Sample records for research metabolic engineering

  1. Complex systems in metabolic engineering.

    PubMed

    Winkler, James D; Erickson, Keesha; Choudhury, Alaksh; Halweg-Edwards, Andrea L; Gill, Ryan T

    2015-12-01

    Metabolic engineers manipulate intricate biological networks to build efficient biological machines. The inherent complexity of this task, derived from the extensive and often unknown interconnectivity between and within these networks, often prevents researchers from achieving desired performance. Other fields have developed methods to tackle the issue of complexity for their unique subset of engineering problems, but to date, there has not been extensive and comprehensive examination of how metabolic engineers use existing tools to ameliorate this effect on their own research projects. In this review, we examine how complexity affects engineering at the protein, pathway, and genome levels within an organism, and the tools for handling these issues to achieve high-performing strain designs. Quantitative complexity metrics and their applications to metabolic engineering versus traditional engineering fields are also discussed. We conclude by predicting how metabolic engineering practices may advance in light of an explicit consideration of design complexity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Modular co-culture engineering, a new approach for metabolic engineering.

    PubMed

    Zhang, Haoran; Wang, Xiaonan

    2016-09-01

    With the development of metabolic engineering, employment of a selected microbial host for accommodation of a designed biosynthetic pathway to produce a target compound has achieved tremendous success in the past several decades. Yet, increasing requirements for sophisticated microbial biosynthesis call for establishment and application of more advanced metabolic engineering methodologies. Recently, important progress has been made towards employing more than one engineered microbial strains to constitute synthetic co-cultures and modularizing the biosynthetic labor between the co-culture members in order to improve bioproduction performance. This emerging approach, referred to as modular co-culture engineering in this review, presents a valuable opportunity for expanding the scope of the broad field of metabolic engineering. We highlight representative research accomplishments using this approach, especially those utilizing metabolic engineering tools for microbial co-culture manipulation. Key benefits and major challenges associated with modular co-culture engineering are also presented and discussed. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. [Improving industrial microbial stress resistance by metabolic engineering: a review].

    PubMed

    Fu, Ruiyan; Li, Yin

    2010-09-01

    Metabolic engineering is a technologic platform for industrial strain improvement and aims not only at modifying microbial metabolic fluxes, but also improving the physiological performance of industrial microbes. Microbes will meet multiple stresses in industrial processes. Consequently, elicited gene responses might result in a decrease in overall cell fitness and the efficiency of biotransformation. Thus, it is crucial to develop robust and productive microbial strains that can be integrated into industrial-scale bioprocesses. In this review, we focus on the progress of these novel methods and strategies for engineering stress-tolerance phenotypes referring to rational metabolic engineering and inverse metabolic engineering in recent years. In addition, we also address problems existing in this area and future research needs of microbial physiological functionality engineering.

  4. Synthetic biology and metabolic engineering.

    PubMed

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  5. Metabolic Engineering VII Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Korpics

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniquesmore » important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.« less

  6. The Future of Metabolic Engineering and Synthetic Biology: Towards a Systematic Practice

    PubMed Central

    Yadav, Vikramaditya G.; De Mey, Marjan; Lim, Chin Giaw; Ajikumar, Parayil Kumaran; Stephanopoulos, Gregory

    2012-01-01

    Industrial biotechnology promises to revolutionize conventional chemical manufacturing in the years ahead, largely owing to the excellent progress in our ability to re-engineer cellular metabolism. However, most successes of metabolic engineering have been confined to over-producing natively synthesized metabolites in E. coli and S. cerevisiae. A major reason for this development has been the descent of metabolic engineering, particularly secondary metabolic engineering, to a collection of demonstrations rather than a systematic practice with generalizable tools. Synthetic biology, a more recent development, faces similar criticisms. Herein, we attempt to lay down a framework around which bioreaction engineering can systematize itself just like chemical reaction engineering. Central to this undertaking is a new approach to engineering secondary metabolism known as ‘multivariate modular metabolic engineering’ (MMME), whose novelty lies in its assessment and elimination of regulatory and pathway bottlenecks by re-defining the metabolic network as a collection of distinct modules. After introducing the core principles of MMME, we shall then present a number of recent developments in secondary metabolic engineering that could potentially serve as its facilitators. It is hoped that the ever-declining costs of de novo gene synthesis; the improved use of bioinformatic tools to mine, sort and analyze biological data; and the increasing sensitivity and sophistication of investigational tools will make the maturation of microbial metabolic engineering an autocatalytic process. Encouraged by these advances, research groups across the world would take up the challenge of secondary metabolite production in simple hosts with renewed vigor, thereby adding to the range of products synthesized using metabolic engineering. PMID:22629571

  7. Metabolic engineering for improved fermentation of pentoses by yeasts

    Treesearch

    T. W. Jeffries; Jin. Y.-S.

    2004-01-01

    The fermentation of xylose is essential for the bioconversion of lignocellulose to fuels and chemicals, but wild-type strains of Saccharomyces cerevisiae do not metabolize xylose, so researchers have engineered xylose metabolism in this yeast. Glucose transporters mediate xylose uptake, but no transporter specific for xylose has yet been identified. Over-expressing...

  8. Engineering central metabolism - a grand challenge for plant biologists.

    PubMed

    Sweetlove, Lee J; Nielsen, Jens; Fernie, Alisdair R

    2017-05-01

    The goal of increasing crop productivity and nutrient-use efficiency is being addressed by a number of ambitious research projects seeking to re-engineer photosynthetic biochemistry. Many of these projects will require the engineering of substantial changes in fluxes of central metabolism. However, as has been amply demonstrated in simpler systems such as microbes, central metabolism is extremely difficult to rationally engineer. This is because of multiple layers of regulation that operate to maintain metabolic steady state and because of the highly connected nature of central metabolism. In this review we discuss new approaches for metabolic engineering that have the potential to address these problems and dramatically improve the success with which we can rationally engineer central metabolism in plants. In particular, we advocate the adoption of an iterative 'design-build-test-learn' cycle using fast-to-transform model plants as test beds. This approach can be realised by coupling new molecular tools to incorporate multiple transgenes in nuclear and plastid genomes with computational modelling to design the engineering strategy and to understand the metabolic phenotype of the engineered organism. We also envisage that mutagenesis could be used to fine-tune the balance between the endogenous metabolic network and the introduced enzymes. Finally, we emphasise the importance of considering the plant as a whole system and not isolated organs: the greatest increase in crop productivity will be achieved if both source and sink metabolism are engineered. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  9. Metabolic engineering of biosynthetic pathway for production of renewable biofuels.

    PubMed

    Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar; Dhar, Pawan Kumar

    2014-02-01

    Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.

  10. PanDaTox: A tool for accelerated metabolic engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amitai, Gil; Sorek, Rotem

    2012-07-18

    Metabolic engineering is often facilitated by cloning of genes encoding enzymes from various heterologous organisms into E. coli. Such engineering efforts are frequently hampered by foreign genes that are toxic to the E. coli host. We have developed PanDaTox (www.weizmann.ac.il/pandatox), a web-based resource that provides experimental toxicity information for more than 1.5 million genes from hundreds of different microbial genomes. The toxicity predictions, which were extensively experimentally verified, are based on serial cloning of genes into E. coli as part of the Sanger whole genome shotgun sequencing process. PanDaTox can accelerate metabolic engineering projects by allowing researchers to exclude toxicmore » genes from the engineering plan and verify the clonability of selected genes before the actual metabolic engineering experiments are conducted.« less

  11. Wei Wang | NREL

    Science.gov Websites

    Research Interests Yeast strain development for production of hydrocarbon via metabolic engineering CBP Research Scientist, National Renewable Energy Laboratory, Bioscience Center, 2009-present Postdoctoral Research Fellow, Auburn University, Chemical Engineering Department, Y.Y. Lee's group Research Scientist

  12. Understanding and manipulating plant lipid composition: Metabolic engineering leads the way

    PubMed Central

    Napier, Johnathan A; Haslam, Richard P; Beaudoin, Frederic; Cahoon, Edgar B

    2014-01-01

    The manipulation of plant seed oil composition so as to deliver enhanced fatty acid compositions suitable for feed or fuel has long been a goal of metabolic engineers. Recent advances in our understanding of the flux of acyl-changes through different key metabolic pools such as phosphatidylcholine and diacylglycerol have allowed for more targeted interventions. When combined in iterative fashion with further lipidomic analyses, significant breakthroughs in our capacity to generate plants with novel oils have been achieved. Collectively these studies, working at the interface between metabolic engineering and synthetic biology, demonstrate the positive fundamental and applied outcomes derived from such research. PMID:24809765

  13. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    PubMed Central

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  14. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

    PubMed

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-10-11

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  15. Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies.

    PubMed

    O'Grady, John; Schwender, Jörg; Shachar-Hill, Yair; Morgan, John A

    2012-03-01

    For the past decade, flux maps have provided researchers with an in-depth perspective on plant metabolism. As a rapidly developing field, significant headway has been made recently in computation, experimentation, and overall understanding of metabolic flux analysis. These advances are particularly applicable to the study of plant metabolism. New dynamic computational methods such as non-stationary metabolic flux analysis are finding their place in the toolbox of metabolic engineering, allowing more organisms to be studied and decreasing the time necessary for experimentation, thereby opening new avenues by which to explore the vast diversity of plant metabolism. Also, improved methods of metabolite detection and measurement have been developed, enabling increasingly greater resolution of flux measurements and the analysis of a greater number of the multitude of plant metabolic pathways. Methods to deconvolute organelle-specific metabolism are employed with increasing effectiveness, elucidating the compartmental specificity inherent in plant metabolism. Advances in metabolite measurements have also enabled new types of experiments, such as the calculation of metabolic fluxes based on (13)CO(2) dynamic labelling data, and will continue to direct plant metabolic engineering. Newly calculated metabolic flux maps reveal surprising and useful information about plant metabolism, guiding future genetic engineering of crops to higher yields. Due to the significant level of complexity in plants, these methods in combination with other systems biology measurements are necessary to guide plant metabolic engineering in the future.

  16. Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation - A chance for metabolic engineering.

    PubMed

    Kracke, Frauke; Lai, Bin; Yu, Shiqin; Krömer, Jens O

    2018-01-01

    More and more microbes are discovered that are capable of extracellular electron transfer, a process in which they use external electrodes as electron donors or acceptors for metabolic reactions. This feature can be used to overcome cellular redox limitations and thus optimizing microbial production. The technologies, termed microbial electrosynthesis and electro-fermentation, have the potential to open novel bio-electro production platforms from sustainable energy and carbon sources. However, the performance of reported systems is currently limited by low electron transport rates between microbes and electrodes and our limited ability for targeted engineering of these systems due to remaining knowledge gaps about the underlying fundamental processes. Metabolic engineering offers many opportunities to optimize these processes, for instance by genetic engineering of pathways for electron transfer on the one hand and target product synthesis on the other hand. With this review, we summarize the status quo of knowledge and engineering attempts around chemical production in bio-electrochemical systems from a microbe perspective. Challenges associated with the introduction or enhancement of extracellular electron transfer capabilities into production hosts versus the engineering of target compound synthesis pathways in natural exoelectrogens are discussed. Recent advances of the research community in both directions are examined critically. Further, systems biology approaches, for instance using metabolic modelling, are examined for their potential to provide insight into fundamental processes and to identify targets for metabolic engineering. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. System-level perturbations of cell metabolism using CRISPR/Cas9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakočiūnas, Tadas; Jensen, Michael K.; Keasling, Jay D.

    CRISPR/Cas9 (clustered regularly interspaced palindromic repeats and the associated protein Cas9) techniques have made genome engineering and transcriptional reprogramming studies much more advanced and cost-effective. For metabolic engineering purposes, the CRISPR-based tools have been applied to single and multiplex pathway modifications and transcriptional regulations. The effectiveness of these tools allows researchers to implement genome-wide perturbations, test model-guided genome editing strategies, and perform transcriptional reprogramming perturbations in a more advanced manner than previously possible. In this mini-review we highlight recent studies adopting CRISPR/Cas9 for systems-level perturbations and model-guided metabolic engineering.

  18. Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae.

    PubMed

    Lane, Stephan; Dong, Jia; Jin, Yong-Su

    2018-07-01

    The substantial research efforts into lignocellulosic biofuels have generated an abundance of valuable knowledge and technologies for metabolic engineering. In particular, these investments have led to a vast growth in proficiency of engineering the yeast Saccharomyces cerevisiae for consuming lignocellulosic sugars, enabling the simultaneous assimilation of multiple carbon sources, and producing a large variety of value-added products by introduction of heterologous metabolic pathways. While microbial conversion of cellulosic sugars into large-volume low-value biofuels is not currently economically feasible, there may still be opportunities to produce other value-added chemicals as regulation of cellulosic sugar metabolism is quite different from glucose metabolism. This review summarizes these recent advances with an emphasis on employing engineered yeast for the bioconversion of lignocellulosic sugars into a variety of non-ethanol value-added products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. A Simplified Model of Human Alcohol Metabolism That Integrates Biotechnology and Human Health into a Mass Balance Team Project

    ERIC Educational Resources Information Center

    Yang, Allen H. J.; Dimiduk, Kathryn; Daniel, Susan

    2011-01-01

    We present a simplified human alcohol metabolism model for a mass balance team project. Students explore aspects of engineering in biotechnology: designing/modeling biological systems, testing the design/model, evaluating new conditions, and exploring cutting-edge "lab-on-a-chip" research. This project highlights chemical engineering's impact on…

  20. Microalgal bioengineering for sustainable energy development: Recent transgenesis and metabolic engineering strategies.

    PubMed

    Banerjee, Chiranjib; Singh, Puneet Kumar; Shukla, Pratyoosh

    2016-03-01

    Exploring the efficiency of algae to produce remarkable products can be directly benefitted by studying its mechanism at systems level. Recent advents in biotechnology like flux balance analysis (FBA), genomics and in silico proteomics minimize the wet lab exertion. It is understood that FBA predicts the metabolic products, metabolic pathways and alternative pathway to maximize the desired product, and these are key components for microalgae bio-engineering. This review encompasses recent transgenesis techniques and metabolic engineering strategies applied to different microalgae for improving different traits. Further it also throws light on RNAi and riboswitch engineering based methods which may be advantageous for high throughput microalgal research. A valid and optimally designed microalga can be developed where every engineering strategies meet each other successfully and will definitely fulfill the market needs. It is also to be noted that Omics (viz. genetic and metabolic manipulation with bioinformatics) should be integrated to develop a strain which could prove to be a futuristic solution for sustainable development for energy. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Metabolic engineering for the production of 1,3-propanediol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, D.C.; Tong, I.T., Skraly, F.A.

    1993-12-31

    Metabolic engineering involves the use of recombinant DNA techniques for the modification of intermediary metabolic pathways. Microorganisms have recently been engineered to produce compounds such as indigo, ethanol, fatty acids and polyhydroxyalkanoates. As a model system for research in metabolic engineering, the authors have constructed a strain of the bacterium Escherichia coli, that is able to produce 1,3-propanediol (1,3-PD) from glycerol. This strain contains the genes for the glycerol deydratase and the 1,3-PD oxidoreductase from Klebsiella pneumoniae. The authors have also investigated genetic and environmental strategies for improving the yield and productivity of 1,3-PD by the engineered organism. In additionmore » to being a useful model system, 1,3-PD production is of current practical interest. First 1,3-PD (also known as trimethylene glycol) and 1,4-butanediol, the more readily available diols. Second, the volume of feedstock (glycerol) is expected to grow, as it is a by-product of the production of polyglycoside surfactants and biodiesel fluids.« less

  2. Engineering self-assembled bioreactors from protein microcompartments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, David

    2016-10-12

    The goals of this research are to understand how organisms such as bacteria segregate certain metabolic processes inside of specific structures, or “microcompartments,” in the cell and apply this knowledge to develop novel engineered microcompartments for use in nanotechnology and metabolic engineering. For example, in some bacteria, self-assembling protein microcompartments called carboxysomes encapsulate the enzymes involved in carbon fixation, enabling the cell to utilize carbon dioxide more effectively than if the enzymes were free in the cell. The proposed research will determine how structures such as carboxysomes assemble and function in bacteria and develop a means for creating novel, syntheticmore » microcompartments for optimizing production of specific energy-rich compounds.« less

  3. Min Zhang | NREL

    Science.gov Websites

    Min Zhang Photo of Min Zhang Min Zhang Researcher V-Molecular Biology Min.Zhang@nrel.gov | 303-384 -7753 Research Interests Using a systems biology approach to identify, analyze, and engineer pathways Metabolic engineering Molecular biology Microbial physiology Systems biology Fermentation development Enzyme

  4. Insight into yeast: A study model of lipid metabolism and terpenoid biosynthesis.

    PubMed

    Hu, Cheng; Lu, Wenyu

    2015-01-01

    With the development of transcriptomics, metabolomics, proteomics, and mathematical modeling, yeast Saccharomyces cerevisiae is recently considered as a model studying strain by biologists who try to reveal the mystery of microorganic metabolism or develop heterologous pharmaceutical and economic products. Among S. cerevisiae metabolic research, lipid metabolism always attracts great interest because of its dominant role in cell physiology. Related researchers have developed multiple functions from cell membrane component such as adjustment to changing environment and impact on protein folding. Nowadays, many common human diseases such as diabetes mellitus, Alzheimer's disease, obesity, and atherosclerosis are related to lipid metabolism, which makes the study of lipids a desperate need. In addition to lipid metabolism, the study of the native mevalonic acid (MVA) pathway in S. cerevisiae has increased exponentially because of its huge potential to produce economically important products terpenoids. With the progress of technology in gene engineering and metabolic engineering, more and more biosynthetic pathways will be developed and put into industrial application. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  5. Advances in engineered microorganisms for improving metabolic conversion via microgravity effects.

    PubMed

    Huangfu, Jie; Zhang, Genlin; Li, Jun; Li, Chun

    2015-01-01

    As an extreme and unique environment, microgravity has significant effects on microbial cellular processes, such as cell growth, gene expression, natural pathways and biotechnological products. Application of microgravity effects to identify the regulatory elements in reengineering microbial hosts will draw much more attention in further research. In this commentary, we discuss the microgravity effects in engineered microorganisms for improving metabolic conversion, including cell growth kinetics, antimicrobial susceptibility, resistance to stresses, secondary metabolites production, recombinant protein production and enzyme activity, as well as gene expression changes. Application of microgravity effects in engineered microorganisms could provide valuable platform for innovative approaches in bioprocessing technology to largely improve the metabolic conversion efficacy of biopharmaceutical products.

  6. Genetic and metabolic engineering in diatoms.

    PubMed

    Huang, Weichao; Daboussi, Fayza

    2017-09-05

    Diatoms have attracted considerable attention due to their success in diverse environmental conditions, which probably is a consequence of their complex origins. Studies of their metabolism will provide insight into their adaptation capacity and are a prerequisite for metabolic engineering. Several years of investigation have led to the development of the genome engineering tools required for such studies, and a profusion of appropriate tools is now available for exploring and exploiting the metabolism of these organisms. Diatoms are highly prized in industrial biotechnology, due to both their richness in natural lipids and carotenoids and their ability to produce recombinant proteins, of considerable value in diverse markets. This review provides an overview of recent advances in genetic engineering methods for diatoms, from the development of gene expression cassettes and gene delivery methods, to cutting-edge genome-editing technologies. It also highlights the contributions of these rapid developments to both basic and applied research: they have improved our understanding of key physiological processes; and they have made it possible to modify the natural metabolism to favour the production of specific compounds or to produce new compounds for green chemistry and pharmaceutical applications.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  7. Production of succinic acid by metabolically engineered microorganisms.

    PubMed

    Ahn, Jung Ho; Jang, Yu-Sin; Lee, Sang Yup

    2016-12-01

    Succinic acid (SA) has been recognized as one of the most important bio-based building block chemicals due to its numerous potential applications. For the economical bio-based production of SA, extensive research works have been performed on developing microbial strains by metabolic engineering as well as fermentation and downstream processes. Here we review metabolic engineering strategies applied for bio-based production of SA using representative microorganisms, including Saccharomyces cerevisiae, Pichia kudriavzevii, Escherichia coli, Mannheimia succiniciproducens, Basfia succiniciproducens, Actinobacillus succinogenes, and Corynebacterium glutamicum. In particular, strategies employed for developing engineered strains of these microorganisms leading to the best performance indices (titer, yield, and productivity) are showcased based on the published papers as well as patents. Those processes currently under commercialization are also analyzed and future perspectives are provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Recent Advances in Microbial Production of Aromatic Chemicals and Derivatives.

    PubMed

    Noda, Shuhei; Kondo, Akihiko

    2017-08-01

    Along with the development of metabolic engineering and synthetic biology tools, various microbes are being used to produce aromatic chemicals. In microbes, aromatics are mainly produced via a common important precursor, chorismate, in the shikimate pathway. Natural or non-natural aromatics have been produced by engineering metabolic pathways involving chorismate. In the past decade, novel approaches have appeared to produce various aromatics or to increase their productivity, whereas previously, the targets were mainly aromatic amino acids and the strategy was deregulating feedback inhibition. In this review, we summarize recent studies of microbial production of aromatics based on metabolic engineering approaches. In addition, future perspectives and challenges in this research area are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Road to the future of systems biotechnology: CRISPR-Cas-mediated metabolic engineering for recombinant protein production.

    PubMed

    Roointan, Amir; Morowvat, Mohammad Hossein

    The rising potential for CRISPR-Cas-mediated genome editing has revolutionized our strategies in basic and practical bioengineering research. It provides a predictable and precise method for genome modification in a robust and reproducible fashion. Emergence of systems biotechnology and synthetic biology approaches coupled with CRISPR-Cas technology could change the future of cell factories to possess some new features which have not been found naturally. We have discussed the possibility and versatile potentials of CRISPR-Cas technology for metabolic engineering of a recombinant host for heterologous protein production. We describe the mechanisms involved in this metabolic engineering approach and present the diverse features of its application in biotechnology and protein production.

  10. Current progress of targetron technology: development, improvement and application in metabolic engineering.

    PubMed

    Liu, Ya-Jun; Zhang, Jie; Cui, Gu-Zhen; Cui, Qiu

    2015-06-01

    Targetrons are mobile group II introns that can recognize their DNA target sites by base-pairing RNA-DNA interactions with the aid of site-specific binding reverse transcriptases. Targetron technology stands out from recently developed gene targeting methods because of the flexibility, feasibility, and efficiency, and is particularly suitable for the genetic engineering of difficult microorganisms, including cellulolytic bacteria that are considered promising candidates for biomass conversion via consolidated bioprocessing. Along with the development of the thermotargetron method for thermophiles, targetron technology becomes increasingly important for the metabolic engineering of industrial microorganisms aiming at biofuel/chemical production. To summarize the current progress of targetron technology and provide new insights on the use of the technology, this paper reviews the retrohoming mechanisms of both mesophilic and thermophilic targetron methods based on various group II introns, investigates the improvement of targetron tools for high target efficiency and specificity, and discusses the current applications in the metabolic engineering for bacterial producers. Although there are still intellectual property and technical restrictions in targetron applications, we propose that targetron technology will contribute to both biochemistry research and the metabolic engineering for industrial productions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    PubMed

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Systems biology solutions for biochemical production challenges.

    PubMed

    Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus; Herrgård, Markus J

    2017-06-01

    There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains for biofuels and -chemicals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. Themore » goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.« less

  14. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jiazhang; Mishra, Shekhar; Zhao, Huimin

    Metabolic engineering aims to develop efficient cell factories by rewiring cellular metabolism. As one of the most commonly used cell factories, Saccharomyces cerevisiae has been extensively engineered to produce a wide variety of products at high levels from various feedstocks. In this paper, we summarize the recent development of metabolic engineering approaches to modulate yeast metabolism with representative examples. Particularly, we highlight new tools for biosynthetic pathway optimization (i.e. combinatorial transcriptional engineering and dynamic metabolic flux control) and genome engineering (i.e. clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) system based genome engineering and RNA interference assisted genome evolution)more » to advance metabolic engineering in yeast. Lastly, we also discuss the challenges and perspectives for high throughput metabolic engineering.« less

  15. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications

    DOE PAGES

    Lian, Jiazhang; Mishra, Shekhar; Zhao, Huimin

    2018-04-25

    Metabolic engineering aims to develop efficient cell factories by rewiring cellular metabolism. As one of the most commonly used cell factories, Saccharomyces cerevisiae has been extensively engineered to produce a wide variety of products at high levels from various feedstocks. In this paper, we summarize the recent development of metabolic engineering approaches to modulate yeast metabolism with representative examples. Particularly, we highlight new tools for biosynthetic pathway optimization (i.e. combinatorial transcriptional engineering and dynamic metabolic flux control) and genome engineering (i.e. clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) system based genome engineering and RNA interference assisted genome evolution)more » to advance metabolic engineering in yeast. Lastly, we also discuss the challenges and perspectives for high throughput metabolic engineering.« less

  16. Precision metabolic engineering: The design of responsive, selective, and controllable metabolic systems.

    PubMed

    McNerney, Monica P; Watstein, Daniel M; Styczynski, Mark P

    2015-09-01

    Metabolic engineering is generally focused on static optimization of cells to maximize production of a desired product, though recently dynamic metabolic engineering has explored how metabolic programs can be varied over time to improve titer. However, these are not the only types of applications where metabolic engineering could make a significant impact. Here, we discuss a new conceptual framework, termed "precision metabolic engineering," involving the design and engineering of systems that make different products in response to different signals. Rather than focusing on maximizing titer, these types of applications typically have three hallmarks: sensing signals that determine the desired metabolic target, completely directing metabolic flux in response to those signals, and producing sharp responses at specific signal thresholds. In this review, we will first discuss and provide examples of precision metabolic engineering. We will then discuss each of these hallmarks and identify which existing metabolic engineering methods can be applied to accomplish those tasks, as well as some of their shortcomings. Ultimately, precise control of metabolic systems has the potential to enable a host of new metabolic engineering and synthetic biology applications for any problem where flexibility of response to an external signal could be useful. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Precision Metabolic Engineering: the Design of Responsive, Selective, and Controllable Metabolic Systems

    PubMed Central

    McNerney, Monica P.; Watstein, Daniel M.; Styczynski, Mark P.

    2015-01-01

    Metabolic engineering is generally focused on static optimization of cells to maximize production of a desired product, though recently dynamic metabolic engineering has explored how metabolic programs can be varied over time to improve titer. However, these are not the only types of applications where metabolic engineering could make a significant impact. Here, we discuss a new conceptual framework, termed “precision metabolic engineering,” involving the design and engineering of systems that make different products in response to different signals. Rather than focusing on maximizing titer, these types of applications typically have three hallmarks: sensing signals that determine the desired metabolic target, completely directing metabolic flux in response to those signals, and producing sharp responses at specific signal thresholds. In this review, we will first discuss and provide examples of precision metabolic engineering. We will then discuss each of these hallmarks and identify which existing metabolic engineering methods can be applied to accomplish those tasks, as well as some of their shortcomings. Ultimately, precise control of metabolic systems has the potential to enable a host of new metabolic engineering and synthetic biology applications for any problem where flexibility of response to an external signal could be useful. PMID:26189665

  18. Towards systems metabolic engineering of microorganisms for amino acid production.

    PubMed

    Park, Jin Hwan; Lee, Sang Yup

    2008-10-01

    Microorganisms capable of efficient production of amino acids have traditionally been developed by random mutation and selection method, which might cause unwanted physiological changes in cellular metabolism. Rational genome-wide metabolic engineering based on systems and synthetic biology tools, which is termed 'systems metabolic engineering', is rising as an alternative to overcome these problems. Recently, several amino acid producers have been successfully developed by systems metabolic engineering, where the metabolic engineering procedures were performed within a systems biology framework, and entire metabolic networks, including complex regulatory circuits, were engineered in an integrated manner. Here we review the current status of systems metabolic engineering successfully applied for developing amino acid producing strains and discuss future prospects.

  19. Optimising the production of succinate and lactate in Escherichia coli using a hybrid of artificial bee colony algorithm and minimisation of metabolic adjustment.

    PubMed

    Tang, Phooi Wah; Choon, Yee Wen; Mohamad, Mohd Saberi; Deris, Safaai; Napis, Suhaimi

    2015-03-01

    Metabolic engineering is a research field that focuses on the design of models for metabolism, and uses computational procedures to suggest genetic manipulation. It aims to improve the yield of particular chemical or biochemical products. Several traditional metabolic engineering methods are commonly used to increase the production of a desired target, but the products are always far below their theoretical maximums. Using numeral optimisation algorithms to identify gene knockouts may stall at a local minimum in a multivariable function. This paper proposes a hybrid of the artificial bee colony (ABC) algorithm and the minimisation of metabolic adjustment (MOMA) to predict an optimal set of solutions in order to optimise the production rate of succinate and lactate. The dataset used in this work was from the iJO1366 Escherichia coli metabolic network. The experimental results include the production rate, growth rate and a list of knockout genes. From the comparative analysis, ABCMOMA produced better results compared to previous works, showing potential for solving genetic engineering problems. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. 2013 plant lipids Gordon Research conference and Gordon Research Seminar (January 27 - February 1, 2013 - Hotel Galvez, Galveston, TX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welti, Ruth

    2012-11-01

    Presenters will discuss the latest advances in plant and algal lipid metabolism, oil synthesis, lipid signaling, lipid visualization, lipid biotechnology and its applications, the physiological and developmental roles of lipids, and plant lipids in health. Sessions include: Producing Nutritional Lipids; Metabolic biochemistry in the next decade; Triacylglycerols: Metabolism, function, and as a target for engineering; Lipids in Protection, Reproduction, and Development; Genetic and Lipidomic Approaches to Understanding Lipid Metabolism and Signaling; Lipid Signaling in Stress Responses; New Insights on the Path to Triacylglycerols; Membrane Lipid Signaling; Lipid Visualization; Development of Biofuels and Industrial Lipids.

  1. Integration of systems biology with bioprocess engineering: L: -threonine production by systems metabolic engineering of Escherichia coli.

    PubMed

    Lee, Sang Yup; Park, Jin Hwan

    2010-01-01

    Random mutation and selection or targeted metabolic engineering without consideration of its impact on the entire metabolic and regulatory networks can unintentionally cause genetic alterations in the region, which is not directly related to the target metabolite. This is one of the reasons why strategies for developing industrial strains are now shifted towards targeted metabolic engineering based on systems biology, which is termed systems metabolic engineering. Using systems metabolic engineering strategies, all the metabolic engineering works are conducted in systems biology framework, whereby entire metabolic and regulatory networks are thoroughly considered in an integrated manner. The targets for purposeful engineering are selected after all possible effects on the entire metabolic and regulatory networks are thoroughly considered. Finally, the strain, which is capable of producing the target metabolite to a high level close to the theoretical maximum value, can be constructed. Here we review strategies and applications of systems biology successfully implemented on bioprocess engineering, with particular focus on developing L: -threonine production strains of Escherichia coli.

  2. Non-invasive Assessments of Adipose Tissue Metabolism In Vitro.

    PubMed

    Abbott, Rosalyn D; Borowsky, Francis E; Quinn, Kyle P; Bernstein, David L; Georgakoudi, Irene; Kaplan, David L

    2016-03-01

    Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with non-invasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored.

  3. Non-invasive assessments of adipose tissue metabolism in vitro

    PubMed Central

    Abbott, Rosalyn D.; Borowsky, Francis E.; Quinn, Kyle P.; Bernstein, David L.; Georgakoudi, Irene; Kaplan, David L.

    2015-01-01

    Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with noninvasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored. PMID:26399988

  4. Systems Metabolic Engineering of Escherichia coli.

    PubMed

    Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup

    2016-05-01

    Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.

  5. Systems Metabolic Engineering of Escherichia coli.

    PubMed

    Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup

    2017-03-01

    Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.

  6. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications.

    PubMed

    Löbs, Ann-Kathrin; Schwartz, Cory; Wheeldon, Ian

    2017-09-01

    Microbial production of chemicals and proteins from biomass-derived and waste sugar streams is a rapidly growing area of research and development. While the model yeast Saccharomyces cerevisia e is an excellent host for the conversion of glucose to ethanol, production of other chemicals from alternative substrates often requires extensive strain engineering. To avoid complex and intensive engineering of S. cerevisiae, other yeasts are often selected as hosts for bioprocessing based on their natural capacity to produce a desired product: for example, the efficient production and secretion of proteins, lipids, and primary metabolites that have value as commodity chemicals. Even when using yeasts with beneficial native phenotypes, metabolic engineering to increase yield, titer, and production rate is essential. The non-conventional yeasts Kluyveromyces lactis, K. marxianus, Scheffersomyces stipitis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris have been developed as eukaryotic hosts because of their desirable phenotypes, including thermotolerance, assimilation of diverse carbon sources, and high protein secretion. However, advanced metabolic engineering in these yeasts has been limited. This review outlines the challenges of using non-conventional yeasts for strain and pathway engineering, and discusses the developed solutions to these problems and the resulting applications in industrial biotechnology.

  7. Interdisciplinary Pathways for Urban Metabolism Research

    NASA Astrophysics Data System (ADS)

    Newell, J. P.

    2011-12-01

    With its rapid rise as a metaphor to express coupled natural-human systems in cities, the concept of urban metabolism is evolving into a series of relatively distinct research frameworks amongst various disciplines, with varying definitions, theories, models, and emphases. In industrial ecology, housed primarily within the disciplinary domain of engineering, urban metabolism research has focused on quantifying material and energy flows into, within, and out of cities, using methodologies such as material flow analysis and life cycle assessment. In the field of urban ecology, which is strongly influenced by ecology and urban planning, research focus has been placed on understanding and modeling the complex patterns and processes of human-ecological systems within urban areas. Finally, in political ecology, closely aligned with human geography and anthropology, scholars theorize about the interwoven knots of social and natural processes, material flows, and spatial structures that form the urban metabolism. This paper offers three potential interdisciplinary urban metabolism research tracks that might integrate elements of these three "ecologies," thereby bridging engineering and the social and physical sciences. First, it presents the idea of infrastructure ecology, which explores the complex, emergent interdependencies between gray (water and wastewater, transportation, etc) and green (e.g. parks, greenways) infrastructure systems, as nested within a broader socio-economic context. For cities to be sustainable and resilient over time-space, the theory follows, these is a need to understand and redesign these infrastructure linkages. Second, there is the concept of an urban-scale carbon metabolism model which integrates consumption-based material flow analysis (including goods, water, and materials), with the carbon sink and source dynamics of the built environment (e.g. buildings, etc) and urban ecosystems. Finally, there is the political ecology of the material urban metabolism, which adds spatial differentiation to materials flows and form, as well as a focus on equity, access, and governance dimensions of the urban metabolism.

  8. [Metabolic engineering of edible plant oils].

    PubMed

    Yue, Ai-Qin; Sun, Xi-Ping; Li, Run-Zhi

    2007-12-01

    Plant seed oil is the major source of many fatty acids for human nutrition, and also one of industrial feedstocks. Recent advances in understanding of the basic biochemistry of seed oil biosynthesis, coupled with cloning of the genes encoding the enzymes involved in fatty acid modification and oil accumulation, have set the stage for the metabolic engineering of oilseed crops that produce "designer" plant seed oils with the improved nutritional values for human being. In this review we provide an overview of seed oil biosynthesis/regulation and highlight the key enzymatic steps that are targets for gene manipulation. The strategies of metabolic engineering of fatty acids in oilseeds, including overexpression or suppression of genes encoding single or multi-step biosynthetic pathways and assembling the complete pathway for the synthesis of long-chain polyunsaturated fatty acids (e.g. arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid) are described in detail. The current "bottlenecks" in using common oilseeds as "bioreactors" for commercial production of high-value fatty acids are analyzed. It is also discussed that the future research focuses of oilseed metabolic engineering and the prospects in creating renewable sources and promoting the sustainable development of human society and economy.

  9. Metabolic Engineering X Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, Evan

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  10. Modularization of genetic elements promotes synthetic metabolic engineering.

    PubMed

    Qi, Hao; Li, Bing-Zhi; Zhang, Wen-Qian; Liu, Duo; Yuan, Ying-Jin

    2015-11-15

    In the context of emerging synthetic biology, metabolic engineering is moving to the next stage powered by new technologies. Systematical modularization of genetic elements makes it more convenient to engineer biological systems for chemical production or other desired purposes. In the past few years, progresses were made in engineering metabolic pathway using synthetic biology tools. Here, we spotlighted the topic of implementation of modularized genetic elements in metabolic engineering. First, we overviewed the principle developed for modularizing genetic elements and then discussed how the genetic modules advanced metabolic engineering studies. Next, we picked up some milestones of engineered metabolic pathway achieved in the past few years. Last, we discussed the rapid raised synthetic biology field of "building a genome" and the potential in metabolic engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Toward metabolic engineering in the context of system biology and synthetic biology: advances and prospects.

    PubMed

    Liu, Yanfeng; Shin, Hyun-dong; Li, Jianghua; Liu, Long

    2015-02-01

    Metabolic engineering facilitates the rational development of recombinant bacterial strains for metabolite overproduction. Building on enormous advances in system biology and synthetic biology, novel strategies have been established for multivariate optimization of metabolic networks in ensemble, spatial, and dynamic manners such as modular pathway engineering, compartmentalization metabolic engineering, and metabolic engineering guided by genome-scale metabolic models, in vitro reconstitution, and systems and synthetic biology. Herein, we summarize recent advances in novel metabolic engineering strategies. Combined with advancing kinetic models and synthetic biology tools, more efficient new strategies for improving cellular properties can be established and applied for industrially important biochemical production.

  12. Strategic patent analysis in plant biotechnology: terpenoid indole alkaloid metabolic engineering as a case study.

    PubMed

    Miralpeix, Bruna; Sabalza, Maite; Twyman, Richard M; Capell, Teresa; Christou, Paul

    2014-02-01

    The do-it-yourself patent search is a useful alternative to professional patent analysis particularly in the context of publicly funded projects where funds for IP activities may be limited. As a case study, we analysed patents related to the engineering of terpenoid indole alkaloid (TIA) metabolism in plants. We developed a focused search strategy to remove redundancy and reduce the workload without missing important and relevant patents. This resulted in the identification of approximately 50 key patents associated with TIA metabolic engineering in plants, which could form the basis of a more detailed freedom-to-operate analysis. The structural elements of this search strategy could easily be transferred to other contexts, making it a useful generic model for publicly funded research projects. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Programmed Evolution for Optimization of Orthogonal Metabolic Output in Bacteria

    PubMed Central

    Eckdahl, Todd T.; Campbell, A. Malcolm; Heyer, Laurie J.; Poet, Jeffrey L.; Blauch, David N.; Snyder, Nicole L.; Atchley, Dustin T.; Baker, Erich J.; Brown, Micah; Brunner, Elizabeth C.; Callen, Sean A.; Campbell, Jesse S.; Carr, Caleb J.; Carr, David R.; Chadinha, Spencer A.; Chester, Grace I.; Chester, Josh; Clarkson, Ben R.; Cochran, Kelly E.; Doherty, Shannon E.; Doyle, Catherine; Dwyer, Sarah; Edlin, Linnea M.; Evans, Rebecca A.; Fluharty, Taylor; Frederick, Janna; Galeota-Sprung, Jonah; Gammon, Betsy L.; Grieshaber, Brandon; Gronniger, Jessica; Gutteridge, Katelyn; Henningsen, Joel; Isom, Bradley; Itell, Hannah L.; Keffeler, Erica C.; Lantz, Andrew J.; Lim, Jonathan N.; McGuire, Erin P.; Moore, Alexander K.; Morton, Jerrad; Nakano, Meredith; Pearson, Sara A.; Perkins, Virginia; Parrish, Phoebe; Pierson, Claire E.; Polpityaarachchige, Sachith; Quaney, Michael J.; Slattery, Abagael; Smith, Kathryn E.; Spell, Jackson; Spencer, Morgan; Taye, Telavive; Trueblood, Kamay; Vrana, Caroline J.; Whitesides, E. Tucker

    2015-01-01

    Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields – evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in energy, pharmaceuticals, chemical commodities, biomining, and bioremediation. PMID:25714374

  14. Programmed evolution for optimization of orthogonal metabolic output in bacteria.

    PubMed

    Eckdahl, Todd T; Campbell, A Malcolm; Heyer, Laurie J; Poet, Jeffrey L; Blauch, David N; Snyder, Nicole L; Atchley, Dustin T; Baker, Erich J; Brown, Micah; Brunner, Elizabeth C; Callen, Sean A; Campbell, Jesse S; Carr, Caleb J; Carr, David R; Chadinha, Spencer A; Chester, Grace I; Chester, Josh; Clarkson, Ben R; Cochran, Kelly E; Doherty, Shannon E; Doyle, Catherine; Dwyer, Sarah; Edlin, Linnea M; Evans, Rebecca A; Fluharty, Taylor; Frederick, Janna; Galeota-Sprung, Jonah; Gammon, Betsy L; Grieshaber, Brandon; Gronniger, Jessica; Gutteridge, Katelyn; Henningsen, Joel; Isom, Bradley; Itell, Hannah L; Keffeler, Erica C; Lantz, Andrew J; Lim, Jonathan N; McGuire, Erin P; Moore, Alexander K; Morton, Jerrad; Nakano, Meredith; Pearson, Sara A; Perkins, Virginia; Parrish, Phoebe; Pierson, Claire E; Polpityaarachchige, Sachith; Quaney, Michael J; Slattery, Abagael; Smith, Kathryn E; Spell, Jackson; Spencer, Morgan; Taye, Telavive; Trueblood, Kamay; Vrana, Caroline J; Whitesides, E Tucker

    2015-01-01

    Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields - evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in energy, pharmaceuticals, chemical commodities, biomining, and bioremediation.

  15. Metabolic regulation in solventogenic clostridia: regulators, mechanisms and engineering.

    PubMed

    Yang, Yunpeng; Nie, Xiaoqun; Jiang, Yuqian; Yang, Chen; Gu, Yang; Jiang, Weihong

    2018-02-22

    Solventogenic clostridia, a group of important industrial microorganisms, have exceptional substrate and product diversity, capable of producing a series of two-carbon and even long-chain chemicals and fuels by using various substrates, including sugars, cellulose and hemicellulose, and C1 gases. For the sake of in-depth understanding and engineering these anaerobic microorganisms for broader applications, studies on metabolic regulation of solventogenic clostridia had been extensively carried out during the past ten years, based on the rapid development of various genetic tools. To date, a number of regulators that are essential for cell physiological and metabolic processes have been identified in clostridia, and the relevant mechanisms have also been dissected, providing a wealth of valuable information for metabolic engineering. Here, we reviewed the latest research progresses on the metabolic regulation for chemical production and substrate utilization in solventogenic clostridia, by focusing on three typical Clostridium species, the saccharolytic C. acetobutylicum and C. beijerinckii, as well as the gas-fermenting C. ljungdahlii. On this basis, future directions in the study and remodeling of clostridial regulation systems, were proposed for effective modification of these industrially important anaerobes. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions.

    PubMed

    Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    By combining advanced omics technology and computational modeling, systems biologists have identified and inferred thousands of regulatory events and system-wide interactions of the bacterium Bacillus subtilis, which is commonly used both in the laboratory and in industry. This dissection of the multiple layers of regulatory networks and their interactions has provided invaluable information for unraveling regulatory mechanisms and guiding metabolic engineering. In this review, we discuss recent advances in the systems biology and metabolic engineering of B. subtilis and highlight current gaps in our understanding of global metabolism and global pathway engineering in this organism. We also propose future perspectives in the systems biology of B. subtilis and suggest ways that this approach can be used to guide metabolic engineering. Specifically, although hundreds of regulatory events have been identified or inferred via systems biology approaches, systematic investigation of the functionality of these events in vivo has lagged, thereby preventing the elucidation of regulatory mechanisms and further rational pathway engineering. In metabolic engineering, ignoring the engineering of multilayer regulation hinders metabolic flux redistribution. Post-translational engineering, allosteric engineering, and dynamic pathway analyses and control will also contribute to the modulation and control of the metabolism of engineered B. subtilis, ultimately producing the desired cellular traits. We hope this review will aid metabolic engineers in making full use of available systems biology datasets and approaches for the design and perfection of microbial cell factories through global metabolism optimization. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Expanding the metabolic engineering toolbox with directed evolution.

    PubMed

    Abatemarco, Joseph; Hill, Andrew; Alper, Hal S

    2013-12-01

    Cellular systems can be engineered into factories that produce high-value chemicals from renewable feedstock. Such an approach requires an expanded toolbox for metabolic engineering. Recently, protein engineering and directed evolution strategies have started to play a growing and critical role within metabolic engineering. This review focuses on the various ways in which directed evolution can be applied in conjunction with metabolic engineering to improve product yields. Specifically, we discuss the application of directed evolution on both catalytic and non-catalytic traits of enzymes, on regulatory elements, and on whole genomes in a metabolic engineering context. We demonstrate how the goals of metabolic pathway engineering can be achieved in part through evolving cellular parts as opposed to traditional approaches that rely on gene overexpression and deletion. Finally, we discuss the current limitations in screening technology that hinder the full implementation of a metabolic pathway-directed evolution approach. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Flux analysis and metabolomics for systematic metabolic engineering of microorganisms.

    PubMed

    Toya, Yoshihiro; Shimizu, Hiroshi

    2013-11-01

    Rational engineering of metabolism is important for bio-production using microorganisms. Metabolic design based on in silico simulations and experimental validation of the metabolic state in the engineered strain helps in accomplishing systematic metabolic engineering. Flux balance analysis (FBA) is a method for the prediction of metabolic phenotype, and many applications have been developed using FBA to design metabolic networks. Elementary mode analysis (EMA) and ensemble modeling techniques are also useful tools for in silico strain design. The metabolome and flux distribution of the metabolic pathways enable us to evaluate the metabolic state and provide useful clues to improve target productivity. Here, we reviewed several computational applications for metabolic engineering by using genome-scale metabolic models of microorganisms. We also discussed the recent progress made in the field of metabolomics and (13)C-metabolic flux analysis techniques, and reviewed these applications pertaining to bio-production development. Because these in silico or experimental approaches have their respective advantages and disadvantages, the combined usage of these methods is complementary and effective for metabolic engineering. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Estimation of the Long-term Cardiovascular Events Using UKPDS Risk Engine in Metabolic Syndrome Patients.

    PubMed

    Shivakumar, V; Kandhare, A D; Rajmane, A R; Adil, M; Ghosh, P; Badgujar, L B; Saraf, M N; Bodhankar, S L

    2014-03-01

    Long-term cardiovascular complications in metabolic syndrome are a major cause of mortality and morbidity in India and forecasted estimates in this domain of research are scarcely reported in the literature. The aim of present investigation is to estimate the cardiovascular events associated with a representative Indian population of patients suffering from metabolic syndrome using United Kingdom Prospective Diabetes Study risk engine. Patient level data was collated from 567 patients suffering from metabolic syndrome through structured interviews and physician records regarding the input variables, which were entered into the United Kingdom Prospective Diabetes Study risk engine. The patients of metabolic syndrome were selected according to guidelines of National Cholesterol Education Program - Adult Treatment Panel III, modified National Cholesterol Education Program - Adult Treatment Panel III and International Diabetes Federation criteria. A projection for 10 simulated years was run on the engine and output was determined. The data for each patient was processed using the United Kingdom Prospective Diabetes Study risk engine to calculate an estimate of the forecasted value for the cardiovascular complications after a period of 10 years. The absolute risk (95% confidence interval) for coronary heart disease, fatal coronary heart disease, stroke and fatal stroke for 10 years was 3.79 (1.5-3.2), 9.6 (6.8-10.7), 7.91 (6.5-9.9) and 3.57 (2.3-4.5), respectively. The relative risk (95% confidence interval) for coronary heart disease, fatal coronary heart disease, stroke and fatal stroke was 17.8 (12.98-19.99), 7 (6.7-7.2), 5.9 (4.0-6.6) and 4.7 (3.2-5.7), respectively. Simulated projections of metabolic syndrome patients predict serious life-threatening cardiovascular consequences in the representative cohort of patients in western India.

  20. Metabolic engineering of microorganisms for the production of L-arginine and its derivatives.

    PubMed

    Shin, Jae Ho; Lee, Sang Yup

    2014-12-03

    L-arginine (ARG) is an important amino acid for both medicinal and industrial applications. For almost six decades, the research has been going on for its improved industrial level production using different microorganisms. While the initial approaches involved random mutagenesis for increased tolerance to ARG and consequently higher ARG titer, it is laborious and often leads to unwanted phenotypes, such as retarded growth. Discovery of L-glutamate (GLU) overproducing strains and using them as base strains for ARG production led to improved ARG production titer. Continued effort to unveil molecular mechanisms led to the accumulation of detailed knowledge on amino acid metabolism, which has contributed to better understanding of ARG biosynthesis and its regulation. Moreover, systems metabolic engineering now enables scientists and engineers to efficiently construct genetically defined microorganisms for ARG overproduction in a more rational and system-wide manner. Despite such effort, ARG biosynthesis is still not fully understood and many of the genes in the pathway are mislabeled. Here, we review the major metabolic pathways and its regulation involved in ARG biosynthesis in different prokaryotes including recent discoveries. Also, various strategies for metabolic engineering of bacteria for the overproduction of ARG are described. Furthermore, metabolic engineering approaches for producing ARG derivatives such as L-ornithine (ORN), putrescine and cyanophycin are described. ORN is used in medical applications, while putrescine can be used as a bio-based precursor for the synthesis of nylon-4,6 and nylon-4,10. Cyanophycin is also an important compound for the production of polyaspartate, another important bio-based polymer. Strategies outlined here will serve as a general guideline for rationally designing of cell-factories for overproduction of ARG and related compounds that are industrially valuable.

  1. Perspectives in metabolic engineering: understanding cellular regulation towards the control of metabolic routes.

    PubMed

    Zadran, Sohila; Levine, Raphael D

    2013-01-01

    Metabolic engineering seeks to redirect metabolic pathways through the modification of specific biochemical reactions or the introduction of new ones with the use of recombinant technology. Many of the chemicals synthesized via introduction of product-specific enzymes or the reconstruction of entire metabolic pathways into engineered hosts that can sustain production and can synthesize high yields of the desired product as yields of natural product-derived compounds are frequently low, and chemical processes can be both energy and material expensive; current endeavors have focused on using biologically derived processes as alternatives to chemical synthesis. Such economically favorable manufacturing processes pursue goals related to sustainable development and "green chemistry". Metabolic engineering is a multidisciplinary approach, involving chemical engineering, molecular biology, biochemistry, and analytical chemistry. Recent advances in molecular biology, genome-scale models, theoretical understanding, and kinetic modeling has increased interest in using metabolic engineering to redirect metabolic fluxes for industrial and therapeutic purposes. The use of metabolic engineering has increased the productivity of industrially pertinent small molecules, alcohol-based biofuels, and biodiesel. Here, we highlight developments in the practical and theoretical strategies and technologies available for the metabolic engineering of simple systems and address current limitations.

  2. Systems metabolic engineering: genome-scale models and beyond.

    PubMed

    Blazeck, John; Alper, Hal

    2010-07-01

    The advent of high throughput genome-scale bioinformatics has led to an exponential increase in available cellular system data. Systems metabolic engineering attempts to use data-driven approaches--based on the data collected with high throughput technologies--to identify gene targets and optimize phenotypical properties on a systems level. Current systems metabolic engineering tools are limited for predicting and defining complex phenotypes such as chemical tolerances and other global, multigenic traits. The most pragmatic systems-based tool for metabolic engineering to arise is the in silico genome-scale metabolic reconstruction. This tool has seen wide adoption for modeling cell growth and predicting beneficial gene knockouts, and we examine here how this approach can be expanded for novel organisms. This review will highlight advances of the systems metabolic engineering approach with a focus on de novo development and use of genome-scale metabolic reconstructions for metabolic engineering applications. We will then discuss the challenges and prospects for this emerging field to enable model-based metabolic engineering. Specifically, we argue that current state-of-the-art systems metabolic engineering techniques represent a viable first step for improving product yield that still must be followed by combinatorial techniques or random strain mutagenesis to achieve optimal cellular systems.

  3. Harnessing biodiesel-producing microbes: from genetic engineering of lipase to metabolic engineering of fatty acid biosynthetic pathway.

    PubMed

    Yan, Jinyong; Yan, Yunjun; Madzak, Catherine; Han, Bingnan

    2017-02-01

    Microbial production routes, notably whole-cell lipase-mediated biotransformation and fatty-acids-derived biosynthesis, offer new opportunities for synthesizing biodiesel. They compare favorably to immobilized lipase and chemically catalyzed processes. Genetically modified whole-cell lipase-mediated in vitro route, together with in vivo and ex vivo microbial biosynthesis routes, constitutes emerging and rapidly developing research areas for effective production of biodiesel. This review presents recent advances in customizing microorganisms for producing biodiesel, via genetic engineering of lipases and metabolic engineering (including system regulation) of fatty-acids-derived pathways. Microbial hosts used include Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Aspergillus oryzae. These microbial cells can be genetically modified to produce lipases under different forms: intracellularly expressed, secreted or surface-displayed. They can be metabolically redesigned and systematically regulated to obtain balanced biodiesel-producing cells, as highlighted in this study. Such genetically or metabolically modified microbial cells can support not only in vitro biotransformation of various common oil feedstocks to biodiesel, but also de novo biosynthesis of biodiesel from glucose, glycerol or even cellulosic biomass. We believe that the genetically tractable oleaginous yeast Yarrowia lipolytica could be developed to an effective biodiesel-producing microbial cell factory. For this purpose, we propose several engineered pathways, based on lipase and wax ester synthase, in this promising oleaginous host.

  4. Systems metabolic engineering for chemicals and materials.

    PubMed

    Lee, Jeong Wook; Kim, Tae Yong; Jang, Yu-Sin; Choi, Sol; Lee, Sang Yup

    2011-08-01

    Metabolic engineering has contributed significantly to the enhanced production of various value-added and commodity chemicals and materials from renewable resources in the past two decades. Recently, metabolic engineering has been upgraded to the systems level (thus, systems metabolic engineering) by the integrated use of global technologies of systems biology, fine design capabilities of synthetic biology, and rational-random mutagenesis through evolutionary engineering. By systems metabolic engineering, production of natural and unnatural chemicals and materials can be better optimized in a multiplexed way on a genome scale, with reduced time and effort. Here, we review the recent trends in systems metabolic engineering for the production of chemicals and materials by presenting general strategies and showcasing representative examples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae.

    PubMed

    Liu, Lifang; Martínez, José L; Liu, Zihe; Petranovic, Dina; Nielsen, Jens

    2014-01-01

    Due to limitations associated with whole blood for transfusions (antigen compatibility, transmission of infections, supply and storage), the use of cell-free hemoglobin as an oxygen carrier substitute has been in the center of research interest for decades. Human hemoglobin has previously been synthesized in yeast, however the challenge is to balance the expression of the two different globin subunits, as well as the supply of the prosthetic heme required for obtaining the active hemoglobin (α2β2). In this work we evaluated the expression of different combinations of α and β peptides and combined this with metabolic engineering of the heme biosynthetic pathway. Through evaluation of several different strategies we showed that engineering the biosynthesis pathway can substantially increase the heme level in yeast cells, and this resulted in a significant enhancement of human hemoglobin production. Besides demonstration of improved hemoglobin production our work demonstrates a novel strategy for improving the production of complex proteins, especially multimers with a prosthetic group. © 2013 Published by International Metabolic Engineering Society on behalf of International Metabolic Engineering Society.

  6. VRML metabolic network visualizer.

    PubMed

    Rojdestvenski, Igor

    2003-03-01

    A successful date collection visualization should satisfy a set of many requirements: unification of diverse data formats, support for serendipity research, support of hierarchical structures, algorithmizability, vast information density, Internet-readiness, and other. Recently, virtual reality has made significant progress in engineering, architectural design, entertainment and communication. We experiment with the possibility of using the immersive abstract three-dimensional visualizations of the metabolic networks. We present the trial Metabolic Network Visualizer software, which produces graphical representation of a metabolic network as a VRML world from a formal description written in a simple SGML-type scripting language.

  7. Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches.

    PubMed

    Jang, Yu-Sin; Park, Jong Myoung; Choi, Sol; Choi, Yong Jun; Seung, Do Young; Cho, Jung Hee; Lee, Sang Yup

    2012-01-01

    The increasing oil price and environmental concerns caused by the use of fossil fuel have renewed our interest in utilizing biomass as a sustainable resource for the production of biofuel. It is however essential to develop high performance microbes that are capable of producing biofuels with very high efficiency in order to compete with the fossil fuel. Recently, the strategies for developing microbial strains by systems metabolic engineering, which can be considered as metabolic engineering integrated with systems biology and synthetic biology, have been developed. Systems metabolic engineering allows successful development of microbes that are capable of producing several different biofuels including bioethanol, biobutanol, alkane, and biodiesel, and even hydrogen. In this review, the approaches employed to develop efficient biofuel producers by metabolic engineering and systems metabolic engineering approaches are reviewed with relevant example cases. It is expected that systems metabolic engineering will be employed as an essential strategy for the development of microbial strains for industrial applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Protein design in systems metabolic engineering for industrial strain development.

    PubMed

    Chen, Zhen; Zeng, An-Ping

    2013-05-01

    Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Combinatorial pathway optimization in Escherichia coli by directed co-evolution of rate-limiting enzymes and modular pathway engineering.

    PubMed

    Lv, Xiaomei; Gu, Jiali; Wang, Fan; Xie, Wenping; Liu, Min; Ye, Lidan; Yu, Hongwei

    2016-12-01

    Metabolic engineering of microorganisms for heterologous biosynthesis is a promising route to sustainable chemical production which attracts increasing research and industrial interest. However, the efficiency of microbial biosynthesis is often restricted by insufficient activity of pathway enzymes and unbalanced utilization of metabolic intermediates. This work presents a combinatorial strategy integrating modification of multiple rate-limiting enzymes and modular pathway engineering to simultaneously improve intra- and inter-pathway balance, which might be applicable for a range of products, using isoprene as an example product. For intra-module engineering within the methylerythritol-phosphate (MEP) pathway, directed co-evolution of DXS/DXR/IDI was performed adopting a lycopene-indicated high-throughput screening method developed herein, leading to 60% improvement of isoprene production. In addition, inter-module engineering between the upstream MEP pathway and the downstream isoprene-forming pathway was conducted via promoter manipulation, which further increased isoprene production by 2.94-fold compared to the recombinant strain with solely protein engineering and 4.7-fold compared to the control strain containing wild-type enzymes. These results demonstrated the potential of pathway optimization in isoprene overproduction as well as the effectiveness of combining metabolic regulation and protein engineering in improvement of microbial biosynthesis. Biotechnol. Bioeng. 2016;113: 2661-2669. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Genome scale engineering techniques for metabolic engineering.

    PubMed

    Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T

    2015-11-01

    Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications.

    PubMed

    Otero, José Manuel; Vongsangnak, Wanwipa; Asadollahi, Mohammad A; Olivares-Hernandes, Roberto; Maury, Jérôme; Farinelli, Laurent; Barlocher, Loïc; Osterås, Magne; Schalk, Michel; Clark, Anthony; Nielsen, Jens

    2010-12-22

    The need for rapid and efficient microbial cell factory design and construction are possible through the enabling technology, metabolic engineering, which is now being facilitated by systems biology approaches. Metabolic engineering is often complimented by directed evolution, where selective pressure is applied to a partially genetically engineered strain to confer a desirable phenotype. The exact genetic modification or resulting genotype that leads to the improved phenotype is often not identified or understood to enable further metabolic engineering. In this work we performed whole genome high-throughput sequencing and annotation can be used to identify single nucleotide polymorphisms (SNPs) between Saccharomyces cerevisiae strains S288c and CEN.PK113-7D. The yeast strain S288c was the first eukaryote sequenced, serving as the reference genome for the Saccharomyces Genome Database, while CEN.PK113-7D is a preferred laboratory strain for industrial biotechnology research. A total of 13,787 high-quality SNPs were detected between both strains (reference strain: S288c). Considering only metabolic genes (782 of 5,596 annotated genes), a total of 219 metabolism specific SNPs are distributed across 158 metabolic genes, with 85 of the SNPs being nonsynonymous (e.g., encoding amino acid modifications). Amongst metabolic SNPs detected, there was pathway enrichment in the galactose uptake pathway (GAL1, GAL10) and ergosterol biosynthetic pathway (ERG8, ERG9). Physiological characterization confirmed a strong deficiency in galactose uptake and metabolism in S288c compared to CEN.PK113-7D, and similarly, ergosterol content in CEN.PK113-7D was significantly higher in both glucose and galactose supplemented cultivations compared to S288c. Furthermore, DNA microarray profiling of S288c and CEN.PK113-7D in both glucose and galactose batch cultures did not provide a clear hypothesis for major phenotypes observed, suggesting that genotype to phenotype correlations are manifested post-transcriptionally or post-translationally either through protein concentration and/or function. With an intensifying need for microbial cell factories that produce a wide array of target compounds, whole genome high-throughput sequencing and annotation for SNP detection can aid in better reducing and defining the metabolic landscape. This work demonstrates direct correlations between genotype and phenotype that provides clear and high-probability of success metabolic engineering targets. The genome sequence, annotation, and a SNP viewer of CEN.PK113-7D are deposited at http://www.sysbio.se/cenpk.

