science research. The...

  16. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    SciTech Connect

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  17. Progress In High Temperature Electrolysis At The Idaho National Laboratory

    SciTech Connect

    Carl M. Stoots; James E.O'Brien; J. Steve Herring; Joseph Hartvigsen

    2007-10-01

    The United States is considering the development of a domestic hydrogen-based energy economy. Hydrogen is of particular interest as a secondary energy carrier because it has the potential to be storable, transportable, environmentally benign, and useful in many chemical processes. Obviously, before a hydrogen economy can be implemented, an efficient and environmentally friendly means for large scale hydrogen production must be identified, proven, and developed. Hydrogen is now produced primarily via steam reforming of methane. However, from a long-term perspective, methane reforming is not a viable process for large-scale production of hydrogen since such fossil fuel conversion processes consume non-renewable resources and emit greenhouse gases. The U. S. National Research Council has recommended the use of water-splitting technologies to produce hydrogen using energy derived from a nuclear reactor. For the past several years, the Idaho National Laboratory has been actively studying the use of solid oxide fuel cells in conjunction with nuclear power for large-scale, high-temperature, electrolytic hydrogen production.

  18. New Brunswick Laboratory progress report, October 1992--September 1993

    SciTech Connect

    Not Available

    1994-04-01

    The mission of the New Brunswick Laboratory of the US Department of Energy (DOE) is to provide and maintain a nuclear material measurements and standards laboratory as a technical response to DOE`s statutory responsibility to assure the safeguarding of nuclear materials. This report summarizes the mission-fulfilling activities of the New Brunswick Laboratory for the period of October 1992 through September 1993.

  19. Electronic laboratory notebooks progress and challenges in implementation.

    PubMed

    Machina, Hari K; Wild, David J

    2013-08-01

    Electronic laboratory notebooks (ELNs) are increasingly replacing paper notebooks in life science laboratories, including those in industry, academic settings, and hospitals. ELNs offer significant advantages over paper notebooks, but adopting them in a predominantly paper-based environment is usually disruptive. The benefits of ELN increase when they are integrated with other laboratory informatics tools such as laboratory information management systems, chromatography data systems, analytical instrumentation, and scientific data management systems, but there is no well-established path for effective integration of these tools. In this article, we review and evaluate some of the approaches that have been taken thus far and also some radical new methods of integration that are emerging.

  20. Aircraft wire system laboratory development : phase I progress report.

    SciTech Connect

    Dinallo, Michael Anthony; Lopez, Christopher D.

    2003-08-01

    An aircraft wire systems laboratory has been developed to support technical maturation of diagnostic technologies being used in the aviation community for detection of faulty attributes of wiring systems. The design and development rationale of the laboratory is based in part on documented findings published by the aviation community. The main resource at the laboratory is a test bed enclosure that is populated with aged and newly assembled wire harnesses that have known defects. This report provides the test bed design and harness selection rationale, harness assembly and defect fabrication procedures, and descriptions of the laboratory for usage by the aviation community.

  1. [Research progress on environmental carrying capacity].

    PubMed

    Wang, Jian; Sun, Tieheng; Li, Peijun; Li, Fayun

    2005-04-01

    To study the theories and quantification methods of environmental carrying capacity is of significance in reality for directing human beings economic behaviors and harmonizing the relationships between social development and environment. In this paper, the definition of environmental carrying capacity was introduced from the aspects of "capacity", "threshold" and "capability", with the main characteristics of objective and subjective, regional and temporal, and dynamic and adjustable, and its research progress was reviewed. On the basis of these, the quantification methods of environmental carrying capacity, including exponential assessment, carrying rate assessment, system dynamics, and multi-objective optimization, were analyzed, and the research perspectives of environmental carrying capacity were discussed.

  2. [Ear keloid and clinical research progress].

    PubMed

    Du, Guangyuan; Zhu, Jiang

    2014-04-01

    Keloid refers to the damaged skin due to excessive fibroblast proliferation. Ear is one predilection site. The pathogenesis of ear keloid is not very clear, and the treatment is also varied. Surgery, postoperative radiotherapy and laser treatment, steroid hormones, pressure therapy are the basic treatment methods. Integrated application of a variety of treatments, classification research and new materials using revealed the prospect for the treatment of the disease. This thesis reviews literature about ear keloid in recent 10 years, and introduces this disease and clinical research progress.

  3. [Progress on the research of lactose intolerance].

    PubMed

    Chen, J; Sai, X Y

    2016-02-01

    Our group generalized the research development of lactose intolerance, both internationally and nationally. We systematically reviewed the pathogenesis, genetic polymorphisms of lactase deficiency, relevant progress of diagnostic methods and treatment. Through this systematic review, we undedrstood that there were insufficient research efforts made on understanding the epidemiological feature of lactose intolerance in this country. Relevant genetic mutations of people were also not clear, neither the development of simple and effective diagnosis method made. We should continue to extensively and deeply carry out the study regarding methods for early prevention and intervention on lactose intolerance.

  4. Recent progress in snow and ice research

    SciTech Connect

    Richter-menge, J.A.; Colbeck, S.C.; Jezek, K.C. )

    1991-01-01

    A review of snow and ice research in 1987-1990 is presented, focusing on the effects of layers in seasonal snow covers, ice mechanics on fresh water and sea ice, and remote sensig of polar ice sheets. These topics provide useful examples of general needs in snow and ice research applicable to most areas, such as better representation in models of detailed processes, controlled laboratory experiments to quantify processes, and field studies to provide the appropriate context for interpretation of processes from remote sensing.

  5. Nanoscience and Technology at the Air Force Research Laboratory (AFRL)

    DTIC Science & Technology

    2005-05-01

    AIR FORCE RESEARCH LABORATORY ( AFRL ) Dr. Richard A. Vaia Dr. Daniel Miracle Dr. Thomas Cruse Air Force Research ...Technology At The Air Force Research Laboratory ( AFRL ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...98) Prescribed by ANSI Std Z39-18 AFRL NST Overview 2 AIR FORCE RESEARCH LABORATORY VISION We defend

  6. Nanoscience and Technology at the Air Force Research Laboratory (AFRL)

    DTIC Science & Technology

    2005-02-01

    AIR FORCE RESEARCH LABORATORY ( AFRL ) Dr. Richard A. Vaia Dr. Daniel Miracle Dr. Thomas Cruse Air Force Research ...Technology At The Air Force Research Laboratory ( AFRL ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...98) Prescribed by ANSI Std Z39-18 AFRL NST Overview 2 AIR FORCE RESEARCH LABORATORY VISION We defend

  7. Laboratory Persistence and Clinical Progression of Small Monoclonal Abnormalities

    PubMed Central

    Murray, David L.; Seningen, Justin L.; Dispenzieri, Angela; Snyder, Melissa R.; Kyle, Robert A.; Rajkumar, S. Vincent; Katzmann, Jerry A.

    2014-01-01

    Monoclonal gammopathy of undetermined significance (MGUS) that presents with no quantifiable M spike on immunofixation electrophoresis (IFE) can be termed IFE MGUS. We retrospectively identified patients with IFE MGUS who were monitored with at least 1 subsequent assessment that included an IFE, and evaluated the persistence of the monoclonal protein and the progression of disease. Although the monoclonal proteins persisted in the majority of patients, 16% did not experience this persistence, and had no documented immunomodulatory therapy. After a median follow-up of 3.9 years, the disease clinically progressed in 14 patients (3.2%). Eight of these 14 patients with clinical progression had an immunoglobulin (Ig) A IFE M protein and 6 had an IgG M protein. This study demonstrates that in some patients with IFE MGUS, the M proteins are transient and that IgA IFE MGUS is more likely to persist and progress to myeloma. PMID:23010717

  8. Laboratory Directed Research and Development FY 2000 Annual Report

    SciTech Connect

    Al-Ayat, R

    2001-05-24

    This Annual Report provides an overview of the FY2000 Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) and presents a summary of the results achieved by each project during the year.

  9. 8. EXTERIOR DETAIL, BUILDING 18 (POWER PLANT RESEARCH LABORATORY) (1991). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. EXTERIOR DETAIL, BUILDING 18 (POWER PLANT RESEARCH LABORATORY) (1991). - Wright-Patterson Air Force Base, Area B, Building 18, Power Plant Laboratory Complex, Northeast corner of C & Fifth Streets, Dayton, Montgomery County, OH

  10. 7. EXTERIOR NORTHWEST VIEW, BUILDING 18 (POWER PLANT RESEARCH LABORATORY) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. EXTERIOR NORTHWEST VIEW, BUILDING 18 (POWER PLANT RESEARCH LABORATORY) (1991). - Wright-Patterson Air Force Base, Area B, Building 18, Power Plant Laboratory Complex, Northeast corner of C & Fifth Streets, Dayton, Montgomery County, OH

  11. Beam tomography research at Daresbury Laboratory

    NASA Astrophysics Data System (ADS)

    Hock, K. M.; Ibison, M. G.; Holder, D. J.; Muratori, B. D.; Wolski, A.; Kourkafas, G.; Shepherd, B. J. A.

    2014-07-01

    Beam tomography research at Daresbury Laboratory has focussed on the development of normalised phase space techniques-starting with the idea of sampling tomographic projections at equal phase advances. This idea has influenced the design and operation of the tomography sections at the Photo Injector Test Facility at Zeuthen (PITZ) and at the Accelerator and Lasers in Combined Experiments (ALICE) at Daresbury. We have studied the feasibility of using normalised phase space to measure the effect of space charge. Quadrupole scan measurements are carried out at two different parts of a beamline. Reconstructions at the same location give results that are clearly rotated with respect to each other in normalised phase space. We are able to show that a significant part of this rotation can be attributed to the effect of space charge. We show how the normalised phase space technique can be used to increase the reliability of the Maximum Entropy Technique (MENT). While MENT is known for its ability to work with just a few projections, the accuracy of its reconstructions has seldom been questioned. We show that for typical phase space distributions, MENT could produce results that look quite different from the original. We demonstrate that a normalised phase space technique could give results that are closer to the actual distribution. We also present simpler ways of deriving the phase space tomography formalism and the Maximum Entropy Technique.

  12. Hyperspectral imager development at Army Research Laboratory

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam

    2008-04-01

    Development of robust compact optical imagers that can acquire both spectral and spatial features from a scene of interest is of utmost importance for standoff detection of chemical and biological agents as well as targets and backgrounds. Spectral features arise due to the material properties of objects as a result of the emission, reflection, and absorption of light. Using hyperspectral imaging one can acquire images with narrow spectral bands and take advantage of the characteristic spectral signatures of different materials making up the scene in detection of objects. Traditional hyperspectral imaging systems use gratings and prisms that acquire one-dimensional spectral images and require relative motion of sensor and scene in addition to data processing to form a two-dimensional image cube. There is much interest in developing hyperspectral imagers using tunable filters that acquire a two-dimensional spectral image and build up an image cube as a function of time. At the Army Research Laboratory (ARL), we are developing hyperspectral imagers using a number of novel tunable filter technologies. These include acousto-optic tunable filters (AOTFs) that can provide adaptive no-moving-parts imagers from the UV to the long wave infrared, diffractive optics technology that can provide image cubes either in a single spectral region or simultaneously in different spectral regions using a single moving lens or by using a lenslet array, and micro-electromechanical systems (MEMS)-based Fabry-Perot (FP) tunable etalons to develop miniature sensors that take advantage of the advances in microfabrication and packaging technologies. New materials are being developed to design AOTFs and a full Stokes polarization imager has been developed, diffractive optics lenslet arrays are being explored, and novel FP tunable filters are under fabrication for the development of novel miniature hyperspectral imagers. Here we will brief on all the technologies being developed and present

  13. [Research progress on ecological footprint analysis].

    PubMed

    Chen, Dongdong; Gao, Wangsheng; Chen, Yuanquan

    2006-10-01

    Ecological footprint (EF) model, as an indicator of sustainability, has received broad attention and wide use. With the development and refinement of the research work on EF theory and methodology, it appeared various methods which can be applied at different scales. Ecological footprint analysis has been combined with material flow analysis, life cycle assessment or input-output analysis, and especially, the newest progress in EF methods called allocating EF to final consumption categories with input-output analysis helps to develop a "standardized" EF. In this paper, the underlying causes of these methods were interpreted theoretically, and the research methods were classified into progress analysis and input-output analysis (IOA). In addition, the compound and component-based methods as well as IOA were introduced, with their respective features, application, and development progress discussed. A prospect on the development of EF in term of the tendency and application of EF methods in China and abroad was given, i. e. , the common framework should be built at the national and regional scales by using compound analysis, IOA and component-based analysis are expected to develop their application

  14. New Brunswick Laboratory progress report, October 1994--September 1995

    SciTech Connect

    1996-03-01

    The mission of the New Brunswick Laboratory (NBL) of the A. S. Department of Energy (DOE) is to serve as the National Certifying Authority for nuclear reference materials and to provide an independent Federal technical staff and laboratory resource performing nuclear material measurement, safeguards, and non-proliferation functions in support of multiple program sponsors. This annual report describes accomplishments achieved in carrying out NBL`s assigned missions.

  15. Research on Speech Perception. Progress Report No. 9, January 1983-December 1983.

    ERIC Educational Resources Information Center

    Pisoni, David B.; And Others

    Summarizing research activities from January 1983 to December 1983, this is the ninth annual report of research on speech perception, analysis and synthesis conducted in the Speech Research Laboratory of the Department of Psychology at Indiana University. The report includes extended manuscripts, short reports, and progress reports. The report…

  16. Research on Speech Perception. Progress Report No. 8, January 1982-December 1982.

    ERIC Educational Resources Information Center

    Pisoni, David B.; And Others

    Summarizing research activities from January 1982 to December 1982, this is the eighth annual report of research on speech perception, analysis and synthesis conducted in the Speech Research Laboratory of the Department of Psychology at Indiana University. The report includes extended manuscripts, short reports, progress reports, and information…

  17. Laboratory Directed Research and Development 1998 Annual Report

    SciTech Connect

    Pam Hughes; Sheila Bennett eds.

    1999-07-14

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work in atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.

  18. The fate of a progressive science: the Harvard Fatigue Laboratory, athletes, the science of work and the politics of reform.

    PubMed

    Scheffler, Robin Wolfe

    2011-06-01

    In the early twentieth century, fatigue research marked a site of conflicting scientific, industrial, and cultural understandings of working bodies. Many fatigue researchers understood fatigue to be a physiological fact and allied themselves with Progressive-era reformers in urging industrial regulation. Reformers clashed with advocates of Taylorism, who held that productivity could be perpetually increased through managerial efficiency. Histories of this conflict typically cease with the end of the First World War. I examine the work of the Harvard Fatigue Laboratory in the 1920s and 1930s to explore the impact that the introduction of biochemical methods had on the relationship between science and reform. The Laboratory developed sophisticated techniques to study the blood of exercising individuals. In particular, it found that exercising individuals could attain a biochemically "steady state," or equilibrium, and extrapolated from this to assert that fatigue was psychological, not physiological, in nature. In contrast to Progressive-era research, the Laboratory reached this conclusion through laboratory examination, not of workers, but of Laboratory staff members and champion marathon runners. I present the Laboratory's institutional history, scientific work, and finally how common cultural understandings of athletes and work lent plausibility to its efforts to make authoritative statements about industrial conditions.

  19. Laboratory for Computer Science Progress Report 18, July 1980-June 1981,

    DTIC Science & Technology

    1983-04-01

    R127 586 LABORATORY FOR COMPUTER SCIENCE’PROGRESS REPORT ig JULY 1/3 1986-JUNE 1981(U) MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE . M...MASSACHUSETTSLABORATORY FOR INSTITUTE OF COMPUTER SCIENCE TECHNOLOGY PROGRESS REPORT 18 July 1980- June 1981 1i MAY 2 1.83 CL- Prepared for the Defense...TYPE OF REPORT & PERIOD COVERED Laboratory for Computer Science DARPA/DOD, Progress Progress Report 18 Report 7/80 - 6/81 . July 1980 - June 1981 6

  20. Frontiers for Laboratory Research of Magnetic Reconnection

    SciTech Connect

    Ji, Hantao; Guo, Fan

    2015-07-16

    Magnetic reconnection occcurs throughout heliophysical and astrophysical plasmas as well as in laboratory fusion plasmas. Two broad categories of reconnection models exist: collisional MHD and collisionless kinetic. Eight major questions with respect to magnetic connection are set down, and past and future devices for studying them in the laboratory are described. Results of some computerized simulations are compared with experiments.

  1. Stirling engine research at national and university laboratories in Japan

    SciTech Connect

    Hane, G.J.; Hutchinson, R.A.

    1987-09-01

    Pacific Northwest Laboratory (PNL) reviewed research projects that are related to the development of Stirling engines and that are under way at Japanese national laboratories and universities. The research and development focused on component rather than on whole engine development. PNL obtained the information from a literature review and interviews conducted at the laboratories and universities. The universities have less equipment available and operate with smaller staffs for research than do the laboratories. In particular, the Mechanical Engineering Laboratory and the Aerospace Laboratory conduct high-quality component and fundamental work. Despite having less equipment, some of the researchers at the universities conduct high-quality fundamental research. As is typical in Japan, several of the university professors are very active in consulting and advisory capacities to companies engaged in Stirling engine development, and also with government and association advisory and technical committees. Contacts with these professors and selective examination of their research are good ways to keep abreast of Japanese Stirling developments.

  2. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte (right) and Cheryl Mackowiak harvest potatoes grown in the Biomass Production Chamber of the Controlled Enviornment Life Support System (CELSS in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  3. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte harvests a potato grown in the Biomass Production Chamber of the Controlled environment Life Support system (CELSS) in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' His work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  4. 24. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, Natick, Mass, Climatic Building, First Floor Plan, Architectural. Drawing No. 35-07-01, Sheet 2 of 72, 1952, updated to 1985. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  5. 25. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, Natick, Mass. Climatic Building, First Floor Plan, Refrigeration and Engineering. Drawing No. 35-07-01, Sheet 52 of 72, 1952. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  6. Progress in Malassezia Research in Korea

    PubMed Central

    Kim, Soo Young; Lee, Yang Won; Choe, Yong Beom

    2015-01-01

    Yeasts of the genus Malassezia are part of the normal flora of human skin. However, they are also associated with various skin diseases. Since the introduction of Malassezia to the Korean Dermatologic Society two decades ago, remarkable progress has been made in our knowledge of this genus. In this paper, we review recent developments in Malassezia research, including taxonomy and methods for species identification, recent genome analyses, Malassezia species distribution in healthy conditions and in specific skin diseases, trials investigating the mechanisms underlying Malassezia-related diseases, as well as therapeutic options. This review will enhance our understanding of Malassezia yeasts and related skin diseases in Korea. PMID:26719632

  7. Air Force Research Laboratory, Edwards Air Force Base, CA

    DTIC Science & Technology

    2011-06-27

    Air Force Research Laboratory (AFMC) AFRL /RZS 1 Ara Road Edwards AFB CA 93524-7013 AFRL -RZ-ED-VG-2011-269 9...SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL /RZS 11. SPONSOR...Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Air Force Research Laboratory Ed d Ai F B CA Col Mike Platt war s r orce

  8. Los Alamos National Laboratory Science Education Programs. Quarterly progress report, April 1--June 30, 1995

    SciTech Connect

    Gill, D.

    1995-09-01

    This report is quarterly progress report on the Los Alamos National Laboratory Science Education Programs. Included in the report are dicussions on teacher and faculty enhancement, curriculum improvement, student support, educational technology, and institutional improvement.

  9. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--June 30, 1988

    SciTech Connect

    Baum, J W; Boccio, J L; Diamond, D; Fitzpatrick, R; Ginsberg, T; Greene, G A; Guppy, J G; Hall, R E; Higgins, J C; Weiss, A J

    1988-12-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1987.

  10. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--March 31, 1989

    SciTech Connect

    Weiss, A.J.

    1989-08-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1988.

  11. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, October 1--December 31, 1988

    SciTech Connect

    Weiss, A J; Azarm, A; Baum, J W; Boccio, J L; Carew, J; Diamond, D J; Fitzpatrick, R; Ginsberg, T; Greene, G A; Guppy, J G; Haber, S B

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988.

  12. [Research progress on biochar carbon sequestration technology].

    PubMed

    Jiang, Zhi-Xiang; Zheng, Hao; Li, Feng-Min; Wang, Zhen-Yu

    2013-08-01

    Biochar is a fine-grained and porous material, which is produced by pyrolyzing biomass under anaerobic or oxygen-limiting condition. Due to the aromatic structure, it is resistant to the biotic and abiotic degradation which makes biochar production a promising carbon sequestration technology, and it has attracted widespread attention. Factors including biochar production, biochar stability in soil and the response of plant growth and soil organic carbon to the biochar addition can influence the carbon sequestration potential of biochar. Through exploring the mechanisms of biochar carbon sequestration, the influence of these factors was studied. Furthermore, the research progress of carbon sequestration potential and its economic viability were examined. Finally, aiming at the knowledge gaps in the influencing factors as well as the relationship between these factors, some further research needs were proposed for better application of biochar in China.

  13. [Wetland landscape ecological classification: research progress].

    PubMed

    Cao, Yu; Mo, Li-jiang; Li, Yan; Zhang, Wen-mei

    2009-12-01

    Wetland landscape ecological classification, as a basis for the studies of wetland landscape ecology, directly affects the precision and effectiveness of wetland-related research. Based on the history, current status, and latest progress in the studies on the theories, indicators, and methods of wetland landscape classification, some scientific wetland classification systems, e.g., NWI, Ramsar, and HGM, were introduced and discussed in this paper. It was suggested that a comprehensive classification method based on HGM and on the integral consideration of wetlands spatial structure, ecological function, ecological process, topography, soil, vegetation, hydrology, and human disturbance intensity should be the major future direction in this research field. Furthermore, the integration of 3S technologies, quantitative mathematics, landscape modeling, knowledge engineering, and artificial intelligence to enhance the automatization and precision of wetland landscape ecological classification would be the key issues and difficult topics in the studies of wetland landscape ecological classification.

  14. [Photoprotective mechanisms of leaf anthocyanins: research progress].

    PubMed

    Wang, Liang-Zai; Hu, Yan-Bo; Zhang, Hui-Hui; Xu, Nan; Zhang, Xiu-Li; Sun, Guang-Yu

    2012-03-01

    Anthocyanin is widely distributed in plant organs such as root, stem, leaf, flower and fruit, being a kind of secondary metabolites generated in plant morphogenesis or for stress response. Leaf anthocyanin has special chemical structure and spectral properties, playing important roles in plant photoprotection, and becomes a hotspot in plant photosynthetic physiological ecology. This paper summarized the recent research progress in the effects of leaf anthocyanin on plant photosynthesis, including the distribution of leaf anthocyanin, its spectral properties, and its relationships with photosynthetic pigments, with the focus on the potential mechanisms of anthocyanins photoprotection, including light absorption, antioxidation, and osmotic regulation. The further research directions on the effects of leaf anthocyanin on photoprotection were proposed.

  15. Office of Industrial Technologies research in progress

    SciTech Connect

    Not Available

    1993-05-01

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  16. MIT Laboratory for Computer Science Progress Report 26

    DTIC Science & Technology

    1989-06-01

    asynchronous channel that may reorder and delete messages, using finite-sized messages. This is in contrast with the results in [222], where it was...communication (for client checkpoint and window deletion ), and client mnanipulation of keyboard and pointing device attributes. The overall architect for the I...completion, and we hope for nore. progress nIext year. 15.2.17 PEX Sample Implementation IEX is a 3D graphics extension to the X protocol, supporting

  17. Sandia, California Tritium Research Laboratory transition and reutilization project

    SciTech Connect

    Garcia, T.B.

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  18. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    SciTech Connect

    Johnson, L.J.

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed.

