Science.gov

Sample records for research reactor decontamination

  1. Integration of improved decontamination and characterization technologies in the decommissioning of the CP-5 research reactor

    SciTech Connect

    Bhattacharyya, S. K.; Boing, L. E.

    2000-02-17

    The aging of research reactors worldwide has resulted in a heightened awareness in the international technical decommissioning community of the timeliness to review and address the needs of these research institutes in planning for and eventually performing the decommissioning of these facilities. By using the reactors already undergoing decommissioning as test beds for evaluating enhanced or new/innovative technologies for decommissioning, it is possible that new techniques could be made available for those future research reactor decommissioning projects. Potentially, the new technologies will result in: reduced radiation doses to the work force, larger safety margins in performing decommissioning and cost and schedule savings to the research institutes in performing the decommissioning of these facilities. Testing of these enhanced technologies for decontamination, dismantling, characterization, remote operations and worker protection are critical to furthering advancements in the technical specialty of decommissioning. Furthermore, regulatory acceptance and routine utilization for future research reactor decommissioning will be assured by testing and developing these technologies in realistically contaminated environments prior to use in the research reactors. The decommissioning of the CP-5 Research Reactor is currently in the final phase of dismantlement. In this paper the authors present results of work performed at Argonne National Laboratory (ANL) in the development, testing and deployment of innovative and/or enhanced technologies for the decommissioning of research reactors.

  2. The simulation of decontamination works in premises of the research reactor in NRC 'Kurchatov institute'

    SciTech Connect

    Danilovich, Alexey; Ivanov, Oleg; Potapov, Victor; Smirnov, Sergey; Stepanov, Vyacheslav

    2013-07-01

    Application of remote sensing methods using a spectrometric collimated system allows obtaining information about features of a formation of radiation fields in contaminated premises. This information helps in a preparation of a phased plan for dismantling of contaminated equipment. When the survey of technological premises of the research reactor at the Russian Research Centre 'Kurchatov institute' was conducted the remote controlled collimated spectrometric system was used. With its help the scanning of surveyed premises were carried out. As a result of this work, the distribution pattern of radionuclides activity was restored. The simulation of decontamination works was carried out and maps of the distribution of activity and dose rate for surveyed premises were plotted and superimposed on its photo for situations before and after decontamination. The use of obtained results will allow significantly reduce radiation dose for staff at work on dismantling. (authors)

  3. Nuclear reactor cavity decontamination machine

    SciTech Connect

    Vassalotti, M.; Obligado, A.

    1984-03-13

    Apparatus is disclosed for decontaminating the wall of a boiling water reactor cavity. A chassis on wheels is rollable on the refueling floor along the cavity curb. A pair of horizontal wheels roll against the curb. A support member extends upwardly and laterally from the chassis to clear the personnel handrail. A mast depends from the support member into the cavity and includes a horizontal reaction wheel bearing against the cavity wall. A vertically positionable carriage is mounted on the mast and carries water spray nozzles directed against the wall.

  4. Conditioning of pretreated LLW generated by the decontamination of VVR-S nuclear research reactor primary circuit

    SciTech Connect

    Nicu, Mihaela I.; Ionascu, Laura A.; Dragolici, Felicia N.; Turcanu, Corneliu N.; Rotarescu, Gheorghe Gh.; Dogaru, Gheorghe C.

    2013-07-01

    Concentration of complexing acids solutions (oxalic acid, tartaric acid and citric acid) used in radioactive decontamination by chemical method affects both the mechanical stability and the chemical stability of cement matrix. The paper presents the works performed related to the chemical pretreatment of these organic acids solutions using as neutralizing agent Ca(OH){sub 2}. In this way it was possible to increase the concentration of organic acids solutions used and the soluble complex radionuclides passing in chemical precipitates, these affecting in a smaller manner the mechanical stability of the cement matrix. The chemical pretreatment the effluents improve the precipitation and conditioning performances by cementation. Were prepared compositions with complexing agents and compositions for oxidative degradation tests to simulate the concentrations of secondary radioactive waste obtained from the primary circuit decontamination of the VVR-S research reactor. It has been studied the influence of chemical pretreatment of complexing acids solutions of different concentrations on the setting time. Also it was determined the compressive strength of mortar samples in which were embedded these solutions of chemically pretreated organic acids. The results shown that an optimum cement - solution ratio doesn't have a significant impact on the setting time or on the mechanical properties. (authors)

  5. DECONTAMINATION OF NEUTRON-IRRADIATED REACTOR FUEL

    DOEpatents

    Buyers, A.G.; Rosen, F.D.; Motta, E.E.

    1959-12-22

    A pyrometallurgical method of decontaminating neutronirradiated reactor fuel is presented. In accordance with the invention, neutron-irradiated reactor fuel may be decontaminated by countercurrently contacting the fuel with a bed of alkali and alkaine fluorides under an inert gas atmosphere and inductively melting the fuel and tracking the resulting descending molten fuel with induction heating as it passes through the bed. By this method, a large, continually fresh surface of salt is exposed to the descending molten fuel which enhances the efficiency of the scrubbing operation.

  6. Nuclear reactor cooling system decontamination reagent regeneration

    DOEpatents

    Anstine, Larry D.; James, Dean B.; Melaika, Edward A.; Peterson, Jr., John P.

    1985-01-01

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  7. PYROCHEMICAL DECONTAMINATION METHOD FOR REACTOR FUEL

    DOEpatents

    Buyers, A.G.

    1959-06-30

    A pyro-chemical method is presented for decontaminating neutron irradiated uranium and separating plutonium therefrom by contact in the molten state with a metal chloride salt. Uranium trichloride and uranium tetrachloride either alone or in admixture with alkaline metal and alkaline eanth metal fluorides under specified temperature and specified phase ratio conditions extract substantially all of the uranium from the irradiated uranium fuel together with certain fission products. The phases are then separated leaving purified uranium metal. The uranium and plutonium in the salt phase can be reduced to forin a highly decontaminated uraniumplutonium alloy. The present method possesses advantages for economically decontaminating irradiated nuclear fuel elements since irradiated fuel may be proccessed immediately after withdrawal from the reactor and the uranium need not be dissolved and later reduced to the metallic form. Accordingly, the uranium may be economically refabricated and reinserted into the reactor.

  8. Decontamination and decommissioning of Shippingport commercial reactor

    SciTech Connect

    Schreiber, J.

    1989-11-01

    To a certain degree, the decontamination and decommissioning (D and D) of the Shippingport reactor was a joint venture with Duquesne Light Company. The structures that were to be decommissioned were to be removed to at least three feet below grade. Since the land had been leased from Duquesne Light, there was an agreement with them to return the land to them in a radiologically safe condition. The total enclosure volume for the steam and nuclear containment systems was about 1.3 million cubic feet, more than 80% of which was below ground. Engineering plans for the project were started in July of 1980 and the final environmental impact statement (EIS) was published in May of 1982. The plant itself was shut down in October of 1982 for end-of-life testing and defueling. The engineering services portion of the decommissioning plans was completed in September of 1983. DOE moved onto the site and took over from the Navy in September of 1984. Actual physical decommissioning began after about a year of preparation and was completed about 44 months later in July of 1989. This paper describes the main parts of D and D.

  9. Research reactors

    SciTech Connect

    Tonneson, L.C.; Fox, G.J.

    1996-04-01

    There are currently 284 research reactors in operation, and 12 under construction around the world. Of the operating reactors, nearly two-thirds are used exclusively for research, and the rest for a variety of purposes, including training, testing, and critical assembly. For more than 50 years, research reactor programs have contributed greatly to the scientific and educational communities. Today, six of the world`s research reactors are being shut down, three of which are in the USA. With government budget constraints and the growing proliferation concerns surrounding the use of highly enriched uranium in some of these reactors, the future of nuclear research could be impacted.

  10. Nuclear reactor cooling system decontamination reagent regeneration. [PWR; BWR

    DOEpatents

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P. Jr.

    1980-06-06

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  11. HAZARDOUS WASTE DECONTAMINATION WITH PLASMA REACTORS

    EPA Science Inventory

    The use of electrical energy in the form of plasma has been considered as a potentially efficient means of decontaminating hazardous waste, although to date only a few attempts have been made to do so. There are a number of relative advantages and some potential disadvantages to...

  12. HAZARDOUS WASTE DECONTAMINATION WITH PLASMA REACTORS

    EPA Science Inventory

    The use of electrical energy in the form of plasma has been considered as a potentially efficient means of decontaminating hazardous waste, although to date only a few attempts have been made to do so. There are a number of relative advantages and some potential disadvantages to...

  13. METHOD FOR DECONTAMINATION OF REACTOR SOLUTIONS

    DOEpatents

    Maraman, W.J.; Baxman, H.R.; Baker, R.D.

    1959-05-01

    A process for U recovery from phosphate fuel solutions is described. To fuel solution drawn from the reactor is added Fe(NO/sub 3/)/sub 3/ which destroys the U complex and forms ferric phosphate complex. The UO/sub 2/(NO/sub 3/)/sub 2/ formed is extracted into TBP-kerosene in a countercurrent column. The TBP contalning UO/sub 2/(NO/sub 3/)/sub 2/ is further purified by an aqueous Al(NO/ sub 3/)/sub 3/ scrub solution. The pregnant solution then goes to an H/sub 3/PO/ sub 4/ stripping and kerosene washing column. The H/sub 3/PO/sub 4/--uranyl phosphate solution is separated at the bottom and boiled to remove HNO/sub 3/ then diluted to fuel solution make-up strength. (T.R.H.)

  14. Decontamination of the Plum Brook Reactor Facility Hot Cells

    SciTech Connect

    Peecook, K.M.

    2008-07-01

    The NASA Plum Brook Reactor Facility decommissioning project recently completed a major milestone with the successful decontamination of seven hot cells. The cells included thick concrete walls and leaded glass windows, manipulator arms, inter cell dividing walls, and roof slabs. There was also a significant amount of embedded conduit and piping that had to be cleaned and surveyed. Prior to work starting evaluation studies were performed to determine whether it was more cost effective to do this work using a full up removal approach (rip and ship) or to decontaminate the cells to below required clean up levels, leaving the bulk of the material in place. This paper looks at that decision process, how it was implemented, and the results of that effort including the huge volume of material that can now be used as fill during site restoration rather than being disposed of as LLRW. (authors)

  15. Research reactors - an overview

    SciTech Connect

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  16. The Decontamination, Decommissioning, and Demolition of the Engineering Test Reactor at the Idaho Cleanup Project

    SciTech Connect

    Coyne, D.W.

    2008-07-01

    In September 2007, CH2M-WG Idaho completed the decontamination, decommissioning and demolition (D and D) of the Engineering Test Reactor (ETR) facility. The 50-year-old research reactor, located at the Idaho National Laboratory site, posed significant challenges involving regulations governing the demolition of a historical facility, the removal of a large amount of hazardous materials as well as issues associated with the removal and disposal of the 112-ton reactor vessel. Prior to commencing full scale D and D, hazardous constituents were removed including cadmium, PCB oils and electrical components, lead, asbestos and mercury among others. The reactor required isolation in order to be removed. Due to activated metal within the reactor vessel, dose rates in the core region were approximately 1100 R/hr. Subsequent dose rates outside the vessel varied from 60 mR to greater than 2 R. Due to the dose rates, the project team decided to fill the reactor vessel with grout to a level above the core region and below the discharge to the canal. To remove the reactor, access to the 17 mounting shoes was required. These shoes were encased in the high density concrete biological shield approximately 8 feet below grade. The project team used explosives to remove the biological shield. The demolition had to be controlled to prevent damaging the reactor vessel and to limit the seismic impact on a nearby operating reactor. Upon completion of the blast, the concrete was removed exposing the support shoes for the vessel. The reactor building was then demolished to accommodate the twin gantry system used to lift the reactor vessel. In September, the reactor vessel was lifted and placed onto a multi-axle trailer for transport to an onsite disposal facility. (authors)

  17. SELECTED WATER DECONTAMINATION RESEARCH PROJECT

    EPA Science Inventory

    The Water Environment Federation (WEF), through funding from the U.S. Environmental Protection Agency (EPA) and the Agency's Office of Research and Development (ORD), will host the first of three regional water sector stakeholder workshops March 15-17, 2005 at the Phoenix Marriot...

  18. Decontamination of Hot Cells and Hot Pipe Tunnel at NASA's Plum Brook Reactor Facility

    SciTech Connect

    Anderson, M.G.; Halishak, W.F.

    2008-07-01

    The large scale decontamination of the concrete Hot Cells and Hot Pipe Tunnel at NASA's Plum Brook Reactor Facility demonstrates that novel management and innovative methods are crucial to ensuring that the successful remediation of the most contaminated facilities can be achieved with minimal risk to the project stakeholders. (authors)

  19. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect

    M.E. Lumia; C.A. Gentile

    2002-01-18

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  20. Retrofit Russian research reactors

    SciTech Connect

    Mabe, W.

    1993-04-01

    A likely source for enriched uranium for production of a gun-type bomb might be a research reactor. A state or terrorist organization would find the technical process for separating uranium from the reactor fuel plates is simple and well-published. An unguarded research reactor could be found in the former Soviet Union. Russia and the former republics have seen an increasing number of terrorist incidents, including hijackings and bombings. Recognizing the danger, Russia and the U.S. have explored means of safeguarding former Soviet weapons materials. This article describes some of the plans to reduce the risk of nuclear materials being obtained for illicit weapons production.

  1. Decontamination Systems Information and Research Program

    SciTech Connect

    Cook, Echol E; Beatty, Tia Maria

    1998-07-01

    The following paragraphs comprise the research efforts during the second quarter of 1998 (April 1 - June 30.) These tasks have been granted a continuation until the end of August 1998. This report represents the last technical quarterly report deliverable for the WVU Cooperative Agreement - Decontamination Systems Information and Research Program. Final draft technical reports will be the next submission. During this period, work was completed on the Injection and Circulation of Potable Water Through PVDs on Task 1.6 - Pilot Scale Demonstration of TCE Flushing Through PVDs at the DOE/RMI Extrusion Plant. The data has been evaluated and representative graphs are presented. The plot of Cumulative Injected Volume vs. Cumulative Week Time show the ability to consistently inject through the two center PVDs at a rate of approximately ten (10) gallons per hour. This injection rate was achieved under a static head that varied from five (5) feet to three (3) feet. The plot of Extracted Flow Rate vs. Cumulative Week Time compares the extraction rate with and without the injection of water. The injection operation was continuous for eight hour periods while the extraction operation was executed over a pulsing schedule. Extraction rates as high as forty-five (45) gallons per hour were achieved in conjunction with injection (a 350% increase over no injection.) The retrieved TCE in the liquid phase varied to a considerable degree depending on the pulsing scheme, indicating a significant amount of stripping (volatilization) took place during the extraction process. A field experiment was conducted to confirm this. A liquid sample was obtained using the same vacuum system used in the pad operation and a second liquid sample was taken by a bailer. Analyzation of TCE concentration showed 99.5% volatilization when the vacuum system was used for extraction. This was also confirmed by data from the air monitoring program which indicated that 92%-99% of the retrieved TCE was being

  2. Decontamination and dismantlement of the JANUS Reactor at Argonne National Laboratory-East. Project final report

    SciTech Connect

    Fellhauer, C.R.; Clark, F.R.; Garlock, G.A.

    1997-10-01

    The decontamination and dismantlement of the JANUS Reactor at Argonne National Laboratory-East (ANL-E) was completed in October 1997. Descriptions and evaluations of the activities performed and analyses of the results obtained during the JANUS D and D Project are provided in this Final Report. The following information is included: objective of the JANUS D and D Project; history of the JANUS Reactor facility; description of the ANL-E site and the JANUS Reactor facility; overview of the D and D activities performed; description of the project planning and engineering; description of the D and D operations; summary of the final status of the JANUS Reactor facility based upon the final survey results; description of the health and safety aspects of the project, including personnel exposure and OSHA reporting; summary of the waste minimization techniques utilized and total waste generated by the project; and summary of the final cost and schedule for the JANUS D and D Project.

  3. Full reactor coolant system chemical decontamination qualification programs

    SciTech Connect

    Miller, P.E.

    1995-03-01

    Corrosion and wear products are found throughout the reactor coolant system (RCS), or primary loop, of a PWR power plant. These products circulate with the primary coolant through the reactor where they may become activated. An oxide layer including these activated products forms on the surfaces of the RCS (including the fuel elements). The amount of radioactivity deposited on the different surface varies and depends primarily on the corrosion rate of the materials concerned, the amount of cobalt in the coolant and the chemistry of the coolant. The oxide layer, commonly called crud, on the surfaces of nuclear plant systems leads to personnel radiation exposure. The level of the radiation fields from the crud increases with time from initial plant startup and typically levels off after 4 to 6 cycles of plant operation. Thereafter, significant personnel radiation exposure may be incurred whenever major maintenance is performed. Personnel exposure is highest during refueling outages when routine maintenance on major plant components, such as steam generators and reactor coolant pumps, is performed. Administrative controls are established at nuclear plants to minimize the exposure incurred by an individual and the plant workers as a whole.

  4. Reactor Safety Research Programs

    SciTech Connect

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  5. Reactor Safety Research Programs

    SciTech Connect

    Dotson, CW

    1980-08-01

    This document summarizes the work performed by Pacific Northwest laboratory from October 1 through December 31, 1979, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission. Evaluation of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibilty of determining structural graphite strength, evaluating the feasibilty of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include the loss-of-coolant accident simulation tests at the NRU reactor, Chalk River, Canada; the fuel rod deformation and post-accident coolability tests for the ESSOR Test Reactor Program, lspra, Italy; the blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and the experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  6. Korea Research Reactor -1 & 2 Decommissioning Project in Korea

    SciTech Connect

    Park, S. K.; Chung, U. S.; Jung, K. J.; Park, J. H.

    2003-02-24

    Korea Research Reactor 1 (KRR-1), the first research reactor in Korea, has been operated since 1962, and the second one, Korea Research Reactor 2 (KRR-2) since 1972. The operation of both of them was phased out in 1995 due to their lifetime and operation of the new and more powerful research reactor, HANARO (High-flux Advanced Neutron Application Reactor; 30MW). Both are TRIGA Pool type reactors in which the cores are small self-contained units sitting in tanks filled with cooling water. The KRR-1 is a TRIGA Mark II, which could operate at a level of up to 250 kW. The second one, the KRR-2 is a TRIGA Mark III, which could operate at a level of up 2,000 kW. The decontamination and decommissioning (D & D) project of these two research reactors, the first D & D project in Korea, was started in January 1997 and will be completed to stage 3 by 2008. The aim of this decommissioning program is to decommission the KRR-1 & 2 reactors and to decontaminate the residual building structure s and the site to release them as unrestricted areas. KAERI (Korea Atomic Energy Research Institute) submitted the decommissioning plan and the environmental impact assessment reports to the Ministry of Science and Technology (MOST) for the license in December 1998, and was approved in November 2000.

  7. Evaluation of the Three Mile Island Unit 2 reactor building decontamination process

    SciTech Connect

    Dougherty, D.; Adams, J. W.

    1983-08-01

    Decontamination activities from the cleanup of the Three Mile Island Unit 2 Reactor Building are generating a variety of waste streams. Solid wastes being disposed of in commercial shallow land burial include trash and rubbish, ion-exchange resins (Epicor-II) and strippable coatings. The radwaste streams arising from cleanup activities currently under way are characterized and classified under the waste classification scheme of 10 CFR Part 61. It appears that much of the Epicor-II ion-exchange resin being disposed of in commerical land burial will be Class B and require stabilization if current radionuclide loading practices continue to be followed. Some of the trash and rubbish from the cleanup of the reactor building so far would be Class B. Strippable coatings being used at TMI-2 were tested for leachability of radionuclides and chelating agents, thermal stability, radiation stability, stability under immersion and biodegradability. Actual coating samples from reactor building decontamination testing were evaluated for radionuclide leaching and biodegradation.

  8. Gaseous fuel reactor research

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schneider, R. T.

    1977-01-01

    The paper reviews studies dealing with the concept of a gaseous fuel reactor and describes the structure and plans of the current NASA research program of experiments on uranium hexafluoride systems and uranium plasma systems. Results of research into the basic properties of uranium plasmas and fissioning gases are reported. The nuclear pumped laser is described, and the main results of experiments with these devices are summarized.

  9. Proceedings of the US Nuclear Regulatory Commission fifteenth water reactor safety information meeting: Volume 6, Decontamination and decommissioning, accident management, TMI-2

    SciTech Connect

    Weiss, A. J.

    1988-02-01

    This six-volume report contains 140 papers out of the 164 that were presented at the Fifteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 26-29, 1987. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. This report, Volume 6, discusses decontamination and decommissioning, accident management, and the Three Mile Island-2 reactor accident. Thirteen reports have been cataloged separately.

  10. DECONTAMINATION SYSTEMS AND INFORMATION RESEARCH PROGRAM

    SciTech Connect

    Echol E. Cook, Ph.D., PE.

    1998-11-01

    During the five plus years this Cooperative Agreement existed, more than 45 different projects were funded. Most projects were funded for a one year period but there were some, deemed of such quality and importance, funded for multiple years. Approximately 22 external agencies, businesses, and other entities have cooperated with or been funded through the WVU Cooperative Agreement over the five plus years. These external entities received 33% of the funding by this Agreement. The scope of this Agreement encompassed all forms of hazardous waste remediation including radioactive, organic, and inorganic contaminants. All matrices were of interest; generally soil, water, and contaminated structures. Economic, health, and regulatory aspects of technologies were also within the scope of the agreement. The highest priority was given to small businesses funded by the Federal Energy Technology Center (FETC) and Department of Energy (DOE) involved in research and development of innovative remediation processes. These projects were to assist in the removal of barriers to development and commercialization of these new technologies. Studies of existing, underdeveloped technologies, were preferred to fundamental research into remediation technologies. Sound development of completely new technologies was preferred to minor improvements in existing methods. Solid technological improvements in existing technologies or significant cost reduction through innovative redesign were the preferred projects. Development, evaluation, and bench scale testing projects were preferred for the WVU research component. In the effort to fill gaps in current remediation technologies, the worth of the WVU Cooperative Agreement was proven. Two great technologies came out of the program. The Prefabricated Vertical Drain Technology for enhancing soil flushing was developed over the 6-year period and is presently being demonstrated on a 0.10 acre Trichloroethylene contaminated site in Ohio. The Spin

  11. National demonstration of full reactor coolant system (RCS) chemical decontamination at Indian Point 2

    SciTech Connect

    Trovato, S.A.; Parry, J.O.

    1995-03-01

    Key to the safe and efficient operation of the nation`s civilian nuclear power plants is the performance of maintenance activities within regulations and guidelines for personnel radiation exposure. However, maintenance activities, often performed in areas of relatively high radiation fields, will increase as the nation`s plant age. With the Nuclear Regulatory Commission (NRC) lowering the allowable radiation exposure to plant workers in 1994 and considering further reductions and regulations in the future, it is imperative that new techniques be developed and applied to reduce personnel exposure. Full primary system chemical decontamination technology offers the potential to be single most effective method of maintaining workers exposure {open_quotes}as low as reasonably achievable{close_quotes} (ALARA) while greatly reducing plant operation and maintenance (O&M) costs. A three-phase program underway since 1987, has as its goal to demonstrate that full RCS decontamination is a visible technology to reduce general plant radiation levels without threatening the long term reliability and operability of a plant. This paper discusses research leading to and plans for a National Demonstration of Full RCS Chemical Decontamination at Indian Point 2 nuclear generating station in 1995.

  12. The decontamination, decommissioning, and demolition of loss-of-fluid test reactor at the Idaho National Laboratory Site

    SciTech Connect

    Floerke, J.P.; Borschel, Th.F.; Rhodes, L.K.

    2007-07-01

    In October 2006, CH2M-WG Idaho completed the decontamination, decommissioning and demolition of the Loss-of-Fluid Test (LOFT) facility. The 30-year-old research reactor, located at the Idaho National Laboratory site, posed significant challenges involving regulations governing the demolition of a historical facility, as well as worker safety issues associated with the removal of the reactor's domed structure. The LOFT facility was located at the west end of Test Area North (TAN), built in the 1950's to support the government's aircraft nuclear propulsion program. When President Kennedy cancelled the nuclear propulsion program in 1961, TAN began to host various other activities. The LOFT reactor became part of the new mission. The LOFT facility, constructed between 1965 and 1975, was a scaled-down version of a commercial pressurized water reactor. Its design allowed engineers, scientists, and operators to create or re-create loss-of-fluid accidents (reactor fuel meltdowns) under controlled conditions. The LOFT dome provided containment for a relatively small, mobile test reactor that was moved into and out of the facility on a railroad car. The dome was roughly 21 meters (70 feet) in diameter and 30 meters (98 feet) in height. The Nuclear Regulatory Commission received the results from the accident tests and incorporated the data into commercial reactor operating codes. The facility conducted 38 experiments, including several small loss-of-coolant experiments designed to simulate events such as the accident that occurred at Three Mile Island in Pennsylvania, before the LOFT facility was closed. Through formal survey and research, the LOFT facility was determined to be a DOE Signature Property, as defined by the 'INEEL Cultural Resource Management Plan', and thus eligible for inclusion in the National Register of Historic Places. Decontamination and decommissioning (D and D) of the facility constituted an adverse effect on the historic property that required

  13. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    SciTech Connect

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  14. Research of the tritium saturation, isotope diffusion and decontamination of stainless steel using magnetic microscopy

    SciTech Connect

    Markin, A. I.; Azizov, E. A.; Siromyatnikov, N. I.; Cherkovets, V. E.; Rivkis, L. A.; Semenov, A. A.; Prikina, I. G.

    2008-07-15

    The investigations of the tritium distribution in a surface layer and in the depth of samples using a magnetic microscope were carried out. The dependence of a saturation level in the boundary layer for hydrogen was established from a preliminary examination of samples. Conservation of the tritium distribution profile in the depth of the stainless steel samples after completion of their saturation and cooling was assigned. For Inconel-625 substantial tritium redistribution and release during storage (300 K, 15 and 28 months) were experimentally ascertained to a greater degree satisfies the classical characteristics of the diffusion process. The 'braking' effect of tritium diffusion was found by preliminary saturation of samples by hydrogen. Research in tritium decontamination effects for samples saturated with tritium with various technological preparation was carried out and essential increase of its efficiency was founded. The experiments emulated a model of technological operation cycle of the thermonuclear reactor. (authors)

  15. DISMANTLING OF THE REACTOR BLOCK OF THE FRJ-1 RESEARCH REACTOR (MERLIN)

    SciTech Connect

    Stahn, B.; Matela, K.; Zehbe, C.; Poeppinghaus, J.; Cremer, J.

    2003-02-27

    the largest portion of the dismantled materials by volume, an additional conditioning step has become necessary to fulfill the clearance criteria, whereas waste packages with steel components largely have to be reconditioned once more at a later stage. Material measured for clearance will be disposed of conventionally (recycling, landfill) after inspection by the official expert and clearance by the regulatory authority. Dismantled parts that cannot be measured for clearance will be transferred to the Decontamination Department of the Research Centre. From the present perspective, the dismantling of the reactor block will be completed within the first six months of 2003.

  16. Research reactor fork users manual

    SciTech Connect

    Hsue, S.T.; Menlove, H.O.; Bosler, G.E.; Dye, H.R.; Walton, G.; Halbig, J.K.; Siebelist, R.

    1993-11-01

    This manual describes the design features and operating characteristics of the research reactor fork. The system includes an ion chamber for gross gamma-ray counting, fission chambers for neutron counting, and a collimated high-resolution spectroscopy system for gamma-ray measurements. The neutron and ion chamber measurements are designed to be made underwater in spent-fuel cooling ponds. The neutron and gamma-ray detectors have been designed with high efficiencies to accommodate the relatively low emission rates of neutrons and gamma rays from low-burnup, research-type reactor fuel. This manual presents the design, performance, and test results for the system.

  17. International Research Reactor Decommissioning Project

    SciTech Connect

    Leopando, Leonardo; Warnecke, Ernst

    2008-01-15

    Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement to the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.

  18. Development of a Rapid Decontamination System for the Nerve Agents

    DTIC Science & Technology

    2006-09-15

    Decontamination System for Nerve Agents: Final Report Table of Contents Statement of Problem Studied 2 Catalyst Synthesis and Characterization...most important findings of the research and is divided into four sections: catalyst synthesis and characterization, reactor design, experiments

  19. Decontamination and decommissioning of the Argonne Thermal Source Reactor at Argonne National Laboratory - East project final report.

    SciTech Connect

    Fellhauer, C.; Garlock, G.; Mathiesen, J.