  12. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications

    PubMed Central

    2010-01-01

    Background The need for rapid and efficient microbial cell factory design and construction are possible through the enabling technology, metabolic engineering, which is now being facilitated by systems biology approaches. Metabolic engineering is often complimented by directed evolution, where selective pressure is applied to a partially genetically engineered strain to confer a desirable phenotype. The exact genetic modification or resulting genotype that leads to the improved phenotype is often not identified or understood to enable further metabolic engineering. Results In this work we performed whole genome high-throughput sequencing and annotation can be used to identify single nucleotide polymorphisms (SNPs) between Saccharomyces cerevisiae strains S288c and CEN.PK113-7D. The yeast strain S288c was the first eukaryote sequenced, serving as the reference genome for the Saccharomyces Genome Database, while CEN.PK113-7D is a preferred laboratory strain for industrial biotechnology research. A total of 13,787 high-quality SNPs were detected between both strains (reference strain: S288c). Considering only metabolic genes (782 of 5,596 annotated genes), a total of 219 metabolism specific SNPs are distributed across 158 metabolic genes, with 85 of the SNPs being nonsynonymous (e.g., encoding amino acid modifications). Amongst metabolic SNPs detected, there was pathway enrichment in the galactose uptake pathway (GAL1, GAL10) and ergosterol biosynthetic pathway (ERG8, ERG9). Physiological characterization confirmed a strong deficiency in galactose uptake and metabolism in S288c compared to CEN.PK113-7D, and similarly, ergosterol content in CEN.PK113-7D was significantly higher in both glucose and galactose supplemented cultivations compared to S288c. Furthermore, DNA microarray profiling of S288c and CEN.PK113-7D in both glucose and galactose batch cultures did not provide a clear hypothesis for major phenotypes observed, suggesting that genotype to phenotype correlations are manifested post-transcriptionally or post-translationally either through protein concentration and/or function. Conclusions With an intensifying need for microbial cell factories that produce a wide array of target compounds, whole genome high-throughput sequencing and annotation for SNP detection can aid in better reducing and defining the metabolic landscape. This work demonstrates direct correlations between genotype and phenotype that provides clear and high-probability of success metabolic engineering targets. The genome sequence, annotation, and a SNP viewer of CEN.PK113-7D are deposited at http://www.sysbio.se/cenpk. PMID:21176163

  13. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived hydrocarbons.

    PubMed

    Zhang, Yiming; Nielsen, Jens; Liu, Zihe

    2018-06-05

    Fatty acid-derived hydrocarbons attract increasing attention as biofuels due to their immiscibility with water, high-energy content, low freezing point, and high compatibility with existing refineries and end-user infrastructures. Yeast Saccharomyces cerevisiae has advantages for production of fatty acid-derived hydrocarbons as its native routes toward fatty acid synthesis involve only a few reactions that allow more efficient conversion of carbon substrates. Here we describe major biosynthetic pathways of fatty acid-derived hydrocarbons in yeast, and summarize key metabolic engineering strategies, including enhancing precursor supply, eliminating competing pathways, and expressing heterologous pathways. With recent advances in yeast production of fatty acid-derived hydrocarbons, our review identifies key research challenges and opportunities for future optimization, and concludes with perspectives and outlooks for further research directions. © 2018 Wiley Periodicals, Inc.

  14. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis.

    PubMed

    Pirie, Christopher M; De Mey, Marjan; Jones Prather, Kristala L; Ajikumar, Parayil Kumaran

    2013-04-19

    Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.

  15. Improvements in algal lipid production: a systems biology and gene editing approach.

    PubMed

    Banerjee, Avik; Banerjee, Chiranjib; Negi, Sangeeta; Chang, Jo-Shu; Shukla, Pratyoosh

    2018-05-01

    In the wake of rising energy demands, microalgae have emerged as potential sources of sustainable and renewable carbon-neutral fuels, such as bio-hydrogen and bio-oil. For rational metabolic engineering, the elucidation of metabolic pathways in fine detail and their manipulation according to requirements is the key to exploiting the use of microalgae. Emergence of site-specific nucleases have revolutionized applied research leading to biotechnological gains. Genome engineering as well as modulation of the endogenous genome with high precision using CRISPR systems is being gradually employed in microalgal research. Further, to optimize and produce better algal platforms, use of systems biology network analysis and integration of omics data is required. This review discusses two important approaches: systems biology and gene editing strategies used on microalgal systems with a focus on biofuel production and sustainable solutions. It also emphasizes that the integration of such systems would contribute and compliment applied research on microalgae. Recent advances in microalgae are discussed, including systems biology, gene editing approaches in lipid bio-synthesis, and antenna engineering. Lastly, it has been attempted here to showcase how CRISPR/Cas systems are a better editing tool than existing techniques that can be utilized for gene modulation and engineering during biofuel production.

  16. Programmable genetic circuits for pathway engineering.

    PubMed

    Hoynes-O'Connor, Allison; Moon, Tae Seok

    2015-12-01

    Synthetic biology has the potential to provide decisive advances in genetic control of metabolic pathways. However, there are several challenges that synthetic biologists must overcome before this vision becomes a reality. First, a library of diverse and well-characterized sensors, such as metabolite-sensing or condition-sensing promoters, must be constructed. Second, robust programmable circuits that link input conditions with a specific gene regulation response must be developed. Finally, multi-gene targeting strategies must be integrated with metabolically relevant sensors and complex, robust logic. Achievements in each of these areas, which employ the CRISPR/Cas system, in silico modeling, and dynamic sensor-regulators, among other tools, provide a strong basis for future research. Overall, the future for synthetic biology approaches in metabolic engineering holds immense promise. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. 2-Keto acids based biosynthesis pathways for renewable fuels and chemicals.

    PubMed

    Tashiro, Yohei; Rodriguez, Gabriel M; Atsumi, Shota

    2015-03-01

    Global energy and environmental concerns have driven the development of biological chemical production from renewable sources. Biological processes using microorganisms are efficient and have been traditionally utilized to convert biomass (i.e., glucose) to useful chemicals such as amino acids. To produce desired fuels and chemicals with high yield and rate, metabolic pathways have been enhanced and expanded with metabolic engineering and synthetic biology approaches. 2-Keto acids, which are key intermediates in amino acid biosynthesis, can be converted to a wide range of chemicals. 2-Keto acid pathways were engineered in previous research efforts and these studies demonstrated that 2-keto acid pathways have high potential for novel metabolic routes with high productivity. In this review, we discuss recently developed 2-keto acid-based pathways.

  18. Synthetic metabolism: metabolic engineering meets enzyme design.

    PubMed

    Erb, Tobias J; Jones, Patrik R; Bar-Even, Arren

    2017-04-01

    Metabolic engineering aims at modifying the endogenous metabolic network of an organism to harness it for a useful biotechnological task, for example, production of a value-added compound. Several levels of metabolic engineering can be defined and are the topic of this review. Basic 'copy, paste and fine-tuning' approaches are limited to the structure of naturally existing pathways. 'Mix and match' approaches freely recombine the repertoire of existing enzymes to create synthetic metabolic networks that are able to outcompete naturally evolved pathways or redirect flux toward non-natural products. The space of possible metabolic solution can be further increased through approaches including 'new enzyme reactions', which are engineered on the basis of known enzyme mechanisms. Finally, by considering completely 'novel enzyme chemistries' with de novo enzyme design, the limits of nature can be breached to derive the most advanced form of synthetic pathways. We discuss the challenges and promises associated with these different metabolic engineering approaches and illuminate how enzyme engineering is expected to take a prime role in synthetic metabolic engineering for biotechnology, chemical industry and agriculture of the future. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. OptFlux: an open-source software platform for in silico metabolic engineering.

    PubMed

    Rocha, Isabel; Maia, Paulo; Evangelista, Pedro; Vilaça, Paulo; Soares, Simão; Pinto, José P; Nielsen, Jens; Patil, Kiran R; Ferreira, Eugénio C; Rocha, Miguel

    2010-04-19

    Over the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications. OptFlux is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes. OptFlux also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms. The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. OptFlux has a visualization module that allows the analysis of the model structure that is compatible with the layout information of Cell Designer, allowing the superimposition of simulation results with the model graph. The OptFlux software is freely available, together with documentation and other resources, thus bridging the gap from research in strain optimization algorithms and the final users. It is a valuable platform for researchers in the field that have available a number of useful tools. Its open-source nature invites contributions by all those interested in making their methods available for the community. Given its plug-in based architecture it can be extended with new functionalities. Currently, several plug-ins are being developed, including network topology analysis tools and the integration with Boolean network based regulatory models.

  20. OptFlux: an open-source software platform for in silico metabolic engineering

    PubMed Central

    2010-01-01

    Background Over the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications. Results OptFlux is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes. OptFlux also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms. The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. OptFlux has a visualization module that allows the analysis of the model structure that is compatible with the layout information of Cell Designer, allowing the superimposition of simulation results with the model graph. Conclusions The OptFlux software is freely available, together with documentation and other resources, thus bridging the gap from research in strain optimization algorithms and the final users. It is a valuable platform for researchers in the field that have available a number of useful tools. Its open-source nature invites contributions by all those interested in making their methods available for the community. Given its plug-in based architecture it can be extended with new functionalities. Currently, several plug-ins are being developed, including network topology analysis tools and the integration with Boolean network based regulatory models. PMID:20403172

  1. Synergizing 13C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production.

    PubMed

    Guo, Weihua; Sheng, Jiayuan; Feng, Xueyang

    Metabolic engineering of industrial microorganisms to produce chemicals, fuels, and drugs has attracted increasing interest as it provides an environment-friendly and renewable route that does not depend on depleting petroleum sources. However, the microbial metabolism is so complex that metabolic engineering efforts often have difficulty in achieving a satisfactory yield, titer, or productivity of the target chemical. To overcome this challenge, 13 C Metabolic Flux Analysis ( 13 C-MFA) has been developed to investigate rigorously the cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, 13 C-MFA has been widely used in academic labs and the biotechnology industry to pinpoint the key issues related to microbial-based chemical production and to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this chapter we introduce the basics of 13 C-MFA and illustrate how 13 C-MFA has been applied to synergize with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production.

  2. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production.

    PubMed

    Xie, Dongming; Jackson, Ethel N; Zhu, Quinn

    2015-02-01

    The omega-3 fatty acids, cis-5, 8, 11, 14, and 17-eicosapentaenoic acid (C20:5; EPA) and cis-4, 7, 10, 13, 16, and 19-docosahexaenoic acid (C22:6; DHA), have wide-ranging benefits in improving heart health, immune function, mental health, and infant cognitive development. Currently, the major source for EPA and DHA is from fish oil, and a minor source of DHA is from microalgae. With the increased demand for EPA and DHA, DuPont has developed a clean and sustainable source of the omega-3 fatty acid EPA through fermentation using metabolically engineered strains of Yarrowia lipolytica. In this mini-review, we will focus on DuPont's technology for EPA production. Specifically, EPA biosynthetic and supporting pathways have been introduced into the oleaginous yeast to synthesize and accumulate EPA under fermentation conditions. This Yarrowia platform can also produce tailored omega-3 (EPA, DHA) and/or omega-6 (ARA, GLA) fatty acid mixtures in the cellular lipid profiles. Fundamental research such as metabolic engineering for strain construction, high-throughput screening for strain selection, fermentation process development, and process scale-up were all needed to achieve the high levels of EPA titer, rate, and yield required for commercial application. Here, we summarize how we have combined the fundamental bioscience and the industrial engineering skills to achieve large-scale production of Yarrowia biomass containing high amounts of EPA, which led to two commercial products, New Harvest™ EPA oil and Verlasso® salmon.

  3. [Metabolomics research of medicinal plants].

    PubMed

    Duan, Li-Xin; Dai, Yun-Tao; Sun, Chao; Chen, Shi-Lin

    2016-11-01

    Metabolomics is the comprehensively study of chemical processes involving small molecule metabolites. It is an important part of systems biology, and is widely applied in complex traditional Chinese medicine(TCM)system. Metabolites biosynthesized by medicinal plants are the effective basis for TCM. Metabolomics studies of medicinal plants will usher in a new period of vigorous development with the implementation of Herb Genome Program and the development of TCM synthetic biology. This manuscript introduces the recent research progresses of metabolomics technology and the main research contents of metabolomics studies for medicinal plants, including identification and quality evaluation for medicinal plants, cultivars breeding, stress resistance, metabolic pathways, metabolic network, metabolic engineering and synthetic biology researches. The integration of genomics, transcriptomics and metabolomics approaches will finally lay foundation for breeding of medicinal plants, R&D, quality and safety evaluation of innovative drug. Copyright© by the Chinese Pharmaceutical Association.

  4. Interfacing microbiology and biotechnology. Conference abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maupin, Julia A.

    2001-05-19

    The Interfacing Microbiology and Biotechnology Conference was attended by over 100 faculty, post-docs, students, and research scientists from the US, Europe, and Latin America. The conference successfully stimulated communication and the dissemination of knowledge among scientists involved in basic and applied research. The focus of the conference was on microbial physiology and genetics and included sessions on C1 metabolism, archaeal metabolism, proteases and chaperones, gene arrays, and metabolic engineering. The meeting provided the setting for in-depth discussions between scientists who are internationally recognized for their research in these fields. The following objectives were met: (1) The promotion of interaction andmore » future collaborative projects among scientists involved in basic and applied research which incorporates microbial physiology, genetics, and biochemistry; (2) the facilitation of communication of new research findings through seminars, posters, and abstracts; (3 ) the stimulation of enthusiasm and education among participants including graduate and undergraduate students.« less

  5. Computational Tools for Metabolic Engineering

    PubMed Central

    Copeland, Wilbert B.; Bartley, Bryan A.; Chandran, Deepak; Galdzicki, Michal; Kim, Kyung H.; Sleight, Sean C.; Maranas, Costas D.; Sauro, Herbert M.

    2012-01-01

    A great variety of software applications are now employed in the metabolic engineering field. These applications have been created to support a wide range of experimental and analysis techniques. Computational tools are utilized throughout the metabolic engineering workflow to extract and interpret relevant information from large data sets, to present complex models in a more manageable form, and to propose efficient network design strategies. In this review, we present a number of tools that can assist in modifying and understanding cellular metabolic networks. The review covers seven areas of relevance to metabolic engineers. These include metabolic reconstruction efforts, network visualization, nucleic acid and protein engineering, metabolic flux analysis, pathway prospecting, post-structural network analysis and culture optimization. The list of available tools is extensive and we can only highlight a small, representative portion of the tools from each area. PMID:22629572

  6. Recent advances in systems metabolic engineering tools and strategies.

    PubMed

    Chae, Tong Un; Choi, So Young; Kim, Je Woong; Ko, Yoo-Sung; Lee, Sang Yup

    2017-10-01

    Metabolic engineering has been playing increasingly important roles in developing microbial cell factories for the production of various chemicals and materials to achieve sustainable chemical industry. Nowadays, many tools and strategies are available for performing systems metabolic engineering that allows systems-level metabolic engineering in more sophisticated and diverse ways by adopting rapidly advancing methodologies and tools of systems biology, synthetic biology and evolutionary engineering. As an outcome, development of more efficient microbial cell factories has become possible. Here, we review recent advances in systems metabolic engineering tools and strategies together with accompanying application examples. In addition, we describe how these tools and strategies work together in simultaneous and synergistic ways to develop novel microbial cell factories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Expanding Metabolic Engineering Algorithms Using Feasible Space and Shadow Price Constraint Modules

    PubMed Central

    Tervo, Christopher J.; Reed, Jennifer L.

    2014-01-01

    While numerous computational methods have been developed that use genome-scale models to propose mutants for the purpose of metabolic engineering, they generally compare mutants based on a single criteria (e.g., production rate at a mutant’s maximum growth rate). As such, these approaches remain limited in their ability to include multiple complex engineering constraints. To address this shortcoming, we have developed feasible space and shadow price constraint (FaceCon and ShadowCon) modules that can be added to existing mixed integer linear adaptive evolution metabolic engineering algorithms, such as OptKnock and OptORF. These modules allow strain designs to be identified amongst a set of multiple metabolic engineering algorithm solutions that are capable of high chemical production while also satisfying additional design criteria. We describe the various module implementations and their potential applications to the field of metabolic engineering. We then incorporated these modules into the OptORF metabolic engineering algorithm. Using an Escherichia coli genome-scale model (iJO1366), we generated different strain designs for the anaerobic production of ethanol from glucose, thus demonstrating the tractability and potential utility of these modules in metabolic engineering algorithms. PMID:25478320

  8. Metabolic engineering tools in model cyanobacteria.

    PubMed

    Carroll, Austin L; Case, Anna E; Zhang, Angela; Atsumi, Shota

    2018-03-26

    Developing sustainable routes for producing chemicals and fuels is one of the most important challenges in metabolic engineering. Photoautotrophic hosts are particularly attractive because of their potential to utilize light as an energy source and CO 2 as a carbon substrate through photosynthesis. Cyanobacteria are unicellular organisms capable of photosynthesis and CO 2 fixation. While engineering in heterotrophs, such as Escherichia coli, has result in a plethora of tools for strain development and hosts capable of producing valuable chemicals efficiently, these techniques are not always directly transferable to cyanobacteria. However, recent efforts have led to an increase in the scope and scale of chemicals that cyanobacteria can produce. Adaptations of important metabolic engineering tools have also been optimized to function in photoautotrophic hosts, which include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9, 13 C Metabolic Flux Analysis (MFA), and Genome-Scale Modeling (GSM). This review explores innovations in cyanobacterial metabolic engineering, and highlights how photoautotrophic metabolism has shaped their development. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Systems metabolic engineering of microorganisms for natural and non-natural chemicals.

    PubMed

    Lee, Jeong Wook; Na, Dokyun; Park, Jong Myoung; Lee, Joungmin; Choi, Sol; Lee, Sang Yup

    2012-05-17

    Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of chemicals, fuels and materials from renewable resources. Metabolic engineering is a key enabling technology for transforming microorganisms into efficient cell factories for these compounds. Systems metabolic engineering, which incorporates the concepts and techniques of systems biology, synthetic biology and evolutionary engineering at the systems level, offers a conceptual and technological framework to speed the creation of new metabolic enzymes and pathways or the modification of existing pathways for the optimal production of desired products. Here we discuss the general strategies of systems metabolic engineering and examples of its application and offer insights as to when and how each of the different strategies should be used. Finally, we highlight the limitations and challenges to be overcome for the systems metabolic engineering of microorganisms at more advanced levels.

  10. Metabolic engineering approaches for production of biochemicals in food and medicinal plants.

    PubMed

    Wilson, Sarah A; Roberts, Susan C

    2014-04-01

    Historically, plants are a vital source of nutrients and pharmaceuticals. Recent advances in metabolic engineering have made it possible to not only increase the concentration of desired compounds, but also introduce novel biosynthetic pathways to a variety of species, allowing for enhanced nutritional or commercial value. To improve metabolic engineering capabilities, new transformation techniques have been developed to allow for gene specific silencing strategies or stacking of multiple genes within the same region of the chromosome. The 'omics' era has provided a new resource for elucidation of uncharacterized biosynthetic pathways, enabling novel metabolic engineering approaches. These resources are now allowing for advanced metabolic engineering of plant production systems, as well as the synthesis of increasingly complex products in engineered microbial hosts. The status of current metabolic engineering efforts is highlighted for the in vitro production of paclitaxel and the in vivo production of β-carotene in Golden Rice and other food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Protein engineering for metabolic engineering: current and next-generation tools

    PubMed Central

    Marcheschi, Ryan J.; Gronenberg, Luisa S.; Liao, James C.

    2014-01-01

    Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically-produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. This article reviews advances of selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use, produce non-natural amino acids, alcohols, and carboxylic acids, and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes. PMID:23589443

  12. Protein engineering for metabolic engineering: current and next-generation tools.

    PubMed

    Marcheschi, Ryan J; Gronenberg, Luisa S; Liao, James C

    2013-05-01

    Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. We review advances in selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use; produce non-natural amino acids, alcohols, and carboxylic acids; and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Multi-scale exploration of the technical, economic, and environmental dimensions of bio-based chemical production.

    PubMed

    Zhuang, Kai H; Herrgård, Markus J

    2015-09-01

    In recent years, bio-based chemicals have gained traction as a sustainable alternative to petrochemicals. However, despite rapid advances in metabolic engineering and synthetic biology, there remain significant economic and environmental challenges. In order to maximize the impact of research investment in a new bio-based chemical industry, there is a need for assessing the technological, economic, and environmental potentials of combinations of biomass feedstocks, biochemical products, bioprocess technologies, and metabolic engineering approaches in the early phase of development of cell factories. To address this issue, we have developed a comprehensive Multi-scale framework for modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes and economic impact assessment. We demonstrate the use of the MuSIC framework in a case study where two major polymer precursors (1,3-propanediol and 3-hydroxypropionic acid) are produced from two biomass feedstocks (corn-based glucose and soy-based glycerol) through 66 proposed biosynthetic pathways in two host organisms (Escherichia coli and Saccharomyces cerevisiae). The MuSIC framework allows exploration of tradeoffs and interactions between economy-scale objectives (e.g. profit maximization, emission minimization), constraints (e.g. land-use constraints) and process- and cell-scale technology choices (e.g. strain design or oxygenation conditions). We demonstrate that economy-scale assessment can be used to guide specific strain design decisions in metabolic engineering, and that these design decisions can be affected by non-intuitive dependencies across multiple scales. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Genetic Engineering Strategies for Enhanced Biodiesel Production.

    PubMed

    Hegde, Krishnamoorthy; Chandra, Niharika; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Veeranki, Venkata Dasu

    2015-07-01

    The focus on biodiesel research has shown a tremendous growth over the last few years. Several microbial and plant sources are being explored for the sustainable biodiesel production to replace the petroleum diesel. Conventional methods of biodiesel production have several limitations related to yield and quality, which led to development of new engineering strategies to improve the biodiesel production in plants, and microorganisms. Substantial progress in utilizing algae, yeast, and Escherichia coli for the renewable production of biodiesel feedstock via genetic engineering of fatty acid metabolic pathways has been reported in the past few years. However, in most of the cases, the successful commercialization of such engineering strategies for sustainable biodiesel production is yet to be seen. This paper systematically presents the drawbacks in the conventional methods for biodiesel production and an exhaustive review on the present status of research in genetic engineering strategies for production of biodiesel in plants, and microorganisms. Further, we summarize the technical challenges need to be tackled to make genetic engineering technology economically sustainable. Finally, the need and prospects of genetic engineering technology for the sustainable biodiesel production and the recommendations for the future research are discussed.

  15. Annual Report to Congress - Fiscal Year 2002, from the Strategic Environmental Research and Development Program

    DTIC Science & Technology

    2003-03-01

    and Catabolic Enzymes Involved in Phytoremediation of the Nitro-Substituted Explosives TNT, RDX, and HMX . . . . . A-48 CU-1318 – Engineering Transgenic...1317 Identification of Metabolic Routes and Catabolic Enzymes Involved in Phytoremediation of the Nitro-Substituted Explosives TNT, RDX, and HMX...A A-48 PROJECT SUMMARY PROJECT TITLE & ID: Identification of Metabolic Routes and Catabolic Enzymes Involved in Phytoremediation of the Nitro

  16. Reframed Genome-Scale Metabolic Model to Facilitate Genetic Design and Integration with Expression Data.

    PubMed

    Gu, Deqing; Jian, Xingxing; Zhang, Cheng; Hua, Qiang

    2017-01-01

    Genome-scale metabolic network models (GEMs) have played important roles in the design of genetically engineered strains and helped biologists to decipher metabolism. However, due to the complex gene-reaction relationships that exist in model systems, most algorithms have limited capabilities with respect to directly predicting accurate genetic design for metabolic engineering. In particular, methods that predict reaction knockout strategies leading to overproduction are often impractical in terms of gene manipulations. Recently, we proposed a method named logical transformation of model (LTM) to simplify the gene-reaction associations by introducing intermediate pseudo reactions, which makes it possible to generate genetic design. Here, we propose an alternative method to relieve researchers from deciphering complex gene-reactions by adding pseudo gene controlling reactions. In comparison to LTM, this new method introduces fewer pseudo reactions and generates a much smaller model system named as gModel. We showed that gModel allows two seldom reported applications: identification of minimal genomes and design of minimal cell factories within a modified OptKnock framework. In addition, gModel could be used to integrate expression data directly and improve the performance of the E-Fmin method for predicting fluxes. In conclusion, the model transformation procedure will facilitate genetic research based on GEMs, extending their applications.

  17. Parallel labeling experiments for pathway elucidation and (13)C metabolic flux analysis.

    PubMed

    Antoniewicz, Maciek R

    2015-12-01

    Metabolic pathway models provide the foundation for quantitative studies of cellular physiology through the measurement of intracellular metabolic fluxes. For model organisms metabolic models are well established, with many manually curated genome-scale model reconstructions, gene knockout studies and stable-isotope tracing studies. However, for non-model organisms a similar level of knowledge is often lacking. Compartmentation of cellular metabolism in eukaryotic systems also presents significant challenges for quantitative (13)C-metabolic flux analysis ((13)C-MFA). Recently, innovative (13)C-MFA approaches have been developed based on parallel labeling experiments, the use of multiple isotopic tracers and integrated data analysis, that allow more rigorous validation of pathway models and improved quantification of metabolic fluxes. Applications of these approaches open new research directions in metabolic engineering, biotechnology and medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Progress in Metabolic Engineering of Saccharomyces cerevisiae

    PubMed Central

    Nevoigt, Elke

    2008-01-01

    Summary: The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial (“white”) biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate. PMID:18772282

  19. Parts plus pipes: synthetic biology approaches to metabolic engineering

    PubMed Central

    Boyle, Patrick M.; Silver, Pamela A.

    2011-01-01

    Synthetic biologists combine modular biological “parts” to create higher-order devices. Metabolic engineers construct biological “pipes” by optimizing the microbial conversion of basic substrates to desired compounds. Many scientists work at the intersection of these two philosophies, employing synthetic devices to enhance metabolic engineering efforts. These integrated approaches promise to do more than simply improve product yields; they can expand the array of products that are tractable to produce biologically. In this review, we explore the application of synthetic biology techniques to next-generation metabolic engineering challenges, as well as the emerging engineering principles for biological design. PMID:22037345

  20. Branched-chain higher alcohols.

    PubMed

    Wang, Bao-Wei; Shi, Ai-Qin; Tu, Ran; Zhang, Xue-Li; Wang, Qin-Hong; Bai, Feng-Wu

    2012-01-01

    China's energy requirements and environmental concerns have stimulated efforts toward developing alternative liquid fuels. Compared with fuel ethanol, branched-chain higher alcohols (BCHAs), including isopropanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, exhibit significant advantages, such as higher energy density, lower hygroscopicity, lower vapor pressure, and compatibility with existing transportation infrastructures. However, BCHAs have not been synthesized economically using native organisms, and thus their microbial production based on metabolic engineering and synthetic biology offers an alternative approach, which presents great potential for improving production efficiency. We review the current status of production and consumption of BCHAs and research progress regarding their microbial production in China, especially with the combination of metabolic engineering and synthetic biology.

  1. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    PubMed

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The Genome-Based Metabolic Systems Engineering to Boost Levan Production in a Halophilic Bacterial Model.

    PubMed

    Aydin, Busra; Ozer, Tugba; Oner, Ebru Toksoy; Arga, Kazim Yalcin

    2018-03-01

    Metabolic systems engineering is being used to redirect microbial metabolism for the overproduction of chemicals of interest with the aim of transforming microbial hosts into cellular factories. In this study, a genome-based metabolic systems engineering approach was designed and performed to improve biopolymer biosynthesis capability of a moderately halophilic bacterium Halomonas smyrnensis AAD6 T producing levan, which is a fructose homopolymer with many potential uses in various industries and medicine. For this purpose, the genome-scale metabolic model for AAD6 T was used to characterize the metabolic resource allocation, specifically to design metabolic engineering strategies for engineered bacteria with enhanced levan production capability. Simulations were performed in silico to determine optimal gene knockout strategies to develop new strains with enhanced levan production capability. The majority of the gene knockout strategies emphasized the vital role of the fructose uptake mechanism, and pointed out the fructose-specific phosphotransferase system (PTS fru ) as the most promising target for further metabolic engineering studies. Therefore, the PTS fru of AAD6 T was restructured with insertional mutagenesis and triparental mating techniques to construct a novel, engineered H. smyrnensis strain, BMA14. Fermentation experiments were carried out to demonstrate the high efficiency of the mutant strain BMA14 in terms of final levan concentration, sucrose consumption rate, and sucrose conversion efficiency, when compared to the AAD6 T . The genome-based metabolic systems engineering approach presented in this study might be considered an efficient framework to redirect microbial metabolism for the overproduction of chemicals of interest, and the novel strain BMA14 might be considered a potential microbial cell factory for further studies aimed to design levan production processes with lower production costs.

  3. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    PubMed

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Engineering microbes for isoprene production.

    PubMed

    Ye, Lidan; Lv, Xiaomei; Yu, Hongwei

    2016-11-01

    Isoprene is facing a growing global market due to its wide industrial applications. Current industrial production of isoprene is almost entirely petroleum-based, which is influenced by the shrinking C5 supply, while the natural emission of isoprene is predominantly contributed by plants. To bridge the need gap, a highly efficient fermentation-based process for isoprene production might be a suitable and sustainable solution, and extensive research works have been performed to achieve this goal. Here we review the accomplishments in this field by summarizing the history and prospects of microbial isoprene production. The natural producers and biosynthesis pathways of isoprene, the key enzyme isoprene synthase and the metabolic engineering strategies adopted for developing isoprene-producing microorganisms are introduced. In particular, strategies employed for achieving engineered strains with improved performance indices are discussed based on the published papers and patents. The perspectives on further performance improvements and potential future strategies are presented as well. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Systematic Applications of Metabolomics in Metabolic Engineering

    PubMed Central

    Dromms, Robert A.; Styczynski, Mark P.

    2012-01-01

    The goals of metabolic engineering are well-served by the biological information provided by metabolomics: information on how the cell is currently using its biochemical resources is perhaps one of the best ways to inform strategies to engineer a cell to produce a target compound. Using the analysis of extracellular or intracellular levels of the target compound (or a few closely related molecules) to drive metabolic engineering is quite common. However, there is surprisingly little systematic use of metabolomics datasets, which simultaneously measure hundreds of metabolites rather than just a few, for that same purpose. Here, we review the most common systematic approaches to integrating metabolite data with metabolic engineering, with emphasis on existing efforts to use whole-metabolome datasets. We then review some of the most common approaches for computational modeling of cell-wide metabolism, including constraint-based models, and discuss current computational approaches that explicitly use metabolomics data. We conclude with discussion of the broader potential of computational approaches that systematically use metabolomics data to drive metabolic engineering. PMID:24957776

  6. Engineering biological systems using automated biofoundries.

    PubMed

    Chao, Ran; Mishra, Shekhar; Si, Tong; Zhao, Huimin

    2017-07-01

    Engineered biological systems such as genetic circuits and microbial cell factories have promised to solve many challenges in the modern society. However, the artisanal processes of research and development are slow, expensive, and inconsistent, representing a major obstacle in biotechnology and bioengineering. In recent years, biological foundries or biofoundries have been developed to automate design-build-test engineering cycles in an effort to accelerate these processes. This review summarizes the enabling technologies for such biofoundries as well as their early successes and remaining challenges. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Expanding the Scope of Site-Specific Recombinases for Genetic and Metabolic Engineering

    PubMed Central

    Gaj, Thomas; Sirk, Shannon J.; Barbas, Carlos F.

    2014-01-01

    Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study. PMID:23982993

  8. Genetic Engineering of Algae for Enhanced Biofuel Production ▿

    PubMed Central

    Radakovits, Randor; Jinkerson, Robert E.; Darzins, Al; Posewitz, Matthew C.

    2010-01-01

    There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H2 yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H2 production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes. PMID:20139239

  9. Metabolic characterization of cultured mammalian cells by mass balance analysis, tracer labeling experiments and computer-aided simulations.

    PubMed

    Okahashi, Nobuyuki; Kohno, Susumu; Kitajima, Shunsuke; Matsuda, Fumio; Takahashi, Chiaki; Shimizu, Hiroshi

    2015-12-01

    Studying metabolic directions and flow rates in cultured mammalian cells can provide key information for understanding metabolic function in the fields of cancer research, drug discovery, stem cell biology, and antibody production. In this work, metabolic engineering methodologies including medium component analysis, (13)C-labeling experiments, and computer-aided simulation analysis were applied to characterize the metabolic phenotype of soft tissue sarcoma cells derived from p53-null mice. Cells were cultured in medium containing [1-(13)C] glutamine to assess the level of reductive glutamine metabolism via the reverse reaction of isocitrate dehydrogenase (IDH). The specific uptake and production rates of glucose, organic acids, and the 20 amino acids were determined by time-course analysis of cultured media. Gas chromatography-mass spectrometry analysis of the (13)C-labeling of citrate, succinate, fumarate, malate, and aspartate confirmed an isotopically steady state of the cultured cells. After removing the effect of naturally occurring isotopes, the direction of the IDH reaction was determined by computer-aided analysis. The results validated that metabolic engineering methodologies are applicable to soft tissue sarcoma cells derived from p53-null mice, and also demonstrated that reductive glutamine metabolism is active in p53-null soft tissue sarcoma cells under normoxia. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Applied evolutionary theories for engineering of secondary metabolic pathways.

    PubMed

    Bachmann, Brian O

    2016-12-01

    An expanded definition of 'secondary metabolism' is emerging. Once the exclusive provenance of naturally occurring organisms, evolved over geological time scales, secondary metabolism increasingly encompasses molecules generated via human engineered biocatalysts and biosynthetic pathways. Many of the tools and strategies for enzyme and pathway engineering can find origins in evolutionary theories. This perspective presents an overview of selected proposed evolutionary strategies in the context of engineering secondary metabolism. In addition to the wealth of biocatalysts provided via secondary metabolic pathways, improving the understanding of biosynthetic pathway evolution will provide rich resources for methods to adapt to applied laboratory evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Gramene database: navigating plant comparative genomics resources

    USDA-ARS?s Scientific Manuscript database

    Gramene (http://www.gramene.org) is an online, open source, curated resource for plant comparative genomics and pathway analysis designed to support researchers working in plant genomics, breeding, evolutionary biology, system biology, and metabolic engineering. It exploits phylogenetic relationship...

  12. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals.

    PubMed

    Shi, Shuobo; Zhao, Huimin

    2017-01-01

    Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium , Trichosporon , and Lipomyces . This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.

  13. Engineering Cellular Metabolism.

    PubMed

    Nielsen, Jens; Keasling, Jay D

    2016-03-10

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds, and pharmaceuticals. However, making cells into efficient factories is challenging because cells have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication between molecular pathways that resist efforts to divert resources. Here, we will review the current status and challenges of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Advancing metabolic engineering through systems biology of industrial microorganisms.

    PubMed

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The Roles of p53 in Mitochondrial Dynamics and Cancer Metabolism: The Pendulum between Survival and Death in Breast Cancer?

    PubMed

    Moulder, David E; Hatoum, Diana; Tay, Enoch; Lin, Yiguang; McGowan, Eileen M

    2018-06-08

    Cancer research has been heavily geared towards genomic events in the development and progression of cancer. In contrast, metabolic regulation, such as aberrant metabolism in cancer, is poorly understood. Alteration in cellular metabolism was once regarded simply as a consequence of cancer rather than as playing a primary role in cancer promotion and maintenance. Resurgence of cancer metabolism research has identified critical metabolic reprogramming events within biosynthetic and bioenergetic pathways needed to fulfill the requirements of cancer cell growth and maintenance. The tumor suppressor protein p53 is emerging as a key regulator of metabolic processes and metabolic reprogramming in cancer cells—balancing the pendulum between cell death and survival. This review provides an overview of the classical and emerging non-classical tumor suppressor roles of p53 in regulating mitochondrial dynamics: mitochondrial engagement in cell death processes in the prevention of cancer. On the other hand, we discuss p53 as a key metabolic switch in cellular function and survival. The focus is then on the conceivable roles of p53 in breast cancer metabolism. Understanding the metabolic functions of p53 within breast cancer metabolism will, in due course, reveal critical metabolic hotspots that cancers advantageously re-engineer for sustenance. Illustration of these events will pave the way for finding novel therapeutics that target cancer metabolism and serve to overcome the breast cancer burden.

  16. Monitoring tissue metabolism via time-resolved laser fluorescence

    NASA Astrophysics Data System (ADS)

    Maerz, Holger K.; Buchholz, Rainer; Emmrich, Frank; Fink, Frank; Geddes, Clive L.; Pfeifer, Lutz; Raabe, Ferdinand; Marx, Uwe

    1999-05-01

    Most assays for drug screening are monitoring the metabolism of cells by detecting the NADH content, which symbolize its metabolic activity, indirectly. Nowadays, the performance of a LASER enables us to monitor the metabolic state of mammalian cells directly and on-line by using time-resolved autofluorescence detection. Therefore, we developed in combination with tissue engineering, an assay for monitoring minor toxic effects of volatile organic compounds (VOC), which are accused of inducing Sick Building Syndrome (SBS). Furthermore, we used the Laserfluoroscope (LF) for pharmacological studies on human bone marrow in vitro with special interest in chemotherapy simulation. In cancer research and therapy, the effect of chemostatica in vitro in the so-called oncobiogram is being tested; up to now without great success. However, it showed among other things that tissue structure plays a vital role. Consequently, we succeeded in simulating a chemotherapy in vitro on human bone marrow. Furthermore, after tumor ektomy we were able to distinguish between tumoric and its surrounding healthy tissue by using the LF. With its sensitive detection of metabolic changes in tissues the LF enables a wide range of applications in biotechnology, e.g. for quality control in artificial organ engineering or biocompatability testing.

  17. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals

    PubMed Central

    Shi, Shuobo; Zhao, Huimin

    2017-01-01

    Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years. PMID:29167664

  18. Engineering plant metabolism into microbes: from systems biology to synthetic biology.

    PubMed

    Xu, Peng; Bhan, Namita; Koffas, Mattheos A G

    2013-04-01

    Plant metabolism represents an enormous repository of compounds that are of pharmaceutical and biotechnological importance. Engineering plant metabolism into microbes will provide sustainable solutions to produce pharmaceutical and fuel molecules that could one day replace substantial portions of the current fossil-fuel based economy. Metabolic engineering entails targeted manipulation of biosynthetic pathways to maximize yields of desired products. Recent advances in Systems Biology and the emergence of Synthetic Biology have accelerated our ability to design, construct and optimize cell factories for metabolic engineering applications. Progress in predicting and modeling genome-scale metabolic networks, versatile gene assembly platforms and delicate synthetic pathway optimization strategies has provided us exciting opportunities to exploit the full potential of cell metabolism. In this review, we will discuss how systems and synthetic biology tools can be integrated to create tailor-made cell factories for efficient production of natural products and fuel molecules in microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Metabolic Engineering for Advanced Biofuels Production and Recent Advances Toward Commercialization

    DOE PAGES

    Meadows, Corey W.; Kang, Aram; Lee, Taek S.

    2017-07-21

    Research on renewable biofuels produced by microorganisms has enjoyed considerable advances in academic and industrial settings. As the renewable ethanol market approaches maturity, the demand is rising for the commercialization of more energy-dense fuel targets. Many strategies implemented in recent years have considerably increased the diversity and number of fuel targets that can be produced by microorganisms. Moreover, strain optimization for some of these fuel targets has ultimately led to their production at industrial scale. In this review, we discuss recent metabolic engineering approaches for augmenting biofuel production derived from alcohols, isoprenoids, and fatty acids in several microorganisms. In addition,more » we discuss successful commercialization ventures for each class of biofuel targets.« less

  20. Metabolic Engineering for Advanced Biofuels Production and Recent Advances Toward Commercialization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meadows, Corey W.; Kang, Aram; Lee, Taek S.

    Research on renewable biofuels produced by microorganisms has enjoyed considerable advances in academic and industrial settings. As the renewable ethanol market approaches maturity, the demand is rising for the commercialization of more energy-dense fuel targets. Many strategies implemented in recent years have considerably increased the diversity and number of fuel targets that can be produced by microorganisms. Moreover, strain optimization for some of these fuel targets has ultimately led to their production at industrial scale. In this review, we discuss recent metabolic engineering approaches for augmenting biofuel production derived from alcohols, isoprenoids, and fatty acids in several microorganisms. In addition,more » we discuss successful commercialization ventures for each class of biofuel targets.« less

  1. Genome characteristics dictate poly-R-(3)-hydroxyalkanoate production in Cupriavidus necator H16.

    PubMed

    Kutralam-Muniasamy, Gurusamy; Peréz-Guevara, Fermín

    2018-05-24

    Cupriavidus necator H16 is a well-recognized enterprise with efficient manufacturing machineries to produce diverse polymers belonging to polyhydroxyalkanoates (PHAs) family. The genome fingerprints, including PHA machinery proteins and fatty acid metabolism, had educated engineering strategies to enhance PHAs production. This outstanding progress has enlightened us to present an exhaustive examination of the ongoing research, addressing the great potential design of genome features towards PHA production and furthermore, we show how those acquired knowledge have been explored in other biotechnological applications. This updated-review concludes that the combination of an optimal strain selection, suitable metabolic engineering and a large-scale fermentation on oil substrates is critical to endow the ability of incorporating mcl-PHAs monomers in this organism.

  2. Engineering strategy of yeast metabolism for higher alcohol production.

    PubMed

    Matsuda, Fumio; Furusawa, Chikara; Kondo, Takashi; Ishii, Jun; Shimizu, Hiroshi; Kondo, Akihiko

    2011-09-08

    While Saccharomyces cerevisiae is a promising host for cost-effective biorefinary processes due to its tolerance to various stresses during fermentation, the metabolically engineered S. cerevisiae strains exhibited rather limited production of higher alcohols than that of Escherichia coli. Since the structure of the central metabolism of S. cerevisiae is distinct from that of E. coli, there might be a problem in the structure of the central metabolism of S. cerevisiae. In this study, the potential production of higher alcohols by S. cerevisiae is compared to that of E. coli by employing metabolic simulation techniques. Based on the simulation results, novel metabolic engineering strategies for improving higher alcohol production by S. cerevisiae were investigated by in silico modifications of the metabolic models of S. cerevisiae. The metabolic simulations confirmed that the high production of butanols and propanols by the metabolically engineered E. coli strains is derived from the flexible behavior of their central metabolism. Reducing this flexibility by gene deletion is an effective strategy to restrict the metabolic states for producing target alcohols. In contrast, the lower yield using S. cerevisiae originates from the structurally limited flexibility of its central metabolism in which gene deletions severely reduced cell growth. The metabolic simulation demonstrated that the poor productivity of S. cerevisiae was improved by the introduction of E. coli genes to compensate the structural difference. This suggested that gene supplementation is a promising strategy for the metabolic engineering of S. cerevisiae to produce higher alcohols which should be the next challenge for the synthetic bioengineering of S. cerevisiae for the efficient production of higher alcohols.

  3. The necessity of a theory of biology for tissue engineering: metabolism-repair systems.

    PubMed

    Ganguli, Suman; Hunt, C Anthony

    2004-01-01

    Since there is no widely accepted global theory of biology, tissue engineering and bioengineering lack a theoretical understanding of the systems being engineered. By default, tissue engineering operates with a "reductionist" theoretical approach, inherited from traditional engineering of non-living materials. Long term, that approach is inadequate, since it ignores essential aspects of biology. Metabolism-repair systems are a theoretical framework which explicitly represents two "functional" aspects of living organisms: self-repair and self-replication. Since repair and replication are central to tissue engineering, we advance metabolism-repair systems as a potential theoretical framework for tissue engineering. We present an overview of the framework, and indicate directions to pursue for extending it to the context of tissue engineering. We focus on biological networks, both metabolic and cellular, as one such direction. The construction of these networks, in turn, depends on biological protocols. Together these concepts may help point the way to a global theory of biology appropriate for tissue engineering.

  4. Metabolic Engineering for Probiotics and their Genome-Wide Expression Profiling.

    PubMed

    Yadav, Ruby; Singh, Puneet K; Shukla, Pratyoosh

    2018-01-01

    Probiotic supplements in food industry have attracted a lot of attention and shown a remarkable growth in this field. Metabolic engineering (ME) approaches enable understanding their mechanism of action and increases possibility of designing probiotic strains with desired functions. Probiotic microorganisms generally referred as industrially important lactic acid bacteria (LAB) which are involved in fermenting dairy products, food, beverages and produces lactic acid as final product. A number of illustrations of metabolic engineering approaches in industrial probiotic bacteria have been described in this review including transcriptomic studies of Lactobacillus reuteri and improvement in exopolysaccharide (EPS) biosynthesis yield in Lactobacillus casei LC2W. This review summaries various metabolic engineering approaches for exploring metabolic pathways. These approaches enable evaluation of cellular metabolic state and effective editing of microbial genome or introduction of novel enzymes to redirect the carbon fluxes. In addition, various system biology tools such as in silico design commonly used for improving strain performance is also discussed. Finally, we discuss the integration of metabolic engineering and genome profiling which offers a new way to explore metabolic interactions, fluxomics and probiogenomics using probiotic bacteria like Bifidobacterium spp and Lactobacillus spp. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. 13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production

    PubMed Central

    Guo, Weihua; Sheng, Jiayuan; Feng, Xueyang

    2015-01-01

    Metabolic engineering of various industrial microorganisms to produce chemicals, fuels, and drugs has raised interest since it is environmentally friendly, sustainable, and independent of nonrenewable resources. However, microbial metabolism is so complex that only a few metabolic engineering efforts have been able to achieve a satisfactory yield, titer or productivity of the target chemicals for industrial commercialization. In order to overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA) has been continuously developed and widely applied to rigorously investigate cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, many 13C-MFA studies have been performed in academic labs and biotechnology industries to pinpoint key issues related to microbe-based chemical production. Insightful information about the metabolic rewiring has been provided to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this review, we will introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied via integration with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production for various host microorganisms PMID:28952565

  6. Expanding the scope of site-specific recombinases for genetic and metabolic engineering.

    PubMed

    Gaj, Thomas; Sirk, Shannon J; Barbas, Carlos F

    2014-01-01

    Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study. © 2013 Wiley Periodicals, Inc.

  7. Metstoich--Teaching Quantitative Metabolism and Energetics in Biochemical Engineering

    ERIC Educational Resources Information Center

    Wong, Kelvin W. W.; Barford, John P.

    2010-01-01

    Metstoich, a metabolic calculator developed for teaching, can provide a novel way to teach quantitative metabolism to biochemical engineering students. It can also introduce biochemistry/life science students to the quantitative aspects of life science subjects they have studied. Metstoich links traditional biochemistry-based metabolic approaches…

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Synthetic Biology Research Program, National University of Singapore, Singapore

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fattymore » acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.« less

  9. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    PubMed Central

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes. PMID:25566540

  10. A paradigm shift in biomass technology from complete to partial cellulose hydrolysis: lessons learned from nature.

    PubMed

    Chen, Rachel

    2015-01-01

    A key characteristic of current biomass technology is the requirement for complete hydrolysis of cellulose and hemicellulose, which stems from the inability of microbial strains to use partially hydrolyzed cellulose, or cellodextrin. The complete hydrolysis paradigm has been practiced over the past 4 decades with major enzyme companies perfecting their cellulase mix for maximal yield of monosaccharides, with corresponding efforts in strain development focus almost solely on the conversion of monosaccharides, not cellodextrin, to products. While still in its nascent infancy, a new paradigm requiring only partial hydrolysis has begun to take hold, promising a shift in the biomass technology at its fundamental core. The new paradigm has the potential to reduce the requirement for cellulase enzymes in the hydrolysis step and provides new strategies for metabolic engineers, synthetic biologists and alike in engineering fermenting organisms. Several recent publications reveal that microorganisms engineered to metabolize cellodextrins, rather than monomer glucose, can reap significant energy gains in both uptake and subsequent phosphorylation. These energetic benefits can in turn be directed for enhanced robustness and increased productivity of a bioprocess. Furthermore, the new cellodextrin metabolism endows the biocatalyst the ability to evade catabolite repression, a cellular regulatory mechanism that is hampering rapid conversion of biomass sugars to products. Together, the new paradigm offers significant advantages over the old and promises to overcome several critical barriers in biomass technology. More research, however, is needed to realize these promises, especially in discovery and engineering of cellodextrin transporters, in developing a cost-effective method for cellodextrin generation, and in better integration of cellodextrin metabolism to endogenous glycolysis.

  11. Metabolite damage and repair in metabolic engineering design.

    PubMed

    Sun, Jiayi; Jeffryes, James G; Henry, Christopher S; Bruner, Steven D; Hanson, Andrew D

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.

  12. Central carbon metabolism influences cellulase production in Bacillus licheniformis.

    PubMed

    Wang, J; Liu, S; Li, Y; Wang, H; Xiao, S; Li, C; Liu, B

    2018-01-01

    Bacillus licheniformis that can produce cellulase including endo glucanase and glucosidase is an important industrial microbe for cellulose degradation. The purpose of this research was to assess the effect of endo glucanase gene bglC and glucosidase gene bglH on the central metabolic flux in B. licheniformis. bglC and bglH were knocked out using homologous recombination method, respectively, and the corresponding knockout strains were obtained for 13 C metabolic flux analysis. A significant change was observed in metabolic fluxes after 13 C metabolic flux ratio analysis. In both of the knockout strains, the increased fluxes of the pentose phosphate pathway and malic enzyme reaction enabled an elevated supply of NADPH which provided enough reducing power for the in vivo synthesis reactions. The fluxes through tricarboxylic acid cycle and anaplerotic reactions increased fast in the two knockout strains, which meant more energy generated. The changed fluxes in central carbon metabolism provided a holistic view of the physiological status in B. licheniformis and possible targets for further strain engineering. Cellulase is very important in the field of agriculture and bioenergy because of its degrading effect on cellulosic biomass. This study presented the effect of central carbon metabolism on cellulase production in Bacillus licheniformis. The study also provided a holistic view of the physiological status in B. licheniformis. The shifted metabolism provided a quantitative evaluation of the biosynthesis of cellulase and a priority ranked target list for further strain engineering. © 2017 The Society for Applied Microbiology.

  13. Production of amino acids - Genetic and metabolic engineering approaches.

    PubMed

    Lee, Jin-Ho; Wendisch, Volker F

    2017-12-01

    The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation

    PubMed Central

    Ruhal, Rohit; Kataria, Rashmi; Choudhury, Bijan

    2013-01-01

    Summary The current knowledge of trehalose biosynthesis under stress conditions is incomplete and needs further research. Since trehalose finds industrial and pharmaceutical applications, enhanced accumulation of trehalose in bacteria seems advantageous for commercial production. Moreover, physiological role of trehalose is a key to generate stress resistant bacteria by metabolic engineering. Although trehalose biosynthesis requires few metabolites and enzyme reactions, it appears to have a more complex metabolic regulation. Trehalose biosynthesis in bacteria is known through three pathways – OtsAB, TreYZ and TreS. The interconnections of in vivo synthesis of trehalose, glycogen or maltose were most interesting to investigate in recent years. Further, enzymes at different nodes (glucose-6-P, glucose-1-P and NDP-glucose) of metabolic pathways influence enhancement of trehalose accumulation. Most of the study of trehalose biosynthesis was explored in medically significant Mycobacterium, research model Escherichia coli, industrially applicable Corynebacterium and food and probiotic interest Propionibacterium freudenreichii. Therefore, the present review dealt with the trehalose metabolism in these bacteria. In addition, an effort was made to recognize how enzymes at different nodes of metabolic pathway can influence trehalose accumulation. PMID:23302511

  15. Systems metabolic engineering strategies for the production of amino acids.

    PubMed

    Ma, Qian; Zhang, Quanwei; Xu, Qingyang; Zhang, Chenglin; Li, Yanjun; Fan, Xiaoguang; Xie, Xixian; Chen, Ning

    2017-06-01

    Systems metabolic engineering is a multidisciplinary area that integrates systems biology, synthetic biology and evolutionary engineering. It is an efficient approach for strain improvement and process optimization, and has been successfully applied in the microbial production of various chemicals including amino acids. In this review, systems metabolic engineering strategies including pathway-focused approaches, systems biology-based approaches, evolutionary approaches and their applications in two major amino acid producing microorganisms: Corynebacterium glutamicum and Escherichia coli, are summarized.

  16. Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates.

    PubMed

    Aldor, Ilana S; Keasling, Jay D

    2003-10-01

    Implementing several metabolic engineering strategies, either individually or in combination, it is possible to construct microbial plastic factories to produce a variety of polyhydroxyalkanoate (PHA) biopolymers with desirable structures and material properties. Approaches include external substrate manipulation, inhibitor addition, recombinant gene expression, host cell genome manipulation and, most recently, protein engineering of PHA biosynthetic enzymes. In addition, mathematical models and molecular methods can be used to elucidate metabolically engineered systems and to identify targets for performance improvement.

  17. Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering.

    PubMed

    Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk

    2014-10-01

    Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. © 2014 American Society of Plant Biologists. All rights reserved.

  18. Plant Metabolic Modeling: Achieving New Insight into Metabolism and Metabolic Engineering

    PubMed Central

    Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk

    2014-01-01

    Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. PMID:25344492

  19. Engineering Yarrowia lipolytica for Use in Biotechnological Applications: A Review of Major Achievements and Recent Innovations.

    PubMed

    Madzak, Catherine

    2018-06-25

    Yarrowia lipolytica is an oleaginous saccharomycetous yeast with a long history of industrial use. It aroused interest several decades ago as host for heterologous protein production. Thanks to the development of numerous molecular and genetic tools, Y. lipolytica is now a recognized system for expressing heterologous genes and secreting the corresponding proteins of interest. As genomic and transcriptomic tools increased our basic knowledge on this yeast, we can now envision engineering its metabolic pathways for use as whole-cell factory in various bioconversion processes. Y. lipolytica is currently being developed as a workhorse for biotechnology, notably for single-cell oil production and upgrading of industrial wastes into valuable products. As it becomes more and more difficult to keep up with an ever-increasing literature on Y. lipolytica engineering technology, this article aims to provide basic and actualized knowledge on this research area. The most useful reviews on Y. lipolytica biology, use, and safety will be evoked, together with a resume of the engineering tools available in this yeast. This mini-review will then focus on recently developed tools and engineering strategies, with a particular emphasis on promoter tuning, metabolic pathways assembly, and genome editing technologies.

  20. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism

    PubMed Central

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-01-01

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids. PMID:27586788

  1. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism.

    PubMed

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-09-02

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids.

  2. Computational approaches to metabolic engineering utilizing systems biology and synthetic biology.

    PubMed

    Fong, Stephen S

    2014-08-01

    Metabolic engineering modifies cellular function to address various biochemical applications. Underlying metabolic engineering efforts are a host of tools and knowledge that are integrated to enable successful outcomes. Concurrent development of computational and experimental tools has enabled different approaches to metabolic engineering. One approach is to leverage knowledge and computational tools to prospectively predict designs to achieve the desired outcome. An alternative approach is to utilize combinatorial experimental tools to empirically explore the range of cellular function and to screen for desired traits. This mini-review focuses on computational systems biology and synthetic biology tools that can be used in combination for prospective in silico strain design.

  3. Noninvasive metabolic imaging of engineered 3D human adipose tissue in a perfusion bioreactor.

    PubMed

    Ward, Andrew; Quinn, Kyle P; Bellas, Evangelia; Georgakoudi, Irene; Kaplan, David L

    2013-01-01

    The efficacy and economy of most in vitro human models used in research is limited by the lack of a physiologically-relevant three-dimensional perfused environment and the inability to noninvasively quantify the structural and biochemical characteristics of the tissue. The goal of this project was to develop a perfusion bioreactor system compatible with two-photon imaging to noninvasively assess tissue engineered human adipose tissue structure and function in vitro. Three-dimensional (3D) vascularized human adipose tissues were engineered in vitro, before being introduced to a perfusion environment and tracked over time by automated quantification of endogenous markers of metabolism using two-photon excited fluorescence (TPEF). Depth-resolved image stacks were analyzed for redox ratio metabolic profiling and compared to prior analyses performed on 3D engineered adipose tissue in static culture. Traditional assessments with H&E staining were used to qualitatively measure extracellular matrix generation and cell density with respect to location within the tissue. The distribution of cells within the tissue and average cellular redox ratios were different between static and perfusion cultures, while the trends of decreased redox ratio and increased cellular proliferation with time in both static and perfusion cultures were similar. These results establish a basis for noninvasive optical tracking of tissue structure and function in vitro, which can be applied to future studies to assess tissue development or drug toxicity screening and disease progression.

  4. Production of L-valine from metabolically engineered Corynebacterium glutamicum.

    PubMed

    Wang, Xiaoyuan; Zhang, Hailing; Quinn, Peter J

    2018-05-01

    L-Valine is one of the three branched-chain amino acids (valine, leucine, and isoleucine) essential for animal health and important in metabolism; therefore, it is widely added in the products of food, medicine, and feed. L-Valine is predominantly produced through microbial fermentation, and the production efficiency largely depends on the quality of microorganisms. In recent years, continuing efforts have been made in revealing the mechanisms and regulation of L-valine biosynthesis in Corynebacterium glutamicum, the most utilitarian bacterium for amino acid production. Metabolic engineering based on the metabolic biosynthesis and regulation of L-valine provides an effective alternative to the traditional breeding for strain development. Industrially competitive L-valine-producing C. glutamicum strains have been constructed by genetically defined metabolic engineering. This article reviews the global metabolic and regulatory networks responsible for L-valine biosynthesis, the molecular mechanisms of regulation, and the strategies employed in C. glutamicum strain engineering.

  5. The logics of metabolic regulation in bacteria challenges biosensor-based metabolic engineering.

    PubMed

    Jules, Matthieu

    2017-12-11

    Synthetic Biology (SB) aims at the rational design and engineering of novel biological functions and systems. By facilitating the engineering of living organisms, SB promises to facilitate the development of many new applications for health, biomanufacturing, and the environment. Over the last decade, SB promoted the construction of libraries of components enabling the fine-tuning of genetic circuits expression and the development of novel genome engineering methodologies for many organisms of interest. SB thus opened new perspectives in the field of metabolic engineering, which was until then mainly limited to (over)producing naturally synthesized metabolic compounds. To engineer efficient cell factories, it is key to precisely reroute cellular resources from the central carbon metabolism (CCM) to the synthetic circuitry. This task is however difficult as there is still significant lack of knowledge regarding both the function of several metabolic components and the regulation of the CCM fluxes for many industrially important bacteria. Pyruvate is a pivotal metabolite at the heart of the CCM and a key precursor for the synthesis of several commodity compounds and fine chemicals. Numerous bacterial species can also use it as a carbon source when present in the environment but bacterial, pyruvate-specific uptake systems were to be discovered. This is an issue for metabolic engineering as one can imagine to make use of pyruvate transport systems to replenish synthetic metabolic pathways towards the synthesis of chemicals of interest. Here we describe a recent study (MBio 8(5): e00976-17), which identified and characterized a pyruvate transport system in the Gram-positive (G +ve ) bacterium Bacillus subtilis , a well-established biotechnological workhorse for the production of enzymes, fine chemicals and antibiotics. This study also revealed that the activity of the two-component system (TCS) responsible for its induction is retro-inhibited by the level of pyruvate influx. Following up on the open question which is whether this retro-inhibition is a generic mechanism for TCSs, we will discuss the implications in metabolic engineering.

  6. Engineering in complex systems.

    PubMed

    Bujara, Matthias; Panke, Sven

    2010-10-01

    The implementation of the engineering design cycle of measure, model, manipulate would drastically enhance the success rate of biotechnological designs. Recent progress for the three elements suggests that the scope of the traditional engineering paradigm in biotechnology is expanding. Substantial advances were made in dynamic in vivo analysis of metabolism, which is essential for the accurate prediction of metabolic pathway behavior. Novel methods that require variable degrees of system knowledge facilitate metabolic system manipulation. The combinatorial testing of pre-characterized parts is particularly promising, because it can profit from automation and limits the search space. Finally, conceptual advances in orthogonalizing cells should enhance the reliability of engineering designs in the future. Coupled to improved in silico models of metabolism, these advances should allow a more rational design of metabolic systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.