  19. New Brunswick Laboratory. Progress report, October 1995--September 1996

    SciTech Connect

    1997-04-01

    Fiscal year (FY) 1996 was a very good year for New Brunswick Laboratory (NBL), whose major sponsor is the Office of Safeguards and Security (NN-51) in the US Department of Energy (DOE), Office of Nonproliferation and National Security, Office of Security Affairs. Several projects pertinent to the NBL mission were completed, and NBL`s interactions with partners and customers were encouraging. Among the partners with which NBL interacted in this report period were the International Atomic Energy Agency (IAEA), NN-51. Environmental Program Group of the DOE Chicago Operations Office, International Safeguards Project Office, Waste Isolation Pilot Plant (WIPP), Ukraine Working Group, Fissile Materials Assurance Working Group, National Institute of Standards and Technology (NIST), Nuclear Regulatory Commission (NRC), Institute for Reference Materials and Measurements (IRMM) in Belgium, Brazilian/Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), Lockheed Idaho Technologies Company, and other DOE facilities and laboratories. NBL staff publications, participation in safeguards assistance and other nuclear programs, development of new reference materials, involvement in the updating and refinement of DOE documents, service in enhancing the science education of others, and other related activities enhanced NBL`s status among DOE laboratories and facilities. Noteworthy are the facts that NBL`s small inventory of nuclear materials is accurately accounted for, and, as in past years, its materials and human resources were used in peaceful nuclear activities worldwide.

  20. Maritime security laboratory for maritime security research

    NASA Astrophysics Data System (ADS)

    Bunin, Barry J.; Sutin, Alexander; Bruno, Michael S.

    2007-04-01

    Stevens Institute of Technology has established a new Maritime Security Laboratory (MSL) to facilitate advances in methods and technologies relevant to maritime security. MSL is designed to enable system-level experiments and data-driven modeling in the complex environment of an urban tidal estuary. The initial focus of the laboratory is on the threats posed by divers and small craft with hostile intent. The laboratory is, however, evolvable to future threats as yet unidentified. Initially, the laboratory utilizes acoustic, environmental, and video sensors deployed in and around the Hudson River estuary. Experimental data associated with boats and SCUBA divers are collected on a computer deployed on board a boat specifically designed and equipped for these experiments and are remotely transferred to a Visualization Center on campus. Early experiments utilizing this laboratory have gathered data to characterize the relevant parameters of the estuary, acoustic signals produced by divers, and water and air traffic. Hydrophones were deployed to collect data to enable the development of passive acoustic methodologies for maximizing SCUBA diver detection distance. Initial results involving characteristics of the estuary, acoustic signatures of divers, ambient acoustic noise in an urban estuary, and transmission loss of acoustic signals in a wide frequency band are presented. These results can also be used for the characterization of abnormal traffic and improvement of underwater communication in a shallow water estuary.

  1. Recent Progress on Spherical Torus Research

    SciTech Connect

    Ono, Masayuki; Kaita, Robert

    2014-01-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  2. Laboratory Directed Research and Development FY-15 Annual Report

    SciTech Connect

    Pillai, Rekha Sukamar

    2016-03-01

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  3. Laboratory Directed Research and Development FY-10 Annual Report

    SciTech Connect

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  4. MIT Laboratory for Computer Science Progress Report 27

    DTIC Science & Technology

    1990-06-01

    Link Chip (DLC). These components were discussed in some detail in last year’s progress report. PaRC is a CMOS gate array designed by Chris Joerg that...burdening the network. Chris Joerg has finished the design of PaRC and the generation of a complete set of test vectors. PaRC has 33,000 used gates and is...N. Lynch, Y. Mansour, and J Spinelli . The Data Link Layer: The Impos- sibility of Implementation in Face of Crashes. Technical Memo MIT/LCS/TM-355.b

  5. Water Reactor Safety Research Division. Quarterly progress report, April 1-June 30, 1980

    SciTech Connect

    Abuaf, N.; Levine, M.M.; Saha, P.; van Rooyen, D.

    1980-08-01

    The Water Reactor Safety Research Programs quarterly report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: LWR Thermal Hydraulic Development, Advanced Code Evlauation, TRAC Code Assessment, and Stress Corrosion Cracking of PWR Steam Generator Tubing.

  6. Research on Spoken Language Processing. Progress Report No. 21 (1996-1997).

    ERIC Educational Resources Information Center

    Pisoni, David B.

    This 21st annual progress report summarizes research activities on speech perception and spoken language processing carried out in the Speech Research Laboratory, Department of Psychology, Indiana University in Bloomington. As with previous reports, the goal is to summarize accomplishments during 1996 and 1997 and make them readily available. Some…

  7. Animal research ethics in Africa: is Tanzania making progress?

    PubMed

    Seth, Misago; Saguti, Fredy

    2013-12-01

    The significance of animals in research cannot be over-emphasized. The use of animals for research and training in research centres, hospitals and schools is progressively increasing. Advances in biotechnology to improve animal productivity require animal research. Drugs being developed and new interventions or therapies being invented for cure and palliation of all sorts of animal diseases and conditions need to be tested in animals for their safety and efficacy at some stages of their development. Drugs and interventions for human use pass through a similar development process and must be tested pre-clinically in laboratory animals before clinical trials in humans can be conducted. Therefore, animals are important players in research processes which directly and indirectly benefit animals and humans. However, questions remain as to whether these uses of animals consider the best interests of animals themselves. Various research and training institutions in Tanzania have established some guidelines on animal use, including establishing animal ethics committees. However, most institutions have not established oversight committees. In institutions where there may be guidelines and policies, there are no responsible committees or units to directly oversee if and how these guidelines and policies are enforced; thus, implementation becomes difficult or impossible. This paper endeavours to raise some issues associated with the responsible use of animals in research and training in Tanzania and highlights suggestions for improvement of deficiencies that exist in order to bridge the gap between what ought to be practised and what is practised.

  8. USAF Summer Research Program - 1994 Graduate Student Research Program Final Reports, Volume 8, Phillips Laboratory

    DTIC Science & Technology

    1994-12-01

    Research Group at the Phillips Laboratory at Kirtland Air Force Base...for Summer Graduate Student Research Program Phillips Laboratory Sponsored by: Air Force Office of Scientific Research Boiling Air Force Base, DC...2390 S. York Street Denver, CO 80208-0177 Final Report for: Summer Faculty Research Program Phillips Laboratory Sponsored by: Air Force

  9. Progress in plant research in space

    NASA Astrophysics Data System (ADS)

    Dutcher, F. Ronald; Hess, Elizabeth L.; Halstead, Thora W.

    1994-08-01

    Progress is reviewed of spaceflight research conducted with plants between 1987 and 1992. Numerous plant experiments have been performed on spacecraft and sounding rockets in the past five years by scientists of the US, the former Soviet Union, Europe, and other areas. The experiments are categorized into three areas: gravity sensing, transduction, and response; development and reproduction; and metabolism, photosynthesis, and transport. The results of these experiments continue to demonstrate that gravity and/or other factors of spaceflight affect plants at the organismal, cellular, subcellular, and molecular levels, resulting in changes in orientation, development, metabolism, and growth. The challenge now is to truly dissect the effects of gravity from those of other spaceflight factors and to identify the basic mechanisms underlying gravity's effects.

  10. Progress in natural laminar flow research

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1984-01-01

    For decades, since the earliest attempts to obtain natural laminar flow (NLF) on airplanes, three classical objections to its practicality have been held in the aeronautical community. These objectives concerned first, the capability to manufacture practical airframe surfaces smooth enough for NLF; second, the apparent inherent instability and sensitivity of NLF; and third, the accumulation of contamination such as insect debris in flight. This paper explains recent progress in our understanding of the achieveability and maintainability of NLF on modern airframe surfaces. This discussion explains why previous attempts to use NLF failed and what has changed regarding the three classical objections to NLF practicality. Future NASA research plans are described concerning exploring the limits of NLF usefulness, production tolerances, operational considerations, transition behavior and measurement methods, and NLF design applications.

  11. Progress in plant research in space.

    PubMed

    Dutcher, F R; Hess, E L; Halstead, T W

    1994-01-01

    Progress is reviewed of spaceflight research conducted with plants between 1987 and 1992. Numerous plant experiments have been performed on spacecraft and sounding rockets in the past five years by scientists of the US, the former Soviet Union, Europe, and other areas. The experiments are categorized into three areas: gravity sensing, transduction, and response; development and reproduction; and metabolism, photosynthesis, and transport. The results of these experiments continue to demonstrate that gravity and/or other factors of spaceflight affect plants at the organismal, cellular, subcellular, and molecular levels, resulting in changes in orientation, development, metabolism, and growth. The challenge now is to truly dissect the effects of gravity from those of other spaceflight factors and to identify the basic mechanisms underlying gravity's effects.

  12. Progress in plant research in space

    NASA Technical Reports Server (NTRS)

    Dutcher, F. Ronald; Hess, Elizabeth L.; Halstead, Thora W.

    1994-01-01

    Progress is reviewed of spaceflight research conducted with plants between 1987 and 1992. Numerous plant experiments have been performed on spacecraft and sounding rockets in the past five years by scientists of the US, the former Soviet Union, Europe, and other areas. The experiments are categorized into three areas: gravity sensing, transduction, and response; development and reproduction; and metabolism, photosynthesis, and transport. The results of these experiments continue to demonstrate that gravity and/or other factors of spaceflight affect plants at the organismal, cellular, subcellular, and molecular levels, resulting in changes in orientation, development, metabolism, and growth. The challenge now is to truly dissect the effects of gravity from those of other spaceflight factors and to identify the basic mechanisms underlying gravity's effects.

  13. [Research progress and trend on grassland agroecology].

    PubMed

    Ren, Jizhou; Li, Xianglin; Hou, Fujiang

    2002-08-01

    The connotation, progress, research frontiers and developmental trend of grassland agroecology are discussed in this paper. The interface theory, structure and function, coupling and discordance, and health assessment of grassland agroecosystems were recognized as the four research frontiers of the discipline. There exist three primary interfaces in a grassland agroecosystem, i.e., vegetation-site, grassland-animal and production-management. Research into a series of the ecological processes that occurred at these interfaces is the key to revealing the features of the system behavior. There are four sections in a grassland agroecosystem, i.e., pre-plant, plant, animal and post-biotic sections. System coupling and discordance are the two important concepts to describe interactions among the production sections. System coupling among the sections can lead to system improvement by exerting the potential of system capacity. Health of an ecosystem is a reflection of its structure and function, and health assessment is a measurement of its orderliness and service value.

  14. Laboratory Directed Research and Development annual report, fiscal year 1997

    SciTech Connect

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  15. Laboratory Technology Research: Abstracts of FY 1996 projects

    SciTech Connect

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  16. From Laboratory Research to a Clinical Trial

    PubMed Central

    Keevil, C. William; Salgado, Cassandra D.; Schmidt, Michael G.

    2015-01-01

    Objective: This is a translational science article that discusses copper alloys as antimicrobial environmental surfaces. Bacteria die when they come in contact with copper alloys in laboratory tests. Components made of copper alloys were also found to be efficacious in a clinical trial. Background: There are indications that bacteria found on frequently touched environmental surfaces play a role in infection transmission. Methods: In laboratory testing, copper alloy samples were inoculated with bacteria. In clinical trials, the amount of live bacteria on the surfaces of hospital components made of copper alloys, as well as those made from standard materials, was measured. Finally, infection rates were tracked in the hospital rooms with the copper components and compared to those found in the rooms containing the standard components. Results: Greater than a 99.9% reduction in live bacteria was realized in laboratory tests. In the clinical trials, an 83% reduction in bacteria was seen on the copper alloy components, when compared to the surfaces made from standard materials in the control rooms. Finally, the infection rates were found to be reduced by 58% in patient rooms with components made of copper, when compared to patients' rooms with components made of standard materials. Conclusions: Bacteria die on copper alloy surfaces in both the laboratory and the hospital rooms. Infection rates were lowered in those hospital rooms containing copper components. Thus, based on the presented information, the placement of copper alloy components, in the built environment, may have the potential to reduce not only hospital-acquired infections but also patient treatment costs. PMID:26163568

  17. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    SciTech Connect

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  18. The Mammalian Microbiome and Its Importance in Laboratory Animal Research.

    PubMed

    Bleich, André; Fox, James G

    2015-01-01

    In this issue are assembled 10 fascinating, well-researched papers that describe the emerging field centered on the microbiome of vertebrate animals and how these complex microbial populations play a fundamental role in shaping homeostasis of the host. The content of the papers will deal with bacteria and, because of relative paucity of information on these organisms, will not include discussions on viruses, fungus, protozoa, and parasites that colonize various animals. Dissecting the number and interactions of the 500-1000 bacterial species that can inhabit the intestines of animals is made possible by advanced DNA sequencing methods, which do not depend on whether the organism can be cultured or not. Laboratory animals, particularly rodents, have proven to be an indispensable component in not only understanding how the microbiome aids in digestion and protects the host against pathogens, but also in understanding the relationship of various species of bacteria to development of the immune system. Importantly, this research elucidates purported mechanisms for how the microbiome can profoundly affect initiation and progression of diseases such as type 1 diabetes, metabolic syndromes, obesity, autoimmune arthritis, inflammatory bowel disease, and irritable bowel syndrome. The strengths and limitations of the use of germfree mice colonized with single species of bacteria, a restricted flora, or most recently the use of human-derived microbiota are also discussed.

  19. Recent progress on spherical torus research

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki; Kaita, Robert

    2015-04-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ˜ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ˜ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of an attractive fusion energy power source. Since the start of the two mega-ampere class ST facilities in 2000, the National Spherical Torus Experiment in the United States and Mega Ampere Spherical Tokamak in UK, active ST research has been conducted worldwide. More than 16 ST research facilities operating during this period have achieved remarkable advances in all fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  20. Recent progress on spherical torus research

    SciTech Connect

    Ono, Masayuki; Kaita, Robert

    2015-04-15

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R{sub 0}/a) reduced to A ∼ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ∼ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of an attractive fusion energy power source. Since the start of the two mega-ampere class ST facilities in 2000, the National Spherical Torus Experiment in the United States and Mega Ampere Spherical Tokamak in UK, active ST research has been conducted worldwide. More than 16 ST research facilities operating during this period have achieved remarkable advances in all fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  1. Laboratory Directed Research and Development FY2001 Annual Report

    SciTech Connect

    Al-Ayat, R

    2002-06-20

    Established by Congress in 1991, the Laboratory Directed Research and Development (LDRD) Program provides the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) laboratories, like Lawrence Livermore National Laboratory (LLNL or the Laboratory), with the flexibility to invest up to 6% of their budget in long-term, high-risk, and potentially high payoff research and development (R&D) activities to support the DOE/NNSA's national security missions. By funding innovative R&D, the LDRD Program at LLNL develops and extends the Laboratory's intellectual foundations and maintains its vitality as a premier research institution. As proof of the Program's success, many of the research thrusts that started many years ago under LDRD sponsorship are at the core of today's programs. The LDRD Program, which serves as a proving ground for innovative ideas, is the Laboratory's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. Basic and applied research activities funded by LDRD enhance the Laboratory's core strengths, driving its technical vitality to create new capabilities that enable LLNL to meet DOE/NNSA's national security missions. The Program also plays a key role in building a world-class multidisciplinary workforce by engaging the Laboratory's best researchers, recruiting its future scientists and engineers, and promoting collaborations with all sectors of the larger scientific community.

  2. North American deep underground laboratories: Soudan Underground Laboratory, SNOLab, and the Sanford Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Lesko, Kevin T.

    2015-08-01

    Over the past several decades, fundamental physics experiments have required access to deep underground laboratories to satisfy the increasingly strict requirements for ultra-low background environments and shielding from cosmic rays. In this presentation, I summarize the existing and anticipated physics programs and laboratory facilities of North America's deep facilities: The Soudan Underground Laboratory in Minnesota, SNOLab in Ontario, Canada, and the Sanford Underground Research Facility in Lead, South Dakota.

  3. Differentiation of progressive supranuclear palsy: clinical, imaging and laboratory tools.

    PubMed

    Liscic, R M; Srulijes, K; Gröger, A; Maetzler, W; Berg, D

    2013-05-01

    Progressive supranuclear palsy (PSP) is the most common atypical parkinsonian syndrome comprising two main clinical subtypes: Richardson's syndrome (RS), characterized by prominent postural instability, supranuclear vertical gaze palsy and frontal dysfunction; and PSP-parkinsonism (PSP-P) which is characterized by an asymmetric onset, tremor and moderate initial therapeutic response to levodopa. The early clinical features of PSP-P are often difficult to discern from idiopathic Parkinson's disease (PD), and other atypical parkinsonian disorders, including multiple system atrophy (MSA) and corticobasal syndrome (CBS). In addition, rare PSP subtypes may be overlooked or misdiagnosed if there are atypical features present. The differentiation between atypical parkinsonian disorders and PD is important because the prognoses are different, and there are different responses to therapy. Structural and functional imaging, although currently of limited diagnostic value for individual use in early disease, may contribute valuable information in the differential diagnosis of PSP. A growing body of evidence shows the importance of CSF biomarkers in distinguishing between atypical parkinsonian disorders particularly early in their course when disease-modifying therapies are becoming available. However, specific diagnostic CSF biomarkers have yet to be identified. In the absence of reliable disease-specific markers, we provide an update of the recent literature on the assessment of clinical symptoms, pathology, neuroimaging and biofluid markers that might help to distinguish between these overlapping conditions early in the course of the disease.

  4. Final Progress Report: Internship at Los Alamos National Laboratory

    SciTech Connect

    Dunham, Ryan Q.

    2012-08-10

    Originally I was tasked fluidized bed modeling, however, I changed projects. While still working with ANSYS Fluent, I performed a study of particle tracks in glove boxes. This is useful from a Health-Physics perspective, dealing respirable particles that can be hazardous to the human body. I iteratively tested different amounts of turbulent particles in a steady-state flow. The goal of this testing was to discover how Fluent handles built-in Rosin-Rammler distributions for particle injections. I worked on the health physics flow problems and distribution analysis under the direction of two mentors, Bruce Letellier and Dave Decroix. I set up and ran particle injection calculations using Fluent. I tried different combinations of input parameters to produce sets of 500,000, 1 million, and 1.5 million particles to determine what a good test case would be for future experiments. I performed a variety of tasks in my work as an Undergraduate Student Intern at LANL this summer, and learned how to use a powerful CFD application in addition to expanding my skills in MATLAB. I enjoyed my work at LANL and hope to be able to use the experience here to further my career in the future working in a security-conscious environment. My mentors provided guidance and help with all of my projects and I am grateful for the opportunity to work at Los Alamos National Laboratory.

  5. Research progress in liver tissue engineering.

    PubMed

    Zhang, Lei; Guan, Zheng; Ye, Jun-Song; Yin, Yan-Feng; Stoltz, Jean-François; de Isla, Natalia

    2017-01-01

    Liver transplantation is the definitive treatment for patients with end-stage liver diseases (ESLD). However, it is hampered by shortage of liver donor. Liver tissue engineering, aiming at fabricating new livers in vitro, provides a potential resolution for donor shortage. Three elements need to be considered in liver tissue engineering: seeding cell resources, scaffolds and bioreactors. Studies have shown potential cell sources as hepatocytes, hepatic cell line, mesenchymal stem cells and others. They need scaffolds with perfect biocompatiblity, suitable micro-structure and appropriate degradation rate, which are essential charateristics for cell attachment, proliferation and secretion in forming extracellular matrix. The most promising scaffolds in research include decellularized whole liver, collagens and biocompatible plastic. The development and function of cells in scaffold need a microenvironment which can provide them with oxygen, nutrition, growth factors, et al. Bioreactor is expected to fulfill these requirements by mimicking the living condition in vivo. Although there is great progress in these three domains, a large gap stays still between their researches and applications. Herein, we summarized the recent development in these three major fields which are indispensable in liver tissue engineering.

  6. Safety in the Chemical Laboratory. Safety in the Laboratory: Are We Making Any Progress?

    ERIC Educational Resources Information Center

    McKusick, Blaine C.

    1987-01-01

    Reviews trends in laboratory safety found in both industrial and academic situations. Reports that large industrial labs generally have excellent safety programs but that, although there have been improvements, academia still lags behind industry in safety. Includes recommendations for improving lab safety. (ML)

  7. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, July 1--September 30, 1988

    SciTech Connect

    Weiss, A J

    1989-02-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through June 30, 1988. 71 figs., 24 tabs.

  8. Helical Explosive Flux Compression Generator Research at the Air Force Research Laboratory

    DTIC Science & Technology

    1999-06-01

    Air Force Research Laboratory Kirtland AFB...ORGANIZATION NAME(S) AND ADDRESS(ES) Directed Energy Directorate, Air Force Research Laboratory Kirtland AFB, NM 8. PERFORMING ORGANIZATION REPORT...in support of the Air Force Research Laboratory ( AFRL ) explosive pulsed power program. These include circuit codes such as Microcap and

  9. Progress in regenerative life support systems for a lunar laboratory.

    NASA Technical Reports Server (NTRS)

    Pecoraro, J. N.; Morris, F. K.

    1972-01-01

    Research and development work for application of Environmental and Thermal Control/Life Support System (ETC/LSS) on a lunar base mission is reviewed, covering lunar mission requirements and constraints, a Lunar Base ETC/LSS reliability assessment, food regeneration, the water and waste system, the atmosphere regeneration subsystem, and atmosphere contaminant control. The establishment of detailed system design criteria for the Lunar Surface Base LSS is considered to be premature at this phase of the project. Some recommendations are given instead for guidance in further R & D efforts.

  10. Introducing Undergraduates to a Research Laboratory

    ERIC Educational Resources Information Center

    Weinberg, Robert

    1974-01-01

    Discusses a student project which is intended to teach undergraduates concepts and techniques of nuclear physics, experimental methods used in particle detection, and provide experience in a functioning research environment. Included are detailed procedures for carrying out the project. (CC)

  11. Progress in InP solar cell research

    NASA Technical Reports Server (NTRS)

    Weinberg, Irving; Brinker, David J.

    1988-01-01

    Progress, in the past year, in InP solar cell research is reviewed. Small area cells with AMO, total area efficiencies of 18.8 percent were produced by OMCVD and Ion Implantation. Larger area cells (2 and 4 sq cm) were processed on a production basis. One thousand of the 2 sq cm cells will be used to supply power to a small piggyback lunar orbiter scheduled for launch in February 1990. Laboratory tests of ITO/InP cells, under 10 MeV proton irradiation, indicate radiation resistance comparable to InP n/p homojunction cells. Computer modeling studies indicate that, for identical geometries and dopant concentrations, InP solar cells are significantly more radiation resistant than GaAs under 1 MeV electron irradiation. Additional computer modeling calculations were used to produce rectangular and circular InP concentrator cell designs for both the low concentration SLATS and higher concentration Cassegrainian Concentrators.

  12. Laboratory Directed Research and Development Program FY 2006 Annual Report

    SciTech Connect

    Sjoreen, Terrence P

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  13. Evaluation of Radiometers in Full-Time Use at the National Renewable Energy Laboratory Solar Radiation Research Laboratory

    SciTech Connect

    Wilcox, S. M.; Myers, D. R.

    2008-12-01

    This report describes the evaluation of the relative performance of the complement of solar radiometers deployed at the National Renewable Energy Laboratory (NREL) Solar Radiation Research Laboratory (SRRL).

  14. Laboratory Directed Research and Development Program Assessment for FY 2014

    SciTech Connect

    Hatton, D.

    2014-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report fulfills that requirement.

  15. Laboratory directed research and development program, FY 1996

    SciTech Connect

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  16. Dental Laboratory Technology. Project Report Phase I with Research Findings.

    ERIC Educational Resources Information Center

    Sappe', Hoyt; Smith, Debra S.

    This report provides results of Phase I of a project that researched the occupational area of dental laboratory technology, established appropriate committees, and conducted task verification. These results are intended to guide development of a program designed to train dental laboratory technicians. Section 1 contains general information:…

  17. 75 FR 23847 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and ] Development Services Scientific Merit.... Clinical Research Program June 9, 2010 *VA Central Office. Oncology June 10-11, 2010....... L'Enfant...

  18. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services..., behavioral and clinical science research. The panel meetings will be open to the public for approximately...

  19. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit..., behavioral and clinical science research. The panel meetings will be open to the public for approximately...

  20. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... biomedical, behavioral, and clinical science research. The panel meeting will be open to the public...

  1. 77 FR 20489 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services... science research. The panel meetings will be open to the public for approximately one-half hour at...

  2. 76 FR 1212 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... areas of biomedical, behavioral and clinical science research. The panel meeting will be open to...