    1998-12-02

    The ATSR D&D Project was directed toward the following goals: (1) Removal of radioactive and hazardous materials associated with the ATSR Reactor facility; (2) Decontamination of the ATSR Reactor facility to unrestricted use levels; and (3)Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure). These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the ATSR Reactor facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The reactor aluminum, reactor lead, graphite piles in room E-111, and the contaminated concrete in room E-102 were the primary areas of concern. NES, Incorporated (Danbury, CT) characterized the ATSR Reactor facility from January to March 1998. The characterization identified a total of thirteen radionuclides, with a total activity of 64.84 mCi (2.4 GBq). The primary radionuclides of concern were Co{sup 60}, Eu{sup 152}, Cs{sup 137}, and U{sup 238}. No additional radionuclides were identified during the D&D of the facility. The highest dose rates observed during the project were associated with the reactor tank and shield tank. Contact radiation levels of 30 mrem/hr (0.3 mSv/hr) were measured on reactor internals during dismantlement of the reactor. A level of 3 mrem/hr (0.03 mSv/hr) was observed in a small area (hot spot) in room E-102. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem/yr (50 mSv/yr); the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr).

  20. Results from the decontamination of and the shielding arrangements in the reactor pressure vessel in Oskarshamn 1-1994

    SciTech Connect

    Lowendahl, B.

    1995-03-01

    In September 1992 Oskarshamn 1 was shut down in order to carry out measures to correct discovered deficiencies in the emergency cooling systems. Due to the results of a comprehensive non destructive test programme it was decided to perform a major replacement of pipes in the primary systems including a full system decontamination using the Siemens CORD process. The paper briefly presents the satisfying result of the decontamination performed in May-June 1993. When in late June 1993 cracks also were detected in the feed-water pipes situated inside the reactor pressure vessel (RPV) the plans were reconsidered and a large project was formed with the aim, in a first phase, to verify the integrity of the RPV. In order to make it possible to perform work manually inside the RPV special radiation protection measures had to be carried out. In January 1994 the lower region of the RPV was decontaminated, again using the CORD-process, followed by the installation of a special shielding construction in the RPV. The surprisingly good results of these efforts are also briefly described in the paper.

  1. Vibratory finishing as a decontamination process

    SciTech Connect

    McCoy, M.W.; Arrowsmith, H.W.; Allen, R.P.

    1980-10-01

    The major objective of this research is to develop vibratory finishing into a large-scale decontamination technique that can economicaly remove transuranic and other surface contamination from large volumes of waste produced by the operation and decommissioning of retired nuclear facilities. The successful development and widespread application of this decontamination technique would substantially reduce the volume of waste requiring expensive geologic disposal. Other benefits include exposure reduction for decontamination personnel and reduced risk of environmental contamination. Laboratory-scale studies showed that vibratory finishing can rapidly reduce the contamination level of transuranic-contaminated stainless steel and Plexiglas to well below the 10-nCi/g limit. The capability of vibratory finishing as a decontamination process was demonstrated on a large scale. The first decontamination demonstration was conducted at the Hanford N-Reactor, where a vibratory finisher was installed to reduce personnel exposure during the summer outage. Items decontaminated included fuel spacers, process-tube end caps, process-tube inserts, pump parts, ball-channel inspection tools and miscellaneous hand tools. A second demonstration is currently being conducted in the decontamination facility at the Hanford 231-Z Building. During this demonstration, transuranic-contaminated material from decommissioned plutonium facilities is being decontaminated to <10 nCi/g to minimize the volume of material that will require geologic disposal. Items that are being decontaminated include entire glove boxes, process-hood structural material and panels, process tanks, process-tank shields, pumps, valves and hand tools used during the decommissioning work.

  2. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    SciTech Connect

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  3. Analysis of operation of filters for post-accident decontamination of pressurized rooms of a nuclear power plants with a type VVER-440 reactor

    NASA Astrophysics Data System (ADS)

    Zaichik, L. I.; Zeigarnik, Yu. A.; Rotinov, A. G.; Sidorov, A. S.; Silina, N. N.; Chalyi, R. F.

    2007-05-01

    Operation of filters of postaccident decontamination of pressurized rooms of a nuclear power plant with a type-VVER-440 reactor is analyzed. The distribution of radioactive nuclides over filter stages, the time variation of the thermal state of filter, and the characteristic features of the processes of sorption in the section of fine cleaning are considered.

  4. Fuel elements of research reactors in China

    SciTech Connect

    Yongmao, Z.; Dianshan, C.; Guofang, Q.

    1988-01-01

    This paper describes the current status of design, fabrication of fuel elements for research reactors in China, emphasis is placed on the technology of fuel elements for the High Flux Engineering Test Reactor (HFETR).

  5. A novel combined solar pasteurizer/TiO2 continuous-flow reactor for decontamination and disinfection of drinking water.

    PubMed

    Monteagudo, José María; Durán, Antonio; Martín, Israel San; Acevedo, Alba María

    2017-02-01

    A new combined solar plant including an annular continuous-flow compound parabolic collector (CPC) reactor and a pasteurization system was designed, built, and tested for simultaneous drinking water disinfection and chemical decontamination. The plant did not use pumps and had no electricity costs. First, water continuously flowed through the CPC reactor and then entered the pasteurizer. The temperature and water flow from the plant effluent were controlled by a thermostatic valve located at the pasteurizer outlet that opened at 80 °C. The pasteurization process was simulated by studying the effect of heat treatment on the death kinetic parameters (D and z values) of Escherichia coli K12 (CECT 4624). 99.1% bacteria photo-inactivation was reached in the TiO2-CPC system (0.60 mg cm(-2) TiO2), and chemical decontamination in terms of antipyrine degradation increased with increasing residence time in the TiO2-CPC system, reaching 70% degradation. The generation of hydroxyl radicals (between 100 and 400 nmol L(-1)) was a key factor in the CPC system efficiency. Total thermal bacteria inactivation was attained after pasteurization in all cases. Chemical degradation and bacterial photo-inactivation in the TiO2-CPC system were improved with the addition of 150 mg L(-1) of H2O2, which generated approximately 2000-2300 nmol L(-1) of HO(●) radicals. Finally, chemical degradation and bacterial photo-inactivation kinetic modelling in the annular CPC photoreactor were evaluated. The effect of the superficial liquid velocity on the overall rate constant was also studied. Both antipyrine degradation and E. coli photo-inactivation were found to be controlled by the catalyst surface reaction rate.

  6. Research Program of a Super Fast Reactor

    SciTech Connect

    Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie; Terai, Takayuki; Nagasaki, Shinya; Muroya, Yusa; Abe, Hiroaki; Akiba, Masato; Akimoto, Hajime; Okumura, Keisuke; Akasaka, Naoaki; GOTO, Shoji

    2006-07-01

    Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is not breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)

  7. United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support

    SciTech Connect

    Douglas Morrell

    2011-03-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  8. Decommissioning of a university research reactor.

    PubMed

    Abelquist, E W; Huda, A; State, S; Takahashi, J

    1994-07-01

    The objective of the UCLA Boelter Reactor Decommissioning Project was the release of the Boelter reactor facility for unrestricted use. The facility included a 100 kW Argonaut type research reactor that operated from 1963 to 1985, providing general reactor research. The decommissioning was planned as a two-phase program. Phase I involved removal of the reactor core structure for better access and assessment of the biological shield. Phase II decommissioning activities included structural steel removal, activated concrete removal, process equipment pit piping dismantlement, and clean concrete removal. The final release survey of the Boelter reactor facility demonstrated that all areas satisfied the project's release criteria. The total person-Sv for the project was 3.87 x 10(-2) (3.87 person-rem), most of which was received during the structural steel and activated concrete removal tasks and the disassembly of the reactor core.

  9. Reactivity Transients in Nuclear Research Reactors

    SciTech Connect

    2015-01-01

    Version 01 AIREMOD-RR is a point kinetics code which can simulate fast transients in nuclear research reactor cores. It can also be used for theoretical reactor dynamics studies. It is used for research reactor kinetic analysis and provides a point neutron kinetic capability. The thermal hydraulic behavior is governed by a one-dimensional heat balance equation. The calculations are restricted to a single equivalent unit cell which consists of fuel, clad and coolant.

  10. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    SciTech Connect

    Bossart, Steven J.; Blair, Danielle M.

    2003-02-27

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D&D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials.

  11. Gross decontamination experiment report

    SciTech Connect

    Mason, R.; Kinney, K.; Dettorre, J.; Gilbert, V.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment.

  12. Utilisation of British University Research Reactors.

    ERIC Educational Resources Information Center

    Duncton, P. J.; And Others

    British experience relating to the employment of university research reactors and subcritical assemblies in the education of nuclear scientists and technologists, in the training of reactor operators and for fundamental pure and applied research in this field is reviewed. The facilities available in a number of British universities and the uses…

  13. Utilisation of British University Research Reactors.

    ERIC Educational Resources Information Center

    Duncton, P. J.; And Others

    British experience relating to the employment of university research reactors and subcritical assemblies in the education of nuclear scientists and technologists, in the training of reactor operators and for fundamental pure and applied research in this field is reviewed. The facilities available in a number of British universities and the uses…

  14. Research reactor job analysis - A project description

    SciTech Connect

    Yoder, John

    1988-07-01

    Addressing the need of the improved training in nuclear industry, nuclear utilities established training program guidelines based on Performance-Based Training (PBT) concepts. The comparison of commercial nuclear power facilities with research and test reactors owned by the U.S. Department of Energy (DOE), made in an independent review of personnel selection, training, and qualification requirements for DOE-owned reactors pointed out that the complexity of the most critical tasks in research reactors is less than that in power reactors. The U.S. Department of Energy (DOE) started a project by commissioning Oak Ridge Associated Universities (ORAU) to conduct a job analysis survey of representative research reactor facilities. The output of the project consists of two publications: Volume 1 - Research Reactor Job Analysis: Overview, which contains an Introduction, Project Description, Project Methodology,, and. An Overview of Performance-Based Training (PBT); and Volume 2 - Research Reactor Job Analysis: Implementation, which contains Guidelines for Application of Preliminary Task Lists and Preliminary Task Lists for Reactor Operators and Supervisory Reactor Operators.

  15. Abbreviated sampling and analysis plan for planning decontamination and decommissioning at Test Reactor Area (TRA) facilities

    SciTech Connect

    1994-10-01

    The objective is to sample and analyze for the presence of gamma emitting isotopes and hazardous constituents within certain areas of the Test Reactor Area (TRA), prior to D and D activities. The TRA is composed of three major reactor facilities and three smaller reactors built in support of programs studying the performance of reactor materials and components under high neutron flux conditions. The Materials Testing Reactor (MTR) and Engineering Test Reactor (ETR) facilities are currently pending D/D. Work consists of pre-D and D sampling of designated TRA (primarily ETR) process areas. This report addresses only a limited subset of the samples which will eventually be required to characterize MTR and ETR and plan their D and D. Sampling which is addressed in this document is intended to support planned D and D work which is funded at the present time. Biased samples, based on process knowledge and plant configuration, are to be performed. The multiple process areas which may be potentially sampled will be initially characterized by obtaining data for upstream source areas which, based on facility configuration, would affect downstream and as yet unsampled, process areas. Sampling and analysis will be conducted to determine the level of gamma emitting isotopes and hazardous constituents present in designated areas within buildings TRA-612, 642, 643, 644, 645, 647, 648, 663; and in the soils surrounding Facility TRA-611. These data will be used to plan the D and D and help determine disposition of material by D and D personnel. Both MTR and ETR facilities will eventually be decommissioned by total dismantlement so that the area can be restored to its original condition.

  16. Nuclear Research Reactor IEA-R1 - A Study of the Preparing for Decommissioning

    SciTech Connect

    Lopes, Valdir Maciel; Filho, Tufic Madi; Ricci, Walter; Martins, Mauro Onofre; Pereira, Maria da Conceicao

    2015-07-01

    The Institute of Energy and Nuclear Research (IPEN), Sao Paulo, according to the assignments given by the National Commission of Nuclear Energy (CNEN), enabled the development of this study, especially operational reports about refurbishing carried out on 2013, involving the production of radioisotopes and research in the areas of Radiochemistry and Nuclear Physics. These reports are made in accordance with established standard procedures to meet the requirements of CNEN (National Nuclear Energy Commission, the regulator the nuclear area activities in Brazil) and IAEA (International Atomic Energy Agency). This study presents an assessment of the procedures and methods of treatments for decontamination of the refrigeration primary circuit and changes parts, equipment and tubes of the of the IEA-R1 nuclear research reactor, pool type, power between 3,5 and 4,5 MW. In order to have a sequence in the work, the well-known contaminant radioisotopes were evaluated firstly, using Geiger- Muller equipment. In the second phase, the decontamination was done manually together with the ultrasound cleaning and washing equipment. From the several water solutions of citric acid assessment, the concentration with better confidence was obtained; in order to achieve the best results for decontamination. This study intends to define the best process for decontamination with low taxes of waste and without expensive costs. (authors)

  17. Decontamination systems information and research program. Quarterly report, January 1996--March 1996

    SciTech Connect

    1996-04-01

    West Virginia University (WVU) and the US Department of Energy, Morgantown Energy Technology Center (DOE/METC) entered into a Cooperative Agreement in August 1992 titled {open_quotes}Decontamination Systems Information and Research Programs{close_quotes} (DOE Instrument No.: DE-FC21-92MC29467). Requirements stipulated by the Agreement require WVU to submit quarterly Technical Progress reports. This report contains the efforts of the research projects comprising the Agreement for the 1st calendar quarter of 1996. For the period January 1 through December 31, 1996 twelve projects have been selected for funding, and the Kanawha Valley will continue under a no-cost extension. Three new projects have also been added to the program. This document describes these projects involving decontamination, decommissioning and remedial action issues and technologies.

  18. Gaseous fuel nuclear reactor research

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  19. Gaseous fuel nuclear reactor research

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  20. Fuel elements of research reactor CM

    SciTech Connect

    Kozlov, A.V.; Morozov, A.V.; Vatulin, A.V.; Ershov, S.A.

    2013-07-01

    In 1961 the CM research reactor was commissioned at the Research Institute of Atomic Reactors (Dimitrovgrad, Russia), it was intended to carry on investigations and the production of transuranium nuclides. The reactor is of a tank type. Original fuel assembly contained plate fuels that were spaced with vanes and corrugated bands. Nickel was used as a cladding material, fuel meat was produced from UO{sub 2} + electrolytic nickel composition. Fuel plates have been replaced by self-spacing cross-shaped dispersion fuels clad in stainless steel. In 2005 the reactor was updated. The purpose of this updating was to increase the quantity of irradiation channels in the reactor core and to improve the neutron balance. The updating was implemented at the expense of 20 % reduction in the quantity of fuel elements in the core which released a space for extra channels and decreased the mass of structural materials in the core. The updated reactor is loaded with modified standard fuel elements with 20 % higher uranium masses. At the same time stainless steel in fuel assembly shrouds was substituted by zirconium alloy. Today in progress are investigations and work to promote the second stage of reactor updating that involve developments of cross-shaped fuel elements having low neutron absorption matrix materials. This article gives an historical account of the design and main technical changes that occurred for the CM reactor since its commissioning.

  1. Environmental decontamination

    SciTech Connect

    Cristy, G.A.; Jernigan, H.C.

    1981-02-01

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination. (DLS)

  2. Supply of enriched uranium for research reactors

    SciTech Connect

    Mueller, H.

    1997-08-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.

  3. [Advances in peroxide-based decontaminating technologies].

    PubMed

    Xi, Hai-ling; Zhao, San-ping; Zhou, Wen

    2013-05-01

    With the boosting demand for eco-friendly decontaminants, great achievements in peroxide-based decontaminating technologies have been made in recent years. These technologies have been applied in countering chemical/biological terrorist attacks, dealing with chemical/biological disasters and destructing environmental pollutants. Recent research advances in alpha-nucleophilic/oxidative reaction mechanisms of peroxide-based decontamination against chemical warfare agents were reviewed, and some classical peroxide-based decontaminants such as aqueous decontaminating solution, decontaminating foam, decontaminating emulsions, decontaminating gels, decontaminating vapors, and some newly developed decontaminating media (e.g., peroxide-based self-decontaminating materials and heterogeneous nano-catalytic decontamination systems) were introduced. However, currently available peroxide-based decontaminants still have some deficiencies. For example, their decontamination efficiencies are not as high as those of chlorine-containing decontaminants, and some peroxide-based decontaminants show relatively poor effect against certain agents. More study on the mechanisms of peroxide-based decontaminants and the interfacial interactions in heterogeneous decontamination media is suggested. New catalysts, multifunctional surfactants, self-decontaminating materials and corrosion preventing technologies should be developed before peroxide-based decontaminants really become true "green" decontaminants.

  4. Decontamination systems information and research program. Quarterly report, April--June 1995

    SciTech Connect

    1995-07-01

    West Virginia University (WVU) and the US Department of Energy Morgantown Energy Technology Center (DOE/METC) entered into a Cooperative Agreement on August 29, 1992 titled `Decontamination Systems Information and Research Programs`. Requirements stipulated by the Agreement require WVU to submit Technical Progress reports on a quarterly basis. This report contains the efforts of the fourteen research projects comprising the Agreement for the period April 1 to June 30, 1995. During this period three new projects have been funded by the Agreement. These projects are: (1) WERC National Design Contest, (2) Graduate Interns to the Interagency Environmental Technology Office under the National Science and Technology Council, and (3) WV High Tech Consortium.

  5. Steam Generator Group Project. Task 6. Channel head decontamination

    SciTech Connect

    Allen, R.P.; Clark, R.L.; Reece, W.D.

    1984-08-01

    The Steam Generator Group Project utilizes a retired-from-service pressurized-water-reactor steam generator as a test bed and source of specimens for research. An important preparatory step to primary side research activities was reduction of the radiation field in the steam generator channel head. This task report describes the channel head decontamination activities. Though not a programmatic research objective it was judged beneficial to explore the use of dilute reagent chemical decontamination techniques. These techniques presented potential for reduced personnel exposure and reduced secondary radwaste generation, over currently used abrasive blasting techniques. Two techniques with extensive laboratory research and vendors prepared to offer commercial application were tested, one on either side of the channel head. As indicated in the report, both techniques accomplished similar decontamination objectives. Neither technique damaged the generator channel head or tubing materials, as applied. This report provides details of the decontamination operations. Application system and operating conditions are described.

  6. Strengthening IAEA Safeguards for Research Reactors

    SciTech Connect

    Reid, Bruce D.; Anzelon, George A.; Budlong-Sylvester, Kory

    2016-09-01

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half a dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan (AIP). To

  7. Radiological survey support activities for the decommissioning of the Ames Laboratory Research Reactor Facility, Ames, Iowa

    SciTech Connect

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

    1984-09-01

    At the request of the Engineering Support Division of the US Department of Energy-Chicago Operations Office and in accordance with the programmatic overview/certification responsibilities of the Department of Energy Environmental and Safety Engineering Division, the Argonne National Laboratory Radiological Survey Group conducted a series of radiological measurements and tests at the Ames Laboratory Research Reactor located in Ames, Iowa. These measurements and tests were conducted during 1980 and 1981 while the reactor building was being decontaminated and decommissioned for the purpose of returning the building to general use. The results of these evaluations are included in this report. Although the surface contamination within the reactor building could presumably be reduced to negligible levels, the potential for airborne contamination from tritiated water vapor remains. This vapor emmanates from contamination within the concrete of the building and should be monitored until such time as it is reduced to background levels. 2 references, 8 figures, 6 tables.

  8. The Annular Core Research Reactor (ACRR) postulated limiting event initial and building source terms

    SciTech Connect

    Restrepo, L F

    1992-08-01

    As part of the update of the Safety analysis Report (SAR) for the Annular Core Research Reactor (ACRR), operational limiting events under the category of inadvertent withdrawal of an experiment while at power or during a power pulse were determined to be the most limiting event(s) for this reactor. This report provides a summary of the assumptions, modeling, and results in evaluation of: Reactivity and thermal hydraulics analysis to determine the amount of fuel melt or fuel damage ratios; The reactor inventories following the limiting event; A literature review of post NUREG-0772 release fraction experiment results on severe fuel damages; Decontamination factors due to in-pool transport; and In-building transport modeling and building source term analysis.

  9. Reactor operations: Brookhaven Medical Research Reactor, Brookhaven High Flux Beam Reactor. Informal report, June 1995

    SciTech Connect

    1995-06-01

    Part one of this report gives the operating history of the Brookhaven Medical Research Reactor for the month of June. Also included are the BMRR technical safety surveillance requirements record and the summary of BMRR irradiations for the month. Part two gives the operating histories of the Brookhaven High Flux Beam Reactor and the Cold Neutron Facility at HFBR for June. Also included are the HFBR technical safety surveillance requirements record and the summary of HFBR irradiations for the month.

  10. Criteria for the evaluation of a dilute decontamination demonstration

    SciTech Connect

    FitzPatrick, V.F.; Divine, J.R.; Hoenes, G.R.; Munson, L.F.; Card, C.J.

    1981-12-01

    This document provides the prerequisite technical information required to evaluate and/or develop a project to demonstrate the dilute chemical decontamination of the primary coolant system of light water reactors. The document focuses on five key areas: the basis for establishing programmatic prerequisites and the key decision points that are required for proposal evaluation and/or RFP (Request for Proposal) issuance; a technical review of the state-of-the-art to identify the potential impacts of a reactor's primary-system decontamination on typical BWR and PWR plants; a discussion of the licensing, recertification, fuel warranty, and institutional considerations and processes; a preliminary identification and development of the selection criteria for the reactor and the decontamination process; and a preliminary identification of further research and development that might be required.

  11. Decontamination for decommissioning: EPRI DfD process. Final report

    SciTech Connect

    Bradbury, D.; Elder, G.; Waite, M.

    1996-05-01

    Chemical decontamination is a technique applied to sub-systems of operational LWR plants for the purpose of reducing radiation exposure to plant workers. Several processes are routinely used for this operation, such as the LOMI process originally developed by EPRI. It is necessary to avoid base metal damage on items of plant which are to be returned operational service whereas removal of a thin layer of base metal is required to achieve the high decontamination effectiveness required for decommissioning. Operational decontamination processes therefore have limited value for decontamination of redundant plant items. EPRI has funded a research project with Bradtec Ltd. to develop a decontamination process for decommissioning which could achieve the necessary effectiveness, while retaining the major features of (and hence experience with) operational sub-system processes. The result of this program is the ``EPRI DfD process`` which is the subject of a patent application. The EPRI DfD process uses dilute fluoroboric acid under conditions of controlled oxidation potential to remove contamination from surfaces and collect the contamination on ion exchange resin. High effectiveness is achievable, for example decontamination factors of 8,000 on stainless steel and 2,000 on Inconel 600 reactor artifacts have been achieved with the process, and these figures are not considered to be limiting. The process can in principle be applied by decontamination vendors` existing equipment, and retains the waste management characteristics typical of sub-system decontamination. There is no chelant present in the ion exchange waste form.

  12. Corrosion Minimization for Research Reactor Fuel

    SciTech Connect

    Eric Shaber; Gerard Hofman

    2005-06-01

    Existing university research reactors are being converted to use low-enriched uranium fue to eliminate the use of highly-enriched uranium. These conversions require increases in fuel loading that will result in the use of elements with more fuel plates, resulting in a net decrease in the water annulus between fuel plates. The proposed decrease in the water annulus raises questions about the requirements and stability of the surface hydroxide on the aluminum fuel cladding and the potential for runaway corrosion resulting in fuel over-temperature incidents. The Nuclear Regulatory Commission (NRC), as regulator for these university reactors, must ensure that proposed fuel modifications will not result in any increased risk or hazard to the reactor operators or the public. This document reviews the characteristics and behavior of aluminum hydroxides, analyzes the drivers for fuel plate corrosion, reviews relevant historical incidents, and provides recommendations on fuel design, surface treatment, and reactor operational practices to avoid corrosion issues.

  13. Reactor pulse repeatability studies at the annular core research reactor

    SciTech Connect

    DePriest, K.R.; Trinh, T.Q.; Luker, S. M.

    2011-07-01

    The Annular Core Research Reactor (ACRR) at Sandia National Laboratories is a water-moderated pool-type reactor designed for testing many types of objects in the pulse and steady-state mode of operations. Personnel at Sandia began working to improve the repeatability of pulse operations for experimenters in the facility. The ACRR has a unique UO{sub 2}-BeO fuel that makes the task of producing repeatable pulses difficult with the current operating procedure. The ACRR produces a significant quantity of photoneutrons through the {sup 9}Be({gamma}, n){sup 8}Be reaction in the fuel elements. The photoneutrons are the result of the gammas produced during fission and in fission product decay, so their production is very much dependent on the reactor power history and changes throughout the day/week of experiments in the facility. Because the photoneutrons interfere with the delayed-critical measurements required for accurate pulse reactivity prediction, a new operating procedure was created. The photoneutron effects at delayed critical are minimized when using the modified procedure. In addition, the pulse element removal time is standardized for all pulse operations with the modified procedure, and this produces less variation in reactivity removal times. (authors)

  14. Proceedings of the concrete decontamination workshop

    SciTech Connect

    Halter, J.M.; Sullivan, R.G.; Currier, A.J.

    1980-05-28

    Fourteen papers were presented. These papers describe concrete surface removal methods and equipment, as well as experiences in decontaminating and removing both power and experimental nuclear reactors.

  15. Probabilistic Safety Assessment of Tehran Research Reactor

    SciTech Connect

    Hosseini, Seyed Mohammad Hadi; Nematollahi, Mohammad Reza; Sepanloo, Kamran

    2004-07-01

    Probabilistic Safety Assessment (PSA) application is found to be a practical tool for research reactor safety due to intense involvement of human interactions in an experimental facility. In this paper the application of the Probabilistic Safety Assessment to the Tehran Research Reactor (TRR) is presented. The level 1 PSA application involved: Familiarization with the plant, selection of accident initiators, mitigating functions and system definitions, event tree constructions and quantification, fault tree constructions and quantification, human reliability, component failure data base development and dependent failure analysis. Each of the steps of the analysis given above is discussed with highlights from the selected results. Quantification of the constructed models is done using SAPHIRE software. This Study shows that the obtained core damage frequency for Tehran Research Reactor (8.368 E-6 per year) well meets the IAEA criterion for existing nuclear power plants (1E-4). But safety improvement suggestions are offered to decrease the most probable accidents. (authors)

  16. Trends in fusion reactor safety research

    SciTech Connect

    Herring, J.S.; Holland, D.F.; Piet, S.J.

    1991-01-01

    Fusion has the potential to be an attractive energy source. From the safety and environmental perspective, fusion must avoid concerns about catastrophic accidents and unsolvable waste disposal. In addition, fusion must achieve an acceptable level of risk from operational accidents that result in public exposure and economic loss. Finally, fusion reactors must control routine radioactive effluent, particularly tritium. Major progress in achieving this potential rests on development of low-activation materials or alternative fuels. The safety and performance of various material choices and fuels for commercial fusion reactors can be investigated relatively inexpensively through reactor design studies. These studies bring together experts in a wide range of backgrounds and force the group to either agree on a reactor design or identify areas for further study. Fusion reactors will be complex with distributed radioactive inventories. The next generation of experiments will be critical in demonstrating that acceptable levels of safe operation can be achieved. These machines will use materials which are available today and for which a large database exists (e.g. for 316 stainless steel). Researchers have developed a good understanding of the risks associated with operation of these devices. Specifically, consequences from coolant system failures, loss of vacuum events, tritium releases, and liquid metal reactions have been studied. Recent studies go beyond next step designs and investigate commercial reactor concerns including tritium release and liquid metal reactions. 18 refs.

  17. DOE/EA-1519: Environmental Assessment for the Proposed Decontamination and Decommissioning of the Zero Power Reactors (Building 315) at Argonne National Laboratory (April 2005)

    SciTech Connect

    N /A

    2005-04-30

    The U.S. Department of Energy (DOE) is proposing to decontaminate and decommission the Zero Power Reactor (ZPR) facilities located in Building 315 at Argonne National Laboratory (ANL) in Argonne, Illinois (Figure 1-1). The proposed action would occur in two phases: ZPR-6 would be the focus of Phase I and ZPR-9 would be the focus of Phase II. DOE has prepared this environmental assessment (EA) in accordance with the National Environmental Policy Act (NEPA), 42 U.S.C. {section} 4321 et seq., and applicable regulations (Title 40, Code of Federal Regulations [CFR] Parts 1500-1508 and 10 CFR Part 1021). This section describes the reactors and their current status.

  18. Nuclear reactors for research and radioisotope production in Argentina

    SciTech Connect

    Duran, H.H.