    PubMed

    Hubmann, Georg; Thevelein, Johan M; Nevoigt, Elke

    2014-01-01

    The ease of highly sophisticated genetic manipulations in the yeast Saccharomyces cerevisiae has initiated numerous initiatives towards development of metabolically engineered strains for novel applications beyond its traditional use in brewing, baking, and wine making. In fact, baker's yeast has become a key cell factory for the production of various bulk and fine chemicals. Successful metabolic engineering requires fine-tuned adjustments of metabolic fluxes and coordination of multiple pathways within the cell. This has mostly been achieved by controlling gene expression at the transcriptional level, i.e., by using promoters with appropriate strengths and regulatory properties. Here we present an overview of natural and modified promoters, which have been used in metabolic pathway engineering of S. cerevisiae. Recent developments in creating promoters with tailor-made properties are also discussed.

  8. Metabolic engineering of Yarrowia lipolytica for industrial applications.

    PubMed

    Zhu, Quinn; Jackson, Ethel N

    2015-12-01

    Yarrowia lipolytica is a safe and robust yeast that has a history of industrial applications. Its physiological, metabolic and genomic characteristics have made it a superior host for metabolic engineering. The results of optimizing internal pathways and introducing new pathways have demonstrated that Y. lipolytica can be a platform cell factory for cost-effective production of chemicals and fuels derived from fatty acids, lipids and acetyl-CoA. Two products have been commercialized from metabolically engineered Y. lipolytica strains producing high amounts of omega-3 eicosapentaenoic acid, and more products are on the way to be produced at industrial scale. Here we review recent progress in metabolic engineering of Y. lipolytica for production of biodiesel fuel, functional fatty acids and carotenoids. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. An algorithm for designing minimal microbial communities with desired metabolic capacities

    PubMed Central

    Eng, Alexander; Borenstein, Elhanan

    2016-01-01

    Motivation: Recent efforts to manipulate various microbial communities, such as fecal microbiota transplant and bioreactor systems’ optimization, suggest a promising route for microbial community engineering with numerous medical, environmental and industrial applications. However, such applications are currently restricted in scale and often rely on mimicking or enhancing natural communities, calling for the development of tools for designing synthetic communities with specific, tailored, desired metabolic capacities. Results: Here, we present a first step toward this goal, introducing a novel algorithm for identifying minimal sets of microbial species that collectively provide the enzymatic capacity required to synthesize a set of desired target product metabolites from a predefined set of available substrates. Our method integrates a graph theoretic representation of network flow with the set cover problem in an integer linear programming (ILP) framework to simultaneously identify possible metabolic paths from substrates to products while minimizing the number of species required to catalyze these metabolic reactions. We apply our algorithm to successfully identify minimal communities both in a set of simple toy problems and in more complex, realistic settings, and to investigate metabolic capacities in the gut microbiome. Our framework adds to the growing toolset for supporting informed microbial community engineering and for ultimately realizing the full potential of such engineering efforts. Availability and implementation: The algorithm source code, compilation, usage instructions and examples are available under a non-commercial research use only license at https://github.com/borenstein-lab/CoMiDA. Contact: elbo@uw.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153571

  10. The path to next generation biofuels: successes and challenges in the era of synthetic biology

    PubMed Central

    2010-01-01

    Volatility of oil prices along with major concerns about climate change, oil supply security and depleting reserves have sparked renewed interest in the production of fuels from renewable resources. Recent advances in synthetic biology provide new tools for metabolic engineers to direct their strategies and construct optimal biocatalysts for the sustainable production of biofuels. Metabolic engineering and synthetic biology efforts entailing the engineering of native and de novo pathways for conversion of biomass constituents to short-chain alcohols and advanced biofuels are herewith reviewed. In the foreseeable future, formal integration of functional genomics and systems biology with synthetic biology and metabolic engineering will undoubtedly support the discovery, characterization, and engineering of new metabolic routes and more efficient microbial systems for the production of biofuels. PMID:20089184

  11. Biosensor-based engineering of biosynthetic pathways

    DOE PAGES

    Rogers, Jameson K.; Taylor, Noah D.; Church, George M.

    2016-03-18

    Biosynthetic pathways provide an enzymatic route from inexpensive renewable resources to valuable metabolic products such as pharmaceuticals and plastics. However, designing these pathways is challenging due to the complexities of biology. Advances in the design and construction of genetic variants has enabled billions of cells, each possessing a slightly different metabolic design, to be rapidly generated. However, our ability to measure the quality of these designs lags by several orders of magnitude. Recent research has enabled cells to report their own success in chemical production through the use of genetically encoded biosensors. A new engineering discipline is emerging around themore » creation and application of biosensors. Biosensors, implemented in selections and screens to identify productive cells, are paving the way for a new era of biotechnological progress.« less

  12. Production of anthocyanins in metabolically engineered microorganisms: Current status and perspectives.

    PubMed

    Zha, Jian; Koffas, Mattheos A G

    2017-12-01

    Microbial production of plant-derived natural products by engineered microorganisms has achieved great success thanks to large extend to metabolic engineering and synthetic biology. Anthocyanins, the water-soluble colored pigments found in terrestrial plants that are responsible for the red, blue and purple coloration of many flowers and fruits, are extensively used in food and cosmetics industry; however, their current supply heavily relies on complex extraction from plant-based materials. A promising alternative is their sustainable production in metabolically engineered microbes. Here, we review the recent progress on anthocyanin biosynthesis in engineered bacteria, with a special focus on the systematic engineering modifications such as selection and engineering of biosynthetic enzymes, engineering of transportation, regulation of UDP-glucose supply, as well as process optimization. These promising engineering strategies will facilitate successful microbial production of anthocyanins in industry in the near future.

  13. Metabolic Engineering of Wheat Provitamin A by Simultaneously Overexpressing CrtB and Silencing Carotenoid Hydroxylase (TaHYD).

    PubMed

    Zeng, Jian; Wang, Xiatian; Miao, Yingjie; Wang, Cheng; Zang, Mingli; Chen, Xi; Li, Miao; Li, Xiaoyan; Wang, Qiong; Li, Kexiu; Chang, Junli; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan

    2015-10-21

    Increasing the provitamin A content in staple crops via carotenoid metabolic engineering is one way to address vitamin A deficiency. In this work a combination of methods was applied to specifically increase β-carotene content in wheat by metabolic engineering. Endosperm-specific silencing of the carotenoid hydroxylase gene (TaHYD) increased β-carotene content 10.5-fold to 1.76 μg g(-1) in wheat endosperm. Overexpression of CrtB introduced an additional flux into wheat, accompanied by a β-carotene increase of 14.6-fold to 2.45 μg g(-1). When the "push strategy" (overexpressing CrtB) and "block strategy" (silencing TaHYD) were combined in wheat metabolic engineering, significant levels of β-carotene accumulation were obtained, corresponding to an increase of up to 31-fold to 5.06 μg g(-1). This is the first example of successful metabolic engineering to specifically improve β-carotene content in wheat endosperm through a combination of methods and demonstrates the potential of genetic engineering for specific nutritional enhancement of wheat.

  14. Computer-aided design for metabolic engineering.

    PubMed

    Fernández-Castané, Alfred; Fehér, Tamás; Carbonell, Pablo; Pauthenier, Cyrille; Faulon, Jean-Loup

    2014-12-20

    The development and application of biotechnology-based strategies has had a great socio-economical impact and is likely to play a crucial role in the foundation of more sustainable and efficient industrial processes. Within biotechnology, metabolic engineering aims at the directed improvement of cellular properties, often with the goal of synthesizing a target chemical compound. The use of computer-aided design (CAD) tools, along with the continuously emerging advanced genetic engineering techniques have allowed metabolic engineering to broaden and streamline the process of heterologous compound-production. In this work, we review the CAD tools available for metabolic engineering with an emphasis, on retrosynthesis methodologies. Recent advances in genetic engineering strategies for pathway implementation and optimization are also reviewed as well as a range of bionalytical tools to validate in silico predictions. A case study applying retrosynthesis is presented as an experimental verification of the output from Retropath, the first complete automated computational pipeline applicable to metabolic engineering. Applying this CAD pipeline, together with genetic reassembly and optimization of culture conditions led to improved production of the plant flavonoid pinocembrin. Coupling CAD tools with advanced genetic engineering strategies and bioprocess optimization is crucial for enhanced product yields and will be of great value for the development of non-natural products through sustainable biotechnological processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Sucrose and Saccharomyces cerevisiae: a relationship most sweet.

    PubMed

    Marques, Wesley Leoricy; Raghavendran, Vijayendran; Stambuk, Boris Ugarte; Gombert, Andreas Karoly

    2016-02-01

    Sucrose is an abundant, readily available and inexpensive substrate for industrial biotechnology processes and its use is demonstrated with much success in the production of fuel ethanol in Brazil. Saccharomyces cerevisiae, which naturally evolved to efficiently consume sugars such as sucrose, is one of the most important cell factories due to its robustness, stress tolerance, genetic accessibility, simple nutrient requirements and long history as an industrial workhorse. This minireview is focused on sucrose metabolism in S. cerevisiae, a rather unexplored subject in the scientific literature. An analysis of sucrose availability in nature and yeast sugar metabolism was performed, in order to understand the molecular background that makes S. cerevisiae consume this sugar efficiently. A historical overview on the use of sucrose and S. cerevisiae by humans is also presented considering sugarcane and sugarbeet as the main sources of this carbohydrate. Physiological aspects of sucrose consumption are compared with those concerning other economically relevant sugars. Also, metabolic engineering efforts to alter sucrose catabolism are presented in a chronological manner. In spite of its extensive use in yeast-based industries, a lot of basic and applied research on sucrose metabolism is imperative, mainly in fields such as genetics, physiology and metabolic engineering. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Engineering microbes for efficient production of chemicals

    DOEpatents

    Gong, Wei; Dole, Sudhanshu; Grabar, Tammy; Collard, Andrew Christopher; Pero, Janice G; Yocum, R Rogers

    2015-04-28

    This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.

  17. Light-energy conversion in engineered microorganisms.

    PubMed

    Johnson, Ethan T; Schmidt-Dannert, Claudia

    2008-12-01

    Increasing interest in renewable resources by the energy and chemical industries has spurred new technologies both to capture solar energy and to develop biologically derived chemical feedstocks and fuels. Advances in molecular biology and metabolic engineering have provided new insights and techniques for increasing biomass and biohydrogen production, and recent efforts in synthetic biology have demonstrated that complex regulatory and metabolic networks can be designed and engineered in microorganisms. Here, we explore how light-driven processes may be incorporated into nonphotosynthetic microbes to boost metabolic capacity for the production of industrial and fine chemicals. Progress towards the introduction of light-driven proton pumping or anoxygenic photosynthesis into Escherichia coli to increase the efficiency of metabolically-engineered biosynthetic pathways is highlighted.

  18. Engineering the gut microbiota to treat hyperammonemia.

    PubMed

    Shen, Ting-Chin David; Albenberg, Lindsey; Bittinger, Kyle; Chehoud, Christel; Chen, Ying-Yu; Judge, Colleen A; Chau, Lillian; Ni, Josephine; Sheng, Michael; Lin, Andrew; Wilkins, Benjamin J; Buza, Elizabeth L; Lewis, James D; Daikhin, Yevgeny; Nissim, Ilana; Yudkoff, Marc; Bushman, Frederic D; Wu, Gary D

    2015-07-01

    Increasing evidence indicates that the gut microbiota can be altered to ameliorate or prevent disease states, and engineering the gut microbiota to therapeutically modulate host metabolism is an emerging goal of microbiome research. In the intestine, bacterial urease converts host-derived urea to ammonia and carbon dioxide, contributing to hyperammonemia-associated neurotoxicity and encephalopathy in patients with liver disease. Here, we engineered murine gut microbiota to reduce urease activity. Animals were depleted of their preexisting gut microbiota and then inoculated with altered Schaedler flora (ASF), a defined consortium of 8 bacteria with minimal urease gene content. This protocol resulted in establishment of a persistent new community that promoted a long-term reduction in fecal urease activity and ammonia production. Moreover, in a murine model of hepatic injury, ASF transplantation was associated with decreased morbidity and mortality. These results provide proof of concept that inoculation of a prepared host with a defined gut microbiota can lead to durable metabolic changes with therapeutic utility.

  19. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum.

    PubMed

    Hon, Shuen; Olson, Daniel G; Holwerda, Evert K; Lanahan, Anthony A; Murphy, Sean J L; Maloney, Marybeth I; Zheng, Tianyong; Papanek, Beth; Guss, Adam M; Lynd, Lee R

    2017-07-01

    Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Microbial fuel cells - Applications for generation of electrical power and beyond.

    PubMed

    Mathuriya, Abhilasha Singh; Yakhmi, J V

    2016-01-01

    A Microbial Fuel Cell is a bioelectrochemical device that exploits metabolic activities of living microorganisms for generation of electric current. The usefulness and unique and exclusive architecture of this device has received wide attention recently of engineers and researchers of various disciplines such as microbiologists, chemical engineers, biotechnologists, environment engineers and mechanical engineers, and the subject of MFCs has thereby progressed as a well-developed technology. Sustained innovations and continuous development efforts have established the usefulness of MFCs towards many specialized and value-added applications beyond electricity generation, such as wastewater treatment and implantable body devices. This review is an attempt to provide an update on this rapidly growing technology.

  1. Current Progress of Genetically Engineered Pig Models for Biomedical Research

    PubMed Central

    Gün, Gökhan

    2014-01-01

    Abstract The first transgenic pigs were generated for agricultural purposes about three decades ago. Since then, the micromanipulation techniques of pig oocytes and embryos expanded from pronuclear injection of foreign DNA to somatic cell nuclear transfer, intracytoplasmic sperm injection-mediated gene transfer, lentiviral transduction, and cytoplasmic injection. Mechanistically, the passive transgenesis approach based on random integration of foreign DNA was developed to active genetic engineering techniques based on the transient activity of ectopic enzymes, such as transposases, recombinases, and programmable nucleases. Whole-genome sequencing and annotation of advanced genome maps of the pig complemented these developments. The full implementation of these tools promises to immensely increase the efficiency and, in parallel, to reduce the costs for the generation of genetically engineered pigs. Today, the major application of genetically engineered pigs is found in the field of biomedical disease modeling. It is anticipated that genetically engineered pigs will increasingly be used in biomedical research, since this model shows several similarities to humans with regard to physiology, metabolism, genome organization, pathology, and aging. PMID:25469311

  2. Prospects of microbial cell factories developed through systems metabolic engineering.

    PubMed

    Gustavsson, Martin; Lee, Sang Yup

    2016-09-01

    While academic-level studies on metabolic engineering of microorganisms for production of chemicals and fuels are ever growing, a significantly lower number of such production processes have reached commercial-scale. In this work, we review the challenges associated with moving from laboratory-scale demonstration of microbial chemical or fuel production to actual commercialization, focusing on key requirements on the production organism that need to be considered during the metabolic engineering process. Metabolic engineering strategies should take into account techno-economic factors such as the choice of feedstock, the product yield, productivity and titre, and the cost effectiveness of midstream and downstream processes. Also, it is important to develop an industrial strain through metabolic engineering for pathway construction and flux optimization together with increasing tolerance to products and inhibitors present in the feedstock, and ensuring genetic stability and strain robustness under actual fermentation conditions. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Recent advances in the metabolic engineering of lignan biosynthesis pathways for the production of transgenic plant-based foods and supplements.

    PubMed

    Satake, Honoo; Ono, Eiichiro; Murata, Jun

    2013-12-04

    Plant physiological, epidemiological, and food science studies have shed light on lignans as healthy diets for the reduction of the risk of lifestyle-related noncommunicable diseases and, thus, the demand for lignans has been rapidly increasing. However, the low efficiency and instability of lignan production via extraction from plant resources remain to be resolved, indicating the requirement for the development of new procedures for lignan production. The metabolic engineering of lignan-biosynthesizing plants is expected to be most promising for efficient, sustainable, and stable lignan production. This is supported by the recent verification of biosynthetic pathways of major dietary lignans and the exploration of lignan production via metabolic engineering using transiently gene-transfected or transgenic plants. The aim of this review is to present an overview of the biosynthetic pathways, biological activities, and metabolic engineering of lignans and also perspectives in metabolic engineering-based lignan production using transgenic plants for practical application.

  4. Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jiazhang; HamediRad, Mohammad; Zhao, Huimin

    Thanks to its ease of use, modularity, and scalability, the clustered regularly interspaced short palindromic repeats (CRISPR) system has been increasingly used in the design and engineering of Saccharomyces cerevisiae, one of the most popular hosts for industrial biotechnology. This review summarizes the recent development of this disruptive technology for metabolic engineering applications, including CRISPR-mediated gene knock-out and knock-in as well as transcriptional activation and interference. More importantly, multi-functional CRISPR systems that combine both gain- and loss-of-function modulations for combinatorial metabolic engineering are highlighted.

  5. Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System

    DOE PAGES

    Lian, Jiazhang; HamediRad, Mohammad; Zhao, Huimin

    2018-04-18

    Thanks to its ease of use, modularity, and scalability, the clustered regularly interspaced short palindromic repeats (CRISPR) system has been increasingly used in the design and engineering of Saccharomyces cerevisiae, one of the most popular hosts for industrial biotechnology. This review summarizes the recent development of this disruptive technology for metabolic engineering applications, including CRISPR-mediated gene knock-out and knock-in as well as transcriptional activation and interference. More importantly, multi-functional CRISPR systems that combine both gain- and loss-of-function modulations for combinatorial metabolic engineering are highlighted.

  6. Hydrogen production by recombinant Escherichia coli strains

    PubMed Central

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  7. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering.

    PubMed

    Liu, Yang; Liu, Ye; Wang, Meng

    2017-01-01

    The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors.

  8. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering

    PubMed Central

    Liu, Yang; Liu, Ye; Wang, Meng

    2017-01-01

    The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors. PMID:29089935

  9. Comparison of multiple gene assembly methods for metabolic engineering

    Treesearch

    Chenfeng Lu; Karen Mansoorabadi; Thomas Jeffries

    2007-01-01

    A universal, rapid DNA assembly method for efficient multigene plasmid construction is important for biological research and for optimizing gene expression in industrial microbes. Three different approaches to achieve this goal were evaluated. These included creating long complementary extensions using a uracil-DNA glycosylase technique, overlap extension polymerase...

  10. In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation.

    PubMed

    Chen, Jin; Henson, Michael A

    2016-11-01

    Synthesis gas fermentation is one of the most promising routes to convert synthesis gas (syngas; mainly comprised of H 2 and CO) to renewable liquid fuels and chemicals by specialized bacteria. The most commonly studied syngas fermenting bacterium is Clostridium ljungdahlii, which produces acetate and ethanol as its primary metabolic byproducts. Engineering of C. ljungdahlii metabolism to overproduce ethanol, enhance the synthesize of the native byproducts lactate and 2,3-butanediol, and introduce the synthesis of non-native products such as butanol and butyrate has substantial commercial value. We performed in silico metabolic engineering studies using a genome-scale reconstruction of C. ljungdahlii metabolism and the OptKnock computational framework to identify gene knockouts that were predicted to enhance the synthesis of these native products and non-native products, introduced through insertion of the necessary heterologous pathways. The OptKnock derived strategies were often difficult to assess because increase product synthesis was invariably accompanied by decreased growth. Therefore, the OptKnock strategies were further evaluated using a spatiotemporal metabolic model of a syngas bubble column reactor, a popular technology for large-scale gas fermentation. Unlike flux balance analysis, the bubble column model accounted for the complex tradeoffs between increased product synthesis and reduced growth rates of engineered mutants within the spatially varying column environment. The two-stage methodology for deriving and evaluating metabolic engineering strategies was shown to yield new C. ljungdahlii gene targets that offer the potential for increased product synthesis under realistic syngas fermentation conditions. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Metabolic engineering of yeast for production of fuels and chemicals.

    PubMed

    Nielsen, Jens; Larsson, Christer; van Maris, Antonius; Pronk, Jack

    2013-06-01

    Microbial production of fuels and chemicals from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. The yeast Saccharomyces cerevisiae offers many advantages as a platform cell factory for such applications. Already applied on a huge scale for bioethanol production, this yeast is easy to genetically engineer, its physiology, metabolism and genetics have been intensively studied and its robustness enables it to handle harsh industrial conditions. Introduction of novel pathways and optimization of its native cellular processes by metabolic engineering are rapidly expanding its range of cell-factory applications. Here we review recent scientific progress in metabolic engineering of S. cerevisiae for the production of bioethanol, advanced biofuels, and chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Metabolic pathways recruited in the production of a recombinant enveloped virus: mining targets for process and cell engineering.

    PubMed

    Rodrigues, A F; Formas-Oliveira, A S; Bandeira, V S; Alves, P M; Hu, W S; Coroadinha, A S

    2013-11-01

    Biopharmaceuticals derived from enveloped virus comprise an expanding market of vaccines, oncolytic vectors and gene therapy products. Thus, increased attention is given to the development of robust high-titer cell hosts for their manufacture. However, the knowledge on the physiological constraints modulating virus production is still scarce and the use of integrated strategies to improve hosts productivity and upstream bioprocess an under-explored territory. In this work, we conducted a functional genomics study, including the transcriptional profiling and central carbon metabolism analysis, following the metabolic changes in the transition 'parental-to-producer' of two human cell lines producing recombinant retrovirus. Results were gathered into three comprehensive metabolic maps, providing a broad and integrated overview of gene expression changes for both cell lines. Eight pathways were identified to be recruited in the virus production state: amino acid catabolism, carbohydrate catabolism and integration of the energy metabolism, nucleotide metabolism, glutathione metabolism, pentose phosphate pathway, polyamines biosynthesis and lipid metabolism. Their ability to modulate viral titers was experimentally challenged, leading to improved specific productivities of recombinant retrovirus up to 6-fold. Within recruited pathways in the virus production state, we sought for metabolic engineering gene targets in the low producing phenotypes. A mining strategy was used alternative to the traditional approach 'high vs. low producer' clonal comparison. Instead, 'high vs. low producer' from different genetic backgrounds (i.e. cell origins) were compared. Several genes were identified as limiting in the low-production phenotype, including two enzymes from cholesterol biosynthesis, two enzymes from glutathione biosynthesis and the regulatory machinery of polyamines biosynthesis. This is thus a frontier work, bridging fundamentals to technological research and contributing to enlarge our understanding of enveloped virus production dynamics in mammalian cell hosts. © 2013 Published by Elsevier Inc.

  13. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering.

    PubMed

    Becker, Judith; Gießelmann, Gideon; Hoffmann, Sarah Lisa; Wittmann, Christoph

    Since its discovery 60 years ago, Corynebacterium glutamicum has evolved into a workhorse for industrial biotechnology. Traditionally well known for its remarkable capacity to produce amino acids, this Gram-positive soil bacterium, has become a flexible, efficient production platform for various bulk and fine chemicals, materials, and biofuels. The central turnstile of all these achievements is our excellent understanding of its metabolism and physiology. This knowledge base, together with innovative systems metabolic engineering concepts, which integrate systems and synthetic biology into strain engineering, has upgraded C. glutamicum into one of the most successful industrial microorganisms in the world.

  14. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    PubMed Central

    He, Fei; Murabito, Ettore; Westerhoff, Hans V.

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. PMID:27075000

  15. CRISPR/Cas9 advances engineering of microbial cell factories.

    PubMed

    Jakočiūnas, Tadas; Jensen, Michael K; Keasling, Jay D

    2016-03-01

    One of the key drivers for successful metabolic engineering in microbes is the efficacy by which genomes can be edited. As such there are many methods to choose from when aiming to modify genomes, especially those of model organisms like yeast and bacteria. In recent years, clustered regularly interspaced palindromic repeats (CRISPR) and its associated proteins (Cas) have become the method of choice for precision genome engineering in many organisms due to their orthogonality, versatility and efficacy. Here we review the strategies adopted for implementation of RNA-guided CRISPR/Cas9 genome editing with special emphasis on their application for metabolic engineering of yeast and bacteria. Also, examples of how nuclease-deficient Cas9 has been applied for RNA-guided transcriptional regulation of target genes will be reviewed, as well as tools available for computer-aided design of guide-RNAs will be highlighted. Finally, this review will provide a perspective on the immediate challenges and opportunities foreseen by the use of CRISPR/Cas9 genome engineering and regulation in the context of metabolic engineering. Copyright © 2015 International Metabolic Engineering Society. All rights reserved.

  16. Isoprenoid drugs, biofuels, and chemicals--artemisinin, farnesene, and beyond.

    PubMed

    George, Kevin W; Alonso-Gutierrez, Jorge; Keasling, Jay D; Lee, Taek Soon

    2015-01-01

    Isoprenoids have been identified and used as natural pharmaceuticals, fragrances, solvents, and, more recently, advanced biofuels. Although isoprenoids are most commonly found in plants, researchers have successfully engineered both the eukaryotic and prokaryotic isoprenoid biosynthetic pathways to produce these valuable chemicals in microorganisms at high yields. The microbial synthesis of the precursor to artemisinin--an important antimalarial drug produced from the sweet wormwood Artemisia annua--serves as perhaps the most successful example of this approach. Through advances in synthetic biology and metabolic engineering, microbial-derived semisynthetic artemisinin may soon replace plant-derived artemisinin as the primary source of this valuable pharmaceutical. The richness and diversity of isoprenoid structures also make them ideal candidates for advanced biofuels that may act as "drop-in" replacements for gasoline, diesel, and jet fuel. Indeed, the sesquiterpenes farnesene and bisabolene, monoterpenes pinene and limonene, and hemiterpenes isopentenol and isopentanol have been evaluated as fuels or fuel precursors. As in the artemisinin project, these isoprenoids have been produced microbially through synthetic biology and metabolic engineering efforts. Here, we provide a brief review of the numerous isoprenoid compounds that have found use as pharmaceuticals, flavors, commodity chemicals, and, most importantly, advanced biofuels. In each case, we highlight the metabolic engineering strategies that were used to produce these compounds successfully in microbial hosts. In addition, we present a current outlook on microbial isoprenoid production, with an eye towards the many challenges that must be addressed to achieve higher yields and industrial-scale production.

  17. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions.

    PubMed

    Liu, Jiaheng; Li, Huiling; Zhao, Guangrong; Caiyin, Qinggele; Qiao, Jianjun

    2018-05-01

    NAD and NADP, a pivotal class of cofactors, which function as essential electron donors or acceptors in all biological organisms, drive considerable catabolic and anabolic reactions. Furthermore, they play critical roles in maintaining intracellular redox homeostasis. However, many metabolic engineering efforts in industrial microorganisms towards modification or introduction of metabolic pathways, especially those involving consumption, generation or transformation of NAD/NADP, often induce fluctuations in redox state, which dramatically impede cellular metabolism, resulting in decreased growth performance and biosynthetic capacity. Here, we comprehensively review the cofactor engineering strategies for solving the problematic redox imbalance in metabolism modification, as well as their features, suitabilities and recent applications. Some representative examples of in vitro biocatalysis are also described. In addition, we briefly discuss how tools and methods from the field of synthetic biology can be applied for cofactor engineering. Finally, future directions and challenges for development of cofactor redox engineering are presented.

  18. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis.

    PubMed

    He, Fei; Fromion, Vincent; Westerhoff, Hans V

    2013-11-21

    Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. This study integrates control engineering and classical MCA augmented with supply-demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the 'integral control' (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of 'integral control' should rarely be expected to lead to the 'perfect adaptation': although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and are being identified by genomics and systems biology, correspond to the 'perfect' regulatory structures designed by control engineering vis-à-vis optimal functions such as robustness. To the extent that they are not, the analyses suggest how they may become so and this in turn should facilitate synthetic biology and metabolic engineering.

  19. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis

    PubMed Central

    2013-01-01

    Background Metabolic control analysis (MCA) and supply–demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply–demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. Results This study integrates control engineering and classical MCA augmented with supply–demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the ‘integral control’ (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of ‘integral control’ should rarely be expected to lead to the ‘perfect adaptation’: although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. Conclusions A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and are being identified by genomics and systems biology, correspond to the ‘perfect’ regulatory structures designed by control engineering vis-à-vis optimal functions such as robustness. To the extent that they are not, the analyses suggest how they may become so and this in turn should facilitate synthetic biology and metabolic engineering. PMID:24261908

  20. [Advances in metabolic engineering of Escherichia coli for isoprene biosynthesis].

    PubMed

    Guo, Jing; Cao, Yujin; Xian, Mo; Liu, Huizhou

    2016-08-25

    As an important industrial chemical, isoprene is mainly used as a precursor for synthetic rubbers. In addition, it also has wide applications in the field of pharmaceutical and chemical intermediates, food, adhesives and aviation fuel. Compared with conventional petrochemical routes, production of isoprene in microbial systems has been the research focus considering environment friendly and sustainable development features. This article summarizes the metabolic pathways and key enzymes of isoprene biosynthesis, reviews current methods and strategies in improving isoprene production of Escherichia coli, and also gives some basic ideas and expectation.

  1. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae

    Treesearch

    Yong-Su Jin; Thomas W. Jeffries

    2004-01-01

    Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast raditionally...

  2. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production.

    PubMed

    Sun, Jie; Alper, Hal S

    2015-03-01

    A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5-50 g/L), and lab-scale (0-5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.

  3. Systems metabolic engineering design: Fatty acid production as an emerging case study

    PubMed Central

    Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V

    2014-01-01

    Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. PMID:24481660

  4. Systems metabolic engineering design: fatty acid production as an emerging case study.

    PubMed

    Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V

    2014-05-01

    Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. © 2014 Wiley Periodicals, Inc.

  5. Precise metabolic engineering of carotenoid biosynthesis in Escherichia coli towards a low-cost biosensor.

    PubMed

    Watstein, Daniel M; McNerney, Monica P; Styczynski, Mark P

    2015-09-01

    Micronutrient deficiencies, including zinc deficiency, are responsible for hundreds of thousands of deaths annually. A key obstacle to allocating scarce treatment resources is the ability to measure population blood micronutrient status inexpensively and quickly enough to identify those who most need treatment. This paper develops a metabolically engineered strain of Escherichia coli to produce different colored pigments (violacein, lycopene, and β-carotene) in response to different extracellular zinc levels, for eventual use in an inexpensive blood zinc diagnostic test. However, obtaining discrete color states in the carotenoid pathway required precise engineering of metabolism to prevent reaction at low zinc concentrations but allow complete reaction at higher concentrations, and all under the constraints of natural regulator limitations. Hence, the metabolic engineering challenge was not to improve titer, but to enable precise control of pathway state. A combination of gene dosage, post-transcriptional, and post-translational regulation was necessary to allow visible color change over physiologically relevant ranges representing a small fraction of the regulator's dynamic response range, with further tuning possible by modulation of precursor availability. As metabolic engineering expands its applications and develops more complex systems, tight control of system components will likely become increasingly necessary, and the approach presented here can be generalized to other natural sensing systems for precise control of pathway state. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Towards a sustainable bio-based economy: Redirecting primary metabolism to new products with plant synthetic biology.

    PubMed

    Shih, Patrick M

    2018-08-01

    Humans have domesticated many plant species as indispensable sources of food, materials, and medicines. The dawning era of synthetic biology represents a means to further refine, redesign, and engineer crops to meet various societal and industrial needs. Current and future endeavors will utilize plants as the foundation of a bio-based economy through the photosynthetic production of carbohydrate feedstocks for the microbial fermentation of biofuels and bioproducts, with the end goal of decreasing our dependence on petrochemicals. As our technological capabilities improve, metabolic engineering efforts may expand the utility of plants beyond sugar feedstocks through the direct production of target compounds, including pharmaceuticals, renewable fuels, and commodity chemicals. However, relatively little work has been done to fully realize the potential in redirecting central carbon metabolism in plants for the engineering of novel bioproducts. Although our ability to rationally engineer and manipulate plant metabolism is in its infancy, I highlight some of the opportunities and challenges in applying synthetic biology towards engineering plant primary metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. [Biosynthesis of indigo and indirubin by whole-cell catalyst designed by combination of protein engineering and metabolic engineering].

    PubMed

    Li, Yang; Zhu, Junge; Wang, Jianjun; Xia, Huanzhang; Wu, Sheng

    2016-01-01

    The phenylacetone monooxygenase, isolated from Thermobifida fusca, mainly catalyzes Baeyer-Villiger oxidation reaction towards aromatic compounds. Met446 plays a vital role in catalytic promiscuity, based on the structure and function of phenylacetone monooxygenase. Mutation in Met446 locus can offer enzyme new catalytic feature to activate C-H bond, oxidizing indole to finally generate indigo and indirubin, but the yield was only 1.89 mg/L. In order to further improve the biosynthesis efficiency of the whole-cell catalyst, metabolic engineering was applied to change glucose metabolism pathway of Escherichia coli. Blocking glucose isomerase gene pgi led to pentose phosphate pathway instead of the glycolytic pathway to become the major metabolic pathways of glucose, which provided more cofactor NADPH needed in enzymatic oxidation of indole. Engineering the host E. coli led to synthesis of indigo and indirubin efficiency further increased to 25 mg/L. Combination of protein and metabolic engineering to design efficient whole-cell catalysts not only improves the synthesis of indigo and indirubin, but also provides a novel strategy for whole-cell catalyst development.

  8. The Engineering Potential of Rhodosporidium toruloides as a Workhorse for Biotechnological Applications.

    PubMed

    Park, Young-Kyoung; Nicaud, Jean-Marc; Ledesma-Amaro, Rodrigo

    2018-03-01

    Moving our society towards a bioeconomy requires efficient and sustainable microbial production of chemicals and fuels. Rhodotorula (Rhodosporidium) toruloides is a yeast that naturally synthesizes substantial amounts of specialty chemicals and has been recently engineered to (i) enhance its natural production of lipids and carotenoids, and (ii) produce novel industrially relevant compounds. The use of R. toruloides by companies and research groups has exponentially increased in recent years as a result of recent improvements in genetic engineering techniques and the availability of multiomics information on its genome and metabolism. This review focuses on recent engineering approaches in R. toruloides for bioproduction and explores its potential as a biotechnological chassis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Application of isotope labeling experiments and (13)C flux analysis to enable rational pathway engineering.

    PubMed

    McAtee, Allison G; Jazmin, Lara J; Young, Jamey D

    2015-12-01

    Isotope labeling experiments (ILEs) and (13)C flux analysis provide actionable information for metabolic engineers to identify knockout, overexpression, and/or media optimization targets. ILEs have been used in both academic and industrial labs to increase product formation, discover novel metabolic functions in previously uncharacterized organisms, and enhance the metabolic efficiency of host cell factories. This review highlights specific examples of how ILEs have been used in conjunction with enzyme or metabolic engineering to elucidate host cell metabolism and improve product titer, rate, or yield in a directed manner. We discuss recent progress and future opportunities involving the use of ILEs and (13)C flux analysis to characterize non-model host organisms and to identify and subsequently eliminate wasteful byproduct pathways or metabolic bottlenecks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Synthetic biology expands chemical control of microorganisms.

    PubMed

    Ford, Tyler J; Silver, Pamela A

    2015-10-01

    The tools of synthetic biology allow researchers to change the ways engineered organisms respond to chemical stimuli. Decades of basic biology research and new efforts in computational protein and RNA design have led to the development of small molecule sensors that can be used to alter organism function. These new functions leap beyond the natural propensities of the engineered organisms. They can range from simple fluorescence or growth reporting to pathogen killing, and can involve metabolic coordination among multiple cells or organisms. Herein, we discuss how synthetic biology alters microorganisms' responses to chemical stimuli resulting in the development of microbes as toxicity sensors, disease treatments, and chemical factories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Engineering microbial fatty acid metabolism for biofuels and biochemicals.

    PubMed

    Marella, Eko Roy; Holkenbrink, Carina; Siewers, Verena; Borodina, Irina

    2018-04-01

    Traditional oleochemical industry chemically processes animal fats and plant oils to produce detergents, lubricants, biodiesel, plastics, coatings, and other products. Biotechnology offers an alternative process, where the same oleochemicals can be produced from abundant biomass feedstocks using microbial catalysis. This review summarizes the recent advances in the engineering of microbial metabolism for production of fatty acid-derived products. We highlight the efforts in engineering the central carbon metabolism, redox metabolism, controlling the chain length of the products, and obtaining metabolites with different functionalities. The prospects of commercializing microbial oleochemicals are also discussed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. A review of parameters and heuristics for guiding metabolic pathfinding.

    PubMed

    Kim, Sarah M; Peña, Matthew I; Moll, Mark; Bennett, George N; Kavraki, Lydia E

    2017-09-15

    Recent developments in metabolic engineering have led to the successful biosynthesis of valuable products, such as the precursor of the antimalarial compound, artemisinin, and opioid precursor, thebaine. Synthesizing these traditionally plant-derived compounds in genetically modified yeast cells introduces the possibility of significantly reducing the total time and resources required for their production, and in turn, allows these valuable compounds to become cheaper and more readily available. Most biosynthesis pathways used in metabolic engineering applications have been discovered manually, requiring a tedious search of existing literature and metabolic databases. However, the recent rapid development of available metabolic information has enabled the development of automated approaches for identifying novel pathways. Computer-assisted pathfinding has the potential to save biochemists time in the initial discovery steps of metabolic engineering. In this paper, we review the parameters and heuristics used to guide the search in recent pathfinding algorithms. These parameters and heuristics capture information on the metabolic network structure, compound structures, reaction features, and organism-specificity of pathways. No one metabolic pathfinding algorithm or search parameter stands out as the best to use broadly for solving the pathfinding problem, as each method and parameter has its own strengths and shortcomings. As assisted pathfinding approaches continue to become more sophisticated, the development of better methods for visualizing pathway results and integrating these results into existing metabolic engineering practices is also important for encouraging wider use of these pathfinding methods.

  13. Toward solar biodiesel production from CO2 using engineered cyanobacteria.

    PubMed

    Woo, Han Min; Lee, Hyun Jeong

    2017-05-01

    Metabolic engineering of cyanobacteria has received attention as a sustainable strategy to convert carbon dioxide to various biochemicals including fatty acid-derived biodiesel. Recently, Synechococcus elongatus PCC 7942, a model cyanobacterium, has been engineered to convert CO2 to fatty acid ethyl esters (FAEEs) as biodiesel. Modular pathway has been constructed for FAEE production. Several metabolic engineering strategies were discussed to improve the production levels of FAEEs, including host engineering by improving CO2 fixation rate and photosynthetic efficiency. In addition, protein engineering of key enzyme in S. elongatus PCC 7942 was implemented to address issues on FAEE secretions toward sustainable FAEE production from CO2. Finally, advanced metabolic engineering will promote developing biosolar cell factories to convert CO2 to feasible amount of FAEEs toward solar biodiesel. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Systems metabolic engineering in an industrial setting.

    PubMed

    Sagt, Cees M J

    2013-03-01

    Systems metabolic engineering is based on systems biology, synthetic biology, and evolutionary engineering and is now also applied in industry. Industrial use of systems metabolic engineering focuses on strain and process optimization. Since ambitious yields, titers, productivities, and low costs are key in an industrial setting, the use of effective and robust methods in systems metabolic engineering is becoming very important. Major improvements in the field of proteomics and metabolomics have been crucial in the development of genome-wide approaches in strain and process development. This is accompanied by a rapid increase in DNA sequencing and synthesis capacity. These developments enable the use of systems metabolic engineering in an industrial setting. Industrial systems metabolic engineering can be defined as the combined use of genome-wide genomics, transcriptomics, proteomics, and metabolomics to modify strains or processes. This approach has become very common since the technology for generating large data sets of all levels of the cellular processes has developed quite fast into robust, reliable, and affordable methods. The main challenge and scope of this mini review is how to translate these large data sets in relevant biological leads which can be tested for strain or process improvements. Experimental setup, heterogeneity of the culture, and sample pretreatment are important issues which are easily underrated. In addition, the process of structuring, filtering, and visualization of data is important, but also, the availability of a genetic toolbox and equipment for medium/high-throughput fermentation is a key success factor. For an efficient bioprocess, all the different components in this process have to work together. Therefore, mutual tuning of these components is an important strategy.

  15. A systems-level approach for metabolic engineering of yeast cell factories.

    PubMed

    Kim, Il-Kwon; Roldão, António; Siewers, Verena; Nielsen, Jens

    2012-03-01

    The generation of novel yeast cell factories for production of high-value industrial biotechnological products relies on three metabolic engineering principles: design, construction, and analysis. In the last two decades, strong efforts have been put on developing faster and more efficient strategies and/or technologies for each one of these principles. For design and construction, three major strategies are described in this review: (1) rational metabolic engineering; (2) inverse metabolic engineering; and (3) evolutionary strategies. Independent of the selected strategy, the process of designing yeast strains involves five decision points: (1) choice of product, (2) choice of chassis, (3) identification of target genes, (4) regulating the expression level of target genes, and (5) network balancing of the target genes. At the construction level, several molecular biology tools have been developed through the concept of synthetic biology and applied for the generation of novel, engineered yeast strains. For comprehensive and quantitative analysis of constructed strains, systems biology tools are commonly used and using a multi-omics approach. Key information about the biological system can be revealed, for example, identification of genetic regulatory mechanisms and competitive pathways, thereby assisting the in silico design of metabolic engineering strategies for improving strain performance. Examples on how systems and synthetic biology brought yeast metabolic engineering closer to industrial biotechnology are described in this review, and these examples should demonstrate the potential of a systems-level approach for fast and efficient generation of yeast cell factories. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae

    PubMed Central

    2011-01-01

    Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis) of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. Results In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP) [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Conclusions Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering. PMID:21219616

  17. Metabolite damage and repair in metabolic engineering design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jiayi; Jeffryes, James G.; Henry, Christopher S.

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields,more » and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.« less

  18. One step DNA assembly for combinatorial metabolic engineering.

    PubMed

    Coussement, Pieter; Maertens, Jo; Beauprez, Joeri; Van Bellegem, Wouter; De Mey, Marjan

    2014-05-01

    The rapid and efficient assembly of multi-step metabolic pathways for generating microbial strains with desirable phenotypes is a critical procedure for metabolic engineering, and remains a significant challenge in synthetic biology. Although several DNA assembly methods have been developed and applied for metabolic pathway engineering, many of them are limited by their suitability for combinatorial pathway assembly. The introduction of transcriptional (promoters), translational (ribosome binding site (RBS)) and enzyme (mutant genes) variability to modulate pathway expression levels is essential for generating balanced metabolic pathways and maximizing the productivity of a strain. We report a novel, highly reliable and rapid single strand assembly (SSA) method for pathway engineering. The method was successfully optimized and applied to create constructs containing promoter, RBS and/or mutant enzyme libraries. To demonstrate its efficiency and reliability, the method was applied to fine-tune multi-gene pathways. Two promoter libraries were simultaneously introduced in front of two target genes, enabling orthogonal expression as demonstrated by principal component analysis. This shows that SSA will increase our ability to tune multi-gene pathways at all control levels for the biotechnological production of complex metabolites, achievable through the combinatorial modulation of transcription, translation and enzyme activity. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Evolutionary engineering of industrial microorganisms-strategies and applications.

    PubMed

    Zhu, Zhengming; Zhang, Juan; Ji, Xiaomei; Fang, Zhen; Wu, Zhimeng; Chen, Jian; Du, Guocheng

    2018-06-01

    Microbial cells have been widely used in the industry to obtain various biochemical products, and evolutionary engineering is a common method in biological research to improve their traits, such as high environmental tolerance and improvement of product yield. To obtain better integrate functions of microbial cells, evolutionary engineering combined with other biotechnologies have attracted more attention in recent years. Classical laboratory evolution has been proven effective to letting more beneficial mutations occur in different genes but also has some inherent limitations such as a long evolutionary period and uncontrolled mutation frequencies. However, recent studies showed that some new strategies may gradually overcome these limitations. In this review, we summarize the evolutionary strategies commonly used in industrial microorganisms and discuss the combination of evolutionary engineering with other biotechnologies such as systems biology and inverse metabolic engineering. Finally, we prospect the importance and application prospect of evolutionary engineering as a powerful tool especially in optimization of industrial microbial cell factories.

  20. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites.

    PubMed

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup; Weber, Tilmann

    2016-08-27

    Covering: 2012 to 2016Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites. The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production.

  1. Systems metabolic engineering of Escherichia coli for L-threonine production.

    PubMed

    Lee, Kwang Ho; Park, Jin Hwan; Kim, Tae Yong; Kim, Hyun Uk; Lee, Sang Yup

    2007-01-01

    Amino-acid producers have traditionally been developed by repeated random mutagenesis owing to the difficulty in rationally engineering the complex and highly regulated metabolic network. Here, we report the development of the genetically defined L-threonine overproducing Escherichia coli strain by systems metabolic engineering. Feedback inhibitions of aspartokinase I and III (encoded by thrA and lysC, respectively) and transcriptional attenuation regulations (located in thrL) were removed. Pathways for Thr degradation were removed by deleting tdh and mutating ilvA. The metA and lysA genes were deleted to make more precursors available for Thr biosynthesis. Further target genes to be engineered were identified by transcriptome profiling combined with in silico flux response analysis, and their expression levels were manipulated accordingly. The final engineered E. coli strain was able to produce Thr with a high yield of 0.393 g per gram of glucose, and 82.4 g/l Thr by fed-batch culture. The systems metabolic engineering strategy reported here may be broadly employed for developing genetically defined organisms for the efficient production of various bioproducts.

  2. Comparative multi-goal tradeoffs in systems engineering of microbial metabolism

    PubMed Central

    2012-01-01

    Background Metabolic engineering design methodology has evolved from using pathway-centric, random and empirical-based methods to using systems-wide, rational and integrated computational and experimental approaches. Persistent during these advances has been the desire to develop design strategies that address multiple simultaneous engineering goals, such as maximizing productivity, while minimizing raw material costs. Results Here, we use constraint-based modeling to systematically design multiple combinations of medium compositions and gene-deletion strains for three microorganisms (Escherichia coli, Saccharomyces cerevisiae, and Shewanella oneidensis) and six industrially important byproducts (acetate, D-lactate, hydrogen, ethanol, formate, and succinate). We evaluated over 435 million simulated conditions and 36 engineering metabolic traits, including product rates, costs, yields and purity. Conclusions The resulting metabolic phenotypes can be classified into dominant clusters (meta-phenotypes) for each organism. These meta-phenotypes illustrate global phenotypic variation and sensitivities, trade-offs associated with multiple engineering goals, and fundamental differences in organism-specific capabilities. Given the increasing number of sequenced genomes and corresponding stoichiometric models, we envisage that the proposed strategy could be extended to address a growing range of biological questions and engineering applications. PMID:23009214

  3. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    PubMed

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. © 2016 The Author(s).

  4. MESSI: metabolic engineering target selection and best strain identification tool.

    PubMed

    Kang, Kang; Li, Jun; Lim, Boon Leong; Panagiotou, Gianni

    2015-01-01

    Metabolic engineering and synthetic biology are synergistically related fields for manipulating target pathways and designing microorganisms that can act as chemical factories. Saccharomyces cerevisiae's ideal bioprocessing traits make yeast a very attractive chemical factory for production of fuels, pharmaceuticals, nutraceuticals as well as a wide range of chemicals. However, future attempts of engineering S. cerevisiae's metabolism using synthetic biology need to move towards more integrative models that incorporate the high connectivity of metabolic pathways and regulatory processes and the interactions in genetic elements across those pathways and processes. To contribute in this direction, we have developed Metabolic Engineering target Selection and best Strain Identification tool (MESSI), a web server for predicting efficient chassis and regulatory components for yeast bio-based production. The server provides an integrative platform for users to analyse ready-to-use public high-throughput metabolomic data, which are transformed to metabolic pathway activities for identifying the most efficient S. cerevisiae strain for the production of a compound of interest. As input MESSI accepts metabolite KEGG IDs or pathway names. MESSI outputs a ranked list of S. cerevisiae strains based on aggregation algorithms. Furthermore, through a genome-wide association study of the metabolic pathway activities with the strains' natural variation, MESSI prioritizes genes and small variants as potential regulatory points and promising metabolic engineering targets. Users can choose various parameters in the whole process such as (i) weight and expectation of each metabolic pathway activity in the final ranking of the strains, (ii) Weighted AddScore Fuse or Weighted Borda Fuse aggregation algorithm, (iii) type of variants to be included, (iv) variant sets in different biological levels.Database URL: http://sbb.hku.hk/MESSI/. © The Author(s) 2015. Published by Oxford University Press.

  5. Next generation biofuel engineering in prokaryotes

    PubMed Central

    Gronenberg, Luisa S.; Marcheschi, Ryan J.; Liao, James C.

    2014-01-01

    Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production. PMID:23623045

  6. Computational methods in metabolic engineering for strain design.

    PubMed

    Long, Matthew R; Ong, Wai Kit; Reed, Jennifer L

    2015-08-01

    Metabolic engineering uses genetic approaches to control microbial metabolism to produce desired compounds. Computational tools can identify new biological routes to chemicals and the changes needed in host metabolism to improve chemical production. Recent computational efforts have focused on exploring what compounds can be made biologically using native, heterologous, and/or enzymes with broad specificity. Additionally, computational methods have been developed to suggest different types of genetic modifications (e.g. gene deletion/addition or up/down regulation), as well as suggest strategies meeting different criteria (e.g. high yield, high productivity, or substrate co-utilization). Strategies to improve the runtime performances have also been developed, which allow for more complex metabolic engineering strategies to be identified. Future incorporation of kinetic considerations will further improve strain design algorithms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Rapid Optimization of Engineered Metabolic Pathways with Serine Integrase Recombinational Assembly (SIRA).

    PubMed

    Merrick, C A; Wardrope, C; Paget, J E; Colloms, S D; Rosser, S J

    2016-01-01

    Metabolic pathway engineering in microbial hosts for heterologous biosynthesis of commodity compounds and fine chemicals offers a cheaper, greener, and more reliable method of production than does chemical synthesis. However, engineering metabolic pathways within a microbe is a complicated process: levels of gene expression, protein stability, enzyme activity, and metabolic flux must be balanced for high productivity without compromising host cell viability. A major rate-limiting step in engineering microbes for optimum biosynthesis of a target compound is DNA assembly, as current methods can be cumbersome and costly. Serine integrase recombinational assembly (SIRA) is a rapid DNA assembly method that utilizes serine integrases, and is particularly applicable to rapid optimization of engineered metabolic pathways. Using six pairs of orthogonal attP and attB sites with different central dinucleotide sequences that follow SIRA design principles, we have demonstrated that ΦC31 integrase can be used to (1) insert a single piece of DNA into a substrate plasmid; (2) assemble three, four, and five DNA parts encoding the enzymes for functional metabolic pathways in a one-pot reaction; (3) generate combinatorial libraries of metabolic pathway constructs with varied ribosome binding site strengths or gene orders in a one-pot reaction; and (4) replace and add DNA parts within a construct through targeted postassembly modification. We explain the mechanism of SIRA and the principles behind designing a SIRA reaction. We also provide protocols for making SIRA reaction components and practical methods for applying SIRA to rapid optimization of metabolic pathways. © 2016 Elsevier Inc. All rights reserved.

  8. Elementary Mode Analysis: A Useful Metabolic Pathway Analysis Tool for Characterizing Cellular Metabolism

    PubMed Central

    Trinh, Cong T.; Wlaschin, Aaron; Srienc, Friedrich

    2010-01-01

    Elementary Mode Analysis is a useful Metabolic Pathway Analysis tool to identify the structure of a metabolic network that links the cellular phenotype to the corresponding genotype. The analysis can decompose the intricate metabolic network comprised of highly interconnected reactions into uniquely organized pathways. These pathways consisting of a minimal set of enzymes that can support steady state operation of cellular metabolism represent independent cellular physiological states. Such pathway definition provides a rigorous basis to systematically characterize cellular phenotypes, metabolic network regulation, robustness, and fragility that facilitate understanding of cell physiology and implementation of metabolic engineering strategies. This mini-review aims to overview the development and application of elementary mode analysis as a metabolic pathway analysis tool in studying cell physiology and as a basis of metabolic engineering. PMID:19015845

  9. Engineering microbial consortia for controllable outputs

    PubMed Central

    Lindemann, Stephen R; Bernstein, Hans C; Song, Hyun-Seob; Fredrickson, Jim K; Fields, Matthew W; Shou, Wenying; Johnson, David R; Beliaev, Alexander S

    2016-01-01

    Much research has been invested into engineering microorganisms to perform desired biotransformations; nonetheless, these efforts frequently fall short of expected results due to the unforeseen effects of biofeedback regulation and functional incompatibility. In nature, metabolic function is compartmentalized into diverse organisms assembled into robust consortia, in which the division of labor is thought to lead to increased community efficiency and productivity. Here we consider whether and how consortia can be designed to perform bioprocesses of interest beyond the metabolic flexibility limitations of a single organism. Advances in post-genomic analysis of microbial consortia and application of high-resolution global measurements now offer the promise of systems-level understanding of how microbial consortia adapt to changes in environmental variables and inputs of carbon and energy. We argue that, when combined with appropriate modeling frameworks, systems-level knowledge can markedly improve our ability to predict the fate and functioning of consortia. Here we articulate our collective perspective on the current and future state of microbial community engineering and control while placing specific emphasis on ecological principles that promote control over community function and emergent properties. PMID:26967105

  10. Engineering microbial consortia for controllable outputs

    DOE PAGES

    Lindemann, Stephen R.; Bernstein, Hans C.; Song, Hyun -Seob; ...

    2016-03-11

    In this study, much research has been invested into engineering microorganisms to perform desired biotransformations; nonetheless, these efforts frequently fall short of expected results due to the unforeseen effects of biofeedback regulation and functional incompatibility. In nature, metabolic function is compartmentalized into diverse organisms assembled into robust consortia, in which the division of labor is thought to lead to increased community efficiency and productivity. Here we consider whether and how consortia can be designed to perform bioprocesses of interest beyond the metabolic flexibility limitations of a single organism. Advances in post-genomic analysis of microbial consortia and application of high-resolution globalmore » measurements now offer the promise of systems-level understanding of how microbial consortia adapt to changes in environmental variables and inputs of carbon and energy. We argue that, when combined with appropriate modeling frameworks, systems-level knowledge can markedly improve our ability to predict the fate and functioning of consortia. Here we articulate our collective perspective on the current and future state of microbial community engineering and control while placing specific emphasis on ecological principles that promote control over community function and emergent properties.« less

  11. Metabolic engineering of Corynebacterium glutamicum for L-arginine production.

    PubMed

    Park, Seok Hyun; Kim, Hyun Uk; Kim, Tae Yong; Park, Jun Seok; Kim, Suok-Su; Lee, Sang Yup

    2014-08-05

    L-arginine is an important amino acid for diverse industrial and health product applications. Here we report the development of metabolically engineered Corynebacterium glutamicum ATCC 21831 for the production of L-arginine. Random mutagenesis is first performed to increase the tolerance of C. glutamicum to L-arginine analogues, followed by systems metabolic engineering for further strain improvement, involving removal of regulatory repressors of arginine operon, optimization of NADPH level, disruption of L-glutamate exporter to increase L-arginine precursor and flux optimization of rate-limiting L-arginine biosynthetic reactions. Fed-batch fermentation of the final strain in 5 l and large-scale 1,500 l bioreactors allows production of 92.5 and 81.2 g l(-1) of L-arginine with the yields of 0.40 and 0.35 g L-arginine per gram carbon source (glucose plus sucrose), respectively. The systems metabolic engineering strategy described here will be useful for engineering Corynebacteria strains for the industrial production of L-arginine and related products.

  12. Genome-based Modeling and Design of Metabolic Interactions in Microbial Communities

    PubMed Central

    Mahadevan, Radhakrishnan; Henson, Michael A.

    2012-01-01

    Biotechnology research is traditionally focused on individual microbial strains that are perceived to have the necessary metabolic functions, or the capability to have these functions introduced, to achieve a particular task. For many important applications, the development of such omnipotent microbes is an extremely challenging if not impossible task. By contrast, nature employs a radically different strategy based on synergistic combinations of different microbial species that collectively achieve the desired task. These natural communities have evolved to exploit the native metabolic capabilities of each species and are highly adaptive to changes in their environments. However, microbial communities have proven difficult to study due to a lack of suitable experimental and computational tools. With the advent of genome sequencing, omics technologies, bioinformatics and genome-scale modeling, researchers now have unprecedented capabilities to analyze and engineer the metabolism of microbial communities. The goal of this review is to summarize recent applications of genome-scale metabolic modeling to microbial communities. A brief introduction to lumped community models is used to motivate the need for genome-level descriptions of individual species and their metabolic interactions. The review of genome-scale models begins with static modeling approaches, which are appropriate for communities where the extracellular environment can be assumed to be time invariant or slowly varying. Dynamic extensions of the static modeling approach are described, and then applications of genome-scale models for design of synthetic microbial communities are reviewed. The review concludes with a summary of metagenomic tools for analyzing community metabolism and an outlook for future research. PMID:24688668

  13. Genome-based Modeling and Design of Metabolic Interactions in Microbial Communities.

    PubMed

    Mahadevan, Radhakrishnan; Henson, Michael A

    2012-01-01

    Biotechnology research is traditionally focused on individual microbial strains that are perceived to have the necessary metabolic functions, or the capability to have these functions introduced, to achieve a particular task. For many important applications, the development of such omnipotent microbes is an extremely challenging if not impossible task. By contrast, nature employs a radically different strategy based on synergistic combinations of different microbial species that collectively achieve the desired task. These natural communities have evolved to exploit the native metabolic capabilities of each species and are highly adaptive to changes in their environments. However, microbial communities have proven difficult to study due to a lack of suitable experimental and computational tools. With the advent of genome sequencing, omics technologies, bioinformatics and genome-scale modeling, researchers now have unprecedented capabilities to analyze and engineer the metabolism of microbial communities. The goal of this review is to summarize recent applications of genome-scale metabolic modeling to microbial communities. A brief introduction to lumped community models is used to motivate the need for genome-level descriptions of individual species and their metabolic interactions. The review of genome-scale models begins with static modeling approaches, which are appropriate for communities where the extracellular environment can be assumed to be time invariant or slowly varying. Dynamic extensions of the static modeling approach are described, and then applications of genome-scale models for design of synthetic microbial communities are reviewed. The review concludes with a summary of metagenomic tools for analyzing community metabolism and an outlook for future research.

  14. Advances in Application of Mechanical Stimuli in Bioreactors for Cartilage Tissue Engineering.

    PubMed

    Li, Ke; Zhang, Chunqiu; Qiu, Lulu; Gao, Lilan; Zhang, Xizheng

    2017-08-01

    Articular cartilage (AC) is the weight-bearing tissue in diarthroses. It lacks the capacity for self-healing once there are injuries or diseases due to its avascularity. With the development of tissue engineering, repairing cartilage defects through transplantation of engineered cartilage that closely matches properties of native cartilage has become a new option for curing cartilage diseases. The main hurdle for clinical application of engineered cartilage is how to develop functional cartilage constructs for mass production in a credible way. Recently, impressive hyaline cartilage that may have the potential to provide capabilities for treating large cartilage lesions in the future has been produced in laboratories. The key to functional cartilage construction in vitro is to identify appropriate mechanical stimuli. First, they should ensure the function of metabolism because mechanical stimuli play the role of blood vessels in the metabolism of AC, for example, acquiring nutrition and removing wastes. Second, they should mimic the movement of synovial joints and produce phenotypically correct tissues to achieve the adaptive development between the micro- and macrostructure and function. In this article, we divide mechanical stimuli into three types according to forces transmitted by different media in bioreactors, namely forces transmitted through the liquid medium, solid medium, or other media, then we review and summarize the research status of bioreactors for cartilage tissue engineering (CTE), mainly focusing on the effects of diverse mechanical stimuli on engineered cartilage. Based on current researches, there are several motion patterns in knee joints; but compression, tension, shear, fluid shear, or hydrostatic pressure each only partially reflects the mechanical condition in vivo. In this study, we propose that rolling-sliding-compression load consists of various stimuli that will represent better mechanical environment in CTE. In addition, engineers often ignore the importance of biochemical factors to the growth and development of engineered cartilage. In our point of view, only by fully considering synergistic effects of mechanical and biochemical factors can we find appropriate culture conditions for functional cartilage constructs. Once again, rolling-sliding-compression load under appropriate biochemical conditions may be conductive to realize the adaptive development between the structure and function of engineered cartilage in vitro.

  15. Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Eric J.; Burton, Rodney; Mahalik, Jyoti P.

    As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as “building blocks” for a rangemore » of customized intracellular scaffolds. As a result, we summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering.« less

  16. Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications

    DOE PAGES

    Young, Eric J.; Burton, Rodney; Mahalik, Jyoti P.; ...

    2017-07-31

    As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as “building blocks” for a rangemore » of customized intracellular scaffolds. As a result, we summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering.« less

  17. Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications

    PubMed Central

    Young, Eric J.; Burton, Rodney; Mahalik, Jyoti P.; Sumpter, Bobby G.; Fuentes-Cabrera, Miguel; Kerfeld, Cheryl A.; Ducat, Daniel C.