  3. USAF Summer Research Program - 1994 Summer Faculty Research Program Final Reports, Volume 5B, Wright Laboratory

    DTIC Science & Technology

    1994-12-01

    Research Laboratory Technical Directorates and Air Force Air Logistics Centers. Each participant provided a report of their research , and these...reports are consolidated into this annual report. 14. SUBJECT TERMS AIR FORCE RESEARCH , AIR FORCE , ENGINEERING, LABORATORIES , REPORTS, SUMMER...216-6940 UNITED STATES AIR FORCE SUMMER RESEARCH PROGRAM - 1994 SUMMER FACULTY RESEARCH PROGRAM FINAL REPORTS

  4. USAF Summer Research Program - 1993 Graduate Student Research Program Final Reports, Volume 8, Phillips Laboratory

    DTIC Science & Technology

    1994-12-01

    Research Program Phillips Laboratory Kirtland Air Force Base Albuquerque, New Mexico Sponsored by: Air ...Summer Research Program Phillips Laboratory Sponsored by. Air Force Office of Scientific Research Kirtland Air Force Base, Albuquerque, New Mexico...UNITED STATES AIR FORCE SUMMER RESEARCH PROGRAM -- 1993 SUMMER RESEARCH PROGRAM FINAL REPORTS VOLUME 8

  5. Metabonomics Research Progress on Liver Diseases

    PubMed Central

    2017-01-01

    Metabolomics as the new omics technique develops after genomics, transcriptomics, and proteomics and has rapid development at present. Liver diseases are worldwide public health problems. In China, chronic hepatitis B and its secondary diseases are the common liver diseases. They can be diagnosed by the combination of history, virology, liver function, and medical imaging. However, some patients seldom have relevant physical examination, so the diagnosis may be delayed. Many other liver diseases, such as drug-induced liver injury (DILI), alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD), and autoimmune liver diseases, still do not have definite diagnostic markers; the diagnosis consists of history, medical imaging, and the relevant score. As a result, the clinical work becomes very complex. So it has broad prospects to explore the specific and sensitive biomarkers of liver diseases with metabolomics. In this paper, there are several summaries which are related to the current research progress and application of metabolomics on biomarkers of liver diseases. PMID:28321390

  6. Research progress in China's Lop Nur

    NASA Astrophysics Data System (ADS)

    Dong, Zhibao; Lv, Ping; Qian, Guangqiang; Xia, Xuncheng; Zhao, Yuanje; Mu, Guijin

    2012-02-01

    China's Lop Nur is one of the world's largest playas, and is located in the driest part of Central Asia. Scientific explorations by Chinese and foreign researchers have been continuously conducted there since the mid- to late 1800 s, and much progress has been made, but many issues remain hotly debated. Particularly intense debate focuses on the formation, environmental evolution, drying date of the Lop Nur lake, and cause of the helical salt crusts recently revealed by remote-sensing images. In this paper, we review the status of this research to provide insights that can inform studies in other arid zones that resemble the Lop Nur. The Lop Nur depression is a secondary unit of the Tarim Block, controlled by faults and fractures formed by the Himalayan orogeny, but various competing explanations have been proposed for how these geological structures gave rise to the depression. The depression's formation date also remains unclear. Several boreholes have been created to reconstruct the environmental evolution at different time scales since the Quaternary, and deposition rates of lake sediments, especially since the Late Pleistocene, have averaged less than 1 mm annually. The drying date of the Lop Nur lake is also debated. The helical salt crust structures appear to have formed as the lake shrank, but how and when they formed is unclear. Huge potash reserves have been found, and large-scale potash fertilizer production has begun, but the origin of these deposits is debated. Understanding the factors causing environmental evolution in this region is a central issue that will help us to clarify these and other debated issues.

  7. A New Investigative Sophomore Organic Laboratory Involving Individual Research Projects

    NASA Astrophysics Data System (ADS)

    Kharas, Gregory B.

    1997-07-01

    The problem-solving approach calls for a laboratory curriculum that provides a greater intellectual challenge and the resemblance to a research experience. A curriculum was designed which involves individual research projects for the nine laboratories of the spring quarter of a three-quarter introductory organic chemistry course. These projects integrate the instructor's research and learning experiences for the students via interdisciplinary approaches of classical organic chemistry and polymer chemistry. The foundations for the individual research projects are laid out during the first and second quarters of laboratory instruction when students are introduced to classic synthetic, separation and purification techniques. In the third quarter of lab sequence, in carrying out the individual research projects, the emphasis is shifted towards obtaining and interpreting data for compounds that are not described in the laboratory manual rather than making representative compounds. The research is an open end laboratory project that includes an on-line and printed Chemical Abstracts literature search, molecular computer modeling, a microscale monomer synthesis and characterization, scale-up synthesis, polymer synthesis and characterization. By changing functional groups on the vinyl monomer molecule, the class can explore reactivity of one "family" of compounds and consequently polymers. This approach is based on the integration of genuine research experience with laboratory instruction in accessible but non-trivial manner.

  8. Research Review: Laboratory Student Magazine Programs.

    ERIC Educational Resources Information Center

    Wheeler, Tom

    1994-01-01

    Explores research on student-produced magazines at journalism schools, including the nature of various programs and curricular structures, ethical considerations, and the role of faculty advisors. Addresses collateral sources that provide practical and philosophical foundations for the establishment and conduct of magazine production programs.…

  9. Air Force Cambridge Research Laboratories balloon operations

    NASA Technical Reports Server (NTRS)

    Danaher, T. J.

    1974-01-01

    The establishment and functions of the AFCRL balloon operations facility are discussed. The types of research work conducted by the facility are defined. The facilities which support the balloon programs are described. The free balloon and tethered balloon capabilities are analyzed.

  10. QUALITY ASSURANCE IN RESEARCH LABORATORIES: RULES AND REASON

    EPA Science Inventory

    Quality Assurance in Research Laboratories: Rules and Reason

    Ron Rogers, Quality Assurance and Records Manager, Environmental Carcinogenesis Division, NHEERL/ORD/US EPA, Research Triangle Park, NC, 27709

    To anyone who has actively participated in research, as I have...

  11. Consultation and Decision Processes in a Research and Development Laboratory

    ERIC Educational Resources Information Center

    Smith, Clagett G.

    1970-01-01

    Study of relationship between consultation and decision processes in an industrial research laboratory showed the efficacy of multidirectional consultation coupled with a pattern of shared, decentralized decision making. (Author/KJ)

  12. Xerox' Canadian Research Facility: The Multinational and the "Offshore" Laboratory.

    ERIC Educational Resources Information Center

    Marchessault, R. H.; Myers, M. B.

    1986-01-01

    The history, logistics, and strategy behind the Xerox Corporation's Canadian research laboratory, a subsidiary firm located outside the United States for reasons of manpower, tax incentives, and quality of life, are described. (MSE)

  13. Research and Laboratory Instruction--An Experiment in Teaching

    ERIC Educational Resources Information Center

    Kramm, Kenneth R.

    1976-01-01

    Describes an attempt to incorporate research into laboratory work in an introductory ecology class and a senior seminar. The investigation involves the examination of rhythms of food consumption and circadian activities in humans. (GS)

  14. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2006

    SciTech Connect

    FOX, K.J.

    2006-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2006.

  15. Biological and Physical Space Research Laboratory 2002 Science Review

    NASA Technical Reports Server (NTRS)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  16. Army Research Laboratory. 1999 Annual Review

    DTIC Science & Technology

    1999-01-01

    and by 1990 they had developed new methods to synthesis nanoparticles. The surface areas of aerogel MgO particles are 350 to 500 m2; those...deformation. Researchers have obtained detailed information on the frag- mentation process by analytical and computational methods and by experi...coordinated through the American Society for Testing and Materials (ASTM) and VAMAS, to study and compare various testing methods . The round robin results

  17. Naval Research Laboratory Major Facilities 2008

    DTIC Science & Technology

    2008-10-01

    optical fiber fusion splicers, annealing facilities for magnetic materials, and facilities for degassing adhesives for potting purposes. The...characterizing the surface emissive and reflective properties of IR paints and materials. Measurements are made on transmittance, specular reflectance...systematic studies of material treatments and paint pigment, for example. This lab has been essential for NRL’s efforts, including in-house research and

  18. Argonne National Laboratory Research Highlights 1988

    SciTech Connect

    Not Available

    1988-01-01

    The research and development highlights are summarized. The world's brightest source of X-rays could revolutionize materials research. Test of a prototype insertion device, a key in achieving brilliant X-ray beams, have given the first glimpse of the machine's power. Superconductivity research focuses on the new materials' structure, economics and applications. Other physical science programs advance knowledge of material structures and properties, nuclear physics, molecular structure, and the chemistry and structure of coal. New programming approaches make advanced computers more useful. Innovative approaches to fighting cancer are being developed. More experiments confirm the passive safety of Argonne's Integral Fast Reactor concept. Device simplifies nuclear-waste processing. Advanced fuel cell could provide better mileage, more power than internal combustion engine. New instruments find leaks in underground pipe, measure sodium impurities in molten liquids, detect flaws in ceramics. New antibody findings may explain ability to fight many diseases. Cadmium in cigarettes linked to bone loss in women. Programs fight deforestation in Nepal. New technology could reduce acid rain, mitigate greenhouse effect, enhance oil recovery. Innovative approaches transfer Argonne-developed technology to private industry. Each year Argonne educational programs reach some 1200 students.

  19. A Learning Progressions Approach to Early Algebra Research and Practice

    ERIC Educational Resources Information Center

    Fonger, Nicole L.; Stephens, Ana; Blanton, Maria; Knuth, Eric

    2015-01-01

    We detail a learning progressions approach to early algebra research and how existing work around learning progressions and trajectories in mathematics and science education has informed our development of a four-component theoretical framework consisting of: a curricular progression of learning goals across big algebraic ideas; an instructional…

  20. Idaho National Laboratory Directed Research and Development FY-2009

    SciTech Connect

    Not Available

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are appropriately

  1. The Johns Hopkins Hunterian Laboratory Philosophy: Mentoring Students in a Scientific Neurosurgical Research Laboratory.

    PubMed

    Tyler, Betty M; Liu, Ann; Sankey, Eric W; Mangraviti, Antonella; Barone, Michael A; Brem, Henry

    2016-06-01

    After over 50 years of scientific contribution under the leadership of Harvey Cushing and later Walter Dandy, the Johns Hopkins Hunterian Laboratory entered a period of dormancy between the 1960s and early 1980s. In 1984, Henry Brem reinstituted the Hunterian Neurosurgical Laboratory, with a new focus on localized delivery of therapies for brain tumors, leading to several discoveries such as new antiangiogenic agents and Gliadel chemotherapy wafers for the treatment of malignant gliomas. Since that time, it has been the training ground for 310 trainees who have dedicated their time to scientific exploration in the lab, resulting in numerous discoveries in the area of neurosurgical research. The Hunterian Neurosurgical Laboratory has been a unique example of successful mentoring in a translational research environment. The laboratory's philosophy emphasizes mentorship, independence, self-directed learning, creativity, and people-centered collaboration, while maintaining productivity with a focus on improving clinical outcomes. This focus has been served by the diverse backgrounds of its trainees, both in regard to educational status as well as culturally. Through this philosophy and strong legacy of scientific contribution, the Hunterian Laboratory has maintained a positive and productive research environment that supports highly motivated students and trainees. In this article, the authors discuss the laboratory's training philosophy, linked to the principles of adult learning (andragogy), as well as the successes and the limitations of including a wide educational range of students in a neurosurgical translational laboratory and the phenomenon of combining clinical expertise with rigorous scientific training.

  2. 1995 Laboratory-Directed Research and Development Annual report

    SciTech Connect

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  3. Adaptive optics research at Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Greenwood, Darryl P.; Primmerman, Charles A.

    A development history is presented for adaptive-optics methods of optical aberration measurement and correction in real time, which are applicable to the thermal blooming of high-energy laser beams, the compensation of a laser beam propagating from ground to space, and compensation by means of a synthetic beacon. Attention is given to schematics of the various adaptive optics system types, which cover the cases of cooperative and uncooperative targets. Representative research projects encompassed by the high-energy propagation range in West Palm Beach are the 'Everlaser' instrumented target vehicle, the OCULAR multidither system installation, and the Atmospheric Compensation Experiment Adaptive Optics System.

  4. Laboratory Directed Research and Development Program Assessment for FY 2008

    SciTech Connect

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps BNL to respond new scientific opportunities within

  5. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1994--31 August 1995

    SciTech Connect

    Ludwig, E.J.

    1995-09-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers the second year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas of nuclear physics: parity violation in neutron and charged-particle resonances--the mass and energy dependence of the weak interaction spreading width; chaotic behavior in {sup 30}P from studies of eigenvalue fluctuations in nuclear level schemes; studies of few-body systems; nuclear astrophysics; nuclear data evaluation for A = 3--20, for which TUNL is now the international center; high-spin spectroscopy and superdeformation in nuclei, involving collaborations at Argonne National Laboratory. Developments in technology and instrumentation have been vital to the research and training program. In this progress report the author describes: a proposed polarized {gamma}-beam facility at the Duke Free Electron Laser Laboratory; cryogenic systems and microcalorimeter development; continuing development of the Low Energy Beam Facility. The research summaries presented in this progress report are preliminary.

  6. Summer Research Program (1992). Summer Faculty Research Program (SFRP) Reports. Volume 3. Phillips Laboratory.

    DTIC Science & Technology

    1992-12-28

    Phillips Laboratory Kirtland Air Force Base NM 87117-6008 Sponsored by: Air Force Office of Scientific Research Bolling Air Force Base...Zindel, D.: 1963, Z. Astrophys. 57, 82. 29-13 FINAL REPORT SUMMER FACULTY RESEARCH PROGRAM AT PHILLIPS LABORATORY KIRTLAND AIR FORCE BASE...Program Phillips Laboratory Sponsored by: Air Force Office of Scientific

  7. Life extension research at Sandia National Laboratories

    SciTech Connect

    Bustard, L.D.; DuCharme, A.R. Jr.; DeBey, T.M.

    1986-01-01

    As part of the Department of Energy (DOE) plant life extension (PLEX) effort, the DOE Technology Management Center at Sandia is actively participating in life extension research efforts. In the areas of reliability and surveillance, systems modelling techniques are being explored to identify those components which, if their reliability changes, could most impact safety. Results of an application of these techniques to the Surry nuclear plant were compared to an industry life extension categorization also performed at Surry. For selected types of components identified during this study, the degradation and failure mechanisms are being explored and state-of-the-art monitoring techniques are being evaluated. Initial results are presented. In the area of cable life extension, a definition study is under way to define utility-specific as well as collective industry actions that would facilitate extending cable life. Some recommendations of this study are also provided.

  8. 76 FR 24974 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... following four panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... clinical science research. The panel meetings will be open to the public for approximately one hour at...

  9. USAF Summer Research Program - 1993 Summer Research Extension Program Final Reports, Volume 2, Phillips Laboratory

    DTIC Science & Technology

    1994-11-01

    Research Extension Program Phillips Laboratory Kirtland Air Force Base Sponsored by: Air Force Office of Scientific Research Boiling Air Force Base...Program Phillips Laboratory Sponsored by: Air Force Office of Scientific Research Bolling Air Force Base, Washington, D.C. and Arkansas Tech University...Summer Research Extension Program (SREP) Phillips

  10. Laboratory directed research and development annual report: Fiscal year 1992

    SciTech Connect

    Not Available

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  11. Laboratory directed research and development annual report: Fiscal year 1992

    SciTech Connect

    Not Available

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  12. Progress in Harmonizing Tiered HIV Laboratory Systems: Challenges and Opportunities in 8 African Countries

    PubMed Central

    Williams, Jason; Umaru, Farouk; Edgil, Dianna; Kuritsky, Joel

    2016-01-01

    ABSTRACT In 2014, the Joint United Nations Programme on HIV/AIDS released its 90-90-90 targets, which make laboratory diagnostics a cornerstone for measuring efforts toward the epidemic control of HIV. A data-driven laboratory harmonization and standardization approach is one way to create efficiencies and ensure optimal laboratory procurements. Following the 2008 “Maputo Declaration on Strengthening of Laboratory Systems”—a call for government leadership in harmonizing tiered laboratory networks and standardizing testing services—several national ministries of health requested that the United States Government and in-country partners help implement the recommendations by facilitating laboratory harmonization and standardization workshops, with a primary focus on improving HIV laboratory service delivery. Between 2007 and 2015, harmonization and standardization workshops were held in 8 African countries. This article reviews progress in the harmonization of laboratory systems in these 8 countries. We examined agreed-upon instrument lists established at the workshops and compared them against instrument data from laboratory quantification exercises over time. We used this measure as an indicator of adherence to national procurement policies. We found high levels of diversity across laboratories’ diagnostic instruments, equipment, and services. This diversity contributes to different levels of compliance with expected service delivery standards. We believe the following challenges to be the most important to address: (1) lack of adherence to procurement policies, (2) absence or limited influence of a coordinating body to fully implement harmonization proposals, and (3) misalignment of laboratory policies with minimum packages of care and with national HIV care and treatment guidelines. Overall, the effort to implement the recommendations from the Maputo Declaration has had mixed success and is a work in progress. Program managers should continue efforts to

  13. Laboratory Directed Research and Development annual report, Fiscal year 1993

    SciTech Connect

    Not Available

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  14. Research Collaborations Between Universities and Department of Defense Laboratories

    DTIC Science & Technology

    2014-07-31

    Council – Resident Research Associateship (USAF/NRC-RRA) Program,5 the Naval Research Sabbatical Leave Program6 for faculty, and the College Qualified...http://www.onr.navy.mil/Education-Outreach/Summer-Faculty- Research-Sabbatical.aspx. 7 See U. S. Army website, “CQL Program – College Qualified... tuition assistance for researchers who are completing advanced degrees and opportunities for graduate students to work temporarily in a laboratory. These

  15. Laboratory technology research - abstracts of FY 1997 projects

    SciTech Connect

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  16. Laboratory Directed Research and Development Program

    SciTech Connect

    Ogeka, G.J.; Romano, A.J.

    1992-12-01

    This report briefly discusses the following research: Advances in Geoexploration; Transvenous Coronary Angiography with Synchrotron X-Rays; Borehole Measurements of Global Warming; Molecular Ecology: Development of Field Methods for Microbial Growth Rate and Activity Measurements; A New Malaria Enzyme - A Potential Source for a New Diagnostic Test for Malaria and a Target for a New Antimalarial Drug; Basic Studies on Thoron and Thoron Precursors; Cloning of the cDNA for a Human Serine/Threonine Protein Kinase that is Activated Specifically by Double-Stranded DNA; Development of an Ultra-Fast Laser System for Accelerator Applications; Cluster Impact Fusion; Effect of a Bacterial Spore Protein on Mutagenesis; Structure and Function of Adenovirus Penton Base Protein; High Resolution Fast X-Ray Detector; Coherent Synchrotron Radiation Longitudinal Bunch Shape Monitor; High Grain Harmonic Generation Experiment; BNL Maglev Studies; Structural Investigations of Pt-Based Catalysts; Studies on the Cellular Toxicity of Cocaine and Cocaethylene; Human Melanocyte Transformation; Exploratory Applications of X-Ray Microscopy; Determination of the Higher Ordered Structure of Eukaryotic Chromosomes; Uranium Neutron Capture Therapy; Tunneling Microscopy Studies of Nanoscale Structures; Nuclear Techiques for Study of Biological Channels; RF Sources for Accelerator Physics; Induction and Repair of Double-Strand Breaks in the DNA of Human Lymphocytes; and An EBIS Source of High Charge State Ions up to Uranium.

  17. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    SciTech Connect

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and

  18. Laboratory Directed Research and Development Program Assessment for FY 2007

    SciTech Connect

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining

  19. Laboratory technology research: Abstracts of FY 1998 projects

    SciTech Connect

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  20. Enabling UAS Research at the NASA EAV Laboratory

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey A.

    2015-01-01

    The Exploration Aerial Vehicles (EAV) Laboratory at NASA Ames Research Center leads research into intelligent autonomy and advanced control systems, bridging the gap between simulation and full-scale technology through flight test experimentation on unmanned sub-scale test vehicles.

  1. Strategic Plan for the ORD National Exposure Research Laboratory (NERL)

    EPA Science Inventory

    The National Exposure Research Laboratory (NERL) has a valued reputation for supporting the Agency’s mission of protecting human health and the environment with multidisciplinary expertise that brings cutting-edge research and technology to address critical exposure questions and...

  2. Integrating Interdisciplinary Research-Based Experiences in Biotechnology Laboratories

    ERIC Educational Resources Information Center

    Iyer, Rupa S.; Wales, Melinda E.

    2012-01-01

    The increasingly interdisciplinary nature of today's scientific research is leading to the transformation of undergraduate education. In addressing these needs, the University of Houston's College of Technology has developed a new interdisciplinary research-based biotechnology laboratory curriculum. Using the pesticide degrading bacterium,…

  3. The Development of Research as a Role in Laboratory Schools.

    ERIC Educational Resources Information Center

    Page, Fred M., Jr.; Page, Jane A.

    A 20-item questionnaire was mailed to 123 laboratory schools to investigate their involvement with educational research. The findings on the 57 schools that responded were organized into two categories: (1) background information on all respondents; and (2) information on research activities based on responses of the 39 schools identified as…

  4. Naval Aerospace Medical Research Laboratory Bibliography, 1981-1986.

    DTIC Science & Technology

    1987-06-01

    n Ltd.. 6 pp., 1981. Olsen, R.G., Microwave-induced Developmental Defects in the Common Mealworm Tenerio mlit-ýr_--A Decade o’ Re-seaFch-, NAMRL-1283...Tri-service Aeromedical Research Panel Fall Technical Meeting , NAMRL Monograph 33, Naval Aerospace A Medical Research Laboratory, Pensacola, FL

  5. Field Research Studying Whales in an Undergraduate Animal Behavior Laboratory

    ERIC Educational Resources Information Center

    MacLaren, R. David; Schulte, Dianna; Kennedy, Jen

    2012-01-01

    This work describes a new field research laboratory in an undergraduate animal behavior course involving the study of whale behavior, ecology and conservation in partnership with a non-profit research organization--the Blue Ocean Society for Marine Conservation (BOS). The project involves two weeks of training and five weekend trips on whale watch…

  6. HUMAN HEALTH RESEARCH IMPLEMENTATION PLAN, NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY

    EPA Science Inventory

    The National Health and Environmental Effects Research Laboratory (NHEERL), as part of the Environmental Protection Agency's (EPA's) Office of Research and Development (ORD), is responsible for conducting research to improve the risk assessment of chemicals for potential effects ...

  7. Pacific Northwest Laboratory annual report for 1990 to the DOE Office of Energy Research

    SciTech Connect

    Park, J.F.

    1991-06-01

    This report summarizes progress on OHER human health, biological, and general life sciences research programs conducted at PNL in FY 1990. The research develops the knowledge and scientific principles necessary to identify understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased of understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns epidemiological and statistical studies for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program.

  8. Current safety practices in nano-research laboratories in China.

    PubMed

    Zhang, Can; Zhang, Jing; Wang, Guoyu

    2014-06-01

    China has become a key player in the global nanotechnology field, however, no surveys have specifically examined safety practices in the Chinese nano-laboratories in depth. This study reports results of a survey of 300 professionals who work in research laboratories that handle nanomaterials in China. We recruited participants at three major nano-research laboratories (which carry out research in diverse fields such as chemistry, material science, and biology) and the nano-chemistry session of the national meeting of the Chinese Chemical Society. Results show that almost all nano-research laboratories surveyed had general safety regulations, whereas less than one third of respondents reported having nanospecific safety rules. General safety measures were in place in most surveyed nano-research laboratories, while nanospecific protective measures existed or were implemented less frequently. Several factors reported from the scientific literature including nanotoxicology knowledge gaps, technical limitations on estimating nano-exposure, and the lack of nano-occupational safety legislation may contribute to the current state of affairs. With these factors in mind and embracing the precautionary principle, we suggest strengthening or providing nanosafety training (including raising risk awareness) and establishing nanosafety guidelines in China, to better protect personnel in the nano-workplace.

  9. Location for the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This diagram shows the planned locations of the Space Experiment Research and Processing Laboratory (SERPL) and the Space Station Commerce Park at Kennedy Space Center. The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for the planned 400- acre commerce park.

  10. Tree Topping Ceremony at NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications. This photo depicts construction workers taking part in a tree topping ceremony as the the final height of the laboratory is framed. The ceremony is an old German custom of paying homage to the trees that gave their lives in preparation of the building site.

  11. A Research-Based Laboratory Course Designed to Strengthen the Research-Teaching Nexus

    ERIC Educational Resources Information Center

    Parra, Karlett J.; Osgood, Marcy P.; Pappas, Donald L., Jr.