    1981-01-01

    In Argentina, the construction, operation, and use of research and radioisotope production reactors is and has been an important method of personnel preparation for the nuclear power program. Moreover, it is a very suitable means for technology transfer to countries developing their own nuclear programs. At present, the following research reactors are in operation in Argentina: Argentine Reactor 0 (RA-0); Argentine Reactor 1 (RA-1); Argentine Reactor 2 (RA-2); Argentine Reactor 3 (RA-3); Argentine Reactor 4 (RA-4). The Argentine Reactor 6 (RA-6), under construction, should reach criticality in 1981.

  19. Deuterium migration in nuclear graphite: Consequences for the behavior of tritium in CO2-cooled reactors and for the decontamination of irradiated graphite waste

    NASA Astrophysics Data System (ADS)

    Le Guillou, M.; Toulhoat, N.; Pipon, Y.; Moncoffre, N.; Khodja, H.

    2015-06-01

    In this paper, we aim at understanding tritium behavior in the graphite moderator of French CO2-cooled nuclear fission reactors (called UNGG for "Uranium Naturel-Graphite-Gaz") to get information on its distribution and inventory in the irradiated graphite waste after their dismantling. These findings should be useful both to improve waste treatment processes and to foresee tritium behavior during reactor decommissioning and waste disposal operations. The purpose of the present work is to elucidate the effects of temperature on the behavior of tritium during reactor operation. Furthermore, it aims at exploring options of thermal decontamination. For both purposes, annealing experiments were carried out in inert atmosphere as well as in thermal conditions as close as possible to those encountered in UNGG reactors and in view of a potential decontamination in humid gas. D+ ions were implanted into virgin nuclear graphite in order to simulate tritium displaced from its original structural site through recoil during reactor operation. The effect of thermal treatments on the mobility of the implanted deuterium was then investigated at temperatures ranging from 200 to 1200 °C, in inert atmosphere (vacuum or argon), in a gas simulating the UNGG coolant gas (mainly CO2) or in humid nitrogen. Deuterium was analyzed by Nuclear Reaction Analysis (NRA) both at millimetric and micrometric scales. We have identified three main stages for the deuterium release. The first one corresponds to deuterium permeation through graphite open pores. The second and third ones are controlled by the progressive detrapping of deuterium located at different trapping sites and its successive migration through the crystallites and along crystallites and coke grains edges. Extrapolating the thermal behavior of deuterium to tritium, the results show that the release becomes significant above the maximum UNGG reactor temperature of 500 °C and should be lower than 30% of the total amount produced

  20. Decontamination Systems Information and Research Program. Quarterly technical progress report, January 1--March 31, 1994

    SciTech Connect

    Not Available

    1994-05-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Reports on a quarterly basis. This report comprises the first Quarterly Technical Progress Report for Year 2 of the Agreement. This report reflects the progress and/or efforts performed on the sixteen (16) technical projects encompassed by the Year 2 Agreement for the period of January 1 through March 31, 1994. In situ bioremediation of chlorinated organic solvents; Microbial enrichment for enhancing in-situ biodegradation of hazardous organic wastes; Treatment of volatile organic compounds (VOCs) using biofilters; Drain-enhanced soil flushing (DESF) for organic contaminants removal; Chemical destruction of chlorinated organic compounds; Remediation of hazardous sites with steam reforming; Soil decontamination with a packed flotation column; Use of granular activated carbon columns for the simultaneous removal of organics, heavy metals, and radionuclides; Monolayer and multilayer self-assembled polyion films for gas-phase chemical sensors; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; A systematic database of the state of hazardous waste clean-up technologies; Dust control methods for insitu nuclear and hazardous waste handling; Winfield Lock and Dam remediation; and Socio-economic assessment of alternative environmental restoration technologies.

  1. Applications of the Dow TRIGA research reactor

    SciTech Connect

    Kocher, C.W.; Quinn, T.J.; Krueger, D.A.

    1982-07-01

    The Dow TRIGA Mark I reactor is a one-hundred kilowatt nuclear reactor installed by General Atomics using the Torrey Pines reactor console, seventy-five used stainless-steel clad fuel elements and one new aluminium clad fuel element. The reactor is equipped with a forty-position rotating Lazy Susan in the reflector, a pneumatic transfer system with its terminal in the F-ring of the core, and a central thimble which can be used for irradiation of samples in the center of the core or which can be emptied of the shielding water to produce a beam of neutrons and gamma rays in the area atop the pool. Samples can also be irradiated in or near the core. There is no provision for pulsing this TRIGA reactor. The neutron activation analysis program uses the Dow TRIGA reactor as a source of thermal neutrons and a Kaman A711 generator as a source of 14-MeV neutrons. The associated counting equipment includes one Gel(Li) detector and two Nal(Tl) detectors, each using a 100-position sample changer and all interfaced to a Tracor-Northern TN-11 data acquisition and computing system, one Ge(Li) detector and its TN-11 system for the pneumatic transfer system and the beam tube experiments, and two NaKTl)detectors with a TN-4000 system used with the Kaman neutron generator. The activation analysis program gets samples from all parts of the manufacturing and research efforts at Dow: raw materials, intermediates, products, effluents, research samples, samples from customers who use Dow products, and environmental samples. This presentation is devoted to the progress made in the past year on the pneumatic transfer system and the renewed work on prompt gamma-ray spectroscopy including the extensive process of method validation.

  2. Dismantling the nuclear research reactor Thetis

    SciTech Connect

    Michiels, P.

    2013-07-01

    The research reactor Thetis, in service since 1967 and stopped in 2003, is part of the laboratories of the institution of nuclear science of the University of Ghent. The reactor, of the pool-type, was used as a neutron-source for the production of radio-isotopes and for activation analyses. The reactor is situated in a water pool with inner diameter of 3 m. and a depth of 7.5 m. The reactor core is situated 5.3 m under water level. Besides the reactor, the pool contains pneumatic loops, handling tools, graphite blocks for neutron moderation and other experimental equipment. The building houses storage rooms for fissile material and sources, a pneumatic circuit for transportation of samples, primary and secondary cooling circuits, water cleaning resin circuits, a ventilation system and other necessary devices. Because of the experimental character of the reactor, laboratories with glove boxes and other tools were needed and are included in the dismantling program. The building is in 3 levels with a crawl-space. The ground-floor contains the ventilation installation, the purification circuits with tanks, cooling circuits and pneumatic transport system. On the first floor, around the reactor hall, the control-room, visiting area, end-station for pneumatic transport, waste-storage room, fuel storage room and the labs are located. The second floor contains a few laboratories and end stations of the two high speed transfer tubes. The lowest level of the pool is situated under ground level. The reactor has been operated at a power of 150 kW and had a max operating power of 250 kW. Belgoprocess has been selected to decommission the reactor, the labs, storage halls and associated circuits to free release the building for conventional reuse and for the removal of all its internals as legal defined. Besides the dose-rate risk and contamination risk, there is also an asbestos risk of contamination. During construction of the installation, asbestos-containing materials were

  3. Decontamination systems information and research program. Quarterly report, October 1995--December 1995

    SciTech Connect

    1995-12-01

    West Virginia University (WVU) and the U.S. Department of Energy Morgantown Energy Technology Center (DOE/METC) entered into a Cooperative Agreement on August 29, 1992 titled {open_quotes}Decontamination Systems Information and Research programs{close_quotes} (DOE Instrument No. DE-FC21-92MC29467) This report contains the efforts of the research projects comprising the Agreement for the 4th calendar quarter of 1995, and is the final quarterly report deliverable required for the period ending 31 December 1995. The projects reported for the WVU Cooperative Agreement are categorized into the following three areas: 1.0 In Situ Remediation Process Development, 2.0 Advanced Product Applications Testing, and 3.0 Information Systems, Public Policy, Community Outreach, and Economics. Summaries of the significant accomplishments for the projects reported during the period 1 October 95 through 31 December 95 are presented in the following discussions.

  4. The use of chemical gel for decontamination during decommissioning of nuclear facilities

    NASA Astrophysics Data System (ADS)

    Gurau, Daniela; Deju, Radu

    2015-01-01

    A technical research study was developed for testing the decontamination using chemical gels. The study was realized for different type of samples, systems often encountered in the VVR-S nuclear research reactor from Magurele-Romania. The results obtained in the study have demonstrated that the decontamination gels could be an efficient way to reduce or to eliminate the surface contamination of buildings or equipment's, minimizing the potential for spreading contamination during decommissioning activities.

  5. Neutron scattering at Australia's replacement research reactor

    NASA Astrophysics Data System (ADS)

    Robinson, R. A.; Kennedy, S. J.

    2002-01-01

    On August 25 1999, the Australian government gave final approval to build a research reactor to replace the existing HIFAR reactor at Lucas Heights. The replacement reactor, which will commence operation in 2005, will be multipurpose in function, with capabilities for both neutron-beam research and radioisotope production. Regarding beams, cold and thermal neutron sources are to be installed and the intent is to use supermirror guides, with coatings with critical angles up to 3 times that of natural Ni, to transport cold and thermal neutron beams into a large modern guide hall. The reactor and all the associated infrastructure, with the exception of the neutron beam instruments, is to be built by INVAP, SE and subcontractors in a turnkey contract. The goal is to have at least eight leading-edge neutron-beam instruments ready in 2005, and they will be developed by ANSTO and other contracted organisations, in consultation with the Australian user community and interested overseas parties. A review of the planned scientific capabilities, a description of the facility and a status report on the activities so far is given.

  6. Measuring the productivity of university research reactors

    SciTech Connect

    Voth, M.H.

    1989-11-01

    University Research Reactors (URRs) on 33 campuses in the United States provide valuable contributions to academic instruction and research programs. In most cases, there are no alternative diagnostic techniques to supplant the need for a reactor and associated facilities. Since URRs constitute a major financial commitment, it is important that they be operated in a productive manner. Productivity may be defined as the sum of new knowledge generated, existing knowledge transferred to others, and analytical services provided to assist in the generation of new knowledge; another definition of productivity is this sum expressed as a function of the cost incurred. In either case, a consistent measurement is difficult and more qualitative than quantitative. A uniform reporting system has been proposed that defines simplified categories through which meaningful comparisons can be performed.

  7. Neutron scattering at the OPAL research reactor

    NASA Astrophysics Data System (ADS)

    McIntyre, Garry J.; Holden, Peter J.

    2016-09-01

    The current suite of 14 neutron scattering instruments at the multipurpose OPAL research reactor is described. All instruments have been constructed following best practice, using state-of-the-art components and in close consultation with the regional user base. First results from the most recently commissioned instruments match their design performance parameters. Selected recent scientific highlights illustrate some unique combinations of instrumentation and the regional flavour of topical applications.

  8. APPLYING NEW METHODS TO RESEARCH REACTOR ANALYSIS.

    SciTech Connect

    DIAMOND,D.J.CHENG,L.HANSON,A.XU,J.CAREW,J.F.

    2004-02-05

    Detailed reactor physics and safety analyses are being performed for the 20 MW D{sub 2}O-moderated research reactor at the National Institute of Standards and Technology (NIST). The analyses employ state-of-the-art calculational methods and will contribute to an update to the Final Safety Analysis Report (FSAR). Three-dimensional MCNP Monte Carlo neutron and photon transport calculations are performed to determine power and reactivity parameters, including feedback coefficients and control element worths. The core depletion and determination of the fuel compositions are performed with MONTEBURNS to model the reactor at the beginning, middle, and end-of-cycle. The time-dependent analysis of the primary loop is determined with a RELAP5 transient analysis model that includes the pump, heat exchanger, fuel element geometry, and flow channels. A statistical analysis used to assure protection from critical heat flux (CHF) is performed using a Monte Carlo simulation of the uncertainties contributing to the CHF calculation. The power distributions used to determine the local fuel conditions and margin to CHF are determined with MCNP. Evaluations have been performed for the following accidents: (1) the control rod withdrawal startup accident, (2) the maximum reactivity insertion accident, (3) loss-of-flow resulting from loss of electrical power, (4) loss-of-flow resulting from a primary pump seizure, (5) loss-of-flow resulting from inadvertent throttling of a flow control valve, (6) loss-of-flow resulting from failure of both shutdown cooling pumps and (7) misloading of a fuel element. These analyses are significantly more rigorous than those performed previously. They have provided insights into reactor behavior and additional assurance that previous analyses were conservative and the reactor was being operated safely.

  9. Bioremediation of trace cobalt from simulated spent decontamination solutions of nuclear power reactors using E. coli expressing NiCoT genes.

    PubMed

    Raghu, G; Balaji, V; Venkateswaran, G; Rodrigue, A; Maruthi Mohan, P

    2008-12-01

    Removal of radioactive cobalt at trace levels (approximately nM) in the presence of large excess (10(6)-fold) of corrosion product ions of complexed Fe, Cr, and Ni in spent chemical decontamination formulations (simulated effluent) of nuclear reactors is currently done by using synthetic organic ion exchangers. A large volume of solid waste is generated due to the nonspecific nature of ion sorption. Our earlier work using various fungi and bacteria, with the aim of nuclear waste volume reduction, realized up to 30% of Co removal with specific capacities calculated up to 1 microg/g in 6-24 h. In the present study using engineered Escherichia coli expressing NiCoT genes from Rhodopseudomonas palustris CGA009 (RP) and Novosphingobium aromaticivorans F-199 (NA), we report a significant increase in the specific capacity for Co removal (12 microg/g) in 1-h exposure to simulated effluent. About 85% of Co removal was achieved in a two-cycle treatment with the cloned bacteria. Expression of NiCoT genes in the E. coli knockout mutant of NiCoT efflux gene (rcnA) was more efficient as compared to expression in wild-type E. coli MC4100, JM109 and BL21 (DE3) hosts. The viability of the E. coli strains in the formulation as well as at different doses of gamma rays exposure and the effect of gamma dose on their cobalt removal capacity are determined. The potential application scheme of the above process of bioremediation of cobalt from nuclear power reactor chemical decontamination effluents is discussed.

  10. Food decontamination using nanomaterials

    USDA-ARS?s Scientific Manuscript database

    The research indicates that nanomaterials including nanoemulsions are promising decontamination media for the reduction of food contaminating pathogens. The inhibitory effect of nanoparticles for pathogens could be due to deactivate cellular enzymes and DNA; disrupting of membrane permeability; and/...

  11. Upgrade of the Dow TRIGA research reactor

    SciTech Connect

    Kocher, C.W.

    1991-11-01

    Useful operation of the Dow TRIGA{sup a} research reactor over a period of >20 years has led to a commitment to upgrades enabling another two decades of use with increased capabilities. The reactor utilization program and the upgrades are described in this paper. These included requesting a 20-yr license instead of the 10-yr license, which had been used previously; changing the license to allow operation at power levels of up to 300 kW, which provided improved analytical sensitivity; adding fuel elements to the core, which allowed better performance at the higher power levels; renovating the laboratories, which included consolidating the radioactive materials handling areas and improving the sample preparation areas; installing new shielding, detectors, computers, and sample-handling robots for greater productivity and sensitivity; replacing the 1967-1974 era control console and renovating the control rod drives to provide greater safety, reliability, and maintenance capabilities; and identifying, training, and licensing more senior reactor operators to allow the staff to continue operating and improving this system well past the turn of the century.

  12. Research reactor de-fueling and fuel shipment

    SciTech Connect

    Ice, R.D.; Jawdeh, E.; Strydom, J.

    1998-08-01

    Planning for the Georgia Institute of Technology Research Reactor operations during the 1996 Summer Olympic Games began in early 1995. Before any details could be outlined, several preliminary administrative decisions had to be agreed upon by state, city, and university officials. The two major administrative decisions involving the reactor were (1) the security level and requirements and (2) the fuel status of the reactor. The Georgia Tech Research Reactor (GTRR) was a heavy-water moderated and cooled reactor, fueled with high-enriched uranium. The reactor was first licensed in 1964 with an engineered lifetime of thirty years. The reactor was intended for use in research applications and as a teaching facility for nuclear engineering students and reactor operators. Approximately one year prior to the olympics, the Georgia Tech administration decided that the GTRR fuel would be removed. In addition, a heightened, beyond regulatory requirements, security system was to be implemented. This report describes the scheduling, operations, and procedures.

  13. Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program

    SciTech Connect

    Not Available

    1987-05-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions.

  14. Ultra-high tritium decontamination of simulated fusion fuel exhaust using a 2-stage palladium membrane reactor

    SciTech Connect

    Birdsell, S.A.; Willms, R.S.; Wilhelm, R.C.

    1996-12-31

    A 2-stage cold (non-tritium) PMR system was tested with the ITER mix in61 days of continuous operation. No decrease in performance was observed over the duration of the test. Decontamination factor (DF) was found to increase with decreasing inlet rate. Decontamination factors in excess of 1.4 {times} 10{sup 5} were obtained, but the exact value of the highest DF could not be determined because of analysis limitations. Results of the 61-day test were used to design a 2-stage PMR system for use in tritium testing. The PMR system was scaled up by a factor of 6 and built into a glovebox in the Tritium Systems Test Assembly (TSTA) of the Los Alamos National Laboratory. This system is approximately 1/5th of the expected full ITER scale. The ITER mix was injected into the PMR system for 31 hours, during which 4.5 g of tritium were processed. The 1st stage had DF = 200 and the 2nd stage had DF = 2.9 {times} 10{sup 6}. The overall DF = 5.8 {times} 10{sup 8}, which is greater than ITER requirements.

  15. Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor.

    PubMed

    Dasan, Beyhan Gunaydin; Mutlu, Mehmet; Boyaci, Ismail Hakki

    2016-01-04

    In this study, an atmospheric pressure fluidized bed plasma (APFBP) system was designed and its decontamination effect on aflatoxigenic fungi (Aspergillus flavus and Aspergillus parasiticus) on the surface of hazelnuts was investigated. Hazelnuts were artificially contaminated with A. flavus and A. parasiticus and then were treated with dry air plasma for up to 5min in the APFBP system at various plasma parameters. Significant reductions of 4.50 log (cfu/g) in A. flavus and 4.19 log (cfu/g) in A. parasiticus were achieved after 5min treatments at 100% V - 25kHz (655W) by using dry air as the plasma forming gas. The decontamination effect of APFBP on A. flavus and A. parasiticus spores inoculated on hazelnuts was increased with the applied reference voltage and the frequency. No change or slight reductions were observed in A. flavus and A. parasiticus load during the storage of plasma treated hazelnuts whereas on the control samples fungi continued to grow under storage conditions (30days at 25°C). Temperature change on hazelnut surfaces in the range between 35 and 90°C was monitored with a thermal camera, and it was demonstrated that the temperature increase taking place during plasma treatment did not have a lethal effect on A. flavus and A. parasiticus spores. The damage caused by APFBP treatment on Aspergillus spp. spores was also observed by scanning electron microscopy.

  16. Gentilly 1: decontamination program

    SciTech Connect

    Le, H.; Denault, P.

    1985-11-01

    The Gentilly 1 station, a 250-MW(e) light-water-cooled and heavy-water-moderated nuclear reactor, is being decommissioned to a static state (variant of stage 1) condition by Atomic Energy of Canada Limited (AECL). The scope of the decontamination program at the Gentilly 1 site includes the fuel pool and associated systems, the decontamination center, the laundry, the feedwater pumps and piping systems, the service building ventilation and drainage systems, and miscellaneous floor and wall areas. After an extensive literature review for acceptable decontamination methods, it was decided that the decontamination equipment used at Gentilly 1 during the program would include a hydrolaser, a scarifier, chipping hammers, a steam cleaner, an ultrasonic bath, and cutting tools. In addition, various foams, acids, detergents, surfactants, and abrasives are used alone and in tandem with the above equipment. This paper highlights the result of these decontaminations, their effectiveness, and the recommendation for future application. The methodology in performing these operations are also presented.

  17. Ultrahigh flux double donut research reactor design

    SciTech Connect

    Ryskamp, J.M.; Parsons, D.K.; Lake, J.A.

    1986-01-01

    A new steady-state thermal neutron source of unprecedented intensity is under development for materials science research, isotope production, and fundamental physics research. The challenge put forth by the research community is to produce a thermal neutron flux of 10/sup 16/ n/(cm/sup 2/s) in a large accessible volume with minimum fast neutron and gamma contamination. Ultrahigh flux reactor designs based on well-characterized plate-fuel technologies have been examined at the Idaho National Engineering Laboratory. A ''double donut'' core configuration extends the range of peak operating conditions, which are traditionally limited by fuel plate temperatures and thermal hydraulic conditions in the hot channel, to a point where these flux intensity goals can be attained.

  18. The LEU conversion status of U.S. Research Reactors.

    SciTech Connect

    Matos, J. E.

    1997-11-14

    This paper summarizes the conversion status of US research and test reactors and estimates uranium densities needed to convert reactors with power levels 21 MW from HEU ({ge} 20% U-235) to LEU (<20% U-235) fuels. Detailed conversion studies for each reactor need to be completed in order to establish the feasibility of using LEU fuels.

  19. Environmental Assessment and FONSI Proposed Decontamination and Disassembly of the Argonne Thermal Source Reactor (ATSR) at Argonne National Laboratory

    SciTech Connect

    N /A

    1998-07-15

    The purpose of this project is to protect human health and the environment from risks associated with the contaminated surplus ATSR. The proposed action is needed because the ATSR, a former experimental reactor, contains residual radioactivity and hazardous materials.

  20. Decontamination Systems Information and Research Program. Quarterly report, October--December 1993

    SciTech Connect

    Not Available

    1994-02-01

    This report is a summary of the work conducted for the period of October--December 1993 by the West Virginia University for the US DOE Morgantown Energy Technology Center. Research under the program focuses on pertinent technology for hazardous waste clean-up. This report reflects the progress performed on sixteen technical projects encompassed by this program: Systematic assessment of the state of hazardous waste clean-up technologies; Site remediation technologies: (a) Drain-enhanced soil flushing and (b) In situ bio-remediation of organic contaminants; Excavation systems for hazardous waste sites: Dust control methods for in-situ nuclear waste handling; Chemical destruction of polychlorinated biphenyls; Development of organic sensors: Monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale test facility implementation; Remediation of hazardous sites with steam reforming; Microbial enrichment for enhancing biodegradation of hazardous organic wastes in soil; Soil decontamination with a packed flotation column; Treatment of volatile organic compounds using biofilters; Use of granular activated carbon columns for the simultaneous removal of organic, heavy metals, and radionuclides; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; and Improved socio-economic assessment of alternative environmental restoration techniques.

  1. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    SciTech Connect

    Rosenthal, Murray Wilford

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  2. Health physics research reactor reference dosimetry

    SciTech Connect

    Sims, C.S.; Ragan, G.E.

    1987-06-01

    Reference neutron dosimetry is developed for the Health Physics Research Reactor (HPRR) in the new operational configuration directly above its storage pit. This operational change was physically made early in CY 1985. The new reference dosimetry considered in this document is referred to as the 1986 HPRR reference dosimetry and it replaces any and all HPRR reference documents or papers issued prior to 1986. Reference dosimetry is developed for the unshielded HPRR as well as for the reactor with each of five different shield types and configurations. The reference dosimetry is presented in terms of three different dose and six different dose equivalent reporting conventions. These reporting conventions cover most of those in current use by dosimetrists worldwide. In addition to the reference neutron dosimetry, this document contains other useful dosimetry-related data for the HPRR in its new configuration. These data include dose-distance measurements and calculations, gamma dose measurements, neutron-to-gamma ratios, ''9-to-3 inch'' ratios, threshold detector unit measurements, 56-group neutron energy spectra, sulfur fluence measurements, and details concerning HPRR shields. 26 refs., 11 figs., 31 tabs.

  3. REACTOR PHYSICS MODELING OF SPENT NUCLEAR RESEARCH REACTOR FUEL FOR SNM ATTRIBUTION AND NUCLEAR FORENSICS

    SciTech Connect

    Sternat, M.; Beals, D.; Webb, R.; Nichols, T.

    2010-06-09

    Nuclear research reactors are the least safeguarded type of reactor; in some cases this may be attributed to low risk and in most cases it is due to difficulty from dynamic operation. Research reactors vary greatly in size, fuel type, enrichment, power and burnup providing a significant challenge to any standardized safeguard system. If a whole fuel assembly was interdicted, based on geometry and other traditional forensics work, one could identify the material's origin fairly accurately. If the material has been dispersed or reprocessed, in-depth reactor physics models may be used to help with the identification. Should there be a need to attribute research reactor fuel material, the Savannah River National Laboratory would perform radiochemical analysis of samples of the material as well as other non-destructive measurements. In depth reactor physics modeling would then be performed to compare to these measured results in an attempt to associate the measured results with various reactor parameters. Several reactor physics codes are being used and considered for this purpose, including: MONTEBURNS/ORIGEN/MCNP5, CINDER/MCNPX and WIMS. In attempt to identify reactor characteristics, such as time since shutdown, burnup, or power, various isotopes are used. Complexities arise when the inherent assumptions embedded in different reactor physics codes handle the isotopes differently and may quantify them to different levels of accuracy. A technical approach to modeling spent research reactor fuel begins at the assembly level upon acquiring detailed information of the reactor to be modeled. A single assembly is run using periodic boundary conditions to simulate an infinite lattice which may be repeatedly burned to produce input fuel isotopic vectors of various burnups for a core level model. A core level model will then be constructed using the assembly level results as inputs for the specific fuel shuffling pattern in an attempt to establish an equilibrium cycle. The

  4. REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS

    SciTech Connect

    Nichols, T.; Beals, D.; Sternat, M.

    2011-07-18

    Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Many research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical

  5. Decontamination and decommissioning of the Mayaguez (Puerto Rico) facility

    SciTech Connect

    Jackson, P.K.; Freemerman, R.L.

    1989-11-01

    On February 6, 1987 the US Department of Energy (DOE) awarded the final phase of the decontamination and decommissioning of the nuclear and reactor facilities at the Center for Energy and Environmental Research (CEER), in Mayaguez, Puerto Rico. Bechtel National, Inc., was made the decontamination and decommissioning (D and D) contractor. The goal of the project was to enable DOE to proceed with release of the CEER facility for use by the University of Puerto Rico, who was the operator. This presentation describes that project and lesson learned during its progress. The CEER facility was established in 1957 as the Puerto Rico Nuclear Center, a part of the Atoms for Peace Program. It was a nuclear training and research institution with emphasis on the needs of Latin America. It originally consisted of a 1-megawatt Materials Testing Reactor (MTR), support facilities and research laboratories. After eleven years of operation the MTR was shutdown and defueled. A 2-megawatt TRIGA reactor was installed in 1972 and operated until 1976, when it woo was shutdown. Other radioactive facilities at the center included a 10-watt homogeneous L-77 training reactor, a natural uranium graphite-moderated subcritical assembly, a 200KV particle accelerator, and a 15,000 Ci Co-60 irradiation facility. Support facilities included radiochemistry laboratories, counting rooms and two hot cells. As the emphasis shifted to non-nuclear energy technology a name change resulted in the CEER designation, and plans were started for the decontamination and decommissioning effort.

  6. Vaporous Decontamination Methods: Potential Uses and Research Priorities for Chemical and Biological Contamination Control

    DTIC Science & Technology

    2006-06-01

    involved the use of chlorine dioxide gas ( ClO2 ) and vaporous hydrogen peroxide (VHP). This was the first time that either decontaminants were used...the use of formaldehyde under the current decontamination task. 2.2 Chlorine Dioxide Gas 2.2.1 Overview Chlorine dioxide ( ClO2 ) gas is a...biological sterilizer which acts as an oxidizing agent by a single-electron transfer process. It is thought that the oxidation of proteins by ClO2 leads to

  7. YNPS main coolant system decontamination

    SciTech Connect

    Metcalf, E.T.

    1996-12-31

    The Yankee Nuclear Power Station (YNPS) located in Rowe, Massachusetts, is a four-loop pressurized water reactor that permanently ceased power operation on February 26, 1992. Decommissioning activities, including steam generator removal, reactor internals removal, and system dismantlement, have been in progress since the shutdown. One of the most significant challenges for YNPS in 1996 was the performance of the main coolant system chemical decontamination. This paper describes the objectives, challenges, and achievements involved in the planning and implementation of the chemical decontamination.