    2017-01-01

    As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as “building blocks” for a range of customized intracellular scaffolds. We summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering. PMID:28824573

  18. Insulation of a synthetic hydrogen metabolism circuit in bacteria

    PubMed Central

    2010-01-01

    Background The engineering of metabolism holds tremendous promise for the production of desirable metabolites, particularly alternative fuels and other highly reduced molecules. Engineering approaches must redirect the transfer of chemical reducing equivalents, preventing these electrons from being lost to general cellular metabolism. This is especially the case for high energy electrons stored in iron-sulfur clusters within proteins, which are readily transferred when two such clusters are brought in close proximity. Iron sulfur proteins therefore require mechanisms to ensure interaction between proper partners, analogous to many signal transduction proteins. While there has been progress in the isolation of engineered metabolic pathways in recent years, the design of insulated electron metabolism circuits in vivo has not been pursued. Results Here we show that a synthetic hydrogen-producing electron transfer circuit in Escherichia coli can be insulated from existing cellular metabolism via multiple approaches, in many cases improving the function of the pathway. Our circuit is composed of heterologously expressed [Fe-Fe]-hydrogenase, ferredoxin, and pyruvate-ferredoxin oxidoreductase (PFOR), allowing the production of hydrogen gas to be coupled to the breakdown of glucose. We show that this synthetic pathway can be insulated through the deletion of competing reactions, rational engineering of protein interaction surfaces, direct protein fusion of interacting partners, and co-localization of pathway components on heterologous protein scaffolds. Conclusions Through the construction and characterization of a synthetic metabolic circuit in vivo, we demonstrate a novel system that allows for predictable engineering of an insulated electron transfer pathway. The development of this system demonstrates working principles for the optimization of engineered pathways for alternative energy production, as well as for understanding how electron transfer between proteins is controlled. PMID:20184755

  19. Advanced Stoichiometric Analysis of Metabolic Networks of Mammalian Systems

    PubMed Central

    Orman, Mehmet A.; Berthiaume, Francois; Androulakis, Ioannis P.; Ierapetritou, Marianthi G.

    2013-01-01

    Metabolic engineering tools have been widely applied to living organisms to gain a comprehensive understanding about cellular networks and to improve cellular properties. Metabolic flux analysis (MFA), flux balance analysis (FBA), and metabolic pathway analysis (MPA) are among the most popular tools in stoichiometric network analysis. Although application of these tools into well-known microbial systems is extensive in the literature, various barriers prevent them from being utilized in mammalian cells. Limited experimental data, complex regulatory mechanisms, and the requirement of more complex nutrient media are some major obstacles in mammalian cell systems. However, mammalian cells have been used to produce therapeutic proteins, to characterize disease states or related abnormal metabolic conditions, and to analyze the toxicological effects of some medicinally important drugs. Therefore, there is a growing need for extending metabolic engineering principles to mammalian cells in order to understand their underlying metabolic functions. In this review article, advanced metabolic engineering tools developed for stoichiometric analysis including MFA, FBA, and MPA are described. Applications of these tools in mammalian cells are discussed in detail, and the challenges and opportunities are highlighted. PMID:22196224

  20. Systems and synthetic metabolic engineering for amino acid production - the heartbeat of industrial strain development.

    PubMed

    Becker, Judith; Wittmann, Christoph

    2012-10-01

    With a world market of more than four million tons per year, l-amino acids are among the most important products in industrial biotechnology. The recent years have seen a tremendous progress in the development of tailor-made strains for such products, intensively driven from systems metabolic engineering, which upgrades strain engineering into a concept of optimization on a global scale. This concept seems especially valuable for efficient amino acid production, demanding for a global modification of pathway fluxes - a challenge with regard to the high complexity of the underlying metabolism, superimposed by various layers of metabolic and transcriptional control. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Reconstruction of metabolic networks from high-throughput metabolite profiling data: in silico analysis of red blood cell metabolism.

    PubMed

    Nemenman, Ilya; Escola, G Sean; Hlavacek, William S; Unkefer, Pat J; Unkefer, Clifford J; Wall, Michael E

    2007-12-01

    We investigate the ability of algorithms developed for reverse engineering of transcriptional regulatory networks to reconstruct metabolic networks from high-throughput metabolite profiling data. For benchmarking purposes, we generate synthetic metabolic profiles based on a well-established model for red blood cell metabolism. A variety of data sets are generated, accounting for different properties of real metabolic networks, such as experimental noise, metabolite correlations, and temporal dynamics. These data sets are made available online. We use ARACNE, a mainstream algorithm for reverse engineering of transcriptional regulatory networks from gene expression data, to predict metabolic interactions from these data sets. We find that the performance of ARACNE on metabolic data is comparable to that on gene expression data.

  2. Williams works with the GASMAP section of the HRF rack in the U.S. Laboratory during Expedition 13

    NASA Image and Video Library

    2006-06-17

    ISS013-E-38343 (17 June 2006) --- Astronaut Jeffrey N. Williams, Expedition 13 NASA space station science officer and flight engineer, works with the Gas Analysis System for Metabolic Analysis of Physiology (GASMAP) section of the Human Research Facility (HRF) in the Destiny laboratory of the International Space Station.

  3. Confronting the catalytic dark matter encoded by sequenced genomes

    PubMed Central

    Ellens, Kenneth W.; Christian, Nils; Singh, Charandeep; Satagopam, Venkata P.

    2017-01-01

    Abstract The post-genomic era has provided researchers with a deluge of protein sequences. However, a significant fraction of the proteins encoded by sequenced genomes remains without an identified function. Here, we aim at determining how many enzymes of uncertain or unknown function are still present in the Saccharomyces cerevisiae and human proteomes. Using information available in the Swiss-Prot, BRENDA and KEGG databases in combination with a Hidden Markov Model-based method, we estimate that >600 yeast and 2000 human proteins (>30% of their proteins of unknown function) are enzymes whose precise function(s) remain(s) to be determined. This illustrates the impressive scale of the ‘unknown enzyme problem’. We extensively review classical biochemical as well as more recent systematic experimental and computational approaches that can be used to support enzyme function discovery research. Finally, we discuss the possible roles of the elusive catalysts in light of recent developments in the fields of enzymology and metabolism as well as the significance of the unknown enzyme problem in the context of metabolic modeling, metabolic engineering and rare disease research. PMID:29059321

  4. Genetic tool development and systemic regulation in biosynthetic technology.

    PubMed

    Dai, Zhongxue; Zhang, Shangjie; Yang, Qiao; Zhang, Wenming; Qian, Xiujuan; Dong, Weiliang; Jiang, Min; Xin, Fengxue

    2018-01-01

    With the increased development in research, innovation, and policy interest in recent years, biosynthetic technology has developed rapidly, which combines engineering, electronics, computer science, mathematics, and other disciplines based on classical genetic engineering and metabolic engineering. It gives a wider perspective and a deeper level to perceive the nature of life via cell mechanism, regulatory networks, or biological evolution. Currently, synthetic biology has made great breakthrough in energy, chemical industry, and medicine industries, particularly in the programmable genetic control at multiple levels of regulation to perform designed goals. In this review, the most advanced and comprehensive developments achieved in biosynthetic technology were represented, including genetic engineering as well as synthetic genomics. In addition, the superiority together with the limitations of the current genome-editing tools were summarized.

  5. The role of thermodynamics in biochemical engineering

    NASA Astrophysics Data System (ADS)

    von Stockar, Urs

    2013-09-01

    This article is an adapted version of the introductory chapter of a book whose publication is imminent. It bears the title "Biothermodynamics - The role of thermodynamics in biochemical engineering." The aim of the paper is to give a very short overview of the state of biothermodynamics in an engineering context as reflected in this book. Seen from this perspective, biothermodynamics may be subdivided according to the scale used to formalize the description of the biological system into three large areas: (i) biomolecular thermodynamics (most fundamental scale), (ii) thermodynamics of metabolism (intermediary scale), and (iii) whole-cell thermodynamics ("black-box" description of living entities). In each of these subareas, the main available theoretical approaches and the current and the potential applications are discussed. Biomolecular thermodynamics (i) is especially well developed and is obviously highly pertinent for the development of downstream processing. Its use ought to be encouraged as much as possible. The subarea of thermodynamics of live cells (iii), although scarcely applied in practice, is also expected to enhance bioprocess research and development, particularly in predicting culture performances, for understanding the driving forces for cellular growth, and in developing, monitoring, and controlling cellular cultures. Finally, there is no question that thermodynamic analysis of cellular metabolism (ii) is a promising tool for systems biology and for many other applications, but quite a large research effort is still needed before it may be put to practical use.

  6. [The effect of space flight on metabolism: the results of biochemical research in rat experiments on the Kosmos biosatellites].

    PubMed

    Popova, I A; Grigor'ev, A I

    1992-01-01

    Cosmos biosatellites research program was the unique possibility to study the metabolic features influenced by space flight factors. Based on the existing ideas about relationships between some metabolic responses, the state of metabolism and the systems of its control in the rats flown in space was evaluated to differentiate the processes occurred in microgravity, possibly under effect of this factor and during first postflight hours. The biochemical results of studying the rats exposed to space environments during 7, 14, 18.5 and 19.5 days and sacrificed 4-11 h after landing (Cosmos-782, -936, -1129, -1667, -2044 flight) are used. The major portion of data are in line with understanding that after landing when the microgravity-adapted rats again return to 1-g environments they display an acute stress reaction. A postflight stress reaction is manifested itself in a specific way as compared to adequate and well studied model of acute and chronic stress and dictates subsequent metabolic changes. Postflight together with the acute stressful and progressing readaptation shifts the metabolic signs of previous adaptation to microgravity are shown up. In the absence of engineering feasibility to control or record the state of metabolism inflight it can only presupposed what metabolic status is typical of the animals in space environments and that its development is triggered by a decreased secretion of the biologically active growth hormone. This concept is confirmed by the postflight data.

  7. Microbial isoprenoid production: an example of green chemistry through metabolic engineering.

    PubMed

    Maury, Jérôme; Asadollahi, Mohammad A; Møller, Kasper; Clark, Anthony; Nielsen, Jens

    2005-01-01

    Saving energy, cost efficiency, producing less waste, improving the biodegradability of products, potential for producing novel and complex molecules with improved properties, and reducing the dependency on fossil fuels as raw materials are the main advantages of using biotechnological processes to produce chemicals. Such processes are often referred to as green chemistry or white biotechnology. Metabolic engineering, which permits the rational design of cell factories using directed genetic modifications, is an indispensable strategy for expanding green chemistry. In this chapter, the benefits of using metabolic engineering approaches for the development of green chemistry are illustrated by the recent advances in microbial production of isoprenoids, a diverse and important group of natural compounds with numerous existing and potential commercial applications. Accumulated knowledge on the metabolic pathways leading to the synthesis of the principal precursors of isoprenoids is reviewed, and recent investigations into isoprenoid production using engineered cell factories are described.

  8. Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum.

    PubMed

    Tay, Song Buck; Natarajan, Gayathri; Rahim, Muhammad Nadjad bin Abdul; Tan, Hwee Tong; Chung, Maxey Ching Ming; Ting, Yen Peng; Yew, Wen Shan

    2013-01-01

    Conventional leaching (extraction) methods for gold recovery from electronic waste involve the use of strong acids and pose considerable threat to the environment. The alternative use of bioleaching microbes for gold recovery is non-pollutive and relies on the secretion of a lixiviant or (bio)chemical such as cyanide for extraction of gold from electronic waste. However, widespread industrial use of bioleaching microbes has been constrained by the limited cyanogenic capabilities of lixiviant-producing microorganisms such as Chromobacterium violaceum. Here we show the construction of a metabolically-engineered strain of Chromobacterium violaceum that produces more (70%) cyanide lixiviant and recovers more than twice as much gold from electronic waste compared to wild-type bacteria. Comparative proteome analyses suggested the possibility of further enhancement in cyanogenesis through subsequent metabolic engineering. Our results demonstrated the utility of lixiviant metabolic engineering in the construction of enhanced bioleaching microbes for the bioleaching of precious metals from electronic waste.

  9. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries.

    PubMed

    Parisutham, Vinuselvi; Chandran, Sathesh-Prabu; Mukhopadhyay, Aindrila; Lee, Sung Kuk; Keasling, Jay D

    2017-09-01

    Complete hydrolysis of cellulose has been a key characteristic of biomass technology because of the limitation of industrial production hosts to use cellodextrin, the partial hydrolysis product of cellulose. Cellobiose, a β-1,4-linked glucose dimer, is a major cellodextrin of the enzymatic hydrolysis (via endoglucanase and exoglucanase) of cellulose. Conversion of cellobiose to glucose is executed by β-glucosidase. The complete extracellular hydrolysis of celluloses has several critical barriers in biomass technology. An alternative bioengineering strategy to make the bioprocessing less challenging is to engineer microbes with the abilities to hydrolyze and assimilate the cellulosic-hydrolysate cellodextrin. Microorganisms engineered to metabolize cellobiose rather than the monomeric glucose can provide several advantages for lignocellulose-based biorefineries. This review describes the recent advances and challenges in engineering efficient intracellular cellobiose metabolism in industrial hosts. This review also describes the limitations of and future prospectives in engineering intracellular cellobiose metabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Use of CellNetAnalyzer in biotechnology and metabolic engineering.

    PubMed

    von Kamp, Axel; Thiele, Sven; Hädicke, Oliver; Klamt, Steffen

    2017-11-10

    Mathematical models of the cellular metabolism have become an essential tool for the optimization of biotechnological processes. They help to obtain a systemic understanding of the metabolic processes in the used microorganisms and to find suitable genetic modifications maximizing the production performance. In particular, methods of stoichiometric and constraint-based modeling are frequently used in the context of metabolic and bioprocess engineering. Since metabolic networks can be complex and comprise hundreds or even thousands of metabolites and reactions, dedicated software tools are required for an efficient analysis. One such software suite is CellNetAnalyzer, a MATLAB package providing, among others, various methods for analyzing stoichiometric and constraint-based metabolic models. CellNetAnalyzer can be used via command-line based operations or via a graphical user interface with embedded network visualizations. Herein we will present key functionalities of CellNetAnalyzer for applications in biotechnology and metabolic engineering and thereby review constraint-based modeling techniques such as metabolic flux analysis, flux balance analysis, flux variability analysis, metabolic pathway analysis (elementary flux modes) and methods for computational strain design. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. Modules for in vitro metabolic engineering: Pathway assembly for bio-based production of value-added chemicals.

    PubMed

    Taniguchi, Hironori; Okano, Kenji; Honda, Kohsuke

    2017-06-01

    Bio-based chemical production has drawn attention regarding the realization of a sustainable society. In vitro metabolic engineering is one of the methods used for the bio-based production of value-added chemicals. This method involves the reconstitution of natural or artificial metabolic pathways by assembling purified/semi-purified enzymes in vitro . Enzymes from distinct sources can be combined to construct desired reaction cascades with fewer biological constraints in one vessel, enabling easier pathway design with high modularity. Multiple modules have been designed, built, tested, and improved by different groups for different purpose. In this review, we focus on these in vitro metabolic engineering modules, especially focusing on the carbon metabolism, and present an overview of input modules, output modules, and other modules related to cofactor management.

  12. Advances in Polyhydroxyalkanoate (PHA) Production.

    PubMed

    Koller, Martin

    2017-11-02

    This editorial paper provides a synopsis of the contributions to the Bioengineering special issue "Advances in Polyhydroxyalkanoate (PHA) Production". It illustrates the embedding of the issue's individual research articles in the current global research and development landscape related to polyhydroxyalkanoates (PHA). The article shows how these articles are interrelated to each other, reflecting the entire PHA process chain including strain selection, metabolic and genetic considerations, feedstock evaluation, fermentation regimes, process engineering, and polymer processing towards high-value marketable products.

  13. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaohan; Cushman, John C.; Borland, Anne M.

    Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO₂ uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAMmore » crop species and to harness the WUE of CAM by engineering this pathway into existing food and bioenergy crops. An improved understanding of CAM gained through intensive and expanded research efforts has potential for high returns on research investment in the foreseeable future. To help realize the potential of sustainable dryland agricultural systems, it is necessary to address scientific questions related to the genomic features, regulatory mechanisms, and evolution of CAM; CAM-into-C3 engineering; and the production of CAM crops. Answering these questions requires collaborative efforts to build infrastructure for CAM model systems, field trials, mutant collections, and data management.« less

  14. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world

    DOE PAGES

    Yang, Xiaohan; Cushman, John C.; Borland, Anne M.; ...

    2015-07-07

    Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO₂ uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAMmore » crop species and to harness the WUE of CAM by engineering this pathway into existing food and bioenergy crops. An improved understanding of CAM gained through intensive and expanded research efforts has potential for high returns on research investment in the foreseeable future. To help realize the potential of sustainable dryland agricultural systems, it is necessary to address scientific questions related to the genomic features, regulatory mechanisms, and evolution of CAM; CAM-into-C3 engineering; and the production of CAM crops. Answering these questions requires collaborative efforts to build infrastructure for CAM model systems, field trials, mutant collections, and data management.« less

  15. Metabolic analyses elucidate non-trivial gene targets for amplifying dihydroartemisinic acid production in yeast

    PubMed Central

    Misra, Ashish; Conway, Matthew F.; Johnnie, Joseph; Qureshi, Tabish M.; Lige, Bao; Derrick, Anne M.; Agbo, Eddy C.; Sriram, Ganesh

    2013-01-01

    Synthetic biology enables metabolic engineering of industrial microbes to synthesize value-added molecules. In this, a major challenge is the efficient redirection of carbon to the desired metabolic pathways. Pinpointing strategies toward this goal requires an in-depth investigation of the metabolic landscape of the organism, particularly primary metabolism, to identify precursor and cofactor availability for the target compound. The potent antimalarial therapeutic artemisinin and its precursors are promising candidate molecules for production in microbial hosts. Recent advances have demonstrated the production of artemisinin precursors in engineered yeast strains as an alternative to extraction from plants. We report the application of in silico and in vivo metabolic pathway analyses to identify metabolic engineering targets to improve the yield of the direct artemisinin precursor dihydroartemisinic acid (DHA) in yeast. First, in silico extreme pathway (ExPa) analysis identified NADPH-malic enzyme and the oxidative pentose phosphate pathway (PPP) as mechanisms to meet NADPH demand for DHA synthesis. Next, we compared key DHA-synthesizing ExPas to the metabolic flux distributions obtained from in vivo 13C metabolic flux analysis of a DHA-synthesizing strain. This comparison revealed that knocking out ethanol synthesis and overexpressing glucose-6-phosphate dehydrogenase in the oxidative PPP (gene YNL241C) or the NADPH-malic enzyme ME2 (YKL029C) are vital steps toward overproducing DHA. Finally, we employed in silico flux balance analysis and minimization of metabolic adjustment on a yeast genome-scale model to identify gene knockouts for improving DHA yields. The best strategy involved knockout of an oxaloacetate transporter (YKL120W) and an aspartate aminotransferase (YKL106W), and was predicted to improve DHA yields by 70-fold. Collectively, our work elucidates multiple non-trivial metabolic engineering strategies for improving DHA yield in yeast. PMID:23898325

  16. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum.

    PubMed

    Cho, Jae Sung; Choi, Kyeong Rok; Prabowo, Cindy Pricilia Surya; Shin, Jae Ho; Yang, Dongsoo; Jang, Jaedong; Lee, Sang Yup

    2017-07-01

    Genome engineering of Corynebacterium glutamicum, an important industrial microorganism for amino acids production, currently relies on random mutagenesis and inefficient double crossover events. Here we report a rapid genome engineering strategy to scarlessly knock out one or more genes in C. glutamicum in sequential and iterative manner. Recombinase RecT is used to incorporate synthetic single-stranded oligodeoxyribonucleotides into the genome and CRISPR/Cas9 to counter-select negative mutants. We completed the system by engineering the respective plasmids harboring CRISPR/Cas9 and RecT for efficient curing such that multiple gene targets can be done iteratively and final strains will be free of plasmids. To demonstrate the system, seven different mutants were constructed within two weeks to study the combinatorial deletion effects of three different genes on the production of γ-aminobutyric acid, an industrially relevant chemical of much interest. This genome engineering strategy will expedite metabolic engineering of C. glutamicum. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae

    PubMed Central

    2011-01-01

    Background The robustness of Saccharomyces cerevisiae in facilitating industrial-scale production of ethanol extends its utilization as a platform to synthesize other metabolites. Metabolic engineering strategies, typically via pathway overexpression and deletion, continue to play a key role for optimizing the conversion efficiency of substrates into the desired products. However, chemical production titer or yield remains difficult to predict based on reaction stoichiometry and mass balance. We sampled a large space of data of chemical production from S. cerevisiae, and developed a statistics-based model to calculate production yield using input variables that represent the number of enzymatic steps in the key biosynthetic pathway of interest, metabolic modifications, cultivation modes, nutrition and oxygen availability. Results Based on the production data of about 40 chemicals produced from S. cerevisiae, metabolic engineering methods, nutrient supplementation, and fermentation conditions described therein, we generated mathematical models with numerical and categorical variables to predict production yield. Statistically, the models showed that: 1. Chemical production from central metabolic precursors decreased exponentially with increasing number of enzymatic steps for biosynthesis (>30% loss of yield per enzymatic step, P-value = 0); 2. Categorical variables of gene overexpression and knockout improved product yield by 2~4 folds (P-value < 0.1); 3. Addition of notable amount of intermediate precursors or nutrients improved product yield by over five folds (P-value < 0.05); 4. Performing the cultivation in a well-controlled bioreactor enhanced the yield of product by three folds (P-value < 0.05); 5. Contribution of oxygen to product yield was not statistically significant. Yield calculations for various chemicals using the linear model were in fairly good agreement with the experimental values. The model generally underestimated the ethanol production as compared to other chemicals, which supported the notion that the metabolism of Saccharomyces cerevisiae has historically evolved for robust alcohol fermentation. Conclusions We generated simple mathematical models for first-order approximation of chemical production yield from S. cerevisiae. These linear models provide empirical insights to the effects of strain engineering and cultivation conditions toward biosynthetic efficiency. These models may not only provide guidelines for metabolic engineers to synthesize desired products, but also be useful to compare the biosynthesis performance among different research papers. PMID:21689458

  18. Toward systems metabolic engineering of Aspergillus and Pichia species for the production of chemicals and biofuels.

    PubMed

    Caspeta, Luis; Nielsen, Jens

    2013-05-01

    Recently genome sequence data have become available for Aspergillus and Pichia species of industrial interest. This has stimulated the use of systems biology approaches for large-scale analysis of the molecular and metabolic responses of Aspergillus and Pichia under defined conditions, which has resulted in much new biological information. Case-specific contextualization of this information has been performed using comparative and functional genomic tools. Genomics data are also the basis for constructing genome-scale metabolic models, and these models have helped in the contextualization of knowledge on the fundamental biology of Aspergillus and Pichia species. Furthermore, with the availability of these models, the engineering of Aspergillus and Pichia is moving from traditional approaches, such as random mutagenesis, to a systems metabolic engineering approach. Here we review the recent trends in systems biology of Aspergillus and Pichia species, highlighting the relevance of these developments for systems metabolic engineering of these organisms for the production of hydrolytic enzymes, biofuels and chemicals from biomass. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Metabolic Design and Control for Production in Prokaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhabra, Swapnil R.; Keasling, J.D.

    2010-11-10

    Prokaryotic life on earth is manifested by its diversity and omnipresence. These microbes serve as natural sources of a large variety of compounds with the potential to serve the ever growing, medicinal, chemical and transportation needs of the human population. However, commercially viable production of these compounds can be realized only through significant improvement of the native production capacity of natural isolates. The most favorable way to achieve this goal is through the genetic manipulation of metabolic pathways that direct the production of these molecules. While random mutagenesis and screening have dominated the industrial production of such compounds in themore » past our increased understanding of microbial physiology over the last five decades has shifted this trend towards rational approaches for metabolic design. Major drivers of this trend include recombinant DNA technology, high throughput characterization of macromolecular cellular components, quantitative modeling for metabolic engine ring, targeted combinatorial engineering and synthetic biology. In this chapter we track the evolution of microbial engineering technologies from the black box era of random mutagenesis to the science and engineering-driven era of metabolic design.« less

  20. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels.

    PubMed

    Lee, Sung Kuk; Chou, Howard; Ham, Timothy S; Lee, Taek Soon; Keasling, Jay D

    2008-12-01

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  1. Applications of methylotrophs: can single carbon be harnessed for biotechnology?

    PubMed

    Chistoserdova, Ludmila

    2018-04-01

    This review summarizes developments in the field of applied research involving microbial conversion of single carbon compounds (methane, methanol, CO 2 ). The potential of the microorganisms involved in biotechnological applications could be realized via engineering native C1 utilizers toward higher output of value-added compounds, including biofuels, or via production of value chemicals as parts of novel, heterologously expressed biochemical pathways. Alternatively, C1 metabolism could be implemented in traditional industrial platforms (Escherichia coli, yeast), via introduction of specific metabolic modules. Most recent research spanning both approaches is covered. The potential of C1 utilizers in biomining of rare Earth elements, as well as the potential of C1 consuming microbial consortia in industrial applications are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Metabolic reconstruction and flux analysis of industrial Pichia yeasts.

    PubMed

    Chung, Bevan Kai-Sheng; Lakshmanan, Meiyappan; Klement, Maximilian; Ching, Chi Bun; Lee, Dong-Yup

    2013-03-01

    Pichia yeasts have been recognized as important microbial cell factories in the biotechnological industry. Notably, the Pichia pastoris and Pichia stipitis species have attracted much research interest due to their unique cellular physiology and metabolic capability: P. pastoris has the ability to utilize methanol for cell growth and recombinant protein production, while P. stipitis is capable of assimilating xylose to produce ethanol under oxygen-limited conditions. To harness these characteristics for biotechnological applications, it is highly required to characterize their metabolic behavior. Recently, following the genome sequencing of these two Pichia species, genome-scale metabolic networks have been reconstructed to model the yeasts' metabolism from a systems perspective. To date, there are three genome-scale models available for each of P. pastoris and P. stipitis. In this mini-review, we provide an overview of the models, discuss certain limitations of previous studies, and propose potential future works that can be conducted to better understand and engineer Pichia yeasts for industrial applications.

  3. Development of Computational Tools for Metabolic Model Curation, Flux Elucidation and Strain Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maranas, Costas D

    An overarching goal of the Department of Energy mission is the efficient deployment and engineering of microbial and plant systems to enable biomass conversion in pursuit of high energy density liquid biofuels. This has spurred the pace at which new organisms are sequenced and annotated. This torrent of genomic information has opened the door to understanding metabolism in not just skeletal pathways and a handful of microorganisms but for truly genome-scale reconstructions derived for hundreds of microbes and plants. Understanding and redirecting metabolism is crucial because metabolic fluxes are unique descriptors of cellular physiology that directly assess the current cellularmore » state and quantify the effect of genetic engineering interventions. At the same time, however, trying to keep pace with the rate of genomic data generation has ushered in a number of modeling and computational challenges related to (i) the automated assembly, testing and correction of genome-scale metabolic models, (ii) metabolic flux elucidation using labeled isotopes, and (iii) comprehensive identification of engineering interventions leading to the desired metabolism redirection.« less

  4. The JBEI quantitative metabolic modeling library (jQMM): a python library for modeling microbial metabolism.

    PubMed

    Birkel, Garrett W; Ghosh, Amit; Kumar, Vinay S; Weaver, Daniel; Ando, David; Backman, Tyler W H; Arkin, Adam P; Keasling, Jay D; Martín, Héctor García

    2017-04-05

    Modeling of microbial metabolism is a topic of growing importance in biotechnology. Mathematical modeling helps provide a mechanistic understanding for the studied process, separating the main drivers from the circumstantial ones, bounding the outcomes of experiments and guiding engineering approaches. Among different modeling schemes, the quantification of intracellular metabolic fluxes (i.e. the rate of each reaction in cellular metabolism) is of particular interest for metabolic engineering because it describes how carbon and energy flow throughout the cell. In addition to flux analysis, new methods for the effective use of the ever more readily available and abundant -omics data (i.e. transcriptomics, proteomics and metabolomics) are urgently needed. The jQMM library presented here provides an open-source, Python-based framework for modeling internal metabolic fluxes and leveraging other -omics data for the scientific study of cellular metabolism and bioengineering purposes. Firstly, it presents a complete toolbox for simultaneously performing two different types of flux analysis that are typically disjoint: Flux Balance Analysis and 13 C Metabolic Flux Analysis. Moreover, it introduces the capability to use 13 C labeling experimental data to constrain comprehensive genome-scale models through a technique called two-scale 13 C Metabolic Flux Analysis (2S- 13 C MFA). In addition, the library includes a demonstration of a method that uses proteomics data to produce actionable insights to increase biofuel production. Finally, the use of the jQMM library is illustrated through the addition of several Jupyter notebook demonstration files that enhance reproducibility and provide the capability to be adapted to the user's specific needs. jQMM will facilitate the design and metabolic engineering of organisms for biofuels and other chemicals, as well as investigations of cellular metabolism and leveraging -omics data. As an open source software project, we hope it will attract additions from the community and grow with the rapidly changing field of metabolic engineering.

  5. The JBEI quantitative metabolic modeling library (jQMM): a python library for modeling microbial metabolism

    DOE PAGES

    Birkel, Garrett W.; Ghosh, Amit; Kumar, Vinay S.; ...

    2017-04-05

    Modeling of microbial metabolism is a topic of growing importance in biotechnology. Mathematical modeling helps provide a mechanistic understanding for the studied process, separating the main drivers from the circumstantial ones, bounding the outcomes of experiments and guiding engineering approaches. Among different modeling schemes, the quantification of intracellular metabolic fluxes (i.e. the rate of each reaction in cellular metabolism) is of particular interest for metabolic engineering because it describes how carbon and energy flow throughout the cell. In addition to flux analysis, new methods for the effective use of the ever more readily available and abundant -omics data (i.e. transcriptomics,more » proteomics and metabolomics) are urgently needed. The jQMM library presented here provides an open-source, Python-based framework for modeling internal metabolic fluxes and leveraging other -omics data for the scientific study of cellular metabolism and bioengineering purposes. Firstly, it presents a complete toolbox for simultaneously performing two different types of flux analysis that are typically disjoint: Flux Balance Analysis and 13C Metabolic Flux Analysis. Moreover, it introduces the capability to use 13C labeling experimental data to constrain comprehensive genome-scale models through a technique called two-scale 13C Metabolic Flux Analysis (2S- 13C MFA). In addition, the library includes a demonstration of a method that uses proteomics data to produce actionable insights to increase biofuel production. Finally, the use of the jQMM library is illustrated through the addition of several Jupyter notebook demonstration files that enhance reproducibility and provide the capability to be adapted to the user's specific needs. jQMM will facilitate the design and metabolic engineering of organisms for biofuels and other chemicals, as well as investigations of cellular metabolism and leveraging -omics data. As an open source software project, we hope it will attract additions from the community and grow with the rapidly changing field of metabolic engineering.« less

  6. The JBEI quantitative metabolic modeling library (jQMM): a python library for modeling microbial metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkel, Garrett W.; Ghosh, Amit; Kumar, Vinay S.

    Modeling of microbial metabolism is a topic of growing importance in biotechnology. Mathematical modeling helps provide a mechanistic understanding for the studied process, separating the main drivers from the circumstantial ones, bounding the outcomes of experiments and guiding engineering approaches. Among different modeling schemes, the quantification of intracellular metabolic fluxes (i.e. the rate of each reaction in cellular metabolism) is of particular interest for metabolic engineering because it describes how carbon and energy flow throughout the cell. In addition to flux analysis, new methods for the effective use of the ever more readily available and abundant -omics data (i.e. transcriptomics,more » proteomics and metabolomics) are urgently needed. The jQMM library presented here provides an open-source, Python-based framework for modeling internal metabolic fluxes and leveraging other -omics data for the scientific study of cellular metabolism and bioengineering purposes. Firstly, it presents a complete toolbox for simultaneously performing two different types of flux analysis that are typically disjoint: Flux Balance Analysis and 13C Metabolic Flux Analysis. Moreover, it introduces the capability to use 13C labeling experimental data to constrain comprehensive genome-scale models through a technique called two-scale 13C Metabolic Flux Analysis (2S- 13C MFA). In addition, the library includes a demonstration of a method that uses proteomics data to produce actionable insights to increase biofuel production. Finally, the use of the jQMM library is illustrated through the addition of several Jupyter notebook demonstration files that enhance reproducibility and provide the capability to be adapted to the user's specific needs. jQMM will facilitate the design and metabolic engineering of organisms for biofuels and other chemicals, as well as investigations of cellular metabolism and leveraging -omics data. As an open source software project, we hope it will attract additions from the community and grow with the rapidly changing field of metabolic engineering.« less

  7. Know-how and know-why in biochemical engineering.

    PubMed

    von Stockar, U; Valentinotti, S; Marison, I; Cannizzaro, C; Herwig, C

    2003-08-01

    This contribution analyzes the position of biochemical engineering in general and bioprocess engineering particularly in the force fields between fundamental science and applications, and between academia and industry. By using culture technology as an example, it can be shown that bioprocess engineering has moved slowly but steadily from an empirical art concerned with mainly know-how to a science elucidating the know-why of culture behavior. Highly powerful monitoring tools enable biochemical engineers to understand and explain quantitatively the activity of cellular culture on a metabolic basis. Among these monitoring tools are not just semi-online analyses of culture broth by HPLC, GC and FIA, but, increasingly, also noninvasive methods such as midrange IR, Raman and capacitance spectroscopy, as well as online calorimetry. The detailed and quantitative insight into the metabolome and the fluxome that bioprocess engineers are establishing offers an unprecedented opportunity for building bridges between molecular biology and engineering biosciences. Thus, one of the major tasks of biochemical engineering sciences is not developing new know-how for industrial applications, but elucidating the know-why in biochemical engineering by conducting research on the underlying scientific fundamentals.

  8. Metabolic engineering for microbial production and applications of copolyesters consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates.

    PubMed

    Zou, Xiang Hui; Chen, Guo-Qiang

    2007-02-12

    Poly(hydroxyalkanoate)s (PHAs) are a class of microbially synthesized polyesters that combine biological properties, such as biocompatibility and biodegradability, and non-bioproperties such as thermoprocessability, piezoelectricity, and nonlinear optical activity. PHA monomer structures and their contents strongly affect the PHA properties. Using metabolic engineering approaches, PHA structures and contents can be manipulated to achieve controllable monomer and PHA cellular contents. This paper focuses on metabolic engineering methods to produce PHA consisting of 3-hydroxybutyrate (3HB) and medium-chain-length 3-hydroxyalkanoates (3HA) in recombinant microbial systems. This type of copolyester has mechanical and thermal properties similar to conventional plastics such as poly(propylene) and poly(ethylene terephthalate) (PET). In addition, pathways containing engineered PHA synthases have proven to be useful for enhanced PHA production with adjustable PHA monomers and contents. The applications of PHA as implant biomaterials are briefly discussed here. In the very near term, metabolic engineering will help solve many problems in promoting PHA as a new type of plastic material for many applications.

  9. Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals.

    PubMed

    Nybo, S Eric; Khan, Nymul E; Woolston, Benjamin M; Curtis, Wayne R

    2015-07-01

    The ability of autotrophic organisms to fix CO2 presents an opportunity to utilize this 'greenhouse gas' as an inexpensive substrate for biochemical production. Unlike conventional heterotrophic microorganisms that consume carbohydrates and amino acids, prokaryotic chemolithoautotrophs have evolved the capacity to utilize reduced chemical compounds to fix CO2 and drive metabolic processes. The use of chemolithoautotrophic hosts as production platforms has been renewed by the prospect of metabolically engineered commodity chemicals and fuels. Efforts such as the ARPA-E electrofuels program highlight both the potential and obstacles that chemolithoautotrophic biosynthetic platforms provide. This review surveys the numerous advances that have been made in chemolithoautotrophic metabolic engineering with a focus on hydrogen oxidizing bacteria such as the model chemolithoautotrophic organism (Ralstonia), the purple photosynthetic bacteria (Rhodobacter), and anaerobic acetogens. Two alternative strategies of microbial chassis development are considered: (1) introducing or enhancing autotrophic capabilities (carbon fixation, hydrogen utilization) in model heterotrophic organisms, or (2) improving tools for pathway engineering (transformation methods, promoters, vectors etc.) in native autotrophic organisms. Unique characteristics of autotrophic growth as they relate to bioreactor design and process development are also discussed in the context of challenges and opportunities for genetic manipulation of organisms as production platforms. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Promiscuous activities of heterologous enzymes lead to unintended metabolic rerouting in Saccharomyces cerevisiae engineered to assimilate various sugars from renewable biomass.

    PubMed

    Yun, Eun Ju; Oh, Eun Joong; Liu, Jing-Jing; Yu, Sora; Kim, Dong Hyun; Kwak, Suryang; Kim, Kyoung Heon; Jin, Yong-Su

    2018-01-01

    Understanding the global metabolic network, significantly perturbed upon promiscuous activities of foreign enzymes and different carbon sources, is crucial for systematic optimization of metabolic engineering of yeast Saccharomyces cerevisiae . Here, we studied the effects of promiscuous activities of overexpressed enzymes encoded by foreign genes on rerouting of metabolic fluxes of an engineered yeast capable of assimilating sugars from renewable biomass by profiling intracellular and extracellular metabolites. Unbiased metabolite profiling of the engineered S. cerevisiae strain EJ4 revealed promiscuous enzymatic activities of xylose reductase and xylitol dehydrogenase on galactose and galactitol, respectively, resulting in accumulation of galactitol and tagatose during galactose fermentation. Moreover, during glucose fermentation, a trisaccharide consisting of glucose accumulated outside of the cells probably owing to the promiscuous and transglycosylation activity of β-glucosidase expressed for hydrolyzing cellobiose. Meanwhile, higher accumulation of fatty acids and secondary metabolites was observed during xylose and cellobiose fermentations, respectively. The heterologous enzymes functionally expressed in S. cerevisiae showed promiscuous activities that led to unintended metabolic rerouting in strain EJ4. Such metabolic rerouting could result in a low yield and productivity of a final product due to the formation of unexpected metabolites. Furthermore, the global metabolic network can be significantly regulated by carbon sources, thus yielding different patterns of metabolite production. This metabolomic study can provide useful information for yeast strain improvement and systematic optimization of yeast metabolism to manufacture bio-based products.

  11. Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose.

    PubMed

    Soma, Yuki; Fujiwara, Yuri; Nakagawa, Takuya; Tsuruno, Keigo; Hanai, Taizo

    2017-09-01

    γ-aminobutyric acid (GABA) is a drug and functional food additive and is used as a monomer for producing the biodegradable plastic, polyamide 4. Recently, direct GABA fermentation from glucose has been developed as an alternative to glutamate-based whole cell bioconversion. Although total productivity in fermentation is determined by the specific productivity and cell amount responsible for GABA production, the optimal metabolic state for GABA production conflicts with that for bacterial cell growth. Herein, we demonstrated metabolic state switching from the cell growth mode based on the metabolic pathways of the wild type strain to a GABA production mode based on a synthetic metabolic pathway in Escherichia coli through rewriting of the metabolic regulatory network and pathway engineering. The GABA production mode was achieved by multiple strategies such as conditional interruption of the TCA and glyoxylate cycles, engineering of GABA production pathway including a bypass for precursor metabolite supply, and upregulation of GABA transporter. As a result, we achieved 3-fold improvement in total GABA production titer and yield (4.8g/L, 49.2% (mol/mol glucose)) in batch fermentation compared to the case without metabolic state switching (1.6g/L, 16.4% (mol/mol glucose)). This study reports the highest GABA production performance among previous reports on GABA fermentation from glucose using engineered E. coli. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  12. Improved triacylglycerol production in Acinetobacter baylyi ADP1 by metabolic engineering.

    PubMed

    Santala, Suvi; Efimova, Elena; Kivinen, Virpi; Larjo, Antti; Aho, Tommi; Karp, Matti; Santala, Ville

    2011-05-18

    Triacylglycerols are used in various purposes including food applications, cosmetics, oleochemicals and biofuels. Currently the main sources for triacylglycerol are vegetable oils, and microbial triacylglycerol has been suggested as an alternative for these. Due to the low production rates and yields of microbial processes, the role of metabolic engineering has become more significant. As a robust model organism for genetic and metabolic studies, and for the natural capability to produce triacylglycerol, Acinetobacter baylyi ADP1 serves as an excellent organism for modelling the effects of metabolic engineering for energy molecule biosynthesis. Beneficial gene deletions regarding triacylglycerol production were screened by computational means exploiting the metabolic model of ADP1. Four deletions, acr1, poxB, dgkA, and a triacylglycerol lipase were chosen to be studied experimentally both separately and concurrently by constructing a knock-out strain (MT) with three of the deletions. Improvements in triacylglycerol production were observed: the strain MT produced 5.6 fold more triacylglycerol (mg/g cell dry weight) compared to the wild type strain, and the proportion of triacylglycerol in total lipids was increased by 8-fold. In silico predictions of beneficial gene deletions were verified experimentally. The chosen single and multiple gene deletions affected beneficially the natural triacylglycerol metabolism of A. baylyi ADP1. This study demonstrates the importance of single gene deletions in triacylglycerol metabolism, and proposes Acinetobacter sp. ADP1 as a model system for bioenergetic studies regarding metabolic engineering.

  13. Systems metabolic engineering: the creation of microbial cell factories by rational metabolic design and evolution.

    PubMed

    Furusawa, Chikara; Horinouchi, Takaaki; Hirasawa, Takashi; Shimizu, Hiroshi

    2013-01-01

    It is widely acknowledged that in order to establish sustainable societies, production processes should shift from petrochemical-based processes to bioprocesses. Because bioconversion technologies, in which biomass resources are converted to valuable materials, are preferable to processes dependent on fossil resources, the former should be further developed. The following two approaches can be adopted to improve cellular properties and obtain high productivity and production yield of target products: (1) optimization of cellular metabolic pathways involved in various bioprocesses and (2) creation of stress-tolerant cells that can be active even under severe stress conditions in the bioprocesses. Recent progress in omics analyses has facilitated the analysis of microorganisms based on bioinformatics data for molecular breeding and bioprocess development. Systems metabolic engineering is a new area of study, and it has been defined as a methodology in which metabolic engineering and systems biology are integrated to upgrade the designability of industrially useful microorganisms. This chapter discusses multi-omics analyses and rational design methods for molecular breeding. The first is an example of the rational design of metabolic networks for target production by flux balance analysis using genome-scale metabolic models. Recent progress in the development of genome-scale metabolic models and the application of these models to the design of desirable metabolic networks is also described in this example. The second is an example of evolution engineering with omics analyses for the creation of stress-tolerant microorganisms. Long-term culture experiments to obtain the desired phenotypes and omics analyses to identify the phenotypic changes are described here.

  14. Toward Engineering Synthetic Microbial Metabolism

    PubMed Central

    McArthur, George H.; Fong, Stephen S.

    2010-01-01

    The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements in de novo DNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism. PMID:20037734

  15. Creating metabolic demand as an engineering strategy in Pseudomonas putida - Rhamnolipid synthesis as an example.

    PubMed

    Tiso, Till; Sabelhaus, Petra; Behrens, Beate; Wittgens, Andreas; Rosenau, Frank; Hayen, Heiko; Blank, Lars Mathias

    2016-12-01

    Metabolic engineering of microbial cell factories for the production of heterologous secondary metabolites implicitly relies on the intensification of intracellular flux directed toward the product of choice. Apart from reactions following peripheral pathways, enzymes of the central carbon metabolism are usually targeted for the enhancement of precursor supply. In Pseudomonas putida , a Gram-negative soil bacterium, central carbon metabolism, i.e., the reactions required for the synthesis of all 12 biomass precursors, was shown to be regulated at the metabolic level and not at the transcriptional level. The bacterium's central carbon metabolism appears to be driven by demand to react rapidly to ever-changing environmental conditions. In contrast, peripheral pathways that are only required for growth under certain conditions are regulated transcriptionally. In this work, we show that this regulation regime can be exploited for metabolic engineering. We tested this driven-by-demand metabolic engineering strategy using rhamnolipid production as an example. Rhamnolipid synthesis relies on two pathways, i.e., fatty acid de novo synthesis and the rhamnose pathway, providing the required precursors hydroxyalkanoyloxy-alkanoic acid (HAA) and activated (dTDP-)rhamnose, respectively. In contrast to single-pathway molecules, rhamnolipid synthesis causes demand for two central carbon metabolism intermediates, i.e., acetyl-CoA for HAA and glucose-6-phosphate for rhamnose synthesis. Following the above-outlined strategy of driven by demand, a synthetic promoter library was developed to identify the optimal expression of the two essential genes ( rhlAB ) for rhamnolipid synthesis. The best rhamnolipid-synthesizing strain had a yield of 40% rhamnolipids on sugar [Cmol RL /Cmol Glc ], which is approximately 55% of the theoretical yield. The rate of rhamnolipid synthesis of this strain was also high. Compared to an exponentially growing wild type, the rhamnose pathway increased its flux by 300%, whereas the flux through de novo fatty acid synthesis increased by 50%. We show that the central carbon metabolism of P. putida is capable of meeting the metabolic demand generated by engineering transcription in peripheral pathways, thereby enabling a significant rerouting of carbon flux toward the product of interest, in this case, rhamnolipids of industrial interest.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karp, Peter D.

    Pathway Tools is a systems-biology software package written by SRI International (SRI) that produces Pathway/Genome Databases (PGDBs) for organisms with a sequenced genome. Pathway Tools also provides a wide range of capabilities for analyzing predicted metabolic networks and user-generated omics data. More than 5,000 academic, industrial, and government groups have licensed Pathway Tools. This user community includes researchers at all three DOE bioenergy centers, as well as academic and industrial metabolic engineering (ME) groups. An integral part of the Pathway Tools software is MetaCyc, a large, multiorganism database of metabolic pathways and enzymes that SRI and its academic collaborators manuallymore » curate. This project included two main goals: I. Enhance the MetaCyc content of bioenergy-related enzymes and pathways. II. Develop computational tools for engineering metabolic pathways that satisfy specified design goals, in particular for bioenergy-related pathways. In part I, SRI proposed to significantly expand the coverage of bioenergy-related metabolic information in MetaCyc, followed by the generation of organism-specific PGDBs for all energy-relevant organisms sequenced at the DOE Joint Genome Institute (JGI). Part I objectives included: 1: Expand the content of MetaCyc to include bioenergy-related enzymes and pathways. 2: Enhance the Pathway Tools software to enable display of complex polymer degradation processes. 3: Create new PGDBs for the energy-related organisms sequenced by JGI, update existing PGDBs with new MetaCyc content, and make these data available to JBEI via the BioCyc website. In part II, SRI proposed to develop an efficient computational tool for the engineering of metabolic pathways. Part II objectives included: 4: Develop computational tools for generating metabolic pathways that satisfy specified design goals, enabling users to specify parameters such as starting and ending compounds, and preferred or disallowed intermediate compounds. The pathways were to be generated using metabolic reactions from a reference database (DB). 5: Develop computational tools for ranking the pathways generated in objective (4) according to their optimality. The ranking criteria include stoichiometric yield, the number and cost of additional inputs and the cofactor compounds required by the pathway, pathway length, and pathway energetics. 6: Develop tools for visualizing generated pathways to facilitate the evaluation of a large space of generated pathways.« less

  17. Center for Advanced Biofuel Systems (CABS) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutchan, Toni M.

    2015-12-02

    One of the great challenges facing current and future generations is how to meet growing energy demands in an environmentally sustainable manner. Renewable energy sources, including wind, geothermal, solar, hydroelectric, and biofuel energy systems, are rapidly being developed as sustainable alternatives to fossil fuels. Biofuels are particularly attractive to the U.S., given its vast agricultural resources. The first generation of biofuel systems was based on fermentation of sugars to produce ethanol, typically from food crops. Subsequent generations of biofuel systems, including those included in the CABS project, will build upon the experiences learned from those early research results and willmore » have improved production efficiencies, reduced environmental impacts and decreased reliance on food crops. Thermodynamic models predict that the next generations of biofuel systems will yield three- to five-fold more recoverable energy products. To address the technological challenges necessary to develop enhanced biofuel systems, greater understanding of the non-equilibrium processes involved in solar energy conversion and the channeling of reduced carbon into biofuel products must be developed. The objective of the proposed Center for Advanced Biofuel Systems (CABS) was to increase the thermodynamic and kinetic efficiency of select plant- and algal-based fuel production systems using rational metabolic engineering approaches grounded in modern systems biology. The overall strategy was to increase the efficiency of solar energy conversion into oils and other specialty biofuel components by channeling metabolic flux toward products using advanced catalysts and sensible design:1) employing novel protein catalysts that increase the thermodynamic and kinetic efficiencies of photosynthesis and oil biosynthesis; 2) engineering metabolic networks to enhance acetyl-CoA production and its channeling towards lipid synthesis; and 3) engineering new metabolic networks for the production of hydrocarbons required to meet commercial fuel standards.« less

  18. Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities.

    PubMed

    DePaoli, Henrique C; Borland, Anne M; Tuskan, Gerald A; Cushman, John C; Yang, Xiaohan

    2014-07-01

    To meet future food and energy security needs, which are amplified by increasing population growth and reduced natural resource availability, metabolic engineering efforts have moved from manipulating single genes/proteins to introducing multiple genes and novel pathways to improve photosynthetic efficiency in a more comprehensive manner. Biochemical carbon-concentrating mechanisms such as crassulacean acid metabolism (CAM), which improves photosynthetic, water-use, and possibly nutrient-use efficiency, represent a strategic target for synthetic biology to engineer more productive C3 crops for a warmer and drier world. One key challenge for introducing multigene traits like CAM onto a background of C3 photosynthesis is to gain a better understanding of the dynamic spatial and temporal regulatory events that underpin photosynthetic metabolism. With the aid of systems and computational biology, vast amounts of experimental data encompassing transcriptomics, proteomics, and metabolomics can be related in a network to create dynamic models. Such models can undergo simulations to discover key regulatory elements in metabolism and suggest strategic substitution or augmentation by synthetic components to improve photosynthetic performance and water-use efficiency in C3 crops. Another key challenge in the application of synthetic biology to photosynthesis research is to develop efficient systems for multigene assembly and stacking. Here, we review recent progress in computational modelling as applied to plant photosynthesis, with attention to the requirements for CAM, and recent advances in synthetic biology tool development. Lastly, we discuss possible options for multigene pathway construction in plants with an emphasis on CAM-into-C3 engineering. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Advances in Polyhydroxyalkanoate (PHA) Production

    PubMed Central

    2017-01-01

    This editorial paper provides a synopsis of the contributions to the Bioengineering special issue “Advances in Polyhydroxyalkanoate (PHA) Production”. It illustrates the embedding of the issue’s individual research articles in the current global research and development landscape related to polyhydroxyalkanoates (PHA). The article shows how these articles are interrelated to each other, reflecting the entire PHA process chain including strain selection, metabolic and genetic considerations, feedstock evaluation, fermentation regimes, process engineering, and polymer processing towards high-value marketable products. PMID:29099065

  20. Overexpression of MYB115, AAD2, or AAD3 in Arabidopsis thaliana seeds yields contrasting omega-7 contents

    PubMed Central

    To, Alexandra; Barthole, Guillaume; Lepiniec, Loïc

    2018-01-01

    Omega-7 monoenoic fatty acids (ω-7 FAs) are increasingly exploited both for their positive effects on health and for their industrial potential. Some plant species produce fruits or seeds with high amounts of ω-7 FAs. However, the low yields and poor agronomic properties of these plants preclude their commercial use. As an alternative, the metabolic engineering of oilseed crops for sustainable ω-7 FA production has been proposed. Two palmitoyl-ACP desaturases (PADs) catalyzing ω-7 FA biosynthesis were recently identified and characterized in Arabidopsis thaliana, together with MYB115 and MYB118, two transcription factors that positively control the expression of the corresponding PAD genes. In the present research, we examine the biotechnological potential of these new actors of ω-7 metabolism for the metabolic engineering of plant-based production of ω-7 FAs. We placed the PAD and MYB115 coding sequences under the control of a promoter strongly induced in seeds and evaluated these different constructs in A. thaliana. Seeds were obtained that exhibit ω-7 FA contents ranging from 10 to >50% of the total FAs, and these major compositional changes have no detrimental effect on seed germination. PMID:29381741

  1. Neuro-Compatible Metabolic Glycan Labeling of Primary Hippocampal Neurons in Noncontact, Sandwich-Type Neuron-Astrocyte Coculture.

    PubMed

    Choi, Ji Yu; Park, Matthew; Cho, Hyeoncheol; Kim, Mi-Hee; Kang, Kyungtae; Choi, Insung S

    2017-12-20

    Glycans are intimately involved in several facets of neuronal development and neuropathology. However, the metabolic labeling of surface glycans in primary neurons is a difficult task because of the neurotoxicity of unnatural monosaccharides that are used as a metabolic precursor, hindering the progress of metabolic engineering in neuron-related fields. Therefore, in this paper, we report a neurosupportive, neuron-astrocyte coculture system that neutralizes the neurotoxic effects of unnatural monosaccharides, allowing for the long-term observation and characterization of glycans in primary neurons in vitro. Polysialic acids in neurons are selectively imaged, via the metabolic labeling of sialoglycans with peracetylated N-azidoacetyl-d-mannosamine (Ac 4 ManNAz), for up to 21 DIV. Two-color labeling shows that neuronal activities, such as neurite outgrowth and recycling of membrane components, are highly dynamic and change over time during development. In addition, the insertion sites of membrane components are suggested to not be random, but be predominantly localized in developing neurites. This work provides a new research platform and also suggests advanced 3D systems for metabolic-labeling studies of glycans in primary neurons.

  2. Genetic engineering of microorganisms for biodiesel production

    PubMed Central

    Lin, Hui; Wang, Qun; Shen, Qi; Zhan, Jumei; Zhao, Yuhua

    2013-01-01

    Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples. PMID:23222170

  3. Genetic engineering of microorganisms for biodiesel production.

    PubMed

    Lin, Hui; Wang, Qun; Shen, Qi; Zhan, Jumei; Zhao, Yuhua

    2013-01-01

    Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples.

  4. Accessing Nature’s diversity through metabolic engineering and synthetic biology

    PubMed Central

    King, Jason R.; Edgar, Steven; Qiao, Kangjian; Stephanopoulos, Gregory

    2016-01-01

    In this perspective, we highlight recent examples and trends in metabolic engineering and synthetic biology that demonstrate the synthetic potential of enzyme and pathway engineering for natural product discovery. In doing so, we introduce natural paradigms of secondary metabolism whereby simple carbon substrates are combined into complex molecules through “scaffold diversification”, and subsequent “derivatization” of these scaffolds is used to synthesize distinct complex natural products. We provide examples in which modern pathway engineering efforts including combinatorial biosynthesis and biological retrosynthesis can be coupled to directed enzyme evolution and rational enzyme engineering to allow access to the “privileged” chemical space of natural products in industry-proven microbes. Finally, we forecast the potential to produce natural product-like discovery platforms in biological systems that are amenable to single-step discovery, validation, and synthesis for streamlined discovery and production of biologically active agents. PMID:27081481

  5. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology willmore » provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.« less

  6. Characterizing Strain Variation in Engineered E. coli Using a Multi-Omics-Based Workflow

    DOE PAGES

    Brunk, Elizabeth; George, Kevin W.; Alonso-Gutierrez, Jorge; ...

    2016-05-19

    Understanding the complex interactions that occur between heterologous and native biochemical pathways represents a major challenge in metabolic engineering and synthetic biology. We present a workflow that integrates metabolomics, proteomics, and genome-scale models of Escherichia coli metabolism to study the effects of introducing a heterologous pathway into a microbial host. This workflow incorporates complementary approaches from computational systems biology, metabolic engineering, and synthetic biology; provides molecular insight into how the host organism microenvironment changes due to pathway engineering; and demonstrates how biological mechanisms underlying strain variation can be exploited as an engineering strategy to increase product yield. As a proofmore » of concept, we present the analysis of eight engineered strains producing three biofuels: isopentenol, limonene, and bisabolene. Application of this workflow identified the roles of candidate genes, pathways, and biochemical reactions in observed experimental phenomena and facilitated the construction of a mutant strain with improved productivity. The contributed workflow is available as an open-source tool in the form of iPython notebooks.« less

  7. Engineering of carboligase activity reaction in Candida glabrata for acetoin production.

    PubMed

    Li, Shubo; Xu, Nan; Liu, Liming; Chen, Jian

    2014-03-01

    Utilization of Candida glabrata overproducing pyruvate is a promising strategy for high-level acetoin production. Based on the known regulatory and metabolic information, acetaldehyde and thiamine were fed to identify the key nodes of carboligase activity reaction (CAR) pathway and provide a direction for engineering C. glabrata. Accordingly, alcohol dehydrogenase, acetaldehyde dehydrogenase, pyruvate decarboxylase, and butanediol dehydrogenase were selected to be manipulated for strengthening the CAR pathway. Following the rational metabolic engineering, the engineered strain exhibited increased acetoin biosynthesis (2.24 g/L). In addition, through in silico simulation and redox balance analysis, NADH was identified as the key factor restricting higher acetoin production. Correspondingly, after introduction of NADH oxidase, the final acetoin production was further increased to 7.33 g/L. By combining the rational metabolic engineering and cofactor engineering, the acetoin-producing C. glabrata was improved stepwise, opening a novel pathway for rational development of microorganisms for bioproduction. Copyright © 2013. Published by Elsevier Inc.

  8. Modular electron transfer circuits for synthetic biology

    PubMed Central

    Agapakis, Christina M

    2010-01-01

    Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production. PMID:21468209

  9. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Next-generation genome-scale models for metabolic engineering.

    PubMed

    King, Zachary A; Lloyd, Colton J; Feist, Adam M; Palsson, Bernhard O

    2015-12-01

    Constraint-based reconstruction and analysis (COBRA) methods have become widely used tools for metabolic engineering in both academic and industrial laboratories. By employing a genome-scale in silico representation of the metabolic network of a host organism, COBRA methods can be used to predict optimal genetic modifications that improve the rate and yield of chemical production. A new generation of COBRA models and methods is now being developed--encompassing many biological processes and simulation strategies-and next-generation models enable new types of predictions. Here, three key examples of applying COBRA methods to strain optimization are presented and discussed. Then, an outlook is provided on the next generation of COBRA models and the new types of predictions they will enable for systems metabolic engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Advances in yeast genome engineering.

    PubMed

    David, Florian; Siewers, Verena

    2015-02-01

    Genome engineering based on homologous recombination has been applied to yeast for many years. However, the growing importance of yeast as a cell factory in metabolic engineering and chassis in synthetic biology demands methods for fast and efficient introduction of multiple targeted changes such as gene knockouts and introduction of multistep metabolic pathways. In this review, we summarize recent improvements of existing genome engineering methods, the development of novel techniques, for example for advanced genome redesign and evolution, and the importance of endonucleases as genome engineering tools. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  12. Metabolic engineering: the ultimate paradigm for continuous pharmaceutical manufacturing.

    PubMed

    Yadav, Vikramaditya G; Stephanopoulos, Gregory

    2014-07-01

    Research and development (R&D) expenditures by pharmaceutical companies doubled over the past decade, yet candidate attrition rates and development times rose markedly during this period. Understandably, companies have begun downsizing their pipelines and diverting investments away from R&D in favor of manufacturing. It is estimated that transitioning to continuous manufacturing could enable companies to compete for a share in emerging markets. Accordingly, the model for continuous manufacturing that has emerged commences with the conversion of late-stage intermediates into the active pharmaceutical ingredient (API) in a series of continuous flow reactors, followed by continuous solid processing to form finished tablets. The use of flow reactions for API synthesis will certainly generate purer products at higher yields in shorter times compared to equivalent batch reactions. However, transitioning from batch to flow configuration simply alleviates transport limitations within the reaction milieu. As the catalogue of reactions used in flow syntheses is a subset of batch-based chemistries, molecules such as natural products will continue to evade drug prospectors. Also, it is uncertain whether flow synthesis can deliver improvements in the atom and energy economies of API production at the scales that would achieve the levels of revenue growth targeted by companies. Instead, it is argued that implementing metabolic engineering for the production of oxidized scaffolds as gateway molecules for flow-based addition of electrophiles is a more effective and scalable strategy for accessing natural product chemical space. This new paradigm for manufacturing, with metabolic engineering as its engine, would also permit rapid optimization of production variables and allow facile scale-up from gram to ton scale to meet material requirements for clinical trials, thus recasting manufacturing as a tool for discovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Kinetic modeling of cell metabolism for microbial production.