    2010-01-01

    We describe a 10-week laboratory course of guided research experiments thematically linked by topic, which had an ultimate goal of strengthening the undergraduate research-teaching nexus. This undergraduate laboratory course is a direct extension of faculty research interests. From DNA isolation, characterization, and mutagenesis, to protein…

  12. FY03 Engineering Technology Reports Laboratory Directed Research and Development

    SciTech Connect

    Minichino, C

    2004-03-05

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2003, and exemplifies Engineering's 50-year history of researching and developing the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Engineering's investment in technologies is carried out through two programs, the LDRD program and the ''Tech Base'' program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge, or that require a significant level of research, or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice.'' Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2003, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the science and technology investments for the Directorate. The Centers represent technology areas that have been identified as critical for the present and future work of the Laboratory, and are

  13. Pulsed power -- Research and technology at Sandia National Laboratories

    SciTech Connect

    1981-12-31

    Over the past 15 years, steady and sometimes exciting progress has been made in the hybrid technology called Pulsed Power. Based on both electrical engineering and physics, pulsed power involves the generation, modification, and use of electrical pulses up to the multitrillion-watt and multimillion-volt ranges. The final product of these powerful pulses can take diverse forms--hypervelocity projectiles or imploding liners, energetic and intense particle beams, X-ray and gamma-ray pulses, laser light beams that cover the spectrum from ultraviolet to infrared, or powerful microwave bursts. At first, the needs of specific applications largely shaped research and technology in this field. New the authors are beginning to see the reverse--new applications arising from technical capabilities that until recently were though impossible. Compressing and heating microscopic quantities of matter until they reach ultra-high energy density represents one boundary of their scientific exploration. The other boundary might be a defensive weapon that can project vast amounts of highly directed energy over long distances. Other applications of the technology may range from the use of electron beams to sterilize sewage, to laboratory simulation of radiation effects on electronics, to electromagnetic launchings of projectiles into earth or into solar orbits. Eventually the authors hope to use pulsed power to produce an inexhaustible supply of energy by means of inertial confinement fusion (ICF)--a technique for heating and containing deuterium-tritium fuel through compression. Topics covered here are: (1) inertial confinement fusion; (2) simulation technology; (3) development of new technology; and (4) application to directed energy technologies.

  14. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    SciTech Connect

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  15. Proceedings: EPRI Cancer Workshop II on laboratory research

    SciTech Connect

    Kavet, R.

    1993-09-01

    A workshop on Electric and Magnetic Fields (EMF) and Cancer was held in Washington, DC, on September 6, 1991, organized by the Electric Power Research Institute (EPRI) EMF Health Studies Program. The primary objective of the EPRI Cancer Research Workshop II was to review the status and future of the Institute`s laboratory research program on EMF and cancer; program direction had been determined based on recommendations from EPRI`s first cancer workshop in July 1988. Research that addressed these recommendations in the intervening three years, either within the EPRI program or in other programs around the world, was reviewed. To identify laboratory research that would be responsive to current needs, workshop participants discussed four experimental systems, key results, and areas for further research. These systems include the mouse skin tumor model, use of C3H/l0T1/2 cells and their derivatives, the nude mouse model, and pineal research. In the final phase of the workshop participants developed recommendations for future research that could help resolve what role, if any, EMF exposure plays in carcinogenesis. EPRI`s EMF Health Studies Program is considering these recommendations within the process of evaluating existing projects and developing new laboratory research.

  16. Nano-G research laboratory for a spacecraft

    NASA Technical Reports Server (NTRS)

    Vonbun, Friedrich O. (Inventor); Garriott, Owen K. (Inventor)

    1991-01-01

    An acceleration free research laboratory is provided that is confined within a satellite but free of any physical engagement with the walls of the satellite, wherein the laboratory has adequate power, heating, cooling, and communications services to conduct basic research and development. An inner part containing the laboratory is positioned at the center-of-mass of a satellite within the satellite's outer shell. The satellite is then positioned such that its main axes are in a position parallel to its flight velocity vector or in the direction of the residual acceleration vector. When the satellite is in its desired orbit, the inner part is set free so as to follow that orbit without contacting the inside walls of the outer shell. Sensing means detect the position of the inner part with respect to the outer shell, and activate control rockets to move the outer shell; thereby, the inner part is repositioned such that it is correctly positioned at the center-of-mass of the satellite. As a consequence, all disturbing forces, such as drag forces, act on the outer shell, and the inner part containing the laboratory is shielded and is affected only by gravitational forces. Power is supplied to the inner part and to the laboratory by a balanced microwave/laser link which creates the kind of environment necessary for basic research to study critical phenomena such as the Lambda transition in helium and crystal growth, and to perform special metals and alloys research, etc.

  17. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    SciTech Connect

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  18. Laboratory Research: A Question of When, Not If.

    DTIC Science & Technology

    1985-03-01

    RD-A±53 298 LABORATORY RESEARCH: A QUESTION OF WHEN NOT IF(U) 1/1 MICHIGAN STATE UNIV EAST LANSING DEPT OF PSYCHOLOGY D R ILGEN MAR 85 TR-85-i N68814...Daniel R. Ilgen Michigan State University To Appear in E. A. Locke (Ed.) (1985) Generalizing from laboratory to field settings: Research findings from...D T IC NR170-961 ELECTE Technical Report 85-1 MAY 3 Department of Psychology and Department of Management Michigan State University B UNCLASSIFIED

  19. Space Station Freedom: a unique laboratory for gravitational biology research

    NASA Technical Reports Server (NTRS)

    Phillips, R. W.; Cowing, K. L.

    1993-01-01

    The advent of Space Station Freedom (SSF) will provide a permanent laboratory in space with unparalleled opportunities to perform biological research. As with any spacecraft there will also be limitations. It is our intent to describe this space laboratory and present a picture of how scientists will conduct research in this unique environment we call space. SSF is an international venture which will continue to serve as a model for other peaceful international efforts. It is hoped that as the human race moves out from this planet back to the moon and then on to Mars that SSF can serve as a successful example of how things can and should be done.

  20. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    SciTech Connect

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  1. [Progress in epigenetic research on Alzheimer disease].

    PubMed

    Yang, Nannan; Wei, Yang; Xu, Qian; Tang, Beisha

    2016-04-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder, which features mainly with memory impairment as the initial symptom of progressive loss of cognitive function. Its main pathological changes include senile plaques and neurofibrillary tangles. The pathogenesis of AD is still unclear, though it may be connected with aging, genetic factors and environmental factors. Among these, aging and environmental factors can be modified by epigenetics. In this paper, advances in the study of epigenetic mechanisms related to the pathogenesis of AD are reviewed.

  2. Annual Research Progress Report FY 92.

    DTIC Science & Technology

    1993-01-11

    interested adolescents and their parents . If an individual is interested in participating, he/she will be given a laboratory slip for a non-fasting...ages 15-20)will complete a questionnaire designed to assess adolescent stereotypes of teen parents . Participants will be shown a 3" by 3" color...be interviewed by a physician for pertinent history of smoking, HTN, CAD, ASPVD, hyperlipidemia, or family history of AAA ( maternal versus paternal

  3. The changing role of the National Laboratories in materials research

    SciTech Connect

    Wadsworth, J.; Fluss, M.

    1995-06-02

    The role of the National Laboratories is summarized from the era of post World War II to the present time. The U.S. federal government policy for the National Laboratories and its influence on their materials science infrastructure is reviewed with respect to: determining overall research strategies, various initiatives to interact with industry (especially in recent years), building facilities that serve the nation, and developing leading edge research in the materials sciences. Despite reductions in support for research in the U.S. in recent years, and uncertainties regarding the specific policies for R&D in the U.S., there are strong roles for materials research at the National Laboratories. These roles will be centered on the abilities of the National Laboratories to field multidisciplinary teams, the use of unique cutting edge facilities, a focus on areas of strength within each of the labs, increased teaming and partnerships, and the selection of motivated research areas. It is hoped that such teaming opportunities will include new alliances with China, in a manner similar, perhaps, to those recently achieved between the U.S. and other countries.

  4. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    SciTech Connect

    Rigali, Mark J.; Miller, James E.; Altman, Susan J.; Biedermann, Laura; Brady, Patrick Vane.; Kuzio, Stephanie P.; Nenoff, Tina M.; Rempe, Susan

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  5. Laboratory directed research and development annual report. Fiscal year 1994

    SciTech Connect

    1995-02-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. This report represents Pacific Northwest Laboratory`s (PNL`s) LDRD report for FY 1994. During FY 1994, 161 LDRD projects were selected for support through PNL`s LDRD project selection process. Total funding allocated to these projects was $13.7 million. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our {open_quotes}core competencies.{close_quotes} Currently, PNL`s core competencies have been identified as integrated environmental research; process science and engineering; energy systems development. In this report, the individual summaries of LDRD projects (presented in Section 1.0) are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. Projects within the three core competency areas were approximately 91.4 % of total LDRD project funding at PNL in FY 1994. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. Funding allocated to each of these projects is typically $35K or less. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program, the management process used for the program, and project summaries for each LDRD project.

  6. Smart Electronic Laboratory Notebooks for the NIST Research Environment

    PubMed Central

    Gates, Richard S.; McLean, Mark J.; Osborn, William A.

    2015-01-01

    Laboratory notebooks have been a staple of scientific research for centuries for organizing and documenting ideas and experiments. Modern laboratories are increasingly reliant on electronic data collection and analysis, so it seems inevitable that the digital revolution should come to the ordinary laboratory notebook. The most important aspect of this transition is to make the shift as comfortable and intuitive as possible, so that the creative process that is the hallmark of scientific investigation and engineering achievement is maintained, and ideally enhanced. The smart electronic laboratory notebooks described in this paper represent a paradigm shift from the old pen and paper style notebooks and provide a host of powerful operational and documentation capabilities in an intuitive format that is available anywhere at any time. PMID:26958447

  7. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    SciTech Connect

    Wester, W.

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  8. Smart Electronic Laboratory Notebooks for the NIST Research Environment.

    PubMed

    Gates, Richard S; McLean, Mark J; Osborn, William A

    2015-01-01

    Laboratory notebooks have been a staple of scientific research for centuries for organizing and documenting ideas and experiments. Modern laboratories are increasingly reliant on electronic data collection and analysis, so it seems inevitable that the digital revolution should come to the ordinary laboratory notebook. The most important aspect of this transition is to make the shift as comfortable and intuitive as possible, so that the creative process that is the hallmark of scientific investigation and engineering achievement is maintained, and ideally enhanced. The smart electronic laboratory notebooks described in this paper represent a paradigm shift from the old pen and paper style notebooks and provide a host of powerful operational and documentation capabilities in an intuitive format that is available anywhere at any time.

  9. Laboratory Directed Research and Development Program FY 2007 Annual Report

    SciTech Connect

    Sjoreen, Terrence P

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  10. Laboratory directed research and development FY98 annual report

    SciTech Connect

    Al-Ayat, R; Holzrichter, J

    1999-05-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs.

  11. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    SciTech Connect

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  12. [Research progress of traditional mineral Chinese medicine].

    PubMed

    Chen, Bing-Chun; Zheng, Li-Li; Wang, Hai-Yan; Dong, Wei; Fu, Xian-Jun; Wang, Yu

    2014-01-01

    Traditional mineral Chinese medicine is a characteristic part of Chinese medicine, in the development of traditional Chinese medicine has its unique role. With the development of science and technology and the increase of the medical level, traditional mineral medicine research is gradually thorough and wide-ranging. In recent years, traditional mineral Chinese medicine research mainly includes the physical properties of mineral medicine, structure, chemical composition, pharmacology and treatment mechanism research. The above several aspects of research in the mineral medicine has important practical and theoretical significance. The above several aspects of research status and the problems existing in the research were briefly summarized and reviewed in this paper, and its development were discussed, to provide reference for further studies in the future.

  13. [Research progress of BDNF and depression].

    PubMed

    Qiao, Hui; An, Shu-Cheng; Xu, Chang

    2011-06-01

    BDNF is widespread existed in CNS and PNS, because of its function in nerve regeneration and restoration, more and more researches focused on the effect of BDNF on neural plasticity in the development of depression and the mechanisms of antidepressant. This article review the basic results and the research trends on BDNF and depression at present, more researches about the interactions of BDNF and proBDNF, BDNF and other transmitters and their receptors should be expected.

  14. Measuring Math Growth: Implications for Progress Monitoring. Research Brief 5

    ERIC Educational Resources Information Center

    Alonzo, Julie; Irvin, P. Shawn

    2013-01-01

    Achievement growth in math is often framed in the context of monitoring student progress within a Response to Intervention (RTI) approach to teaching and learning. In this research brief we report on a study that examined initial status and within-year growth for fourth grade students who received short progress-monitoring assessments in math…

  15. Technical Seminar: "Progress in Aircraft Noise Research"""

    NASA Video Gallery

    Advances in aircraft noise research can be attributed to the development of new technologies and sustained collaboration with industry, universities and government organizations. Emphasis has been ...

  16. Computer Graphics Research Laboratory Quarterly Progress Report Number 43

    DTIC Science & Technology

    1992-05-01

    method and incorporates a gradient method [ Reklaitis 83]. By combining the two meth- ods, Levenberg-Marquardt method tries to improve the convergence...Trans. Pat- tern Analysis and Machine Intelligence 13(7):715-729, July 1991. [ Reklaitis 83] Reklaitis , G. V., A. Ravindran, and K. M. Ragsdell

  17. Project objectives and progress at the Research Laboratory of Electronics

    SciTech Connect

    Allen, J.

    1983-01-01

    Molecule microscopy, semiconductor surface studies, atomic resonance and scattering, reaction dynamics at semiconductor surfaces, X-ray diffuse scattering, phase transitions in chemisorbed systems, optics and quantum electronics, photonics, optical spectroscopy of disordered materials and X-ray scattering from surfaces, infrared nonlinear optics, quantum optics and electronics, microwave and millimeter wave techniques, microwave and quantum magnetics, radio astronomy, electromagnetic wave theory and remote sensing, electronic properties of amorphous silicon dioxide, photon correlation spectroscopy and applications, submicron structures fabrication, plasma dynamics, optical propagation and communication, digital signal processing, speech communication, linguistics, cognitive information processing, custom integrated circuits, communications biophysics, and physiology, are discussed.

  18. RLE (Research Laboratory of Electronics) Progress Report Number 125.

    DTIC Science & Technology

    1983-01-01

    place at these surfaces. Water plays a role in corrosion initiation and failure in metallurgy, and in catalytic reactions in chemistry. We expect the SDMM...completely neutral. (This is separable from any induced polarization effects, which will occur at doubled frequency). Using SFr , gas in a spherical...suffer from parasites and from unpredictable thermal behavior. Solder joints are occasional failure sites when thermally cycled, but special alloy

  19. RLE (Research Laboratory of Electronics) Progress Report Number 130

    DTIC Science & Technology

    1988-07-01

    multimaterial integrated circuits, display devices and low-cost, high-efficiency solar cells. Such films can be obtained through directional...preliminary study of the feasibilty of directly imaging planets in other solar systems has been carried out by Professor Burke, and a preliminary report...nellUso delP Energia Nucleare. RLE PTP-87-6. MIT, 1987. $3.00. Coppi, B., Comments on the Agreement between the U.S. and the U.S.S.R. on the Scientific and

  20. RLE (Research Laboratory of Electronics) Progress Report Number 134

    DTIC Science & Technology

    1992-06-01

    Smet, James C. Vlcek Technical and Support Staff Kelley S. Donovan, Angela R. Odoardi, Richard R. Perilli 1.1 Introduction 1.2 Computer Controlled The...Haus, James G. Fujimoto, and Erich P. Ippen to The use of graded-composition junctions allows develop the optical device application, character- for...percent to one percent or To address these issues, an alternative growth less . algorithm, called quasi-migration enhanced epitaxy, was developed and

  1. US Army Aeromedical Research Laboratory Annual Progress Report, FY 1981.

    DTIC Science & Technology

    1981-10-01

    preparation. O.SA~. I 01 1-%I POrNS ANIL O6SQCL9Y9 10 *O100 . 0 01 D 0. =6 87 14SS 9 8* of d?0O .0. Use, .01 090L619 111N- I -0801v ACCR~ is MIS of~* s...Center on "Visual Detection Strategy of US Coast Guard Cbservers." Prog ress in the visual per- formance researcn nas teen oemonstratea by three

  2. Army Medical Laboratory Annual Research Progress Report. Volume 2

    DTIC Science & Technology

    Contents: Enhancement of specificity of the fluorescent treponemal antibody test as compared to the TPI test; Studies on penicillin treatment ...failures of gonorrhea ; Culture media for growth and maintenance of tissue cell lines.

  3. Research Laboratory of Electronic Progress Report Number 135.

    DTIC Science & Technology

    1993-06-01

    Baggeroer, Professor Gregory W. Womell 1.1 Introduction...51 D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory , C.A. Puliafito and J.G. Fujimoto, "Optical...C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory , C.A. Puliatito and J.G. Fujimoto, "Optical Coherence Tomography

  4. RLE (Research Laboratory of Electronics) Progress Report Number 126.

    DTIC Science & Technology

    1984-01-01

    statistically meaningful results. The software package, including SPIRE, SPIREX, and ALEXIS , are available to interested parties through the MIT patent office... Carrell , Thomas Kawakami, Shojiro Saarelma, Hannu J. Chen, Chih-Fan Kayoun, Pierre H. Shapira, Ruth Chen, Dong-Pei Koizumi, Takuya Shevel, Sergey G. Chew

  5. Research Laboratory of Electronics Progress Report Number 134

    DTIC Science & Technology

    1991-12-31

    Dissertations ledge of one or more languages . The following are abstracts of dissertations sub- We are trying to understand how this linguistic mitted in...private features sound structure of words while morphology exam- [feminine] and [plural]. ines the manner in which different languages combine...recent years and will probably become node by S-structure. S-structure contains fully 331 Chapter 1. Linguistics specified syntactic feature matrices

  6. Integrating teaching and research in the field and laboratory settings

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kaseke, K. F.; Daryanto, S.; Ravi, S.

    2015-12-01

    Field observations and laboratory measurements are great ways to engage students and spark students' interests in science. Typically these observations are separated from rigorous classroom teaching. Here we assessed the potential of integrating teaching and research in the field and laboratory setting in both US and abroad and worked with students without strong science background to utilize simple laboratory equipment and various environmental sensors to conduct innovative projects. We worked with students in Namibia and two local high school students in Indianapolis to conduct leaf potential measurements, soil nutrient extraction, soil infiltration measurements and isotope measurements. The experience showed us the potential of integrating teaching and research in the field setting and working with people with minimum exposure to modern scientific instrumentation to carry out creative projects.

  7. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    SciTech Connect

    Bradbury, Norris E.; Meade, Roger Allen

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. This report is the transcript of his talk.

  8. QUALITY ASSURANCE IN RESEARCH LABORATORIES: RULES AND REASON

    EPA Science Inventory

    The progression of QA policies and their interpretations, at all EPA levels, has at times been troublesome to some scientists and QA professionals in EPA's Office of Research and Development, suggesting a need for more open discussions among all stakeholders than routinely occurs...

  9. Laboratory directed research development annual report. Fiscal year 1996

    SciTech Connect

    1997-05-01

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview of the research and development program, program management, program funding, and Fiscal Year 1997 projects.

  10. Science to support DOE site cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program awards. Fiscal year 1997 mid-year progress report

    SciTech Connect

    1997-06-01

    The Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996. This report gives a summary of how each grant is addressing significant DOE cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is primarily focused in three areas--Tank Waste Remediation, Soil and Groundwater Cleanup, and Health Effects.

  11. Science to support DOE site cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program awards. Fiscal year 1998 mid-year progress report

    SciTech Connect

    1998-05-01

    Pacific Northwest National Laboratory was awarded ten (10) Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996 and six (6) in Fiscal Year 1997. This section summarizes how each grant addresses significant US Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in four areas: Tank Waste Remediation, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Cleanup, and Health Effects.

  12. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards-Fiscal Year 1999 Mid-Year Progress Report

    SciTech Connect

    Peurrung, L.M.

    1999-06-30

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, and eight in fiscal year 1998. This section summarizes how each grant addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in five areas: Tank Waste Remediation, Decontamination and Decommissioning, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Clean Up, and Health Effects.

  13. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    SciTech Connect

    Habte, Aron; Wilcox, Stephen; Stoffel, Thomas

    2015-12-23

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  14. Laboratory Directed Research and Development LDRD-FY-2011

    SciTech Connect

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  15. Whooping crane recovery: Progress through research

    USGS Publications Warehouse

    Carpenter, J.W.; Smith, D.G.

    1988-01-01

    Cooperative efforts of the Canadian Wildlife Service (CWS), U.S. Fish and Wildlife Service (FWS), Wood Buffalo National Park in Canada, and Patuxent Wildlife Research Center have established a captive flock of whooping cranes, and at least two additional wild populations. Efforts have focused on research, habitat protection, law enforcement, and conservation education programs.

  16. Chemical Structure and Accidental Explosion Risk in the Research Laboratory

    ERIC Educational Resources Information Center

    Churchill, David G.

    2006-01-01

    Tips that laboratory researchers and beginning graduate students can use to safeguard against explosion hazard with emphasis on clear illustrations of molecular structure are discussed. Those working with hazardous materials must proceed cautiously and may want to consider alternative and synthetic routes.

  17. A Research-Inspired Laboratory Sequence Investigating Acquired Drug Resistance

    ERIC Educational Resources Information Center

    Taylor, Elizabeth Vogel; Fortune, Jennifer A.; Drennan, Catherine L.

    2010-01-01

    Here, we present a six-session laboratory exercise designed to introduce students to standard biochemical techniques in the context of investigating a high impact research topic, acquired resistance to the cancer drug Gleevec. Students express a Gleevec-resistant mutant of the Abelson tyrosine kinase domain, the active domain of an oncogenic…

  18. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S CONSOLIDATED HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from 12 U.S. studies related to human activities into one comprehensive data system that can be accessed via the Internet. The data system is called the Consolidated Human Activity Database (CHAD), and it is ...

  19. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S COMPREHENSIVE HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from nine U.S. studies related to human activities into one comprehensive data system that can be accessed via the world-wide web. The data system is called CHAD-Consolidated Human Activity Database-and it is ...

  20. First international conference on laboratory research for planetary atmospheres

    SciTech Connect

    Fox, K.; Allen, J.E. Jr.; Stief, L.J.; Quillen, D.T.

    1990-05-01

    Proceedings of the First International Conference on Laboratory Research for Planetary Atmospheres are presented. The covered areas of research include: photon spectroscopy, chemical kinetics, thermodynamics, and charged particle interactions. This report contains the 12 invited papers, 27 contributed poster papers, and 5 plenary review papers presented at the conference. A list of attendees and a reprint of the Report of the Subgroup on Strategies for Planetary Atmospheres Exploration (SPASE) are provided in two appendices.

  1. First International Conference on Laboratory Research for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Fox, Kenneth (Editor); Allen, John E., Jr. (Editor); Stief, Louis J. (Editor); Quillen, Diana T. (Editor)

    1990-01-01

    Proceedings of the First International Conference on Laboratory Research for Planetary Atmospheres are presented. The covered areas of research include: photon spectroscopy, chemical kinetics, thermodynamics, and charged particle interactions. This report contains the 12 invited papers, 27 contributed poster papers, and 5 plenary review papers presented at the conference. A list of attendees and a reprint of the Report of the Subgroup on Strategies for Planetary Atmospheres Exploration (SPASE) are provided in two appendices.

  2. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    SciTech Connect

    Not Available

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  3. Laboratory directed research and development program FY 1997

    SciTech Connect

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  4. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Research and Development and Clinical Science Research and Development Services Scientific Merit Review... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to...

  5. Research Progress and Accomplishments on ISS

    NASA Technical Reports Server (NTRS)

    Roe, Lesa B.; Uri, John J.

    2002-01-01

    The first research payloads reached the International Space Station (ISS) more than two years ago, with research operating continuously since March 2001. Seven research racks are currently on-orbit, with three more arriving soon to expand science capabilities. Through the first five expeditions, 60 unique NASA-managed investigations from 11 nations have been supported, many continuing into later missions. More than 90,000 experiment hours have been completed, and more than 1,000 hours of crew time have been dedicated to research, numbers that grow daily. The multidisciplinary program includes research in life sciences, physical sciences, biotechnology, Earth sciences, technology demonstrations as well as commercial endeavors and educational activities. The Payload Operations and Integration Center monitors the onboard activities around the clock, working with numerous Principal Investigators and Payload Developers at their remote sites. Future years will see expansion of the station with research modules provided by the European Space Agency and Japan, which will be outfitted with additional research racks. The first research payloads arrived at ISS more than two years ago, and continuous science has been ongoing for more than one and a half years. During this time, the research capabilities have been tremendously increased, even as assembly of the overall platform continues. Despite significant challenges along the way, ISS continues to successfully support a large number of investigations in a variety of research disciplines. The results of some of the early investigations are reaching the publication stage. The near future looms with new challenges, but experience to date and dedicated efforts give reason to be optimistic that the challenges will be overcome and that new and greater successes will be added to past ones.