  8. Dynamic simulation platform to verify the performance of the reactor regulating system for a research reactor

    SciTech Connect

    2015-07-01

    Digital instrumentation and controls system technique is being introduced in new constructed research reactor or life extension of older research reactor. Digital systems are easy to change and optimize but the validated process for them is required. Also, to reduce project risk or cost, we have to make it sure that configuration and control functions is right before the commissioning phase on research reactor. For this purpose, simulators have been widely used in developing control systems in automotive and aerospace industries. In these literatures, however, very few of these can be found regarding test on the control system of research reactor with simulator. Therefore, this paper proposes a simulation platform to verify the performance of RRS (Reactor Regulating System) for research reactor. This simulation platform consists of the reactor simulation model and the interface module. This simulation platform is applied to I and C upgrade project of TRIGA reactor, and many problems of RRS configuration were found and solved. And it proved that the dynamic performance testing based on simulator enables significant time saving and improves economics and quality for RRS in the system test phase. (authors)

  9. Recent developments in chemical decontamination technology

    SciTech Connect

    Wood, C.J.

    1995-03-01

    Chemical decontamination of parts of reactor coolant systems is a mature technology, used routinely in many BWR plants, but less frequently in PWRs. This paper reviews recent developments in the technology - corrosion minimization, waste processing and full system decontamination, including the fuel. Earlier work was described in an extensive review published in 1990.

  10. Photoneutron effects on pulse reactor kinetics for the Annular Core Research Reactor (ACRR).

    SciTech Connect

    Parma, Edward J., Jr.

    2009-06-01

    The Annular Core Research Reactor (ACRR) is a swimming-pool type pulsed reactor that maintains an epithermal neutron flux and a nine-inch diameter central dry cavity. One of its uses is neutron and gamma-ray irradiation damage studies on electronic components under transient reactor power conditions. In analyzing the experimental results, careful attention must be paid to the kinetics associated with the reactor to ensure that the transient behavior of the electronic device is understood. Since the ACRR fuel maintains a substantial amount of beryllium, copious quantities of photoneutrons are produced that can significantly alter the expected behavior of the reactor power, especially following a reactor pulse. In order to understand these photoneutron effects on the reactor kinetics, the KIFLE transient reactor-analysis code was modified to include the photoneutron groups associated with the beryllium. The time-dependent behavior of the reactor power was analyzed for small and large pulses, assuming several initial conditions including following several pulses during the day, and following a long steady-state power run. The results indicate that, for these types of initial conditions, the photoneutron contribution to the reactor pulse energy can have a few to tens of percent effect.

  11. The Tokamak Fusion Test Reactor decontamination and decommissioning project and the Tokamak Physics Experiment at the Princeton Plasma Physics Laboratory. Environmental Assessment

    SciTech Connect

    1994-05-27

    If the US is to meet the energy needs of the future, it is essential that new technologies emerge to compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Fusion energy has the potential to become a major source of energy for the future. Power from fusion energy would provide a substantially reduced environmental impact as compared with other forms of energy generation. Since fusion utilizes no fossil fuels, there would be no release of chemical combustion products to the atmosphere. Additionally, there are no fission products formed to present handling and disposal problems, and runaway fuel reactions are impossible due to the small amounts of deuterium and tritium present. The purpose of the TPX Project is to support the development of the physics and technology to extend tokamak operation into the continuously operating (steady-state) regime, and to demonstrate advances in fundamental tokamak performance. The purpose of TFTR D&D is to ensure compliance with DOE Order 5820.2A ``Radioactive Waste Management`` and to remove environmental and health hazards posed by the TFTR in a non-operational mode. There are two proposed actions evaluated in this environmental assessment (EA). The actions are related because one must take place before the other can proceed. The proposed actions assessed in this EA are: the decontamination and decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR); to be followed by the construction and operation of the Tokamak Physics Experiment (TPX). Both of these proposed actions would take place primarily within the TFTR Test Cell Complex at the Princeton Plasma Physics Laboratory (PPPL). The TFTR is located on ``D-site`` at the James Forrestal Campus of Princeton University in Plainsboro Township, Middlesex County, New Jersey, and is operated by PPPL under contract with the United States Department of Energy (DOE).

  12. Disassembly of the Research Reactor FRJ-1 (MERLIN)

    SciTech Connect

    Stahn, B.; Poeppinghaus, J.; Cremer, J.

    2002-02-25

    This report describes the past steps of dismantling the research reactor FRJ-1 (MERLIN) and, moreover, provides an outlook on future dismantling with the ultimate aim of a ''green field site''. MERLIN is an abbreviation for MEDIUM ENERGY RESEARCH LIGHT WATER MODERATED INDUSTRIAL NUCLEAR REACTOR.

  13. Antineutrino and gamma emission from the OSIRIS research reactor

    NASA Astrophysics Data System (ADS)

    Giot, Lydie; Fallot, Muriel

    2017-09-01

    For the first time, the summation method has been coupled with a complete reactor model, in order to predict the antineutrino emission of a research reactor. This work, discussed in the first part of this paper, allows us to predict the low energy part of the antineutrino spectrum, evidencing the important contribution of actinides to the antineutrino emission. Experimental conditions at short distance from research reactors are challenging, because the reactor itself produces huge gamma background that induce accidental and correlated backgrounds in an antineutrino target. The understanding of this background is of utmost importance and triggered the second part of the work presented here.

  14. Sodium fast reactor safety and licensing research plan. Volume II.

    SciTech Connect

    Ludewig, H.; Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A.; Phillips, J.; Zeyen, R.; Clement, B.; Garner, Frank; Walters, Leon; Wright, Steve; Ott, Larry J.; Suo-Anttila, Ahti Jorma; Denning, Richard; Ohshima, Hiroyuki; Ohno, S.; Miyhara, S.; Yacout, Abdellatif; Farmer, M.; Wade, D.; Grandy, C.; Schmidt, R.; Cahalen, J.; Olivier, Tara Jean; Budnitz, R.; Tobita, Yoshiharu; Serre, Frederic; Natesan, Ken; Carbajo, Juan J.; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Thomas, Justin; Wei, Tom; Sofu, Tanju; Flanagan, George F.; Bari, R.; Porter D.; Lambert, J.; Hayes, S.; Sackett, J.; Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  15. Decontamination of Subway Railcar and Related Materials ...

    EPA Pesticide Factsheets

    Report In the event of a biological incident in a transportation hub such as a subway system, effective remediation of railcars, subway tunnels and stations will require the use of various decontamination approaches. One potential decontamination tool that could be used in such an event is the fogging of sporicidal liquids. The study described in this report builds on previous fogging decontamination research, but with a focus on decontaminating subway railcars and related materials.

  16. Decontamination of Subway Railcar and Related Materials ...

    EPA Pesticide Factsheets

    Report In the event of a biological incident in a transportation hub such as a subway system, effective remediation of railcars, subway tunnels and stations will require the use of various decontamination approaches. One potential decontamination tool that could be used in such an event is the fogging of sporicidal liquids. The study described in this report builds on previous fogging decontamination research, but with a focus on decontaminating subway railcars and related materials.

  17. 75 FR 79423 - In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-20

    ... All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order... Director, Office of Nuclear Reactor Regulation under 10 CFR 50.4. In addition, licensee submittals that... Director, Office of Nuclear Reactor Regulation, may, in writing, relax or rescind any of the...

  18. Development of LC/MS Methods to be used in Decontamination Research with CW Agents

    DTIC Science & Technology

    2010-06-01

    NH4Ac ammonium acetate QQQ triple quadrupole (or tandem quadruple) MS %RSD percent relative standard deviation RSDL reactive skin decontaminant... techniques for the components of interest; measurement and compensation techniques for any ion suppression/enhancement; selection of an appropriate...specific and sensitive technique , allowing samples to be analysed with minimal sample preparation. As such, the technique is a good fit for the timely

  19. TA-2 Water Boiler Reactor (Phase I) decommissioning: Resolving ground water interference during outdoor component removal and soil decontamination

    SciTech Connect

    Elder, J.C.

    1987-01-01

    Extensive ground water was encountered in excavations as structures, pipe, and soil contaminated with Cs-137 were removed during the outdoor phase (Phase I) of the TA-2 Water Boiler Reactor decommissioning. To avoid releasing contamination to a nearby surface stream, contaminated soil and water pumped or scooped into secondary pits above the level of ground water interference. These pits served as holding tanks/natural filters because high soil pH in the area enhanced attachment of Cs-137 to soil particles. Water seeped out of the secondary pits, leaving contaminated soil behind to easily scraped from the surfaces of the pit. Stabilization and revegetation of the area, complemented by a long-term environmental surveillance program, has resulted in successful closure, although total removal of all contamination was not possible. 3 refs., 5 figs.

  20. A DECONTAMINATION PROCESS FOR METAL SCRAPS FROM THE DECOMMISSIONING OF TRR

    SciTech Connect

    Wei, T.Y.; Gan, J.S.; Lin, K.M.; Chung, Z.J.

    2003-02-27

    A decontamination facility including surface condition categorizing, blasting, chemical/electrochemical cleaning, very low radioactivity measuring, and melting, is being established at INER. The facility will go into operation by the end of 2004. The main purpose is to clean the dismantled metal wastes from the decommissioning of Taiwan Research Reactor (TRR). The pilot test shows that over 70% of low level metal waste can be decontaminated to very low activity and can be categorized as BRC (below regulatory concern) waste. All the chemical decontamination technologies applied are developed by INER. In order to reduce the secondary wastes, chemical reagents will be regenerated several times with a selective precipitation method. The exhausted chemical reagent will be solidified with INER's patented process. The total secondary waste is estimated about 0.1-0.3 wt.% of the original waste. This decontamination process is accessed to be economic and feasible.

  1. A Potential NASA Research Reactor to Support NTR Development

    NASA Technical Reports Server (NTRS)

    Eades, Michael; Gerrish, Harold; Hardin, Leroy

    2013-01-01

    In support of efforts for research into the design and development of a man rated Nuclear Thermal Rocket (NTR) engine, the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed research reactor. The proposed reactor would be licensed by NASA and operated jointly by NASA and university partners. The purpose of this reactor would be to perform further research into the technologies and systems needed for a successful NTR project and promote nuclear training and education.

  2. 105-DR Large Sodium Fire Facility decontamination, sampling, and analysis plan

    SciTech Connect

    Knaus, Z.C.

    1995-06-12

    This is the decontamination, sampling, and analysis plan for the closure activities at the 105-DR Large Sodium Fire Facility at Hanford Reservation. This document supports the 105-DR Large Sodium Fire Facility Closure Plan, DOE-RL-90-25. The 105-DR LSFF, which operated from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility in the 100-D Area of the Hanford Site. The LSFF was established to investigate fire fighting and safety associated with alkali metal fires in the liquid metal fast breeder reactor facilities. The decontamination, sampling, and analysis plan identifies the decontamination procedures, sampling locations, any special handling requirements, quality control samples, required chemical analysis, and data validation needed to meet the requirements of the 105-DR Large Sodium Fire Facility Closure Plan in compliance with the Resource Conservation and Recovery Act.

  3. The effective management of medical isotope production in research reactors

    SciTech Connect

    Drummond, D.T. )

    1993-01-01

    During the 50-yr history of the use of radioisotopes for medical applications, research reactors have played a pivotal role in the production of many if not most of the key products. The marriage between research reactors and production operations is subject to significant challenges on two fronts. The medical applications of the radioisotope products impose some unique constraints and requirements on the production process. In addition, the mandates and priorities of a research reactor are not always congruent with the demands of a production environment. This paper briefly reviews the historical development of medical isotope production, identifies the unique challenges facing this endeavor, and discusses the management of the relationship between the isotope producer and the research reactor operator. Finally, the key elements of a successful relationship are identified.

  4. Renewing Liquid Fueled Molten Salt Reactor Research and Development

    NASA Astrophysics Data System (ADS)

    Towell, Rusty; NEXT Lab Team

    2016-09-01

    Globally there is a desperate need for affordable, safe, and clean energy on demand. More than anything else, this would raise the living conditions of those in poverty around the world. An advanced reactor that utilizes liquid fuel and molten salts is capable of meeting these needs. Although, this technology was demonstrated in the Molten Salt Reactor Experiment (MSRE) at ORNL in the 60's, little progress has been made since the program was cancelled over 40 years ago. A new research effort has been initiated to advance the technical readiness level of key reactor components. This presentation will explain the motivation and initial steps for this new research initiative.

  5. Mass Casualty Decontamination in a Chemical or Radiological/Nuclear Incident with External Contamination: Guiding Principles and Research Needs.

    PubMed

    Cibulsky, Susan M; Sokolowski, Danny; Lafontaine, Marc; Gagnon, Christine; Blain, Peter G; Russell, David; Kreppel, Helmut; Biederbick, Walter; Shimazu, Takeshi; Kondo, Hisayoshi; Saito, Tomoya; Jourdain, Jean-René; Paquet, Francois; Li, Chunsheng; Akashi, Makoto; Tatsuzaki, Hideo; Prosser, Lesley

    2015-11-02

    Hazardous chemical, radiological, and nuclear materials threaten public health in scenarios of accidental or intentional release which can lead to external contamination of people.  Without intervention, the contamination could cause severe adverse health effects, through systemic absorption by the contaminated casualties as well as spread of contamination to other people, medical equipment, and facilities.  Timely decontamination can prevent or interrupt absorption into the body and minimize opportunities for spread of the contamination, thereby mitigating the health impact of the incident.  Although the specific physicochemical characteristics of the hazardous material(s) will determine the nature of an incident and its risks, some decontamination and medical challenges and recommended response strategies are common among chemical and radioactive material incidents.  Furthermore, the identity of the hazardous material released may not be known early in an incident.  Therefore, it may be beneficial to compare the evidence and harmonize approaches between chemical and radioactive contamination incidents.  Experts from the Global Health Security Initiative's Chemical and Radiological/Nuclear Working Groups present here a succinct summary of guiding principles for planning and response based on current best practices, as well as research needs, to address the challenges of managing contaminated casualties in a chemical or radiological/nuclear incident.

  6. Mass Casualty Decontamination in a Chemical or Radiological/Nuclear Incident with External Contamination: Guiding Principles and Research Needs

    PubMed Central

    Cibulsky, Susan M; Sokolowski, Danny; Lafontaine, Marc; Gagnon, Christine; Blain, Peter G.; Russell, David; Kreppel, Helmut; Biederbick, Walter; Shimazu, Takeshi; Kondo, Hisayoshi; Saito, Tomoya; Jourdain, Jean- René; Paquet, Francois; Li, Chunsheng; Akashi, Makoto; Tatsuzaki, Hideo; Prosser, Lesley

    2015-01-01

    Hazardous chemical, radiological, and nuclear materials threaten public health in scenarios of accidental or intentional release which can lead to external contamination of people.  Without intervention, the contamination could cause severe adverse health effects, through systemic absorption by the contaminated casualties as well as spread of contamination to other people, medical equipment, and facilities.  Timely decontamination can prevent or interrupt absorption into the body and minimize opportunities for spread of the contamination, thereby mitigating the health impact of the incident.  Although the specific physicochemical characteristics of the hazardous material(s) will determine the nature of an incident and its risks, some decontamination and medical challenges and recommended response strategies are common among chemical and radioactive material incidents.  Furthermore, the identity of the hazardous material released may not be known early in an incident.  Therefore, it may be beneficial to compare the evidence and harmonize approaches between chemical and radioactive contamination incidents.  Experts from the Global Health Security Initiative’s Chemical and Radiological/Nuclear Working Groups present here a succinct summary of guiding principles for planning and response based on current best practices, as well as research needs, to address the challenges of managing contaminated casualties in a chemical or radiological/nuclear incident. PMID:26635995

  7. Background radiation measurements at high power research reactors

    DOE PAGES

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; ...

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less

  8. Background radiation measurements at high power research reactors

    SciTech Connect

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yen, Y. -R.; Zhang, C.; Zhang, X.

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  9. Background radiation measurements at high power research reactors

    NASA Astrophysics Data System (ADS)

    Ashenfelter, J.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y.-R.; Zhang, C.; Zhang, X.

    2016-01-01

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  10. Use of research reactors in multidisciplinary education at Cornell University

    SciTech Connect

    Clark, D.D. )

    1992-01-01

    Multidisciplinary aspects of nuclear science and technology form a large part of the research and teaching activities of the Nuclear Science and Engineering (NS and E) Program at Cornell, and the two reactors housed in Ward Laboratory - a 500-kW TRIGA and a 100-W critical facility (zero-power reactor (ZPR))- play a central role in those activities. Several primarily educational and multidisciplinary features of the NS and E program are described in this paper.

  11. LEU conversion status of US research reactors, September 1996

    SciTech Connect

    Matos, J.E.

    1996-10-07

    This paper summarizes the conversion status of research and test reactors in the United States from the use of fuels containing highly- enriched uranium (HEU, greater than or equal to 20%) to the use of fuels containing low-enriched uranium (LEU, < 20%). Estimates of the uranium densities required for conversion are made for reactors with power levels greater than or equal to 1 MW that are not currently involved in the LEU conversion process.

  12. Quantitative Imaging Evaluation of Corrosion in Oak Ridge Research Reactor POOL

    SciTech Connect

    Jang, P.R.; Arunkumar, R.; Long, Z.; Mott, M.A.; Okhuysen, W.P.; Su, Y.; Monts, D.L.; Kirk, P.G.; Ettien, J.

    2006-07-01

    The Oak Ridge Research Reactor (ORRR) was operated as an isotope production and irradiation facility from March 1958 until March 1987. The US Department of Energy permanently shut down and removed the fuel from the ORRR in 1987. The water level must be maintained in the ORRR pool as shielding for radioactive components still located in the pool. The U.S. Department of Energy's Environmental Management (DOE EM) needs to decontaminate and demolish the ORRR as part of the Oak Ridge cleanup program. In February 2004, increased pit corrosion was noted in the pool's 6-mm (1/4'')-thick aluminum liner in the section nearest where the radioactive components are stored. If pit corrosion has significantly penetrated the aluminum liner, then DOE EM must accelerate its decontamination and demolition (D and D) efforts. The goal of Mississippi State University's Diagnostic Instrumentation and Analysis Laboratory (DIAL) is to provide a determination of the extent and depth of corrosion. Results from the work will facilitate ORNL in making reliable disposition decisions. DIAL's inspection approach is to quantitatively estimate the amount of corrosion by using Fourier-transform profilometry (FTP). FTP is a non-contact 3-D shape measurement technique. By projecting a fringe pattern onto a target surface and observing its deformation due to surface irregularities from a different view angle, FTP is capable of determining the height (depth) distribution of the target surface, thus reproducing the profile of the target accurately. DIAL has previously demonstrated that its FTP system can quantitatively estimate the volume and depth of removed and residual material to high accuracy. (authors)

  13. Reactor Safety Research Programs Quarterly Report April- June 1981

    SciTech Connect

    Edler, S. K.

    1981-09-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL} from April1 through June 30, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory {INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  14. FRJ-1 Research Reactor (Merlin) Makes Way for a 'Green Field' Milestones on the Road to Paradise Regained

    SciTech Connect

    Stahn, B.; Printz, R.; Matela, K.; Zehbe, C.

    2008-07-01

    This report describes the previous path of the research reactor FRJ-1 (MERLIN) from shutdown to 'green field site', whereby primary focus is placed on milestones representing distinctive phases of dismantling. However, not only the milestones, but also the stumbling blocks are worth mentioning, because even negative events are painful and therefore provide good examples of what not to do in future projects. Dismantling of FRJ-1 began in 1995 with rather unspectacular demolition of the conventional air cooling system. Nevertheless, this was a significant milestone because it marked the beginning of the nuclear decommissioning era for Research Center Juelich. From this time on the most significant milestones along the path to 'green field site' are represented by: - Demolishing the system circuits and removal of experimental equipment; - Removal of built-in equipment in the reactor tank; - Demolition of the reactor block; - Decontamination and clearance measurement of the reactor building followed by dismissal from the German Atomic Energy Act. - Conventional demolition of the reactor hall with the objective of converting to 'green field site' These steps are explained below in greater or less detail depending on their degree of controversy and interest. At the time this report is published, the reactor building will be dismissed from the German Atomic Energy Act. The last step in conventional demolition should also be completed at this time according to the original planning. However this was prevented by one of the many stumbling blocks on the way to success. Nevertheless it is assumed at the present time that this step will also be concluded before the middle of 2008. (authors)

  15. 75 FR 70042 - In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order... above, shall be submitted to the NRC to the attention of the Director, Office of Nuclear Reactor... properly marked and handled in accordance with 10 CFR 73.21. The Director, Office of Nuclear...

  16. Positron beam facility at Kyoto University Research Reactor

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Sato, K.; Yoshiie, T.; Sano, T.; Kawabe, H.; Nagai, Y.; Nagumo, K.; Inoue, K.; Toyama, T.; Oshima, N.; Kinomura, A.; Shirai, Y.

    2014-04-01

    A positron beam facility is presently under construction at the Kyoto University Research Reactor (KUR), which is a light-water moderated tank-type reactor operated at a rated thermal power of 5 MW. A cadmium (Cd) - tungsten (W) source similar to that used in NEPOMUC was chosen in the KUR because Cd is very efficient at producing γ-rays when exposed to thermal neutron flux, and W is a widely used in converter and moderator materials. High-energy positrons are moderated by a W moderator with a mesh structure. Electrical lenses and a solenoid magnetic field are used to extract the moderated positrons and guide them to a platform outside of the reactor, respectively. Since Japan is an earthquake-prone country, a special attention is paid for the design of the in-pile positron source so as not to damage the reactor in the severe earthquake.

  17. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    SciTech Connect

    Phillips, Ann Marie

    2003-02-27

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D&D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D&D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D&D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D&D basic research projects will directly impact and provide solutions to DOE's D&D problems.

  18. Reduced enrichment for research and test reactors: Proceedings

    SciTech Connect

    Not Available

    1988-05-01

    The international effort to develop new research reactor fuel materials and designs based on the use of low-enriched uranium, instead of highly-enriched uranium, has made much progress during the eight years since its inception. To foster direct communication and exchange of ideas among the specialist in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the ninth of a series which began in 1978. All previous meetings of this series are listed on the facing page. The focus of this meeting was on the LEU fuel demonstration which was in progress at the Oak Ridge Research (ORR) reactor, not far from where the meeting was held. The visit to the ORR, where a silicide LEU fuel with 4.8 g A/cm/sup 3/ was by then in routine use, illustrated how far work has progressed.

  19. A probabilistic safety analysis of incidents in nuclear research reactors.

    PubMed

    Lopes, Valdir Maciel; Agostinho Angelo Sordi, Gian Maria; Moralles, Mauricio; Filho, Tufic Madi

    2012-06-01

    This work aims to evaluate the potential risks of incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency (IAEA) were used: the Research Reactor Data Base (RRDB) and the Incident Report System for Research Reactor (IRSRR). For this study, the probabilistic safety analysis (PSA) was used. To obtain the result of the probability calculations for PSA, the theory and equations in the paper IAEA TECDOC-636 were used. A specific program to analyse the probabilities was developed within the main program, Scilab 5.1.1. for two distributions, Fischer and chi-square, both with the confidence level of 90 %. Using Sordi equations, the maximum admissible doses to compare with the risk limits established by the International Commission on Radiological Protection (ICRP) were obtained. All results achieved with this probability analysis led to the conclusion that the incidents which occurred had radiation doses within the stochastic effects reference interval established by the ICRP-64.

  20. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    SciTech Connect

    Diamond, D. J.; Baek, J. S.; Hanson, A. L.; Cheng, L-Y; Brown, N.; Cuadra, A.

    2015-01-30

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.

  1. Reactor Safety Research: Semiannual report, July-December 1986

    SciTech Connect

    Not Available

    1987-11-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of the accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance and behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the tehcnology base supporting licensing decisions.

  2. Reactor Safety Research Programs Quarterly Report April -June 1980

    SciTech Connect

    Edler, S. K.

    1980-11-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  3. Reactor Safety Research Programs Quarterly Report October - December 1980

    SciTech Connect

    Edler, S K

    1981-04-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from October 1 through December 31, 1980, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NOE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  4. Reactor Safety Research Programs Quarterly Report January - March 1980

    SciTech Connect

    Hagen, C. M

    1980-10-01

    This document summarizes the work performed by Pacific Northwest Laboratory from January 1 through March 31, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission. Evaluation of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibilty of determining structural graphite strength, evaluating the feasibilty of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor steam generator tubes where serviceinduced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include the loss-of-coolant accident simulation tests at the NRU reactor, Chalk River, Canada; the fuel rod deformation and post-accident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; the blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and the experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  5. Reactor Safety Research Programs Quarterly Report July- September 1980

    SciTech Connect

    Edler, S. K.

    1980-12-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  6. Decontamination systems information and research program. Quarterly report, January 1--March 31, 1997

    SciTech Connect

    1997-12-31

    Progress reports are given on the following projects: (A) Subsurface contaminants, containment and remediation: 1.1 Characteristic evaluation of grout barriers in grout testing chamber; 1.2 Development of standard test protocols and barrier design models for desiccation barriers; 1.3 Development of standard test protocols and barrier design models for in-situ formed barriers -- technical support; 1.4 Laboratory studies and field testing at the DOE/RMI Extrusion Plant (Ashtabula, Ohio); 1.5 Use of drained enhanced soil flushing for contaminants removal; (B) Mixed waste characterization, treatment and disposal: Analysis of the Vortec cyclone melting system for remediation of PCB contaminated soils using computational fluid dynamics; (C) Decontamination and decommissioning: 3.1 Production and evaluation of biosorbents and cleaning solutions for use in D and D; 3.2 Use of Spintek centrifugal membrane technology and sorbents/cleaning solutions in the D and D of DOE facilities; (D) Cross-cutting innovative technologies: 4.1 Use of centrifugal membrane technology with novel membranes to treat hazardous/radioactive wastes; 4.2 Environmental pollution control devices based on novel forms of carbon; 4.3 Design of rotating membrane filtration system for remediation technologies; and (E) Outreach: Small business technical based support.

  7. Reactor pressure vessel structural integrity research

    SciTech Connect

    Pennell, W.E.; Corwin, W.R.

    1995-04-01

    Development continues on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels (RPVs) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallows surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT{sub NDT}) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on a shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) an implicit strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness. Experimental irradiation investigations have shown that (1) the irradiation-induced shift in Charpy V-notch vs temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement, and (2) the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties.

  8. Dismantling of the DIORIT research reactor - Conditioning of activated graphite.

    PubMed

    Sierra Perler, Isabel Cecilia; Beer, Hans-Frieder; Müth, Joachim; Kramer, Andreas

    2017-08-16

    The research reactor DIORIT at the Paul Scherrer Institute was a natural uranium reactor moderated by D2O. It was put in operation in 1960 and finally shut down in August 1977. The dismantling project started in 1982 and could be successfully finished on September 11th, 2012. About 40 tons of activated reactor graphite had to be conditioned during the dismantling of this research reactor. The problem of conditioning of activated reactor graphite had not been solved so far worldwide. Therefore a conditioning method considering radiation protection and economic aspects had to be developed. As a result, the graphite was crushed to a particle size smaller than 5 mm and added as sand substitute to a specially developed grout. The produced graphite concrete was used as a matrix for embedding dismantling waste in containers. By conditioning the graphite conventionally, about 58.5 m(3) (13 containers) of waste volume would have been generated. The new PSI invention resulted in no additional waste caused by graphite. Consequently, the resulting waste volume, as well as the costs, were substantially reduced. Copyright © 2017. Published by Elsevier Ltd.

  9. Locating tritium sources in a research reactor building.

    PubMed

    Fukui, Masami

    2005-10-01

    Despite renovation of the D2O facility, tritium concentrations in the condensates of reactor room air showed tens of Bq mL before venting resumption on July 1997. This suggested the presence of tritium sources in the research reactor-containment building. An investigation was therefore initiated to locate the source and determine the distribution of tritium in the containment building. Air monitoring in the working area using a dish of water placed in the building suggested that the source of tritium was near the reactor core. Monitoring exhaust air from the two facilities (a cold neutron source and a D(2)O tank) showed high specific activity on the order of 10 Bq mL(-1), suggesting the presence of tritium in condensates near the reactor core. The major concern was whether the leakage of liquid deuterium (4 L) and heavy water (2 x 10(3) L) used as a moderator had occurred. The concentration of tritium in condensates has not increased over the past few years in either the exhaust line or working area, and the deuterium itself has not been found in the surrounding environment. The concentration of tritium measured using an ionization chamber after Ar decay was dependent on the thermal output of the research reactor, indicating that the tritium was produced by the irradiation process within shielding/moderator materials or cover gas with neutrons.

  10. Reduced enrichment for research and test reactors: Proceedings

    SciTech Connect

    Not Available

    1993-07-01

    The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris{o} National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately.