    PubMed

    Costa, Rafael S; Hartmann, Andras; Vinga, Susana

    2016-02-10

    Kinetic models of cellular metabolism are important tools for the rational design of metabolic engineering strategies and to explain properties of complex biological systems. The recent developments in high-throughput experimental data are leading to new computational approaches for building kinetic models of metabolism. Herein, we briefly survey the available databases, standards and software tools that can be applied for kinetic models of metabolism. In addition, we give an overview about recently developed ordinary differential equations (ODE)-based kinetic models of metabolism and some of the main applications of such models are illustrated in guiding metabolic engineering design. Finally, we review the kinetic modeling approaches of large-scale networks that are emerging, discussing their main advantages, challenges and limitations. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum

    PubMed Central

    Tay, Song Buck; Natarajan, Gayathri; Rahim, Muhammad Nadjad bin Abdul; Tan, Hwee Tong; Chung, Maxey Ching Ming; Ting, Yen Peng; Yew, Wen Shan

    2013-01-01

    Conventional leaching (extraction) methods for gold recovery from electronic waste involve the use of strong acids and pose considerable threat to the environment. The alternative use of bioleaching microbes for gold recovery is non-pollutive and relies on the secretion of a lixiviant or (bio)chemical such as cyanide for extraction of gold from electronic waste. However, widespread industrial use of bioleaching microbes has been constrained by the limited cyanogenic capabilities of lixiviant-producing microorganisms such as Chromobacterium violaceum. Here we show the construction of a metabolically-engineered strain of Chromobacterium violaceum that produces more (70%) cyanide lixiviant and recovers more than twice as much gold from electronic waste compared to wild-type bacteria. Comparative proteome analyses suggested the possibility of further enhancement in cyanogenesis through subsequent metabolic engineering. Our results demonstrated the utility of lixiviant metabolic engineering in the construction of enhanced bioleaching microbes for the bioleaching of precious metals from electronic waste. PMID:23868689

  15. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering.

    PubMed

    Crook, Nathan C; Schmitz, Alexander C; Alper, Hal S

    2014-05-16

    Reduction of endogenous gene expression is a fundamental operation of metabolic engineering, yet current methods for gene knockdown (i.e., genome editing) remain laborious and slow, especially in yeast. In contrast, RNA interference allows facile and tunable gene knockdown via a simple plasmid transformation step, enabling metabolic engineers to rapidly prototype knockdown strategies in multiple strains before expending significant cost to undertake genome editing. Although RNAi is naturally present in a myriad of eukaryotes, it has only been recently implemented in Saccharomyces cerevisiae as a heterologous pathway and so has not yet been optimized as a metabolic engineering tool. In this study, we elucidate a set of design principles for the construction of hairpin RNA expression cassettes in yeast and implement RNA interference to quickly identify routes for improvement of itaconic acid production in this organism. The approach developed here enables rapid prototyping of knockdown strategies and thus accelerates and reduces the cost of the design-build-test cycle in yeast.

  16. Genetic and metabolic engineering of microorganisms for the development of new flavor compounds from terpenic substrates.

    PubMed

    Bution, Murillo L; Molina, Gustavo; Abrahão, Meissa R E; Pastore, Gláucia M

    2015-01-01

    Throughout human history, natural products have been the basis for the discovery and development of therapeutics, cosmetic and food compounds used in industry. Many compounds found in natural organisms are rather difficult to chemically synthesize and to extract in large amounts, and in this respect, genetic and metabolic engineering are playing an increasingly important role in the production of these compounds, such as new terpenes and terpenoids, which may potentially be used to create aromas in industry. Terpenes belong to the largest class of natural compounds, are produced by all living organisms and play a fundamental role in human nutrition, cosmetics and medicine. Recent advances in systems biology and synthetic biology are allowing us to perform metabolic engineering at the whole-cell level, thus enabling the optimal design of microorganisms for the efficient production of drugs, cosmetic and food additives. This review describes the recent advances made in the genetic and metabolic engineering of the terpenes pathway with a particular focus on systems biotechnology.

  17. Interaction of Engineered Nanoparticles with the Agri-environment.

    PubMed

    Pradhan, Saheli; Mailapalli, Damodhara Rao

    2017-09-27

    Nanoparticles with their unique surface properties can modulate the physiological, biochemical, and physicochemical pathways, such as photosynthesis, respiration, nitrogen metabolism, and solute transport. In this context, researchers have developed a wide range of engineered nanomaterials (ENMs) for the improvement of growth and productivity by modulating the metabolic pathways in plants. This class of tailor-made materials can potentially lead to the development of a new group of agrochemical nanofertilizers. However, there are reports that engineered nanomaterials could impart phytotoxicity to edible and medicinal plants. On the contrary, there is a series of ENMs that might be detrimental when applied directly and/or indirectly to the plants. These particles can sometimes readily aggregate and dissolute in the immediate vicinity; the free ions released from the nanomatrix can cause serious tissue injury and membrane dysfunction to the plant cell through oxidative stress. On that note, thorough studies on uptake, translocation, internalization, and nutritional quality assessment must be carried out to understand ENM-plant interactions. This review critically discusses the possible beneficial or adverse aftereffect of nanofertilizers in the immediate environment to interrelate the impacts of ENMs on the crop health and food security management.

  18. Recent advances to improve fermentative butanol production: genetic engineering and fermentation technology.

    PubMed

    Zheng, Jin; Tashiro, Yukihiro; Wang, Qunhui; Sonomoto, Kenji

    2015-01-01

    Butanol has recently attracted attention as an alternative biofuel because of its various advantages over other biofuels. Many researchers have focused on butanol fermentation with renewable and sustainable resources, especially lignocellulosic materials, which has provided significant progress in butanol fermentation. However, there are still some drawbacks in butanol fermentation in terms of low butanol concentration and productivity, high cost of feedstock and product inhibition, which makes butanol fermentation less competitive than the production of other biofuels. These hurdles are being resolved in several ways. Genetic engineering is now available for improving butanol yield and butanol ratio through overexpression, knock out/down, and insertion of genes encoding key enzymes in the metabolic pathway of butanol fermentation. In addition, there are also many strategies to improve fermentation technology, such as multi-stage continuous fermentation, continuous fermentation integrated with immobilization and cell recycling, and the inclusion of additional organic acids or electron carriers to change metabolic flux. This review focuses on the most recent advances in butanol fermentation especially from the perspectives of genetic engineering and fermentation technology. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism

    PubMed Central

    Shimizu, Kazuyuki

    2013-01-01

    It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation. PMID:25937963

  20. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway.

    PubMed

    Yamada, Ryosuke; Wakita, Kazuki; Mitsui, Ryosuke; Ogino, Hiroyasu

    2017-09-01

    Utilization of renewable feedstocks for the production of bio-based chemicals such as d-lactic acid by engineering metabolic pathways in the yeast Saccharomyces cerevisiae has recently become an attractive option. In this study, to realize efficient d-lactic acid production by S. cerevisiae, the expression of 12 glycolysis-related genes and the Leuconostoc mesenteroides d-LDH gene was optimized using a previously developed global metabolic engineering strategy, and repeated batch fermentation was carried out using the resultant strain YPH499/dPdA3-34/DLDH/1-18. Stable d-lactic acid production through 10 repeated batch fermentations was achieved using YPH499/dPdA3-34/DLDH/1-18. The average d-lactic acid production, productivity, and yield with 10 repeated batch fermentations were 60.3 g/L, 2.80 g/L/h, and 0.646, respectively. The present study is the first report of the application of a global metabolic engineering strategy for bio-based chemical production, and it shows the potential for efficient production of such chemicals by global metabolic engineering of the yeast S. cerevisiae. Biotechnol. Bioeng. 2017;114: 2075-2084. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Systems Biology of Industrial Microorganisms

    NASA Astrophysics Data System (ADS)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  2. Systems biology of industrial microorganisms.

    PubMed

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    2010-01-01

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  3. Elucidation of new condition-dependent roles for fructose-1,6-bisphosphatase linked to cofactor balances

    PubMed Central

    Kilian, Stephanus G.; du Preez, James C.

    2017-01-01

    The cofactor balances in metabolism is of paramount importance in the design of a metabolic engineering strategy and understanding the regulation of metabolism in general. ATP, NAD+ and NADP+ balances are central players linking the various fluxes in central metabolism as well as biomass formation. NADP+ is especially important in the metabolic engineering of yeasts for xylose fermentation, since NADPH is required by most yeasts in the initial step of xylose utilisation, including the fast-growing Kluyveromyces marxianus. In this simulation study of yeast metabolism, the complex interplay between these cofactors was investigated; in particular, how they may affect the possible roles of fructose-1,6-bisphosphatase, the pentose phosphate pathway, glycerol production and the pyruvate dehydrogenase bypass. Using flux balance analysis, it was found that the potential role of fructose-1,6-bisphosphatase was highly dependent on the cofactor specificity of the oxidative pentose phosphate pathway and on the carbon source. Additionally, the excessive production of ATP under certain conditions might be involved in some of the phenomena observed, which may have been overlooked to date. Based on these findings, a strategy is proposed for the metabolic engineering of a future xylose-fermenting yeast for biofuel production. PMID:28542187

  4. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum.

    PubMed

    Thompson, R Adam; Layton, Donovan S; Guss, Adam M; Olson, Daniel G; Lynd, Lee R; Trinh, Cong T

    2015-11-01

    Clostridium thermocellum is an anaerobic, Gram-positive, thermophilic bacterium that has generated great interest due to its ability to ferment lignocellulosic biomass to ethanol. However, ethanol production is low due to the complex and poorly understood branched metabolism of C. thermocellum, and in some cases overflow metabolism as well. In this work, we developed a predictive stoichiometric metabolic model for C. thermocellum which incorporates the current state of understanding, with particular attention to cofactor specificity in the atypical glycolytic enzymes and the complex energy, redox, and fermentative pathways with the goal of aiding metabolic engineering efforts. We validated the model's capability to encompass experimentally observed phenotypes for the parent strain and derived mutants designed for significant perturbation of redox and energy pathways. Metabolic flux distributions revealed significant alterations in key metabolic branch points (e.g., phosphoenol pyruvate, pyruvate, acetyl-CoA, and cofactor nodes) in engineered strains for channeling electron and carbon fluxes for enhanced ethanol synthesis, with the best performing strain doubling ethanol yield and titer compared to the parent strain. In silico predictions of a redox-imbalanced genotype incapable of growth were confirmed in vivo, and a mutant strain was used as a platform to probe redox bottlenecks in the central metabolism that hinder efficient ethanol production. The results highlight the robustness of the redox metabolism of C. thermocellum and the necessity of streamlined electron flux from reduced ferredoxin to NAD(P)H for high ethanol production. The model was further used to design a metabolic engineering strategy to phenotypically constrain C. thermocellum to achieve high ethanol yields while requiring minimal genetic manipulations. The model can be applied to design C. thermocellum as a platform microbe for consolidated bioprocessing to produce ethanol and other reduced metabolites. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Protein engineering approaches to chemical biotechnology.

    PubMed

    Chen, Zhen; Zeng, An-Ping

    2016-12-01

    Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products. Copyright © 2016. Published by Elsevier Ltd.

  6. Metabolic engineering to guide evolution - Creating a novel mode for L-valine production with Corynebacterium glutamicum.

    PubMed

    Schwentner, Andreas; Feith, André; Münch, Eugenia; Busche, Tobias; Rückert, Christian; Kalinowski, Jörn; Takors, Ralf; Blombach, Bastian

    2018-03-06

    Evolutionary approaches are often undirected and mutagen-based yielding numerous mutations, which need elaborate screenings to identify relevant targets. We here apply Metabolic engineering to Guide Evolution (MGE), an evolutionary approach evolving and identifying new targets to improve microbial producer strains. MGE is based on the idea to impair the cell's metabolism by metabolic engineering, thereby generating guided evolutionary pressure. It consists of three distinct phases: (i) metabolic engineering to create the evolutionary pressure on the applied strain followed by (ii) a cultivation phase with growth as straightforward screening indicator for the evolutionary event, and (iii) comparative whole genome sequencing (WGS), to identify mutations in the evolved strains, which are eventually re-engineered for verification. Applying MGE, we evolved the PEP and pyruvate carboxylase-deficient strain C. glutamicum Δppc Δpyc to grow on glucose as substrate with rates up to 0.31 ± 0.02 h -1 which corresponds to 80% of the growth rate of the wildtype strain. The intersection of the mutations identified by WGS revealed isocitrate dehydrogenase (ICD) as consistent target in three independently evolved mutants. Upon re-engineering in C. glutamicum Δppc Δpyc, the identified mutations led to diminished ICD activities and activated the glyoxylate shunt replenishing oxaloacetate required for growth. Intracellular relative quantitative metabolome analysis showed that the pools of citrate, isocitrate, cis-aconitate, and L-valine were significantly higher compared to the WT control. As an alternative to existing L-valine producer strains based on inactivated or attenuated pyruvate dehydrogenase complex, we finally engineered the PEP and pyruvate carboxylase-deficient C. glutamicum strains with identified ICD mutations for L-valine production by overexpression of the L-valine biosynthesis genes. Among them, C. glutamicum Δppc Δpyc ICD G407S (pJC4ilvBNCE) produced up to 8.9 ± 0.4 g L-valine L -1 , with a product yield of 0.22 ± 0.01 g L-valine per g glucose. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world.

    PubMed

    Yang, Xiaohan; Cushman, John C; Borland, Anne M; Edwards, Erika J; Wullschleger, Stan D; Tuskan, Gerald A; Owen, Nick A; Griffiths, Howard; Smith, J Andrew C; De Paoli, Henrique C; Weston, David J; Cottingham, Robert; Hartwell, James; Davis, Sarah C; Silvera, Katia; Ming, Ray; Schlauch, Karen; Abraham, Paul; Stewart, J Ryan; Guo, Hao-Bo; Albion, Rebecca; Ha, Jungmin; Lim, Sung Don; Wone, Bernard W M; Yim, Won Cheol; Garcia, Travis; Mayer, Jesse A; Petereit, Juli; Nair, Sujithkumar S; Casey, Erin; Hettich, Robert L; Ceusters, Johan; Ranjan, Priya; Palla, Kaitlin J; Yin, Hengfu; Reyes-García, Casandra; Andrade, José Luis; Freschi, Luciano; Beltrán, Juan D; Dever, Louisa V; Boxall, Susanna F; Waller, Jade; Davies, Jack; Bupphada, Phaitun; Kadu, Nirja; Winter, Klaus; Sage, Rowan F; Aguilar, Cristobal N; Schmutz, Jeremy; Jenkins, Jerry; Holtum, Joseph A M

    2015-08-01

    Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO2 uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAM crop species and to harness the WUE of CAM by engineering this pathway into existing food, feed, and bioenergy crops. An improved understanding of CAM has potential for high returns on research investment. To exploit the potential of CAM crops and CAM bioengineering, it will be necessary to elucidate the evolution, genomic features, and regulatory mechanisms of CAM. Field trials and predictive models will be required to assess the productivity of CAM crops, while new synthetic biology approaches need to be developed for CAM engineering. Infrastructure will be needed for CAM model systems, field trials, mutant collections, and data management. © 2015 ORNL/UT-Battelle New Phytologist © 2015 New Phytologist Trust.

  8. Cyanobacterial metabolic engineering for biofuel and chemical production.

    PubMed

    Oliver, Neal J; Rabinovitch-Deere, Christine A; Carroll, Austin L; Nozzi, Nicole E; Case, Anna E; Atsumi, Shota

    2016-12-01

    Rising levels of atmospheric CO 2 are contributing to the global greenhouse effect. Large scale use of atmospheric CO 2 may be a sustainable and renewable means of chemical and liquid fuel production to mitigate global climate change. Photosynthetic organisms are an ideal platform for efficient, natural CO 2 conversion to a broad range of chemicals. Cyanobacteria are especially attractive for these purposes, due to their genetic malleability and relatively fast growth rate. Recent years have yielded a range of work in the metabolic engineering of cyanobacteria and have led to greater knowledge of the host metabolism. Understanding of endogenous and heterologous carbon regulation mechanisms leads to the expansion of productive capacity and chemical variety. This review discusses the recent progress in metabolic engineering of cyanobacteria for biofuel and bulk chemical production since 2014. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Biofuel metabolic engineering with biosensors.

    PubMed

    Morgan, Stacy-Anne; Nadler, Dana C; Yokoo, Rayka; Savage, David F

    2016-12-01

    Metabolic engineering offers the potential to renewably produce important classes of chemicals, particularly biofuels, at an industrial scale. DNA synthesis and editing techniques can generate large pathway libraries, yet identifying the best variants is slow and cumbersome. Traditionally, analytical methods like chromatography and mass spectrometry have been used to evaluate pathway variants, but such techniques cannot be performed with high throughput. Biosensors - genetically encoded components that actuate a cellular output in response to a change in metabolite concentration - are therefore a promising tool for rapid and high-throughput evaluation of candidate pathway variants. Applying biosensors can also dynamically tune pathways in response to metabolic changes, improving balance and productivity. Here, we describe the major classes of biosensors and briefly highlight recent progress in applying them to biofuel-related metabolic pathway engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Engineering yeasts for xylose metabolism

    Treesearch

    Thomas W. Jeffries

    2006-01-01

    Technologies for the production of alternative fuels are receiving increased attention owing to concerns over the rising cost of petrol and global warming. One such technology under development is the use of yeasts for the commercial fermentation of xylose to ethanol. Several approaches have been employed to engineer xylose metabolism. These involve modeling, flux...

  11. Metabolic Engineering of Clostridium thermocellum for Biofuel Production (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guess, Adam

    2013-03-01

    Adam Guss of Oak Ridge National Lab presents on Metabolic engineering of Clostridium thermocellum for biofuel production at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, CA.

  12. An integrated network visualization framework towards metabolic engineering applications.

    PubMed

    Noronha, Alberto; Vilaça, Paulo; Rocha, Miguel

    2014-12-30

    Over the last years, several methods for the phenotype simulation of microorganisms, under specified genetic and environmental conditions have been proposed, in the context of Metabolic Engineering (ME). These methods provided insight on the functioning of microbial metabolism and played a key role in the design of genetic modifications that can lead to strains of industrial interest. On the other hand, in the context of Systems Biology research, biological network visualization has reinforced its role as a core tool in understanding biological processes. However, it has been scarcely used to foster ME related methods, in spite of the acknowledged potential. In this work, an open-source software that aims to fill the gap between ME and metabolic network visualization is proposed, in the form of a plugin to the OptFlux ME platform. The framework is based on an abstract layer, where the network is represented as a bipartite graph containing minimal information about the underlying entities and their desired relative placement. The framework provides input/output support for networks specified in standard formats, such as XGMML, SBGN or SBML, providing a connection to genome-scale metabolic models. An user-interface makes it possible to edit, manipulate and query nodes in the network, providing tools to visualize diverse effects, including visual filters and aspect changing (e.g. colors, shapes and sizes). These tools are particularly interesting for ME, since they allow overlaying phenotype simulation results or elementary flux modes over the networks. The framework and its source code are freely available, together with documentation and other resources, being illustrated with well documented case studies.

  13. Fiber-Based Tissue Engineering: Progress, Challenges, and Opportunities

    PubMed Central

    Tamayol, Ali; Akbari, Mohsen; Annabi, Nasim; Paul, Arghya; Khademhosseini, Ali; Juncker, David

    2013-01-01

    Tissue engineering aims to improve the function of diseased or damaged organs by creating biological substitutes. To fabricate a functional tissue, the engineered construct should mimic the physiological environment including its structural, topographical, and mechanical properties. Moreover, the construct should facilitate nutrients and oxygen diffusion as well as removal of metabolic waste during tissue regeneration. In the last decade, fiber-based techniques such as weaving, knitting, braiding, as well as electrospinning, and direct writing have emerged as promising platforms for making 3D tissue constructs that can address the above mentioned challenges. Here, we critically review the techniques used to form cell-free and cell-laden fibers and to assemble them into scaffolds. We compare their mechanical properties, morphological features and biological activity. We discuss current challenges and future opportunities of fiber-based tissue engineering (FBTE) for use in research and clinical practice. PMID:23195284

  14. Metabolic Engineering of Saccharomyces cerevisiae

    PubMed Central

    Ostergaard, Simon; Olsson, Lisbeth; Nielsen, Jens

    2000-01-01

    Comprehensive knowledge regarding Saccharomyces cerevisiae has accumulated over time, and today S. cerevisiae serves as a widley used biotechnological production organism as well as a eukaryotic model system. The high transformation efficiency, in addition to the availability of the complete yeast genome sequence, has facilitated genetic manipulation of this microorganism, and new approaches are constantly being taken to metabolicially engineer this organism in order to suit specific needs. In this paper, strategies and concepts for metabolic engineering are discussed and several examples based upon selected studies involving S. cerevisiae are reviewed. The many different studies of metabolic engineering using this organism illustrate all the categories of this multidisciplinary field: extension of substrate range, improvements of producitivity and yield, elimination of byproduct formation, improvement of process performance, improvements of cellular properties, and extension of product range including heterologous protein production. PMID:10704473

  15. Metabolic engineering of Escherichia coli for the production of phenylpyruvate derivatives.

    PubMed

    Liu, Shuang Ping; Zhang, Liang; Mao, Jian; Ding, Zhong Yang; Shi, Gui Yang

    2015-11-01

    Phenylpyruvate derivatives (PPD), such as phenylpropanoids, DL-phenylglycine, dl-phenylalanine, and styrene, are biosynthesized using phenylpyruvate as the precursor. They are widely used in human health and nutrition products. Recently, metabolic engineering provides effective strategies to develop PPD producers. Based on phenylpyruvate-producing chassis, genetically defined PPD producers have been successfully constructed. In this work, the most recent information on genetics and on the molecular mechanisms regulating phenylpyruvate synthesis pathways in Escherichia coli are summarized, and the engineering strategies to construct the PPD producers are also discussed. The enzymes and pathways are proposed for PPD-producer constructions, and potential difficulties in strain construction are also identified and discussed. With respect to recent advances in synthetic biology, future strategies to construct efficiently producers are discussed. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. Engineering Robustness of Microbial Cell Factories.

    PubMed

    Gong, Zhiwei; Nielsen, Jens; Zhou, Yongjin J

    2017-10-01

    Metabolic engineering and synthetic biology offer great prospects in developing microbial cell factories capable of converting renewable feedstocks into fuels, chemicals, food ingredients, and pharmaceuticals. However, prohibitively low production rate and mass concentration remain the major hurdles in industrial processes even though the biosynthetic pathways are comprehensively optimized. These limitations are caused by a variety of factors unamenable for host cell survival, such as harsh industrial conditions, fermentation inhibitors from biomass hydrolysates, and toxic compounds including metabolic intermediates and valuable target products. Therefore, engineered microbes with robust phenotypes is essential for achieving higher yield and productivity. In this review, the recent advances in engineering robustness and tolerance of cell factories is described to cope with these issues and briefly introduce novel strategies with great potential to enhance the robustness of cell factories, including metabolic pathway balancing, transporter engineering, and adaptive laboratory evolution. This review also highlights the integration of advanced systems and synthetic biology principles toward engineering the harmony of overall cell function, more than the specific pathways or enzymes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The importance of sourcing enzymes from non-conventional fungi for metabolic engineering and biomass breakdown.

    PubMed

    Seppälä, Susanna; Wilken, St Elmo; Knop, Doriv; Solomon, Kevin V; O'Malley, Michelle A

    2017-11-01

    A wealth of fungal enzymes has been identified from nature, which continue to drive strain engineering and bioprocessing for a range of industries. However, while a number of clades have been investigated, the vast majority of the fungal kingdom remains unexplored for industrial applications. Here, we discuss selected classes of fungal enzymes that are currently in biotechnological use, and explore more basal, non-conventional fungi and their underexploited biomass-degrading mechanisms as promising agents in the transition towards a bio-based society. Of special interest are anaerobic fungi like the Neocallimastigomycota, which were recently found to harbor the largest diversity of biomass-degrading enzymes among the fungal kingdom. Enzymes sourced from these basal fungi have been used to metabolically engineer substrate utilization in yeast, and may offer new paths to lignin breakdown and tunneled biocatalysis. We also contrast classic enzymology approaches with emerging 'omics'-based tools to decipher function within novel fungal isolates and identify new promising enzymes. Recent developments in genome editing are expected to accelerate discovery and metabolic engineering within these systems, yet are still limited by a lack of high-resolution genomes, gene regulatory regions, and even appropriate culture conditions. Finally, we present new opportunities to harness the biomass-degrading potential of undercharacterized fungi via heterologous expression and engineered microbial consortia. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Pathway engineering strategies for production of beneficial carotenoids in microbial hosts.

    PubMed

    Ye, Victor M; Bhatia, Sujata K

    2012-08-01

    Carotenoids, such as lycopene, β-carotene, zeaxanthin, canthaxanthin and astaxanthin have many benefits for human health. In addition to the functional role of carotenoids as vitamin A precursors, adequate consumption of carotenoids prevents the development of a variety of serious diseases. Biosynthesis of carotenoids is a complex process and it starts with the common isoprene precursors. Condensation of these precursors and subsequent modifications, by introducing hydroxyl- and keto-groups, leads to the generation of diversified carotenoid structures. To improve carotenoid production, metabolic engineering has been explored in bacteria, yeast, and algae. The success of the pathway engineering effort depends on the host metabolism, specific enzymes used, the enzyme expression levels, and the strategies employed. Despite the difficulty of pathway engineering for carotenoid production, great progress has been made over the past decade. We review metabolic engineering approaches used in a variety of microbial hosts for carotenoid biosynthesis. These advances will greatly expedite our efforts to bring the health benefits of carotenoids and other nutritional compounds to our diet.

  19. Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis.

    PubMed

    Chen, Wei; Zhang, Shan; Jiang, Peixia; Yao, Jun; He, Yongzhi; Chen, Lincai; Gui, Xiwu; Dong, Zhiyang; Tang, Shuang-Yan

    2015-07-01

    Advanced high-throughput screening methods for small molecules may have important applications in the metabolic engineering of the biosynthetic pathways of these molecules. Ectoine is an excellent osmoprotectant that has been widely used in cosmetics. In this study, the Escherichia coli regulatory protein AraC was engineered to recognize ectoine as its non-natural effector and to activate transcription upon ectoine binding. As an endogenous reporter of ectoine, the mutated AraC protein was successfully incorporated into high-throughput screening of ectoine hyper-producing strains. The ectoine biosynthetic cluster from Halomonas elongata was cloned into E. coli. By engineering the rate-limiting enzyme L-2,4-diaminobutyric acid (DABA) aminotransferase (EctB), ectoine production and the specific activity of the EctB mutant were increased. Thus, these results demonstrated the effectiveness of engineering regulatory proteins into sensitive and rapid screening tools for small molecules and highlighted the importance and efficacy of directed evolution strategies applied to the engineering of genetic components for yield improvement in the biosynthesis of small molecules. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation

    USDA-ARS?s Scientific Manuscript database

    Saccharomyces strains engineered to ferment xylose using Scheffersomyces stipitis xylose reductase (XR) and xylitol dehydrogenase (XDH) genes appear to be limited by metabolic imbalances due to differing cofactor specificities of XR and XDH. The S. stipitis XR, which uses nicotinamide adenine dinucl...

  1. Toward Genome-Based Metabolic Engineering in Bacteria.

    PubMed

    Oesterle, Sabine; Wuethrich, Irene; Panke, Sven

    2017-01-01

    Prokaryotes modified stably on the genome are of great importance for production of fine and commodity chemicals. Traditional methods for genome engineering have long suffered from imprecision and low efficiencies, making construction of suitable high-producer strains laborious. Here, we review the recent advances in discovery and refinement of molecular precision engineering tools for genome-based metabolic engineering in bacteria for chemical production, with focus on the λ-Red recombineering and the clustered regularly interspaced short palindromic repeats/Cas9 nuclease systems. In conjunction, they enable the integration of in vitro-synthesized DNA segments into specified locations on the chromosome and allow for enrichment of rare mutants by elimination of unmodified wild-type cells. Combination with concurrently developing improvements in important accessory technologies such as DNA synthesis, high-throughput screening methods, regulatory element design, and metabolic pathway optimization tools has resulted in novel efficient microbial producer strains and given access to new metabolic products. These new tools have made and will likely continue to make a big impact on the bioengineering strategies that transform the chemical industry. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli.

    PubMed

    Yang, Xiaoyan; Yuan, Qianqian; Zheng, Yangyang; Ma, Hongwu; Chen, Tao; Zhao, Xueming

    2016-08-01

    To find new metabolic engineering strategies to improve the yield of acetone in Escherichia coli. Results of flux balance analysis from a modified Escherichia coli genome-scale metabolic network suggested that the introduction of a non-oxidative glycolysis (NOG) pathway would improve the theoretical acetone yield from 1 to 1.5 mol acetone/mol glucose. By inserting the fxpk gene encoding phosphoketolase from Bifidobacterium adolescentis into the genome, we constructed a NOG pathway in E.coli. The resulting strain produced 47 mM acetone from glucose under aerobic conditions in shake-flasks. The yield of acetone was improved from 0.38 to 0.47 mol acetone/mol glucose which is a significant over the parent strain. Guided by computational analysis of metabolic networks, we introduced a NOG pathway into E. coli and increased the yield of acetone, which demonstrates the importance of modeling analysis for the novel metabolic engineering strategies.

  3. Striving Toward Energy Sustainability: How Plants Will Play a Role in Our Future (453rd Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrieri, Richard A.

    2009-10-28

    Edible biomass includes sugars from sugar cane or sugar beets, starches from corn kernels or other grains, and vegetable oils. The fibrous, woody and generally inedible portions of plants contain cellulose, hemicellulose and lignin, three key cell-wall components that make up roughly 70 percent of total plant biomass. At present, starch can readily be degraded from corn grain into glucose sugar, which is then fermented into ethanol, and an acre of corn can yield roughly 400 gallons of ethanol. In tapping into the food supply to solve the energy crisis, however, corn and other crops have become more expensive asmore » food. One solution lies in breaking down other structural tissues of plants, including the stalks and leaves of corn, grasses and trees. However, the complex carbohydrates in cellulose-containing biomass are more difficult to break down and convert to ethanol. So researchers are trying to engineer plants having optimal sugars for maximizing fuel yield. This is a challenge because only a handful of enzymes associated with the more than 1,000 genes responsible for cell-wall synthesis have had their roles in controlling plant metabolism defined. As Richard Ferrieri, Ph.D., a leader of a biofuel research initiative within the Medical Department, will discuss during the 453rd Brookhaven Lecture, he and his colleagues use short-lived radioisotopes, positron emission tomography and biomarkers that they have developed to perform non-invasive, real time imaging of whole plants. He will explain how the resulting metabolic flux analysis gives insight into engineering plant metabolism further.« less

  4. Deep Sequencing Reveals the Effect of MeJA on Scutellarin Biosynthesis in Erigeron breviscapus

    PubMed Central

    Xiao, Ying; Zhang, Feng; Chen, Jun-feng; Ji, Qian; Tan, He-Xin; Huang, Xin; Feng, Hao; Huang, Bao-Kang; Chen, Wan-Sheng; Zhang, Lei

    2015-01-01

    Background Erigeron breviscapus, a well-known traditional Chinese medicinal herb, is broadly used in the treatment of cerebrovascular disease. Scutellarin, a kind of flavonoids, is considered as the material base of the pharmaceutical activities in E. breviscapus. The stable and high content of scutellarin is critical for the quality and efficiency of E. breviscapus in the clinical use. Therefore, understanding the molecular mechanism of scutellarin biosynthesis is crucial for metabolic engineering to increase the content of the active compound. However, there is virtually no study available yet concerning the genetic research of scutellarin biosynthesis in E. breviscapus. Results Using Illumina sequencing technology, we obtained over three billion bases of high-quality sequence data and conducted de novo assembly and annotation without prior genome information. A total of 182,527 unigenes (mean length = 738 bp) were found. 63,059 unigenes were functionally annotated with a cut-off E-value of 10−5. Next, a total of 238 (200 up-regulated and 38 down-regulated genes) and 513 (375 up-regulated and 138 down-regulated genes) differentially expressed genes were identified at different time points after methyl jasmonate (MeJA) treatment, which fell into categories of ‘metabolic process’ and ‘cellular process’ using GO database, suggesting that MeJA-induced activities of signal pathway in plant mainly led to re-programming of metabolism and cell activity. In addition, 13 predicted genes that might participate in the metabolism of flavonoids were found by two co-expression analyses in E. breviscapus. Conclusions Our study is the first to provide a transcriptome sequence resource for E. breviscapus plants after MeJA treatment and it reveals transcriptome re-programming upon elicitation. As the result, several putative unknown genes involved in the metabolism of flavonoids were predicted. These data provide a valuable resource for the genetic and genomic studies of special flavonoids metabolism and further metabolic engineering in E. breviscapus. PMID:26656917

  5. Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity.

    PubMed

    Jang, Yu-Sin; Im, Jung Ae; Choi, So Young; Lee, Jung Im; Lee, Sang Yup

    2014-05-01

    A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetobutylicum was metabolically engineered for highly selective butyric acid production. For this purpose, the second butyrate kinase of C. acetobutylicum encoded by the bukII gene instead of butyrate kinase I encoded by the buk gene was employed. Furthermore, metabolic pathways were engineered to further enhance the NADH-driving force. Batch fermentation of the metabolically engineered C. acetobutylicum strain HCBEKW (pta(-), buk(-), ctfB(-) and adhE1(-)) at pH 6.0 resulted in the production of 32.5g/L of butyric acid with a butyric-to-acetic acid ratio (BA/AA ratio) of 31.3g/g from 83.3g/L of glucose. By further knocking out the hydA gene (encoding hydrogenase) in the HCBEKW strain, the butyric acid titer was not further improved in batch fermentation. However, the BA/AA ratio (28.5g/g) obtained with the HYCBEKW strain (pta(-), buk(-), ctfB(-), adhE1(-) and hydA(-)) was 1.6 times higher than that (18.2g/g) obtained with the HCBEKW strain at pH 5.0, while no improvement was observed at pH 6.0. These results suggested that the buk gene knockout was essential to get a high butyric acid selectivity to acetic acid in C. acetobutylicum. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Impacts of Sampling and Handling Procedures on DNA- and RNA-based Microbial Characterization and Quantification of Groundwater and Saturated Soil

    DTIC Science & Technology

    2012-07-01

    use of molecular biological techniques (MBTs) has allowed microbial ecologists and environmental engineers to determine microbial community...metabolic genes). The most common approaches used in bioremediation research are those based on the polymerase chain reaction (PCR) amplification of... bioremediation . Because of its sensitivity compared to direct hybridization/probing, PCR is increasingly used to analyze groundwater samples and soil samples

  7. Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering.

    PubMed

    Cotten, Cameron; Reed, Jennifer L

    2013-05-01

    In recent years, a growing number of metabolic engineering strain design techniques have employed constraint-based modeling to determine metabolic and regulatory network changes which are needed to improve chemical production. These methods use systems-level analysis of metabolism to help guide experimental efforts by identifying deletions, additions, downregulations, and upregulations of metabolic genes that will increase biological production of a desired metabolic product. In this work, we propose a new strain design method with continuous modifications (CosMos) that provides strategies for deletions, downregulations, and upregulations of fluxes that will lead to the production of the desired products. The method is conceptually simple and easy to implement, and can provide additional strategies over current approaches. We found that the method was able to find strain design strategies that required fewer modifications and had larger predicted yields than strategies from previous methods in example and genome-scale networks. Using CosMos, we identified modification strategies for producing a variety of metabolic products, compared strategies derived from Escherichia coli and Saccharomyces cerevisiae metabolic models, and examined how imperfect implementation may affect experimental outcomes. This study gives a powerful and flexible technique for strain engineering and examines some of the unexpected outcomes that may arise when strategies are implemented experimentally. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Volatile science? Metabolic engineering of terpenoids in plants.

    PubMed

    Aharoni, Asaph; Jongsma, Maarten A; Bouwmeester, Harro J

    2005-12-01

    Terpenoids are important for plant survival and also possess biological properties that are beneficial to humans. Here, we describe the state of the art in terpenoid metabolic engineering, showing that significant progress has been made over the past few years. Subcellular targeting of enzymes has demonstrated that terpenoid precursors in subcellular compartments are not as strictly separated as previously thought and that multistep pathway engineering is feasible, even across cell compartments. These engineered plants show that insect behavior is influenced by terpenoids. In the future, we expect rapid progress in the engineering of terpenoid production in plants. In addition to commercial applications, such transgenic plants should increase our understanding of the biological relevance of these volatile secondary metabolites.

  9. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries.

    PubMed

    Hong, Kuk-Ki; Nielsen, Jens

    2012-08-01

    Metabolic engineering is the enabling science of development of efficient cell factories for the production of fuels, chemicals, pharmaceuticals, and food ingredients through microbial fermentations. The yeast Saccharomyces cerevisiae is a key cell factory already used for the production of a wide range of industrial products, and here we review ongoing work, particularly in industry, on using this organism for the production of butanol, which can be used as biofuel, and isoprenoids, which can find a wide range of applications including as pharmaceuticals and as biodiesel. We also look into how engineering of yeast can lead to improved uptake of sugars that are present in biomass hydrolyzates, and hereby allow for utilization of biomass as feedstock in the production of fuels and chemicals employing S. cerevisiae. Finally, we discuss the perspectives of how technologies from systems biology and synthetic biology can be used to advance metabolic engineering of yeast.

  10. Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications.

    PubMed

    Gu, Yang; Xu, Xianhao; Wu, Yaokang; Niu, Tengfei; Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Liu, Long

    2018-05-15

    Bacillus subtilis is the most characterized gram-positive bacterium that has significant attributes, such as growing well on cheap carbon sources, possessing clear inherited backgrounds, having mature genetic manipulation methods, and exhibiting robustness in large-scale fermentations. Till date, B. subtilis has been identified as attractive hosts for the production of recombinant proteins and chemicals. By applying various systems and synthetic biology tools, the productivity features of B. subtilis can be thoroughly analyzed and further optimized via metabolic engineering. In the present review, we discussed why B. subtilis is the primary organisms used for metabolic engineering and industrial applications. Additionally, we summarized the recent advances in systems and synthetic biology, engineering strategies for improving cellular performances, and metabolic engineering applications of B. subtilis. In particular, we proposed emerging opportunities and essential strategies to enable the successful development of B. subtilis as microbial cell factories. Copyright © 2018. Published by Elsevier Inc.

  11. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parisutham, Vinuselvi; Chandran, Sathesh-Prabu; Mukhopadhyay, Aindrila

    Complete hydrolysis of cellulose has been noted as a key characteristic of biomass technology due to the limitation of industrial production hosts to use cellodextrin, the partial hydrolysis product of cellulose. Cellobiose, a β-1,4-linked glucose dimer, is a major cellodextrin of the enzymatic hydrolysis (via endoglucanase and exoglucanase) of cellulose. Conversion of cellobiose to glucose is executed by β-glucosidase. The complete extracellular hydrolysis of celluloses has several critical barriers in biomass technology. An alternative bioengineering strategy to make the bioprocessing less challenging is to engineer microbes with the abilities to hydrolyze and assimilate the cellulosic-hydrolysate cellodextrin. Microorganisms engineered to metabolizemore » cellobiose rather than the monomeric glucose can provide several advantages for lignocellulose-based biorefineries. This review describes the recent advances and challenges in engineering efficient intracellular cellobiose metabolism in industrial hosts. This review also describes the limitations of and future prospectives in engineering intracellular cellobiose metabolism.« less

  12. Efflux systems in bacteria and their metabolic engineering applications.

    PubMed

    Jones, Christopher M; Hernández Lozada, Néstor J; Pfleger, Brian F

    2015-11-01

    The production of valuable chemicals from metabolically engineered microbes can be limited by excretion from the cell. Efflux is often overlooked as a bottleneck in metabolic pathways, despite its impact on alleviating feedback inhibition and product toxicity. In the past, it has been assumed that endogenous efflux pumps and membrane porins can accommodate product efflux rates; however, there are an increasing number of examples wherein overexpressing efflux systems is required to improve metabolite production. In this review, we highlight specific examples from the literature where metabolite export has been studied to identify unknown transporters, increase tolerance to metabolites, and improve the production capabilities of engineered bacteria. The review focuses on the export of a broad spectrum of valuable chemicals including amino acids, sugars, flavins, biofuels, and solvents. The combined set of examples supports the hypothesis that efflux systems can be identified and engineered to confer export capabilities on industrially relevant microbes.

  13. Single cell assessment of yeast metabolic engineering for enhanced lipid production using Raman and AFM-IR imaging.

    PubMed

    Kochan, Kamila; Peng, Huadong; Wood, Bayden R; Haritos, Victoria S

    2018-01-01

    Biodiesel is a valuable renewable fuel made from derivatized fatty acids produced in plants, animals, and oleaginous microbes. Of the latter, yeasts are of special interest due to their wide use in biotechnology, ability to synthesize fatty acids and store large amounts of triacylglycerols while utilizing non-food carbon sources. While yeast efficiently produce lipids, genetic modification and indeed, lipid pathway metabolic engineering, is usually required for cost-effective production. Traditionally, gas chromatography (GC) is used to measure fatty acid production and to track the success of a metabolic engineering strategy in a microbial culture; here we have employed vibrational spectroscopy approaches at population and single cell level of engineered yeast while simultaneously investigating metabolite levels in subcellular structures. Firstly, a strong correlation ( r 2  > 0.99) was established between Fourier transform infrared (FTIR) lipid in intact cells and GC analysis of fatty acid methyl esters in the differently engineered strains. Confocal Raman spectroscopy of individual cells carrying genetic modifications to enhance fatty acid synthesis and lipid accumulation revealed changes to the lipid body (LB), the storage organelle for lipids in yeast, with their number increasing markedly (up to tenfold higher); LB size was almost double in the strain that also expressed a LB stabilizing gene but considerable variation was also noted between cells. Raman spectroscopy revealed a clear trend toward reduced unsaturated fatty acid content in lipids of cells carrying more complex metabolic engineering. Atomic force microscopy-infrared spectroscopy (AFM-IR) analysis of individual cells indicated large differences in subcellular constituents between strains: cells of the most highly engineered strain had elevated lipid and much reduced carbohydrate in their cytoplasm compared with unmodified cells. Vibrational spectroscopy analysis allowed the simultaneous measurement of strain variability in metabolite production and impact on cellular structures as a result of different gene introductions or knockouts, within a lipid metabolic engineering strategy and these inform the next steps in comprehensive lipid engineering. Additionally, single cell spectroscopic analysis measures heterogeneity in metabolite production across microbial cultures under genetic modification, an emerging issue for efficient biotechnological production.

  14. Redesigning metabolism based on orthogonality principles

    PubMed Central

    Pandit, Aditya Vikram; Srinivasan, Shyam; Mahadevan, Radhakrishnan

    2017-01-01

    Modifications made during metabolic engineering for overproduction of chemicals have network-wide effects on cellular function due to ubiquitous metabolic interactions. These interactions, that make metabolic network structures robust and optimized for cell growth, act to constrain the capability of the cell factory. To overcome these challenges, we explore the idea of an orthogonal network structure that is designed to operate with minimal interaction between chemical production pathways and the components of the network that produce biomass. We show that this orthogonal pathway design approach has significant advantages over contemporary growth-coupled approaches using a case study on succinate production. We find that natural pathways, fundamentally linked to biomass synthesis, are less orthogonal in comparison to synthetic pathways. We suggest that the use of such orthogonal pathways can be highly amenable for dynamic control of metabolism and have other implications for metabolic engineering. PMID:28555623

  15. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose.

    PubMed

    Kawaguchi, Hideo; Yoshihara, Kumiko; Hara, Kiyotaka Y; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2018-05-17

    L-Arabinose is the second most abundant component of hemicellulose in lignocellulosic biomass, next to D-xylose. However, few microorganisms are capable of utilizing pentoses, and catabolic genes and operons enabling bacterial utilization of pentoses are typically subject to carbon catabolite repression by more-preferred carbon sources, such as D-glucose, leading to a preferential utilization of D-glucose over pentoses. In order to simultaneously utilize both D-glucose and L-arabinose at the same rate, a modified metabolic pathway was rationally designed based on metabolome analysis. Corynebacterium glutamicum ATCC 31831 utilized D-glucose and L-arabinose simultaneously at a low concentration (3.6 g/L each) but preferentially utilized D-glucose over L-arabinose at a high concentration (15 g/L each), although L-arabinose and D-glucose were consumed at comparable rates in the absence of the second carbon source. Metabolome analysis revealed that phosphofructokinase and pyruvate kinase were major bottlenecks for D-glucose and L-arabinose metabolism, respectively. Based on the results of metabolome analysis, a metabolic pathway was engineered by overexpressing pyruvate kinase in combination with deletion of araR, which encodes a repressor of L-arabinose uptake and catabolism. The recombinant strain utilized high concentrations of D-glucose and L-arabinose (15 g/L each) at the same consumption rate. During simultaneous utilization of both carbon sources at high concentrations, intracellular levels of phosphoenolpyruvate declined and acetyl-CoA levels increased significantly as compared with the wild-type strain that preferentially utilized D-glucose. These results suggest that overexpression of pyruvate kinase in the araR deletion strain increased the specific consumption rate of L-arabinose and that citrate synthase activity becomes a new bottleneck in the engineered pathway during the simultaneous utilization of D-glucose and L-arabinose. Metabolome analysis identified potential bottlenecks in D-glucose and L-arabinose metabolism and was then applied to the following rational metabolic engineering. Manipulation of only two genes enabled simultaneous utilization of D-glucose and L-arabinose at the same rate in metabolically engineered C. glutamicum. This is the first report of rational metabolic design and engineering for simultaneous hexose and pentose utilization without inactivating the phosphotransferase system.

  16. Large-Scale Bi-Level Strain Design Approaches and Mixed-Integer Programming Solution Techniques

    PubMed Central

    Kim, Joonhoon; Reed, Jennifer L.; Maravelias, Christos T.

    2011-01-01

    The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering. PMID:21949695

  17. Large-scale bi-level strain design approaches and mixed-integer programming solution techniques.

    PubMed

    Kim, Joonhoon; Reed, Jennifer L; Maravelias, Christos T

    2011-01-01

    The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering.

  18. Thoughts on the Teaching of Metabolism

    ERIC Educational Resources Information Center

    Metzger, Robert P.

    2006-01-01

    Systems biology, metabolomics, metabolic engineering, and other recent developments in biochemistry suggest that future biochemists will require a detailed familiarity with the compounds and pathways of intermediary metabolism and their biochemical control. The challenge to the biochemistry instructor is the presentation of metabolic pathways in a…

  19. Metabolic engineering of Cyanobacteria and microalgae for enhanced production of biofuels and high-value products.

    PubMed

    Gomaa, M A; Al-Haj, L; Abed, R M M

    2016-10-01

    A lot of research has been performed on Cyanobacteria and microalgae with the aim to produce numerous biotechnological products. However, native strains have a few shortcomings, like limitations in cultivation, harvesting and product extraction, which prevents reaching optimal production value at lowest costs. Such limitations require the intervention of genetic engineering to produce strains with superior properties. Promising advancements in the cultivation of Cyanobacteria and microalgae have been achieved by improving photosynthetic efficiency through increasing RuBisCO activity and truncation of light-harvesting antennae. Genetic engineering has also contributed to final product extraction by inducing autolysis and product secretory systems, to enable direct product recovery without going through costly extraction steps. In this review, we summarize the different enzymes and pathways that have been targeted thus far for improving cultivation aspects, harvesting and product extraction in Cyanobacteria and microalgae. With synthetic biology advancements, genetically engineered strains can be generated to resolve demanding process issues and achieve economic practicality. This comprehensive overview of gene modifications will be useful to researchers in the field to employ on their strains to increase their yields and improve the economic feasibility of the production process. © 2016 The Society for Applied Microbiology.

  20. Protein and metabolic engineering for the production of organic acids.

    PubMed

    Liu, Jingjing; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2017-09-01

    Organic acids are natural metabolites of living organisms. They have been widely applied in the food, pharmaceutical, and bio-based materials industries. In recent years, biotechnological routes to organic acids production from renewable raw materials have been regarded as very promising approaches. In this review, we provide an overview of current developments in the production of organic acids using protein and metabolic engineering strategies. The organic acids include propionic acid, pyruvate, itaconic acid, succinic acid, fumaric acid, malic acid and citric acid. We also expect that rapid developments in the fields of systems biology and synthetic biology will accelerate protein and metabolic engineering for microbial organic acid production in the future. Copyright © 2017. Published by Elsevier Ltd.

  1. Light-optimized growth of cyanobacterial cultures: Growth phases and productivity of biomass and secreted molecules in light-limited batch growth.

    PubMed

    Clark, Ryan L; McGinley, Laura L; Purdy, Hugh M; Korosh, Travis C; Reed, Jennifer L; Root, Thatcher W; Pfleger, Brian F

    2018-03-27

    Cyanobacteria are photosynthetic microorganisms whose metabolism can be modified through genetic engineering for production of a wide variety of molecules directly from CO 2 , light, and nutrients. Diverse molecules have been produced in small quantities by engineered cyanobacteria to demonstrate the feasibility of photosynthetic biorefineries. Consequently, there is interest in engineering these microorganisms to increase titer and productivity to meet industrial metrics. Unfortunately, differing experimental conditions and cultivation techniques confound comparisons of strains and metabolic engineering strategies. In this work, we discuss the factors governing photoautotrophic growth and demonstrate nutritionally replete conditions in which a model cyanobacterium can be grown to stationary phase with light as the sole limiting substrate. We introduce a mathematical framework for understanding the dynamics of growth and product secretion in light-limited cyanobacterial cultures. Using this framework, we demonstrate how cyanobacterial growth in differing experimental systems can be easily scaled by the volumetric photon delivery rate using the model organisms Synechococcus sp. strain PCC7002 and Synechococcus elongatus strain UTEX2973. We use this framework to predict scaled up growth and product secretion in 1L photobioreactors of two strains of Synechococcus PCC7002 engineered for production of l-lactate or L-lysine. The analytical framework developed in this work serves as a guide for future metabolic engineering studies of cyanobacteria to allow better comparison of experiments performed in different experimental systems and to further investigate the dynamics of growth and product secretion. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Pyruvate decarboxylase and alcohol dehydrogenase overexpression in Escherichia coli resulted in high ethanol production and rewired metabolic enzyme networks.

    PubMed

    Yang, Mingfeng; Li, Xuefeng; Bu, Chunya; Wang, Hui; Shi, Guanglu; Yang, Xiushan; Hu, Yong; Wang, Xiaoqin

    2014-11-01

    Pyruvate decarboxylase and alcohol dehydrogenase are efficient enzymes for ethanol production in Zymomonas mobilis. These two enzymes were over-expressed in Escherichia coli, a promising candidate for industrial ethanol production, resulting in high ethanol production in the engineered E. coli. To investigate the intracellular changes to the enzyme overexpression for homoethanol production, 2-DE and LC-MS/MS were performed. More than 1,000 protein spots were reproducibly detected in the gel by image analysis. Compared to the wild-type, 99 protein spots showed significant changes in abundance in the recombinant E. coli, in which 46 were down-regulated and 53 were up-regulated. Most proteins related to tricarboxylic acid cycle, glycerol metabolism and other energy metabolism were up-regulated, whereas proteins involved in glycolysis and glyoxylate pathway were down-regulated, indicating the rewired metabolism in the engineered E. coli. As glycolysis is the main pathway for ethanol production, and it was inhibited significantly in engineered E. coli, further efforts should be directed at minimizing the repression of glycolysis to optimize metabolism network for higher yields of ethanol production.

  3. Use of randomized sampling for analysis of metabolic networks.

    PubMed

    Schellenberger, Jan; Palsson, Bernhard Ø

    2009-02-27

    Genome-scale metabolic network reconstructions in microorganisms have been formulated and studied for about 8 years. The constraint-based approach has shown great promise in analyzing the systemic properties of these network reconstructions. Notably, constraint-based models have been used successfully to predict the phenotypic effects of knock-outs and for metabolic engineering. The inherent uncertainty in both parameters and variables of large-scale models is significant and is well suited to study by Monte Carlo sampling of the solution space. These techniques have been applied extensively to the reaction rate (flux) space of networks, with more recent work focusing on dynamic/kinetic properties. Monte Carlo sampling as an analysis tool has many advantages, including the ability to work with missing data, the ability to apply post-processing techniques, and the ability to quantify uncertainty and to optimize experiments to reduce uncertainty. We present an overview of this emerging area of research in systems biology.

  4. Two-Scale 13C Metabolic Flux Analysis for Metabolic Engineering.

    PubMed

    Ando, David; Garcia Martin, Hector

    2018-01-01

    Accelerating the Design-Build-Test-Learn (DBTL) cycle in synthetic biology is critical to achieving rapid and facile bioengineering of organisms for the production of, e.g., biofuels and other chemicals. The Learn phase involves using data obtained from the Test phase to inform the next Design phase. As part of the Learn phase, mathematical models of metabolic fluxes give a mechanistic level of comprehension to cellular metabolism, isolating the principle drivers of metabolic behavior from the peripheral ones, and directing future experimental designs and engineering methodologies. Furthermore, the measurement of intracellular metabolic fluxes is specifically noteworthy as providing a rapid and easy-to-understand picture of how carbon and energy flow throughout the cell. Here, we present a detailed guide to performing metabolic flux analysis in the Learn phase of the DBTL cycle, where we show how one can take the isotope labeling data from a 13 C labeling experiment and immediately turn it into a determination of cellular fluxes that points in the direction of genetic engineering strategies that will advance the metabolic engineering process.For our modeling purposes we use the Joint BioEnergy Institute (JBEI) Quantitative Metabolic Modeling (jQMM) library, which provides an open-source, python-based framework for modeling internal metabolic fluxes and making actionable predictions on how to modify cellular metabolism for specific bioengineering goals. It presents a complete toolbox for performing different types of flux analysis such as Flux Balance Analysis, 13 C Metabolic Flux Analysis, and it introduces the capability to use 13 C labeling experimental data to constrain comprehensive genome-scale models through a technique called two-scale 13 C Metabolic Flux Analysis (2S- 13 C MFA) [1]. In addition to several other capabilities, the jQMM is also able to predict the effects of knockouts using the MoMA and ROOM methodologies. The use of the jQMM library is illustrated through a step-by-step demonstration, which is also contained in a digital Jupyter Notebook format that enhances reproducibility and provides the capability to be adopted to the user's specific needs. As an open-source software project, users can modify and extend the code base and make improvements at will, providing a base for future modeling efforts.

  5. Engineering Microbial Metabolite Dynamics and Heterogeneity.

    PubMed

    Schmitz, Alexander C; Hartline, Christopher J; Zhang, Fuzhong

    2017-10-01

    As yields for biological chemical production in microorganisms approach their theoretical maximum, metabolic engineering requires new tools, and approaches for improvements beyond what traditional strategies can achieve. Engineering metabolite dynamics and metabolite heterogeneity is necessary to achieve further improvements in product titers, productivities, and yields. Metabolite dynamics, the ensemble change in metabolite concentration over time, arise from the need for microbes to adapt their metabolism in response to the extracellular environment and are important for controlling growth and productivity in industrial fermentations. Metabolite heterogeneity, the cell-to-cell variation in a metabolite concentration in an isoclonal population, has a significant impact on ensemble productivity. Recent advances in single cell analysis enable a more complete understanding of the processes driving metabolite heterogeneity and reveal metabolic engineering targets. The authors present an overview of the mechanistic origins of metabolite dynamics and heterogeneity, why they are important, their potential effects in chemical production processes, and tools and strategies for engineering metabolite dynamics and heterogeneity. The authors emphasize that the ability to control metabolite dynamics and heterogeneity will bring new avenues of engineering to increase productivity of microbial strains. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasoreck, Elise K.; Su, Jin; Silverman, Ian M.

    The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were similar to 4300-fold higher in C and CN lines than in N, but all accumulated similar to 150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level ofmore » transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. In conclusion, the mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering.« less

  7. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling

    DOE PAGES

    Pasoreck, Elise K.; Su, Jin; Silverman, Ian M.; ...

    2016-03-08

    The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were similar to 4300-fold higher in C and CN lines than in N, but all accumulated similar to 150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level ofmore » transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. In conclusion, the mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering.« less

  8. Analytic Models of Oxygen and Nutrient Diffusion, Metabolism Dynamics, and Architecture Optimization in Three-Dimensional Tissue Constructs with Applications and Insights in Cerebral Organoids

    PubMed Central

    2016-01-01

    Diffusion models are important in tissue engineering as they enable an understanding of gas, nutrient, and signaling molecule delivery to cells in cell cultures and tissue constructs. As three-dimensional (3D) tissue constructs become larger, more intricate, and more clinically applicable, it will be essential to understand internal dynamics and signaling molecule concentrations throughout the tissue and whether cells are receiving appropriate nutrient delivery. Diffusion characteristics present a significant limitation in many engineered tissues, particularly for avascular tissues and for cells whose viability, differentiation, or function are affected by concentrations of oxygen and nutrients. This article seeks to provide novel analytic solutions for certain cases of steady-state and nonsteady-state diffusion and metabolism in basic 3D construct designs (planar, cylindrical, and spherical forms), solutions that would otherwise require mathematical approximations achieved through numerical methods. This model is applied to cerebral organoids, where it is shown that limitations in diffusion and organoid size can be partially overcome by localizing metabolically active cells to an outer layer in a sphere, a regionalization process that is known to occur through neuroglial precursor migration both in organoids and in early brain development. The given prototypical solutions include a review of metabolic information for many cell types and can be broadly applied to many forms of tissue constructs. This work enables researchers to model oxygen and nutrient delivery to cells, predict cell viability, study dynamics of mass transport in 3D tissue constructs, design constructs with improved diffusion capabilities, and accurately control molecular concentrations in tissue constructs that may be used in studying models of development and disease or for conditioning cells to enhance survival after insults like ischemia or implantation into the body, thereby providing a framework for better understanding and exploring the characteristics and behaviors of engineered tissue constructs. PMID:26650970

  9. Getting the big beast to work--systems biotechnology of Bacillus megaterium for novel high-value proteins.

    PubMed

    Korneli, Claudia; David, Florian; Biedendieck, Rebekka; Jahn, Dieter; Wittmann, Christoph

    2013-01-20

    The high industrial relevance of the soil bacterium Bacillus megaterium as host for recombinant proteins is driving systems-wide analyses of its metabolic and regulatory networks. The present review highlights novel systems biology tools available to unravel the various cellular components on the level of metabolic and regulatory networks. These provide a rational platform for systems metabolic engineering of B. megaterium. In line, a number of interesting studies have particularly focused on studying recombinant B. megaterium in its industrial bioprocess environment thus integrating systems metabolic engineering with systems biotechnology and providing the full picture toward optimal processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Murine precision-cut lung slices exhibit acute responses following exposure to gasoline direct injection engine emissions.

    PubMed

    Maikawa, Caitlin L; Zimmerman, Naomi; Rais, Khaled; Shah, Mittal; Hawley, Brie; Pant, Pallavi; Jeong, Cheol-Heon; Delgado-Saborit, Juana Maria; Volckens, John; Evans, Greg; Wallace, James S; Godri Pollitt, Krystal J

    2016-10-15

    Gasoline direct injection (GDI) engines are increasingly prevalent in the global vehicle fleet. Particulate matter emissions from GDI engines are elevated compared to conventional gasoline engines. The pulmonary effects of these higher particulate emissions are unclear. This study investigated the pulmonary responses induced by GDI engine exhaust using an ex vivo model. The physiochemical properties of GDI engine exhaust were assessed. Precision cut lung slices were prepared using Balb/c mice to evaluate the pulmonary response induced by one-hour exposure to engine-out exhaust from a laboratory GDI engine operated at conditions equivalent to vehicle highway cruise conditions. Lung slices were exposed at an air-liquid interface using an electrostatic aerosol in vitro exposure system. Particulate and gaseous exhaust was fractionated to contrast mRNA production related to polycyclic aromatic hydrocarbon (PAH) metabolism and oxidative stress. Exposure to GDI engine exhaust upregulated genes involved in PAH metabolism, including Cyp1a1 (2.71, SE=0.22), and Cyp1b1 (3.24, SE=0.12) compared to HEPA filtered air (p<0.05). GDI engine exhaust further increased Cyp1b1 expression compared to filtered GDI engine exhaust (i.e., gas fraction only), suggesting this response was associated with the particulate fraction. Exhaust particulate was dominated by high molecular weight PAHs. Hmox1, an oxidative stress marker, exhibited increased expression after exposure to GDI (1.63, SE=0.03) and filtered GDI (1.55, SE=0.04) engine exhaust compared to HEPA filtered air (p<0.05), likely attributable to a combination of the gas and particulate fractions. Exposure to GDI engine exhaust contributes to upregulation of genes related to the metabolism of PAHs and oxidative stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Toward Systems Metabolic Engineering of Streptomycetes for Secondary Metabolites Production.