  6. Research Progress of Moyamoya Disease in Children

    PubMed Central

    Piao, Jianmin; Wu, Wei; Yang, Zhongxi; Yu, Jinlu

    2015-01-01

    During the onset of Moyamoya disease (MMD), progressive occlusion occurs at the end of the intracranial internal carotid artery, and compensatory net-like abnormal vessels develop in the skull base, generating the corresponding clinical symptoms. MMD can affect both children and adults, but MMD in pediatric patients exhibits distinct clinical features, and the treatment prognoses are different from adult patients. Children are the group at highest risk for MMD. In children, the disease mainly manifests as ischemia, while bleeding is the primary symptom in adults. The pathogenesis of MMD in children is still unknown, and some factors are distinct from those in adults. MMD in children could result in progressive, irreversible nerve functional impairment, and an earlier the onset corresponds to a worse prognosis. Therefore, active treatment at an early stage is highly recommended. The treatment methods for MMD in children mainly include indirect and direct surgeries. Indirect surgeries mainly include multiple burr-hole surgery (MBHS), encephalomyosynangiosis (EMS), and encephaloduroarteriosynangiosis (EDAS); direct surgeries mainly include intra- and extracranial vascular reconstructions that primarily consist of superficial temporal artery-middle cerebral artery (STA-MCA) anastomosis. Indirect surgery, as a treatment for MMD in children, has shown a certain level of efficacy. However, a standard treatment approach should combine both indirect and direct procedures. Compared to MMD in adults, the treatment and prognosis of MMD in children has higher clinical significance. If the treatment is adequate, a satisfactory outcome is often achieved. PMID:26180513

  7. Research Progress of Moyamoya Disease in Children.

    PubMed

    Piao, Jianmin; Wu, Wei; Yang, Zhongxi; Yu, Jinlu

    2015-01-01

    During the onset of Moyamoya disease (MMD), progressive occlusion occurs at the end of the intracranial internal carotid artery, and compensatory net-like abnormal vessels develop in the skull base, generating the corresponding clinical symptoms. MMD can affect both children and adults, but MMD in pediatric patients exhibits distinct clinical features, and the treatment prognoses are different from adult patients. Children are the group at highest risk for MMD. In children, the disease mainly manifests as ischemia, while bleeding is the primary symptom in adults. The pathogenesis of MMD in children is still unknown, and some factors are distinct from those in adults. MMD in children could result in progressive, irreversible nerve functional impairment, and an earlier the onset corresponds to a worse prognosis. Therefore, active treatment at an early stage is highly recommended. The treatment methods for MMD in children mainly include indirect and direct surgeries. Indirect surgeries mainly include multiple burr-hole surgery (MBHS), encephalomyosynangiosis (EMS), and encephaloduroarteriosynangiosis (EDAS); direct surgeries mainly include intra- and extracranial vascular reconstructions that primarily consist of superficial temporal artery-middle cerebral artery (STA-MCA) anastomosis. Indirect surgery, as a treatment for MMD in children, has shown a certain level of efficacy. However, a standard treatment approach should combine both indirect and direct procedures. Compared to MMD in adults, the treatment and prognosis of MMD in children has higher clinical significance. If the treatment is adequate, a satisfactory outcome is often achieved.

  8. EPA Research and Development: National Exposure Research Laboratory

    EPA Science Inventory

    This course is for Biology majors, primarily those in the completed Freshman Biology. Students enrolled in the course are expected to have completed Freshman Biology. With some background in biology as a strt, students begin to think about doing some research as part of their u...

  9. [Otolith microchemistry of tuna species: research progress].

    PubMed

    Zhu, Guo-ping

    2011-08-01

    Microchemistry analysis of trace elements and isotopes in fishes' calcified substances is an emerging approach to analyze the population structure, life history, and migration environmental history of fishes. With the increasing improvement of the researches and applications of otolith microchemistry, this approach has been a good tool for studying the ecology of tuna species. Currently, the research contents of tuna species' otolith microchemistry mainly include trace elements and isotopes, and the former is the emphasis and hotspot in applied research, playing a vital role in the researches of population partitioning, natal origin, migration environmental history, and life history of tuna species, especially bluefin tuna. However, most of the researches are focusing on the variation of otolith's Sr/Ca ratio, and there is no final conclusion on the relationships between the fractionation of isotopes C and O in otolith and the temperature. For the sake of exploiting the huge value of otolith microchemistry, it would be necessary to strengthen the researches on the deposition mechanisms of trace elements in otolith, and to analyze the spatio-temporal variations of various trace elements in otolith by comprehensive research methods.

  10. Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996

    SciTech Connect

    1997-05-06

    OAK A271 Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996. The Rockwell International Hot Laboratory (RIHL) is one of a number of former nuclear facilities undergoing decontamination and decommissioning (D&D) at the Santa Susana Field Laboratory (SSFL). The RIHL facility is in the later stages of dismantlement, with the final objective of returning the site location to its original natural state. This report documents the decontamination and dismantlement activities performed at the facility over the time period 1988 through 1996. At this time, the support buildings, all equipment associated with the facility, and the entire above-ground structure of the primary facility building (Building 020) have been removed. The basement portion of this building and the outside yard areas (primarily asphalt and soil) are scheduled for D&D activities beginning in 1997.

  11. [Recent researching progress of Lepidium meyenii (Maca)].

    PubMed

    Zhou, Yan-yan; Zhao, Hai-yu; Si, Nan; Wang, Hong-jie; Gian, Bao-lin

    2015-12-01

    Maca as one of the star products in the international health care market in recent years, had a wide range of application value and promoted to all over the world. However, the basic research of Maca was not deep, lack of systematic and clear efficacy studies. Market products hype its aphrodisiac effect, which greatly impact more systematic in-depth research and exploration. Therefore, this paper briefly summarizes advance research in recent years including the status quo of the resources, growth cultivation, phytochemical, pharmacological effect and other aspects, which can provide reference for rational development and utilization of Maca.

  12. Research on Speech Perception. Progress Report No. 12.

    ERIC Educational Resources Information Center

    Pisoni, David B.; And Others

    Summarizing research activities in 1986, this is the twelfth annual report of research on speech perception, analysis, synthesis, and recognition conducted in the Speech Research Laboratory of the Department of Psychology at Indiana University. The report contains the following 23 articles: "Comprehension of Digitally Encoded Natural Speech…

  13. Research on Speech Perception. Progress Report No. 15.

    ERIC Educational Resources Information Center

    Pisoni, David B.

    Summarizing research activities in 1989, this is the fifteenth annual report of research on speech perception, analysis, synthesis, and recognition conducted in the Speech Research Laboratory of the Department of Psychology at Indiana University. The report contains the following 21 articles: "Perceptual Learning of Nonnative Speech…

  14. Radiological characterization plan for the Tritium Research Laboratory, Sandia National Laboratories/California

    SciTech Connect

    Garcia, T.

    1995-05-01

    In this Radiological Characterization Plan (RCP), the Health Protection Department, 8641 of Sandia National Laboratories/California provides specific information for an assessment of the radiological conditions of Building 968, the Tritium Research Laboratory (TRL), and the TRL Complex area. This RCP provides historical background information on each laboratory within the TRL Complex as related to both radiological conditions and hazardous materials. Since this plan chronicles past and present activities and outlines future actions, a final complex status report will follow the completion of this document. The Health Protection Department, 8641 anticipates that the TRL Complex will ultimately undergo a termination survey; however, this RCP does not include environmental surveys such as soil, vegetation, or ground water. The RCP does provide the basis for a final termination survey plan, when appropriate.

  15. X-48B Flight Research Progress Overview

    NASA Technical Reports Server (NTRS)

    Risch, Timothy K.

    2008-01-01

    This viewgraph presentation gives a general overview of the X-48B Flight research program. Major program accomplishments, a detailed description of the X-48B vehicle, along with flight tests, and wind tunnel tests are also described.

  16. Summary of research in progress at ICASE

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1992 through March 31, 1993.

  17. Health and Safety Research Division progress report for the period April 1, 1990--September 30, 1991

    SciTech Connect

    Kaye, S.V.

    1992-03-01

    This is a brief progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology including Measurement Applications and Development, Pollutant Assessments, Measurement Systems Research, Dosimetry Applications Research, Metabolism and Dosimetry Research and Nuclear Medicine. Biological and Radiation Physics including Atomic, Molecular, and High Voltage Physics, Physics of Solids and Macromolecules, Liquid and Submicron Physics, Analytic Dosimetry and Surface Physics and Health Effects. Chemical Physics including Molecular Physics, Photophysics and Advanced Monitoring Development. Biomedical and Environmental Information Analysis including Human Genome and Toxicology, Chemical Hazard Evaluation and Communication, Environmental Regulations and Remediation and Information Management Technology. Risk Analysis including Hazardous Waste.

  18. Laboratory directed research and development fy1999 annual report

    SciTech Connect

    Al-Ayat, R A

    2000-04-11

    The Lawrence Livermore National Laboratory (LLNL) was founded in 1952 and has been managed since its inception by the University of California (UC) for the U.S. Department of Energy (DOE). Because of this long association with UC, the Laboratory has been able to recruit a world-class workforce, establish an atmosphere of intellectual freedom and innovation, and achieve recognition in relevant fields of knowledge as a scientific and technological leader. This environment and reputation are essential for sustained scientific and technical excellence. As a DOE national laboratory with about 7,000 employees, LLNL has an essential and compelling primary mission to ensure that the nation's nuclear weapons remain safe, secure, and reliable and to prevent the spread and use of nuclear weapons worldwide. The Laboratory receives funding from the DOE Assistant Secretary for Defense Programs, whose focus is stewardship of our nuclear weapons stockpile. Funding is also provided by the Deputy Administrator for Defense Nuclear Nonproliferation, many Department of Defense sponsors, other federal agencies, and the private sector. As a multidisciplinary laboratory, LLNL has applied its considerable skills in high-performance computing, advanced engineering, and the management of large research and development projects to become the science and technology leader in those areas of its mission responsibility. The Laboratory Directed Research and Development (LDRD) Program was authorized by the U.S. Congress in 1984. The Program allows the Director of each DOE laboratory to fund advanced, creative, and innovative research and development (R&D) activities that will ensure scientific and technical vitality in the continually evolving mission areas at DOE and the Laboratory. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies, which attract the most qualified scientists and engineers. The LDRD Program also

  19. Laboratory Directed Research and Development Program. FY 1993

    SciTech Connect

    Not Available

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  20. Laboratory Directed Research and Development Program FY98

    SciTech Connect

    Hansen, T.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  1. Laboratory Directed Research and Development Program. Annual report

    SciTech Connect

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  2. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    SciTech Connect

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence

  3. Laboratory Directed Research and Development Program FY 2006

    SciTech Connect

    Hansen , Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  4. Progress in safety and environmental aspects of inertial fusion energy at Lawrence Livermore National Laboratory

    SciTech Connect

    Latkowski, J F; Reyes, S; Meier, W R

    2000-06-01

    Lawrence Livermore National Laboratory (LLNL) is making significant progress in several areas related to the safety and environmental (S and E) aspects of inertial fusion energy (IFE). A detailed accident analysis has been completed for the HYLIFE-II power plant design. Additional accident analyses are underway for both the HYLIFE-II and Sombrero designs. Other S and E work at LLNL has addressed the issue of the driver-chamber interface and its importance for both heavy-ion and laser-driven IFE. Radiation doses and fluences have been calculated for final focusing mirrors and magnets and shielding optimization is underway to extend the anticipated lifetimes for key components. Target designers/fabrication specialists have been provided with ranking information related to the S and E characteristics of candidate target materials (e.g., ability to recycle, accident consequences, and waste management). Ongoing work in this area will help guide research directions and the selection of target materials. Published and continuing work on fast ignition has demonstrated some of the potentially attractive S and E features of such designs. In addition to reducing total driver energies, fast ignition may ease target fabrication requirements, reduce radiation damage rates, and enable the practical use of advanced (e.g., tritium-lean) labels with significantly reduced neutron production rates, the possibility of self-breeding targets, and dramatically increased flexibility in blanket design. Domestic and international collaborations are key to success in the above areas. A brief summary of each area is given and plans for future work are outlined.

  5. Progress in lactic acid bacterial phage research

    PubMed Central

    2014-01-01

    Research on lactic acid bacteria (LAB) has advanced significantly over the past number of decades and these developments have been driven by the parallel advances in technologies such as genomics, bioinformatics, protein expression systems and structural biology, combined with the ever increasing commercial relevance of this group of microorganisms. Some of the more significant and impressive outputs have been in the domain of bacteriophage-host interactions which provides a prime example of the cutting-edge model systems represented by LAB research. Here, we present a retrospective overview of the key advances in LAB phage research including phage-host interactions and co-evolution. We describe how in many instances this knowledge can be pivotal in creating real improvements in the application of LAB cultures in commercial practice. PMID:25185514

  6. Recent Progress in Aircraft Noise Research

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Thomas, Russell

    2007-01-01

    An overview of the acoustics research at NASA under the Subsonic Fixed Wing project is given. The presentation describes the rationale behind the noise reduction goals of the project in the context of the next generation air transportation system, and the emphasis placed on achieving these goals through a combination of the in-house and collaborative efforts with industry, universities and other government agencies. The presentation also describes the in-house research plan which is focused on the development of advanced noise and flow diagnostic techniques, next generation noise prediction tools, and novel noise reduction techniques that are applicable across a wide range of aircraft.

  7. Research 1970/1971: Annual Progress Report.

    ERIC Educational Resources Information Center

    Georgia Inst. of Tech., Atlanta. Science Information Research Center.

    The report presents a summary of science information research activities of the School of Information and Computer Science, Georgia Institute of Technology. Included are project reports on interrelated studies in science information, information processing and systems design, automata and systems theories, and semiotics and linguistics. Also…

  8. Educational Design Research: Signs of Progress

    ERIC Educational Resources Information Center

    Reeves, Thomas C.

    2015-01-01

    This special issue of the "Australasian Journal of Educational Technology" includes an introductory article by the guest editors and six papers that illustrate the potential of educational design research (EDR) to address important problems in higher education. In this final paper, reflections on the papers are made. Then the rationale…

  9. Progress in research on chlorate candle technology

    NASA Technical Reports Server (NTRS)

    Littman, J.

    1970-01-01

    Research and development program improves sodium chlorate candle formulation, production method, and igniter design. Cobalt is used as the fuel, dry processing methods are used to lower the water content, and a device based on pyrotechnic heater concepts is used as the igniter.

  10. DISEASES OF CORALS: RESEARCH PROGRESS, REEF PROSPECTS

    EPA Science Inventory

    Scleractinian corals have been the subject of intensive research during the past few decades to improve understanding of their role in supporting diverse tropical and subtropical marine communities and to examine factors responsible for their decline and loss of community biodive...

  11. 94-1 Research and Development Project Lead laboratory support. Status report, October 1--December 31, 1995

    SciTech Connect

    Dinehart, M.

    1996-05-01

    This is a quarterly progress report of the 94-1 Research and Development Lead Laboratory Support Technical Program Plan for the first quarter of FY 1996. The report provides details concerning descriptions, DOE-complex-wide material stabilization technology needs, scientific background and approach, progress, benefits to the DOE complex, and collaborations for selected subprojects. An executive summary and report on end-of-quarter spending is included.

  12. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    SciTech Connect

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to

  13. Nuclear structure research. Annual progress report

    SciTech Connect

    Wood, J.L.

    1993-10-31

    The most significant development this year has been the successful elucidation of the low-energy systematics of the very neutron-deficient Pr, Nd, Pm, and Sm isotopes. This includes an extensive set of Nilsson bandheads in {sup 133}Nd. Some serious errors in earlier decay scheme work were found. The results require some significant reassessments of mean-field calculations in this region. Part of our program continues to focus on shape coexistence and electric monopole (E0) transitions in nuclei. Following the discovery of coexisting ``gamma`` bands connected by E0 transitions in {sup 184}Pt, a similar behavior in {sup 186}Pt was established from {sup 186}Au decay data. This includes a pure E0 transition between states with J{sup {pi}} = 3{sup +}, just as was seen in {sup 184}Pt. Progress has been made in elucidating the low-energy systematics of the neutron-deficient Ir isotopes. A search for the population of the superdeformed band in {sup 194}Pb in the decay of {sup 194}Bi was unsuccessful. An extensive program of systematics for nuclei at and near N = Z has been initiated.

  14. Progress in indium phosphide solar cell research

    NASA Technical Reports Server (NTRS)

    Weinberg, Irving; Swartz, Clifford K.; Hart, R. E., Jr.

    1989-01-01

    Progress, dating from the start of the Lewis program, is reviewed emphasizing processing techniques which have achieved the highest efficiencies in a given year. To date, the most significant achievement has been attainment of AM0 total area efficiencies approaching 19 percent. Although closed tube diffusion is not considered to be an optimum process, reasonably efficient 2cm x 2cm and 1cm x 2cm InP cells have been produced in quantity by this method with a satellite to be launched in 1990 using these cells. Proton irradiation of these relatively large area cells indicates radiation resistance comparable to that previously reported for smaller InP cells. A similar result is found for the initial proton irradiations of ITO/InP cells processed by D. C. sputtering. With respect to computer modelling, a comparison of n/p homojunction InP and GaAs cells of identical geometries and dopant concentrations has confirmed the superior radiation resistance of InP cells under 1 MeV electron irradiations.

  15. Radiological Characterization and Final Facility Status Report Tritium Research Laboratory

    SciTech Connect

    Garcia, T.B.; Gorman, T.P.

    1996-08-01

    This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC&FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate.

  16. Manned earth orbital laboratories to perform communications/navigation research.

    NASA Technical Reports Server (NTRS)

    Waltz, D. M.; Quantock, C. W.

    1972-01-01

    Review of the feasibility of manned earth orbiting laboratories in the 1980s for solving problems identified with operational communication and navigation systems. A program of experiments recommended for implementation in the 1980 to 1990 period is presented. Equipment for conducting experiments is listed. Conceptual designs of laboratories which could be carried to orbit by the forthcoming NASA Space Shuttle Orbiter and then operated on orbit by an experimenter crew are discussed. Studies of the expected benefits, together with investigations of the configurations, mission considerations, and equipment selection result in the conclusion that manned communication/navigation research laboratories in earth orbit would be practical and effective, and that the experiments performed could derive meaningful information having application to future unmanned operational systems.

  17. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research. Part 3, Atmospheric and climate research

    SciTech Connect

    Not Available

    1992-05-01

    Within the US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division Is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and Implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and quantitative links programs to form DOEs contribution to the US Global Change Research Program. Climate research in the ESD has the common goal of improving our understanding of the physical, chemical, biological, and social processes that influence the Earth system so that national and international policymaking relating to natural and human-induced changes in the Earth system can be given a firm scientific basis. This report describes the progress In FY 1991 in each of these areas.

  18. Laboratory Directed Research and Development Program FY2004

    SciTech Connect

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions

  19. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    NASA Astrophysics Data System (ADS)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  20. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Development and Clinical Science Research and Development Services Scientific Merit Review Board, Notice of... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... science research. The panel meetings will be open to the public for approximately one-half hour at...

  1. Laboratory directed research and development program FY 1999

    SciTech Connect

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  2. Laboratory Directed Research and Development Program FY 2001

    SciTech Connect

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  3. Biodiesel research progress 1992-1997

    SciTech Connect

    Tyson, K.S.

    1998-04-01

    The US Department of Energy (DOE) Office of Fuels Development began evaluating the potential of various alternative fuels, including biodiesel, as replacement fuels for traditional transportation fuels. Biodiesel is derived from a variety of biological materials from waste vegetable grease to soybean oil. This alkyl ester could be used as a replacement, blend, or additive to diesel fuel. This document is a comprehensive summary of relevant biodiesel and biodiesel-related research, development demonstration, and commercialization projects completed and/or started in the US between 1992 and 1997. It was designed for use as a reference tool to the evaluating biodiesel`s potential as a clean-burning alternative motor fuel. It encompasses, federally, academically, and privately funded projects. Research projects are presented under the following topical sections: Production; Fuel characteristics; Engine data; Regulatory and legislative activities; Commercialization activities; Economics and environment; and Outreach and education.

  4. Progress of research on water vapor lidar

    NASA Technical Reports Server (NTRS)

    Wilkerson, T. D.

    1990-01-01

    Research is described on several aspects of stimulated Raman scattering (SRS) of 532 nm laser light in H2, D2, and CH4. The goals of this work are to develop a more thorough understanding of nonlinear processes involving the Raman effect and four-wave mixing, and to find the best way to generate radiation at several wavelengths simultaneously, for lidar applications. Issues addressed are conversion efficiency, optimization of operating conditions (gas pressure, confocal parameter, etc.) and the distribution of output pulse energy over three Stokes components, the first anti-Stokes component, and the zeroth order (pump) wavelength. The described research and results constitute another step in the development of SRS applications for NASA's atmospheric lidar program.

  5. Annual Research Progress Report, Fiscal Year 1981,

    DTIC Science & Technology

    1981-10-01

    Validation, Cost 44 Analysis and AMOSIST Reliability. (C) (P) C-14-79 Immunoglobulin Regulation in Rheumatic Disease. (T) 45 C-14-79 Triple Corticoid...C-30-80 An Analysis of Factors Involved in Encouraging Research 130 Among Physical Therapists. (C) C-43-81 Measurable Support of Ankle Taping and...Dorsiflexion and Plantar Flexion. (C) C-47-81 Treatment of Low Back Pain Using Acispressure Touch and 135 Massage. (C) C-48-81 Analysis of Splinting

  6. FY04 Engineering Technology Reports Laboratory Directed Research and Development

    SciTech Connect

    Sharpe, R M

    2005-01-27

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2004, and exemplifies Engineering's more than 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investment in technologies is carried out through two programs, the ''Tech Base'' program and the LDRD program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply technologies to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2004, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the long-term science and technology investments for the Directorate. The Centers represent technologies that have been identified as critical for the present and future work of the Laboratory, and are chartered to develop their respective

  7. Laboratory Directed Research and Development Annual Report for 2009

    SciTech Connect

    Hughes, Pamela J.

    2010-03-31

    This report documents progress made on all LDRD-funded projects during fiscal year 2009. As a US Department of Energy (DOE) Office of Science (SC) national laboratory, Pacific Northwest National Laboratory (PNNL) has an enduring mission to bring molecular and environmental sciences and engineering strengths to bear on DOE missions and national needs. Their vision is to be recognized worldwide and valued nationally for leadership in accelerating the discovery and deployment of solutions to challenges in energy, national security, and the environment. To achieve this mission and vision, they provide distinctive, world-leading science and technology in: (1) the design and scalable synthesis of materials and chemicals; (2) climate change science and emissions management; (3) efficient and secure electricity management from generation to end use; and (4) signature discovery and exploitation for threat detection and reduction. PNNL leadership also extends to operating EMSL: the Environmental Molecular Sciences Laboratory, a national scientific user facility dedicated to providing itnegrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences.