  11. Decontamination of radioisotopes

    PubMed Central

    Domínguez-Gadea, Luis; Cerezo, Laura

    2011-01-01

    Contaminations with radioactive material may occur in several situations related to medicine, industry or research. Seriousness of the incident depends mainly on the radioactive element involved; usually there are no major acute health effects, but in the long term can cause malignancies, leukemia, genetic defects and teratogenic anomalies. The most common is superficial contamination, but the radioactive material can get into the body and be retained by the cells of target organs, injuring directly and permanently sensitive elements of the body. Rapid intervention is very important to remove the radioactive material without spreading it. Work must be performed in a specially prepared area and personnel involved should wear special protective clothing. For external decontamination general cleaning techniques are used, usually do not require chemical techniques. For internal decontamination is necessary to use specific agents, according to the causative element, as well physiological interventions to enhance elimination and excretion. PMID:24376972

  12. Fault detection system for Argentine Research Reactor instrumentation

    SciTech Connect

    Polenta, H.P. ); Bernard, J.A. ); Ray, A. )

    1993-01-20

    The design and implementation of a redundancy management scheme for the on-line detection and isolation of faulty sensors is presented. Such a device is potentially useful in reactor-powered spacecraft for enhancing the processing capabilities of the main computer. The fault detection device can be used as an integral part of intelligent instrumentation systems. The device has been built using an 8-bit microcontroller and commercially available electronic hardware. The software is completely portable. The operation of this device has been successfully demonstrated for real-time validation of sensor data on Argentina's RA-1 Research Reactor.

  13. Fault detection system for Argentine Research Reactor instrumentation

    NASA Astrophysics Data System (ADS)

    Polenta, Héctor P.; Bernard, John A.; Ray, Asok

    1993-01-01

    The design and implementation of a redundancy management scheme for the on-line detection and isolation of faulty sensors is presented. Such a device is potentially useful in reactor-powered spacecraft for enhancing the processing capabilities of the main computer. The fault detection device can be used as an integral part of intelligent instrumentation systems. The device has been built using an 8-bit microcontroller and commercially available electronic hardware. The software is completely portable. The operation of this device has been successfully demonstrated for real-time validation of sensor data on Argentina's RA-1 Research Reactor.

  14. Convective cooling in a pool-type research reactor

    SciTech Connect

    Sipaun, Susan; Usman, Shoaib

    2016-01-22

    A reactor produces heat arising from fission reactions in the nuclear core. In the Missouri University of Science and Technology research reactor (MSTR), this heat is removed by natural convection where the coolant/moderator is demineralised water. Heat energy is transferred from the core into the coolant, and the heated water eventually evaporates from the open pool surface. A secondary cooling system was installed to actively remove excess heat arising from prolonged reactor operations. The nuclear core consists of uranium silicide aluminium dispersion fuel (U{sub 3}Si{sub 2}Al) in the form of rectangular plates. Gaps between the plates allow coolant to pass through and carry away heat. A study was carried out to map out heat flow as well as to predict the system’s performance via STAR-CCM+ simulation. The core was approximated as porous media with porosity of 0.7027. The reactor is rated 200kW and total heat density is approximately 1.07+E7 Wm{sup −3}. An MSTR model consisting of 20% of MSTR’s nuclear core in a third of the reactor pool was developed. At 35% pump capacity, the simulation results for the MSTR model showed that water is drawn out of the pool at a rate 1.28 kg s{sup −1} from the 4” pipe, and predicted pool surface temperature not exceeding 30°C.

  15. Reactor subchannel analysis -- Electric Power Research Institute perspective

    SciTech Connect

    Srikantiah, G.

    1995-12-01

    One of the basic objectives of subchannel flow simulation and analysis effort sponsored by the Electric Power Research Institute was the development of a computer code for subchannel analysis and its verification and validation for applications to reactor thermal margin evaluation under steady and transient conditions. A historical perspective is given of the development of specifications for a reactor core subchannel thermal-hydraulics analysis code for utility applications in the evaluation of reactor safety limits during normal operation and accident scenarios. The subchannel analysis capabilities of the VIPRE-01 code based on the homogeneous equilibrium with the algebraic slip model of two-phase flow are presented. The code, which received a safety evaluation report from the US Nuclear Regulatory Commission in 1986, is in wide use in the utility industry for fuel reload safety analysis, critical heat flux correlation development and testing, thermal margin analysis, and core thermal-hydraulic analysis. A considerable amount of work has been done during the past few years on the development of VIPRE-02, an advanced subchannel analysis code based on the two-fluid model of two-phase flow capable of simulating reactor cores, vessels, and internal structures. The functional specifications, development of VIPRE-02, and current applications for VIPRE-02, such as boiling water reactor mixed fuel core evaluation, are also discussed. Code is also used for PWR`s.

  16. MCNP/MCNPX model of the annular core research reactor.

    SciTech Connect

    DePriest, Kendall Russell; Cooper, Philip J.; Parma, Edward J., Jr.

    2006-10-01

    Many experimenters at the Annular Core Research Reactor (ACRR) have a need to predict the neutron/gamma environment prior to testing. In some cases, the neutron/gamma environment is needed to understand the test results after the completion of an experiment. In an effort to satisfy the needs of experimenters, a model of the ACRR was developed for use with the Monte Carlo N-Particle transport codes MCNP [Br03] and MCNPX [Wa02]. The model contains adjustable safety, transient, and control rods, several of the available spectrum-modifying cavity inserts, and placeholders for experiment packages. The ACRR model was constructed such that experiment package models can be easily placed in the reactor after being developed as stand-alone units. An addition to the 'standard' model allows the FREC-II cavity to be included in the calculations. This report presents the MCNP/MCNPX model of the ACRR. Comparisons are made between the model and the reactor for various configurations. Reactivity worth curves for the various reactor configurations are presented. Examples of reactivity worth calculations for a few experiment packages are presented along with the measured reactivity worth from the reactor test of the experiment packages. Finally, calculated neutron/gamma spectra are presented.

  17. Convective cooling in a pool-type research reactor

    NASA Astrophysics Data System (ADS)

    Sipaun, Susan; Usman, Shoaib

    2016-01-01

    A reactor produces heat arising from fission reactions in the nuclear core. In the Missouri University of Science and Technology research reactor (MSTR), this heat is removed by natural convection where the coolant/moderator is demineralised water. Heat energy is transferred from the core into the coolant, and the heated water eventually evaporates from the open pool surface. A secondary cooling system was installed to actively remove excess heat arising from prolonged reactor operations. The nuclear core consists of uranium silicide aluminium dispersion fuel (U3Si2Al) in the form of rectangular plates. Gaps between the plates allow coolant to pass through and carry away heat. A study was carried out to map out heat flow as well as to predict the system's performance via STAR-CCM+ simulation. The core was approximated as porous media with porosity of 0.7027. The reactor is rated 200kW and total heat density is approximately 1.07+E7 Wm-3. An MSTR model consisting of 20% of MSTR's nuclear core in a third of the reactor pool was developed. At 35% pump capacity, the simulation results for the MSTR model showed that water is drawn out of the pool at a rate 1.28 kg s-1 from the 4" pipe, and predicted pool surface temperature not exceeding 30°C.

  18. Iaea Activities Supporting the Applications of Research Reactors in 2013

    NASA Astrophysics Data System (ADS)

    Peld, Nathan D.; Ridikas, Danas

    2014-02-01

    As the underutilization of research reactors around the world persists as a primary topic of concern among facility owners and operators, the IAEA responded in 2013 with a broad range of activities to address the planning, execution and improvement of many experimental techniques. The revision of two critical documents for planning and diversifying a facility's portfolio of applications, TECDOC 1234 “The Applications of Research Reactors” and TECDOC 1212 “Strategic Planning for Research Reactors”, is in progress in order to keep this information relevant, corresponding to the dynamism of experimental techniques and research capabilities. Related to the latter TECDOC, the IAEA convened a meeting in 2013 for the expert review of a number of strategic plans submitted by research reactor operators in developing countries. A number of activities focusing on specific applications are either continuing or beginning as well. In neutron activation analysis, a joint round of inter-comparison proficiency testing sponsored by the IAEA Technical Cooperation Department will be completed, and facility progress in measurement accuracy is described. Also, a training workshop in neutron imaging and Coordinated Research Projects in reactor benchmarks, automation of neutron activation analysis and neutron beam techniques for material testing intend to advance these activities as more beneficial services to researchers and other users.

  19. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    SciTech Connect

    Heeger, Karsten M.

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  20. Research reactor of the future: The advanced neutron source

    SciTech Connect

    Appleton, B.; West, C.

    1994-12-31

    Agents for cancer detection and treatment, stronger materials, better electronic gadgets, and other consumer and industrial products - these are assured benefits of a research reactor project proposed for Oak Ridge. Just as American companies have again assumed world leadership in producing semiconductor chips as well as cars and trucks, the United States is poised to retake the lead in neutron science by building and operating the $2.9 billion Advanced Neutron Source (ANS) research reactor by the start of the next century. In 1985, the neutron community, led by ORNL researchers, proposed a pioneering project, later called the ANS. Scheduled to begin operation in 2003, the ANS is seen not only as a replacement for the aging HFIR and HFBR but also as the best laboratory in the world for conducting neutron-based research.

  1. Neutron beams implemented at nuclear research reactors for BNCT

    NASA Astrophysics Data System (ADS)

    Bavarnegin, E.; Kasesaz, Y.; Wagner, F. M.

    2017-05-01

    This paper presents a survey of neutron beams which were or are in use at 56 Nuclear Research Reactors (NRRs) in order to be used for BNCT, either for treatment or research purposes in aspects of various combinations of materials that were used in their Beam Shaping Assembly (BSA) design, use of fission converters and optimized beam parameters. All our knowledge about BNCT is indebted to researches that have been done in NRRs. The results of about 60 years research in BNCT and also the successes of this method in medical treatment of tumors show that, for the development of BNCT as a routine cancer therapy method, hospital-based neutron sources are needed. Achieving a physical data collection on BNCT neutron beams based on NRRs will be helpful for beam designers in developing a non-reactor based neutron beam.

  2. Deployment of Smart 3D Subsurface Contaminant Characterization at the Brookhaven Graphite Research Reactor

    SciTech Connect

    Sullivan, T.; Heiser, J.; Kalb, P.; Milian, L.; Newson, C.; Lilimpakas, M.; Daniels, T.

    2002-02-26

    The Brookhaven Graphite Research Reactor (BGRR) Historical Site Assessment (BNL 1999) identified contamination inside the Below Grade Ducts (BGD) resulting from the deposition of fission and activation products from the pile on the inner carbon steel liner during reactor operations. Due to partial flooding of the BGD since shutdown, some of this contamination may have leaked out of the ducts into the surrounding soils. The baseline remediation plan for cleanup of contaminated soils beneath the BGD involves complete removal of the ducts, followed by surveying the underlying and surrounding soils, then removing soil that has been contaminated above cleanup goals. Alternatively, if soil contamination around and beneath the BGD is either non-existent/minimal (below cleanup goals) or is very localized and can be ''surgically removed'' at a reasonable cost, the BGD can be decontaminated and left in place. The focus of this Department of Energy Accelerated Site Technology Deployment (DOE ASTD) project was to determine the extent (location, type, and level) of soil contamination surrounding the BGD and to present this data to the stakeholders as part of the Engineering Evaluation/Cost Analysis (EE/CA) process. A suite of innovative characterization tools was used to complete the characterization of the soil surrounding the BGD in a cost-effective and timely fashion and in a manner acceptable to the stakeholders. The tools consisted of a tracer gas leak detection system that was used to define the gaseous leak paths out of the BGD and guide soil characterization studies, a small-footprint Geoprobe to reach areas surrounding the BGD that were difficult to access, two novel, field-deployed, radiological analysis systems (ISOCS and BetaScint) and a three-dimensional (3D) visualization system to facilitate data analysis/interpretation. All of the technologies performed as well or better than expected and the characterization could not have been completed in the same time or at

  3. ANL CP-5 decontamination and decommissioning project necessary and sufficient pilot. Report of the standards identification team on the selection of the necessary and sufficient standards set

    SciTech Connect

    1996-05-01

    The CP-5 reactor was a heavy-water moderated and cooled, highly-enriched uranium-fueled thermal reactor designed for supplying neutrons for research. The reactor was operated almost continuously for 25 years until its final shutdown in 1979. It is situated on approximately three acres in the southwestern section of Argonne National Laboratory. In 1980, all nuclear fuel and the heavy water that could be drained from the process systems were shipped off-site, and the CP-5 facility was placed into lay-up pending funding for decommissioning. It was maintained in the lay-up condition with a minimum of maintenance until 1990, when the decontamination and decommissioning (D and D) project began. This D and D project provides for the disassembly and removal of all radioactive components, equipment, and structures that are associated with the CP-5 facility. The experimental area around the CP-5 reactor has been prepared for D and D, and the area outside the facility has been remediated. The reactor primary coolant and support systems have been removed and packaged as waste. The significant remaining tasks are (1) removal of the reactor internals and the biological shield structure; (2) decontamination of the rod storage area; (3) decontamination of the various radioactive material storage and handling facilities, including the fuel pool; and (4) decontamination and dismantlement of the building. This report describes the scope of the project, identification of standards for various aspects of the project, the lessons learned, and consideration for implementation.

  4. Needs and Requirements for Future Research Reactors (ORNL Perspectives)

    SciTech Connect

    Ilas, Germina; Bryan, Chris; Gehin, Jess C.

    2016-02-10

    The High Flux Isotope Reactor (HFIR) is a vital national and international resource for neutron science research, production of radioisotopes, and materials irradiation. While HFIR is expected to continue operation for the foreseeable future, interest is growing in understanding future research reactors features, needs, and requirements. To clarify, discuss, and compile these needs from the perspective of Oak Ridge National Laboratory (ORNL) research and development (R&D) missions, a workshop, titled “Needs and Requirements for Future Research Reactors”, was held at ORNL on May 12, 2015. The workshop engaged ORNL staff that is directly involved in research using HFIR to collect valuable input on the reactor’s current and future missions. The workshop provided an interactive forum for a fruitful exchange of opinions, and included a mix of short presentations and open discussions. ORNL staff members made 15 technical presentations based on their experience and areas of expertise, and discussed those capabilities of the HFIR and future research reactors that are essential for their current and future R&D needs. The workshop was attended by approximately 60 participants from three ORNL directorates. The agenda is included in Appendix A. This document summarizes the feedback provided by workshop contributors and participants. It also includes information and insights addressing key points that originated from the dialogue started at the workshop. A general overview is provided on the design features and capabilities of high performance research reactors currently in use or under construction worldwide. Recent and ongoing design efforts in the US and internationally are briefly summarized, followed by conclusions and recommendations.

  5. Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education

    SciTech Connect

    Woodall, D.M.; Dolan, T.J.; Stephens, A.G. )

    1990-01-01

    The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs.

  6. 75 FR 27368 - Aerotest Operations, Inc., Aerotest Radiography and Research Reactor; Notice of Consideration of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... COMMISSION Aerotest Operations, Inc., Aerotest Radiography and Research Reactor; Notice of Consideration of... INFORMATION CONTACT: Cindy Montgomery, Project Manager, Research and Test Reactors Licensing Branch, Division... Operating License No. R-98 for the Aerotest Radiography and Research Reactor (ARRR), currently held by...

  7. Evaluation of Hydrogel Technologies for the Decontamination ...

    EPA Pesticide Factsheets

    Report This current research effort was developed to evaluate intermediate level (between bench-scale and large-scale or wide-area implementation) decontamination procedures, materials, technologies, and techniques used to remove radioactive material from different surfaces. In the event of such an incident, application of this technology would primarily be intended for decontamination of high-value buildings, important infrastructure, and landmarks.

  8. Evaluation of Hydrogel Technologies for the Decontamination ...

    EPA Pesticide Factsheets

    Report This current research effort was developed to evaluate intermediate level (between bench-scale and large-scale or wide-area implementation) decontamination procedures, materials, technologies, and techniques used to remove radioactive material from different surfaces. In the event of such an incident, application of this technology would primarily be intended for decontamination of high-value buildings, important infrastructure, and landmarks.

  9. Fuels for research and test reactors, status review: July 1982

    SciTech Connect

    Stahl, D.

    1982-12-01

    A thorough review is provided on nuclear fuels for steady-state thermal research and test reactors. The review was conducted to provide a documented data base in support of recent advances in research and test reactor fuel development, manufacture, and demonstration in response to current US policy on availability of enriched uranium. The review covers current fabrication practice, fabrication development efforts, irradiation performance, and properties affecting fuel utilization, including thermal conductivity, specific heat, density, thermal expansion, corrosion, phase stability, mechanical properties, and fission-product release. The emphasis is on US activities, but major work in Europe and elsewhere is included. The standard fuel types discussed are the U-Al alloy, UZrH/sub x/, and UO/sub 2/ rod fuels. Among new fuels, those given major emphasis include H/sub 3/Si-Al dispersion and UO/sub 2/ caramel plate fuels.

  10. A Research Reactor Concept to Support NTP Development

    NASA Technical Reports Server (NTRS)

    Eades, Michael J.; Blue, T. E.; Gerrish, Harold P.; Hardin, Leroy A.

    2014-01-01

    In support of efforts for research into the design and development of man rated Nuclear Thermal Propulsion (NTP), the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed NTP based research reactor (NTPRR). The proposed NTPRR would be licensed by NASA and operated jointly by NASA and university partners. The purpose of the NTPRR would be used to perform further research into the technologies and systems needed for a successful NTP project and promote nuclear training and education.

  11. Neutron depth profiling at the University of Texas research reactor

    SciTech Connect

    Unlu, K.; Wehring, B.W. )

    1993-01-01

    A neutron depth profiling (NDP) facility has been developed at the University of Texas at Austin (UT) Nuclear Engineering Teaching Laboratory. The UT-NDP utilizes thermal neutrons from a tangential beam port of the 1-MW TRIGA Mark II research reactor. Aspects of the designs of the thermal neutron beam and target chamber for the UT-NDP facility are given in this paper. Also, a brief description of NDP and possible applications are included.

  12. On use of ZPR research reactors and associated instrumentation and measurement methods for reactor physics studies

    SciTech Connect

    Chauvin, J.P.; Blaise, P.; Lyoussi, A.

    2015-07-01

    The French atomic and alternative energies -CEA- is strongly involved in research and development programs concerning the use of nuclear energy as a clean and reliable source of energy and consequently is working on the present and future generation of reactors on various topics such as ageing plant management, optimization of the plutonium stockpile, waste management and innovative systems exploration. Core physics studies are an essential part of this comprehensive R and D effort. In particular, the Zero Power Reactor (ZPR) of CEA: EOLE, MINERVE and MASURCA play an important role in the validation of neutron (as well photon) physics calculation tools (codes and nuclear data). The experimental programs defined in the CEA's ZPR facilities aim at improving the calculation routes by reducing the uncertainties of the experimental databases. They also provide accurate data on innovative systems in terms of new materials (moderating and decoupling materials) and new concepts (ADS, ABWR, new MTR (e.g. JHR), GENIV) involving new fuels, absorbers and coolant materials. Conducting such interesting experimental R and D programs is based on determining and measuring main parameters of phenomena of interest to qualify calculation tools and nuclear data 'libraries'. Determining these parameters relies on the use of numerous and different experimental techniques using specific and appropriate instrumentation and detection tools. Main ZPR experimental programs at CEA, their objectives and challenges will be presented and discussed. Future development and perspectives regarding ZPR reactors and associated programs will be also presented. (authors)

  13. The design and performance of the research reactor fuel counter

    SciTech Connect

    Abhold, M.E.; Hsue, S.T.; Menlove, H.O.; Walton, G.; Holt, S.

    1996-09-01

    This paper describes the design features, hardware specifications, and performance characteristics of the Research Reactor Fuel Counter (RRFC) System. The system is an active mode neutron coincidence counter intended to assay material test reactor fuel assemblies under water. The RRFC contains 12 {sup 3}He tubes, each with its own preamplifier, and a single ion chamber. The neutron counting electronics are based on the Los Alamos Portable Shift Register (PSR) and the gamma readout is a manual-range pico-ammeter of Los Alamos design. The RRFC is connected to the surface by a 20-m-long cable bundle. The PSR is controlled by a portable IBM computer running a modified version of the Los Alamos neutron coincidence counting code also called RRFC. There is a manual that describes the RRFC software.

  14. Control Rod Reactivity Curves for the Annular Core Research Reactor

    NASA Astrophysics Data System (ADS)

    Depriest, K. Russell; Kajder, Karen C.; Frye, Jason N.; Denman, Matthew R.

    2009-08-01

    Experiments were conducted at the Annular Core Research Reactor (ACRR) to increase the fidelity of the control rod integral reactivity worth curve. This experiment series was designed to refine the integral reactivity curve used for pulse yield prediction and eliminate the need for operator compensation in the pulse setup. The experiment series consisted of delayed critical and positive period measurements with various ACRR cavity configurations. An improved integral reactivity worth curve for the ACRR control rods has been constructed using the positive period measurements, the delayed critical measurements, and radiation transport modeling of the reactor. A series of prompt period measurements is used to validate that the new control rod curve more accurately predicts the energy yield of the pulse operations. The new reactivity worth curve is compared with the current curve that was developed using traditional approaches.

  15. Remote dismantlement activities for the Argonne CP-5 Research Reactor

    SciTech Connect

    Noakes, M.W.

    1996-12-31

    The Department of Energy`s (DOE`s) Robotics Technology Development Program (RTDP) is participating in the dismantlement of a mothballed research reactor, Chicago Pile Number 5 (CP-5), at Argonne National Laboratory (ANL) to demonstrate technology developed by the program while assisting Argonne with their remote system needs. Equipment deployed for CP-5 activities includes the dual-arm work platform (DAWP), which will handle disassembly of reactor internals, and the RedZone Robotics-developed `Rosie` remote work vehicle, which will perform size reduction of shield plugs, demolition of the biological shield, and waste packaging. Remote dismantlement tasks are scheduled to begin in February of 1997 and to continue through 1997 and beyond.

  16. Status of reactor shielding research in the United States

    SciTech Connect

    Bartine, D.E.

    1983-01-01

    Shielding research in the United States continues to place emphasis on: (1) the development and refinement of shielding design calculational methods and nuclear data; and (2) the performance of confirmation experiments, both to evaluate specific design concepts and to verify specific calculational techniques and input data. The successful prediction of the radiation levels observed within the now-operating Fast Flux Test Facility (FFTF) has demonstrated the validity of this two-pronged approach, which has since been applied to US fast breeder reactor programs and is now being used to determine radiation levels and possible further shielding needs at operating light water reactors, especially under accident conditions. A similar approach is being applied to the back end of the fission fuel cycle to verify that radiation doses at fuel element storage and transportation facilities and within fuel reprocessing plants are kept at acceptable levels without undue economic penalties.

  17. Advanced Reactor Safety Research Division. Quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Agrawal, A.K.; Cerbone, R.J.; Sastre, C.

    1980-06-01

    The Advanced Reactor Safety Research Programs quarterly progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  18. Advanced Reactor Safety Research Division. Quarterly progress report, April 1-June 30, 1980

    SciTech Connect

    Romano, A.J.

    1980-01-01

    The Advanced Reactor Safety Research Programs Quarterly Progress Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR safety evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  19. Eastern Europe Research Reactor Initiative nuclear education and training courses - Current activities and future challenges

    SciTech Connect

    Snoj, L.; Sklenka, L.; Rataj, J.; Boeck, H.

    2012-07-01

    The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three different research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)

  20. Summary of Research on Light Water Reactor Improvement Concepts

    SciTech Connect

    Mowery, Alfred L

    2002-12-15

    The Arms Control and Disarmament Agency of the U.S. Department of State instituted a study aimed at improving the light water reactor (LWR) fuel consumption efficiency as an alternative to fuel recycle in the late 1970s. Comparison of the neutron balance tables of an LWR (1982 design) and an 'advanced' Canada deuterium uranium (CANDU) reactor explained that the relatively low fuel efficiency of the LWR was not primarily a consequence of water moderator absorptions. Rather, the comparatively low LWR fuel efficiency resulted from its use of poison to hold down startup reactivity together with other neutron losses. The research showed that each neutron saved could reduce fuel consumption by about 5%. In a typical LWR some 5 neutrons (out of 100) were absorbed in control poisons over a cycle. There are even more parasitic and leakage neutron absorptions. The objective of the research was to find ways to minimize control, parasitic, and other neutron losses aimed at improved LWR fuel consumption. Further research developed the concept of 'putting neutrons in the bank' in {sup 238}U early in life and 'drawing them out of the bank' late in life by burning the {sup 239}Pu produced. Conceptual designs were explored that could both control the reactor and substantially improve fuel efficiency and minimize separative work requirements.The U.S. Department of Energy augmented its high burnup fuel program based on the research in the late 1970s. As a result of the success of this program, fuel burnup in U.S. LWRs has almost doubled in the intervening two decades.

  1. Decontamination of a technetium contaminated fume hood in a research laboratory.

    PubMed

    O'Dou, Thomas J; Bertoia, Julie; Czerwinski, Kenneth R

    2011-08-01

    After 4 y of working with 99Tc in milligram to gram quantities to make many different compounds and provide the resource for the generation of several publications, work in one of the fume hoods used by the University of Nevada, Las Vegas (UNLV), radiochemistry program started to cause an increase in contamination events that were discovered in weekly surveys. It was decided that the hood should be cleaned out when the researchers were away during the winter break in December 2009. The hood, until just before the winter break, held equipment from years of operation.

  2. Reactive decontamination formulation

    DOEpatents

    Giletto, Anthony; White, William; Cisar, Alan J.; Hitchens, G. Duncan; Fyffe, James

    2003-05-27

    The present invention provides a universal decontamination formulation and method for detoxifying chemical warfare agents (CWA's) and biological warfare agents (BWA's) without producing any toxic by-products, as well as, decontaminating surfaces that have come into contact with these agents. The formulation includes a sorbent material or gel, a peroxide source, a peroxide activator, and a compound containing a mixture of KHSO.sub.5, KHSO.sub.4 and K.sub.2 SO.sub.4. The formulation is self-decontaminating and once dried can easily be wiped from the surface being decontaminated. A method for decontaminating a surface exposed to chemical or biological agents is also disclosed.

  3. High flux research reactors based on particulate fuel

    SciTech Connect

    Powell, J.R.; Takahashi, H.; Horn, F.L.

    1986-02-01

    High Flux Particle Bed Reactor (HFPBR) designs based on High Temperature Gas Reactors (HTGR) particular fuel are described. The coated fuel particles, approx.500 microns in diameter, are packed between porous metal frits, and directly cooled by flowing D/sub 2/O. The large heat transfer surface area in the packed bed, approx.100 cm/sup 2//cm/sup 3/ of volume, allows high power densities, typically 10 MW/liter. Peak thermal fluxes in the HFPBR are 1 to 2 x 1/sup 16/ n/c/sup 2/ sec., depending on configuration and moderator choice with beryllium and D/sub 2/O Moderators yielding the best flux performance. Spent fuel particles can be hydraulically unloaded every day or two and fresh fuel reloaded. The short fuel cycle allows HFPBR fuel loading to be very low, approx.2 kg of /sup 235/U, with a fission product inventory one-tenth of that in present high flux research reactors. The HFPBR can use partially enriched fuel, 20% /sup 235/U, without degradation in flux reactivity. 8 refs., 12 figs., 2 tabs.

  4. Independent Verification of Research Reactor Operation (Analysis of the Georgian IRT-M Reactor by the Isotope Ratio Method)

    SciTech Connect

    Cliff, John B.; Frank, Douglas P.; Gerlach, David C.; Gesh, Christopher J.; Little, Winston W.; Reid, Bruce D.; Tsiklauri, Georgi V.; Abramidze, Sh; Rostomashvili, Z.; Kiknadze, G.; Dzhavakhishvily, O.; Nabakhtiani, G.

    2010-08-11

    The U.S. Department of Energy’s Office of Nonproliferation and International Security (NA-24) develops technologies to aid in implementing international nuclear safeguards. The Isotope Ratio Method (IRM) was successfully developed in 2005 – 2007 by Pacific Northwest National Laboratory (PNNL) and the Republic of Georgia’s Andronikashvili Institute of Physics as a generic technology to verify the declared operation of water-moderated research reactors, independent of spent fuel inventory. IRM estimates the energy produced over the operating lifetime of a fission reactor by measuring the ratios of the isotopes of trace impurity elements in non-fuel reactor components.The Isotope Ratio Method is a technique for estimating the energy produced over the operating lifetime of a fission reactor by measuring the ratios of the isotopes of impurity elements in non-fuel reactor components.

  5. [Decontamination of chemical and biological warfare agents].