    PubMed

    Robertsen, Helene Lunde; Weber, Tilmann; Kim, Hyun Uk; Lee, Sang Yup

    2018-01-01

    Streptomycetes are known for their inherent ability to produce pharmaceutically relevant secondary metabolites. Discovery of medically useful, yet novel compounds has become a great challenge due to frequent rediscovery of known compounds and a consequent decline in the number of relevant clinical trials in the last decades. A paradigm shift took place when the first whole genome sequences of streptomycetes became available, from which silent or "cryptic" biosynthetic gene clusters (BGCs) were discovered. Cryptic BGCs reveal a so far untapped potential of the microorganisms for the production of novel compounds, which has spurred new efforts in understanding the complex regulation between primary and secondary metabolism. This new trend has been accompanied with development of new computational resources (genome and compound mining tools), generation of various high-quality omics data, establishment of molecular tools, and other strain engineering strategies. They all come together to enable systems metabolic engineering of streptomycetes, allowing more systematic and efficient strain development. In this review, the authors present recent progresses within systems metabolic engineering of streptomycetes for uncovering their hidden potential to produce novel compounds and for the improved production of secondary metabolites. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. De Novo Metabolic Engineering and the Promise of Synthetic DNA

    NASA Astrophysics Data System (ADS)

    Klein-Marcuschamer, Daniel; Yadav, Vikramaditya G.; Ghaderi, Adel; Stephanopoulos, Gregory N.

    The uncertain price and tight supply of crude oil and the ever-increasing demand for clean energy have prompted heightened attention to the development of sustainable fuel technologies that ensure continued economic development while maintaining stewardship of the environment. In the face of these enormous challenges, biomass has emerged as a viable alternative to petroleum for the production of energy, chemicals, and materials owing to its abundance, inexpensiveness, and carbon-neutrality. Moreover, the immense ease and efficiency of biological systems at converting biomass-derived feedstocks into fuels, chemicals, and materials has generated renewed interest in biotechnology as a replacement for traditional chemical processes. Aided by the ever-expanding repertoire of microbial genetics and plant biotechnology, improved understanding of gene regulation and cellular metabolism, and incessantly accumulating gene and protein data, scientists are now contemplating engineering microbial cell factories to produce fuels, chemical feedstocks, polymers and pharmaceuticals in an economically and environmentally sustainable way. This goal resonates with that of metabolic engineering - the improvement of cellular properties through the intelligent design, rational modification, or directed evolution of biochemical pathways, and arguably, metabolic engineering seems best positioned to achieve the concomittant goals of environmental stewardship and economic prolificity.

  13. Systematic engineering of TCA cycle for optimal production of a four-carbon platform chemical 4-hydroxybutyric acid in Escherichia coli.

    PubMed

    Choi, Sol; Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2016-11-01

    To address climate change and environmental problems, it is becoming increasingly important to establish biorefineries for the production of chemicals from renewable non-food biomass. Here we report the development of Escherichia coli strains capable of overproducing a four-carbon platform chemical 4-hybroxybutyric acid (4-HB). Because 4-HB production is significantly affected by aeration level, genome-scale metabolic model-based engineering strategies were designed under aerobic and microaerobic conditions with emphasis on oxidative/reductive TCA branches and glyoxylate shunt. Several different metabolic engineering strategies were employed to develop strains suitable for fermentation both under aerobic and microaerobic conditions. It was found that microaerobic condition was more efficient than aerobic condition in achieving higher titer and productivity of 4-HB. The final engineered strain produced 103.4g/L of 4-HB by microaerobic fed-batch fermentation using glycerol. The aeration-dependent optimization strategy of TCA cycle will be useful for developing microbial strains producing other reduced derivative chemicals of TCA cycle intermediates. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Prediction of dynamic behavior of mutant strains from limited wild-type data.

    PubMed

    Song, Hyun-Seob; Ramkrishna, Doraiswami

    2012-03-01

    Metabolic engineering is the field of introducing genetic changes in organisms so as to modify their function towards synthesizing new products of high impact to society. However, engineered cells frequently have impaired growth rates thus seriously limiting the rate at which such products are made. The problem is attributable to inadequate understanding of how a metabolic network functions in a dynamic sense. Predictions of mutant strain behavior in the past have been based on steady state theories such as flux balance analysis (FBA), minimization of metabolic adjustment (MOMA), and regulatory on/off minimization (ROOM). Such predictions are restricted to product yields and cannot address productivity, which is of focal interest to applications. We demonstrate that our framework ( [Song and Ramkrishna, 2010] and [Song and Ramkrishna, 2011]), based on a “cybernetic” view of metabolic systems, makes predictions of the dynamic behavior of mutant strains of Escherichia coli from a limited amount of data obtained from the wild-type. Dynamic frameworks must necessarily address the issue of metabolic regulation, which the cybernetic approach does by postulating that metabolism is an optimal dynamic response of the organism to the environment in driving reactions towards ensuring survival. The predictions made in this paper are without parallel in the literature and lay the foundation for rational metabolic engineering. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. The growth of tissue engineering.

    PubMed

    Lysaght, M J; Reyes, J

    2001-10-01

    This report draws upon data from a variety of sources to estimate the size, scope, and growth rate of the contemporary tissue engineering enterprise. At the beginning of 2001, tissue engineering research and development was being pursued by 3,300 scientists and support staff in more than 70 startup companies or business units with a combined annual expenditure of over $600 million. Spending by tissue engineering firms has been growing at a compound annual rate of 16%, and the aggregate investment since 1990 now exceeds $3.5 billion. At the beginning of 2001, the net capital value of the 16 publicly traded tissue engineering startups had reached $2.6 billion. Firms focusing on structural applications (skin, cartilage, bone, cardiac prosthesis, and the like) comprise the fastest growing segment. In contrast, efforts in biohybrid organs and other metabolic applications have contracted over the past few years. The number of companies involved in stem cells and regenerative medicine is rapidly increasing, and this area represents the most likely nidus of future growth for tissue engineering. A notable recent trend has been the emergence of a strong commercial activity in tissue engineering outside the United States, with at least 16 European or Australian companies (22% of total) now active.

  16. An engineered microbial platform for direct biofuel production from brown macroalgae.

    PubMed

    Wargacki, Adam J; Leonard, Effendi; Win, Maung Nyan; Regitsky, Drew D; Santos, Christine Nicole S; Kim, Peter B; Cooper, Susan R; Raisner, Ryan M; Herman, Asael; Sivitz, Alicia B; Lakshmanaswamy, Arun; Kashiyama, Yuki; Baker, David; Yoshikuni, Yasuo

    2012-01-20

    Prospecting macroalgae (seaweeds) as feedstocks for bioconversion into biofuels and commodity chemical compounds is limited primarily by the availability of tractable microorganisms that can metabolize alginate polysaccharides. Here, we present the discovery of a 36-kilo-base pair DNA fragment from Vibrio splendidus encoding enzymes for alginate transport and metabolism. The genomic integration of this ensemble, together with an engineered system for extracellular alginate depolymerization, generated a microbial platform that can simultaneously degrade, uptake, and metabolize alginate. When further engineered for ethanol synthesis, this platform enables bioethanol production directly from macroalgae via a consolidated process, achieving a titer of 4.7% volume/volume and a yield of 0.281 weight ethanol/weight dry macroalgae (equivalent to ~80% of the maximum theoretical yield from the sugar composition in macroalgae).

  17. [Advances in metabolic engineering for the microbial production of naturally occurring terpenes-limonene and bisabolene: a mini review].

    PubMed

    Pang, Yaru; Hu, Zhihui; Xiao, Dongguang; Yu, Aiqun

    2018-01-25

    Limonene (C₁₀H₁₆) and bisabolene (C₁₅H₂₄) are both naturally occurring terpenes in plants. Depending on the number of C₅ units, limonene and bisabolene are recognized as representative monoterpenes and sesquiterpenes, respectively. Limonene and bisabolene are important pharmaceutical and nutraceutical products used in the prevention and treatment of cancer and many other diseases. In addition, they can be used as starting materials to produce a range of commercially valuable products, such as pharmaceuticals, nutraceuticals, cosmetics, and biofuels. The low abundance or yield of limonene and bisabolene in plants renders their isolation from plant sources non-economically viable. Isolation of limonene and bisabolene from plants also suffers from low efficiency and often requires harsh reaction conditions, prolonged reaction times, and expensive equipment cost. Recently, the rapid developments in metabolic engineering of microbes provide a promising alternative route for producing these plant natural products. Therefore, producing limonene and bisabolene by engineering microbial cells into microbial factories is becoming an attractive alternative approach that can overcome the bottlenecks, making it more sustainable, environmentally friendly and economically competitive. Here, we reviewed the status of metabolic engineering of microbes that produce limonene and bisabolene including microbial hosts, key enzymes, metabolic pathways and engineering of limonene/bisabolene biosynthesis. Furthermore, key challenges and future perspectives were discussed.

  18. Development of a plasmid-based expression system in Clostridium thermocellum and its use to screen heterologous expression of bifunctional alcohol dehydrogenases (adhEs)

    DOE PAGES

    Hon, Shuen; Lanahan, Anthony; Tian, Liang; ...

    2016-04-22

    Clostridium thermocellum is a promising candidate for ethanol production from cellulosic biomass, but requires metabolic engineering to improve ethanol yield. A key gene in the ethanol production pathway is the bifunctional aldehyde and alcohol dehydrogenase, adhE. To explore the effects of overexpressing wild-type, mutant, and exogenous adhEs, we developed a new expression plasmid, pDGO144, that exhibited improved transformation efficiency and better gene expression than its predecessor, pDGO-66. This new expression plasmid will allow for many other metabolic engineering and basic research efforts in C. thermocellum. As proof of concept, we used this plasmid to express 12 different adhE genes (bothmore » wild type and mutant) from several organisms. Ethanol production varied between clones immediately after transformation, but tended to converge to a single value after several rounds of serial transfer. The previously described mutant C. thermocellum D494G adhE gave the best ethanol production, which is consistent with previously published results.« less

  19. Development of a plasmid-based expression system in Clostridium thermocellum and its use to screen heterologous expression of bifunctional alcohol dehydrogenases (adhEs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hon, Shuen; Lanahan, Anthony; Tian, Liang

    Clostridium thermocellum is a promising candidate for ethanol production from cellulosic biomass, but requires metabolic engineering to improve ethanol yield. A key gene in the ethanol production pathway is the bifunctional aldehyde and alcohol dehydrogenase, adhE. To explore the effects of overexpressing wild-type, mutant, and exogenous adhEs, we developed a new expression plasmid, pDGO144, that exhibited improved transformation efficiency and better gene expression than its predecessor, pDGO-66. This new expression plasmid will allow for many other metabolic engineering and basic research efforts in C. thermocellum. As proof of concept, we used this plasmid to express 12 different adhE genes (bothmore » wild type and mutant) from several organisms. Ethanol production varied between clones immediately after transformation, but tended to converge to a single value after several rounds of serial transfer. The previously described mutant C. thermocellum D494G adhE gave the best ethanol production, which is consistent with previously published results.« less

  20. Development of a plasmid-based expression system in Clostridium thermocellum and its use to screen heterologous expression of bifunctional alcohol dehydrogenases (adhEs).

    PubMed

    Hon, Shuen; Lanahan, Anthony A; Tian, Liang; Giannone, Richard J; Hettich, Robert L; Olson, Daniel G; Lynd, Lee R

    2016-12-01

    Clostridium thermocellum is a promising candidate for ethanol production from cellulosic biomass, but requires metabolic engineering to improve ethanol yield. A key gene in the ethanol production pathway is the bifunctional aldehyde and alcohol dehydrogenase, adhE . To explore the effects of overexpressing wild-type, mutant, and exogenous adhE s, we developed a new expression plasmid, pDGO144, that exhibited improved transformation efficiency and better gene expression than its predecessor, pDGO-66. This new expression plasmid will allow for many other metabolic engineering and basic research efforts in C. thermocellum . As proof of concept, we used this plasmid to express 12 different adhE genes (both wild type and mutant) from several organisms. Ethanol production varied between clones immediately after transformation, but tended to converge to a single value after several rounds of serial transfer. The previously described mutant C. thermocellum D494G adhE gave the best ethanol production, which is consistent with previously published results.

  1. Metabolic Engineering for the Production of Natural Products

    PubMed Central

    Pickens, Lauren B.; Tang, Yi; Chooi, Yit-Heng

    2014-01-01

    Natural products and natural product derived compounds play an important role in modern healthcare as frontline treatments for many diseases and as inspiration for chemically synthesized therapeutics. With advances in sequencing and recombinant DNA technology, many of the biosynthetic pathways responsible for the production of these chemically complex and pharmaceutically valuable compounds have been elucidated. With an ever expanding toolkit of biosynthetic components, metabolic engineering is an increasingly powerful method to improve natural product titers and generate novel compounds. Heterologous production platforms have enabled access to pathways from difficult to culture strains; systems biology and metabolic modeling tools have resulted in increasing predictive and analytic capabilities; advances in expression systems and regulation have enabled the fine-tuning of pathways for increased efficiency, and characterization of individual pathway components has facilitated the construction of hybrid pathways for the production of new compounds. These advances in the many aspects of metabolic engineering have not only yielded fascinating scientific discoveries but also make it an increasingly viable approach for the optimization of natural product biosynthesis. PMID:22432617

  2. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit

    PubMed Central

    Gupta, Apoorv; Brockman Reizman, Irene M.; Reisch, Christopher R.; Prather, Kristala L. J.

    2017-01-01

    Metabolic engineering of microorganisms to produce desirable products on an industrial scale can result in unbalanced cellular metabolic networks that reduce productivity and yield. Metabolic fluxes can be rebalanced using dynamic pathway regulation, but few broadly applicable tools are available to achieve this. We present a pathway-independent genetic control module that can be used to dynamically regulate the expression of target genes. We applied our module to identify the optimal point to redirect glycolytic flux into heterologous engineered pathways in Escherichia coli, resulting in 5.5-fold increased titres of myo-inositol and titers of glucaric acid that improved from unmeasurable quantities to >0.8 g/L. Scaled-up production in benchtop bioreactors resulted in almost 10-fold and 5-fold increases in titers of myo-inositol and glucaric acid. We also used our module to control flux into aromatic amino acid biosynthesis to increase titers of shikimate in E. coli from unmeasurable quantities to >100 mg/L. PMID:28191902

  3. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.

    PubMed

    Baritugo, Kei-Anne; Kim, Hee Taek; David, Yokimiko; Choi, Jong-Il; Hong, Soon Ho; Jeong, Ki Jun; Choi, Jong Hyun; Joo, Jeong Chan; Park, Si Jae

    2018-05-01

    Bio-based production of industrially important chemicals provides an eco-friendly alternative to current petrochemical-based processes. Because of the limited supply of fossil fuel reserves, various technologies utilizing microbial host strains for the sustainable production of platform chemicals from renewable biomass have been developed. Corynebacterium glutamicum is a non-pathogenic industrial microbial species traditionally used for L-glutamate and L-lysine production. It is a promising species for industrial production of bio-based chemicals because of its flexible metabolism that allows the utilization of a broad spectrum of carbon sources and the production of various amino acids. Classical breeding, systems, synthetic biology, and metabolic engineering approaches have been used to improve its applications, ranging from traditional amino-acid production to modern biorefinery systems for production of value-added platform chemicals. This review describes recent advances in the development of genetic engineering tools and techniques for the establishment and optimization of metabolic pathways for bio-based production of major C2-C6 platform chemicals using recombinant C. glutamicum.

  4. Recent advances in engineering propionyl-CoA metabolism for microbial production of value-added chemicals and biofuels.

    PubMed

    Srirangan, Kajan; Bruder, Mark; Akawi, Lamees; Miscevic, Dragan; Kilpatrick, Shane; Moo-Young, Murray; Chou, C Perry

    2017-09-01

    Diminishing fossil fuel reserves and mounting environmental concerns associated with petrochemical manufacturing practices have generated significant interests in developing whole-cell biocatalytic systems for the production of value-added chemicals and biofuels. Although acetyl-CoA is a common natural biogenic precursor for the biosynthesis of numerous metabolites, propionyl-CoA is unpopular and non-native to most organisms. Nevertheless, with its C3-acyl moiety as a discrete building block, propionyl-CoA can serve as another key biogenic precursor to several biological products of industrial importance. As a result, engineering propionyl-CoA metabolism, particularly in genetically tractable hosts with the use of inexpensive feedstocks, has paved an avenue for novel biomanufacturing. Herein, we present a systematic review on manipulation of propionyl-CoA metabolism as well as relevant genetic and metabolic engineering strategies for microbial production of value-added chemicals and biofuels, including odd-chain alcohols and organic acids, bio(co)polymers and polyketides. [Formula: see text].

  5. In Metabolic Engineering of Eukaryotic Microalgae: Potential and Challenges Come with Great Diversity

    PubMed Central

    Gimpel, Javier A.; Henríquez, Vitalia; Mayfield, Stephen P.

    2015-01-01

    The great phylogenetic diversity of microalgae is corresponded by a wide arrange of interesting and useful metabolites. Nonetheless metabolic engineering in microalgae has been limited, since specific transformation tools must be developed for each species for either the nuclear or chloroplast genomes. Microalgae as production platforms for metabolites offer several advantages over plants and other microorganisms, like the ability of GMO containment and reduced costs in culture media, respectively. Currently, microalgae have proved particularly well suited for the commercial production of omega-3 fatty acids and carotenoids. Therefore most metabolic engineering strategies have been developed for these metabolites. Microalgal biofuels have also drawn great attention recently, resulting in efforts for improving the production of hydrogen and photosynthates, particularly triacylglycerides. Metabolic pathways of microalgae have also been manipulated in order to improve photosynthetic growth under specific conditions and for achieving trophic conversion. Although these pathways are not strictly related to secondary metabolites, the synthetic biology approaches could potentially be translated to this field and will also be discussed. PMID:26696985

  6. Systems Biocatalysis: Development and engineering of cell-free "artificial metabolisms" for preparative multi-enzymatic synthesis.

    PubMed

    Fessner, Wolf-Dieter

    2015-12-25

    Systems Biocatalysis is an emerging concept of organizing enzymes in vitro to construct complex reaction cascades for an efficient, sustainable synthesis of valuable chemical products. The strategy merges the synthetic focus of chemistry with the modular design of biological systems, which is similar to metabolic engineering of cellular production systems but can be realized at a far lower level of complexity from a true reductionist approach. Such operations are free from material erosion by competing metabolic pathways, from kinetic restrictions by physical barriers and regulating circuits, and from toxicity problems with reactive foreign substrates, which are notorious problems in whole-cell systems. A particular advantage of cell-free concepts arises from the inherent opportunity to construct novel biocatalytic reaction systems for the efficient synthesis of non-natural products ("artificial metabolisms") by using enzymes specifically chosen or engineered for non-natural substrate promiscuity. Examples illustrating the technology from our laboratory are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol.

    PubMed

    Liu, Jianming; Chan, Siu Hung Joshua; Brock-Nannestad, Theis; Chen, Jun; Lee, Sang Yup; Solem, Christian; Jensen, Peter Ruhdal

    2016-07-01

    Biocompatible chemistry is gaining increasing attention because of its potential within biotechnology for expanding the repertoire of biological transformations carried out by enzymes. Here we demonstrate how biocompatible chemistry can be used for synthesizing valuable compounds as well as for linking metabolic pathways to achieve redox balance and rescued growth. By comprehensive rerouting of metabolism, activation of respiration, and finally metal ion catalysis, we successfully managed to convert the homolactic bacterium Lactococcus lactis into a homo-diacetyl producer with high titer (95mM or 8.2g/L) and high yield (87% of the theoretical maximum). Subsequently, the pathway was extended to (S,S)-2,3-butanediol (S-BDO) through efficiently linking two metabolic pathways via chemical catalysis. This resulted in efficient homo-S-BDO production with a titer of 74mM (6.7g/L) S-BDO and a yield of 82%. The diacetyl and S-BDO production rates and yields obtained are the highest ever reported, demonstrating the promising combination of metabolic engineering and biocompatible chemistry as well as the great potential of L. lactis as a new production platform. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum

    DOE PAGES

    Thompson, R. Adam; Layton, Donovan S.; Guss, Adam M.; ...

    2015-10-21

    Clostridium thermocellum is an anaerobic, Gram-positive, thermophilic bacterium that has generated great interest due to its ability to ferment lignocellulosic biomass to ethanol. However, ethanol production is low due to the complex and poorly understood branched metabolism of C. thermocellum, and in some cases overflow metabolism as well. In this work, we developed a predictive stoichiometric metabolic model for C. thermocellum which incorporates the current state of understanding, with particular attention to cofactor specificity in the atypical glycolytic enzymes and the complex energy, redox, and fermentative pathways with the goal of aiding metabolic engineering efforts. We validated the model smore » capability to encompass experimentally observed phenotypes for the parent strain and derived mutants designed for significant perturbation of redox and energy pathways. Metabolic flux distributions revealed significant alterations in key metabolic branch points (e.g., phosphoenol pyruvate, pyruvate, acetyl-CoA, and cofactor nodes) in engineered strains for channeling electron and carbon fluxes for enhanced ethanol synthesis, with the best performing strain doubling ethanol yield and titer compared to the parent strain. In silico predictions of a redox-imbalanced genotype incapable of growth were confirmed in vivo, and a mutant strain was used as a platform to probe redox bottlenecks in the central metabolism that hinder efficient ethanol production. The results highlight the robustness of the redox metabolism of C. thermocellum and the necessity of streamlined electron flux from reduced ferredoxin to NAD(P)H for high ethanol production. The model was further used to design a metabolic engineering strategy to phenotypically constrain C. thermocellum to achieve high ethanol yields while requiring minimal genetic manipulations. Furthermore, the model can be applied to design C. thermocellum as a platform microbe for consolidated bioprocessing to produce ethanol and other reduced metabolites.« less

  9. Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose.

    PubMed

    Gaida, Stefan Marcus; Liedtke, Andrea; Jentges, Andreas Heinz Wilhelm; Engels, Benedikt; Jennewein, Stefan

    2016-01-13

    Sustainable alternatives for the production of fuels and chemicals are needed to reduce our dependency on fossil resources and to avoid the negative impact of their excessive use on the global climate. Lignocellulosic feedstock from agricultural residues, energy crops and municipal solid waste provides an abundant and carbon-neutral alternative, but it is recalcitrant towards microbial degradation and must therefore undergo extensive pretreatment to release the monomeric sugar units used by biofuel-producing microbes. These pretreatment steps can be reduced by using microbes such as Clostridium cellulolyticum that naturally digest lignocellulose, but this limits the range of biofuels that can be produced. We therefore developed a metabolic engineering approach in C. cellulolyticum to expand its natural product spectrum and to fine tune the engineered metabolic pathways. Here we report the metabolic engineering of C. cellulolyticum to produce n-butanol, a next-generation biofuel and important chemical feedstock, directly from crystalline cellulose. We introduced the CoA-dependent pathway for n-butanol synthesis from C. acetobutylicum and measured the expression of functional enzymes (using targeted proteomics) and the abundance of metabolic intermediates (by LC-MS/MS) to identify potential bottlenecks in the n-butanol biosynthesis pathway. We achieved yields of 40 and 120 mg/L n-butanol from cellobiose and crystalline cellulose, respectively, after cultivating the bacteria for 6 and 20 days. The analysis of enzyme activities and key intracellular metabolites provides a robust framework to determine the metabolic flux through heterologous pathways in C. cellulolyticum, allowing further improvements by fine tuning individual steps to improve the yields of n-butanol.

  10. Osteocytes and Mechano-Transduction (Osteo-4)

    NASA Image and Video Library

    2015-04-19

    ISS043E122574 (04/19/2015) --- ESA (European Space Station) astronaut Samantha Cristoforetti, a flight engineer on the International Space Station, is seen here unpacking the recently arrived Osteo-4 experiment which was carried up on Spacex’s sixth Dragon resupply mission. Osteo-4 is performing research on how microgravity effects changes in the most common cell found in human bones to protect the health of future astronauts. This research could also have implications for patients on Earth in the treatment of bone disorders related to disuse or immobilization, as well as metabolic diseases such as osteoporosis.

  11. Microbial production of isoquinoline alkaloids as plant secondary metabolites based on metabolic engineering research.

    PubMed

    Sato, Fumihiko; Kumagai, Hidehiko

    2013-01-01

    Plants produce a variety of secondary metabolites that possess strong physiological activities. Unfortunately, however, their production can suffer from a variety of serious problems, including low levels of productivity and heterogeneous quality, as well as difficulty in raw material supply. In contrast, microorganisms can be used to produce their primary and some of their secondary metabolites in a controlled environment, thus assuring high levels of efficiency and uniform quality. In an attempt to overcome the problems associated with secondary metabolite production in plants, we developed a microbial platform for the production of plant isoquinoline alkaloids involving the unification of the microbial and plant metabolic pathways into a single system. The potential applications of this system have also been discussed.

  12. Microbial production of isoquinoline alkaloids as plant secondary metabolites based on metabolic engineering research

    PubMed Central

    SATO, Fumihiko; KUMAGAI, Hidehiko

    2013-01-01

    Plants produce a variety of secondary metabolites that possess strong physiological activities. Unfortunately, however, their production can suffer from a variety of serious problems, including low levels of productivity and heterogeneous quality, as well as difficulty in raw material supply. In contrast, microorganisms can be used to produce their primary and some of their secondary metabolites in a controlled environment, thus assuring high levels of efficiency and uniform quality. In an attempt to overcome the problems associated with secondary metabolite production in plants, we developed a microbial platform for the production of plant isoquinoline alkaloids involving the unification of the microbial and plant metabolic pathways into a single system. The potential applications of this system have also been discussed. PMID:23666088

  13. Application of metabolic engineering for the biotechnological production of L-valine.

    PubMed

    Oldiges, Marco; Eikmanns, Bernhard J; Blombach, Bastian

    2014-07-01

    The branched chain amino acid L-valine is an essential nutrient for higher organisms, such as animals and humans. Besides the pharmaceutical application in parenteral nutrition and as synthon for the chemical synthesis of e.g. herbicides or anti-viral drugs, L-valine is now emerging into the feed market, and significant increase of sales and world production is expected. In accordance, well-known microbial production bacteria, such as Escherichia coli and Corynebacterium glutamicum strains, have recently been metabolically engineered for efficient L-valine production under aerobic or anaerobic conditions, and the respective cultivation and production conditions have been optimized. This review summarizes the state of the art in L-valine biosynthesis and its regulation in E. coli and C. glutamicum with respect to optimal metabolic network for microbial L-valine production, genetic strain engineering and bioprocess development for L-valine production, and finally, it will shed light on emerging technologies that have the potential to accelerate strain and bioprocess engineering in the near future.

  14. Trans-methylation reactions in plants: focus on the activated methyl cycle.

    PubMed

    Rahikainen, Moona; Alegre, Sara; Trotta, Andrea; Pascual, Jesús; Kangasjärvi, Saijaliisa

    2018-02-01

    Trans-methylation reactions are vital in basic metabolism, epigenetic regulation, RNA metabolism, and posttranslational control of protein function and therefore fundamental in determining the physiological processes in all living organisms. The plant kingdom is additionally characterized by the production of secondary metabolites that undergo specific hydroxylation, oxidation and methylation reactions to obtain a wide array of different chemical structures. Increasing research efforts have started to reveal the enzymatic pathways underlying the biosynthesis of complex metabolites in plants. Further engineering of these enzymatic machineries offers significant possibilities in the development of bio-based technologies, but necessitates deep understanding of their potential metabolic and regulatory interactions. Trans-methylation reactions are tightly coupled with the so-called activated methyl cycle (AMC), an essential metabolic circuit that maintains the trans-methylation capacity in all living cells. Tight regulation of the AMC is crucial in ensuring accurate trans-methylation reactions in different subcellular compartments, cell types, developmental stages and environmental conditions. This review addresses the organization and posttranslational regulation of the AMC and elaborates its critical role in determining metabolic regulation through modulation of methyl utilization in stress-exposed plants. © 2017 Scandinavian Plant Physiology Society.

  15. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.

    PubMed

    Gold, Nicholas D; Gowen, Christopher M; Lussier, Francois-Xavier; Cautha, Sarat C; Mahadevan, Radhakrishnan; Martin, Vincent J J

    2015-05-28

    L-tyrosine is a common precursor for a wide range of valuable secondary metabolites, including benzylisoquinoline alkaloids (BIAs) and many polyketides. An industrially tractable yeast strain optimized for production of L-tyrosine could serve as a platform for the development of BIA and polyketide cell factories. This study applied a targeted metabolomics approach to evaluate metabolic engineering strategies to increase the availability of intracellular L-tyrosine in the yeast Saccharomyces cerevisiae CEN.PK. Our engineering strategies combined localized pathway engineering with global engineering of central metabolism, facilitated by genome-scale steady-state modelling. Addition of a tyrosine feedback resistant version of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase Aro4 from S. cerevisiae was combined with overexpression of either a tyrosine feedback resistant yeast chorismate mutase Aro7, the native pentafunctional arom protein Aro1, native prephenate dehydrogenase Tyr1 or cyclohexadienyl dehydrogenase TyrC from Zymomonas mobilis. Loss of aromatic carbon was limited by eliminating phenylpyruvate decarboxylase Aro10. The TAL gene from Rhodobacter sphaeroides was used to produce coumarate as a simple test case of a heterologous by-product of tyrosine. Additionally, multiple strategies for engineering global metabolism to promote tyrosine production were evaluated using metabolic modelling. The T21E mutant of pyruvate kinase Cdc19 was hypothesized to slow the conversion of phosphoenolpyruvate to pyruvate and accumulate the former as precursor to the shikimate pathway. The ZWF1 gene coding for glucose-6-phosphate dehydrogenase was deleted to create an NADPH deficiency designed to force the cell to couple its growth to tyrosine production via overexpressed NADP(+)-dependent prephenate dehydrogenase Tyr1. Our engineered Zwf1(-) strain expressing TYRC ARO4(FBR) and grown in the presence of methionine achieved an intracellular L-tyrosine accumulation up to 520 μmol/g DCW or 192 mM in the cytosol, but sustained flux through this pathway was found to depend on the complete elimination of feedback inhibition and degradation pathways. Our targeted metabolomics approach confirmed a likely regulatory site at DAHP synthase and identified another possible cofactor limitation at prephenate dehydrogenase. Additionally, the genome-scale metabolic model identified design strategies that have the potential to improve availability of erythrose 4-phosphate for DAHP synthase and cofactor availability for prephenate dehydrogenase. We evaluated these strategies and provide recommendations for further improvement of aromatic amino acid biosynthesis in S. cerevisiae.

  16. Novel technologies provide more engineering strategies for amino acid-producing microorganisms.

    PubMed

    Gu, Pengfei; Su, Tianyuan; Qi, Qingsheng

    2016-03-01

    Traditionally, amino acid-producing strains were obtained by random mutagenesis and subsequent selection. With the development of genetic and metabolic engineering techniques, various microorganisms with high amino acid production yields are now constructed by rational design of targeted biosynthetic pathways. Recently, novel technologies derived from systems and synthetic biology have emerged and open a new promising avenue towards the engineering of amino acid production microorganisms. In this review, these approaches, including rational engineering of rate-limiting enzymes, real-time sensing of end-products, pathway optimization on the chromosome, transcription factor-mediated strain improvement, and metabolic modeling and flux analysis, were summarized with regard to their application in microbial amino acid production.

  17. A Kinetic Modelling of Enzyme Inhibitions in the Central Metabolism of Yeast Cells

    NASA Astrophysics Data System (ADS)

    Kasbawati; Kalondeng, A.; Aris, N.; Erawaty, N.; Azis, M. I.

    2018-03-01

    Metabolic regulation plays an important role in the metabolic engineering of a cellular process. It is conducted to improve the productivity of a microbial process by identifying the important regulatory nodes of a metabolic pathway such as fermentation pathway. Regulation of enzymes involved in a particular pathway can be held to improve the productivity of the system. In the central metabolism of yeast cell, some enzymes are known as regulating enzymes that can be inhibited to increase the production of ethanol. In this research we study the kinetic modelling of the enzymes in the central pathway of yeast metabolism by taking into consideration the enzyme inhibition effects to the ethanol production. The existence of positive steady state solution and the stability of the system are also analysed to study the property and dynamical behaviour of the system. One stable steady state of the system is produced if some conditions are fulfilled. The conditions concern to the restriction of the maximum reactions of the enzymes in the pyruvate and acetaldehyde branch points. There exists a certain time of fermentation reaction at which a maximum and a minimum ethanol productions are attained after regulating the system. Optimal ethanol concentration is also produced for a certain initial concentration of inhibitor.

  18. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges.

    PubMed

    Banerjee, Chiranjib; Dubey, Kashyap K; Shukla, Pratyoosh

    2016-01-01

    The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based biofuel production is the various other complications involved in microalgal cultivation, its harvesting, concentration, drying and lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols (TAGs), which are main precursors in the production of lipid. The various aspects on metabolic pathway analysis of an oleaginous microalgae i.e., Chlamydomonas reinhardtii have elucidated some novel metabolically important genes and this enhances the lipid production in this microalgae. Adding to it, various other aspects in metabolic engineering using OptFlux and effectual bioprocess design also gives an interactive snapshot of enhancing lipid production which ultimately improvises the oil yield. This article reviews the current status of microalgal based technologies for biofuel production, bioreactor process design, flux analysis and it also provides various strategies to increase lipids accumulation via metabolic engineering.

  19. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds.

    PubMed

    Rodriguez, Alberto; Martínez, Juan A; Flores, Noemí; Escalante, Adelfo; Gosset, Guillermo; Bolivar, Francisco

    2014-09-09

    The production of aromatic amino acids using fermentation processes with recombinant microorganisms can be an advantageous approach to reach their global demands. In addition, a large array of compounds with alimentary and pharmaceutical applications can potentially be synthesized from intermediates of this metabolic pathway. However, contrary to other amino acids and primary metabolites, the artificial channelling of building blocks from central metabolism towards the aromatic amino acid pathway is complicated to achieve in an efficient manner. The length and complex regulation of this pathway have progressively called for the employment of more integral approaches, promoting the merge of complementary tools and techniques in order to surpass metabolic and regulatory bottlenecks. As a result, relevant insights on the subject have been obtained during the last years, especially with genetically modified strains of Escherichia coli. By combining metabolic engineering strategies with developments in synthetic biology, systems biology and bioprocess engineering, notable advances were achieved regarding the generation, characterization and optimization of E. coli strains for the overproduction of aromatic amino acids, some of their precursors and related compounds. In this paper we review and compare recent successful reports dealing with the modification of metabolic traits to attain these objectives.

  20. Use of High Capacity Terminators in Saccharomyces cerevisiae to Increase mRNA half-life and Improve Gene Expression Control for Metabolic Engineering Applications

    PubMed Central

    Curran, Kathleen A.; Karim, Ashty S.; Gupta, Akash; Alper, Hal S.

    2013-01-01

    Control of gene and protein expression of both endogenous and heterologous genes is a key component of metabolic engineering. While a large amount of work has been published characterizing promoters for this purpose, less effort has been exerted to elucidate the role of terminators in yeast. In this study, we characterize over 30 terminators for use in metabolic engineering applications in Saccharomyces cerevisiae and determine mRNA half-life changes to be the major cause of the varied protein and transcript expression level. We demonstrate that the difference in transcript level can be over 6.5-fold even for high strength promoters. The influence of terminator selection is magnified when coupled with a low-expression promoter, with a maximum difference in protein expression of 11-fold between a high-capacity terminator and the parent plasmid terminator and over 35-fold difference when compared with a no-terminator baseline. This is the first time that terminators have been investigated in the context of multiple promoters spanning orders of magnitude in activity. Finally, we demonstrate the utility of terminator selection for metabolic engineering by using a mutant xylose isomerase gene as a proof-of-concept. Through pairing a high-capacity terminator with a low-expression promoter, we were able to achieve the same phenotypic result as with a promoter considerably higher in strength. Moreover, we can further boost the phenotype of the high-strength promoter by pairing it with a high-capacity terminator. This work highlights how terminator elements can be used to control metabolic pathways in the same way that promoters are traditionally used in yeast. Together, this work demonstrates that terminators will be an important part of heterologous gene expression and metabolic engineering for yeast in the future. PMID:23856240

  1. Solvent production by engineered Ralstonia eutropha: channeling carbon to biofuel.

    PubMed

    Chakravarty, Jayashree; Brigham, Christopher J

    2018-06-01

    Microbial production of solvents like acetone and butanol was a couple of the first industrial fermentation processes to gain global importance. These solvents are important feedstocks for the chemical and biofuel industry. Ralstonia eutropha is a facultatively chemolithoautotrophic bacterium able to grow with organic substrates or H 2 and CO 2 under aerobic conditions. This bacterium is a natural producer of polyhydroxyalkanoate biopolymers. Recently, with the advances in the development of genetic engineering tools, the range of metabolites R. eutropha can produce has enlarged. Its ability to utilize various carbon sources renders it an interesting candidate host for synthesis of renewable biofuel and solvent production. This review focuses on progress in metabolic engineering of R. eutropha for the production of alcohols, terpenes, methyl ketones, and alka(e)nes using various resources. Biological synthesis of solvents still presents the challenge of high production costs and competition from chemical synthesis. Better understanding of R. eutropha biology will support efforts to engineer and develop superior microbial strains for solvent production. Continued research on multiple fronts is required to engineer R. eutropha for truly sustainable and economical solvent production.

  2. Transport and transcriptional regulation of oil production in plants.

    PubMed

    Manan, Sehrish; Chen, Beibei; She, Guangbiao; Wan, Xiaochun; Zhao, Jian

    2017-08-01

    Triacylglycerol (TAG) serves as an energy reservoir and phospholipids as build blocks of biomembrane to support plant life. They also provide human with foods and nutrients. Multi-compartmentalized biosynthesis, trafficking or cross-membrane transport of lipid intermediates or precursors and their regulatory mechanisms are not fully understood. Recent progress has aided our understanding of how fatty acids (FAs) and phospholipids are transported between the chloroplast, the cytoplasm, and the endoplasmic reticulum (ER), and how the ins and outs of lipids take place in the peroxisome and other organelles for lipid metabolism and function. In addition, information regarding the transcriptional regulation network associated with FA and TAG biosynthesis has been further enriched. Recent breakthroughs made in lipid transport and transcriptional regulation has provided significant insights into our comprehensive understanding of plant lipid biology. This review attempts to highlight the recent progress made on lipid synthesis, transport, degradation, and their regulatory mechanisms. Metabolic engineering, based on these knowledge-powered technologies for production of edible oils or biofuels, is reviewed. The biotechnological application of metabolic enzymes, transcription factors and transporters, for oil production and composition improvement, are discussed in a broad context in order to provide a fresh scenario for researchers and to guide future research and applications.

  3. Metabolic Network Modeling of Microbial Communities

    PubMed Central

    Biggs, Matthew B.; Medlock, Gregory L.; Kolling, Glynis L.

    2015-01-01

    Genome-scale metabolic network reconstructions and constraint-based analysis are powerful methods that have the potential to make functional predictions about microbial communities. Current use of genome-scale metabolic networks to characterize the metabolic functions of microbial communities includes species compartmentalization, separating species-level and community-level objectives, dynamic analysis, the “enzyme-soup” approach, multi-scale modeling, and others. There are many challenges inherent to the field, including a need for tools that accurately assign high-level omics signals to individual community members, new automated reconstruction methods that rival manual curation, and novel algorithms for integrating omics data and engineering communities. As technologies and modeling frameworks improve, we expect that there will be proportional advances in the fields of ecology, health science, and microbial community engineering. PMID:26109480

  4. Metabolic network flux analysis for engineering plant systems.

    PubMed

    Shachar-Hill, Yair

    2013-04-01

    Metabolic network flux analysis (NFA) tools have proven themselves to be powerful aids to metabolic engineering of microbes by providing quantitative insights into the flows of material and energy through cellular systems. The development and application of NFA tools to plant systems has advanced in recent years and are yielding significant insights and testable predictions. Plants present substantial opportunities for the practical application of NFA but they also pose serious challenges related to the complexity of plant metabolic networks and to deficiencies in our knowledge of their structure and regulation. By considering the tools available and selected examples, this article attempts to assess where and how NFA is most likely to have a real impact on plant biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Engineered Respiro-Fermentative Metabolism for the Production of Biofuels and Biochemicals from Fatty Acid-Rich Feedstocks▿ †

    PubMed Central

    Dellomonaco, Clementina; Rivera, Carlos; Campbell, Paul; Gonzalez, Ramon

    2010-01-01

    Although lignocellulosic sugars have been proposed as the primary feedstock for the biological production of renewable fuels and chemicals, the availability of fatty acid (FA)-rich feedstocks and recent progress in the development of oil-accumulating organisms make FAs an attractive alternative. In addition to their abundance, the metabolism of FAs is very efficient and could support product yields significantly higher than those obtained from lignocellulosic sugars. However, FAs are metabolized only under respiratory conditions, a metabolic mode that does not support the synthesis of fermentation products. In the work reported here we engineered several native and heterologous fermentative pathways to function in Escherichia coli under aerobic conditions, thus creating a respiro-fermentative metabolic mode that enables the efficient synthesis of fuels and chemicals from FAs. Representative biofuels (ethanol and butanol) and biochemicals (acetate, acetone, isopropanol, succinate, and propionate) were chosen as target products to illustrate the feasibility of the proposed platform. The yields of ethanol, acetate, and acetone in the engineered strains exceeded those reported in the literature for their production from sugars, and in the cases of ethanol and acetate they also surpassed the maximum theoretical values that can be achieved from lignocellulosic sugars. Butanol was produced at yields and titers that were between 2- and 3-fold higher than those reported for its production from sugars in previously engineered microorganisms. Moreover, our work demonstrates production of propionate, a compound previously thought to be synthesized only by propionibacteria, in E. coli. Finally, the synthesis of isopropanol and succinate was also demonstrated. The work reported here represents the first effort toward engineering microorganisms for the conversion of FAs to the aforementioned products. PMID:20525863

  6. The regulatory software of cellular metabolism.

    PubMed

    Segrè, Daniel

    2004-06-01

    Understanding the regulation of metabolic pathways in the cell is like unraveling the 'software' that is running on the 'hardware' of the metabolic network. Transcriptional regulation of enzymes is an important component of this software. A recent systematic analysis of metabolic gene-expression data in Saccharomyces cerevisiae reveals a complex modular organization of co-expressed genes, which could increase our ability to understand and engineer cellular metabolic functions.

  7. Vascularisation to improve translational potential of tissue engineering systems for cardiac repair.

    PubMed

    Dilley, Rodney J; Morrison, Wayne A

    2014-11-01

    Cardiac tissue engineering is developing as an alternative approach to heart transplantation for treating heart failure. Shortage of organ donors and complications arising after orthotopic transplant remain major challenges to the modern field of heart transplantation. Engineering functional myocardium de novo requires an abundant source of cardiomyocytes, a biocompatible scaffold material and a functional vasculature to sustain the high metabolism of the construct. Progress has been made on several fronts, with cardiac cell biology, stem cells and biomaterials research particularly promising for cardiac tissue engineering, however currently employed strategies for vascularisation have lagged behind and limit the volume of tissue formed. Over ten years we have developed an in vivo tissue engineering model to construct vascularised tissue from various cell and tissue sources, including cardiac tissue. In this article we review the progress made with this approach and others, together with their potential to support a volume of engineered tissue for cardiac tissue engineering where contractile mass impacts directly on functional outcomes in translation to the clinic. It is clear that a scaled-up cardiac tissue engineering solution required for clinical treatment of heart failure will include a robust vascular supply for successful translation. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Discovery of Hyperpolarized Molecular Imaging Biomarkers in a Novel Prostate Tissue Slice Culture Model

    DTIC Science & Technology

    2013-06-01

    research is to optimize an MRS-compatible, 3D Tissue Culture Bioreactor for use with primary human prostate tissue cultures (TSCs) and use it to...Tissue Culture Bioreactor ” to be submitted to the Journal Magnetic Resonance in Medicine. CONCLUSIONS: We have engineered a robust MR compatible 3D ...loss of structure, function or metabolism within a NMR compatible 3-D tissue culture bioreactor , and that magnetic resonance spectroscopy studies of

  9. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals.

    PubMed

    Runguphan, Weerawat; Keasling, Jay D

    2014-01-01

    As the serious effects of global climate change become apparent and access to fossil fuels becomes more limited, metabolic engineers and synthetic biologists are looking towards greener sources for transportation fuels. In recent years, microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce fatty acid-derived biofuels and chemicals from simple sugars. Specifically, we overexpressed all three fatty acid biosynthesis genes, namely acetyl-CoA carboxylase (ACC1), fatty acid synthase 1 (FAS1) and fatty acid synthase 2 (FAS2), in S. cerevisiae. When coupled to triacylglycerol (TAG) production, the engineered strain accumulated lipid to more than 17% of its dry cell weight, a four-fold improvement over the control strain. Understanding that TAG cannot be used directly as fuels, we also engineered S. cerevisiae to produce drop-in fuels and chemicals. Altering the terminal "converting enzyme" in the engineered strain led to the production of free fatty acids at a titer of approximately 400 mg/L, fatty alcohols at approximately 100mg/L and fatty acid ethyl esters (biodiesel) at approximately 5 mg/L directly from simple sugars. We envision that our approach will provide a scalable, controllable and economic route to this important class of chemicals. Copyright © 2013 International Metabolic Engineering Society. All rights reserved.

  10. Katherine J. Chou | NREL

    Science.gov Websites

    J. Chou Photo of Katherine J. Chou Katherine Chou Microbial Physiology & Engineering , Clostridium thermocellum, through metabolic engineering. "Biological Electron Transfer and Catalysis principles governing substrate utilization. "Advance Biofuels from Cellulose via Genetic Engineering of

  11. Current advance in biological production of malic acid using wild type and metabolic engineered strains.

    PubMed

    Dai, Zhongxue; Zhou, Huiyuan; Zhang, Shangjie; Gu, Honglian; Yang, Qiao; Zhang, Wenming; Dong, Weiliang; Ma, Jiangfeng; Fang, Yan; Jiang, Min; Xin, Fengxue

    2018-06-01

    Malic acid (2-hydroxybutanedioic acid) is a four-carbon dicarboxylic acid, which has attracted great interest due to its wide usage as a precursor of many industrially important chemicals in the food, chemicals, and pharmaceutical industries. Several mature routes for malic acid production have been developed, such as chemical synthesis, enzymatic conversion and biological fermentation. With depletion of fossil fuels and concerns regarding environmental issues, biological production of malic acid has attracted more attention, which mainly consists of three pathways, namely non-oxidative pathway, oxidative pathway and glyoxylate cycle. In recent decades, metabolic engineering of model strains, and process optimization for malic acid production have been rapidly developed. Hence, this review comprehensively introduces an overview of malic acid producers and highlight some of the successful metabolic engineering approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine

    PubMed Central

    2013-01-01

    Background L-ornithine is effective in the treatment of liver diseases and helps strengthen the heart. The commercial applications mean that efficient biotechnological production of L-ornithine has become increasingly necessary. Adaptive evolution strategies have been proven a feasible and efficient technique to achieve improved cellular properties without requiring metabolic or regulatory details of the strain. The evolved strains can be further optimised by metabolic engineering. Thus, metabolic evolution strategy was used for engineering Corynebacterium glutamicum to enhance L-ornithine production. Results A C. glutamicum strain was engineered by using a combination of gene deletions and adaptive evolution with 70 passages of growth-based selection. The metabolically evolved C. glutamicum strain, named ΔAPE6937R42, produced 24.1 g/L of L-ornithine in a 5-L bioreactor. The mechanism used by C. glutamicum ΔAPE6937R42 to produce L-ornithine was investigated by analysing transcriptional levels of select genes and NADPH contents. The upregulation of the transcription levels of genes involved in the upstream pathway of glutamate biosynthesis and the elevated NADPH concentration caused by the upregulation of the transcriptional level of the ppnK gene promoted L-ornithine production in C. glutamicum ΔAPE6937R42. Conclusions The availability of NADPH plays an important role in L-ornithine production in C. glutamicum. Our results demonstrated that the combination of growth-coupled evolution with analysis of transcript abundances provides a strategy to engineer microbial strains for improving production of target compounds. PMID:23725060

  13. An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica.

    PubMed

    Liu, Leqian; Pan, Anny; Spofford, Caitlin; Zhou, Nijia; Alper, Hal S

    2015-05-01

    Lipogenic organisms provide an ideal platform for biodiesel and oleochemical production. Through our previous rational metabolic engineering efforts, lipogenesis titers in Yarrowia lipolytica were significantly enhanced. However, the resulting strain still suffered from decreased biomass generation rates. Here, we employ a rapid evolutionary metabolic engineering approach linked with a floating cell enrichment process to improve lipogenesis rates, titers, and yields. Through this iterative process, we were able to ultimately improve yields from our prior strain by 55% to achieve production titers of 39.1g/L with upwards of 76% of the theoretical maximum yield of conversation. Isolated cells were saturated with up to 87% lipid content. An average specific productivity of 0.56g/L/h was achieved with a maximum instantaneous specific productivity of 0.89g/L/h during the lipid production phase in fermentation. Genomic sequencing of the evolved strains revealed a link between a decrease/loss of function mutation of succinate semialdehyde dehydrogenase, uga2, suggesting the importance of gamma-aminobutyric acid assimilation in lipogenesis. This linkage was validated through gene deletion experiments. This work presents an improved host strain that can serve as a platform for efficient oleochemical production. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural.

    PubMed

    Jung, Young Hoon; Kim, Sooah; Yang, Jungwoo; Seo, Jin-Ho; Kim, Kyoung Heon

    2017-03-01

    Furfural, one of the most common inhibitors in pre-treatment hydrolysates, reduces the cell growth and ethanol production of yeast. Evolutionary engineering has been used as a selection scheme to obtain yeast strains that exhibit furfural tolerance. However, the response of Saccharomyces cerevisiae to furfural at the metabolite level during evolution remains unknown. In this study, evolutionary engineering and metabolomic analyses were applied to determine the effects of furfural on yeasts and their metabolic response to continuous exposure to furfural. After 50 serial transfers of cultures in the presence of furfural, the evolved strains acquired the ability to stably manage its physiological status under the furfural stress. A total of 98 metabolites were identified, and their abundance profiles implied that yeast metabolism was globally regulated. Under the furfural stress, stress-protective molecules and cofactor-related mechanisms were mainly induced in the parental strain. However, during evolution under the furfural stress, S. cerevisiae underwent global metabolic allocations to quickly overcome the stress, particularly by maintaining higher levels of metabolites related to energy generation, cofactor regeneration and recovery from cellular damage. Mapping the mechanisms of furfural tolerance conferred by evolutionary engineering in the present study will be led to rational design of metabolically engineered yeasts. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. Metabolic Glyco-Engineering in Eukaryotic Cells and Selected Applications.

    PubMed

    Piller, Friedrich; Mongis, Aline; Piller, Véronique

    2015-01-01

    By metabolic glyco-engineering cellular glycoconjugates are modified through the incorporation of synthetic monosaccharides which are usually analogues of naturally present sugars. In order to get incorporated, the monosaccharides need to enter the cytoplasm and to be substrates for the enzymes necessary for their transformation into activated sugars, most often nucleotide sugars. These have to be substrates for glycosyltransferases which finally catalyze their incorporation into glycans. Such pathways are difficult to reconstitute in vitro and therefore new monosaccharide analogues have to be tested in tissue culture for their suitability in metabolic glyco-engineering. For this, glycosylation mutants are the most appropriate since they are unable to synthesize specific glycans but through the introduction of the monosaccharide analogues they may express some glycans at the cell surface with the unnatural sugar incorporated. The presence of those glycans can be easily and quantitatively detected by lectin binding or by chemical methods identifying specific sugars. Monosaccharide analogues can also block the pathways leading to sugar incorporation, thus inhibiting the synthesis of glycan structures which is also easily detectable at the cell surface by lectin labeling. The most useful and most frequently employed application of metabolic glyco-engineering is the introduction of reactive groups which can undergo bio-orthogonal click reactions for the efficient labeling of glycans at the surface of live cells.

  16. Targeted delivery of fluorogenic peptide aptamers into live microalgae by femtosecond laser photoporation at single-cell resolution.

    PubMed

    Maeno, Takanori; Uzawa, Takanori; Kono, Izumi; Okano, Kazunori; Iino, Takanori; Fukita, Keisuke; Oshikawa, Yuki; Ogawa, Taro; Iwata, Osamu; Ito, Takuro; Suzuki, Kengo; Goda, Keisuke; Hosokawa, Yoichiroh

    2018-05-29

    Microalgae-based metabolic engineering has been proven effective for producing valuable substances such as food supplements, pharmaceutical drugs, biodegradable plastics, and biofuels in the past decade. The ability to accurately visualize and quantify intracellular metabolites in live microalgae is essential for efficient metabolic engineering, but remains a major challenge due to the lack of characterization methods. Here we demonstrate it by synthesizing fluorogenic peptide aptamers with specific binding affinity to a target metabolite and delivering them into live microalgae by femtosecond laser photoporation at single-cell resolution. As a proof-of-principle demonstration of our method, we use it to characterize Euglena gracilis, a photosynthetic unicellular motile microalgal species, which is capable of producing paramylon (a carbohydrate granule similar to starch). Specifically, we synthesize a peptide aptamer containing a paramylon-binding fluorescent probe, 7-nitrobenzofurazan, and introduce it into E. gracilis cells one-by-one by suppressing their mobility with mannitol and transiently perforating them with femtosecond laser pulses at 800 nm for photoporation. To demonstrate the method's practical utility in metabolic engineering, we perform spatially and temporally resolved fluorescence microscopy of single live photoporated E. gracilis cells under different culture conditions. Our method holds great promise for highly efficient microalgae-based metabolic engineering.

  17. The Need for Integrated Approaches in Metabolic Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lechner, Anna; Brunk, Elizabeth; Keasling, Jay D.

    This review highlights state-of-the-art procedures for heterologous small-molecule biosynthesis, the associated bottlenecks, and new strategies that have the potential to accelerate future accomplishments in metabolic engineering. We emphasize that a combination of different approaches over multiple time and size scales must b e considered for successful pathway engineering in a heterologous host. We have classified these optimization procedures based on the "system" that is being manipulated: transcriptome, translatome, proteome, or reactome. By bridging multiple disciplines, including molecular biology, biochemistry, biophysics, and computational sciences, we can create an integral framework for the discovery and implementation of novel biosynthetic production routes.

  18. Systems metabolic engineering of Escherichia coli for the heterologous production of high value molecules-a veteran at new shores.

    PubMed

    Becker, Judith; Wittmann, Christoph

    2016-12-01

    For more than fifty years, Escherichia coli has represented a remarkable success story in industrial biotechnology. Traditionally known as a producer of l-amino acids, E. coli has also entered the precious market of high-value molecules and is becoming a flexible, efficient production platform for various therapeutics, pre-biotics, nutraceuticals and pigments. This tremendous progress is enabled by systems metabolic engineering concepts that integrate systems biology and synthetic biology into the design and engineering of powerful E. coli cell factories. Copyright © 2016. Published by Elsevier Ltd.

  19. The Need for Integrated Approaches in Metabolic Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lechner, Anna; Brunk, Elizabeth; Keasling, Jay D.

    Highlights include state-of-the-art procedures for heterologous small-molecule biosynthesis, the associated bottlenecks, and new strategies that have the potential to accelerate future accomplishments in metabolic engineering. A combination of different approaches over multiple time and size scales must be considered for successful pathway engineering in a heterologous host. We have classified these optimization procedures based on the “system” that is being manipulated: transcriptome, translatome, proteome, or reactome. Here, by bridging multiple disciplines, including molecular biology, biochemistry, biophysics, and computational sciences, we can create an integral framework for the discovery and implementation of novel biosynthetic production routes.

  20. The Need for Integrated Approaches in Metabolic Engineering

    DOE PAGES

    Lechner, Anna; Brunk, Elizabeth; Keasling, Jay D.

    2016-08-15

    Highlights include state-of-the-art procedures for heterologous small-molecule biosynthesis, the associated bottlenecks, and new strategies that have the potential to accelerate future accomplishments in metabolic engineering. A combination of different approaches over multiple time and size scales must be considered for successful pathway engineering in a heterologous host. We have classified these optimization procedures based on the “system” that is being manipulated: transcriptome, translatome, proteome, or reactome. Here, by bridging multiple disciplines, including molecular biology, biochemistry, biophysics, and computational sciences, we can create an integral framework for the discovery and implementation of novel biosynthetic production routes.

  1. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars

    DOE PAGES

    Yang, Shihui; Mohagheghi, Ali; Franden, Mary Ann; ...

    2016-09-02

    To develop pathways for advanced biofuel production, and to understand the impact of host metabolism and environmental conditions on heterologous pathway engineering for economic advanced biofuels production from biomass, we seek to redirect the carbon flow of the model ethanologen Zymomonas mobilis to produce desirable hydrocarbon intermediate 2,3-butanediol (2,3-BDO). 2,3-BDO is a bulk chemical building block, and can be upgraded in high yields to gasoline, diesel, and jet fuel. 2,3-BDO biosynthesis pathways from various bacterial species were examined, which include three genes encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase. Bioinformatics analysis was carried out to pinpoint potential bottlenecks formore » high 2,3-BDO production. Different combinations of 2,3-BDO biosynthesis metabolic pathways using genes from different bacterial species have been constructed. Our results demonstrated that carbon flux can be deviated from ethanol production into 2,3-BDO biosynthesis, and all three heterologous genes are essential to efficiently redirect pyruvate from ethanol production for high 2,3-BDO production in Z. mobilis. The down-selection of best gene combinations up to now enabled Z. mobilis to reach the 2,3-BDO production of more than 10 g/L from glucose and xylose, as well as mixed C6/C5 sugar streams derived from the deacetylation and mechanical refining process. In conclusion, this study confirms the value of integrating bioinformatics analysis and systems biology data during metabolic engineering endeavors, provides guidance for value-added chemical production in Z. mobilis, and reveals the interactions between host metabolism, oxygen levels, and a heterologous 2,3-BDO biosynthesis pathway. Taken together, this work provides guidance for future metabolic engineering efforts aimed at boosting 2,3-BDO titer anaerobically.« less

  2. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shihui; Mohagheghi, Ali; Franden, Mary Ann

    To develop pathways for advanced biofuel production, and to understand the impact of host metabolism and environmental conditions on heterologous pathway engineering for economic advanced biofuels production from biomass, we seek to redirect the carbon flow of the model ethanologen Zymomonas mobilis to produce desirable hydrocarbon intermediate 2,3-butanediol (2,3-BDO). 2,3-BDO is a bulk chemical building block, and can be upgraded in high yields to gasoline, diesel, and jet fuel. 2,3-BDO biosynthesis pathways from various bacterial species were examined, which include three genes encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase. Bioinformatics analysis was carried out to pinpoint potential bottlenecks formore » high 2,3-BDO production. Different combinations of 2,3-BDO biosynthesis metabolic pathways using genes from different bacterial species have been constructed. Our results demonstrated that carbon flux can be deviated from ethanol production into 2,3-BDO biosynthesis, and all three heterologous genes are essential to efficiently redirect pyruvate from ethanol production for high 2,3-BDO production in Z. mobilis. The down-selection of best gene combinations up to now enabled Z. mobilis to reach the 2,3-BDO production of more than 10 g/L from glucose and xylose, as well as mixed C6/C5 sugar streams derived from the deacetylation and mechanical refining process. In conclusion, this study confirms the value of integrating bioinformatics analysis and systems biology data during metabolic engineering endeavors, provides guidance for value-added chemical production in Z. mobilis, and reveals the interactions between host metabolism, oxygen levels, and a heterologous 2,3-BDO biosynthesis pathway. Taken together, this work provides guidance for future metabolic engineering efforts aimed at boosting 2,3-BDO titer anaerobically.« less

  3. Cyanobacterial Biofuels: Strategies and Developments on Network and Modeling.

    PubMed

    Klanchui, Amornpan; Raethong, Nachon; Prommeenate, Peerada; Vongsangnak, Wanwipa; Meechai, Asawin

    Cyanobacteria, the phototrophic microorganisms, have attracted much attention recently as a promising source for environmentally sustainable biofuels production. However, barriers for commercial markets of cyanobacteria-based biofuels concern the economic feasibility. Miscellaneous strategies for improving the production performance of cyanobacteria have thus been developed. Among these, the simple ad hoc strategies resulting in failure to optimize fully cell growth coupled with desired product yield are explored. With the advancement of genomics and systems biology, a new paradigm toward systems metabolic engineering has been recognized. In particular, a genome-scale metabolic network reconstruction and modeling is a crucial systems-based tool for whole-cell-wide investigation and prediction. In this review, the cyanobacterial genome-scale metabolic models, which offer a system-level understanding of cyanobacterial metabolism, are described. The main process of metabolic network reconstruction and modeling of cyanobacteria are summarized. Strategies and developments on genome-scale network and modeling through the systems metabolic engineering approach are advanced and employed for efficient cyanobacterial-based biofuels production.