  8. Annual Research Progress Report. Fiscal Year 1989. Volume 2

    DTIC Science & Technology

    1989-10-01

    burgdor- feri; Rickettsia of Borrelia burgdorferi and Rickettsia t phi. Progress: To date 18 feral domestic cats were examined. Three cats were four’J with...were submitted to the Bureau of Laboratories, Texas Department of Health, Austin, TX. Blood specimens were examined for the presence of Borrelia ...high titer for Lyme spirochete 1:128; 1:128; and 1:256. From fleas exa- mined none were found to be infective with Borrelia burgdo-rferi or

  9. Research in the Mont Terri Rock laboratory: Quo vadis?

    NASA Astrophysics Data System (ADS)

    Bossart, Paul; Thury, Marc

    During the past 10 years, the 12 Mont Terri partner organisations ANDRA, BGR, CRIEPI, ENRESA, FOWG (now SWISSTOPO), GRS, HSK, IRSN, JAEA, NAGRA, OBAYASHI and SCK-CEN have jointly carried out and financed a research programme in the Mont Terri Rock Laboratory. An important strategic question for the Mont Terri project is what type of new experiments should be carried out in the future. This question has been discussed among partner delegates, authorities, scientists, principal investigators and experiment delegates. All experiments at Mont Terri - past, ongoing and future - can be assigned to the following three categories: (1) process and mechanism understanding in undisturbed argillaceous formations, (2) experiments related to excavation- and repository-induced perturbations and (3) experiments related to repository performance during the operational and post-closure phases. In each of these three areas, there are still open questions and hence potential experiments to be carried out in the future. A selection of key issues and questions which have not, or have only partly been addressed so far and in which the project partners, but also the safety authorities and other research organisations may be interested, are presented in the following. The Mont Terri Rock Laboratory is positioned as a generic rock laboratory, where research and development is key: mainly developing methods for site characterisation of argillaceous formations, process understanding and demonstration of safety. Due to geological constraints, there will never be a site specific rock laboratory at Mont Terri. The added value for the 12 partners in terms of future experiments is threefold: (1) the Mont Terri project provides an international scientific platform of high reputation for research on radioactive waste disposal (= state-of-the-art research in argillaceous materials); (2) errors are explicitly allowed (= rock laboratory as a “playground” where experience is often gained through

  10. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research

    SciTech Connect

    Not Available

    1992-05-01

    Within the US Department of Energy's (DOE's) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division Is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and Implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). Research at PNL provides basic scientific underpinnings to DOE's program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and quantitative links programs to form DOEs contribution to the US Global Change Research Program. Climate research in the ESD has the common goal of improving our understanding of the physical, chemical, biological, and social processes that influence the Earth system so that national and international policymaking relating to natural and human-induced changes in the Earth system can be given a firm scientific basis. This report describes the progress In FY 1991 in each of these areas.

  11. Research activities on robotics at the Electrotechnical Laboratory

    NASA Astrophysics Data System (ADS)

    Kakikura, M.

    Various robotics research activities carried out at the Electrotechnical Laboratory in Japan are discussed. The history of robotics research, which has been going on since the late 1960s as a part of artificial-intelligence research is described. Consideration is given to the full-scale robot system called ETL-ROBOT Mk. 1, to the carpenter robot, to the intelligent locomotive-handling robot, to the flexible finger, and to the hand-eye robot. The present aspect of the research in relation to past results is examined and includes the development of new robot systems such as a vision system based on a three-dimensional model, an interactive modeling system, a direct-drive manipulator, a robot vision language, and a language-aided robotic teleoperation system. Research themes planned for the near future include manipulation techniques, sensor techniques, autonomous robot control techniques, advanced teleoperation techniques, and system totalizing techniques.

  12. Progress on low altitude cloud icing research

    NASA Technical Reports Server (NTRS)

    Jeck, R. K.

    1981-01-01

    The icing environment at altitudes below 10,000 feet were studied. The following questions are asked, are: (1) existing aircraft certification criteria applicable; (2) too stringent on icing for helos; (3) based on accurate data; (4) appropriate for low (10,000 ft) altitudes? The research plan is outlined: review historical icing data, obtain new measurements, collect modern icing data from other groups, and recommend LWC, OAT, and MVD criteria for helicopters. Estimated accuracies and known sources of error are included. It is concluded that the net effect of possible sources of error of both signs is uncertain.

  13. Progress of research of high-T(sub c) superconductors

    NASA Technical Reports Server (NTRS)

    Tanaka, Shoji

    1990-01-01

    The research of high T(sub c) superconductors has made big progress in these last few years. New materials were found and the systematic investigations of these materials must contribute to understanding the mechanism of high T(sub c) superconductivity. The critical currents in thin films, bulks and tapes increased drastically, and the origin of flux pinning will be clarified in the near future. These progressions gives a view of a bright future of high T(sub c) superconductivity in both the basic and application research areas. Recent activities in research of high T(sub c) superconductivity and superconductors in Japan are overviewed.

  14. Impacts: NIST Building and Fire Research Laboratory (technical and societal)

    NASA Astrophysics Data System (ADS)

    Raufaste, N. J.

    1993-08-01

    The Building and Fire Research Laboratory (BFRL) of the National Institute of Standards and Technology (NIST) is dedicated to the life cycle quality of constructed facilities. The report describes major effects of BFRL's program on building and fire research. Contents of the document include: structural reliability; nondestructive testing of concrete; structural failure investigations; seismic design and construction standards; rehabilitation codes and standards; alternative refrigerants research; HVAC simulation models; thermal insulation; residential equipment energy efficiency; residential plumbing standards; computer image evaluation of building materials; corrosion-protection for reinforcing steel; prediction of the service lives of building materials; quality of construction materials laboratory testing; roofing standards; simulating fires with computers; fire safety evaluation system; fire investigations; soot formation and evolution; cone calorimeter development; smoke detector standards; standard for the flammability of children's sleepwear; smoldering insulation fires; wood heating safety research; in-place testing of concrete; communication protocols for building automation and control systems; computer simulation of the properties of concrete and other porous materials; cigarette-induced furniture fires; carbon monoxide formation in enclosure fires; halon alternative fire extinguishing agents; turbulent mixing research; materials fire research; furniture flammability testing; standard for the cigarette ignition resistance of mattresses; support of navy firefighter trainer program; and using fire to clean up oil spills.

  15. [Research Progress of Application of Microfluidics Techniques in Cryopreservation].

    PubMed

    Zhou, Nanfeng; Yang, Yun; Zhou, Xinli

    2015-06-01

    Microfluidics technology may be an effective method to solve some problems in cryopreservation. This review presents the research progress of microfluidics technology in the field of cell membrane transport properties, cryoprotectant addition and washout and the vitrification for cryopreservation of biological materials. Existing problems of microfluidics technology in the application of cryopreservation are summarized and future research directions are indicated as well.

  16. Partnerships for progress in active living: from research to action

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The theme for the 2011 Active Living Research Annual Conference was "Partnerships for Progress in Active Living: From Research to Action." The rationale for this theme was simple: no person is an island. The theme recognizes that partnerships are essential to identify and implement solutions for co...

  17. A Road Map for Learning Progressions Research in Geography

    ERIC Educational Resources Information Center

    Huynh, Niem Tu; Solem, Michael; Bednarz, Sarah Witham

    2015-01-01

    This article provides an overview of learning progressions (LP) and assesses the potential of this line of research to improve geography education. It presents the merits and limitations of three of the most common approaches used to conduct LP research and draws on one approach to propose a first draft of a LP on map reading and interpretation.…

  18. [Progress of research on preparation and application of praziquantel].

    PubMed

    Wu, De-Zhi; Ma, Zheng; Liu, Yun-Feng; Zhu, Wei-Feng; Ning, An

    2013-04-01

    Praziquantel remains the drug of choice for schistosomiasis, but it has the low bioavailability and single dosage form. This paper reviews the properties of praziquantel in vivo and in vitro, the pathogenic characteristics of schistosomiasis, and the progress of research on the formation of praziquantel, so as to enhance the efficiency of praziquantel against schistosomiasis and provide consults for relevant drug researches.

  19. Center for Research for Mothers and Children. 1988 Progress Report.

    ERIC Educational Resources Information Center

    National Inst. of Child Health and Human Development (NIH), Bethesda, MD. Center for Research for Mothers and Children.

    The 1988 Progress Report covers research activities of the five branches of the Center for Research for Mothers and Children of the National Institute of Child Health and Human Development. An introductory section briefly describes the Center, notes staff activities and Center sponsored conferences and workshops, and identifies highlights of…

  20. Internal-control weaknesses at Department of Energy research laboratories

    SciTech Connect

    Not Available

    1982-12-15

    Two requests were made by Chairman, Permanent Subcommittee on Investigations, Senate Committee on Governmental Affairs, that GAO review the vulnerability of selected Department of Energy (DOE) research facilities to fraud, waste, and abuse. The review examined internal controls over payroll, procurement, and property management at six government-owned, contractor-operated (GOCO) research laboratories (Sandia, Hanford, Argonne, Oak Ridge, Fermi, and Brookhaven) and four government-owned, government-operated energy technology centers (Bartlesville, Laramie, Morgantown, and Pittsburgh). In fiscal 1982, DOE budgeted over $3 billion for its GOCO facilities and over $230 million for its energy technology centers. GAO noted specific problems at a number of the laboratories in each of the areas covered. In many instances, DOE has acknowledged the problems and corrective action is underway or is planned.

  1. US Naval Research Laboratory's Current Space Photovoltaic Experiemtns

    NASA Astrophysics Data System (ADS)

    Jenkins, Phillip; Walters, Robert; Messenger, Scott; Krasowski, Michael

    2008-09-01

    The US Naval Research Laboratory (NRL) has a rich history conducting space photovoltaic (PV) experiments starting with Vanguard I, the first solar powered satellite in 1958. Today, NRL in collaboration with the NASA Glenn Research Center, is engaged in three flight experiments demonstrating a wide range of PV technologies in both LEO and HEO orbits. The Forward Technology Solar Cell Experiment (FTSCE)[1], part of the 5th Materials on the International Space Station Experiment (MISSE-5), flew for 13 months on the International Space Station in 2005-2006. The FTSCE provided in-situ I-V monitoring of advanced III-V multi-junction cells and laboratory prototypes of thin film and other next generation technologies. Two experiments under development will provide more opportunities to demonstrate advanced solar cells and characterization electronics that are easily integrated on a wide variety of spacecraft bus architectures.

  2. Virtual Laboratory Enabling Collaborative Research in Applied Vehicle Technologies

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Cronin, Catherine K.; Scott, Laura E.

    2005-01-01

    The virtual laboratory is a new technology, based on the internet, that has had wide usage in a variety of technical fields because of its inherent ability to allow many users to participate simultaneously in instruction (education) or in the collaborative study of a common problem (real-world application). The leadership in the Applied Vehicle Technology panel has encouraged the utilization of this technology in its task groups for some time and its parent organization, the Research and Technology Agency, has done the same for its own administrative use. This paper outlines the application of the virtual laboratory to those fields important to applied vehicle technologies, gives the status of the effort, and identifies the benefit it can have on collaborative research. The latter is done, in part, through a specific example, i.e. the experience of one task group.

  3. Research progress in dynamic security assessment

    SciTech Connect

    Not Available

    1982-12-01

    Areas discussed are power system modeling, state estimation, structure decomposition, state forecasting, clustering and security measure development. A detailed dynamic model of a multi-machine power system has been developed. A process state estimator was developed to estimate the long-term dynamic behavior of the power system. The algorithm is identical to the extended Kalman filter but has a modified process noise driving term. A two-stage structure estimation technique was proposed for identifying the power system network configuration. Two approaches to structure decomposition were investigated. A time-scale decomposition of the system equations, based on a singular perturbation approach, was evaluated using a detailed model of a generating system. Spatial decomposition was examined by applying an optimal network decomposition technique to a 39-bus test system. Stochastic approximation based approaches to estimator simplification were examined. Explicit expressions were obtained for the evolution of the first and second moments of the system state. Research into security measures proceeded in three directions. The first area involves viewing the security assessment problem as a hyperplane crossing problem for a stochastic process. The second approach examined the stability of an unforced linear system where the system coefficients are subject to future jumps. The third area of research has led to the formulation of a security measure suitable for on-line assessment of transient stability.

  4. 2016 Fermilab Laboratory Directed Research & Development Program Plan

    SciTech Connect

    W. Wester

    2016-05-25

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectives and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven new

  5. 94-1 Research and development project lead laboratory support. Status report, January 1--March 31, 1996

    SciTech Connect

    Dinehart, M.

    1996-09-01

    This document reports status and technical progress for Los Alamos National Laboratories 94-1 Research and Development projects. An introduction to the project structure and an executive summary are included. Projects described include Electrolytic Decontamination, Combustibles, Detox, Sand, Slag, and Crucible, Surveillance, and Core Technology.

  6. Federal laboratory nondestructive testing research and development applicable to industry

    SciTech Connect

    Smith, S.A.; Moore, N.L.

    1987-02-01

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  7. US Army Research Laboratory Directed Energy Internship Program 2014

    DTIC Science & Technology

    2015-11-01

    titanium sapphire (Ti:sapph) laser was used that was pumped with a frequency doubled Spectra-Physics neodymium -doped yttrium vanadate laser. The 8...efficiency of several neodymium (Nd):yttrium aluminum garnet (YAG) samples of different concentrations and therefore, the technique will continue to be...Nd neodymium NPs nanoparticles NRL US Naval Research Laboratory O oxygen PMT photomultiplier tube SBS stimulated Brillouin scattering SD

  8. Laser simulation at the Air Force Research Laboratory

    NASA Astrophysics Data System (ADS)

    Grosek, Jacob; Naderi, Shadi; Oliker, Benjamin; Lane, Ryan; Dajani, Iyad; Madden, Timothy

    2017-01-01

    The physics of high brightness, high-power lasers present a variety of challenges with respect to simulation. The Air Force Research Laboratory is developing high-fidelity models for Yb-doped, Tm-doped, and Raman fiber amplifiers, hollow-core optical fiber gas lasers, and diode pumped alkali lasers. The approach to simulation and the physics specific to each laser technology are described, along with highlights of results, and relevant modeling considerations and limitations.

  9. Inertial Confinement Fusion Research at LOS Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Batha, S. H.; Albright, B. J.; Alexander, D. J.; Barnes, Cris W.; Bradley, P. A.; Cobble, J. A.; Cooley, J. C.; Cooley, J. H.; Day, R. D.; DeFriend, K. A.; Delamater, N. D.; Dodd, E. S.; Fatherley, V. E.; Fernandez, J. C.; Flippo, K. A.; Grim, G. P.; Goldman, S. R.; Greenfield, S. R.; Herrmann, H. W.; Hoffman, N. M.; Holmes, R. L.; Johnson, R. P.; Keiter, P. A.; Kline, J. L.; Kyrala, G. A.; Lanier, N. E.; Loomis, E.; Lopez, F. E.; Luo, S.; Mack, J. M.; Magelssen, G. R.; Montgomery, D. S.; Nobile, A.; Oertel, J. A.; Reardon, P.; Rose, H. A.; Schmidt, D.; Schmitt, M. J.; Seifter, A.; Shimada, T.; Swift, D. C.; Tierney, T. E.; Welser-Sherrill, L.; Wilke, M. D.; Wilson, D. C.; Workman, J.; Yin, L.

    2009-07-01

    Inertial confinement fusion research at Los Alamos National Laboratory is focused on high-leverage areas of thermonuclear ignition to which LANL can apply its historic strengths and that are complementary to high-energy-density-physics topics. Using the Trident and Omega laser facilities, experiments are pursued in laser-plasma instabilities, symmetry, Be technologies, neutron and fusion-product diagnostics, and defect hydrodynamics.

  10. Progress of astrometric research in Nikolaev Observatory

    NASA Astrophysics Data System (ADS)

    Ivantsov, Anatoliy; Maigurova, Nadia; Martynov, Maxim; Pinigin, Gennadiy

    2012-08-01

    A catalog of astrometric positions and proper motions of 140237 stars in fields of ecliptical zone and high proper motion stars was derived from CCD - observations made at AMC telescope (Nikolaev) in 2008 - 2009. The UCAC2 catalog was used as a reference one for astrometric reductions. The standard error for a single position is 20 - 65 mas in right ascension and 30 - 70 mas in declination. Cross - identification of the obtained data with modern astrometric catalogs such as TYCHO2, 2MASS, CMC14, PPMX, XPM, USNO - A2.0 and XPM - 1.0 was made for investigation systematical errors and calculation of the proper motions [1]. The final catalog contains star positions, proper motions as well as photometric data (B, V, r ´, J, H, K) taken from other catalogs. For analysis of perturbed motion of selected asteroids, there was made astrometric reduction for three thousands of positions of 68 selected asteroids observed at the Russian - Turkish telescope RTT150 in 2008 - 2011 [2]. The research is conducted within the International Joint Project between IMCCE (France), NAO (Ukraine), KFU (Russia), and TUG (Turkey). The reduction was made with the UCAC2 and UCAC3 catalogs. The standard error of a single position is 0.15 arcsec in right ascension and 0.13 arcsec in declination. Also, the first results of astrometric reduction are presented for the observations of selected asteroids made at the AZT8 (Evpatoriya ) and Mobitel (Nikolaev) telescopes. The obtained positions are expected to be used for derivation masses of asteroids by dynamical method. This work is supported by State Agency on Science, Innovation and Information of Ukraine, Russian Foundation for Basic Research. 1. Jin, W., Pinigin, G., Tang, Zh., Shulga, A. (2011). The collaboration between ShAO and NAO: Celebration of the 1 90th anniversary of NAO. Proc. Int. Conf. “Astronomical Research: from near - Earth Space to the Galaxy”, Nikolaev (pp. 92 - 104). 2 . Ivantsov, A., Gumerov, R., Khamitov, I., Aslan, Z

  11. Progress in toroidal confinement and fusion research

    SciTech Connect

    Furth, H.P.

    1987-10-01

    During the past 30 years, the characteristic T/sub i/n tau/sub E/-value of toroidal-confinement experiments has advanced by more than seven orders of magnitude. Part of this advance has been due to an increase of gross machine parameters. Most of this advance has been due to an increase of gross machine parameters. Most of the advance is associated with improvements in the ''quality of plasma confinement.'' The combined evidence of spherator and tokamak research clarifies the role of magnetic-field geometry in determining confinement and points to the importance of shielding out plasma edge effects. A true physical understanding of anomalous transport remains to be achieved. 39 refs., 11 figs., 1 tab.

  12. [Research progress of fecal microbiota transplantation].

    PubMed

    Dai, Ting; Tang, Tongyu

    2015-07-01

    Intestinal microbial ecosystem is the most complex and the largest micro-ecosystem of the mammals. The use of antibiotics can lead to a lot of major changes of the flora, making the intestinal flora damaged and impacted, even developing Clostridium difficile infection. Fecal microbiota transplantation (FMT) as a special organ transplant therapy, which can rebuild the intestinal flora, has raised the clinical concerns. It has been used in the refractory Clostridium difficile, inflammatory bowel disease, irritable bowel syndrome, chronic fatigue syndrome, and some non-intestinal diseases related to the metabolic disorders. But this method of treatment has not become a normal treatment, and many clinicians and patients can not accept it. This paper reviews relevant literature in terms of origin, indications, mechanism, production process, current situation and future research, and provide a reference for the clinical application of the treatment of fecal microbiota transplantation.

  13. Final Progress Report for Ionospheric Dusty Plasma In the Laboratory [Smokey Plasma

    SciTech Connect

    Robertson, Scott

    2010-07-31

    “Ionospheric Dusty Plasma in the Laboratory” is a research project with the purpose of finding and reproducing the characteristics of plasma in the polar mesosphere that is unusually cold (down to 140 K) and contains nanometer-sized dust particles. This final progress report summarizes results from four years of effort that include a final year with a no-cost extension.

  14. CNR LARA project, Italy: Airborne laboratory for environmental research

    NASA Technical Reports Server (NTRS)

    Bianchi, R.; Cavalli, R. M.; Fiumi, L.; Marino, C. M.; Pignatti, S.

    1995-01-01

    The increasing interest for the environmental problems and the study of the impact on the environment due to antropic activity produced an enhancement of remote sensing applications. The Italian National Research Council (CNR) established a new laboratory for airborne hyperspectral imaging, the LARA Project (Laboratorio Aero per Ricerche Ambientali - Airborne Laboratory for Environmental Research), equipping its airborne laboratory, a CASA-212, mainly with the Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument. MIVIS's channels, spectral bandwidths, and locations are chosen to meet the needs of scientific research for advanced applications of remote sensing data. MIVIS can make significant contributions to solving problems in many diverse areas such as geologic exploration, land use studies, mineralogy, agricultural crop studies, energy loss analysis, pollution assessment, volcanology, forest fire management and others. The broad spectral range and the many discrete narrow channels of MIVIS provide a fine quantization of spectral information that permits accurate definition of absorption features from a variety of materials, allowing the extraction of chemical and physical information of our environment. The availability of such a hyperspectral imager, that will operate mainly in the Mediterranean area, at the present represents a unique opportunity for those who are involved in environmental studies and land-management to collect systematically large-scale and high spectral-spatial resolution data of this part of the world. Nevertheless, MIVIS deployments will touch other parts of the world, where a major interest from the international scientific community is present.

  15. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    SciTech Connect

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  16. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    SciTech Connect

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  17. Environment, safety and health progress assessment of the Lawrence Livermore National Laboratory

    SciTech Connect

    Not Available

    1992-11-01

    This report documents the result of the US Department of Energy (DOE) Environment, Safety and Health (ES H) Progress Assessment of the Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The onsite assessment, which was conducted from November 9 through November 20, 1992, included a selective review of the ES H management systems and programs with principal focus on the Office of the Assistant Secretary for Defense Programs (DP); San Francisco Field Office (SF), including the Livermore Site Office (LSO); and the site contractor, the University of California. The purpose of the LLNL ES H Progress Assessment is to provide the Secretary with an independent assessment of the adequacy and effectiveness of the DOE and contractor management structures, resources, and systems to address ES H issues and requirements. The assessment was not a comprehensive compliance assessment of ES H activities. The point of reference for assessing programs at LLNL was, for the most part, the Tiger Team Assessment of LLNL, which was conducted from February 26 through April 5, 1990. The LLNL Progress Assessment was conducted by a team of 12 professionals from various DOE offices and their support contractors, with expertise in the areas of management, environment, safety, and health. The Progress Assessment Team concluded that LLNL management recognizes the importance that the Secretary of Energy places on ES H excellence and has responded with improvements in all ES H areas. Progress has been made in addressing the deficiencies identified in the 1990 Tiger Team Assessment. Although much remains to be done and concerns were noted in several areas, these concerns do not diminish the significance of the progress made since the 1990 Tiger Team Assessment.

  18. Environment, safety and health progress assessment of the Lawrence Livermore National Laboratory

    SciTech Connect

    Not Available

    1992-11-01

    This report documents the result of the US Department of Energy (DOE) Environment, Safety and Health (ES&H) Progress Assessment of the Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The onsite assessment, which was conducted from November 9 through November 20, 1992, included a selective review of the ES&H management systems and programs with principal focus on the Office of the Assistant Secretary for Defense Programs (DP); San Francisco Field Office (SF), including the Livermore Site Office (LSO); and the site contractor, the University of California. The purpose of the LLNL ES&H Progress Assessment is to provide the Secretary with an independent assessment of the adequacy and effectiveness of the DOE and contractor management structures, resources, and systems to address ES&H issues and requirements. The assessment was not a comprehensive compliance assessment of ES&H activities. The point of reference for assessing programs at LLNL was, for the most part, the Tiger Team Assessment of LLNL, which was conducted from February 26 through April 5, 1990. The LLNL Progress Assessment was conducted by a team of 12 professionals from various DOE offices and their support contractors, with expertise in the areas of management, environment, safety, and health. The Progress Assessment Team concluded that LLNL management recognizes the importance that the Secretary of Energy places on ES&H excellence and has responded with improvements in all ES&H areas. Progress has been made in addressing the deficiencies identified in the 1990 Tiger Team Assessment. Although much remains to be done and concerns were noted in several areas, these concerns do not diminish the significance of the progress made since the 1990 Tiger Team Assessment.

  19. Reservoir technology research at the Idaho National Engineering Laboratory

    SciTech Connect

    Stiger, S.G.; Renner, J.L.

    1987-01-01

    The Idaho National Engineering Laboratory (INEL) has been conducting geothermal reservoir research and testing sponsored by the US Department of Energy (DOE) since 1983. The INEL research program is primarily aimed at the development of reservoir engineering techniques for fractured geothermal reservoirs. Numerical methods have been developed which allow the simulation of fluid flow and heat transfer in complex fractured reservoirs. Sensitivity studies have illustrated the importance of incorporating the influence of fractures in reservoir simulations. Related efforts include fracture characterization, geochemical reaction kinetics and field testing.

  20. Environmental Research Laboratories annual report for 1979 and 1980

    SciTech Connect

    Not Available

    1981-03-01

    The Atmospheric Turbulence and Diffusion Laboratory (ATDL) research program is organized around the following subject areas: transport and diffusion over complex terrain, atmospheric turbulence and plume diffusion, and forest meteorology and climatological studies. Current research efforts involve experimental and numerical modeling studies of flow over rugged terrain, studies of transport of airborne material in and above a forest canopy, basic studies of atmospheric diffusion parameters for applications to environmental impact evaluation, plume rise studies, and scientific collaboration with personnel in DOE-funded installations, universities, and government agencies on meteorological studies in our area of expertise. Abstracts of fifty-two papers that have been published or are awaiting publication are included.