    PubMed

    Seto, Yasuo

    2009-01-01

    Chemical and biological warfare agents (CBWA's) are diverse in nature; volatile acute low-molecular-weight toxic compounds, chemical warfare agents (CWA's, gaseous choking and blood agents, volatile nerve gases and blister agents, nonvolatile vomit agents and lacrymators), biological toxins (nonvolatile low-molecular-weight toxins, proteinous toxins) and microbes (bacteria, viruses, rickettsiae). In the consequence management against chemical and biological terrorism, speedy decontamination of victims, facilities and equipment is required for the minimization of the damage. In the present situation, washing victims and contaminated materials with large volumes of water is the basic way, and additionally hypochlorite salt solution is used for decomposition of CWA's. However, it still remains unsolved how to dispose large volumes of waste water, and the decontamination reagents have serious limitation of high toxicity, despoiling nature against the environments, long finishing time and non-durability in effective decontamination. Namely, the existing decontamination system is not effective, nonspecifically affecting the surrounding non-target materials. Therefore, it is the urgent matter to build up the usable decontamination system surpassing the present technologies. The symposiast presents the on-going joint project of research and development of the novel decontamination system against CBWA's, in the purpose of realizing nontoxic, fast, specific, effective and economical terrorism on-site decontamination. The projects consists of (1) establishment of the decontamination evaluation methods and verification of the existing technologies and adaptation of bacterial organophosphorus hydrolase, (2) development of adsorptive elimination technologies using molecular recognition tools, and (4) development of deactivation technologies using photocatalysis.

  6. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  7. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  8. Engineered Deinococcus radiodurans R1 with NiCoT genes for bioremoval of trace cobalt from spent decontamination solutions of nuclear power reactors.

    PubMed

    Gogada, Raghu; Singh, Surya Satyanarayana; Lunavat, Shanti Kumari; Pamarthi, Maruthi Mohan; Rodrigue, Agnes; Vadivelu, Balaji; Phanithi, Prakash-Babu; Gopala, Venkateswaran; Apte, Shree Kumar

    2015-11-01

    The aim of the present work was to engineer bacteria for the removal of Co in contaminated effluents. Radioactive cobalt ((60)Co) is known as a major contributor for person-sievert budgetary because of its long half-life and high γ-energy values. Some bacterial Ni/Co transporter (NiCoT) genes were described to have preferential uptake for cobalt. In this study, the NiCoT genes nxiA and nvoA from Rhodopseudomonas palustris CGA009 (RP) and Novosphingobium aromaticivorans F-199 (NA), respectively, were cloned under the control of the groESL promoter. These genes were expressed in Deinococcus radiodurans in reason of its high resistance to radiation as compared to other bacterial strains. Using qualitative real time-PCR, we showed that the expression of NiCoT-RP and NiCoT-NA is induced by cobalt and nickel. The functional expression of these genes in bioengineered D. radiodurans R1 strains resulted in >60 % removal of (60)Co (≥5.1 nM) within 90 min from simulated spent decontamination solution containing 8.5 nM of Co, even in the presence of >10 mM of Fe, Cr, and Ni. D. radiodurans R1 (DR-RP and DR-NA) showed superior survival to recombinant E. coli (ARY023) expressing NiCoT-RP and NA and efficiency in Co remediation up to 6.4 kGy. Thus, the present study reports a remarkable reduction in biomass requirements (2 kg) compared to previous studies using wild-type bacteria (50 kg) or ion-exchanger resins (8000 kg) for treatment of ~10(5)-l spent decontamination solutions (SDS).

  9. Present status of liquid metal research for a fusion reactor

    NASA Astrophysics Data System (ADS)

    Tabarés, Francisco L.

    2016-01-01

    Although the use of solid materials as targets of divertor plasmas in magnetic fusion research is accepted as the standard solution for the very challenging issue of power and particle handling in a fusion reactor, a generalized feeling that the present options chosen for ITER will not represent the best choice for a reactor is growing up. The problems found for tungsten, the present selection for the divertor target of ITER, in laboratory tests and in hot plasma fusion devices suggest so. Even in the absence of the strong neutron irradiation expected in a reactor, issues like surface melting, droplet ejection, surface cracking, dust generation, etc., call for alternative solutions in a long pulse, high efficient fusion energy-producing continuous machine. Fortunately enough, decades of research on plasma facing materials based on liquid metals (LMs) have produced a wealth of appealing ideas that could find practical application in the route to the realization of a commercial fusion power plant. The options presently available, although in a different degree of maturity, range from full coverage of the inner wall of the device with liquid metals, so that power and particle exhaust together with neutron shielding could be provided, to more conservative combinations of liquid metal films and conventional solid targets basically representing a sort of high performance, evaporative coating for the alleviation of the surface degradation issues found so far. In this work, an updated review of worldwide activities on LM research is presented, together with some open issues still remaining and some proposals based on simple physical considerations leading to the optimization of the most conservative alternatives.

  10. Some Tooling for Manufacturing Research Reactor Fuel Plates

    SciTech Connect

    Knight, R.W.

    1999-10-03

    This paper will discuss some of the tooling necessary to manufacture aluminum-based research reactor fuel plates. Most of this tooling is intended for use in a high-production facility. Some of the tools shown have manufactured more than 150,000 pieces. The only maintenance has been sharpening. With careful design, tools can be made to accommodate the manufacture of several different fuel elements, thus, reducing tooling costs and maintaining tools that the operators are trained to use. An important feature is to design the tools using materials with good lasting quality. Good tools can increase return on investment.

  11. The AECL`s research reactor analysis methodology

    SciTech Connect

    Wilkin, G.B.

    1995-12-31

    As the cost of developing completely new computer codes becomes prohibitive, designers of nuclear facilities are turning to more cost-effective approaches for meeting increasingly strict regulatory requirements applied to safety-related analysis. For designing and licensing the MAPLE family of research reactors, Atomic Energy of Canada Ltd. (AECL) is employing the strategy of adapting major existing codes by linking them together within networks of custom-built interface software. This approach builds on the international investment in developing, maintaining, and verifying existing primary codes and focuses on the less onerous development of interface codes. The resultant code systems are then validated for the new applications of interest.

  12. Reduced enrichment for research and test reactors: Proceedings

    SciTech Connect

    Not Available

    1993-08-01

    November 9--10, 1978, marked the first of what has become an annual event--the International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR). The meeting brought together for the first time many people who became major program participants in later years. This first meeting emphasized fuel development, and it established the basis for all later meetings. Believing that the proceedings of this first meeting are important as a historical record of the beginning of the international RERTR effort. This report provides presentations and discussions of this original meeting. Individual papers have been cataloged separately.

  13. Oak Ridge National Laboratory Research Reactor Experimenters' Guide

    SciTech Connect

    Cagle, C.D.

    1982-10-01

    The Oak Ridge National Laboratory has three multipurpose research reactors which accommodate testing loops, target irradiations, and beam-type experiments. Since the experiments must share common or similar facilities and utilities, be designed and fabricated by the same groups, and meet the same safety criteria, certain standards for these have been developed. These standards deal only with those properties from which safety and economy of time and money can be maximized and do not relate to the intent of the experiment or quality of the data obtained. The necessity for, and the limitations of, the standards are discussed; and a compilation of general standards is included.

  14. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight; Smith, Cyrus

    2014-02-01

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R&D Roadmap for Concrete, "Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap", focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  15. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    SciTech Connect

    Clayton, Dwight; Smith, Cyrus

    2014-02-18

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R and D Roadmap for Concrete, 'Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap', focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  16. Material Compatibility for Historic Items Decontaminated with ...

    EPA Pesticide Factsheets

    Report This project continued research of the effects of decontamination methods for biological agents on materials identified as representative of types of irreplaceable objects or works of art found in museums and/or archive settings. In the previous research, surrogate materials were checked for compatibility with four decontamination methods: chlorine dioxide, hydrogen peroxide vapor, methyl bromide, and ethylene oxide gas. This project investigated the effects of gamma irradiation, which has also been shown to be an effective decontamination method for biological agents, on the surrogate test materials.

  17. Management of historical waste from research reactors: the Dutch experience

    SciTech Connect

    Van Heek, Aliki; Metz, Bert; Janssen, Bas; Groothuis, Ron

    2013-07-01

    Most radioactive waste emerges as well-defined waste streams from operating power reactors. The management of this is an on-going practice, based on comprehensive (IAEA) guidelines. A special waste category however consists of the historical waste from research reactors, mostly originating from various experiments in the early years of the nuclear era. Removal of the waste from the research site, often required by law, raises challenges: the waste packages must fulfill the acceptance criteria from the receiving storage site as well as the criteria for nuclear transports. Often the aged waste containers do not fulfill today's requirements anymore, and their contents are not well documented. Therefore removal of historical waste requires advanced characterization, sorting, sustainable repackaging and sometimes conditioning of the waste. This paper describes the Dutch experience of a historical waste removal campaign from the Petten High Flux research reactor. The reactor is still in operation, but Dutch legislation asks for central storage of all radioactive waste at the COVRA site in Vlissingen since the availability of the high- and intermediate-level waste storage facility HABOG in 2004. In order to comply with COVRA's acceptance criteria, the complex and mixed inventory of intermediate and low level waste must be characterized and conditioned, identifying the relevant nuclides and their activities. Sorting and segregation of the waste in a Hot Cell offers the possibility to reduce the environmental footprint of the historical waste, by repackaging it into different classes of intermediate and low level waste. In this way, most of the waste volume can be separated into lower level categories not needing to be stored in the HABOG, but in the less demanding LOG facility for low-level waste instead. The characterization and sorting is done on the basis of a combination of gamma scanning with high energy resolution of the closed waste canister and low

  18. Decontamination & decommissioning focus area

    SciTech Connect

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  19. Evaluation of aluminum pit corrosion in oak ridge research reactor pool by quantitative imaging and thermodynamic modeling

    SciTech Connect

    Jang, Ping-Rey; Arunkumar, Rangaswami; Lindner, Jeffrey S.; Long, Zhiling; Mott, Melissa A.; Okhuysen, Walter P.; Monts, David L.; Su, Yi; Kirk, Paula G.; Ettien, John

    2007-07-01

    The Oak Ridge Research Reactor (ORRR) was operated as an isotope production and irradiation facility from March 1958 until March 1987. The US Department of Energy permanently shut down and removed the fuel from the ORRR in 1987. The water level must be maintained in the ORRR pool as shielding for radioactive components still located in the pool. The U.S. Department of Energy's Office of Environmental Management (DOE EM) needs to decontaminate and demolish the ORRR as part of the Oak Ridge cleanup program. In February 2004, increased pit corrosion was noted in the pool's 6 mm (1/4'')-thick aluminum liner in the section nearest where the radioactive components are stored. If pit corrosion has significantly penetrated the aluminum liner, then DOE EM must accelerate its decontaminating and decommissioning (D and D) efforts or look for alternatives for shielding the irradiated components. The goal of Mississippi State University's Institute for Clean Energy Technology (ICET) was to provide a determination of the extent and depth of corrosion and to conduct thermodynamic modeling to determine how further corrosion can be inhibited. Results from the work will facilitate ORNL in making reliable disposition decisions. ICET's inspection approach was to quantitatively estimate the amount of corrosion by using Fourier - transform profilometry (FTP). FTP is a non-contact 3- D shape measurement technique. By projecting a fringe pattern onto a target surface and observing its deformation due to surface irregularities from a different view angle, the system is capable of determining the height (depth) distribution of the target surface, thus reproducing the profile of the target accurately. ICET has previously demonstrated that its FTP system can quantitatively estimate the volume and depth of removed and residual material to high accuracy. The results of our successful initial deployment of a submergible FTP system into the ORRR pool are reported here as are initial thermodynamic

  20. Radioisotope research, production, and processing at the University of Missouri Research Reactor

    SciTech Connect

    Ehrhardt, G.J.; Ketring, A.R.; Ja, Wei; Ma, D.; Zinn, K.; Lanigan, J.

    1995-12-31

    The University of Missouri Research Reactor (MURR) is a 10 MW, light-water-cooled and moderated research reactor which first achieved criticality in 1996 and is currently the highest powered university-owned research reactor in the U.S. For many years a major supplier of reactor-produced isotopes for research and commercial purposes, in the last 15 years MURR has concentrated on development of reactor-produced beta-particle emitters for experimental use in nuclear medicine therapy of cancer and rheumatoid arthritis. MURR has played a major role in the development of bone cancer pain palliation with the agents {sup 153}Sm EDTMP and {sup 186}Re/{sup 188}Re HEDP, as well as in the use of {sup 186}Re, {sup 177}Lu, {sup 166}Ho, and {sup 105}Rh for radioimmunotherapy and receptor-agent-guided radiotherapy. MURR is also responsible for the development of therapeutic, {sup 90}Y-labeled glass microspheres for the treatment of liver tumors, a product ({sup 90}Y Therasphere{trademark}) which is currently an approved drug in Canada. MURR has also pioneered the development of {sup 188}W/{sup 188}Re and {sup 99}Mo/{sup 99m}Tc gel generators, which make the use of low specific activity {sup 188}W and {sup 99}Mo practical for such isotope generators.

  1. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  2. Radiation dosimetry at the BNL Medical Research Reactor

    SciTech Connect

    Holden, N.E.; Reciniello, R.N.; Greenberg, D.D.; Hu, J.P.

    1998-11-01

    The Medical Research Reactor, BMRR, at the Brookhaven National Laboratory, BNL, is a three megawatt, 3 MW, heterogeneous, tank-type, light water cooled and moderated, graphite reflected reactor, which was designed for biomedical studies, and became operational in 1959. It provides thermal and epithermal neutron beams suitable for research studies such as radiation therapy of various types of tumors. At the present time, the major program at BMRR is Boron Neutron Capture Therapy, BNCT. Modifications have been made to the BMRR to significantly increase the available epithermal neutron flux density to a patient in clinical trials of BNCT. The data indicate that the flux density and dose rate are concentrated in the center of the beam, the patient absorbs neutrons rather than gamma radiation and as noted previously even with the increasing flux values, gamma-ray dose received by the attending personnel has remained minimal. Flux densities in the center of the thermal port and epithermal port beams have been characterized with an agreement between the measurements and the calculations.

  3. IGORR-IV -- Proceedings of the fourth meeting of the International Group on Research Reactors

    SciTech Connect

    Rosenbalm, K.F.

    1995-12-31

    The International Group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Twenty-nine papers were presented in five sessions and written versions of the papers or hard copies of the vugraphs used are published in these proceedings. The five sessions were: (1) Operating Research Reactors and Facility Upgrades; (2) Research Reactors in Design and Construction; (3) ANS Closeout Activities; (4) and (5) Research, Development, and Analysis Results.

  4. REACTORS

    DOEpatents

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  5. Modular Pebble Bed Reactor Project, University Research Consortium Annual Report

    SciTech Connect

    Petti, David Andrew

    2000-07-01

    This project is developing a fundamental conceptual design for a gas-cooled, modular, pebble bed reactor. Key technology areas associated with this design are being investigated which intend to address issues concerning fuel performance, safety, core neutronics and proliferation resistance, economics and waste disposal. Research has been initiated in the following areas: · Improved fuel particle performance · Reactor physics · Economics · Proliferation resistance · Power conversion system modeling · Safety analysis · Regulatory and licensing strategy Recent accomplishments include: · Developed four conceptual models for fuel particle failures that are currently being evaluated by a series of ABAQUS analyses. Analytical fits to the results are being performed over a range of important parameters using statistical/factorial tools. The fits will be used in a Monte Carlo fuel performance code, which is under development. · A fracture mechanics approach has been used to develop a failure probability model for the fuel particle, which has resulted in significant improvement over earlier models. · Investigation of fuel particle physio-chemical behavior has been initiated which includes the development of a fission gas release model, particle temperature distributions, internal particle pressure, migration of fission products, and chemical attack of fuel particle layers. · A balance of plant, steady-state thermal hydraulics model has been developed to represent all major components of a MPBR. Component models are being refined to accurately reflect transient performance. · A comparison between air and helium for use in the energy-conversion cycle of the MPBR has been completed and formed the basis of a master’s degree thesis. · Safety issues associated with air ingress are being evaluated. · Post shutdown, reactor heat removal characteristics are being evaluated by the Heating-7 code. · PEBBED, a fast deterministic neutronic code package suitable for

  6. Reprocessing of research reactor fuel the Dounreay option

    SciTech Connect

    Cartwright, P.

    1997-08-01

    Reprocessing is a proven process for the treatment of spent U/Al Research Reactor fuel. At Dounreay 12679 elements have been reprocessed during the past 30 years. For reactors converting to LEU fuel the uranium recovered in reprocessing can be blended down to less than 20% U{sub 235}, enrichment and be fabricated into new elements. For reactors already converted to LEU it is technically possible to reprocess spent silicide fuel to reduce the U{sub 235} burden and present to a repository only stable conditioned waste. The main waste stream from reprocessing which contains the Fission products is collected in underground storage tanks where it is kept for a period of at least five years before being converted to a stable solid form for return to the country of origin for subsequent storage/disposal. Discharges to the environment from reprocessing are low and are limited to the radioactive gases contained in the spent fuel and a low level liquid waste steam. Both of these discharges are independently monitored, and controlled within strict discharge limits set by the UK Government`s Scottish Office. Transportation of spent fuel to Dounreay has been undertaken using many routes from mainland Europe and has utilised over the past few years both chartered and scheduled vessel services. Several different transport containers have been handled and are currently licensed in the UK. This paper provides a short history of MTR reprocessing at Dounreay, and provides information to show reprocessing can satisfy the needs of MTR operators, showing that reprocessing is a valuable asset in non-proliferation terms, offers a complete solution and is environmentally acceptable.

  7. Monochromatic neutron beam production at Brazilian nuclear research reactors

    NASA Astrophysics Data System (ADS)

    Stasiulevicius, Roberto; Rodrigues, Claudio; Parente, Carlos B. R.; Voi, Dante L.; Rogers, John D.

    2000-12-01

    Monochomatic beams of neutrons are obtained form a nuclear reactor polychromatic beam by the diffraction process, suing a single crystal energy selector. In Brazil, two nuclear research reactors, the swimming pool model IEA-R1 and the Argonaut type IEN-R1 have been used to carry out measurements with this technique. Neutron spectra have been measured using crystal spectrometers installed on the main beam lines of each reactor. The performance of conventional- artificial and natural selected crystals has been verified by the multipurpose neutron diffractometers installed at IEA-R1 and simple crystal spectrometer in operator at IEN- R1. A practical figure of merit formula was introduced to evaluate the performance and relative reflectivity of the selected planes of a single crystal. The total of 16 natural crystals were selected for use in the neutron monochromator, including a total of 24 families of planes. Twelve of these natural crystal types and respective best family of planes were measured directly with the multipurpose neutron diffractometers. The neutron spectrometer installed at IEN- R1 was used to confirm test results of the better specimens. The usually conventional-artificial crystal spacing distance range is limited to 3.4 angstrom. The interplane distance range has now been increased to approximately 10 angstrom by use of naturally occurring crystals. The neutron diffraction technique with conventional and natural crystals for energy selection and filtering can be utilized to obtain monochromatic sub and thermal neutrons with energies in the range of 0.001 to 10 eV. The thermal neutron is considered a good tool or probe for general applications in various fields, such as condensed matter, chemistry, biology, industrial applications and others.

  8. Nuclear reactor safety research since Three Mile Island

    SciTech Connect

    Mynatt, F.R.

    1982-04-09

    The Three Mile Island nuclear power plant accident has resulted in redirection of reactor safety research priorities. The small release to the environment of radioactive iodine-13 to 17 curies in a total radioactivity release of 2.4 million to 13 million curies-has led to a new emphasis on the physical chemistry of fission product behavior in accidents; the fact that the nuclear core was severely damaged but did not melt down has opened a new accident regime-that of the degraded core; the role of the operators in the progression and severity of the accident has shifted emphasis from equipment reliability to human reliability. As research progresses in these areas, the technical base for regulation and risk analysis will change substantially.

  9. Nuclear reactor safety research since three mile island.

    PubMed

    Mynatt, F R

    1982-04-09

    The Three Mile Island nuclear power plant accident has resulted in redirection of reactor safety research priorities. The small release to the environment of radioactive iodine-13 to 17 curies in a total radioactivity release of 2.4 million to 13 million curies-has led to a new emphasis on the physical chemistry of fission product behavior in accidents; the fact that the nuclear core was severely damaged but did not melt down has opened a new accident regime-that of the degraded core; the role of the operators in the progression and severity of the accident has shifted emphasis from equipment reliability to human reliability. As research progresses in these areas, the technical base for regulation and risk analysis will change substantially.

  10. Decontamination Data - Blister Agents

    EPA Pesticide Factsheets

    Decontamination efficacy data for blister agents on various building materials using various decontamination solutionsThis dataset is associated with the following publication:Stone, H., D. See, A. Smiley, A. Ellingson, J. Schimmoeller, and L. Oudejans. Surface Decontamination of Blister Agents Lewisite, Sulfur Mustard and Agent Yellow, a Lewisite and Sulfur Mustard Mixture. JOURNAL OF HAZARDOUS MATERIALS. Elsevier Science Ltd, New York, NY, USA, 1-5, (2015).

  11. Unique educational opportunities at the Missouri University research reactor

    SciTech Connect

    Ketring, A.R.; Ross, F.K.; Spate, V.

    1997-12-01

    Since the Missouri University Research Reactor (MURR) went critical in 1966, it has been a center where students from many departments conduct their graduate research. In the past three decades, hundreds of graduate students from the MU departments of chemistry, physics, anthropology, nuclear engineering, etc., have received masters and doctoral degrees based on research using neutrons produced at MURR. More recently, the educational opportunities at MURR have been expanded to include undergraduate students and local high school students. Since 1989 MURR has participated in the National Science Foundation-funded Research Experience for Undergraduates (REU) program. As part of this program, undergraduate students from universities and colleges throughout the United States come to MURR and get hands-on research experience during the summer. Another program, started in 1994 by the Nuclear Analysis Program at MURR, allows students from a local high school to conduct a neutron activation analysis (NAA) experiment. We also conduct tours of the center, where we describe the research and educational programs at MURR to groups of elementary school children, high school science teachers, state legislators, professional organizations, and many other groups.

  12. PHYSICS AND SAFETY ANALYSIS FOR THE NIST RESEARCH REACTOR.

    SciTech Connect

    Cheng, L.; Diamond, D.; Xu, J.; Carew, J.; Rorer, D.

    2004-03-31

    Detailed reactor physics and safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analyses provide an update to the Final Safety Analysis Report (FSAR) and employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron and photon transport calculations were performed with the MCNP code to determine the safety parameters for the NBSR. The core depletion and determination of the fuel compositions were performed with MONTEBURNS. MCNP calculations were performed to determine the beginning, middle, and end-of-cycle power distributions, moderator temperature coefficient, and shim safety arm, beam tube and void reactivity worths. The calculational model included a plate-by-plate description of each fuel assembly, axial mid-plane water gap, beam tubes and the tubular geometry of the shim safety arms. The time-dependent analysis of the primary loop was determined with a RELAP5 transient analysis model that includes the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. The statistical analysis used to assure protection from critical heat flux (CHF) was performed using a Monte Carlo simulation of the uncertainties contributing to the CHF calculation. The power distributions used to determine the local fuel conditions and margin to CHF were determined with MCNP. Evaluations were performed for the following accidents: (1) the control rod withdrawal startup accident, (2) the maximum reactivity insertion accident, (3) loss-of-flow resulting from loss of electrical power, (4) loss-of-flow resulting from a primary pump seizure, (5) loss-of-flow resulting from inadvertent throttling of a flow control valve, (6) loss-of-flow resulting from failure of both shutdown cooling pumps and (7) misloading of a fuel element. In both the startup and maximum reactivity insertion accidents, the

  13. Very high flux research reactors based on particle fuels

    SciTech Connect

    Powell, J.R.; Takahashi, H.

    1985-01-01

    A new approach to high flux research reactors is described, the VHFR (Very High Flux Reactor). The VHFR fuel region(s) are packed beds of HTGR-type fuel particles through which coolant (e.g., D/sub 2/O) flows directly. The small particle diameter (typically on the order of 500 microns) results in very large surface areas for heat transfer (approx. 100 cm/sup 2//cm/sup 3/ of bed), high power densities (approx. 10 megawatts per liter), and minimal ..delta..T between fuel and coolant (approx. 10 K) VHFR designs are presented which achieve steady-state fluxes of approx. 2x10/sup 16/ n/cm/sup 2/sec. Deuterium/beryllium combinations give the highest flux levels. Critical mass is low, approx. 2 kg /sup 235/U for 20% enriched fuel. Refueling can be carried out continuously on-line, or in a batch process with a short daily shutdown. Fission product inventory is very low, approx. 100 to 300 grams, depending on design.

  14. Predicting Activation of Experiments Inside the Annular Core Research Reactor

    SciTech Connect

    Greenberg, Joseph Isaac

    2015-11-01

    The objective of this thesis is to create a program to quickly estimate the radioactivity and decay of experiments conducted inside of the Annular Core Research Reactor at Sandia National Laboratories and eliminate the need for users to write code. This is achieved by model the neutron fluxes in the reactor’s central cavity where experiments are conducted for 4 different neutron spectra using MCNP. The desired neutron spectrum, experiment material composition, and reactor power level are then input into CINDER2008 burnup code to obtain activation and decay information for every isotope generated. DREAD creates all of the files required for CINDER2008 through user selected inputs in a graphical user interface and executes the program for the user and displays the resulting estimation for dose rate at various distances. The DREAD program was validated by weighing and measuring various experiments in the different spectra and then collecting dose rate information after they were irradiated and comparing it to the dose rates that DREAD predicted. The program provides results with an average of 17% higher estimates than the actual values and takes seconds to execute.

  15. Opportunities for Materials Science and Biological Research at the OPAL Research Reactor

    NASA Astrophysics Data System (ADS)

    Kennedy, S. J.

    2008-03-01

    Neutron scattering techniques have evolved over more than 1/2 century into a powerful set of tools for determination of atomic and molecular structures. Modern facilities offer the possibility to determine complex structures over length scales from ˜0.1 nm to ˜500 nm. They can also provide information on atomic and molecular dynamics, on magnetic interactions and on the location and behaviour of hydrogen in a variety of materials. The OPAL Research Reactor is a 20 megawatt pool type reactor using low enriched uranium fuel, and cooled by water. OPAL is a multipurpose neutron factory with modern facilities for neutron beam research, radioisotope production and irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After six years in construction, the reactor and neutron beam facilities are now being commissioned, and we will commence scientific experiments later this year. The presentation will include an outline of the strengths of neutron scattering and a description of the OPAL research reactor, with particular emphasis on it's scientific infrastructure. It will also provide an overview of the opportunities for research in materials science and biology that will be possible at OPAL, and mechanisms for accessing the facilities. The discussion will emphasize how researchers from around the world can utilize these exciting new facilities.

  16. Fission-reactor experiments for fusion-materials research

    SciTech Connect

    Grossbeck, M.L.; Bloom, E.E.; Woods, J.W.; Vitek, J.M.; Thomas, K.R.

    1982-01-01

    The US Fusion Materials Program makes extensive use of fission reactors to study the effects of simulated fusion environments on materials and to develop improved alloys for fusion reactor service. The fast reactor, EBR-II, and the mixed spectrum reactors, HFIR and ORR, are all used in the fusion program. The HFIR and ORR produce helium from transmutations of nickel in a two-step thermal neutron absorption reaction beginning with /sup 58/Ni, and the fast neutrons in these reactors produce atomic displacements. The simultaneous effects of these phenomena produce damage similar to the very high energy neutrons of a fusion reactor. This paper describes irradiation capsules for mechanical property specimens used in the HFIR and the ORR. A neutron spectral tailoring experiment to achieve the fusion reactor He:dpa ratio will be discussed.

  17. Flow characteristics of Korea multi-purpose research reactor

    SciTech Connect

    Heonil Kim; Hee Taek Chae; Byung Jin Jun; Ji Bok Lee

    1995-09-01

    The construction of Korea Multi-purpose Research Reactor (KMRR), a 30 MW{sub th} open-tank-in-pool type, is completed. Various thermal-hydraulic experiments have been conducted to verify the design characteristics of the KMRR. This paper describes the commissioning experiments to determine the flow distribution of KMRR core and the flow characteristics inside the chimney which stands on top of the core. The core flow is distributed to within {+-}6% of the average values, which is sufficiently flat in the sense that the design velocity in the fueled region is satisfied. The role of core bypass flow to confine the activated core coolant in the chimney structure is confirmed.