  4. Design and development of synthetic microbial platform cells for bioenergy

    PubMed Central

    Lee, Sang Jun; Lee, Sang-Jae; Lee, Dong-Woo

    2013-01-01

    The finite reservation of fossil fuels accelerates the necessity of development of renewable energy sources. Recent advances in synthetic biology encompassing systems biology and metabolic engineering enable us to engineer and/or create tailor made microorganisms to produce alternative biofuels for the future bio-era. For the efficient transformation of biomass to bioenergy, microbial cells need to be designed and engineered to maximize the performance of cellular metabolisms for the production of biofuels during energy flow. Toward this end, two different conceptual approaches have been applied for the development of platform cell factories: forward minimization and reverse engineering. From the context of naturally minimized genomes,non-essential energy-consuming pathways and/or related gene clusters could be progressively deleted to optimize cellular energy status for bioenergy production. Alternatively, incorporation of non-indigenous parts and/or modules including biomass-degrading enzymes, carbon uptake transporters, photosynthesis, CO2 fixation, and etc. into chassis microorganisms allows the platform cells to gain novel metabolic functions for bioenergy. This review focuses on the current progress in synthetic biology-aided pathway engineering in microbial cells and discusses its impact on the production of sustainable bioenergy. PMID:23626588

  5. Metabolic Engineering of Probiotic Saccharomyces boulardii.

    PubMed

    Liu, Jing-Jing; Kong, In Iok; Zhang, Guo-Chang; Jayakody, Lahiru N; Kim, Heejin; Xia, Peng-Fei; Kwak, Suryang; Sung, Bong Hyun; Sohn, Jung-Hoon; Walukiewicz, Hanna E; Rao, Christopher V; Jin, Yong-Su

    2016-04-01

    Saccharomyces boulardiiis a probiotic yeast that has been used for promoting gut health as well as preventing diarrheal diseases. This yeast not only exhibits beneficial phenotypes for gut health but also can stay longer in the gut than Saccharomyces cerevisiae Therefore, S. boulardiiis an attractive host for metabolic engineering to produce biomolecules of interest in the gut. However, the lack of auxotrophic strains with defined genetic backgrounds has hampered the use of this strain for metabolic engineering. Here, we report the development of well-defined auxotrophic mutants (leu2,ura3,his3, and trp1) through clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-based genome editing. The resulting auxotrophic mutants can be used as a host for introducing various genetic perturbations, such as overexpression or deletion of a target gene, using existing genetic tools forS. cerevisiae We demonstrated the overexpression of a heterologous gene (lacZ), the correct localization of a target protein (red fluorescent protein) into mitochondria by using a protein localization signal, and the introduction of a heterologous metabolic pathway (xylose-assimilating pathway) in the genome ofS. boulardii We further demonstrated that human lysozyme, which is beneficial for human gut health, could be secreted by S. boulardii Our results suggest that more sophisticated genetic perturbations to improveS. boulardii can be performed without using a drug resistance marker, which is a prerequisite for in vivo applications using engineeredS. boulardii. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. A balanced ATP driving force module for enhancing photosynthetic biosynthesis of 3-hydroxybutyrate from CO2.

    PubMed

    Ku, Jason T; Lan, Ethan I

    2018-03-01

    Using engineered photoautotrophic microorganisms for the direct chemical synthesis from CO 2 is an attractive direction for both sustainability and CO 2 mitigation. However, the behaviors of non-native metabolic pathways may be difficult to control due to the different intracellular contexts between natural and heterologous hosts. While most metabolic engineering efforts focus on strengthening driving forces in pathway design to favor biochemical production in these organisms, excessive driving force may be detrimental to product biosynthesis due to imbalanced cellular intermediate distribution. In this study, an ATP-hydrolysis based driving force module was engineered into cyanobacterium Synechococcus elongatus PCC 7942 to produce 3-hydroxybutyrate (3HB), a valuable chemical feedstock for the synthesis of biodegradable plastics and antibiotics. However, while the ATP driving force module is effective for increasing product formation, uncontrolled accumulation of intermediate metabolites likely led to metabolic imbalance and thus to cell growth inhibition. Therefore, the ATP driving force module was reengineered by providing a reversible outlet for excessive carbon flux. Upon expression of this balanced ATP driving force module with 3HB biosynthesis, engineered strain produced 3HB with a cumulative titer of 1.2 g/L, a significant increase over the initial strain. This result highlighted the importance of pathway reversibility as an effective design strategy for balancing driving force and intermediate accumulation, thereby achieving a self-regulated control for increased net flux towards product biosynthesis. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. A bioarchitectonic approach to the modular engineering of metabolism.

    PubMed

    Kerfeld, Cheryl A

    2017-09-26

    Dissociating the complexity of metabolic processes into modules is a shift in focus from the single gene/gene product to functional and evolutionary units spanning the scale of biological organization. When viewing the levels of biological organization through this conceptual lens, modules are found across the continuum: domains within proteins, co-regulated groups of functionally associated genes, operons, metabolic pathways and (sub)cellular compartments. Combining modules as components or subsystems of a larger system typically leads to increased complexity and the emergence of new functions. By virtue of their potential for 'plug and play' into new contexts, modules can be viewed as units of both evolution and engineering. Through consideration of lessons learned from recent efforts to install new metabolic modules into cells and the emerging understanding of the structure, function and assembly of protein-based organelles, bacterial microcompartments, a structural bioengineering approach is described: one that builds from an architectural vocabulary of protein domains. This bioarchitectonic approach to engineering cellular metabolism can be applied to microbial cell factories, used in the programming of members of synthetic microbial communities or used to attain additional levels of metabolic organization in eukaryotic cells for increasing primary productivity and as the foundation of a green economy.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  8. Engineering cells for cell culture bioprocessing--physiological fundamentals.

    PubMed

    Seth, Gargi; Hossler, Patrick; Yee, Joon Chong; Hu, Wei-Shou

    2006-01-01

    In the past decade, we have witnessed a tremendous increase in the number of mammalian cell-derived therapeutic proteins with clinical applications. The success of making these life-saving biologics available to the public is partly due to engineering efforts to enhance process efficiency. To further improve productivity, much effort has been devoted to developing metabolically engineered producing cells, which possess characteristics favorable for large-scale bioprocessing. In this article we discuss the fundamental physiological basis for cell engineering. Different facets of cellular mechanisms, including metabolism, protein processing, and the balancing pathways of cell growth and apoptosis, contribute to the complex traits of favorable growth and production characteristics. We present our assessment of the current state of the art by surveying efforts that have already been undertaken in engineering cells for a more robust process. The concept of physiological homeostasis as a key determinant and its implications on cell engineering is emphasized. Integrating the physiological perspective with cell culture engineering will facilitate attainment of dream cells with superlative characteristics.

  9. [Biosynthesis of adipic acid].

    PubMed

    Han, Li; Chen, Wujiu; Yuan, Fei; Zhang, Yuanyuan; Wang, Qinhong; Ma, Yanhe

    2013-10-01

    Adipic acid is a six-carbon dicarboxylic acid, mainly for the production of polymers such as nylon, chemical fiber and engineering plastics. Its annual demand is close to 3 million tons worldwide. Currently, the industrial production of adipic acid is based on the oxidation of aromatics from non-renewable petroleum resources by chemo-catalytic processes. It is heavily polluted and unsustainable, and the possible alternative method for adipic acid production should be developed. In the past years, with the development of synthetic biology and metabolic engineering, green and clean biotechnological methods for adipic acid production attracted more attention. In this study, the research advances of adipic acid and its precursor production are reviewed, followed by addressing the perspective of the possible new pathways for adipic acid production.

  10. Emerging roles of engineered nanomaterials in the food industry.

    PubMed

    Morris, V J

    2011-10-01

    Nanoscience is the study of phenomena and the manipulation of materials at the atomic or molecular level. Nanotechnology involves the design, production and use of structures through control of the size and shape of the materials at the nanometre scale. Nanotechnology in the food sector is an emerging area with considerable research and potential products. There is particular interest in the definition and regulation of engineered nanomaterials. This term covers three classes of nanomaterials: natural and processed nanostructures in foods; particulate nanomaterials metabolized or excreted on digestion; and particulate nanomaterials not broken down on digestion, which accumulate in the body. This review describes examples of these classes and their likely status in the food industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Engineering isoprene synthesis in cyanobacteria.

    PubMed

    Chaves, Julie E; Melis, Anastasios

    2018-04-24

    The renewable production of isoprene (Isp) hydrocarbons, to serve as fuel and synthetic chemistry feedstock, has attracted interest in the field recently. Isp (C 5 H 8 ) is naturally produced from sunlight, CO 2 and H 2 O photosynthetically in terrestrial plant chloroplasts via the terpenoid biosynthetic pathway and emitted in the atmosphere as a response to heat stress. Efforts to institute a high capacity continuous and renewable process have included heterologous expression of the Isp synthesis pathway in photosynthetic microorganisms. This review examines the premise and promise emanating from this relatively new research effort. Also examined are the metabolic engineering approaches applied in the quest of renewable Isp hydrocarbons production, the progress achieved so far, and barriers encountered along the way. © 2018 Federation of European Biochemical Societies.

  12. Cytochrome P450-mediated metabolic engineering: current progress and future challenges.

    PubMed

    Renault, Hugues; Bassard, Jean-Etienne; Hamberger, Björn; Werck-Reichhart, Danièle

    2014-06-01

    Cytochromes P450 catalyze a broad range of regiospecific, stereospecific and irreversible steps in the biosynthetic routes of plant natural metabolites with important applications in pharmaceutical, cosmetic, fragrance and flavour, or polymer industries. They are consequently essential drivers for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing of plant genomes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Complete Biosynthesis of Anthocyanins Using E. coli Polycultures.

    PubMed

    Jones, J Andrew; Vernacchio, Victoria R; Collins, Shannon M; Shirke, Abhijit N; Xiu, Yu; Englaender, Jacob A; Cress, Brady F; McCutcheon, Catherine C; Linhardt, Robert J; Gross, Richard A; Koffas, Mattheos A G

    2017-06-06

    Fermentation-based chemical production strategies provide a feasible route for the rapid, safe, and sustainable production of a wide variety of important chemical products, ranging from fuels to pharmaceuticals. These strategies have yet to find wide industrial utilization due to their inability to economically compete with traditional extraction and chemical production methods. Here, we engineer for the first time the complex microbial biosynthesis of an anthocyanin plant natural product, starting from sugar. This was accomplished through the development of a synthetic, 4-strain Escherichia coli polyculture collectively expressing 15 exogenous or modified pathway enzymes from diverse plants and other microbes. This synthetic consortium-based approach enables the functional expression and connection of lengthy pathways while effectively managing the accompanying metabolic burden. The de novo production of specific anthocyanin molecules, such as calistephin, has been an elusive metabolic engineering target for over a decade. The utilization of our polyculture strategy affords milligram-per-liter production titers. This study also lays the groundwork for significant advances in strain and process design toward the development of cost-competitive biochemical production hosts through nontraditional methodologies. IMPORTANCE To efficiently express active extensive recombinant pathways with high flux in microbial hosts requires careful balance and allocation of metabolic resources such as ATP, reducing equivalents, and malonyl coenzyme A (malonyl-CoA), as well as various other pathway-dependent cofactors and precursors. To address this issue, we report the design, characterization, and implementation of the first synthetic 4-strain polyculture. Division of the overexpression of 15 enzymes and transcription factors over 4 independent strain modules allowed for the division of metabolic burden and for independent strain optimization for module-specific metabolite needs. This study represents the most complex synthetic consortia constructed to date for metabolic engineering applications and provides a new paradigm in metabolic engineering for the reconstitution of extensive metabolic pathways in nonnative hosts. Copyright © 2017 Jones et al.

  14. Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling.

    PubMed

    Gutierrez, Jahir M; Lewis, Nathan E

    2015-07-01

    Eukaryotic cell lines, including Chinese hamster ovary cells, yeast, and insect cells, are invaluable hosts for the production of many recombinant proteins. With the advent of genomic resources, one can now leverage genome-scale computational modeling of cellular pathways to rationally engineer eukaryotic host cells. Genome-scale models of metabolism include all known biochemical reactions occurring in a specific cell. By describing these mathematically and using tools such as flux balance analysis, the models can simulate cell physiology and provide targets for cell engineering that could lead to enhanced cell viability, titer, and productivity. Here we review examples in which metabolic models in eukaryotic cell cultures have been used to rationally select targets for genetic modification, improve cellular metabolic capabilities, design media supplementation, and interpret high-throughput omics data. As more comprehensive models of metabolism and other cellular processes are developed for eukaryotic cell culture, these will enable further exciting developments in cell line engineering, thus accelerating recombinant protein production and biotechnology in the years to come. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol.

    PubMed

    Lee, Hye-Jin; Kim, Soo-Jung; Yoon, Jeong-Jun; Kim, Kyoung Heon; Seo, Jin-Ho; Park, Yong-Cheol

    2015-09-01

    The aim of this work was to apply the evolutionary engineering to construct a mutant Saccharomyces cerevisiae HJ7-14 resistant on 2-deoxy-D-glucose and with an enhanced ability of bioethanol production from galactose, a mono-sugar in red algae. In batch and repeated-batch fermentations, HJ7-14 metabolized 5-fold more galactose and produced ethanol 2.1-fold faster than the parental D452-2 strain. Transcriptional analysis of genes involved in the galactose metabolism revealed that moderate relief from the glucose-mediated repression of the transcription of the GAL genes might enable HJ7-14 to metabolize galactose rapidly. HJ7-14 produced 7.4 g/L ethanol from hydrolysates of the red alga Gelidium amansii within 12 h, which was 1.5-times faster than that observed with D452-2. We demonstrate conclusively that evolutionary engineering is a promising tool to manipulate the complex galactose metabolism in S. cerevisiae to produce bioethanol from red alga. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Engineering of metabolic control

    DOEpatents

    Liao, James C.

    2006-10-17

    The invention features a method of producing heterologous molecules in cells under the regulatory control of a metabolite and metabolic flux. The method can enhance the synthesis of heterologous polypeptides and metabolites.

  17. Engineering of metabolic control

    DOEpatents

    Liao, James C.

    2004-03-16

    The invention features a method of producing heterologous molecules in cells under the regulatory control of a metabolite and metabolic flux. The method can enhance the synthesis of heterologous polypeptides and metabolites.

  18. Computer applications making rapid advances in high throughput microbial proteomics (HTMP).

    PubMed

    Anandkumar, Balakrishna; Haga, Steve W; Wu, Hui-Fen

    2014-02-01

    The last few decades have seen the rise of widely-available proteomics tools. From new data acquisition devices, such as MALDI-MS and 2DE to new database searching softwares, these new products have paved the way for high throughput microbial proteomics (HTMP). These tools are enabling researchers to gain new insights into microbial metabolism, and are opening up new areas of study, such as protein-protein interactions (interactomics) discovery. Computer software is a key part of these emerging fields. This current review considers: 1) software tools for identifying the proteome, such as MASCOT or PDQuest, 2) online databases of proteomes, such as SWISS-PROT, Proteome Web, or the Proteomics Facility of the Pathogen Functional Genomics Resource Center, and 3) software tools for applying proteomic data, such as PSI-BLAST or VESPA. These tools allow for research in network biology, protein identification, functional annotation, target identification/validation, protein expression, protein structural analysis, metabolic pathway engineering and drug discovery.

  19. AlgaGEM – a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome

    PubMed Central

    2011-01-01

    Background Microalgae have the potential to deliver biofuels without the associated competition for land resources. In order to realise the rates and titres necessary for commercial production, however, system-level metabolic engineering will be required. Genome scale metabolic reconstructions have revolutionized microbial metabolic engineering and are used routinely for in silico analysis and design. While genome scale metabolic reconstructions have been developed for many prokaryotes and model eukaryotes, the application to less well characterized eukaryotes such as algae is challenging not at least due to a lack of compartmentalization data. Results We have developed a genome-scale metabolic network model (named AlgaGEM) covering the metabolism for a compartmentalized algae cell based on the Chlamydomonas reinhardtii genome. AlgaGEM is a comprehensive literature-based genome scale metabolic reconstruction that accounts for the functions of 866 unique ORFs, 1862 metabolites, 2249 gene-enzyme-reaction-association entries, and 1725 unique reactions. The reconstruction was compartmentalized into the cytoplasm, mitochondrion, plastid and microbody using available data for algae complemented with compartmentalisation data for Arabidopsis thaliana. AlgaGEM describes a functional primary metabolism of Chlamydomonas and significantly predicts distinct algal behaviours such as the catabolism or secretion rather than recycling of phosphoglycolate in photorespiration. AlgaGEM was validated through the simulation of growth and algae metabolic functions inferred from literature. Using efficient resource utilisation as the optimality criterion, AlgaGEM predicted observed metabolic effects under autotrophic, heterotrophic and mixotrophic conditions. AlgaGEM predicts increased hydrogen production when cyclic electron flow is disrupted as seen in a high producing mutant derived from mutational studies. The model also predicted the physiological pathway for H2 production and identified new targets to further improve H2 yield. Conclusions AlgaGEM is a viable and comprehensive framework for in silico functional analysis and can be used to derive new, non-trivial hypotheses for exploring this metabolically versatile organism. Flux balance analysis can be used to identify bottlenecks and new targets to metabolically engineer microalgae for production of biofuels. PMID:22369158

  20. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria.

    PubMed

    Kanno, Masahiro; Carroll, Austin L; Atsumi, Shota

    2017-03-13

    Cyanobacteria have attracted much attention as hosts to recycle CO 2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO 2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO 2 and glucose, and produces 12.6 g l -1 of 2,3-butanediol with a rate of 1.1 g l -1  d -1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.

  1. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria

    NASA Astrophysics Data System (ADS)

    Kanno, Masahiro; Carroll, Austin L.; Atsumi, Shota

    2017-03-01

    Cyanobacteria have attracted much attention as hosts to recycle CO2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO2 and glucose, and produces 12.6 g l-1 of 2,3-butanediol with a rate of 1.1 g l-1 d-1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.

  2. Transformable facultative thermophile Geobacillus stearothermophilus NUB3621 as a host strain for metabolic engineering

    PubMed Central

    Blanchard, Kristen; Robic, Srebrenka

    2014-01-01

    Metabolic engineers develop inexpensive enantioselective syntheses of high-value compounds, but their designs are sometimes confounded by the misfolding of heterologously expressed proteins. Geobacillus stearothermophilus NUB3621 is a readily transformable facultative thermophile. It could be used to express and properly fold proteins derived from its many mesophilic or thermophilic Bacillaceae relatives or to direct the evolution of thermophilic variants of mesophilic proteins. Moreover, its capacity for high-temperature growth should accelerate chemical transformation rates in accordance with the Arrhenius equation and reduce the risks of microbial contamination. Its tendency to sporulate in response to nutrient depletion lowers the costs of storage and transportation. Here, we present a draft genome sequence of G. stearothermophilus NUB3621 and describe inducible and constitutive expression plasmids that function in this organism. These tools will help us and others to exploit the natural advantages of this system for metabolic engineering applications. PMID:24788326

  3. Metabolic Engineering of Microorganisms for the Production of Higher Alcohols

    PubMed Central

    Choi, Yong Jun; Lee, Joungmin; Jang, Yu-Sin

    2014-01-01

    ABSTRACT Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, which possess fuel properties more similar to those of petroleum-based fuel, have attracted particular interest as alternatives to ethanol. Since microorganisms isolated from nature do not allow production of these alcohols at high enough efficiencies, metabolic engineering has been employed to enhance their production. Here, we review recent advances in metabolic engineering of microorganisms for the production of higher alcohols. PMID:25182323

  4. Streptomyces species: Ideal chassis for natural product discovery and overproduction.

    PubMed

    Liu, Ran; Deng, Zixin; Liu, Tiangang

    2018-05-28

    There is considerable interest in mining organisms for new natural products (NPs) and in improving methods to overproduce valuable NPs. Because of the rapid development of tools and strategies for metabolic engineering and the markedly increased knowledge of the biosynthetic pathways and genetics of NP-producing organisms, genome mining and overproduction of NPs can be dramatically accelerated. In particular, Streptomyces species have been proposed as suitable chassis organisms for NP discovery and overproduction because of their many unique characteristics not shared with yeast, Escherichia coli, or other microorganisms. In this review, we summarize the methods for genome sequencing, gene cluster prediction, and gene editing in Streptomyces, as well as metabolic engineering strategies for NP overproduction and approaches for generating new products. Finally, two strategies for utilizing Streptomyces as the chassis for NP discovery and overproduction are emphasized. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels.

    PubMed

    Zhang, Yueping; Nielsen, Jens; Liu, Zihe

    2017-12-01

    Terpenoids represent a large class of natural products with significant commercial applications. These chemicals are currently mainly obtained through extraction from plants and microbes or through chemical synthesis. However, these sources often face challenges of unsustainability and low productivity. In order to address these issues, Escherichia coli and yeast have been metabolic engineered to produce non-native terpenoids. With recent reports of engineering yeast metabolism to produce several terpenoids at high yields, it has become possible to establish commercial yeast production of terpenoids that find applications as perfume ingredients, pharmaceuticals and advanced biofuels. In this review, we describe the strategies to rewire the yeast pathway for terpenoid biosynthesis. Recent advances will be discussed together with challenges and perspectives of yeast as a cell factory to produce different terpenoids. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Metabolic engineering of microorganisms for the production of higher alcohols.

    PubMed

    Choi, Yong Jun; Lee, Joungmin; Jang, Yu-Sin; Lee, Sang Yup

    2014-09-02

    Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, which possess fuel properties more similar to those of petroleum-based fuel, have attracted particular interest as alternatives to ethanol. Since microorganisms isolated from nature do not allow production of these alcohols at high enough efficiencies, metabolic engineering has been employed to enhance their production. Here, we review recent advances in metabolic engineering of microorganisms for the production of higher alcohols. Copyright © 2014 Choi et al.

  7. National Aeronautics and Space Administration (nasa)/american Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1991, Volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1991-01-01

    Presented here is a compilation of the final reports of the research projects done by the faculty members during the summer of 1991. Topics covered include optical correlation; lunar production and application of solar cells and synthesis of diamond film; software quality assurance; photographic image resolution; target detection using fractal geometry; evaluation of fungal metabolic compounds released to the air in a restricted environment; and planning and resource management in an intelligent automated power management system.

  8. Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products.

    PubMed

    Yu, Jian

    2018-06-09

    With rapid technology progress and cost reduction, clean hydrogen from water electrolysis driven by renewable powers becomes a potential feedstock for CO 2 fixation by hydrogen-oxidizing bacteria. Cupriavidus necator (formally Ralstonia eutropha), a representative member of the lithoautotrophic prokaryotes, is a promising producer of polyhydroxyalkanoates and single cell proteins. This paper reviews the fundamental properties of the hydrogen-oxidizing bacterium, the metabolic activities under limitation of individual gases and nutrients, and the value-added products from CO 2 , including the products with large potential markets. Gas fermentation and bioreactor safety are discussed for achieving high cell density and high productivity of desired products under chemolithotrophic conditions. The review also updates the recent research activities in metabolic engineering of C. necator to produce novel metabolites from CO 2 .

  9. Green genes: bioinformatics and systems-biology innovations drive algal biotechnology.

    PubMed

    Reijnders, Maarten J M F; van Heck, Ruben G A; Lam, Carolyn M C; Scaife, Mark A; dos Santos, Vitor A P Martins; Smith, Alison G; Schaap, Peter J

    2014-12-01

    Many species of microalgae produce hydrocarbons, polysaccharides, and other valuable products in significant amounts. However, large-scale production of algal products is not yet competitive against non-renewable alternatives from fossil fuel. Metabolic engineering approaches will help to improve productivity, but the exact metabolic pathways and the identities of the majority of the genes involved remain unknown. Recent advances in bioinformatics and systems-biology modeling coupled with increasing numbers of algal genome-sequencing projects are providing the means to address this. A multidisciplinary integration of methods will provide synergy for a systems-level understanding of microalgae, and thereby accelerate the improvement of industrially valuable strains. In this review we highlight recent advances and challenges to microalgal research and discuss future potential. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Engineering metabolic pathways in plants by multigene transformation.

    PubMed

    Zorrilla-López, Uxue; Masip, Gemma; Arjó, Gemma; Bai, Chao; Banakar, Raviraj; Bassie, Ludovic; Berman, Judit; Farré, Gemma; Miralpeix, Bruna; Pérez-Massot, Eduard; Sabalza, Maite; Sanahuja, Georgina; Vamvaka, Evangelia; Twyman, Richard M; Christou, Paul; Zhu, Changfu; Capell, Teresa

    2013-01-01

    Metabolic engineering in plants can be used to increase the abundance of specific valuable metabolites, but single-point interventions generally do not improve the yields of target metabolites unless that product is immediately downstream of the intervention point and there is a plentiful supply of precursors. In many cases, an intervention is necessary at an early bottleneck, sometimes the first committed step in the pathway, but is often only successful in shifting the bottleneck downstream, sometimes also causing the accumulation of an undesirable metabolic intermediate. Occasionally it has been possible to induce multiple genes in a pathway by controlling the expression of a key regulator, such as a transcription factor, but this strategy is only possible if such master regulators exist and can be identified. A more robust approach is the simultaneous expression of multiple genes in the pathway, preferably representing every critical enzymatic step, therefore removing all bottlenecks and ensuring completely unrestricted metabolic flux. This approach requires the transfer of multiple enzyme-encoding genes to the recipient plant, which is achieved most efficiently if all genes are transferred at the same time. Here we review the state of the art in multigene transformation as applied to metabolic engineering in plants, highlighting some of the most significant recent advances in the field.

  11. Science & Technology Review November 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radousky, H

    This months issue has the following articles: (1) Expanded Supercomputing Maximizes Scientific Discovery--Commentary by Dona Crawford; (2) Thunder's Power Delivers Breakthrough Science--Livermore's Thunder supercomputer allows researchers to model systems at scales never before possible. (3) Extracting Key Content from Images--A new system called the Image Content Engine is helping analysts find significant but hard-to-recognize details in overhead images. (4) Got Oxygen?--Oxygen, especially oxygen metabolism, was key to evolution, and a Livermore project helps find out why. (5) A Shocking New Form of Laserlike Light--According to research at Livermore, smashing a crystal with a shock wave can result in coherent light.

  12. Metabolomics, Standards, and Metabolic Modeling for Synthetic Biology in Plants

    PubMed Central

    Hill, Camilla Beate; Czauderna, Tobias; Klapperstück, Matthias; Roessner, Ute; Schreiber, Falk

    2015-01-01

    Life on earth depends on dynamic chemical transformations that enable cellular functions, including electron transfer reactions, as well as synthesis and degradation of biomolecules. Biochemical reactions are coordinated in metabolic pathways that interact in a complex way to allow adequate regulation. Biotechnology, food, biofuel, agricultural, and pharmaceutical industries are highly interested in metabolic engineering as an enabling technology of synthetic biology to exploit cells for the controlled production of metabolites of interest. These approaches have only recently been extended to plants due to their greater metabolic complexity (such as primary and secondary metabolism) and highly compartmentalized cellular structures and functions (including plant-specific organelles) compared with bacteria and other microorganisms. Technological advances in analytical instrumentation in combination with advances in data analysis and modeling have opened up new approaches to engineer plant metabolic pathways and allow the impact of modifications to be predicted more accurately. In this article, we review challenges in the integration and analysis of large-scale metabolic data, present an overview of current bioinformatics methods for the modeling and visualization of metabolic networks, and discuss approaches for interfacing bioinformatics approaches with metabolic models of cellular processes and flux distributions in order to predict phenotypes derived from specific genetic modifications or subjected to different environmental conditions. PMID:26557642

  13. Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis.

    PubMed

    Hong, Kuk-Ki; Vongsangnak, Wanwipa; Vemuri, Goutham N; Nielsen, Jens

    2011-07-19

    Identification of the underlying molecular mechanisms for a derived phenotype by adaptive evolution is difficult. Here, we performed a systems-level inquiry into the metabolic changes occurring in the yeast Saccharomyces cerevisiae as a result of its adaptive evolution to increase its specific growth rate on galactose and related these changes to the acquired phenotypic properties. Three evolved mutants (62A, 62B, and 62C) with higher specific growth rates and faster specific galactose uptake were isolated. The evolved mutants were compared with a reference strain and two engineered strains, SO16 and PGM2, which also showed higher galactose uptake rate in previous studies. The profile of intermediates in galactose metabolism was similar in evolved and engineered mutants, whereas reserve carbohydrates metabolism was specifically elevated in the evolved mutants and one evolved strain showed changes in ergosterol biosynthesis. Mutations were identified in proteins involved in the global carbon sensing Ras/PKA pathway, which is known to regulate the reserve carbohydrates metabolism. We evaluated one of the identified mutations, RAS2(Tyr112), and this mutation resulted in an increased specific growth rate on galactose. These results show that adaptive evolution results in the utilization of unpredicted routes to accommodate increased galactose flux in contrast to rationally engineered strains. Our study demonstrates that adaptive evolution represents a valuable alternative to rational design in bioengineering of improved strains and, that through systems biology, it is possible to identify mutations in evolved strain that can serve as unforeseen metabolic engineering targets for improving microbial strains for production of biofuels and chemicals.

  14. Metabolic assessment of E. coli as a Biofactory for commercial products.

    PubMed

    Zhang, Xiaolin; Tervo, Christopher J; Reed, Jennifer L

    2016-05-01

    Metabolic engineering uses microorganisms to synthesize chemicals from renewable resources. Given the thousands of known metabolites, it is unclear what valuable chemicals could be produced by a microorganism and what native and heterologous reactions are needed for their synthesis. To answer these questions, a systematic computational assessment of Escherichia coli's potential ability to produce different chemicals was performed using an integrated metabolic model that included native E.coli reactions and known heterologous reactions. By adding heterologous reactions, a total of 1777 non-native products could theoretically be produced in E. coli under glucose minimal medium conditions, of which 279 non-native products have commercial applications. Synthesis pathways involving native and heterologous reactions were identified from eight central metabolic precursors to the 279 non-native commercial products. These pathways were used to evaluate the dependence on, and diversity of, native and heterologous reactions to produce each non-native commercial product, as well as to identify each product׳s closest central metabolic precursor. Analysis of the synthesis pathways (with 5 or fewer reaction steps) to non-native commercial products revealed that isopentenyl diphosphate, pyruvate, and oxaloacetate are the closest central metabolic precursors to the most non-native commercial products. Additionally, 4-hydroxybenzoate, tyrosine, and phenylalanine were found to be common precursors to a large number of non-native commercial products. Strains capable of producing high levels of these precursors could be further engineered to create strains capable of producing a variety of commercial non-native chemicals. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Synthetic biology for microbial production of lipid-based biofuels.

    PubMed

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. Published by Elsevier Ltd.

  16. Isoprenoid-Based Biofuels: Homologous Expression and Heterologous Expression in Prokaryotes.

    PubMed

    Phulara, Suresh Chandra; Chaturvedi, Preeti; Gupta, Pratima

    2016-10-01

    Enthusiasm for mining advanced biofuels from microbial hosts has increased remarkably in recent years. Isoprenoids are one of the highly diverse groups of secondary metabolites and are foreseen as an alternative to petroleum-based fuels. Most of the prokaryotes synthesize their isoprenoid backbone via the deoxyxylulose-5-phosphate pathway from glyceraldehyde-3-phosphate and pyruvate, whereas eukaryotes synthesize isoprenoids via the mevalonate pathway from acetyl coenzyme A (acetyl-CoA). Microorganisms do not accumulate isoprenoids in large quantities naturally, which restricts their application for fuel purposes. Various metabolic engineering efforts have been utilized to overcome the limitations associated with their natural and nonnatural production. The introduction of heterologous pathways/genes and overexpression of endogenous/homologous genes have shown a remarkable increase in isoprenoid yield and substrate utilization in microbial hosts. Such modifications in the hosts' genomes have enabled researchers to develop commercially competent microbial strains for isoprenoid-based biofuel production utilizing a vast array of substrates. The present minireview briefly discusses the recent advancement in metabolic engineering efforts in prokaryotic hosts for the production of isoprenoid-based biofuels, with an emphasis on endogenous, homologous, and heterologous expression strategies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Isoprenoid-Based Biofuels: Homologous Expression and Heterologous Expression in Prokaryotes

    PubMed Central

    Phulara, Suresh Chandra; Chaturvedi, Preeti

    2016-01-01

    Enthusiasm for mining advanced biofuels from microbial hosts has increased remarkably in recent years. Isoprenoids are one of the highly diverse groups of secondary metabolites and are foreseen as an alternative to petroleum-based fuels. Most of the prokaryotes synthesize their isoprenoid backbone via the deoxyxylulose-5-phosphate pathway from glyceraldehyde-3-phosphate and pyruvate, whereas eukaryotes synthesize isoprenoids via the mevalonate pathway from acetyl coenzyme A (acetyl-CoA). Microorganisms do not accumulate isoprenoids in large quantities naturally, which restricts their application for fuel purposes. Various metabolic engineering efforts have been utilized to overcome the limitations associated with their natural and nonnatural production. The introduction of heterologous pathways/genes and overexpression of endogenous/homologous genes have shown a remarkable increase in isoprenoid yield and substrate utilization in microbial hosts. Such modifications in the hosts' genomes have enabled researchers to develop commercially competent microbial strains for isoprenoid-based biofuel production utilizing a vast array of substrates. The present minireview briefly discusses the recent advancement in metabolic engineering efforts in prokaryotic hosts for the production of isoprenoid-based biofuels, with an emphasis on endogenous, homologous, and heterologous expression strategies. PMID:27422837

  18. Determination of the Glycogen Content in Cyanobacteria.

    PubMed

    De Porcellinis, Alice; Frigaard, Niels-Ulrik; Sakuragi, Yumiko

    2017-07-17

    Cyanobacteria accumulate glycogen as a major intracellular carbon and energy storage during photosynthesis. Recent developments in research have highlighted complex mechanisms of glycogen metabolism, including the diel cycle of biosynthesis and catabolism, redox regulation, and the involvement of non-coding RNA. At the same time, efforts are being made to redirect carbon from glycogen to desirable products in genetically engineered cyanobacteria to enhance product yields. Several methods are used to determine the glycogen contents in cyanobacteria, with variable accuracies and technical complexities. Here, we provide a detailed protocol for the reliable determination of the glycogen content in cyanobacteria that can be performed in a standard life science laboratory. The protocol entails the selective precipitation of glycogen from the cell lysate and the enzymatic depolymerization of glycogen to generate glucose monomers, which are detected by a glucose oxidase-peroxidase (GOD-POD) enzyme coupled assay. The method has been applied to Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002, two model cyanobacterial species that are widely used in metabolic engineering. Moreover, the method successfully showed differences in the glycogen contents between the wildtype and mutants defective in regulatory elements or glycogen biosynthetic genes.

  19. Challenges and Advances for Genetic Engineering of Non-model Bacteria and Uses in Consolidated Bioprocessing

    PubMed Central

    Yan, Qiang; Fong, Stephen S.

    2017-01-01

    Metabolic diversity in microorganisms can provide the basis for creating novel biochemical products. However, most metabolic engineering projects utilize a handful of established model organisms and thus, a challenge for harnessing the potential of novel microbial functions is the ability to either heterologously express novel genes or directly utilize non-model organisms. Genetic manipulation of non-model microorganisms is still challenging due to organism-specific nuances that hinder universal molecular genetic tools and translatable knowledge of intracellular biochemical pathways and regulatory mechanisms. However, in the past several years, unprecedented progress has been made in synthetic biology, molecular genetics tools development, applications of omics data techniques, and computational tools that can aid in developing non-model hosts in a systematic manner. In this review, we focus on concerns and approaches related to working with non-model microorganisms including developing molecular genetics tools such as shuttle vectors, selectable markers, and expression systems. In addition, we will discuss: (1) current techniques in controlling gene expression (transcriptional/translational level), (2) advances in site-specific genome engineering tools [homologous recombination (HR) and clustered regularly interspaced short palindromic repeats (CRISPR)], and (3) advances in genome-scale metabolic models (GSMMs) in guiding design of non-model species. Application of these principles to metabolic engineering strategies for consolidated bioprocessing (CBP) will be discussed along with some brief comments on foreseeable future prospects. PMID:29123506

  20. Metabolic Engineering of Probiotic Saccharomyces boulardii

    PubMed Central

    Liu, Jing-Jing; Kong, In Iok; Zhang, Guo-Chang; Jayakody, Lahiru N.; Kim, Heejin; Xia, Peng-Fei; Kwak, Suryang; Sung, Bong Hyun; Sohn, Jung-Hoon; Walukiewicz, Hanna E.; Rao, Christopher V.

    2016-01-01

    Saccharomyces boulardii is a probiotic yeast that has been used for promoting gut health as well as preventing diarrheal diseases. This yeast not only exhibits beneficial phenotypes for gut health but also can stay longer in the gut than Saccharomyces cerevisiae. Therefore, S. boulardii is an attractive host for metabolic engineering to produce biomolecules of interest in the gut. However, the lack of auxotrophic strains with defined genetic backgrounds has hampered the use of this strain for metabolic engineering. Here, we report the development of well-defined auxotrophic mutants (leu2, ura3, his3, and trp1) through clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-based genome editing. The resulting auxotrophic mutants can be used as a host for introducing various genetic perturbations, such as overexpression or deletion of a target gene, using existing genetic tools for S. cerevisiae. We demonstrated the overexpression of a heterologous gene (lacZ), the correct localization of a target protein (red fluorescent protein) into mitochondria by using a protein localization signal, and the introduction of a heterologous metabolic pathway (xylose-assimilating pathway) in the genome of S. boulardii. We further demonstrated that human lysozyme, which is beneficial for human gut health, could be secreted by S. boulardii. Our results suggest that more sophisticated genetic perturbations to improve S. boulardii can be performed without using a drug resistance marker, which is a prerequisite for in vivo applications using engineered S. boulardii. PMID:26850302

  1. Non-photosynthetic plastids as hosts for metabolic engineering.

    PubMed

    Mellor, Silas Busck; Behrendorff, James B Y H; Nielsen, Agnieszka Zygadlo; Jensen, Poul Erik; Pribil, Mathias

    2018-04-13

    Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most unexploited plant-specific resource. Plant cells contain organelles called plastids that retain their own genome, harbour unique biosynthetic pathways and differentiate into distinct plastid types upon environmental and developmental cues. Chloroplasts, the plastid type hosting the photosynthetic processes in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis and storage of particular classes of compounds, might prove more suitable for engineering the production and storage of non-native metabolites without affecting plant fitness. This review provides the current state of knowledge on the molecular mechanisms involved in plastid differentiation and focuses on non-photosynthetic plastids as alternative biotechnological platforms for metabolic engineering. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. Comparing the impact of ultrafine particles from petrodiesel and biodiesel combustion to bacterial metabolism by targeted HPLC-MS/MS metabolic profiling.

    PubMed

    Zhong, Fanyi; Xu, Mengyang; Schelli, Katie; Rutowski, Joshua; Holmén, Britt A; Zhu, Jiangjiang

    2017-08-01

    Alterations of gut bacterial metabolism play an important role in their host metabolism, and can result in diseases such as obesity and diabetes. While many factors were discovered influencing the gut bacterial metabolism, exposure to ultrafine particles (UFPs) from engine combustions were recently proposed to be a potential risk factor for the perturbation of gut bacterial metabolism, and consequentially to obesity and diabetes development. This study focused on evaluation of how UFPs from diesel engine combustions impact gut bacterial metabolism. We hypothesize that UFPs from different type of diesel (petrodiesel vs. biodiesel) will both impact bacterial metabolism, and the degree of impact is also diesel type-dependent. Targeted metabolic profiling of 221 metabolites were applied to three model gut bacteria in vitro, Streptococcus salivarius, Lactobacillus acidophilus and Lactobacillus fermentum. UFPs from two types of fuels, petrodiesel (B0) and a biodiesel blend (B20: 20% soy biodiesel/80% B0 by volume), were exposed to the bacteria and their metabolic changes were compared. For each bacterial strain, metabolites with significantly changed abundance were observed in both perturbations, and all three strains have increased number of altered metabolites detected from B20 UFPs perturbation in comparison to B0 UFPs. Multivariate statistical analysis further confirmed that the metabolic profiles were clearly different between testing groups. Metabolic pathway analyses also demonstrated several important metabolic pathways, including pathways involves amino acids biosynthesis and sugar metabolism, were significantly impacted by UFPs exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Bioprinting of Micro-Organ Tissue Analog for Drug Metabolism Study

    NASA Astrophysics Data System (ADS)

    Sun, Wei

    An evolving application of tissue engineering is to develop in vitro 3D cell/tissue models for drug screening and pharmacological study. In order to test in space, these in vitro models are mostly manufactured through micro-fabrication techniques and incorporate living cells with MEMS or microfluidic devices. These cell-integrated microfluidic devices, or referred as microorgans, are effective in furnishing reliable and inexpensive drug metabolism and toxicity studies [1-3]. This paper will present an on-going research collaborated between Drexel University and NASA JSC Radiation Physics Laboratory for applying a direct cell printing technique to freeform fabrication of 3D liver tissue analog in drug metabolism study. The paper will discuss modeling, design, and solid freeform fabrication of micro-fluidic flow patterns and bioprinting of 3D micro-liver chamber that biomimics liver physiological microenvironment for enhanced drug metabolization. Technical details to address bioprinting of 3D liver tissue analog, integration with a microfluidic device, and basic drug metabolism study for NASA's interests will presented. 1. Holtorf H. Leslie J. Chang R, Nam J, Culbertson C, Sun W, Gonda S, "Development of a Three-Dimensional Tissue-on-a-Chip Micro-Organ Device for Pharmacokinetic Analysis", the 47th Annual Meeting of the American Society for Cell Biology, Washington, DC, December 1-5, 2007. 2. Chang, R., Nam, J., Culbertson C., Holtorf, H., Jeevarajan, A., Gonda, S. and Sun, W., "Bio-printing and Modeling of Flow Patterns for Cell Encapsulated 3D Liver Chambers For Pharmacokinetic Study", TERMIS North America 2007 Conference and Exposition, Westin Harbour Castle, Toronto, Canada, June 13-16, 2007. 3.Starly, B., Chang, R., Sun, W., Culbertson, C., Holtorf, H. and Gonda, S., "Bioprinted Tissue-on-chip Application for Pharmacokinetic Studies", Proceedings of World Congress on Tissue Engineering and Regenerative Medicine, Pittsburgh, PA, USA, April 24-27, 2006.

  4. Complete genome sequence, metabolic model construction and phenotypic characterization of Geobacillus LC300, an extremely thermophilic, fast growing, xylose-utilizing bacterium.

    PubMed

    Cordova, Lauren T; Long, Christopher P; Venkataramanan, Keerthi P; Antoniewicz, Maciek R

    2015-11-01

    We have isolated a new extremely thermophilic fast-growing Geobacillus strain that can efficiently utilize xylose, glucose, mannose and galactose for cell growth. When grown aerobically at 72 °C, Geobacillus LC300 has a growth rate of 2.15 h(-1) on glucose and 1.52 h(-1) on xylose (doubling time less than 30 min). The corresponding specific glucose and xylose utilization rates are 5.55 g/g/h and 5.24 g/g/h, respectively. As such, Geobacillus LC300 grows 3-times faster than E. coli on glucose and xylose, and has a specific xylose utilization rate that is 3-times higher than the best metabolically engineered organism to date. To gain more insight into the metabolism of Geobacillus LC300 its genome was sequenced using PacBio's RS II single-molecule real-time (SMRT) sequencing platform and annotated using the RAST server. Based on the genome annotation and the measured biomass composition a core metabolic network model was constructed. To further demonstrate the biotechnological potential of this organism, Geobacillus LC300 was grown to high cell-densities in a fed-batch culture, where cells maintained a high xylose utilization rate under low dissolved oxygen concentrations. All of these characteristics make Geobacillus LC300 an attractive host for future metabolic engineering and biotechnology applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Metabolic engineering of higher plants and algae for isoprenoid production.

    PubMed

    Kempinski, Chase; Jiang, Zuodong; Bell, Stephen; Chappell, Joe

    2015-01-01

    Isoprenoids are a class of compounds derived from the five carbon precursors, dimethylallyl diphosphate, and isopentenyl diphosphate. These molecules present incredible natural chemical diversity, which can be valuable for humans in many aspects such as cosmetics, agriculture, and medicine. However, many terpenoids are only produced in small quantities by their natural hosts and can be difficult to generate synthetically. Therefore, much interest and effort has been directed toward capturing the genetic blueprint for their biochemistry and engineering it into alternative hosts such as plants and algae. These autotrophic organisms are attractive when compared to traditional microbial platforms because of their ability to utilize atmospheric CO2 as a carbon substrate instead of supplied carbon sources like glucose. This chapter will summarize important techniques and strategies for engineering the accumulation of isoprenoid metabolites into higher plants and algae by choosing the correct host, avoiding endogenous regulatory mechanisms, and optimizing potential flux into the target compound. Future endeavors will build on these efforts by fine-tuning product accumulation levels via the vast amount of available "-omic" data and devising metabolic engineering schemes that integrate this into a whole-organism approach. With the development of high-throughput transformation protocols and synthetic biology molecular tools, we have only begun to harness the power and utility of plant and algae metabolic engineering.

  6. Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects.

    PubMed

    Guan, Ningzi; Zhuge, Xin; Li, Jianghua; Shin, Hyun-Dong; Wu, Jing; Shi, Zhongping; Liu, Long

    2015-01-01

    Propionibacteria are actinobacteria consisting of two principal groups: cutaneous and dairy. Cutaneous propionibacteria are considered primary pathogens to humans, whereas dairy propionibacteria are widely used in the food and pharmaceutical industries. Increasing attention has been focused on improving the performance of dairy propionibacteria for the production of industrially important chemicals, and significant advances have been made through strain engineering and process optimization in the production of flavor compounds, nutraceuticals, and antimicrobial compounds. In addition, genome sequencing of several propionibacteria species has been completed, deepening understanding of the metabolic and physiological features of these organisms. However, the metabolic engineering of propionibacteria still faces several challenges owing to the lack of efficient genome manipulation tools and the existence of various types of strong restriction-modification systems. The emergence of systems and synthetic biology provides new opportunities to overcome these bottlenecks. In this review, we first introduce the major species of propionibacteria and their properties and provide an overview of their functions and applications. We then discuss advances in the genome sequencing and metabolic engineering of these bacteria. Finally, we discuss systems and synthetic biology approaches for engineering propionibacteria as efficient and robust cell factories for the production of industrially important chemicals.

  7. Cell-free metabolic engineering: Biomanufacturing beyond the cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudley, QM; Karim, AS; Jewett, MC

    2014-10-15

    Industrial biotechnology and microbial metabolic engineering are poised to help meet the growing demand for sustainable, low-cost commodity chemicals and natural products, yet the fraction of biochemicals amenable to commercial production remains limited. Common problems afflicting the current state-of-the-art include low volumetric productivities, build-up of toxic intermediates or products, and byproduct losses via competing pathways. To overcome these limitations, cell-free metabolic engineering (CFME) is expanding the scope of the traditional bioengineering model by using in vitro ensembles of catalytic proteins prepared from purified enzymes or crude lysates of cells for the production of target products. In recent years, the unprecedentedmore » level of control and freedom of design, relative to in vivo systems, has inspired the development of engineering foundations for cell-free systems. These efforts have led to activation of long enzymatic pathways (>8 enzymes), near theoretical conversion yields, productivities greater than 100 mg L-1 h(-1), reaction scales of >100 L, and new directions in protein purification, spatial organization, and enzyme stability. In the coming years, CFME will offer exciting opportunities to: (i) debug and optimize biosynthetic pathways; (ii) carry out design-build-test iterations without re-engineering organisms; and (iii) perform molecular transformations when bioconversion yields, productivities, or cellular toxicity limit commercial feasibility.« less

  8. Cell-Free Metabolic Engineering: Biomanufacturing beyond the cell

    PubMed Central

    Dudley, Quentin M.; Karim, Ashty S.; Jewett, Michael C.

    2014-01-01

    Industrial biotechnology and microbial metabolic engineering are poised to help meet the growing demand for sustainable, low-cost commodity chemicals and natural products, yet the fraction of biochemicals amenable to commercial production remains limited. Common problems afflicting the current state-of-the-art include low volumetric productivities, build-up of toxic intermediates or products, and byproduct losses via competing pathways. To overcome these limitations, cell-free metabolic engineering (CFME) is expanding the scope of the traditional bioengineering model by using in vitro ensembles of catalytic proteins prepared from purified enzymes or crude lysates of cells for the production of target products. In recent years, the unprecedented level of control and freedom of design, relative to in vivo systems, has inspired the development of engineering foundations for cell-free systems. These efforts have led to activation of long enzymatic pathways (>8 enzymes), near theoretical conversion yields, productivities greater than 100 mg L−1 hr−1, reaction scales of >100L, and new directions in protein purification, spatial organization and enzyme stability. In the coming years, CFME will offer exciting opportunities to (i) debug and optimize biosynthetic pathways, (ii) carry out design-build-test iterations without re-engineering organisms, and (iii) perform molecular transformations when bioconversion yields, productivities, or cellular toxicity limit commercial feasibility. PMID:25319678

  9. Toxicity and mutagenicity of exhaust from compressed natural gas: Could this be a clean solution for megacities with mixed-traffic conditions?

    PubMed

    Agarwal, Avinash K; Ateeq, Bushra; Gupta, Tarun; Singh, Akhilendra P; Pandey, Swaroop K; Sharma, Nikhil; Agarwal, Rashmi A; Gupta, Neeraj K; Sharma, Hemant; Jain, Ayush; Shukla, Pravesh C

    2018-08-01

    Despite intensive research carried out on particulates, correlation between engine-out particulate emissions and adverse health effects is not well understood yet. Particulate emissions hold enormous significance for mega-cities like Delhi that have immense traffic diversity. Entire public transportation system involving taxis, three-wheelers, and buses has been switched from conventional liquid fuels to compressed natural gas (CNG) in the Mega-city of Delhi. In this study, the particulate characterization was carried out on variety of engines including three diesel engines complying with Euro-II, Euro-III and Euro-IV emission norms, one Euro-II gasoline engine and one Euro-IV CNG engine. Physical, chemical and biological characterizations of particulates were performed to assess the particulate toxicity. The mutagenic potential of particulate samples was investigated at different concentrations using two different Salmonella strains, TA98 and TA100 in presence and absence of liver S9 metabolic enzyme fraction. Particulates emitted from diesel and gasoline engines showed higher mutagenicity, while those from CNG engine showed negligible mutagenicity compared to other test fuels and engine configurations. Polycyclic aromatic hydrocarbons (PAHs) adsorbed onto CNG engine particulates were also relatively fewer compared to those from equivalent diesel and gasoline engines. Taken together, our findings indicate that CNG is comparatively safer fuel compared to diesel and gasoline and can offer a cleaner transport energy solution for mega-cities with mixed-traffic conditions, especially in developing countries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Microbiome Therapeutics – Advances and Challenges

    PubMed Central

    Mimee, Mark; Citorik, Robert J.; Lu, Timothy K.

    2016-01-01

    The microbial community that lives on and in the human body exerts a major impact on human health, from metabolism to immunity. In order to leverage the close associations between microbes and their host, development of therapeutics targeting the microbiota has surged in recent years. Here, we discuss current additive and subtractive strategies to manipulate the microbiota, focusing on bacteria engineered to produce therapeutic payloads, consortia of natural organisms and selective antimicrobials. Further, we present challenges faced by the community in the development of microbiome therapeutics, including designing microbial therapies that are adapted for specific geographies in the body, stable colonization with microbial therapies, discovery of clinically relevant biosensors, robustness of engineered synthetic gene circuits and addressing safety and biocontainment concerns. Moving forward, collaboration between basic and applied researchers and clinicians to address these challenges will poise the field to herald an age of next-generation, cellular therapies that draw on novel findings in basic research to inform directed augmentation of the human microbiota. PMID:27158095

  11. Microbiome therapeutics - Advances and challenges.

    PubMed

    Mimee, Mark; Citorik, Robert J; Lu, Timothy K

    2016-10-01

    The microbial community that lives on and in the human body exerts a major impact on human health, from metabolism to immunity. In order to leverage the close associations between microbes and their host, development of therapeutics targeting the microbiota has surged in recent years. Here, we discuss current additive and subtractive strategies to manipulate the microbiota, focusing on bacteria engineered to produce therapeutic payloads, consortia of natural organisms and selective antimicrobials. Further, we present challenges faced by the community in the development of microbiome therapeutics, including designing microbial therapies that are adapted for specific geographies in the body, stable colonization with microbial therapies, discovery of clinically relevant biosensors, robustness of engineered synthetic gene circuits and addressing safety and biocontainment concerns. Moving forward, collaboration between basic and applied researchers and clinicians to address these challenges will poise the field to herald an age of next-generation, cellular therapies that draw on novel findings in basic research to inform directed augmentation of the human microbiota. Copyright © 2016. Published by Elsevier B.V.

  12. Biomass, strain engineering, and fermentation processes for butanol production by solventogenic clostridia.

    PubMed

    Lee, Sang-Hyun; Yun, Eun Ju; Kim, Jungyeon; Lee, Sang Jun; Um, Youngsoon; Kim, Kyoung Heon

    2016-10-01

    Butanol is considered an attractive biofuel and a commercially important bulk chemical. However, economical production of butanol by solventogenic clostridia, e.g., via fermentative production of acetone-butanol-ethanol (ABE), is hampered by low fermentation performance, mainly as a result of toxicity of butanol to microorganisms and high substrate costs. Recently, sugars from marine macroalgae and syngas were recognized as potent carbon sources in biomass feedstocks that are abundant and do not compete for arable land with edible crops. With the aid of systems metabolic engineering, many researchers have developed clostridial strains with improved performance on fermentation of these substrates. Alternatively, fermentation strategies integrated with butanol recovery processes such as adsorption, gas stripping, liquid-liquid extraction, and pervaporation have been designed to increase the overall titer of butanol and volumetric productivity. Nevertheless, for economically feasible production of butanol, innovative strategies based on recent research should be implemented. This review describes and discusses recent advances in the development of biomass feedstocks, microbial strains, and fermentation processes for butanol production.

  13. Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane.

    PubMed

    Nguyen, Anh Duc; Hwang, In Yeub; Lee, Ok Kyung; Kim, Donghyuk; Kalyuzhnaya, Marina G; Mariyana, Rina; Hadiyati, Susila; Kim, Min Sik; Lee, Eun Yeol

    2018-04-16

    Methane is considered a next-generation feedstock, and methanotrophic cell-based biorefinery is attractive for production of a variety of high-value compounds from methane. In this work, we have metabolically engineered Methylomicrobium alcaliphilum 20Z for 2,3-butanediol (2,3-BDO) production from methane. The engineered strain 20Z/pBudK.p, harboring the 2,3-BDO synthesis gene cluster (budABC) from Klebsiella pneumoniae, accumulated 2,3-BDO in methane-fed shake flask cultures with a titer of 35.66 mg/L. Expression of the most efficient gene cluster was optimized using selection of promoters, translation initiation rates (TIR), and the combination of 2,3-BDO synthesis genes from different sources. A higher 2,3-BDO titer of 57.7 mg/L was measured in the 20Z/pNBM-Re strain with budA of K. pneumoniae and budB of Bacillus subtilis under the control of the Tac promoter. The genome-scale metabolic network reconstruction of M. alcaliphilum 20Z enabled in silico gene knockout predictions using an evolutionary programming method to couple growth and 2,3-BDO production. The ldh, ack, and mdh genes in M. alcaliphilum 20Z were identified as potential knockout targets. Pursuing these targets, a triple-mutant strain ∆ldh ∆ack ∆mdh was constructed, resulting in a further increase of the 2,3-BDO titer to 68.8 mg/L. The productivity of this optimized strain was then tested in a fed-batch stirred tank bioreactor, where final product concentrations of up to 86.2 mg/L with a yield of 0.0318 g-(2,3-BDO) /g-CH 4 were obtained under O 2 -limited conditions. This study first demonstrates the strategy of in silico simulation-guided metabolic engineering and represents a proof-of-concept for the production of value-added compounds using systematic approaches from engineered methanotrophs. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Rewriting the Metabolic Blueprint: Advances in Pathway Diversification in Microorganisms

    PubMed Central

    Hossain, Gazi Sakir; Nadarajan, Saravanan Prabhu; Zhang, Lei; Ng, Tee-Kheang; Foo, Jee Loon; Ling, Hua; Choi, Won Jae; Chang, Matthew Wook

    2018-01-01

    Living organisms have evolved over millions of years to fine tune their metabolism to create efficient pathways for producing metabolites necessary for their survival. Advancement in the field of synthetic biology has enabled the exploitation of these metabolic pathways for the production of desired compounds by creating microbial cell factories through metabolic engineering, thus providing sustainable routes to obtain value-added chemicals. Following the past success in metabolic engineering, there is increasing interest in diversifying natural metabolic pathways to construct non-natural biosynthesis routes, thereby creating possibilities for producing novel valuable compounds that are non-natural or without elucidated biosynthesis pathways. Thus, the range of chemicals that can be produced by biological systems can be expanded to meet the demands of industries for compounds such as plastic precursors and new antibiotics, most of which can only be obtained through chemical synthesis currently. Herein, we review and discuss novel strategies that have been developed to rewrite natural metabolic blueprints in a bid to broaden the chemical repertoire achievable in microorganisms. This review aims to provide insights on recent approaches taken to open new avenues for achieving biochemical production that are beyond currently available inventions. PMID:29483901

  15. Rewriting the Metabolic Blueprint: Advances in Pathway Diversification in Microorganisms.

    PubMed

    Hossain, Gazi Sakir; Nadarajan, Saravanan Prabhu; Zhang, Lei; Ng, Tee-Kheang; Foo, Jee Loon; Ling, Hua; Choi, Won Jae; Chang, Matthew Wook

    2018-01-01

    Living organisms have evolved over millions of years to fine tune their metabolism to create efficient pathways for producing metabolites necessary for their survival. Advancement in the field of synthetic biology has enabled the exploitation of these metabolic pathways for the production of desired compounds by creating microbial cell factories through metabolic engineering, thus providing sustainable routes to obtain value-added chemicals. Following the past success in metabolic engineering, there is increasing interest in diversifying natural metabolic pathways to construct non-natural biosynthesis routes, thereby creating possibilities for producing novel valuable compounds that are non-natural or without elucidated biosynthesis pathways. Thus, the range of chemicals that can be produced by biological systems can be expanded to meet the demands of industries for compounds such as plastic precursors and new antibiotics, most of which can only be obtained through chemical synthesis currently. Herein, we review and discuss novel strategies that have been developed to rewrite natural metabolic blueprints in a bid to broaden the chemical repertoire achievable in microorganisms. This review aims to provide insights on recent approaches taken to open new avenues for achieving biochemical production that are beyond currently available inventions.

  16. Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer.

    PubMed

    Siezen, Roland J; van Hylckama Vlieg, Johan E T

    2011-08-30

    In the past decade it has become clear that the lactic acid bacterium Lactobacillus plantarum occupies a diverse range of environmental niches and has an enormous diversity in phenotypic properties, metabolic capacity and industrial applications. In this review, we describe how genome sequencing, comparative genome hybridization and comparative genomics has provided insight into the underlying genomic diversity and versatility of L. plantarum. One of the main features appears to be genomic life-style islands consisting of numerous functional gene cassettes, in particular for carbohydrates utilization, which can be acquired, shuffled, substituted or deleted in response to niche requirements. In this sense, L. plantarum can be considered a "natural metabolic engineer".

  17. Pathway Design, Engineering, and Optimization.

    PubMed

    Garcia-Ruiz, Eva; HamediRad, Mohammad; Zhao, Huimin

    The microbial metabolic versatility found in nature has inspired scientists to create microorganisms capable of producing value-added compounds. Many endeavors have been made to transfer and/or combine pathways, existing or even engineered enzymes with new function to tractable microorganisms to generate new metabolic routes for drug, biofuel, and specialty chemical production. However, the success of these pathways can be impeded by different complications from an inherent failure of the pathway to cell perturbations. Pursuing ways to overcome these shortcomings, a wide variety of strategies have been developed. This chapter will review the computational algorithms and experimental tools used to design efficient metabolic routes, and construct and optimize biochemical pathways to produce chemicals of high interest.

  18. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies.