  1. Laboratory Directed Research and Development Program, FY 1992

    SciTech Connect

    Not Available

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  2. Analytical progresses of the International Olympic Committee and World Anti-Doping Agency Olympic laboratories.

    PubMed

    Georgakopoulos, Costas; Saugy, Martial; Giraud, Sylvain; Robinson, Neil; Alsayrafi, Mohammed

    2012-07-01

    The Summer Olympic Games constitute the biggest concentration of human sports and activities in a particular place and time since 776 BCE, when the written history of the Olympic Games in Olympia began. Summer and Winter Olympic anti-doping laboratories, accredited by the International Olympic Committee in the past and the World Anti-Doping Agency in the present times, acquire worldwide interest to apply all new analytical advancements in the fight against doping in sports, hoping that this major human event will not become dirty by association with this negative phenomenon. This article summarizes the new analytical progresses, technologies and knowledge used by the Olympic laboratories, which for the vast majority of them are, eventually, incorporated into routine anti-doping analysis.

  3. Research and development of network virtual instrument laboratory

    NASA Astrophysics Data System (ADS)

    Cui, Hongmei; Pei, Xichun; Ma, Hongyue; Ma, Shuoshi

    2006-11-01

    A software platform of the network virtual instrument test laboratory has been developed to realize the network function of the test and signal analysis as well as the share of the hardware based on the data transmission theory and the study of the present technologies of the network virtual instrument. The whole design procedure was also presented in this paper. The main work of the research is as follows. 1. A suitable scheme of the test system with B/S mode and the virtual instrument laboratory with BSDA (Browser/Server/Database/Application) mode was determined. 2. The functions were classified and integrated by adopting the multilayer structure. The application for the virtual instruments running in the client terminal and the network management server managing the multiuser in the test laboratory according to the "Concurrent receival, sequential implementation" strategy in Java as well as the code of the test server application responding the client's requests of test and signal analysis in LabWindows/CVI were developed. As the extending part of network function of the original virtual test and analysis instruments, a software platform of network virtual instrument test laboratory was built as well. 3. The communication of the network data between Java and the LabWindows/CVI was realized. 4. The database was imported to store the data as well as the correlative information acquired by the server and help the network management server to manage the multiuser in the test laboratory. 5. A website embedding Java Applet of virtual instrument laboratory with the on-line help files was designed.

  4. [Research progress of dental machinable materials].

    PubMed

    Liu, Xiao Zhou; Lu, Pei Jun; Wang, Yong

    2008-12-18

    The concept of computer-aided design/computer aided manufacturing (CAD/CAM) was first mentioned decades ago in the field of dentistry. The technology to make dental restorations has found wide application recently and developed rapidly in prosthodontics and oral implantology, for it could save patients' time and manpower, have precision on prostheses' edging, etc. Until now there are several commercial CAD/CAM systems on market. With the use of CAD/CAM technology in dentistry, it has broken the traditional pattern of making dentures manually. Meanwhile, it brings opportunity for material science. The machinable/milled materials in dentistry should have not only excellent biocompatibility, but also machining and physical properties. Both of them are important. Nowadays, a great number of blocks are made from feldspar ceramics, glass-ceramics, alumina oxide, zirconium oxide, titanium, composite materials, wax and so on. Lots of researchers have had their focus on metal-free materials, because it can make the restorations look more natural and not show the inside metal color. However, strength like feldspar ceramics has its own disadvantages. It has strict indications, otherwise the restoration may fail. The technique called In-Ceram has been used long time ago. It also has long clinical experience and excellent long-term prognosis. People have explored this technique in CAD/CAM restorations. Studies have manifested that it can be utilized this way. At first, alumina was milled with pores; then, glass was infiltrated to the milled material. After zirconia had its success used in orthopedics, it became more and more popular to investigate whether this stuff was suitable in dentistry or not. Luckily, it has been proved adaptable for making single crown in posterior area, fixed partial dentures, in particular, and milling it using CAM equipment, due to the partially sintered block's hardness like chalk. Several milled polymer materials are made for temporary crowns or

  5. Progress of Iran in Medical Research.

    PubMed

    Kolahdoozan, Shadi; Massarrat, Sadegh

    2016-11-01

     The indexed Iranian journals in ISI and PubMed at the end of 2012 with known impact factor (IF) were evaluated with regard to the number of articles published in 2010-2012, the number of citations by authors from inside and outside Iran, their IF as well as their ranking order among all other journals in their specialized categories. There were among 130 English journals, 21 indexed with known IF. The mean IF of these journals increased from 0.4 in 2010 to 0.68 in 2012. The number of citations per article by authors from outside Iran increased from 0.19 to 0.49 during the same time period. The rank of the majority of the indexed journals was in the lowest 20% of their category. Although some improvement has been observed in the quality and the number of citations of Iranian journals indexed in ISI during these two years, the quality of the manuscripts remains low. A reduction in the number of journals, a change of their structure as well as more financial resources for research is necessary for the improvement of the quality and better rank and status of Iranian science among an international audience.

  6. Pacific Northwest Laboratory annual report for 1990 to the DOE Office of Energy Research

    SciTech Connect

    Park, J. F.; Kreml, S. A.; Wildung, R. E.; Hefty, M. G.; Perez, D. A.; Chase, K. K.; Elderkin, C. E.; Owczarski, E. L.; Toburen, L. H.; Parnell, K. A.; Faust, L. G.; Moraski, R. V.; Selby, J. M.; Hilliard, D. K.; Tenforde, T. S.

    1991-02-01

    This report summarizes progress in the environmental sciences research conducted by Pacific Northwest Laboratory (PNL) for the Office of Health and Environment Research in FY 1990. Research is directed toward developing the knowledge needed to guide government policy and technology development for two important environmental problems: environmental restoration and global change. The report is organized by major research areas contributing to resolution of these problems. Additional sections summarize exploratory research, educational institutional interactions, technology transfer, and publications. The PNL research program continues make contributions toward defining and quantifying processes that effect the environment at the local, regional, and global levels. Each research project forms a component in an integrated laboratory, intermediate-scale, and field approach designed to examine multiple phenomena at increasing levels of complexity. This approach is providing system-level insights into critical environmental processes. University liaisons continue to be expanded to strengthen the research and to use PNL resources to train the scientists needed to address long-term environmental problems.

  7. The need for econometric research in laboratory animal operations.

    PubMed

    Baker, David G; Kearney, Michael T

    2015-06-01

    The scarcity of research funding can affect animal facilities in various ways. These effects can be evaluated by examining the allocation of financial resources in animal facilities, which can be facilitated by the use of mathematical and statistical methods to analyze economic problems, a discipline known as econometrics. The authors applied econometrics to study whether increasing per diem charges had a negative effect on the number of days of animal care purchased by animal users. They surveyed animal numbers and per diem charges at 20 research institutions and found that demand for large animals decreased as per diem charges increased. The authors discuss some of the challenges involved in their study and encourage research institutions to carry out more robust econometric studies of this and other economic questions facing laboratory animal research.

  8. FORT KEOGH LIVESTOCK & RANGE RESEARCH LABORATORY, U.S. DEPARTMENT OF AGRICULTURE-AGRICULTRAL RESEARCH SERVICE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Article describes Fort Keogh Livestock and Range Research Laboratory to an audience of scientific researchers (i.e. ecologists) interested in the interactions among organisms and their environment. Article outlines the facilities, environment, history, and ongoing types of research. Emphasis is on...

  9. Governing solar geoengineering research as it leaves the laboratory.

    PubMed

    Parker, Andy

    2014-12-28

    One of the greatest controversies in geoengineering policy concerns the next stages of solar radiation management research, and when and how it leaves the laboratory. Citing numerous risks and concerns, a range of prominent commentators have called for field experiments to be delayed until there is formalized research governance, such as an international agreement. As a piece of pragmatic policy analysis, this paper explores the practicalities and implications of demands for 'governance before research'. It concludes that 'governance before research' is a desirable goal, but that a delay in experimentation-a moratorium-would probably be an ineffective and counterproductive way to achieve it. Firstly, it is very unlikely that a moratorium could be imposed. Secondly, even if it were practicable it seems that a temporary ban on field experiments would have at best a mixed effect addressing the main risks and concerns, while blocking and stigmatizing safe research and delaying the development of good governance practices from learning by doing. The paper suggests a number of steps to ensure 'governance before research' that can be taken in the absence of an international agreement or national legislation, emphasizing the roles of researchers and research funders in developing and implementing good practices.

  10. Zoonoses of occupational health importance in contemporary laboratory animal research.

    PubMed

    Hankenson, F Claire; Johnston, Nancy A; Weigler, Benjamin J; Di Giacomo, Ronald F

    2003-12-01

    In contemporary laboratory animal facilities, workplace exposure to zoonotic pathogens, agents transmitted to humans from vertebrate animals or their tissues, is an occupational hazard. The primary (e.g., macaques, pigs, dogs, rabbits, mice, and rats) and secondary species (e.g., sheep, goats, cats, ferrets, and pigeons) of animals commonly used in biomedical research, as classified by the American College of Laboratory Animal Medicine, are established or potential hosts for a large number of zoonotic agents. Diseases included in this review are principally those wherein a risk to biomedical facility personnel has been documented by published reports of human cases in laboratory animal research settings, or under reasonably similar circumstances. Diseases are listed alphabetically, and each section includes information about clinical disease, transmission, occurrence, and prevention in animal reservoir species and humans. Our goal is to provide a resource for veterinarians, health-care professionals, technical staff, and administrators that will assist in the design and on-going evaluation of institutional occupational health and safety programs.

  11. A 13-week research-based biochemistry laboratory curriculum.

    PubMed

    Lefurgy, Scott T; Mundorff, Emily C

    2017-03-02

    Here, we present a 13-week research-based biochemistry laboratory curriculum designed to provide the students with the experience of engaging in original research while introducing foundational biochemistry laboratory techniques. The laboratory experience has been developed around the directed evolution of an enzyme chosen by the instructor, with mutations designed by the students. Ideal enzymes for this curriculum are able to be structurally modeled, solubly expressed, and monitored for activity by UV/Vis spectroscopy, and an example curriculum for haloalkane dehalogenase is given. Unique to this curriculum is a successful implementation of saturation mutagenesis and high-throughput screening of enzyme function, along with bioinformatics analysis, homology modeling, structural analysis, protein expression and purification, polyacrylamide gel electrophoresis, UV/Vis spectroscopy, and enzyme kinetics. Each of these techniques is carried out using a novel student-designed mutant library or enzyme variant unique to the lab team and, importantly, not described previously in the literature. Use of a well-established set of protocols promotes student data quality. Publication may result from the original student-generated hypotheses and data, either from the class as a whole or individual students that continue their independent projects upon course completion. © 2017 by The International Union of Biochemistry and Molecular Biology, 2017.

  12. The Lincoln Laboratory-Aerospace Medical Research Laboratory digital speech test facility

    NASA Astrophysics Data System (ADS)

    Tierney, J.; Schecter, H.

    1984-05-01

    A narrowband digital speech communication test facility has been established and operates between Lincoln Laboratory and the Wright-Patterson Aerospace Medical Research Laboratory. Noise fields simulating the acoustic environments of E3A and F-15 aircraft are established and Air Force personnel use the link operating at 2400 bps with a vocoder designed at Lincoln Laboratory, and a commercial telephone line modem. The facility includes a digital signal processing computer which can introduce bit errors and delay into the transmit and receive data. Communication scenarios are used to exercise the vocoder-modem channel with the dynamics and vocabulary of typical operational exchanges. Answers to a standard questionnaire provide acceptability data for the 2400 bps JTIDS class 2 voice channel. For the tests run so far, the 2400 bps voice is acceptable in the sense of positive user response to the questionnaire. Further testing using error and delay simulations will follow. An F-15 to F-15 link will be simulated at AMRL using a pair of vocoders operating back-to-back and in separate noise chambers.

  13. Research support for the Laboratory for Lightwave Technology

    NASA Astrophysics Data System (ADS)

    Morse, T. F.

    1992-12-01

    The Laboratory for Lightwave Technology at Brown University is one of the few university laboratories at which it is possible to design, fabricate, and characterize optical fibers of not only traditional, but of unusual design. These fibers have an increasingly important role in a host of applications of significance to the defense requirements of the United States. Among these are the following: fiber lasers for the measurement of clear air turbulence (in an important eye-safe region of the spectrum); and fiber sensors for the measurement of temperature and strain, not only in high temperature composite materials, but in structural concrete, which is important for roads, runways, and buildings. We are also engaged in research, an outgrowth of our work in optical fibers, on novel techniques for the formation of nanophase oxide particles, both ceramic and amorphous. The work on amorphous oxides is associated with our MCVD and OVD laboratories. In these labs, we have proposed and studied a new technique for the formation of multi-component oxides to be used in the doping of optical fiber preforms. In this synthesis, an aerosol of organometallic precursors is convectively transported into a reaction zone where it is pyrolized. The liquid aerosol is homogeneous at the molecular level, so that subsequent reactions produce glasses that are not phase separated. This has also been used to study the synthesis of high temperature ceramic nanophase single crystal oxides that may be produced at a high rate. The synthesis of both glasses and ceramics using novel techniques has meshed with our research in novel optical fibers and fiber sensors. In this report, we discuss the general activities of our laboratory.

  14. [Research progress of treatment strategies for retinitis pigmentosa].

    PubMed

    Qian, T W; Xu, X

    2017-02-11

    Retinitis pigmentosa (RP) is a genetically heterogeneous group of hereditary retinal disorders characterized by photoreceptor cell death, associated with night blindness, vision loss, progressive peripheral visual field loss and abnormalities in the electroretinogram. A number of gene defects have so far been associated with RP, which cause a progressive loss of rod photoreceptor function, followed by cone photoreceptor dysfunction and eventually complete blindness. The rate of blindness related to RP is high. At present there is no effective therapeutic strategy for RP. In recent years, with the progress of molecular biology technique, many new therapeutic approaches have become promising. This article summarizes the pathogenesis of RP and gives a brief overview of related research progress of RP therapeutic strategies. (Chin J Ophthalmol, 2017, 53: 148-153).

  15. Pacific Northwest Laboratory annual report for 1994 to the DOE Office of Energy Research. Part 2: Atmospheric and climate research

    SciTech Connect

    1995-04-01

    Atmospheric research at Pacific Northwest Laboratory (PNL) occurs in conjunction with the Atmospheric Chemistry Program (ACP) and with the Atmospheric Studies in Complex Terrain (ASCOT) Program. Solicitations for proposals and peer review were used to select research projects for funding in FY 1995. Nearly all ongoing projects were brought to a close in FY 1994. Therefore, the articles in this volume include a summary of the long-term accomplishments as well as the FY 1994 progress made on these projects. The following articles present summaries of the progress in FY 1994 under these research tasks: continental and oceanic fate of pollutants; research aircraft operations; ASCOT program management; coupling/decoupling of synoptic and valley circulations; interactions between surface exchange processes and atmospheric circulations; and direct simulations of atmospheric turbulence. Climate change research at PNL is aimed at reducing uncertainties in the fundamental processes that control climate systems that currently prevent accurate predictions of climate change and its effects. PNL is responsible for coordinating and integrating the field and laboratory measurement programs, modeling studies, and data analysis activities of the Atmospheric Radiation Measurements (ARM) program. In FY 1994, PNL scientists conducted 3 research projects under the ARM program. In the first project, the sensitivity of GCM grid-ad meteorological properties to subgrid-scale variations in surface fluxes and subgrid-scale circulation patterns is being tested in a single column model. In the second project, a new and computationally efficient scheme has been developed for parameterizing stratus cloud microphysics in general circulation models. In the last project, a balloon-borne instrument package is being developed for making research-quality measurements of radiative flux divergence profiles in the lowest 1,500 meters of the Earth`s atmosphere.

  16. Laboratory Directed Research and Development Program FY 2008 Annual Report

    SciTech Connect

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  17. Recent Progresses in Laboratory Astrophysics with Ames’ COSmIC Facility

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Contreras, Cesar; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2016-06-01

    We present and discuss the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nano particles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in free supersonic jet expansion coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent laboratory results that were obtained using COSmIC will be presented, in particular the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflows [4] and planetary atmospheres [5]. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of the current studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press, Vol. 4, S251, p. 357 (2008) and references therein.[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J

  18. Tritium research laboratory cleanup and transition project final report

    SciTech Connect

    Johnson, A.J.

    1997-02-01

    This Tritium Research Laboratory Cleanup and Transition Project Final Report provides a high-level summary of this project`s multidimensional accomplishments. Throughout this report references are provided for in-depth information concerning the various topical areas. Project related records also offer solutions to many of the technical and or administrative challenges that such a cleanup effort requires. These documents and the experience obtained during this effort are valuable resources to the DOE, which has more than 1200 other process contaminated facilities awaiting cleanup and reapplication or demolition.

  19. Oak Ridge National Laboratory Research Reactor Experimenters' Guide

    SciTech Connect

    Cagle, C.D.

    1982-10-01

    The Oak Ridge National Laboratory has three multipurpose research reactors which accommodate testing loops, target irradiations, and beam-type experiments. Since the experiments must share common or similar facilities and utilities, be designed and fabricated by the same groups, and meet the same safety criteria, certain standards for these have been developed. These standards deal only with those properties from which safety and economy of time and money can be maximized and do not relate to the intent of the experiment or quality of the data obtained. The necessity for, and the limitations of, the standards are discussed; and a compilation of general standards is included.

  20. PDC (polycrystalline diamond compact) bit research at Sandia National Laboratories

    SciTech Connect

    Finger, J.T.; Glowka, D.A.

    1989-06-01

    From the beginning of the geothermal development program, Sandia has performed and supported research into polycrystalline diamond compact (PDC) bits. These bits are attractive because they are intrinsically efficient in their cutting action (shearing, rather than crushing) and they have no moving parts (eliminating the problems of high-temperature lubricants, bearings, and seals.) This report is a summary description of the analytical and experimental work done by Sandia and our contractors. It describes analysis and laboratory tests of individual cutters and complete bits, as well as full-scale field tests of prototype and commercial bits. The report includes a bibliography of documents giving more detailed information on these topics. 26 refs.

  1. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research. Part 3, Atmospheric and climate research

    SciTech Connect

    Schrempf, R.E.

    1993-04-01

    Within the US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the ESD, the Atmospheric Chemistry Program (ACP) continues DOE`s long-term commitment to study the continental and oceanic fates of energy-related air pollutants. Research through direct measurement, numerical modeling, and laboratory studies in the ACP emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, oxidant species, nitrogen-reservoir species, and aerosols. The Atmospheric Studies in Complex Terrain (ASCOT) program continues to apply basic research on density-driven circulations and on turbulent mixing and dispersion in the atmospheric boundary layer to the micro- to mesoscale meteorological processes that affect air-surface exchange and to emergency preparedness at DOE and other facilities. Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and Quantitative Links programs to form DOE`s contribution to the US Global Change Research Program.

  2. Geothermal research at the Puna facility. Technical progress report

    SciTech Connect

    Chen, B.

    1985-12-12

    Research progress is reported. A conceptual model of the reservoir was developed comprising two production zones of different characteristics: the upper zone producing liquid while the lower zone produces vapor. Preliminary studies were carried out at the HGP-A facility on the flocculation behavior of silica under various conditions. (ACR)

  3. Faculty Members as Classroom Researchers: A Progress Report.

    ERIC Educational Resources Information Center

    Cross, K. Patricia; Angelo, Thomas A.

    1989-01-01

    Describes the Classroom Research Project, designed to help community college faculty members from the San Francisco Bay area to develop and test classroom assessment techniques. Discusses project activities, such as workshops and a summer institute, and progress toward the integration of the assessment of student learning into everyday teaching.…

  4. A design guide for energy-efficient research laboratories

    SciTech Connect

    Wishner, N.; Chen, A.; Cook, L.; Bell, G.C.; Mills, E.; Sartor, D.; Avery, D.; Siminovitch, M.; Piette, M.A.

    1996-09-24

    This document--A Design Guide for Energy-Efficient Research Laboratories--provides a detailed and holistic framework to assist designers and energy managers in identifying and applying advanced energy-efficiency features in laboratory-type environments. The Guide fills an important void in the general literature and compliments existing in-depth technical manuals. Considerable information is available pertaining to overall laboratory design issues, but no single document focuses comprehensively on energy issues in these highly specialized environments. Furthermore, practitioners may utilize many antiquated rules of thumb, which often inadvertently cause energy inefficiency. The Guide helps its user to: introduce energy decision-making into the earliest phases of the design process, access the literature of pertinent issues, and become aware of debates and issues on related topics. The Guide does focus on individual technologies, as well as control systems, and important operational factors such as building commissioning. However, most importantly, the Guide is intended to foster a systems perspective (e.g. right sizing) and to present current leading-edge, energy-efficient design practices and principles.

  5. United States Air Force Summer Research Program -- 1993. Volume 8. Phillips Laboratory

    DTIC Science & Technology

    1993-12-01

    Research Program Phillips Laboratory Kirtland Air Force Base Albuquerque. New Mexico Sponsored by...Best Available Copy UNITED STATES AIR FORCE SUMMER RESEARCH PROGRAM -- 1993 SUMMER RESEARCH PROGRAM FINAL REPORTS VOLUME 8 PHILLIPS LABORATORY ...Alabama Box 870344 Tuscaloosa, AL 35487-0344 Final Report for: Graduate Student Research Program Phillips Laboratory , Hanscom AFB Sponsored by: Air

  6. Air Force Research Laboratory Sensors Directorate Leadership Legacy, 1960-2011

    DTIC Science & Technology

    2011-03-01

    AFRL -RY-WP-TM-2011-1017 AIR FORCE RESEARCH LABORATORY SENSORS DIRECTORATE LEADERSHIP LEGACY, 1960-2011 Compiled by Raymond C. Rang...Structures Divi- sion, Space Vehicles Directorate, Air Force Research Laboratory , Kirtland AFB, N.M. 7. March 1998 - July 1999, Chief, Integration and... Research Laboratory ( AFRL ), and Deputy Director of the Sensors Direc- torate, Air Force Research

  7. Fifty Years of Progress, 1937-1987 [Lawrence Berkeley Laboratory (LBL, LBNL)

    DOE R&D Accomplishments Database

    Budinger, T. F. (ed.)

    1987-01-01

    This booklet was prepared for the 50th anniversary of medical and biological research at the Donner Laboratory and the Lawrence Berkeley Laboratory of the University of California. The intent is to present historical facts and to highlight important facets of fifty years of accomplishments in medical and biological sciences. A list of selected scientific publications from 1937 to 1960 is included to demonstrate the character and lasting importance of early pioneering work. The organizational concept is to show the research themes starting with the history, then discoveries of medically important radionuclides, then the use of accelerated charged particles in therapy, next human physiology studies then sequentially studies of biology from tissues to macromolecules; and finally studies of the genetic code.

  8. Occupational health hazards in the interventional laboratory: progress report of the Multispecialty Occupational Health Group.

    PubMed

    Miller, Donald L; Klein, Lloyd W; Balter, Stephen; Norbash, Alexander; Haines, David; Fairobent, Lynne; Goldstein, James A

    2010-09-01

    The Multispecialty Occupational Health Group (MSOHG), formed in 2005, is an informal coalition of societies representing professionals who work in, or are concerned with, interventional fluoroscopy. The group's long-term goals are to improve occupational health and operator and staff safety in the interventional laboratory while maintaining quality patient care and optimal use of the laboratory. MSOHG has conducted a dialogue with equipment manufacturers and has developed a list of specific objectives for research and development. The group has also represented the member societies in educating regulators, in educating interventionalists, and in fostering and collaborating on research into occupational health issues affecting interventionalists. Not least of the group's accomplishments, as a result of their collaboration in MSOHG, the group's members have developed a mutual respect that can serve as a basis for joint efforts in the future among interventionalists of different medical specialties.

  9. Yucca Mountain Project - Argonne National Laboratory annual progress report, FY 1994

    SciTech Connect

    Bates, J.K.; Fortner, J.A.; Finn, P.A.; Wronkiewicz, D.J.; Hoh, J.C.; Emery, J.W.; Buck, E.C.; Wolf, S.F.