  18. The neutron texture diffractometer at the China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Li, Mei-Juan; Liu, Xiao-Long; Liu, Yun-Tao; Tian, Geng-Fang; Gao, Jian-Bo; Yu, Zhou-Xiang; Li, Yu-Qing; Wu, Li-Qi; Yang, Lin-Feng; Sun, Kai; Wang, Hong-Li; Santisteban, J. r.; Chen, Dong-Feng

    2016-03-01

    The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)

  19. MCNP-model for the OAEP Thai Research Reactor

    SciTech Connect

    Gallmeier, F.X.; Tang, J.S.; Primm, R.T. III

    1998-06-01

    An MCNP input was prepared for the Thai Research Reactor, making extensive use of the MCNP geometry`s lattice feature that allows a flexible and easy rearrangement of the core components and the adjustment of the control elements. The geometry was checked for overdefined or undefined zones by two-dimensional plots of cuts through the core configuration with the MCNP geometry plotting capabilities, and by a three-dimensional view of the core configuration with the SABRINA code. Cross sections were defined for a hypothetical core of 67 standard fuel elements and 38 low-enriched uranium fuel elements--all filled with fresh fuel. Three test calculations were performed with the MCNP4B-code to obtain the multiplication factor for the cases with control elements fully inserted, fully withdrawn, and at a working position.

  20. Sodium fast reactor fuels and materials : research needs.

    SciTech Connect

    Denman, Matthew R.; Porter, Douglas; Wright, Art; Lambert, John; Hayes, Steven; Natesan, Ken; Ott, Larry J.; Garner, Frank; Walters, Leon; Yacout, Abdellatif

    2011-09-01

    An expert panel was assembled to identify gaps in fuels and materials research prior to licensing sodium cooled fast reactor (SFR) design. The expert panel considered both metal and oxide fuels, various cladding and duct materials, structural materials, fuel performance codes, fabrication capability and records, and transient behavior of fuel types. A methodology was developed to rate the relative importance of phenomena and properties both as to importance to a regulatory body and the maturity of the technology base. The technology base for fuels and cladding was divided into three regimes: information of high maturity under conservative operating conditions, information of low maturity under more aggressive operating conditions, and future design expectations where meager data exist.

  1. Decontamination of nuclear systems at the Grand Gulf Nuclear Station

    SciTech Connect

    Weed, R.D.; Baker, K.R.

    1996-12-31

    Early in 1994 Management at the Grand Gulf Nuclear Station realized that a potential decontamination of several reactor systems was needed to maintain the commitments to the {open_quotes}As Low As Reasonably Achievable{close_quotes} (ALARA) program. There was a substantial amount of planned outage work required to repair and replace some internals in loop isolation valves and there were inspections and other outage work that needed to be accomplished as it had been postponed from previous outages because of the radiation exposure levels in and around the system equipment. Management scheduled for the procurement specification to be revised to incorporate additional boundary areas which had not been previously considered. The schedule included the period for gathering bids, awarding a contract, and reviewing the contractor`s procedures and reports and granting approval for the decontamination to proceed during the upcoming outage. In addition to the reviews required by the engineering group for overall control of the process, the plant system engineers had to prepare procedures at the system level to provide for a smooth operation to be made during the decontamination of the systems. The system engineers were required to make certain that the decontamination fluids would be contained within the systems being decontaminated and that they would not cross contaminate any other system not being decontaminated. Since these nuclear stations do not have the provisions for decontaminating these systems with using additional equipment, the equipment required is furnished by the contractor as skid mounted packaged units which can be moved into the area, set up near the system being decontaminated, and after the decontamination is completed, the skid mounted packages are removed as part of the contract. Figure 1 shows a typical setup in block diagram required to perform a reactor system decontamination. 1 fig.

  2. PHYSICS AND SAFETY ANALYSIS FOR THE NIST RESEARCH REACTOR.

    SciTech Connect

    Carew, J.; Hanson, A.; Xu, J.; Rorer, D.; Diamond, D.

    2003-08-26

    Detailed reactor physics and safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analyses provide an update to the Final Safety Analysis Report (FSAR) and employ state-of-the-art calculational methods. Three-dimensional MCNP Monte Carlo neutron and photon transport calculations were performed to determine the safety parameters for the NBSR. The core depletion and determination of the fuel compositions were performed with MONTEBURNS. MCNP calculations were performed to determine the beginning, middle, and end-of-cycle power distributions, moderator temperature coefficient, and shim arm, beam tube and void reactivity worths. The calculational model included a plate-by-plate description of each fuel assembly, axial mid-plane water gap, beam tubes and the tubular geometry of the shim arms. The time-dependent analysis of the primary loop was determined with a RELAP5 transient analysis model including the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. The statistical analysis used to assure protection from critical heat flux (CHF) was performed using a Monte Carlo simulation of the uncertainties contributing to the CHF calculation. The power distributions used to determine the local fuel conditions and margin to CHF were determined with MCNP. Evaluations were performed for the following accidents: (1) the control rod withdrawal startup accident, (2) the maximum reactivity insertion accident, (3) loss-of-flow resulting from loss of electrical power, (4) loss-of-flow resulting from a primary pump seizure, (5) loss-of-flow resulting from inadvertent throttling of a flow control valve, (6) loss-of-flow resulting from failure of both shutdown cooling pumps and (7) misloading of a fuel element. In both the startup and maximum reactivity insertion accidents, the core power transient is terminated

  3. NPOx Decontamination System

    SciTech Connect

    Archibald, K.; Demmer, R.; Argyle, M.; Ancho, M.; Hai-Pao, J.

    2002-02-25

    The nitric acid/potassium permanganate/oxalic acid (NPOx) Phase II system is being prepared for remote operation at the Idaho National Engineering and Environmental Laboratory (INEEL). Several tests have been conducted to prepare the system for remote operation. This system performs very well with high decontamination efficiencies and very low quantities of waste generated during decontamination.

  4. Decontamination of large components-test case

    SciTech Connect

    Mancini, A.; Bosco, B.

    1996-12-31

    The rising per-cubic-foot burial costs, together with the trend toward standardized above-ground burial sites, provides the basis for seeking an alternative to direct burial of large components. Large contaminated components such as steam generators can be safely dismantled and decontaminated for free release, metals recycle, and volume reduction. This grand-scale disposal technology will prove to be an economical and ecological alternative to direct burial or interim storage. Yankee Atomic Electric Company (YAEC) in Bolton, operators and decommissioners of the Yankee Nuclear Power Station in Rowe, Massachusetts, has teamed with Frank W Hake Associates in Memphis, TN, to decontaminate a large component as a test case. The large component is YAEC`s reactor pressure vessel head (RPVH). The 79 100 lb RPVH is surface contaminated with 0.7 Ci (1500 mR/h contact) resulting from 32 yr of operating in a 2000 psi, 530{degrees}F pressurized water reactor environment.

  5. Application of a compact reactor to a submersible research vessel

    NASA Astrophysics Data System (ADS)

    Kusunoki, Tsuyoshi; Fujimoto, Hiromi; Nagata, Yutaka; Takahashi, Teruo; Ishida, Toshihisa

    Understanding of the global climate system is necessary to clarify the mechanism of the climate change and predict the fluctuations of the global climate and circumstance. Since the sign of these fluctuations can be predicted in the arctic zone where these fluctuations strongly affect the circumstance, the observation in this zone is very important. Observation data to be obtained there, however, are very few and limited due to difficulty caused by a thick ice covering on a wide-ranged area. A conceptual design of a submersible research vessel with a nuclear power source is studied to cope with this difficulty. The nuclear power is suitable for a submersible research vessel specialized to the undersea of the arctic zone, because it enables to operate for a long time without oxide or fuel supply. By taking account of working conditions in observation, the basic specifications of the vessel are decided; the total weight and the length of it are 500 t, 40 m, respectively, and the maximum ship speed is 12 knots. Two sets of nuclear compact reactor, SCR, light-weighted and of enhanced safety are installed in the vessel to supply the total electricity of 500 kW. This vessel is capable of providing a very rapid, fruitful activity in observation and research.

  6. Sodium fast reactor safety and licensing research plan. Volume I.

    SciTech Connect

    Sofu, Tanju; LaChance, Jeffrey L.; Bari, R.; Wigeland, Roald; Denman, Matthew R.; Flanagan, George F.

    2012-05-01

    This report proposes potential research priorities for the Department of Energy (DOE) with the intent of improving the licensability of the Sodium Fast Reactor (SFR). In support of this project, five panels were tasked with identifying potential safety-related gaps in available information, data, and models needed to support the licensing of a SFR. The areas examined were sodium technology, accident sequences and initiators, source term characterization, codes and methods, and fuels and materials. It is the intent of this report to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for the SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the Applied Technology designation from old documents. The second cross-cutting gap is the need for a robust Knowledge Management and Preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with Applied Technology and Knowledge Management.

  7. Second generation Research Reactor Fuel Container (RRFC-II).

    SciTech Connect

    Abhold, M. E.; Baker, M. C.; Bourret, S. C.; Harker, W. C.; Pelowitz, D. G.; Polk, P. J.

    2001-01-01

    The second generation Research Reactor Fuel Counter (RRFC-II) has been developed to measure the remaining {sup 235}U content in foreign spent Material Test Reactor (MTR)-type fuel being returned to the Westinghouse Savannah River Site (WSRS) for interim storage and subsequent disposal. The fuel to be measured started as fresh fuel nominally with 93% enriched Uraniuin alloyed with A1 clad in Al. The fuel was irradiated to levels of up to 65% burnup. The RRFC-II, which will be located in the L-Basin spent fuel pool, is intended to assay the {sup 235}U content using a combination of passive neutron coincidence counting, active neutron coincidence counting, and active-multiplicity analysis. Measurements will be done underwater, eliminating the need for costly and hazardous handling operations of spent fuel out of water. The underwater portion of the RRFC-II consists of a watertight stainless steel housing containing neutron and gamma detectors and a scanning active neutron source. The portion of the system that resides above water consists of data-processing electronics; electromechanical drive electronics; a computer to control the operation of the counter, to collect, and to analyze data; and a touch screen interface located at the equipment rack. The RRFC-II is an improved version of the Los Alamos-designed RRFC already installed in the SRS Receipts Basin for Offsite Fuel. The RRFC-II has been fabricated and is scheduled for installation in late FY 2001 pending acceptance testing by Savannah River Site personnel.

  8. 75 FR 57080 - In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor); Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... COMMISSION In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor); Order... Aerotest Operations, Inc., (Aerotest, the licensee) is the holder of Facility Operating License No. R-98 which authorizes the possession, use, and operation of the Aerotest Radiography and Research Reactor...

  9. Water Reactor Safety Research Division quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Romano, A.J.

    1980-06-01

    The Water Reactor Safety Research Programs Quarterly Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: LWR Thermal Hydraulic Development, Advanced Code Evaluation, TRAC Code Assessment, and Stress Corrosion Cracking of PWR Steam Generator Tubing.

  10. Water Reactor Safety Research Division. Quarterly progress report, April 1-June 30, 1980

    SciTech Connect

    Abuaf, N.; Levine, M.M.; Saha, P.; van Rooyen, D.

    1980-08-01

    The Water Reactor Safety Research Programs quarterly report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: LWR Thermal Hydraulic Development, Advanced Code Evlauation, TRAC Code Assessment, and Stress Corrosion Cracking of PWR Steam Generator Tubing.

  11. DESCALING AND DECONTAMINATING METHOD FOR METALS

    DOEpatents

    Baybarz, R.D.

    1961-04-25

    Oxide scale is removed from the surface of stainless steels and similar metals by contacting the metal under an inert atmosphere with a dilute sulfuric acid solution containing chromous sulfate. The removed oxide scale is either dissolved or disintegrated into a slurry by the solution. Preferred reagent concentrations are 0.3 to 0.5 M chromous sulfate and 0.4 to 0.6 M sulfuric acid. This process is particularly applicable to decontamination of aqueous homogsneous nuclear reactor systems.

  12. Status of reduced enrichment programs for research reactors in Japan

    SciTech Connect

    Kanda, Keiji; Nishihara, Hedeaki; Shirai, Eiji; Oyamada, Rokuro; Sanokawa, Konomo

    1997-08-01

    The reduced enrichment programs for the JRR-2, JRR-3, JRR-4 and JMTR of Japan Atomic Energy Research Institute (JAERI), and the KUR of Kyoto University Research Reactor Institute (KURRI) have been partially completed and are mostly still in progress under the Joint Study Programs with Argonne National Laboratory (ANL). The JMTR and JRR-2 have been already converted to use MEU aluminide fuels in 1986 and 1987, respectively. The operation of the upgraded JRR-3(JRR-3M) has started in March 1990 with the LEU aluminide fuels. Since May 1992, the two elements have been inserted in the KUR. The safety review application for the full core conversion to use LEU silicide in the JMTR was approved in February 1992 and the conversion has been done in January 1994. The Japanese Government approved a cancellation of the KUHFR Project in February 1991, and in April 1994 the U.S. Government gave an approval to utilize HEU in the KUR instead of the KUHFR. Therefore, the KUR will be operated with HEU fuel until 2001. Since March 1994, Kyoto University is continuing negotiation with UKAEA Dounreay on spent fuel reprocessing and blending down of recovered uranium, in addition to that with USDOE.

  13. Monitoring and Control Research Using a University Reactor and SBWR Test-Loop

    SciTech Connect

    Robert M. Edwards

    2003-09-28

    The existing hybrid simulation capability of the Penn State Breazeale nuclear reactor was expanded to conduct research for monitoring, operations and control. Hybrid simulation in this context refers to the use of the physical time response of the research reactor as an input signal to a real-time simulation of power-reactor thermal-hydraulics which in-turn provides a feedback signal to the reactor through positioning of an experimental changeable reactivity device. An ECRD is an aluminum tube containing an absorber material that is positioned in the central themble of the reactor kinetics were used to expand the hybrid reactor simulation (HRS) capability to include out-of-phase stability characteristics observed in operating BWRs.

  14. Irradiation Tests Supporting LEU Conversion of Very High Power Research Reactors in the US

    SciTech Connect

    Woolstenhulme, N. E.; Cole, J. I.; Glagolenko, I.; Holdaway, K. K.; Housley, G. K.; Rabin, B. H.

    2016-10-01

    The US fuel development team is developing a high density uranium-molybdenum alloy monolithic fuel to enable conversion of five high-power research reactors. Previous irradiation tests have demonstrated promising behavior for this fuel design. A series of future irradiation tests will enable selection of final fuel fabrication process and provide data to qualify the fuel at moderately-high power conditions for use in three of these five reactors. The remaining two reactors, namely the Advanced Test Reactor and High Flux Isotope Reactor, require additional irradiation tests to develop and demonstrate the fuel’s performance with even higher power conditions, complex design features, and other unique conditions. This paper reviews the program’s current irradiation testing plans for these moderately-high irradiation conditions and presents conceptual testing strategies to illustrate how subsequent irradiation tests will build upon this initial data package to enable conversion of these two very-high power research reactors.

  15. Research and proposal on SCR reactor optimization for industrial boiler.

    PubMed

    Yang, Yiming; Li, Jian; He, Hong

    2017-08-24

    The advanced CFD software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two SCR reactors were developed: reactor #1 was optimized and #2 was developed based on #1. Various indicators including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle and system pressure drop were analyzed. The analysis indicated Reactor #2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of reactor was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG #3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle and temperature distribution are subjected to SCR reactor shape to a great extent and Reactor #2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to Ammonia injection grid (AIG) shape and AIG #3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The development above on the reactor and the AIG are both of great application value and social efficiency.

  16. Modeling of operating history of the research nuclear reactor

    NASA Astrophysics Data System (ADS)

    Naymushin, A.; Chertkov, Yu; Shchurovskaya, M.; Anikin, M.; Lebedev, I.

    2016-06-01

    The results of simulation of the IRT-T reactor operation history from 2012 to 2014 are presented. Calculations are performed using continuous energy Monte Carlo code MCU-PTR. Comparison is made between calculation and experimental data for the critical reactor.

  17. A new safety channel based on ¹⁷N detection in research reactors.

    PubMed

    Seyfi, Somayye; Gharib, Morteza

    2015-10-01

    Tehran research reactor (TRR) is a representative of pool type research reactors using light water, as coolant and moderator. This reactor is chosen as a prototype to demonstrate and prove the feasibility of (17)N detection as a new redundant channel for reactor power measurement. In TRR, similar to other pool type reactors, neutron detectors are immersed in the pool around the core as the main power measuring devices. In the present article, a different approach, using out of water neutron detector, is employed to measure reactor power. This new method is based on (17)O (n,p) (17)N reaction taking place inside the core and subsequent measurement of delayed neutrons emitted due to (17)N disintegration. Count and measurement of neutrons around outlet water pipe provides a reliable redundant safety channel to measure reactor power. Results compared with other established channels indicate a good agreement and shows a linear interdependency with true thermal power. Safety of reactor operation is improved with installation & use of this new power measuring channel. The new approach may equally serve well as a redundant channel in all other types of reactors having coolant comprised of oxygen in its molecular constituents. Contrary to existing channels, this one is totally out of water and thus is an advantage over current instrumentations. It is proposed to employ the same idea on other reactors (nuclear power plants too) to improve safety criteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Chemical & Biological Point Detection Decontamination

    DTIC Science & Technology

    2002-04-01

    Large Frame Aircraft Decontamination Demonstration is to identify methods of decontamination sufficiently effective to clean contaminated aircraft and...methodology is still being optimized, however, down select processes have shown the Cepheid bead-based ultra- sonication to be the current method of choice for...Aircraft Decontamination Demonstration is to identify methods of decontamination sufficiently effective to clean contaminated aircraft and allow

  19. Decontamination Processes for Restorative Operations and as a Precursor to Decommissioning: A Literature Review

    SciTech Connect

    Nelson, J. L.; Divine, J. R.

    1981-05-01

    Pacific Northwest Laboratory (PNL) conducted an comprehensive literature review of actual reactor decontamination processes that are currently available. In general, any decontamination process should be based on the following criteria: effectiveness, efficiency, safety, and waste production. The information that was collected and analyzed has been divided into three major categories of decontamination: chemical, mechanical, and electrochemical. Chemical methods can be further classified as either low-concentration, singlestep processes or high-concentration, single- or multistep processes. Numerous chemical decontamination methods are detailed. Mechanical decontamination methods are usually restricted to the removal of a contaminated surface layer, whlch limits their versatility; several mechanical decontamination methods are described. Electrochemical decontamination. is both fast and easily controlled, and numerous processes that have been used in industry for many years are discussed. Information obtained from this work is tabulated in Appendix A for easy access, and a bibliography and a glossary have been provided.

  20. U.S. Department of Energy Program of International Technical Cooperation for Research Reactor Utilization

    SciTech Connect

    Chong, D.; Manning, M.; Ellis, R.; Apt, K.; Flaim, S.; Sylvester, K.

    2004-10-03

    The U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) has initiated collaborations with the national nuclear authorities of Egypt, Peru, and Romania for the purpose of advancing the commercial potential and utilization of their respective research reactors. Under its Office of International Safeguards ''Sister Laboratory'' program, DOE/NNSA has undertaken numerous technical collaborations over the past decade intended to promote peaceful applications of nuclear technology. Among these has been technical assistance in research reactor applications, such as neutron activation analysis, nuclear analysis, reactor physics, and medical radioisotope production. The current collaborations are intended to provide the subject countries with a methodology for greater commercialization of research reactor products and services. Our primary goal is the transfer of knowledge, both in administrative and technical issues, needed for the establishment of an effective business plan and utilization strategy for the continued operation of the countries' research reactors. Technical consultation, cooperation, and the information transfer provided are related to: identification, evaluation, and assessment of current research reactor capabilities for products and services; identification of opportunities for technical upgrades for new or expanded products and services; advice and consultation on research reactor upgrades and technical modifications; characterization of markets for reactor products and services; identification of competition and estimation of potential for market penetration; integration of technical constraints; estimation of cash flow streams; and case studies.

  1. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  2. Decontamination after a release of B. anthracis spores.

    PubMed

    Campbell, Chris G; Kirvel, Robert D; Love, Adam H; Bailey, Christopher G; Miles, Robin; Schweickert, Jerry; Sutton, Mark; Raber, Ellen

    2012-03-01

    Decontaminating civilian facilities or large urban areas following an attack with Bacillus anthracis poses daunting challenges because of the lack of resources and proven technologies. Nevertheless, lessons learned from the 2001 cleanups together with advances derived from recent research have improved our understanding of what is required for effective decontamination. This article reviews current decontamination technologies appropriate for use in outdoor environments, on material surfaces, within large enclosed spaces, in water, and on waste contaminated with aerosolized B. anthracis spores.

  3. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    SciTech Connect

    Smith, Cyrus M; Nanstad, Randy K; Clayton, Dwight A; Matlack, Katie; Ramuhalli, Pradeep; Light, Glenn

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

  4. Long lasting decontamination foam

    DOEpatents

    Demmer, Ricky L.; Peterman, Dean R.; Tripp, Julia L.; Cooper, David C.; Wright, Karen E.

    2010-12-07

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  5. Company Decontamination Systems (Compagnieontsmettingssystemen)

    DTIC Science & Technology

    1998-06-01

    The usage of a high pressure water jet and of a steam cleaner are compared to each other for the possible usage in a decontamination street of the... jet or of a steam cleaner in each separate station of the decontamination street is discussed. A water jet can be used best for the preliminary-cleaning...efficiency of a water jet and a steamcleaner are studied and compared here too. The decontamination efficiency of each type of apparatus is dependent on the type of contamination.

  6. Characterization of Novel Calorimeters in the Annular Core Research Reactor

    NASA Astrophysics Data System (ADS)

    Hehr, Brian D.; Parma, Edward J.; Peters, Curtis D.; Naranjo, Gerald E.; Luker, S. Michael

    2016-02-01

    A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR) to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field - a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP) bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ) contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified) cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ) cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response. This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

  7. Core conversion of the Portuguese research reactor to LEU fuel

    SciTech Connect

    Marques, J.G.; Ramos, A.R.; Kocher, A.

    2008-07-15

    Core conversion of the Portuguese Research Reactor (RPI) to LEU fuel is being performed within IAEA's Technical Cooperation project POR/4/016, with financial support from the US and Portugal. CERCA was selected as manufacturer of the LEU assemblies by the IAEA after an international call for bids. CERCA provided a comprehensive package to the RPI which included the mechanical verification of the design of the assemblies, their manufacture and arrangements for a joint inspection of the finished assemblies. The LEU fuel assemblies were manufactured within 8 months upon final approval of the design. The safety analyses for the core conversion to LEU fuel were made with the assistance of the RERTR program and were submitted for review by the IAEA and by Portuguese authorities in January 2007. Revised documents were submitted in June 2007 addressing the issues raised during review. Regulatory approval was received in early August and core conversion was done in early September. All measured safety parameters are within the defined acceptance limits. Operation at full power is expected by the end of October. (author)

  8. Decontamination and decommissioning activities photobriefing book FY 1999

    SciTech Connect

    2000-03-08

    The Chicago Pile 5 (CP-5) Reactor, the first reactor built on the Argonne National Laboratory-East site, followed a rich history that had begun in 1942 with Enrico Fermi's original pile built under the west stands at the Stagg Field Stadium of The University of Chicago. CP-5 was a 5-megawatt, heavy water-moderated, enriched uranium-fueled reactor used to produce neutrons for scientific research from 1954--79. The reactor was shut down and defueled in 1979, and placed into a lay-up condition pending funding for decontamination and decommissioning (D and D). In 1990, work was initiated on the D and D of the facility in order to alleviate safety and environmental concerns associated with the site due to the deterioration of the building and its associated support systems. A decision was made in early Fiscal Year (FY) 1999 to direct focus and resources to the completion of the CP-5 Reactor D and D Project. An award of contract was made in December 1998 to Duke Engineering and Services (Marlborough, MA), and a D and D crew was on site in March 1999 to begin work, The project is scheduled to be completed in July 2000. The Laboratory has determined that the building housing the CP-5 facility is surplus to the Laboratory's needs and will be a candidate for demolition. In addition to a photographic chronology of FY 1999 activities at the CP-5 Reactor D and D Project, brief descriptions of other FY 1999 activities and of projects planned for the future are provided in this photobriefing book.

  9. The past, present, and future of test and research reactor physics

    SciTech Connect

    Ryskamp, J.M. )

    1992-01-01

    Reactor physics calculations have been performed on research reactors since the first one was built 50 yr ago under the University of Chicago stadium. Since then, reactor physics calculations have evolved from Fermi-age theory calculations performed with slide rules to three-dimensional, continuous-energy, coupled neutron-photon Monte Carlo computations performed with supercomputers and workstations. Such enormous progress in reactor physics leads us to believe that the next 50 year will be just as exciting. This paper reviews this transition from the past to the future.

  10. 78 FR 26811 - Dow Chemical Company, Dow TRIGA Research Reactor; License Renewal for the Dow Chemical TRIGA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... COMMISSION Dow Chemical Company, Dow TRIGA Research Reactor; License Renewal for the Dow Chemical TRIGA Research Reactor; Supplemental Information and Correction AGENCY: Nuclear Regulatory Commission. ACTION... Chemical TRIGA Research Reactor,'' to inform the public that the NRC is considering issuance of a...

  11. Reactor Safety Research Programs Quarterly Report July - September 1981

    SciTech Connect

    Edler, S. K.

    1982-01-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL) from July 1 through September 30, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR} steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  12. Reactor Safety Research Programs Quarterly Report October - December 1981

    SciTech Connect

    Edler, S. K.

    1982-03-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL) from October 1 through December 31, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where serviceinduced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and post accident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  13. Facility decontamination technology workshop

    SciTech Connect

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  14. Mobile worksystems for decontamination and dismantlement

    SciTech Connect

    Osborn, J.; Bares, L.C.; Thompson, B.R.

    1995-10-01

    Many DOE nuclear facilities have aged beyond their useful lifetimes. They need to be decommissioned in order to be safe for human presence in the short term, to eventually recover valuable materials they contain, and ultimately to be transitioned to alternative uses or green field conditions. Decontamination and dismantlement are broad classes of activities that will enable these changes to occur. Most of these facilities - uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities - are dormant, though periodic inspection, surveillance and maintenance activities within them are on-going. DOE estimates that there are over 5000 buildings that require deactivation to reduce the costs of performing such work with manual labor. In the long term, 1200 buildings will be decommissioned, and millions of metric tons of metal and concrete will have to be recycled or disposed of. The magnitude of the problem calls for new approaches that are far more cost effective than currently available techniques. This paper describes a mobile workstation termed ROSIE, which provides remote work capabilities for D&D activities.

  15. Mobile worksystems for decontamination and dismantlement

    SciTech Connect

    Osborn, J.; Bares, L.C.; Thompson, B.R.

    1995-12-01

    Many DOE nuclear facilities have aged beyond their useful lifetimes. They need to be decommissioned in order to be safe for human presence in the short term, to eventually recover valuable materials they contain, and ultimately to be transitioned to alternative uses or green field conditions. Decontamination and dismantlement are broad classes of activities that will enable these changes to occur. Most of these facilities - uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities - are dormant, though periodic inspection, surveillance and maintenance activities within them are on-going. DOE estimates that there are over 5000 buildings that require deactivation to reduce the costs of performing such work with manual labor. In the long term, 1200 buildings will be decommissioned, and millions of metric tons of metal and concrete will have to be recycled or disposed of The magnitude of the problem calls for new approaches that are far more cost effective than currently available techniques. This paper describes two technologies that are viable solutions for facility D&D.

  16. Lessons Learned from Decontamination Experiences

    SciTech Connect

    Sorensen, JH

    2000-11-16

    This interim report describes a DOE project currently underway to establish what is known about decontamination of buildings and people and the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  17. Utilization of the Cornell University research reactors in support of the Nuclear Power Industry

    SciTech Connect

    Aderhold, A.C. )

    1993-01-01

    Cornell University is licensed to operate two research reactor facilities on its main campus in Ithaca, New York: a 500-kW pulsing TRIGA and a 100-W zero-power reactor (ZPR). The initial criticality of both reactors took place in 1962, and the utilization of each has been, and continues to be, dedicated to the teaching and research programs of Cornell's many academic departments. As the nation's nuclear power industry grew, the demand for services at research and test reactors increased. As a result, and in large part because of special design features of the TRIGA, Cornell responded to a few requests for reactor testing services while maintaining the policy that these services would not interfere with teaching and research programs. The frequency of service requests suddenly mushroomed in November of 1989, when the nation's major testing reactor was shut down for repairs. In spite of a small staff of two full-time reactor operators, a decision was made to support the nuclear industry to the fullest extent possible without jeopardizing Cornell's teaching and research programs. This turned into a monumental task of tight scheduling and meeting precise deadlines. It could only be accomplished by working late evenings and weekends and, on a number of occasions, staying at the facility for up to 5 days continuously.

  18. System decontamination as a tool to control radiation fields

    SciTech Connect

    Riess, R.; Bertholdt, H.O.