    PubMed

    Jiang, Min; Ma, Jiangfeng; Wu, Mingke; Liu, Rongming; Liang, Liya; Xin, Fengxue; Zhang, Wenming; Jia, Honghua; Dong, Weiliang

    2017-12-01

    Succinic acid is a four-carbon dicarboxylic acid, which has attracted much interest due to its abroad usage as a precursor of many industrially important chemicals in the food, chemicals, and pharmaceutical industries. Facing the shortage of crude oil supply and demand of sustainable development, biological production of succinic acid from renewable resources has become a topic of worldwide interest. In recent decades, robust producing strain selection, metabolic engineering of model strains, and process optimization for succinic acid production have been developed. This review provides an overview of succinic acid producers and cultivation technology, highlight some of the successful metabolic engineering approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Protein Design for Pathway Engineering

    PubMed Central

    Eriksen, Dawn T.; Lian, Jiazhang; Zhao, Huimin

    2013-01-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. PMID:23558037

  20. Protein design for pathway engineering.

    PubMed

    Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. EFFECTS OF X-IRRADIATION ON THE HEXOBARBITAL METABOLIZING ENZYME SYSTEM OF RAT LIVER MICROSOMES.

    DTIC Science & Technology

    RADIATION EFFECTS , *ENZYME INHIBITORS, *HYPNOTICS AND SEDATIVES, ENZYMES, BIOSYNTHESIS, METABOLISM, DETOXIFICATION, BARBITURATES, OXIDATION...MICROSOMES, LIVER, REGENERATION(ENGINEERING), EXCISION, SUBLETHAL DOSAGE, TOXICITY , HYPNOSIS, SLEEP, HEAD(ANATOMY), MALES, FEMALES, RATS.

  2. Stacking transgenes in forest trees.

    PubMed

    Halpin, Claire; Boerjan, Wout

    2003-08-01

    Huge potential exists for improving plant raw materials and foodstuffs via metabolic engineering. To date, progress has mostly been limited to modulating the expression of single genes of well-studied pathways, such as the lignin biosynthetic pathway, in model species. However, a recent report illustrates a new level of sophistication in metabolic engineering by overexpressing one lignin enzyme while simultaneously suppressing the expression of another lignin gene in a tree, aspen. This novel approach to multi-gene manipulation has succeeded in concurrently improving several wood-quality traits.

  3. RetroPath2.0: A retrosynthesis workflow for metabolic engineers.

    PubMed

    Delépine, Baudoin; Duigou, Thomas; Carbonell, Pablo; Faulon, Jean-Loup

    2018-01-01

    Synthetic biology applied to industrial biotechnology is transforming the way we produce chemicals. However, despite advances in the scale and scope of metabolic engineering, the research and development process still remains costly. In order to expand the chemical repertoire for the production of next generation compounds, a major engineering biology effort is required in the development of novel design tools that target chemical diversity through rapid and predictable protocols. Addressing that goal involves retrosynthesis approaches that explore the chemical biosynthetic space. However, the complexity associated with the large combinatorial retrosynthesis design space has often been recognized as the main challenge hindering the approach. Here, we provide RetroPath2.0, an automated open source workflow for retrosynthesis based on generalized reaction rules that perform the retrosynthesis search from chassis to target through an efficient and well-controlled protocol. Its easiness of use and the versatility of its applications make this tool a valuable addition to the biological engineer bench desk. We show through several examples the application of the workflow to biotechnological relevant problems, including the identification of alternative biosynthetic routes through enzyme promiscuity or the development of biosensors. We demonstrate in that way the ability of the workflow to streamline retrosynthesis pathway design and its major role in reshaping the design, build, test and learn pipeline by driving the process toward the objective of optimizing bioproduction. The RetroPath2.0 workflow is built using tools developed by the bioinformatics and cheminformatics community, because it is open source we anticipate community contributions will likely expand further the features of the workflow. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Metabolic Engineering for Enhanced Medium Chain Omega Hydroxy Fatty Acid Production in Escherichia coli

    PubMed Central

    Xiao, Kang; Yue, Xiu-Hong; Chen, Wen-Chao; Zhou, Xue-Rong; Wang, Lian; Xu, Lin; Huang, Feng-Hong; Wan, Xia

    2018-01-01

    Medium chain hydroxy fatty acids (HFAs) at ω-1, 2, or 3 positions (ω-1/2/3) are rare in nature but are attractive due to their potential applications in industry. They can be metabolically engineered in Escherichia coli, however, the current yield is low. In this study, metabolic engineering with P450BM3 monooxygenase was applied to regulate both the chain length and sub-terminal position of HFA products in E. coli, leading to increased yield. Five acyl-acyl carrier protein thioesterases from plants and bacteria were first evaluated for regulating the chain length of fatty acids. Co-expression of the selected thioesterase gene CcFatB1 with a fatty acid metabolism regulator fadR and monooxygenase P450BM3 boosted the production of HFAs especially ω-3-OH-C14:1, in both the wild type and fadD deficient strain. Supplementing renewable glycerol to reduce the usage of glucose as a carbon source further increased the HFAs production to 144 mg/L, representing the highest titer of such HFAs obtained in E. coli under the comparable conditions. This study illustrated an improved metabolic strategy for medium chain ω-1/2/3 HFAs production in E. coli. In addition, the produced HFAs were mostly secreted into culture media, which eased its recovery. PMID:29467747

  5. 13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Amit; Ando, David; Gin, Jennifer

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for downregulation in terms of acetyl-CoA consumption. Thesemore » genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg/L of free fatty acids. With the addition of ATP citrate lyase and downregulation of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by ~70%.« less

  6. 13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids

    DOE PAGES

    Ghosh, Amit; Ando, David; Gin, Jennifer; ...

    2016-10-05

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for downregulation in terms of acetyl-CoA consumption. Thesemore » genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg/L of free fatty acids. With the addition of ATP citrate lyase and downregulation of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by ~70%.« less

  7. Metabolic engineering of sugars and simple sugar derivatives in plants.

    PubMed

    Patrick, John W; Botha, Frikkie C; Birch, Robert G

    2013-02-01

    Carbon captured through photosynthesis is transported, and sometimes stored in plants, as sugar. All organic compounds in plants trace to carbon from sugars, so sugar metabolism is highly regulated and integrated with development. Sugars stored by plants are important to humans as foods and as renewable feedstocks for industrial conversion to biofuels and biomaterials. For some purposes, sugars have advantages over polymers including starches, cellulose or storage lipids. This review considers progress and prospects in plant metabolic engineering for increased yield of endogenous sugars and for direct production of higher-value sugars and simple sugar derivatives. Opportunities are examined for enhancing export of sugars from leaves. Focus then turns to manipulation of sugar metabolism in sugar-storing sink organs such as fruits, sugarcane culms and sugarbeet tubers. Results from manipulation of suspected 'limiting' enzymes indicate a need for clearer understanding of flux control mechanisms, to achieve enhanced levels of endogenous sugars in crops that are highly selected for this trait. Outcomes from in planta conversion to novel sugars and derivatives range from severe interference with plant development to field demonstration of crops accumulating higher-value sugars at high yields. The differences depend on underlying biological factors including the effects of the novel products on endogenous metabolism, and on biotechnological fine-tuning including developmental expression and compartmentation patterns. Ultimately, osmotic activity may limit the accumulation of sugars to yields below those achievable using polymers; but results indicate the potential for increases above current commercial sugar yields, through metabolic engineering underpinned by improved understanding of plant sugar metabolism. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  8. The Need for Integrated Approaches in Metabolic Engineering.

    PubMed

    Lechner, Anna; Brunk, Elizabeth; Keasling, Jay D

    2016-11-01

    This review highlights state-of-the-art procedures for heterologous small-molecule biosynthesis, the associated bottlenecks, and new strategies that have the potential to accelerate future accomplishments in metabolic engineering. We emphasize that a combination of different approaches over multiple time and size scales must be considered for successful pathway engineering in a heterologous host. We have classified these optimization procedures based on the "system" that is being manipulated: transcriptome, translatome, proteome, or reactome. By bridging multiple disciplines, including molecular biology, biochemistry, biophysics, and computational sciences, we can create an integral framework for the discovery and implementation of novel biosynthetic production routes. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  9. Synthetic biology for microbial production of lipid-based biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    d’Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel

    The risks of maintaining current CO 2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO 2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here in this paper we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. Lastly, we further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential ofmore » synthetic biology for sustainable manufacturing.« less

  10. Opportunities for Merging Chemical and Biological Synthesis

    PubMed Central

    Wallace, Stephen; Balskus, Emily P.

    2014-01-01

    Organic chemists and metabolic engineers use largely orthogonal technologies to access small molecules like pharmaceuticals and commodity chemicals. As the use of biological catalysts and engineered organisms for chemical production grows, it is becoming increasingly evident that future efforts for chemical manufacture will benefit from the integration and unified expansion of these two fields. This review will discuss approaches that combine chemical and biological synthesis for small molecule production. We highlight recent advances in combining enzymatic and non-enzymatic catalysis in vitro, discuss the application of design principles from organic chemistry for engineering non-biological reactivity into enzymes, and describe the development of biocompatible chemistry that can be interfaced with microbial metabolism. PMID:24747284

  11. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals.

    PubMed

    Zeldes, Benjamin M; Keller, Matthew W; Loder, Andrew J; Straub, Christopher T; Adams, Michael W W; Kelly, Robert M

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high temperature industrial biotechnology.

  12. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals

    PubMed Central

    Zeldes, Benjamin M.; Keller, Matthew W.; Loder, Andrew J.; Straub, Christopher T.; Adams, Michael W. W.; Kelly, Robert M.

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high temperature industrial biotechnology. PMID:26594201

  13. Effects of selenium biofortification on crop nutritional quality.

    PubMed

    Malagoli, Mario; Schiavon, Michela; dall'Acqua, Stefano; Pilon-Smits, Elizabeth A H

    2015-01-01

    Selenium (Se) at very low doses has crucial functions in humans and animals. Since plants represent the main dietary source of this element, Se-containing crops may be used as a means to deliver Se to consumers (biofortification). Several strategies have been exploited to increase plant Se content. Selenium assimilation in plants affects both sulfur (S) and nitrogen (N) metabolic pathways, which is why recent research has also focused on the effect of Se fertilization on the production of S- and N- secondary metabolites with putative health benefits. In this review we discuss the function of Se in plant and human nutrition and the progress in the genetic engineering of Se metabolism to increase the levels and bioavailability of this element in food crops. Particular attention is paid to Se biofortification and the synthesis of compounds with beneficial effects on health.

  14. Metabolic engineering of Pseudomonas putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase.

    PubMed

    Gemperlein, Katja; Zipf, Gregor; Bernauer, Hubert S; Müller, Rolf; Wenzel, Silke C

    2016-01-01

    Long-chain polyunsaturated fatty acids (LC-PUFAs) can be produced de novo via polyketide synthase-like enzymes known as PUFA synthases, which are encoded by pfa biosynthetic gene clusters originally discovered from marine microorganisms. Recently similar gene clusters were detected and characterized in terrestrial myxobacteria revealing several striking differences. As the identified myxobacterial producers are difficult to handle genetically and grow very slowly we aimed to establish heterologous expression platforms for myxobacterial PUFA synthases. Here we report the heterologous expression of the pfa gene cluster from Aetherobacter fasciculatus (SBSr002) in the phylogenetically distant model host bacteria Escherichia coli and Pseudomonas putida. The latter host turned out to be the more promising PUFA producer revealing higher production rates of n-6 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). After several rounds of genetic engineering of expression plasmids combined with metabolic engineering of P. putida, DHA production yields were eventually increased more than threefold. Additionally, we applied synthetic biology approaches to redesign and construct artificial versions of the A. fasciculatus pfa gene cluster, which to the best of our knowledge represents the first example of a polyketide-like biosynthetic gene cluster modulated and synthesized for P. putida. Combination with the engineering efforts described above led to a further increase in LC-PUFA production yields. The established production platform based on synthetic DNA now sets the stage for flexible engineering of the complex PUFA synthase. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Metabolic modelling in the development of cell factories by synthetic biology

    PubMed Central

    Jouhten, Paula

    2012-01-01

    Cell factories are commonly microbial organisms utilized for bioconversion of renewable resources to bulk or high value chemicals. Introduction of novel production pathways in chassis strains is the core of the development of cell factories by synthetic biology. Synthetic biology aims to create novel biological functions and systems not found in nature by combining biology with engineering. The workflow of the development of novel cell factories with synthetic biology is ideally linear which will be attainable with the quantitative engineering approach, high-quality predictive models, and libraries of well-characterized parts. Different types of metabolic models, mathematical representations of metabolism and its components, enzymes and metabolites, are useful in particular phases of the synthetic biology workflow. In this minireview, the role of metabolic modelling in synthetic biology will be discussed with a review of current status of compatible methods and models for the in silico design and quantitative evaluation of a cell factory. PMID:24688669

  16. Combinatorial genetic perturbation to refine metabolic circuits for producing biofuels and biochemicals.

    PubMed

    Kim, Hyo Jin; Turner, Timothy Lee; Jin, Yong-Su

    2013-11-01

    Recent advances in metabolic engineering have enabled microbial factories to compete with conventional processes for producing fuels and chemicals. Both rational and combinatorial approaches coupled with synthetic and systematic tools play central roles in metabolic engineering to create and improve a selected microbial phenotype. Compared to knowledge-based rational approaches, combinatorial approaches exploiting biological diversity and high-throughput screening have been demonstrated as more effective tools for improving various phenotypes of interest. In particular, identification of unprecedented targets to rewire metabolic circuits for maximizing yield and productivity of a target chemical has been made possible. This review highlights general principles and the features of the combinatorial approaches using various libraries to implement desired phenotypes for strain improvement. In addition, recent applications that harnessed the combinatorial approaches to produce biofuels and biochemicals will be discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms

    NASA Astrophysics Data System (ADS)

    von Kamp, Axel; Klamt, Steffen

    2017-06-01

    Computational modelling of metabolic networks has become an established procedure in the metabolic engineering of production strains. One key principle that is frequently used to guide the rational design of microbial cell factories is the stoichiometric coupling of growth and product synthesis, which makes production of the desired compound obligatory for growth. Here we show that the coupling of growth and production is feasible under appropriate conditions for almost all metabolites in genome-scale metabolic models of five major production organisms. These organisms comprise eukaryotes and prokaryotes as well as heterotrophic and photoautotrophic organisms, which shows that growth coupling as a strain design principle has a wide applicability. The feasibility of coupling is proven by calculating appropriate reaction knockouts, which enforce the coupling behaviour. The study presented here is the most comprehensive computational investigation of growth-coupled production so far and its results are of fundamental importance for rational metabolic engineering.

  18. Systems metabolic engineering of microorganisms to achieve large-scale production of flavonoid scaffolds.

    PubMed

    Wu, Junjun; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2014-10-20

    Flavonoids possess pharmaceutical potential due to their health-promoting activities. The complex structures of these products make extraction from plants difficult, and chemical synthesis is limited because of the use of many toxic solvents. Microbial production offers an alternate way to produce these compounds on an industrial scale in a more economical and environment-friendly manner. However, at present microbial production has been achieved only on a laboratory scale and improvements and scale-up of these processes remain challenging. Naringenin and pinocembrin, which are flavonoid scaffolds and precursors for most of the flavonoids, are the model molecules that are key to solving the current issues restricting industrial production of these chemicals. The emergence of systems metabolic engineering, which combines systems biology with synthetic biology and evolutionary engineering at the systems level, offers new perspectives on strain and process optimization. In this review, current challenges in large-scale fermentation processes involving flavonoid scaffolds and the strategies and tools of systems metabolic engineering used to overcome these challenges are summarized. This will offer insights into overcoming the limitations and challenges of large-scale microbial production of these important pharmaceutical compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Amino acid catabolism-directed biofuel production in Clostridium sticklandii: An insight into model-driven systems engineering.

    PubMed

    Sangavai, C; Chellapandi, P

    2017-12-01

    Model-driven systems engineering has been more fascinating process for the microbial production of biofuel and bio-refineries in chemical and pharmaceutical industries. Genome-scale modeling and simulations have been guided for metabolic engineering of Clostridium species for the production of organic solvents and organic acids. Among them, Clostridium sticklandii is one of the potential organisms to be exploited as a microbial cell factory for biofuel production. It is a hyper-ammonia producing bacterium and is able to catabolize amino acids as important carbon and energy sources via Stickland reactions and the development of the specific pathways. Current genomic and metabolic aspects of this bacterium are comprehensively reviewed herein, which provided information for learning about protein catabolism-directed biofuel production. It has a metabolic potential to drive energy and direct solventogenesis as well as acidogenesis from protein catabolism. It produces by-products such as ethanol, acetate, n -butanol, n -butyrate and hydrogen from amino acid catabolism. Model-driven systems engineering of this organism would improve the performance of the industrial sectors and enhance the industrial economy by using protein-based waste in environment-friendly ways.

  20. Medicine is not health care, food is health care: plant metabolic engineering, diet and human health.

    PubMed

    Martin, Cathie; Li, Jie

    2017-11-01

    Contents 699 I. 699 II. 700 III. 700 IV. 706 V. 707 VI. 714 714 References 714 SUMMARY: Plants make substantial contributions to our health through our diets, providing macronutrients for energy and growth as well as essential vitamins and phytonutrients that protect us from chronic diseases. Imbalances in our food can lead to deficiency diseases or obesity and associated metabolic disorders, increased risk of cardiovascular diseases and cancer. Nutritional security is now a global challenge which can be addressed, at least in part, through plant metabolic engineering for nutritional improvement of foods that are accessible to and eaten by many. We review the progress that has been made in nutritional enhancement of foods, both improvements through breeding and through biotechnology and the engineering principles on which increased phytonutrient levels are based. We also consider the evidence, where available, that such foods do enhance health and protect against chronic diseases. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. Metabolic engineering of yeast for lignocellulosic biofuel production.

    PubMed

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Fatty acid biosynthesis revisited: Structure elucidation and metabolic engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beld, Joris; Lee, D. John; Burkart, Michael D.

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understandingmore » of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. Lastly, in this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.« less

  3. Cyanobacteria as Chassis for Industrial Biotechnology: Progress and Prospects

    PubMed Central

    Al-Haj, Lamya; Lui, Yuen Tin; Abed, Raeid M.M.; Gomaa, Mohamed A.; Purton, Saul

    2016-01-01

    Cyanobacteria hold significant potential as industrial biotechnology (IB) platforms for the production of a wide variety of bio-products ranging from biofuels such as hydrogen, alcohols and isoprenoids, to high-value bioactive and recombinant proteins. Underpinning this technology, are the recent advances in cyanobacterial “omics” research, the development of improved genetic engineering tools for key species, and the emerging field of cyanobacterial synthetic biology. These approaches enabled the development of elaborate metabolic engineering programs aimed at creating designer strains tailored for different IB applications. In this review, we provide an overview of the current status of the fields of cyanobacterial omics and genetic engineering with specific focus on the current molecular tools and technologies that have been developed in the past five years. The paper concludes by giving insights on future commercial applications of cyanobacteria and highlights the challenges that need to be addressed in order to make cyanobacterial industrial biotechnology more feasible in the near future. PMID:27916886

  4. Fatty acid biosynthesis revisited: Structure elucidation and metabolic engineering

    DOE PAGES

    Beld, Joris; Lee, D. John; Burkart, Michael D.

    2014-10-20

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understandingmore » of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. Lastly, in this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.« less

  5. Towards systems metabolic engineering in Pichia pastoris.

    PubMed

    Schwarzhans, Jan-Philipp; Luttermann, Tobias; Geier, Martina; Kalinowski, Jörn; Friehs, Karl

    2017-11-01

    The methylotrophic yeast Pichia pastoris is firmly established as a host for the production of recombinant proteins, frequently outperforming other heterologous hosts. Already, a sizeable amount of systems biology knowledge has been acquired for this non-conventional yeast. By applying various omics-technologies, productivity features have been thoroughly analyzed and optimized via genetic engineering. However, challenging clonal variability, limited vector repertoire and insufficient genome annotation have hampered further developments. Yet, in the last few years a reinvigorated effort to establish P. pastoris as a host for both protein and metabolite production is visible. A variety of compounds from terpenoids to polyketides have been synthesized, often exceeding the productivity of other microbial systems. The clonal variability was systematically investigated and strategies formulated to circumvent untargeted events, thereby streamlining the screening procedure. Promoters with novel regulatory properties were discovered or engineered from existing ones. The genetic tractability was increased via the transfer of popular manipulation and assembly techniques, as well as the creation of new ones. A second generation of sequencing projects culminated in the creation of the second best functionally annotated yeast genome. In combination with landmark physiological insights and increased output of omics-data, a good basis for the creation of refined genome-scale metabolic models was created. The first application of model-based metabolic engineering in P. pastoris showcased the potential of this approach. Recent efforts to establish yeast peroxisomes for compartmentalized metabolite synthesis appear to fit ideally with the well-studied high capacity peroxisomal machinery of P. pastoris. Here, these recent developments are collected and reviewed with the aim of supporting the establishment of systems metabolic engineering in P. pastoris. Copyright © 2017. Published by Elsevier Inc.

  6. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

    PubMed

    Shui, Zong-Xia; Qin, Han; Wu, Bo; Ruan, Zhi-yong; Wang, Lu-shang; Tan, Fu-Rong; Wang, Jing-Li; Tang, Xiao-Yu; Dai, Li-Chun; Hu, Guo-Quan; He, Ming-Xiong

    2015-07-01

    Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering.

  7. Regulation of EPS production in Lactobacillus casei LC2W through metabolic engineering.

    PubMed

    Li, N; Huang, Y; Liu, Z; You, C; Guo, B

    2015-12-01

    Lactobacillus casei LC2W is an exopolysaccharide(EPS)-producing strain with probiotic effects. The low efficiency and unclear regulation mechanism of EPS biosynthesis have become main constraints for its application in food industry. To investigate the major rate-limiting factors of EPS biosynthesis and to improve its yield, metabolic engineering was applied to this strain. Eight relevant genes related to central metabolism, sugar-nucleotides supply, glycosyltransferase and cofactor engineering were cloned and overexpressed. The results suggested that nox, pfk, rfbB and galT genes were the largest contributors to EPS biosynthesis in this study, which elevated EPS yield by 46·0, 20, 17·4 and 19·6% respectively. Notably, under aerobic condition which was not a suitable condition for lactobacilli to grow in, recombinant strain LC-nox achieved the highest EPS yield of 263·7 mg l(-1) , which was increased by 75% compared to that of the starting strain. The oxygen stress was excluded since the phenomenon was not observed in the control strain under the same condition. Therefore, it was probably that higher NADH oxidase activity led to a decreased NADH availability and reduced lactate concentration, which resulted in the elevation of EPS yield. This study contributed to the understanding of EPS biosynthesis in Lact. casei through metabolic engineering and provided a starting point for introducing cofactor engineering into this strain. Overexpression of NADH oxidase was found to have a most significant effect on the EPS production. It is the first report that EPS could be accumulated to such a high level under aerobic condition in lactobacilli. Our results provided a novel strategy for the improvement of EPS production in lactic acid bacteria. © 2015 The Society for Applied Microbiology.

  8. Rosa hybrida orcinol O-methyl transferase-mediated production of pterostilbene in metabolically engineered grapevine cell cultures.

    PubMed

    Martínez-Márquez, Ascensión; Morante-Carriel, Jaime A; Palazon, Javier; Bru-Martínez, Roque

    2018-05-25

    Stilbenes are naturally scarce high-added-value plant compounds with chemopreventive, pharmacological and cosmetic properties. Bioproduction strategies include engineering the metabolisms of bacterial, fungal and plant cell systems. Strikingly, one of the most effective strategies consists in the elicitation of wild grapevine cell cultures, which leads to vast stilbene resveratrol accumulation in the extracellular medium. The combination of both cell culture elicitation and metabolic engineering strategies to produce resveratrol analogs proved more efficient for the hydroxylated derivative piceatannol than for the dimethylated derivative pterostilbene, for which human hydroxylase HsCYP1B1- and grapevine O-methyltransferase VvROMT-transformed cell cultures were respectively used. Rose orcinol O-methyltransferase (OOMT) displays enzymatic properties, which makes it an appealing candidate to substitute VvROMT in the combined strategy to enhance the pterostilbene production level by engineered grapevine cells upon elicitation. Here we cloned a Rosa hybrida OOMT gene, and created a genetic construction suitable for Agrobacterium-mediated plant transformation. OOMT's ability to catalyze the conversion of resveratrol into pterostilbene was first assessed in vitro using protein extracts of agroinfiltrated N. benthamiana leaves and transformed grapevine callus. The grapevine cell cultures transformed with RhOOMT produced about 16 mg/L culture of pterostilbene and reached an extracellular distribution of up to 34% of total production at the best, which is by far the highest production reported to date in a plant system. A bonus large resveratrol production of ca. 1500-3000 mg/L was simultaneously obtained. Our results demonstrate a viable successful metabolic engineering strategy to produce pterostilbene, a resveratrol analog with enhanced pharmacological properties. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation

    PubMed Central

    Park, Jin Hwan; Lee, Kwang Ho; Kim, Tae Yong; Lee, Sang Yup

    2007-01-01

    The l-valine production strain of Escherichia coli was constructed by rational metabolic engineering and stepwise improvement based on transcriptome analysis and gene knockout simulation of the in silico genome-scale metabolic network. Feedback inhibition of acetohydroxy acid synthase isoenzyme III by l-valine was removed by site-directed mutagenesis, and the native promoter containing the transcriptional attenuator leader regions of the ilvGMEDA and ilvBN operon was replaced with the tac promoter. The ilvA, leuA, and panB genes were deleted to make more precursors available for l-valine biosynthesis. This engineered Val strain harboring a plasmid overexpressing the ilvBN genes produced 1.31 g/liter l-valine. Comparative transcriptome profiling was performed during batch fermentation of the engineered and control strains. Among the down-regulated genes, the lrp and ygaZH genes, which encode a global regulator Lrp and l-valine exporter, respectively, were overexpressed. Amplification of the lrp, ygaZH, and lrp-ygaZH genes led to the enhanced production of l-valine by 21.6%, 47.1%, and 113%, respectively. Further improvement was achieved by using in silico gene knockout simulation, which identified the aceF, mdh, and pfkA genes as knockout targets. The VAMF strain (Val ΔaceF Δmdh ΔpfkA) overexpressing the ilvBN, ilvCED, ygaZH, and lrp genes was able to produce 7.55 g/liter l-valine from 20 g/liter glucose in batch culture, resulting in a high yield of 0.378 g of l-valine per gram of glucose. These results suggest that an industrially competitive strain can be efficiently developed by metabolic engineering based on combined rational modification, transcriptome profiling, and systems-level in silico analysis. PMID:17463081

  10. Folic Acid Production by Engineered Ashbya gossypii.

    PubMed

    Serrano-Amatriain, Cristina; Ledesma-Amaro, Rodrigo; López-Nicolás, Rubén; Ros, Gaspar; Jiménez, Alberto; Revuelta, José Luis

    2016-11-01

    Folic acid (vitamin B 9 ) is the common name of a number of chemically related compounds (folates), which play a central role as cofactors in one-carbon transfer reactions. Folates are involved in the biosynthesis and metabolism of nucleotides and amino acids, as well as supplying methyl groups to a broad range of substrates, such as hormones, DNA, proteins, and lipids, as part of the methyl cycle. Humans and animals cannot synthesize folic acid and, therefore, need them in the diet. Folic acid deficiency is an important and underestimated problem of micronutrient malnutrition affecting billions of people worldwide. Therefore, the addition of folic acid as food additive has become mandatory in many countries thus contributing to a growing demand of the vitamin. At present, folic acid is exclusively produced by chemical synthesis despite its associated environmental burdens. In this work, we have metabolically engineered the industrial fungus Ashbya gossypii in order to explore its potential as a natural producer of folic acid. Overexpression of FOL genes greatly enhanced the synthesis of folates and identified GTP cyclohydrolase I as the limiting step. Metabolic flux redirection from competing pathways also stimulated folic acid production. Finally, combinatorial engineering synergistically increased the production of different bioactive forms of the folic vitamin. Overall, strains were constructed which produce 146-fold (6595µg/L) more vitamin than the wild-type and by far represents the highest yield reported. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Biosynthesis and metabolic engineering of palmitoleate production, an important contributor to human health and sustainable industry.

    PubMed

    Wu, Yongmei; Li, Runzhi; Hildebrand, David F

    2012-10-01

    Palmitoleate (cis-Δ9-16:1) shows numerous health benefits such as increased cell membrane fluidity, reduced inflammation, protection of the cardiovascular system, and inhibition of oncogenesis. Plant oils containing this unusual fatty acid can also be sustainable feedstocks for producing industrially important and high-demand 1-octene. Vegetable oils rich in palmitoleate are the ideal candidates for biodiesel production. Several wild plants are known that can synthesize high levels of palmitoleate in seeds. However, low yields and poor agronomic characteristics of these plants limit their commercialization. Metabolic engineering has been developed to create oilseed crops that accumulate high levels of palmitoleate or other unusual fatty acids, and significant advances have been made recently in this field, particularly using the model plant Arabidopsis as the host. The engineered targets for enhancing palmitoleate synthesis include overexpression of Δ9 desaturase from mammals, yeast, fungi, and plants, down-regulating KASII, coexpression of an ACP-Δ9 desaturase in plastids and CoA-Δ9 desaturase in endoplasmic reticulum (ER), and optimizing the metabolic flux into triacylglycerols (TAGs). This review will mainly describe the recent progress towards producing palmitoleate in transgenic plants by metabolic engineering along with our current understanding of palmitoleate biosynthesis and its regulation, as well as highlighting the bottlenecks that require additional investigation by combining lipidomics, transgenics and other "-omics" tools. A brief review of reported health benefits and non-food uses of palmitoleate will also be covered. Copyright © 2012. Published by Elsevier Ltd.

  12. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase.

    PubMed

    Bommareddy, Rajesh Reddy; Chen, Zhen; Rappert, Sugima; Zeng, An-Ping

    2014-09-01

    Engineering the cofactor availability is a common strategy of metabolic engineering to improve the production of many industrially important compounds. In this work, a de novo NADPH generation pathway is proposed by altering the coenzyme specificity of a native NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to NADP, which consequently has the potential to produce additional NADPH in the glycolytic pathway. Specifically, the coenzyme specificity of GAPDH of Corynebacterium glutamicum is systematically manipulated by rational protein design and the effect of the manipulation for cellular metabolism and lysine production is evaluated. By a combinatorial modification of four key residues within the coenzyme binding sites, different GAPDH mutants with varied coenzyme specificity were constructed. While increasing the catalytic efficiency of GAPDH towards NADP enhanced lysine production in all of the tested mutants, the most significant improvement of lysine production (~60%) was achieved with the mutant showing similar preference towards both NAD and NADP. Metabolic flux analysis with (13)C isotope studies confirmed that there was no significant change of flux towards the pentose phosphate pathway and the increased lysine yield was mainly attributed to the NADPH generated by the mutated GAPDH. The present study highlights the importance of protein engineering as a key strategy in de novo pathway design and overproduction of desired products. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems

    PubMed Central

    Perez-Garcia, Octavio; Lear, Gavin; Singhal, Naresh

    2016-01-01

    We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can be used to analyze complex “omics” data and to infer and optimize metabolic processes. Thereby, SMN models are suitable to capitalize on advances in high-throughput molecular and metabolic data generation. SMN models are starting to be applied to describe microbial interactions during wastewater treatment, in-situ bioremediation, microalgae blooms methanogenic fermentation, and bioplastic production. Despite their current challenges, we envisage that SMN models have future potential for the design and development of novel growth media, biochemical pathways and synthetic microbial associations. PMID:27242701

  14. Characterization of In Vitro Engineered Human Adipose Tissues: Relevant Adipokine Secretion and Impact of TNF-α

    PubMed Central

    Aubin, Kim; Safoine, Meryem; Proulx, Maryse; Audet-Casgrain, Marie-Alice; Côté, Jean-François; Têtu, Félix-André; Roy, Alphonse; Fradette, Julie

    2015-01-01

    Representative modelling of human adipose tissue functions is central to metabolic research. Tridimensional models able to recreate human adipogenesis in a physiological tissue-like context in vitro are still scarce. We describe the engineering of white adipose tissues reconstructed from their cultured adipose-derived stromal precursor cells. We hypothesize that these reconstructed tissues can recapitulate key functions of AT under basal and pro-inflammatory conditions. These tissues, featuring human adipocytes surrounded by stroma, were stable and metabolically active in long-term cultures (at least 11 weeks). Secretion of major adipokines and growth factors by the reconstructed tissues was determined and compared to media conditioned by human native fat explants. Interestingly, the secretory profiles of the reconstructed adipose tissues indicated an abundant production of leptin, PAI-1 and angiopoietin-1 proteins, while higher HGF levels were detected for the human fat explants. We next demonstrated the responsiveness of the tissues to the pro-inflammatory stimulus TNF-α, as reflected by modulation of MCP-1, NGF and HGF secretion, while VEGF and leptin protein expression did not vary. TNF-α exposure induced changes in gene expression for adipocyte metabolism-associated mRNAs such as SLC2A4, FASN and LIPE, as well as for genes implicated in NF-κB activation. Finally, this model was customized to feature adipocytes representative of progressive stages of differentiation, thereby allowing investigations using newly differentiated or more mature adipocytes. In conclusion, we produced tridimensional tissues engineered in vitro that are able to recapitulate key characteristics of subcutaneous white adipose tissue. These tissues are produced from human cells and their neo-synthesized matrix elements without exogenous or synthetic biomaterials. Therefore, they represent unique tools to investigate the effects of pharmacologically active products on human stromal cells, extracellular matrix and differentiated adipocytes, in addition to compounds modulating adipogenesis from precursor cells. PMID:26367137

  15. Mass Conservation and Inference of Metabolic Networks from High-Throughput Mass Spectrometry Data

    PubMed Central

    Bandaru, Pradeep; Bansal, Mukesh

    2011-01-01

    Abstract We present a step towards the metabolome-wide computational inference of cellular metabolic reaction networks from metabolic profiling data, such as mass spectrometry. The reconstruction is based on identification of irreducible statistical interactions among the metabolite activities using the ARACNE reverse-engineering algorithm and on constraining possible metabolic transformations to satisfy the conservation of mass. The resulting algorithms are validated on synthetic data from an abridged computational model of Escherichia coli metabolism. Precision rates upwards of 50% are routinely observed for identification of full metabolic reactions, and recalls upwards of 20% are also seen. PMID:21314454

  16. Photosynthetic CO2 Conversion to Fatty Acid Ethyl Esters (FAEEs) Using Engineered Cyanobacteria.

    PubMed

    Lee, Hyun Jeong; Choi, Jaeyeon; Lee, Sun-Mi; Um, Youngsoon; Sim, Sang Jun; Kim, Yunje; Woo, Han Min

    2017-02-15

    Metabolic engineering of cyanobacteria has received attention as a sustainable strategy to convert carbon dioxide to fatty acid-derived chemicals that are widely used in the food and chemical industries. Herein, Synechococcus elongatus PCC 7942, a model cyanobacterium, was engineered for the first time to produce fatty acid ethyl esters (FAEEs) from CO 2 . Due to the lack of an endogenous ethanol production pathway and wax ester synthase (AftA) activity in the wild-type cyanobacterium, we metabolically engineered S. elongatus PCC 7942 by expressing heterologous AftA and introducing the ethanol pathway, resulting in detectable peaks of FAEEs. To enhance FAEE production, a heterologous phosphoketolase pathway was introduced in the FAEE-producing strain to supply acetyl-CoA. Subsequent optimization of the cyanobacterial culture with a hexadecane overlay resulted in engineered S. elongatus PCC 7942 that produced photosynthetic FAEEs (10.0 ± 0.7 mg/L/OD 730 ) from CO 2 . This paper is the first report of photosynthetic production of FAEEs from CO 2 in cyanobacteria.

  17. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae.

    PubMed

    Lv, Xiaomei; Wang, Fan; Zhou, Pingping; Ye, Lidan; Xie, Wenping; Xu, Haoming; Yu, Hongwei

    2016-09-21

    Microbial production of isoprene from renewable feedstock is a promising alternative to traditional petroleum-based processes. Currently, efforts to improve isoprenoid production in Saccharomyces cerevisiae mainly focus on cytoplasmic engineering, whereas comprehensive engineering of multiple subcellular compartments is rarely reported. Here, we propose dual metabolic engineering of cytoplasmic and mitochondrial acetyl-CoA utilization to boost isoprene synthesis in S. cerevisiae. This strategy increases isoprene production by 2.1-fold and 1.6-fold relative to the recombinant strains with solely mitochondrial or cytoplasmic engineering, respectively. By combining a modified reiterative recombination system for rapid pathway assembly, a two-phase culture process for dynamic metabolic regulation, and aerobic fed-batch fermentation for sufficient supply of acetyl-coA and carbon, we achieve 2527, mg l(-1) of isoprene, which is the highest ever reported in engineered eukaryotes. We propose this strategy as an efficient approach to enhancing isoprene production in yeast, which might open new possibilities for bioproduction of other value-added chemicals.

  18. Metabolically engineered glucose-utilizing Shewanella strains under anaerobic conditions.

    PubMed

    Choi, Donggeon; Lee, Sae Bom; Kim, Sohyun; Min, Byoungnam; Choi, In-Geol; Chang, In Seop

    2014-02-01

    Comparative genome analysis of Shewanella strains predicted that the strains metabolize preferably two- and three-carbon carbohydrates as carbon/electron source because many Shewanella genomes are deficient of the key enzymes in glycolysis (e.g., glucokinase). In addition, all Shewanella genomes are known to have only one set of genes associated with the phosphotransferase system required to uptake sugars. To engineer Shewanella strains that can utilize five- and six-carbon carbohydrates, we constructed glucose-utilizing Shewanella oneidensis MR-1 by introducing the glucose facilitator (glf; ZMO0366) and glucokinase (glk; ZMO0369) genes of Zymomonas mobilis. The engineered MR-1 strain was able to grow on glucose as a sole carbon/electron source under anaerobic conditions. The glucose affinity (Ks) and glucokinase activity in the engineered MR-1 strain were 299.46 mM and 0.259 ± 0.034 U/g proteins. The engineered strain was successfully applied to a microbial fuel cell system and exhibited current generation using glucose as the electron source. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Transporter engineering in biomass utilization by yeast.

    PubMed

    Hara, Kiyotaka Y; Kobayashi, Jyumpei; Yamada, Ryosuke; Sasaki, Daisuke; Kuriya, Yuki; Hirono-Hara, Yoko; Ishii, Jun; Araki, Michihiro; Kondo, Akihiko

    2017-11-01

    Biomass resources are attractive carbon sources for bioproduction because of their sustainability. Many studies have been performed using biomass resources to produce sugars as carbon sources for cell factories. Expression of biomass hydrolyzing enzymes in cell factories is an important approach for constructing biomass-utilizing bioprocesses because external addition of these enzymes is expensive. In particular, yeasts have been extensively engineered to be cell factories that directly utilize biomass because of their manageable responses to many genetic engineering tools, such as gene expression, deletion and editing. Biomass utilizing bioprocesses have also been developed using these genetic engineering tools to construct metabolic pathways. However, sugar input and product output from these cells are critical factors for improving bioproduction along with biomass utilization and metabolic pathways. Transporters are key components for efficient input and output activities. In this review, we focus on transporter engineering in yeast to enhance bioproduction from biomass resources. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Metabolomics Analysis of the Toxic Effects of the Production of Lycopene and Its Precursors.

    PubMed

    Miguez, April M; McNerney, Monica P; Styczynski, Mark P

    2018-01-01

    Using cells as microbial factories enables highly specific production of chemicals with many advantages over chemical syntheses. A number of exciting new applications of this approach are in the area of precision metabolic engineering, which focuses on improving the specificity of target production. In recent work, we have used precision metabolic engineering to design lycopene-producing Escherichia coli for use as a low-cost diagnostic biosensor. To increase precursor availability and thus the rate of lycopene production, we heterologously expressed the mevalonate pathway. We found that simultaneous induction of these pathways increases lycopene production, but induction of the mevalonate pathway before induction of the lycopene pathway decreases both lycopene production and growth rate. Here, we aim to characterize the metabolic changes the cells may be undergoing during expression of either or both of these heterologous pathways. After establishing an improved method for quenching E. coli for metabolomics analysis, we used two-dimensional gas chromatography coupled to mass spectrometry (GCxGC-MS) to characterize the metabolomic profile of our lycopene-producing strains in growth conditions characteristic of our biosensor application. We found that the metabolic impacts of producing low, non-toxic levels of lycopene are of much smaller magnitude than the typical metabolic changes inherent to batch growth. We then used metabolomics to study differences in metabolism caused by the time of mevalonate pathway induction and the presence of the lycopene biosynthesis genes. We found that overnight induction of the mevalonate pathway was toxic to cells, but that the cells could recover if the lycopene pathway was not also heterologously expressed. The two pathways appeared to have an antagonistic metabolic effect that was clearly reflected in the cells' metabolic profiles. The metabolites homocysteine and homoserine exhibited particularly interesting behaviors and may be linked to the growth inhibition seen when the mevalonate pathway is induced overnight, suggesting potential future work that may be useful in engineering increased lycopene biosynthesis.

  1. Genome-scale metabolic modeling of Mucor circinelloides and comparative analysis with other oleaginous species.

    PubMed

    Vongsangnak, Wanwipa; Klanchui, Amornpan; Tawornsamretkit, Iyarest; Tatiyaborwornchai, Witthawin; Laoteng, Kobkul; Meechai, Asawin

    2016-06-01

    We present a novel genome-scale metabolic model iWV1213 of Mucor circinelloides, which is an oleaginous fungus for industrial applications. The model contains 1213 genes, 1413 metabolites and 1326 metabolic reactions across different compartments. We demonstrate that iWV1213 is able to accurately predict the growth rates of M. circinelloides on various nutrient sources and culture conditions using Flux Balance Analysis and Phenotypic Phase Plane analysis. Comparative analysis of three oleaginous genome-scale models, including M. circinelloides (iWV1213), Mortierella alpina (iCY1106) and Yarrowia lipolytica (iYL619_PCP) revealed that iWV1213 possesses a higher number of genes involved in carbohydrate, amino acid, and lipid metabolisms that might contribute to its versatility in nutrient utilization. Moreover, the identification of unique and common active reactions among the Zygomycetes oleaginous models using Flux Variability Analysis unveiled a set of gene/enzyme candidates as metabolic engineering targets for cellular improvement. Thus, iWV1213 offers a powerful metabolic engineering tool for multi-level omics analysis, enabling strain optimization as a cell factory platform of lipid-based production. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Celebrating Professor Britton Chance (1913-2010), a founding father of redox sciences.

    PubMed

    Ohnishi, Tomoko; Zweier, Jay L

    2011-12-01

    Renowned great scientist and redox pioneer, Dr. Britton Chance, closed his 97 years of legendary life on November 16, 2010. He was the Eldridge Reeves Johnson emeritus professor of biophysics, physical chemistry, and radiologic physics at the University of Pennsylvania. He achieved fame as a prominent biophysicist and developer of highly innovative biomedical instrumentation. His scientific career stretched over almost one century and he achieved many scientific and engineering breakthroughs throughout his long prolific career. The advances that he and his colleagues achieved led to great strides in our understanding of biology and disease. He was among the first scientists to recognize the importance of free radicals and reactive oxygen species in mitochondrial metabolism and cells as well as to map pathways of redox biology and signaling. Dr. Chance served as a pioneer and inspiration to generations of researchers in the fields of redox biochemistry, metabolism, and disease. He will be missed by all of us in the research community but will live on through his monumental scientific accomplishments, the novel instrumentation he developed, as well as the many scientists whom he trained and influenced.

  3. Elucidating Rice Cell Metabolism under Flooding and Drought Stresses Using Flux-Based Modeling and Analysis1[C][W][OPEN

    PubMed Central

    Lakshmanan, Meiyappan; Zhang, Zhaoyang; Mohanty, Bijayalaxmi; Kwon, Jun-Young; Choi, Hong-Yeol; Nam, Hyung-Jin; Kim, Dong-Il; Lee, Dong-Yup

    2013-01-01

    Rice (Oryza sativa) is one of the major food crops in world agriculture, especially in Asia. However, the possibility of subsequent occurrence of flood and drought is a major constraint to its production. Thus, the unique behavior of rice toward flooding and drought stresses has required special attention to understand its metabolic adaptations. However, despite several decades of research investigations, the cellular metabolism of rice remains largely unclear. In this study, in order to elucidate the physiological characteristics in response to such abiotic stresses, we reconstructed what is to our knowledge the first metabolic/regulatory network model of rice, representing two tissue types: germinating seeds and photorespiring leaves. The phenotypic behavior and metabolic states simulated by the model are highly consistent with our suspension culture experiments as well as previous reports. The in silico simulation results of seed-derived rice cells indicated (1) the characteristic metabolic utilization of glycolysis and ethanolic fermentation based on oxygen availability and (2) the efficient sucrose breakdown through sucrose synthase instead of invertase. Similarly, flux analysis on photorespiring leaf cells elucidated the crucial role of plastid-cytosol and mitochondrion-cytosol malate transporters in recycling the ammonia liberated during photorespiration and in exporting the excess redox cofactors, respectively. The model simulations also unraveled the essential role of mitochondrial respiration during drought stress. In the future, the combination of experimental and in silico analyses can serve as a promising approach to understand the complex metabolism of rice and potentially help in identifying engineering targets for improving its productivity as well as enabling stress tolerance. PMID:23753178

  4. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.

    PubMed

    Kildegaard, Kanchana R; Jensen, Niels B; Schneider, Konstantin; Czarnotta, Eik; Özdemir, Emre; Klein, Tobias; Maury, Jérôme; Ebert, Birgitta E; Christensen, Hanne B; Chen, Yun; Kim, Il-Kwon; Herrgård, Markus J; Blank, Lars M; Forster, Jochen; Nielsen, Jens; Borodina, Irina

    2016-03-15

    In the future, oil- and gas-derived polymers may be replaced with bio-based polymers, produced from renewable feedstocks using engineered cell factories. Acrylic acid and acrylic esters with an estimated world annual production of approximately 6 million tons by 2017 can be derived from 3-hydroxypropionic acid (3HP), which can be produced by microbial fermentation. For an economically viable process 3HP must be produced at high titer, rate and yield and preferably at low pH to minimize downstream processing costs. Here we describe the metabolic engineering of baker's yeast Saccharomyces cerevisiae for biosynthesis of 3HP via a malonyl-CoA reductase (MCR)-dependent pathway. Integration of multiple copies of MCR from Chloroflexus aurantiacus and of phosphorylation-deficient acetyl-CoA carboxylase ACC1 genes into the genome of yeast increased 3HP titer fivefold in comparison with single integration. Furthermore we optimized the supply of acetyl-CoA by overexpressing native pyruvate decarboxylase PDC1, aldehyde dehydrogenase ALD6, and acetyl-CoA synthase from Salmonella enterica SEacs (L641P). Finally we engineered the cofactor specificity of the glyceraldehyde-3-phosphate dehydrogenase to increase the intracellular production of NADPH at the expense of NADH and thus improve 3HP production and reduce formation of glycerol as by-product. The final strain produced 9.8 ± 0.4 g L(-1) 3HP with a yield of 13% C-mol C-mol(-1) glucose after 100 h in carbon-limited fed-batch cultivation at pH 5. The 3HP-producing strain was characterized by (13)C metabolic flux analysis and by transcriptome analysis, which revealed some unexpected consequences of the undertaken metabolic engineering strategy, and based on this data, future metabolic engineering directions are proposed. In this study, S. cerevisiae was engineered for high-level production of 3HP by increasing the copy numbers of biosynthetic genes and improving flux towards precursors and redox cofactors. This strain represents a good platform for further optimization of 3HP production and hence an important step towards potential commercial bio-based production of 3HP.

  5. Fine-Tuning Tomato Agronomic Properties by Computational Genome Redesign

    PubMed Central

    Carrera, Javier; Fernández del Carmen, Asun; Fernández-Muñoz, Rafael; Rambla, Jose Luis; Pons, Clara; Jaramillo, Alfonso; Elena, Santiago F.; Granell, Antonio

    2012-01-01

    Considering cells as biofactories, we aimed to optimize its internal processes by using the same engineering principles that large industries are implementing nowadays: lean manufacturing. We have applied reverse engineering computational methods to transcriptomic, metabolomic and phenomic data obtained from a collection of tomato recombinant inbreed lines to formulate a kinetic and constraint-based model that efficiently describes the cellular metabolism from expression of a minimal core of genes. Based on predicted metabolic profiles, a close association with agronomic and organoleptic properties of the ripe fruit was revealed with high statistical confidence. Inspired in a synthetic biology approach, the model was used for exploring the landscape of all possible local transcriptional changes with the aim of engineering tomato fruits with fine-tuned biotechnological properties. The method was validated by the ability of the proposed genomes, engineered for modified desired agronomic traits, to recapitulate experimental correlations between associated metabolites. PMID:22685389

  6. Improving formaldehyde consumption drives methanol assimilation in engineered E. coli.

    PubMed

    Woolston, Benjamin M; King, Jason R; Reiter, Michael; Van Hove, Bob; Stephanopoulos, Gregory

    2018-06-19

    Due to volatile sugar prices, the food vs fuel debate, and recent increases in the supply of natural gas, methanol has emerged as a promising feedstock for the bio-based economy. However, attempts to engineer Escherichia coli to metabolize methanol have achieved limited success. Here, we provide a rigorous systematic analysis of several potential pathway bottlenecks. We show that regeneration of ribulose 5-phosphate in E. coli is insufficient to sustain methanol assimilation, and overcome this by activating the sedoheptulose bisphosphatase variant of the ribulose monophosphate pathway. By leveraging the kinetic isotope effect associated with deuterated methanol as a chemical probe, we further demonstrate that under these conditions overall pathway flux is kinetically limited by methanol dehydrogenase. Finally, we identify NADH as a potent kinetic inhibitor of this enzyme. These results provide direction for future engineering strategies to improve methanol utilization, and underscore the value of chemical biology methodologies in metabolic engineering.

  7. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production.

    PubMed

    Alonso-Gutierrez, Jorge; Chan, Rossana; Batth, Tanveer S; Adams, Paul D; Keasling, Jay D; Petzold, Christopher J; Lee, Taek Soon

    2013-09-01

    Limonene is a valuable monoterpene used in the production of several commodity chemicals and medicinal compounds. Among them, perillyl alcohol (POH) is a promising anti-cancer agent that can be produced by hydroxylation of limonene. We engineered E. coli with a heterologous mevalonate pathway and limonene synthase for production of limonene followed by coupling with a cytochrome P450, which specifically hydroxylates limonene to produce POH. A strain containing all mevalonate pathway genes in a single plasmid produced limonene at titers over 400mg/L from glucose, substantially higher than has been achieved in the past. Incorporation of a cytochrome P450 to hydroxylate limonene yielded approximately 100mg/L of POH. Further metabolic engineering of the pathway and in situ product recovery using anion exchange resins would make this engineered E. coli a potential production platform for any valuable limonene derivative. © 2013 Elsevier Inc. All rights reserved.

  8. Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel.

    PubMed

    Blatti, Jillian L; Michaud, Jennifer; Burkart, Michael D

    2013-06-01

    Microalgae are a promising feedstock for biodiesel and other liquid fuels due to their fast growth rate, high lipid yields, and ability to grow in a broad range of environments. However, many microalgae achieve maximal lipid yields only under stress conditions hindering growth and providing compositions not ideal for biofuel applications. Metabolic engineering of algal fatty acid biosynthesis promises to create strains capable of economically producing fungible and sustainable biofuels. The algal fatty acid biosynthetic pathway has been deduced by homology to bacterial and plant systems, and much of our understanding is gleaned from basic studies in these systems. However, successful engineering of lipid metabolism in algae will necessitate a thorough characterization of the algal fatty acid synthase (FAS) including protein-protein interactions and regulation. This review describes recent efforts to engineer fatty acid biosynthesis toward optimizing microalgae as a biodiesel feedstock. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer.

    PubMed

    Denby, Charles M; Li, Rachel A; Vu, Van T; Costello, Zak; Lin, Weiyin; Chan, Leanne Jade G; Williams, Joseph; Donaldson, Bryan; Bamforth, Charles W; Petzold, Christopher J; Scheller, Henrik V; Martin, Hector Garcia; Keasling, Jay D

    2018-03-20

    Flowers of the hop plant provide both bitterness and "hoppy" flavor to beer. Hops are, however, both a water and energy intensive crop and vary considerably in essential oil content, making it challenging to achieve a consistent hoppy taste in beer. Here, we report that brewer's yeast can be engineered to biosynthesize aromatic monoterpene molecules that impart hoppy flavor to beer by incorporating recombinant DNA derived from yeast, mint, and basil. Whereas metabolic engineering of biosynthetic pathways is commonly enlisted to maximize product titers, tuning expression of pathway enzymes to affect target production levels of multiple commercially important metabolites without major collateral metabolic changes represents a unique challenge. By applying state-of-the-art engineering techniques and a framework to guide iterative improvement, strains are generated with target performance characteristics. Beers produced using these strains are perceived as hoppier than traditionally hopped beers by a sensory panel in a double-blind tasting.

  10. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0

    PubMed Central

    Schellenberger, Jan; Que, Richard; Fleming, Ronan M. T.; Thiele, Ines; Orth, Jeffrey D.; Feist, Adam M.; Zielinski, Daniel C.; Bordbar, Aarash; Lewis, Nathan E.; Rahmanian, Sorena; Kang, Joseph; Hyduke, Daniel R.; Palsson, Bernhard Ø.

    2012-01-01

    Over the past decade, a growing community of researchers has emerged around the use of COnstraint-Based Reconstruction and Analysis (COBRA) methods to simulate, analyze and predict a variety of metabolic phenotypes using genome-scale models. The COBRA Toolbox, a MATLAB package for implementing COBRA methods, was presented earlier. Here we present a significant update of this in silico ToolBox. Version 2.0 of the COBRA Toolbox expands the scope of computations by including in silico analysis methods developed since its original release. New functions include: (1) network gap filling, (2) 13C analysis, (3) metabolic engineering, (4) omics-guided analysis, and (5) visualization. As with the first version, the COBRA Toolbox reads and writes Systems Biology Markup Language formatted models. In version 2.0, we improved performance, usability, and the level of documentation. A suite of test scripts can now be used to learn the core functionality of the Toolbox and validate results. This Toolbox lowers the barrier of entry to use powerful COBRA methods. PMID:21886097

  11. Expanding P450 catalytic reaction space through evolution and engineering

    PubMed Central

    McIntosh, John A.; Farwell, Christopher C.; Arnold, Frances H.

    2014-01-01

    Advances in protein and metabolic engineering have led to wider use of enzymes to synthesize important molecules. However, many desirable transformations are not catalyzed by any known enzyme, driving interest in understanding how new enzymes can be created. The cytochrome P450 enzyme family, whose members participate in xenobiotic metabolism and natural products biosynthesis, catalyzes an impressive range of difficult chemical reactions that continues to grow as new enzymes are characterized. Recent work has revealed that P450-derived enzymes can also catalyze useful reactions previously accessible only to synthetic chemistry. The evolution and engineering of these enzymes provides an excellent case study for how to genetically encode new chemistry and expand biology’s reaction space. PMID:24658056

  12. Metabolic engineering with plants for a sustainable biobased economy.

    PubMed

    Yoon, Jong Moon; Zhao, Le; Shanks, Jacqueline V

    2013-01-01

    Plants are bona fide sustainable organisms because they accumulate carbon and synthesize beneficial metabolites from photosynthesis. To meet the challenges to food security and health threatened by increasing population growth and depletion of nonrenewable natural resources, recent metabolic engineering efforts have shifted from single pathways to holistic approaches with multiple genes owing to integration of omics technologies. Successful engineering of plants results in the high yield of biomass components for primary food sources and biofuel feedstocks, pharmaceuticals, and platform chemicals through synthetic biology and systems biology strategies. Further discovery of undefined biosynthesis pathways in plants, integrative analysis of discrete omics data, and diversified process developments for production of platform chemicals are essential to overcome the hurdles for sustainable production of value-added biomolecules from plants.

  13. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.

    PubMed

    Borodina, Irina; Nielsen, Jens

    2014-05-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects

    PubMed Central

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-01-01

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations. PMID:25233369

  15. Synthetic biology and metabolic engineering for marine carotenoids: new opportunities and future prospects.

    PubMed

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-09-17

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.

  16. Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization.

    PubMed

    Sánchez, Benjamín J; Pérez-Correa, José R; Agosin, Eduardo

    2014-09-01

    Dynamic flux balance analysis (dFBA) has been widely employed in metabolic engineering to predict the effect of genetic modifications and environmental conditions in the cell׳s metabolism during dynamic cultures. However, the importance of the model parameters used in these methodologies has not been properly addressed. Here, we present a novel and simple procedure to identify dFBA parameters that are relevant for model calibration. The procedure uses metaheuristic optimization and pre/post-regression diagnostics, fixing iteratively the model parameters that do not have a significant role. We evaluated this protocol in a Saccharomyces cerevisiae dFBA framework calibrated for aerobic fed-batch and anaerobic batch cultivations. The model structures achieved have only significant, sensitive and uncorrelated parameters and are able to calibrate different experimental data. We show that consumption, suboptimal growth and production rates are more useful for calibrating dynamic S. cerevisiae metabolic models than Boolean gene expression rules, biomass requirements and ATP maintenance. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Investigation of metabolic objectives in cultured hepatocytes.

    PubMed

    Uygun, Korkut; Matthew, Howard W T; Huang, Yinlun

    2007-06-15

    Using optimization based methods to predict fluxes in metabolic flux balance models has been a successful approach for some microorganisms, enabling construction of in silico models and even inference of some regulatory motifs. However, this success has not been translated to mammalian cells. The lack of knowledge about metabolic objectives in mammalian cells is a major obstacle that prevents utilization of various metabolic engineering tools and methods for tissue engineering and biomedical purposes. In this work, we investigate and identify possible metabolic objectives for hepatocytes cultured in vitro. To achieve this goal, we present a special data-mining procedure for identifying metabolic objective functions in mammalian cells. This multi-level optimization based algorithm enables identifying the major fluxes in the metabolic objective from MFA data in the absence of information about critical active constraints of the system. Further, once the objective is determined, active flux constraints can also be identified and analyzed. This information can be potentially used in a predictive manner to improve cell culture results or clinical metabolic outcomes. As a result of the application of this method, it was found that in vitro cultured hepatocytes maximize oxygen uptake, coupling of urea and TCA cycles, and synthesis of serine and urea. Selection of these fluxes as the metabolic objective enables accurate prediction of the flux distribution in the system given a limited amount of flux data; thus presenting a workable in silico model for cultured hepatocytes. It is observed that an overall homeostasis picture is also emergent in the findings.

  18. Effects of fasted vs fed-state exercise on performance and post-exercise metabolism: A systematic review and meta-analysis.

    PubMed

    Aird, T P; Davies, R W; Carson, B P

    2018-05-01

    The effects of nutrition on exercise metabolism and performance remain an important topic among sports scientists, clinical, and athletic populations. Recently, fasted exercise has garnered interest as a beneficial stimulus which induces superior metabolic adaptations to fed exercise in key peripheral tissues. Conversely, pre-exercise feeding augments exercise performance compared with fasting conditions. Given these seemingly divergent effects on performance and metabolism, an appraisal of the literature is warranted. This review determined the effects of fasting vs pre-exercise feeding on continuous aerobic and anaerobic or intermittent exercise performance, and post-exercise metabolic adaptations. A search was performed using the MEDLINE and PubMed search engines. The literature search identified 46 studies meeting the relevant inclusion criteria. The Delphi list was used to assess study quality. A meta-analysis and meta-regression were performed where appropriate. Findings indicated that pre-exercise feeding enhanced prolonged (P = .012), but not shorter duration aerobic exercise performance (P = .687). Fasted exercise increased post-exercise circulating FFAs (P = .023) compared to fed exercise. It is evidenced that pre-exercise feeding blunted signaling in skeletal muscle and adipose tissue implicated in regulating components of metabolism, including mitochondrial adaptation and substrate utilization. This review's findings support the hypothesis that the fasted and fed conditions can divergently influence exercise metabolism and performance. Pre-exercise feeding bolsters prolonged aerobic performance, while seminal evidence highlights potential beneficial metabolic adaptations that fasted exercise may induce in peripheral tissues. However, further research is required to fully elucidate the acute and chronic physiological adaptations to fasted vs fed exercise. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Engineering tolerance to industrially relevant stress factors in yeast cell factories.

    PubMed

    Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R; Thevelein, Johan M

    2017-06-01

    The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. © FEMS 2017.

  20. Engineering tolerance to industrially relevant stress factors in yeast cell factories

    PubMed Central

    Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R.

    2017-01-01

    Abstract The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. PMID:28586408

Top