    1995-02-01

    This document reports on the work done by the Nuclear Waste Management Section of the Chemical Technology Division (CMT), Argonne National Laboratory, in the period October 1993-September 1994. Studies have been performed to evaluate the performance of nuclear waste glass and spent fuel samples under unsaturated conditions (low volume water contact) that are likely to exist in the Yucca Mountain environment being considered as a potential site for a high-level waste repository. Tests with simulated waste glasses have been in progress for over eight years and demonstrate that actinides from initially fresh glass surfaces will be released as a result of the spallation of reacted glass layers from the surface, as the small volume of water passes over the waste form. Studies are also underway to evaluate the performance of spent fuel samples and unirradiated UO{sub 2} in projected repository conditions. Tests with UO{sub 2} have been ongoing for nine years and show that the oxidation of UO{sub 2} occurs rapidly, and the resulting paragenetic sequence of secondary phases that form on the sample surface is similar to that observed in natural analogues. The reaction of spent fuel samples under conditions similar to those used with UO{sub 2} have been in progress for nearly two years, and the results suggest that spent fuel follows the same reaction progress as UO{sub 2}. The release of individual fission products and transuranic elements was not congruent, with the release being controlled by the formation of small particles or colloids that are suspended in solution and transported away from the waste form. The reaction progress depends on the composition of the spent fuel samples used and, likely, on the composition of the groundwater that contacts the waste form.

  10. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 1: Biomedical Sciences

    SciTech Connect

    Lumetta, C.C.; Park, J.F.

    1994-03-01

    This report summarizes FY 1993 progress in biological and general life sciences research programs conducted for the Department of Energy`s Office of Health and Environmental REsearch (OHER) at Pacific Northwest Laboratory (PNL). This research provides knowledge of fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of exposure to energy-related radiation and chemicals. The Biological Research section contains reports of studies using laboratory animals, in vitro cell systems, and molecular biological systems. This research includes studies of the impact of radiation, radionuclides, and chemicals on biological responses at all levels of biological organization. The General Life Sciences Research section reports research conducted for the OHER human genome program.

  11. Research Update: The USDA-ARS-Conservation and Production Research Laboratory, Bushland, Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation/manuscript provide a brief summary of beef cattle feeding-related research conducted at the USDA-ARS-Conservation and Production Research Laboratory, Bushland, Texas, over the past four years. It summarizes data that has been published in scientific journals, in symposia and confer...

  12. Guidance for Human Subjects Research in the National Exposure Research Laboratory

    EPA Science Inventory

    This document provides guidance to investigators and managers associated with the U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD)’s National Exposure Research Laboratory (NERL) on the ethical conduct, regulatory review, and approval of all huma...

  13. ECOSYSTEM RESTORATION RESEARCH THROUGH THE NATIONAL RISK MANAGEMENT RESEARCH LABORATORY (NRMRL)

    EPA Science Inventory

    The Ecosystem Restoration Research Program underway through ORD's National Risk Management Research Laboratory (NRMRL) has the long-term goal of providing watershed managers with "..state-of-the-science field-evaluated tools, technical guidance, and decision-support systems for s...

  14. A Virtual Laboratory for Aviation and Airspace Prognostics Research

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan; Gorospe, George; Teubert, Christ; Quach, Cuong C.; Hogge, Edward; Darafsheh, Kaveh

    2017-01-01

    Integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, and other aviation technologies, in the airspace is becoming more and more complicated, and will continue to do so in the future. Inclusion of new technology and complexity into the airspace increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems and systems of systems can be challenging, expensive, and at times unsafe when implementing real life scenarios. The application of prognostics to aviation and airspace management may produce new tools and insight into these problems. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. In our research, we develop a live, distributed, hardware- in-the-loop Prognostics Virtual Laboratory testbed for aviation and airspace prognostics. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. In our earlier work1 we discussed the initial Prognostics Virtual Laboratory testbed development work and related results for milestones 1 & 2. This paper describes the design, development, and testing of the integrated tested which are part of milestone 3, along with our next steps for validation of this work. Through a framework consisting of software/hardware modules and associated interface clients, the distributed testbed enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. The testbed modules can be used cohesively to construct complex and relevant airspace scenarios for research. Four modules are key to this research: the virtual aircraft module which uses the X

  15. Ethical boundary-work in the animal research laboratory.

    PubMed

    Hobson-West, Pru

    2012-08-01

    The use of animals in scientific experiments continues to attract significant controversy, particularly in the UK. This article draws on in-depth interviews with senior laboratory scientists who use animals in their research. A key claim is that animal research is necessary for medical advance. However, this promissory discourse relies on the construction of three boundaries. The first is between humans and non-human animals. The second is between the positive and less positive impacts of Home Office regulation. The third is between the use of animals in medicine versus other domains such as farming. The article analyses these discourses and evaluates the applicability of 'ethical boundary-work' (Wainwright et al., 2006a). I conclude that the concept is a potentially useful device for foregrounding ethics but argue that it carries several dangers for sociologists interested in claim-making in areas of controversy.

  16. Multi-modal virtual environment research at Armstrong Laboratory

    NASA Technical Reports Server (NTRS)

    Eggleston, Robert G.

    1995-01-01

    One mission of the Paul M. Fitts Human Engineering Division of Armstrong Laboratory is to improve the user interface for complex systems through user-centered exploratory development and research activities. In support of this goal, many current projects attempt to advance and exploit user-interface concepts made possible by virtual reality (VR) technologies. Virtual environments may be used as a general purpose interface medium, an alternative display/control method, a data visualization and analysis tool, or a graphically based performance assessment tool. An overview is given of research projects within the division on prototype interface hardware/software development, integrated interface concept development, interface design and evaluation tool development, and user and mission performance evaluation tool development.

  17. Ethical boundary-work in the animal research laboratory

    PubMed Central

    Hobson-West, Pru

    2016-01-01

    The use of animals in scientific experiments continues to attract significant controversy, particularly in the UK. This article draws on in-depth interviews with senior laboratory scientists who use animals in their research. A key claim is that animal research is necessary for medical advance. However, this promissory discourse relies on the construction of three boundaries. The first is between humans and non-human animals. The second is between the positive and less positive impacts of Home Office regulation. The third is between the use of animals in medicine versus other domains such as farming. The article analyses these discourses and evaluates the applicability of ‘ethical boundary-work’ (Wainwright et al., 2006a). I conclude that the concept is a potentially useful device for foregrounding ethics but argue that it carries several dangers for sociologists interested in claim-making in areas of controversy. PMID:27708461

  18. User guide to the Burner Engineering Research Laboratory

    SciTech Connect

    Fornaciari, N.; Schefer, R.; Paul, P.; Lubeck, C.; Sanford, R.; Claytor, L.

    1994-11-01

    The Burner Engineering Research Laboratory (BERL) was established with the purpose of providing a facility where manufacturers and researchers can study industrial natural gas burners using conventional and laser-based diagnostics. To achieve this goal, an octagonal furnace enclosure with variable boundary conditions and optical access that can accommodate burners with firing rates up to 2.5 MMBtu per hour was built. In addition to conventional diagnostic capabilities like input/output measurements, exhaust gas monitoring, suction pyrometry and in-furnace gas sampling, laser-based diagnostics available at BERL include planar Mie scattering, laser Doppler velocimetry and laser-induced fluorescence. This paper gives an overview of the operation of BERL and a description of the diagnostic capabilities and an estimate of the time required to complete each diagnostic for the potential user who is considering submitting a proposal.

  19. Laboratory Directed Research and Development Program FY2011

    SciTech Connect

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  20. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research

    SciTech Connect

    Schrempf, R.E.

    1993-04-01

    Within the US Department of Energy's (DOE's) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the ESD, the Atmospheric Chemistry Program (ACP) continues DOE's long-term commitment to study the continental and oceanic fates of energy-related air pollutants. Research through direct measurement, numerical modeling, and laboratory studies in the ACP emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, oxidant species, nitrogen-reservoir species, and aerosols. The Atmospheric Studies in Complex Terrain (ASCOT) program continues to apply basic research on density-driven circulations and on turbulent mixing and dispersion in the atmospheric boundary layer to the micro- to mesoscale meteorological processes that affect air-surface exchange and to emergency preparedness at DOE and other facilities. Research at PNL provides basic scientific underpinnings to DOE's program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and Quantitative Links programs to form DOE's contribution to the US Global Change Research Program.

  1. Recent Progress in Planetary Laboratory Astrophysics achieved with NASA Ames' COSmIC Facility

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2016-10-01

    We describe the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for "Cosmic Simulation Chamber" and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate various space environments such as planetary atmospheres. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. The COSmIC experimental setup is composed of a Pulsed Discharge Nozzle (PDN) expansion, that generates a plasma in the stream of a free supersonic jet expansion, coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection [2, 3], and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [4].Recent results obtained using COSmIC will be highlighted. In particular, the progress that has been achieved in an on-going study investigating the formation and the characterization of laboratory analogs of Titan's aerosols generated from gas-phase molecular precursors [5] will be presented. Plans for future laboratory experiments on planetary molecules and aerosols in the growing field of planetary laboratory astrophysics will also be addressed, as well as the implications of studies underway for astronomical observations.References: [1] Salama F., in Organic Matter in Space, IAU S251, Kwok & Sandford eds, CUP, S251, 4, 357 (2008).[2] Biennier L., Salama, F., Allamandola L., & Scherer J., J. Chem. Phys., 118, 7863 (2003)[3] Tan X, & Salama F., J. Chem. Phys. 122, 84318 (2005)[4] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300

  2. Ford Research Laboratory high school science and technology program (HSSTP)

    SciTech Connect

    Hass, K.C.

    1994-12-31

    Since 1984, the Ford Motor Company Research Laboratory has offered a series of Saturday morning enrichment experiences and summer work opportunities for high school students and teachers. The goal is to increase awareness of technical careers and the importance of science and mathematics in industry. The Saturday sessions are run entirely by volunteers and are organized around current topics ranging from fundamental science (e.g., atmospheric chemistry) to advanced engineering and manufacturing (e.g., glass production). A typical session includes a lecture, laboratory tours and demonstrations, a refreshment/social break and a hands-on activity whenever possible. Over 500 students and teachers participate annually from over 120 area high schools. Nearly one third of the students are minorities from the city of Detroit. Session quality is monitored through feedback from participants and volunteers. Juniors and seniors who attend at least three sessions are eligible to compete for four-week summer internships. Typically, about twenty-five to thirty interns (out of forty to fifty applicants) are selected on the basis of a transcript, teacher recommendation and a 2500-word report on a technical topic. Ford also generally hosts about eight summer teacher fellows through a statewide program that began as an HSSTP initiative. The HSSTP was recently recognized by the industrial Research Institute as one of eleven {open_quotes}Winning [Pre-College Education] Programs{close_quotes} nationwide. Keys to success include strong grassroots and managerial support and extensive networking in the community.

  3. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  4. Biological and Environmental Research Program at Oak Ridge National Laboratory, FY 1992--1994

    SciTech Connect

    Not Available

    1992-01-01

    This report is the 1992--1994 Program Director's Overview Report for Oak Ridge National Laboratory's (ORNL's) Biological and Environmental Research (BER) Program, and as such it addresses KP-funded work at ORNL conducted during FY 1991 and in progress during FY 1992; it also serves as a planning document for the remainder of FY 1992 through FY 1994. Non-BER funded work at ORNL relevant to the mission of OHER is also discussed. The second section of the report describes ORNL facilities and resources used by the BER program. The third section addresses research management practices at ORNL. The fourth, fifth, and sixth sections address BER-funded research in progress, program accomplishments and research highlights, and program orientation for the remainder of FY 1992 through FY 1994, respectively. Work for non-BER sponsors is described in the seventh section, followed by a discussion of significant near and long-term issues facing BER work at ORNL in the eighth section. The last section provides a statistical summary of BER research at ORNL. Appendices supplement the above topics with additional detail.

  5. Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education

    SciTech Connect

    Woodall, D.M.; Dolan, T.J.; Stephens, A.G. )

    1990-01-01

    The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs.

  6. Progress of research of high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Tanaka, Shoji

    1991-01-01

    Research in the area of of high T(sub c) superconductors has made great progress in the last few years. New materials were found and the systematic investigation of these materials has contributed to understanding the mechanism of high T(sub c) superconductivity. The critical currents in thin films, bulks, and tapes increased drastically, and the origin of flux pinning will be clarified in the near future. The future of high T(sub c) superconductivity, in both the basic and applied research areas, is very optimistic. Recent activities in research of high T(sub c) superconductivity and superconductors in Japan are overviewed.

  7. Environmental Research Division technical progress report: January 1986--October 1987

    SciTech Connect

    Not Available

    1988-07-01

    Technical process in the various research activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1986-1987. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Fundamental Molecular Physics and Chemistry, and Organic Geochemistry and Environmental Instrumentation Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter. Individual projects under each division are processed separately for the data bases.

  8. Laboratory directed research and development program FY 2003

    SciTech Connect

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  9. The viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames

    NASA Technical Reports Server (NTRS)

    Clipson, Colin

    1994-01-01

    This paper will review and summarize research initiatives conducted between 1987 and 1992 at NASA Ames Research Center by a research team from the University of Michigan Architecture Research Laboratory. These research initiatives, funded by a NASA grant NAG2-635, examined the viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames in California. Collaborative Research Environments are envisioned as a way of enhancing the work of NASA research teams, optimizing the use of shared resources, and providing superior environments for housing research activities. The Integrated Simulation Project at NASA, Ames Human Performance Research Laboratory is one of the current realizations of this initiative.

  10. Laboratory directed research and development annual report 2003.

    SciTech Connect

    Not Available

    2004-03-01

    Science historian James Burke is well known for his stories about how technological innovations are intertwined and embedded in the culture of the time, for example, how the steam engine led to safety matches, imitation diamonds, and the landing on the moon.1 A lesson commonly drawn from his stories is that the path of science and technology (S&T) is nonlinear and unpredictable. Viewed another way, the lesson is that the solution to one problem can lead to solutions to other problems that are not obviously linked in advance, i.e., there is a ripple effect. The motto for Sandia's approach to research and development (R&D) is 'Science with the mission in mind.' In our view, our missions contain the problems that inspire our R&D, and the resulting solutions almost always have multiple benefits. As discussed below, Sandia's Laboratory Directed Research and Development (LDRD) Program is structured to bring problems relevant to our missions to the attention of researchers. LDRD projects are then selected on the basis of their programmatic merit as well as their technical merit. Considerable effort is made to communicate between investment areas to create the ripple effect. In recent years, attention to the ripple effect and to the performance of the LDRD Program, in general, has increased. Inside Sandia, as it is the sole source of discretionary research funding, LDRD funding is recognized as being the most precious of research dollars. Hence, there is great interest in maximizing its impact, especially through the ripple effect. Outside Sandia, there is increased scrutiny of the program's performance to be sure that it is not a 'sandbox' in which researchers play without relevance to national security needs. Let us therefore address the performance of the LDRD Program in fiscal year 2003 and then show how it is designed to maximize impact.

  11. United States Air Force Summer Research Program -- 1993. Volume 13. Phillips Laboratory

    DTIC Science & Technology

    1993-12-01

    Research Kirtland Air Force Base, Albuquerque, NM August 1993 14-1 My Summer Apprenticeship At Kirtland Air Force Base, Phillips Laboratory Andrea Garcia...AFOSR Summer Research Program Phillips Laboratory Sponsored By: Air Force Office of Scientific Research Kirtland Air Force Base, Albuquerque, NM... Phillips Laboratory Sponsored by: Air

  12. Quality Indicators in Laboratory Medicine: the status of the progress of IFCC Working Group "Laboratory Errors and Patient Safety" project.

    PubMed

    Sciacovelli, Laura; Lippi, Giuseppe; Sumarac, Zorica; West, Jamie; Garcia Del Pino Castro, Isabel; Furtado Vieira, Keila; Ivanov, Agnes; Plebani, Mario

    2017-03-01

    The knowledge of error rates is essential in all clinical laboratories as it enables them to accurately identify their risk level, and compare it with those of other laboratories in order to evaluate their performance in relation to the State-of-the-Art (i.e. benchmarking) and define priorities for improvement actions. Although no activity is risk free, it is widely accepted that the risk of error is minimized by the use of Quality Indicators (QIs) managed as a part of laboratory improvement strategy and proven to be suitable monitoring and improvement tools. The purpose of QIs is to keep the error risk at a level that minimizes the likelihood of patients. However, identifying a suitable State-of-the-Art is challenging, because it calls for the knowledge of error rates measured in a variety of laboratories throughout world that differ in their organization and management, context, and the population they serve. Moreover, it also depends on the choice of the events to keep under control and the individual procedure for measurement. Although many laboratory professionals believe that the systemic use of QIs in Laboratory Medicine may be effective in decreasing errors occurring throughout the total testing process (TTP), to improve patient safety as well as to satisfy the requirements of International Standard ISO 15189, they find it difficult to maintain standardized and systematic data collection, and to promote continued high level of interest, commitment and dedication in the entire staff. Although many laboratories worldwide express a willingness to participate to the Model of QIs (MQI) project of IFCC Working Group "Laboratory Errors and Patient Safety", few systematically enter/record their own results and/or use a number of QIs designed to cover all phases of the TTP. Many laboratories justify their inadequate participation in data collection of QIs by claiming that the number of QIs included in the MQI is excessive. However, an analysis of results suggests

  13. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research

    SciTech Connect

    Perez, D.A.

    1992-02-01

    This report summarizes progress in environmental sciences research conducted by Pacific Northwest Laboratory (PNL) for the US Department of Energy's (DOE) Office of Health and Environmental Research in FY 1991. Each project in the PNL research program is a component in an integrated laboratory, intermediate-scale, and field approach designed to examine multiple phenomena at increasing levels of complexity. Examples include definition of the role of fundamental geochemical and physical phenomena on the diversity and function of microorganisms in the deep subsurface, and determination of the controls on nutrient, water, and energy dynamics in arid ecosystems and their response to stress at the landscape scale. The Environmental Science Research Center has enable PNL to extend fundamental knowledge of subsurface science to develop emerging new concepts for use in natural systems and in environmental restoration of DOE sites. New PNL investments have been made in developing advanced concepts for addressing chemical desorption kinetics, enzyme transformations and redesign, the role of heterogeneity in contaminant transport, and modeling of fundamental ecological processes.

  14. Severe Weather Research at the European Severe Storms Laboratory

    NASA Astrophysics Data System (ADS)

    Groenemeijer, Pieter

    2013-04-01

    The European Severe Storms Laboratory's (ESSL) aim is to increase understanding of high-impact weather, with a particular focus on phenomena with small spatial and temporal dimensions, such as large hail, convectively-driven severe wind gusts, tornadoes and extreme precipitation.The ESSL performs and supports research activities and contributes to enhancing forecasting and warning capabilities in several ways. First, ESSL supports research by providing quality-controlled point data on severe weather events in the European Severe Weather Database. These data are collected through collaborations with networks of voluntary observers, and National HydroMeteorological Institutes throughout Europe. Second, research carried out at ESSL includes modelling the present and future occurrence of severe weather phenomena. This is done by developing proxies for severe weather events for use with reanalysis and climate model data. Third, at the ESSL Testbed, new products to support forecasting and warning operations are tested and demonstrated. Among these tools are visualizations of NWP ensemble data as well as radar, satellite and lightning detection data. Testbed participants provide feedback to the products and receive training in forecasting severe convective weather. Last, every second year ESSL organizes or co-organizes the European Conferences on Severe Storms.

  15. The Laboratory Rat as an Animal Model for Osteoporosis Research

    PubMed Central

    Lelovas, Pavlos P; Xanthos, Theodoros T; Thoma, Sofia E; Lyritis, George P; Dontas, Ismene A

    2008-01-01

    Osteoporosis is an important systemic disorder, affecting mainly Caucasian women, with a diverse and multifactorial etiology. A large variety of animal species, including rodents, rabbits, dogs, and primates, have been used as animal models in osteoporosis research. Among these, the laboratory rat is the preferred animal for most researchers. Its skeleton has been studied extensively, and although there are several limitations to its similarity to the human condition, these can be overcome through detailed knowledge of its specific traits or with certain techniques. The rat has been used in many experimental protocols leading to bone loss, including hormonal interventions (ovariectomy, orchidectomy, hypophysectomy, parathyroidectomy), immobilization, and dietary manipulations. The aim of the current review is not only to present the ovariectomized rat and its advantages as an appropriate model for the research of osteoporosis, but also to provide information about the most relevant age and bone site selection according to the goals of each experimental protocol. In addition, several methods of bone mass evaluation are assessed, such as biochemical markers, densitometry, histomorphometry, and bone mechanical testing, that are used for monitoring and evaluation of this animal model in preventive or therapeutic strategies for osteoporosis. PMID:19004367

  16. Performance calculations for battery power supplies as laboratory research tools

    SciTech Connect

    Scanlon, J.J.; Rolader, G.E.; Jamison, K.A. ); Petresky, H. )

    1991-01-01

    Electromagnetic Launcher (EML) research at the Air Force Armament Laboratory, Hypervelocity Launcher Branch (AFATL/SAH), Eglin AFB, has focused on developing the technologies required for repetitively launching several kilogram payloads to high velocities. Previous AFATL/SAH experiments have been limited by the available power supply resulting in small muzzle energies on the order of 100's of kJ. In an effort to advance the development of EML's, AFATL/SAH has designed and constructed a battery power supply (BPS) capable of providing several mega-Amperes of current for several seconds. This system consists of six modules each containing 2288 automotive batteries which may be connected in two different series - parallel arrangements. In this paper the authors define the electrical characteristics of the AFATL Battery Power supply at the component level.

  17. Review of subsidence prediction research conducted at Sandia National Laboratories

    SciTech Connect

    Sutherland, H.J.; Schuler, K.W.

    1982-04-01

    This paper reviews the results of the subsidence research program at Sandia National Laboratories. The manuscript highlights the following: the application of empirical methods (profile functions) to the subsidence above longwall panels in the US; the use of the rubble model to describe the behavior of broken strata as it distends when it falls to the mine floor (or top of the rubble pile) and then is subsequently compacted as it is loaded by overlying elements of strata; and, the application of physical modeling techniques (centrifuge simulations) and numerical techniques to study the failure mechanisms in highly structured stratigraphy. The capabilities of the latter two are illustrated by comparing their predictions to the results of a field case that has complicated stratigraphy.

  18. Sandia National Laboratories shock thermodynamics applied research (STAR) facility

    SciTech Connect

    Asay, J.R.

    1981-08-01

    The Sandia National Laboratories Shock Thermodynamics Applied Research (STAR) Facility has recently consolidated three different guns and a variety of instrumentation capabilities into a single location. The guns available at the facility consist of a single-stage light gas gun, a single-stage propellant gun and a two-stage light gas gun, which cover a velocity range from 15 m/s to 8 km/s. Instrumentation available at the facility includes optical and microwave interferometry, time-resolved holography, fast x-radiography, framing and streak photography, fast multi-wavelength pyrometry, piezoelectric and piezoresistive gauges and computer data reduction. This report discusses the guns and instrumentation available at the facility and selected recent applications.

  19. Cable condition monitoring research activities at Sandia National Laboratories

    SciTech Connect

    Jacobus, M.J.; Zigler, G.L.; Bustard, L.D.

    1988-01-01

    Sandia National Laboratories is currently conducting long-term aging research on representative samples of nuclear power plant cables. The objectives of the program are to determine the suitability of these cables for extended life (beyond 40 year design basis) and to assess various cable condition monitoring techniques for predicting remaining cable life. The cables are being aged for long times at relatively mild exposure conditions with various condition monitoring techniques to be employed during the aging process. Following the aging process, the cables will be exposed to a sequential accident profile consisting of high dose rate irradiation followed by a simulated design basis loss-of-coolant accident (LOCA) steam exposure. 12 refs., 1 fig., 1 tab.

  20. [Progress on space oral medicine research under microgravity environment].

    PubMed

    Jing, Chen; Xingqun, Cheng; Xin, Xu; Xuedong, Zhou; Yuqing, Li

    2016-02-01

    As an interdisciplinary of stomatology and space medicine, space oral medicine focuses mainly on oral diseases happened under space environment. With the manned space technology stepping into the new era, space oral medicine has been put under the spotlight. This article will review the historical events on this subject, summarize the newly progress especially on craniomaxillofacial bone, tooth-derived stem cell and oral microbiology researches and still put forward future prospect.