    1995-03-01

    Since chemical decontamination of the Reactor Coolant Systems (RCS) and subsystems has the highest potential to reduce radiation fields in a short term this technology has gained an increasing importance. The available decontamination process at Siemens, i.e., the CORD processes, will be described. It is characterized by using permanganic acid for preoxidation and diluted organic acid for the decontamination step. It is a regenerative process resulting in very low waste volumes. This technology has been used frequently in Europe and Japan in both RCS and subsystems. An overview will be given i.e. on the 1993 applications. This overview will include plant, scope, date of performance, system volume specal features of the process removed activities, decon factor time, waste volumes, and personnel dose during decontamination. This overview will be followed by an outlook on future developments in this area.

  19. Experimental study of radiation dose rate at different strategic points of the BAEC TRIGA Research Reactor.

    PubMed

    Ajijul Hoq, M; Malek Soner, M A; Salam, M A; Haque, M M; Khanom, Salma; Fahad, S M

    2017-09-09

    The 3MW TRIGA Mark-II Research Reactor of Bangladesh Atomic Energy Commission (BAEC) has been under operation for about thirty years since its commissioning at 1986. In accordance with the demand of fundamental nuclear research works, the reactor has to operate at different power levels by utilizing a number of experimental facilities. Regarding the enquiry for safety of reactor operating personnel and radiation workers, it is necessary to know the radiation level at different strategic points of the reactor where they are often worked. In the present study, neutron, beta and gamma radiation dose rate at different strategic points of the reactor facility with reactor power level of 2.4MW was measured to estimate the rising level of radiation due to its operational activities. From the obtained results high radiation dose is observed at the measurement position of the piercing beam port which is caused by neutron leakage and accordingly, dose rate at the stated position with different reactor power levels was measured. This study also deals with the gamma dose rate measurements at a fixed position of the reactor pool top surface for different reactor power levels under both Natural Convection Cooling Mode (NCCM) and Forced Convection Cooling Mode (FCCM). Results show that, radiation dose rate is higher for NCCM in compared with FCCM and increasing with the increase of reactor power. Thus, concerning the radiological safety issues for working personnel and the general public, the radiation dose level monitoring and the experimental analysis performed within this paper is so much effective and the result of this work can be utilized for base line data and code verification of the nuclear reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Environmental assessment for the decommissioning and decontamination of contaminated facilities at the Laboratory for Energy-Related Health Research University of California, Davis

    SciTech Connect

    Not Available

    1992-09-01

    The Laboratory for Energy-Related Health Research (LEHR) was established in 1958 at its present location by the Atomic Energy Commission. Research at LEHR originally focused on the health effects from chronic exposures to radionuclides, primarily strontium 90 and radium 226, using beagles to simulate radiation effects on humans. In 1988, pursuant to a memorandum of agreement between the US Department of Energy (DOE) and the University of California, DOE`s Office of Energy Research decided to close out the research program, shut down LEHR, and turn the facilities and site over to the University of California, Davis (UCD) after remediation. The decontamination and decommissioning (D&D) of LEHR will be managed by the San Francisco Operations Office (SF) under DOE`s Environmental Restoration Program. This environmental assessment (EA) addresses the D&D of four site buildings and a tank trailer, and the removal of the on-site cobalt 60 (Co-60) source. Future activities at the site will include D&D of the Imhoff building and the outdoor dog pens, and may include remediation of underground tanks, and the landfill and radioactive disposal trenches. The remaining buildings on the LEHR site are not contaminated. The environmental impacts of the future activities cannot be determined at this time because the extent of contamination has not yet been ascertained. The impacts of these future activities (including the cumulative impacts of the future activities and those addressed in this EA) will be addressed in future National Environmental Policy Act (NEPA) documentation.

  1. Light-water-reactor safety research program. Quarterly progress report, January-March 1980

    SciTech Connect

    Massey, W.E.; Kyger, J.A.

    1980-08-01

    This progress report summarizes the Argonne National Laboratory work performed during January, February, and March 1980 on water-reactor-safety problems. The research and development area covered is Transient Fuel Response and Fission-Product Release.

  2. Integrated Decision-Making Tool to Develop Spent Fuel Strategies for Research Reactors

    SciTech Connect

    Beatty, Randy L; Harrison, Thomas J

    2016-01-01

    IAEA Member States operating or having previously operated a Research Reactor are responsible for the safe and sustainable management and disposal of associated radioactive waste, including research reactor spent nuclear fuel (RRSNF). This includes the safe disposal of RRSNF or the corresponding equivalent waste returned after spent fuel reprocessing. One key challenge to developing general recommendations lies in the diversity of spent fuel types, locations and national/regional circumstances rather than mass or volume alone. This is especially true given that RRSNF inventories are relatively small, and research reactors are rarely operated at a high power level or duration typical of commercial power plants. Presently, many countries lack an effective long-term policy for managing RRSNF. This paper presents results of the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) #T33001 on Options and Technologies for Managing the Back End of the Research Reactor Nuclear Fuel Cycle which includes an Integrated Decision Making Tool called BRIDE (Back-end Research reactor Integrated Decision Evaluation). This is a multi-attribute decision-making tool that combines the Total Estimated Cost of each life-cycle scenario with Non-economic factors such as public acceptance, technical maturity etc and ranks optional back-end scenarios specific to member states situations in order to develop a specific member state strategic plan with a preferred or recommended option for managing spent fuel from Research Reactors.

  3. A simplified model of decontamination by BWR steam suppression pools

    SciTech Connect

    Powers, D.A.

    1997-05-01

    Phenomena that can decontaminate aerosol-laden gases sparging through steam suppression pools of boiling water reactors during reactor accidents are described. Uncertainties in aerosol properties, aerosol behavior within gas bubbles, and bubble behavior in plumes affect predictions of decontamination by steam suppression pools. Uncertainties in the boundary and initial conditions that are dictated by the progression of severe reactor accidents and that will affect predictions of decontamination by steam suppression pools are discussed. Ten parameters that characterize boundary and initial condition uncertainties, nine parameters that characterize aerosol property and behavior uncertainties, and eleven parameters that characterize uncertainties in the behavior of bubbles in steam suppression pools are identified. Ranges for the values of these parameters and subjective probability distributions for parametric values within the ranges are defined. These uncertain parameters are used in Monte Carlo uncertainty analyses to develop uncertainty distributions for the decontamination that can be achieved by steam suppression pools and the size distribution of aerosols that do emerge from such pools. A simplified model of decontamination by steam suppression pools is developed by correlating features of the uncertainty distributions for total decontamination factor, DF(total), mean size of emerging aerosol particles, d{sub p}, and the standard deviation of the emerging aerosol size distribution, {sigma}, with pool depth, H. Correlations of the median values of the uncertainty distributions are suggested as the best estimate of decontamination by suppression pools. Correlations of the 10 percentile and 90 percentile values of the uncertainty distributions characterize the uncertainty in the best estimates. 295 refs., 121 figs., 113 tabs.

  4. Belgian regulatory framework for decontamination and decommissioning - lessons learned and new initiatives

    SciTech Connect

    Creemers, Joris; Hermans, Gilles; Schrayen, Virginie; Van Wonterghem, Frederik; Wertelaers, An; Schrauben, Manfred

    2013-07-01

    Belgium can rely on significant experience in the field of decontamination and decommissioning of nuclear facilities. Several projects are ongoing and include research reactors (BR3, Thetis), uranium and MOX fuel fabrication plants (FBFC International, Belgonucleaire), fuel reprocessing facilities (Eurochemic) and radwaste processing facilities (Belgoprocess). Additional projects are expected in the coming years with the planned final shutdown of the oldest nuclear power reactor units. Two national authorities are involved in the decontamination and decommissioning process of nuclear facilities. The FANC (together with its subsidiary Bel V) is concerned for all matters related to nuclear safety and radiation protection, while NIRAS/ONDRAF is concerned for all matters related to radioactive waste and fuel management and financial provisions. These attributions ensure that all safety and material concerns are addressed and that both the licensees and the national authorities bear their own responsibilities. They rely on an existing regulatory framework covering both the procedural and the technical aspects of the decontamination and decommissioning activities. However, opportunities for regulatory improvement were raised after some recent events in Belgium, among which the bankruptcy of a nuclear company producing radioisotopes, involving numerous additional interested parties in a complex judiciary context. Amendments in the current regulations are considered to increase the prerogatives of the authorities regarding the management of radioactive waste by a licensee, the transfer of an operating license from an operator to another, and the general decommissioning strategy of a facility. Furthermore, a dedicated 'waste and decommissioning' working group within WENRA defined new reference levels applying to the decontamination and decommissioning of nuclear facilities. Belgium committed to include these requirements explicitly in its national legislation, even though

  5. IEA-R1 Nuclear Research Reactor: 58 Years of Operating Experience and Utilization for Research, Teaching and Radioisotopes Production

    SciTech Connect

    Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Saxena, Rajendra; Filho, Walter Ricci

    2015-07-01

    IEA-R1 research reactor at the Instituto de Pesquisas Energeticas e Nucleares (Nuclear and Energy Research Institute) IPEN, Sao Paulo, Brazil is the largest power research reactor in Brazil, with a maximum power rating of 5 MWth. It is being used for basic and applied research in the nuclear and neutron related sciences, for the production of radioisotopes for medical and industrial applications, and for providing services of neutron activation analysis, real time neutron radiography, and neutron transmutation doping of silicon. IEA-R1 is a swimming pool reactor, with light water as the coolant and moderator, and graphite and beryllium as reflectors. The reactor was commissioned on September 16, 1957 and achieved its first criticality. It is currently operating at 4.5 MWth with a 60-hour cycle per week. In the early sixties, IPEN produced {sup 131}I, {sup 32}P, {sup 198}Au, {sup 24}Na, {sup 35}S, {sup 51}Cr and labeled compounds for medical use. During the past several years, a concerted effort has been made in order to upgrade the reactor power to 5 MWth through refurbishment and modernization programs. One of the reasons for this decision was to produce {sup 99}Mo at IPEN. The reactor cycle will be gradually increased to 120 hours per week continuous operation. It is anticipated that these programs will assure the safe and sustainable operation of the IEA-R1 reactor for several more years, to produce important primary radioisotopes {sup 99}Mo, {sup 125}I, {sup 131}I, {sup 153}Sm and {sup 192}Ir. Currently, all aspects of dealing with fuel element fabrication, fuel transportation, isotope processing, and spent fuel storage are handled by IPEN at the site. The reactor modernization program is slated for completion by 2015. This paper describes 58 years of operating experience and utilization of the IEA-R1 research reactor for research, teaching and radioisotopes production. (authors)

  6. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland

    SciTech Connect

    Gryzinski, M.A.; Maciak, M.

    2015-07-01

    MARIA reactor is an open-pool research reactor what gives the chance to install uranium fission converter on the periphery of the core. It could be installed far enough not to induce reactivity of the core but close enough to produce high flux of fast neutrons. Special design of the converter is now under construction. It is planned to set the research stand based on such uranium converter in the near future: in 2015 MARIA reactor infrastructure should be ready (preparation started in 2013), in 2016 the neutron beam starts and in 2017 opening the stand for material and biological research or for medical training concerning BNCT. Unused for many years, horizontal channel number H2 at MARIA research rector in Poland, is going to be prepared as a part of unique stand. The characteristics of the neutron beam will be significant advantage of the facility. High flux of neutrons at the level of 2x10{sup 9} cm{sup -2}s{sup -1} will be obtainable by uranium neutron converter located 90 cm far from the reactor core fuel elements (still inside reactor core basket between so called core reflectors). Due to reaction of core neutrons with converter U{sub 3}Si{sub 2} material it will produce high flux of fast neutrons. After conversion neutrons will be collimated and moderated in the channel by special set of filters and moderators. At the end of H2 channel i.e. at the entrance to the research room neutron energy will be in the epithermal energy range with neutron intensity at least at the level required for BNCT (2x10{sup 9} cm{sup -2}s{sup -1}). For other purposes density of the neutron flux could be smaller. The possibility to change type and amount of installed filters/moderators which enables getting different properties of the beam (neutron energy spectrum, neutron-gamma ratio and beam profile and shape) is taken into account. H2 channel is located in separate room which is adjacent to two other empty rooms under the preparation for research laboratories (200 m2). It is

  7. Combined decontamination processes for wastes containing PCBs.

    PubMed

    Kastánek, Frantisek; Kastánek, Petr

    2005-01-31

    This project has focused on the development of a complex assembly of mutually corresponding technological units: a low temperature thermal process for the desorption of PCBs and other organics from soils and other contaminated solid wastes; the extraction of PCBs from soils by an ecological friendly aqueous solution of selected surfactants; the chemical decontamination of PCBs in oils and in-oil-in-water emulsions by metallic sodium and potassium in polyethylene glycols in the presence of aluminum powder; the modified alkaline catalyzed chemical decontamination of PCBs in oil-in-water dispersions in a solid-state reactor (in a film of reacting emulsion on solid carriers); and the breakdown of PCBs in aqueous emulsions with activated hydroxyl radicals enhanced by UV radiation. The processes operate in a closed loop configuration with effluents circulating among the process unit. These technologies have been verified at laboratory and pilot-plant scales.

  8. Development of a mono-energetic positron beam line at the Kyoto University Research Reactor

    NASA Astrophysics Data System (ADS)

    Sato, K.; Xu, Q.; Yoshiie, T.; Sano, T.; Kawabe, H.; Nagai, Y.; Nagumo, K.; Inoue, K.; Toyama, T.; Oshima, N.; Kinomura, A.; Shirai, Y.

    2015-01-01

    Positron beam facilities are widely used for solid state physics and material science studies. A positron beam facility has been constructed at the Kyoto University Research Reactor (KUR) in order to expand its application range. The KUR is a light-water-moderated tank-type reactor operated at a rated thermal power of 5 MW. A positron beam has been transported successfully from the reactor to the irradiation chamber. The total moderated positron rate was greater than 1.4 × 106/s while the reactor operated at a reduced power of 1 MW. Special attention was paid for the design of the in-pile position source to prevent possible damage of the reactor in case of severe earthquakes.

  9. Modular Pebble-Bed Reactor Project: Laboratory-Directed Research and Development Program FY 2002 Annual Report

    SciTech Connect

    Petti, David Andrew; Dolan, Thomas James; Miller, Gregory Kent; Moore, Richard Leroy; Terry, William Knox; Ougouag, Abderrafi Mohammed-El-Ami; Oh, Chang H; Gougar, Hans D

    2002-11-01

    This report documents the results of our research in FY-02 on pebble-bed reactor technology under our Laboratory Directed Research and Development (LDRD) project entitled the Modular Pebble-Bed Reactor. The MPBR is an advanced reactor concept that can meet the energy and environmental needs of future generations under DOE’s Generation IV initiative. Our work is focused in three areas: neutronics, core design and fuel cycle; reactor safety and thermal hydraulics; and fuel performance.

  10. Production and release rate of (37)Ar from the UT TRIGA Mark-II research reactor.

    PubMed

    Johnson, Christine; Biegalski, Steven R; Artnak, Edward J; Moll, Ethan; Haas, Derek A; Lowrey, Justin D; Aalseth, Craig E; Seifert, Allen; Mace, Emily K; Woods, Vincent T; Humble, Paul

    2017-02-01

    Air samples were taken at various locations around The University of Texas at Austin's TRIGA Mark II research reactor and analyzed to determine the concentrations of (37)Ar, (41)Ar, and (133)Xe present. The measured ratio of (37)Ar/(41)Ar and historical records of (41)Ar releases were then utilized to estimate an annual average release rate of (37)Ar from the reactor facility. Using the calculated release rate, atmospheric transport modeling was performed in order to determine the potential impact of research reactor operations on nearby treaty verification activities. Results suggest that small research reactors (∼1 MWt) do not release (37)Ar in concentrations measurable by currently proposed OSI detection equipment.

  11. Decontamination and decarburization of stainless and carbon steel by melt refining

    SciTech Connect

    Mizia, R.E.; Worcester, S.A.; Twidwell, L.G.; Webber, D.; Paolini, D.J.; Weldon, T.A.

    1996-09-05

    With many nuclear reactors and facilities being decommissioned in the next ten to twenty years the concern for handling and storing Radioactive Scrap Metal (RSM) is growing. Upon direction of the DOE Office of Environmental Restoration and Waste Management, Lockheed Idaho Technology Company (LITCO) is developing technologies for the conditioning of spent fuels and high-level wastes for interim storage and repository acceptance, including the recycling of Radioactive Scrap Metals (RSM) for beneficial reuse with the DOE complex. In February 1993, Montana Tech of the University of Montana was contracted to develop and demonstrate technologies for the decontamination of stainless steel RSM. The general objectives of the Montana Tech research program included conducting a literature survey, performing laboratory scale melt refining experiments to optimize decontaminating slag compositions, performing an analysis of preferred melting techniques, coordinating pilot scale and commercial scale demonstrations, and producing sufficient quantities of surrogate-containing material for all of the laboratory, pilot and commercial scale test programs. Later on, the program was expanded to include decontamination of carbon steel RSM. Each research program has been completed, and results are presented in this report.

  12. A Small-Animal Irradiation Facility for Neutron Capture Therapy Research at the RA-3 Research Reactor

    SciTech Connect

    Emiliano Pozzi; David W. Nigg; Marcelo Miller; Silvia I. Thorp; Amanda E. Schwint; Elisa M. Heber; Veronica A. Trivillin; Leandro Zarza; Guillermo Estryk

    2007-11-01

    The National Atomic Energy Commission of Argentina (CNEA) has constructed a thermal neutron source for use in Boron Neutron Capture Therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The Idaho National Laboratory (INL) and CNEA have jointly conducted some initial neutronic characterization measurements for one particular configuration of this source. The RA-3 reactor (Figure 1) is an open pool type reactor, with 20% enriched uranium plate-type fuel and light water coolant. A graphite thermal column is situated on one side of the reactor as shown. A tunnel penetrating the graphite structure enables the insertion of samples while the reactor is in normal operation. Samples up to 14 cm height and 15 cm width are accommodated.

  13. Oxidative Tritium Decontamination System

    DOEpatents

    Gentile, Charles A. , Guttadora, Gregory L. , Parker, John J.

    2006-02-07

    The Oxidative Tritium Decontamination System, OTDS, provides a method and apparatus for reduction of tritium surface contamination on various items. The OTDS employs ozone gas as oxidizing agent to convert elemental tritium to tritium oxide. Tritium oxide vapor and excess ozone gas is purged from the OTDS, for discharge to atmosphere or transport to further process. An effluent stream is subjected to a catalytic process for the decomposition of excess ozone to diatomic oxygen. One of two configurations of the OTDS is employed: dynamic apparatus equipped with agitation mechanism and large volumetric capacity for decontamination of light items, or static apparatus equipped with pressurization and evacuation capability for decontamination of heavier, delicate, and/or valuable items.

  14. Magnetic separation for soil decontamination

    SciTech Connect

    Avens, L.R.; Worl, L.A.; deAguero, K.J.; Padilla, D.D.; Prenger, F.C.; Stewart, W.F.; Hill, D.D. ); Tolt, T.L. )

    1993-01-01

    High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology.

  15. Magnetic separation for soil decontamination

    SciTech Connect

    Avens, L.R.; Worl, L.A.; deAguero, K.J.; Padilla, D.D.; Prenger, F.C.; Stewart, W.F.; Hill, D.D.; Tolt, T.L.

    1993-02-01

    High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology.

  16. Residual methamphetamine in decontaminated clandestine drug laboratories.

    PubMed

    Patrick, Glen; Daniell, William; Treser, Charles

    2009-03-01

    This pilot cross-sectional study examined three previously decontaminated residential clandestine drug laboratories (CDLs) in Washington State to determine the distribution and magnitude of residual methamphetamine concentrations relative to the state decontamination standard. A total of 159 discrete random methamphetamine wipe samples were collected from the three CDLs, focusing on the master bedroom, bathroom, living room, and kitchen at each site. Additional samples were collected from specific non-random locations likely to be contacted by future residents (e.g., door knobs and light switches). Samples were analyzed for methamphetamine by EPA method 8270 for semivolatile organic chemicals. Overall, 59% of random samples and 75% of contact point samples contained methamphetamine in excess of the state decontamination standard (0.1 micro g/100 cm(2)). At each site, methamphetamine concentrations were generally higher and more variable in rooms where methamphetamine was prepared and used. Even compared with the less stringent standard adopted in Colorado (0.5 micro g/100cm(2)), a substantial number of samples at each site still demonstrated excessive residual methamphetamine (random samples, 25%; contact samples, 44%). Independent oversight of CDL decontamination in residential structures is warranted to protect public health. Further research on the efficacy of CDL decontamination procedures and subsequent verification of methods is needed.

  17. Radiological Contaminant Persistence and Decontamination ...

    EPA Pesticide Factsheets

    Report The objective of this study was to use the Pipe Decontamination Experimental Design Protocol (PDEDP) to evaluate the persistence of cesium, cobalt, and strontium on concrete and polyvinyl chloride (PVC) and explore possible decontamination approaches. The PDEDP is an approach for evaluating the persistence characteristics of contaminants on drinking water pipe materials and various decontamination approaches.

  18. Electrokinetic decontamination of concrete

    SciTech Connect

    Lomasney, H.

    1995-10-01

    The U.S. Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. This report discusses the technology and use at the Oak Ridge k-25 plant.

  19. Analyses of the transportation of spent research reactor fuel in the United States

    SciTech Connect

    Cashwell, J.W.; Neuhauser, K.S.

    1989-01-01

    We analyzed the impacts of transportation of research reactor spent fuel from US and foreign reactors for the US Department of Energy's (DOE) Office of Defense Programs. Two separate shipment programs were analyzed. The shipment of research reactor spent fuel from Taiwan to the US (Fuel Movement Program), and the return of research reactor spent fuels of US origin from foreign and domestic reactors (Research Reactor Fuel Return Program). To perform these analyses, a comprehensive methodology for analyzing the probabilities and consequences of transportation in coastal waters and port facilities, handling at the port, and shipment by truck to reprocessing facilities was developed. The Taiwanese fuel consists of low-burnup aluminum-clad metallic uranium research reactor spent fuel; the other fuels are primarily aluminum-clad oxide fuels. The Fuel Movement Program is ongoing, while the Fuel Return Program addresses future shipments over a ten-year period. The operational aspects of the Taiwanese shipments have been uniform, but several possible shipping configurations are possible for the Fuel Return Program shipments. The risks of transporting spent nuclear fuel and other radioactive materials by all modes have been analyzed extensively. Comprehensive assessments, which bound the impacts of spent fuel transport, demonstrate that when shipments are made in compliance with applicable regulations, the risks for all such transport are low. For comparison with previously licensed transport activities and to provide continuity with earlier analyses, the results for shipment of 150-day-old commercial pressurized water reactor (PWR) spent fuel are presented as part of this study.

  20. Spain-Chile and Spain-Ecuador cooperation in the field of research nuclear reactors

    SciTech Connect

    Avendano, G.; Rodriguez, M.L.; Manas, L.; Masalleras, E.; Montes, J.

    1981-01-01

    The Spanish Board of Nuclear Energy (JEN) has been cooperating for the last several years with the Comision Chilena de Energia Nuclear (Chilean Commission of Nuclear Energy (CCHEN)), on the one hand, and with the Comision Ecuatoriana de Energia Atomica (Ecuadorian Commission of Atomic Energy (CEEA)), on the other. The result of this cooperation has been the implementation of projects in both countries to create research centers around a nuclear reactor as the main working tool: the Lo Aguirre reactor in Chile and the Ruminahui reactor in Ecuador.

  1. Leu conversion status of U.S. research reactors: September 1996

    SciTech Connect

    Matos, J.E.

    1996-09-01

    At the request of the Department of Energy, the RERTR Program has summarized the conversion status of research and test reactors in the United States and has made estimates of the uranium densities that would be needed to convert the reactors with power levels greater than or equal to 1 MW from Highly Enriched Uranium (HEU) (greater than or equal to 20% U-235) to Lightly Enriched Uranium (LEU) (less than 20% U-235) fuels. Detailed conversion studies for each of the reactors need to be completed in order to establish the feasibility of using LEU fuels.

  2. Mo-99 production at the Annular Core Research Reactor - recent calculative results

    SciTech Connect

    Parma, E.J.

    1997-11-01

    Significant progress has been made over the past year in understanding the chemistry and processing challenges associated with {sup 99}Mo production using Cintichem type targets. Targets fabricated at Los Alamos National Laboratory have been successfully irradiated in fuel element locations at the Annular Core Research Reactor (ACRR) and processed at the Sandia Hot Cell Facility. The next goal for the project is to remove the central cavity experiment tube from the reactor core, allowing for the irradiation of up to 37 targets. After the in-core work is complete, the reactor will be capable of producing significant quantities of {sup 99}Mo.

  3. Analyses for conversion of the Georgia Tech Research Reactor from HEU to LEU fuel

    SciTech Connect

    Matos, J.E.; Mo, S.C.; Woodruff, W.L.

    1992-12-31

    The 5 MW Georgia Tech Research Reactor (GTRR) is a heterogeneous, heavy water moderated and cooled reactor, fueled with highly-enriched uranium aluminum alloy fuel plates. The GTRR is required to convert to low enrichment (LEU) fuel in accordance with USNRC policy. Results of design and safety analyses performed by the RERTR Program at the Argonne National Laboratory for LEU conversion of the GTRR are summarized. Only those parameters which could change as a result of replacing the fuel are addressed. The performance of the reactor and all safety margins with LEU fuel are expected to be about the same as those with the current HEU fuel.

  4. Analyses for conversion of the Georgia Tech Research Reactor from HEU to LEU fuel

    SciTech Connect

    Matos, J.E.; Mo, S.C.; Woodruff, W.L.

    1992-01-01

    The 5 MW Georgia Tech Research Reactor (GTRR) is a heterogeneous, heavy water moderated and cooled reactor, fueled with highly-enriched uranium aluminum alloy fuel plates. The GTRR is required to convert to low enrichment (LEU) fuel in accordance with USNRC policy. Results of design and safety analyses performed by the RERTR Program at the Argonne National Laboratory for LEU conversion of the GTRR are summarized. Only those parameters which could change as a result of replacing the fuel are addressed. The performance of the reactor and all safety margins with LEU fuel are expected to be about the same as those with the current HEU fuel.

  5. Reactor safety research programs. Quarterly report, April-June 1982

    SciTech Connect

    Edler, S.K.

    1982-11-01

    This document summarizes work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1982, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities.

  6. Reactor safety research programs. Quarterly report, July-September 1983

    SciTech Connect

    Edler, S.K.

    1984-04-01

    Evaluations of nondestructive examination (NDE) techniques and instrumentation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, and examining NDE reliability and probabilistic fracture mechanics. Accelerated pellet-cladding interaction modeling is being conducted to predict the probability of fuel rod failure under normal operating conditions. Experimental data and analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Experimental data and validated models are being used to determine a method for evaluating the acceptance of welded or weld-repaired stainless steel piping. Thermal-hydraulic models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. High-temperature materials property tests are being conducted to provide data on severe core damage fuel behavior. Severe fuel damage accident tests are being conducted at the NRU reactor, Chalk River, Canada; and an instrumented fuel assembly irradiation program is being performed at Halden, Norway. Fuel assemblies and analytical support are being provided for experimental programs at other facilities, including the Super Sara Test Program, Ispra, Italy, and experimental programs at the Power Burst Facility.

  7. Reactor safety research programs. Quarterly report, January-March 1982

    SciTech Connect

    Edler, S.K.

    1982-07-01

    This document summarizes work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1982, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities.

  8. Light water reactor safety research program. Volume 12: quarterly report, Apr-Jun 79

    SciTech Connect

    Berman, M.

    1980-05-01

    This report summarizes the progress of the Light Water Reactor Safety Research Program during the 2nd quarter of 1979. Specifically, the report summarizes progress in five major areas of research. They are: (1) the molten core/concrete interactions study; (2) steam explosion research phenomena; (3) statistical LOCA analysis; (4) UHI model development; (5) two-phase jet loads.

  9. MITR-III: Upgrade and relicensing studies for the MIT Research Reactor. Second annual report

    SciTech Connect

    Trosman, H.G.; Lanning, D.D.; Harling, O.K.

    1994-08-01

    The current operating license of the MIT research reactor will expire on May 7, 1996 or possibly a few years later if the US Nuclear Regulatory Commission agrees that the license period can start with the date of initial reactor operation. Driven by the imminent expiration of the operating license, a team of nuclear engineering staff and students have begun a study of the future options for the MIT Research Reactor. These options have included the range from a major rebuilding of the reactor to its decommissioning. This document reports the results of a two year intensive activity which has been supported by a $148,000 grant from the USDOE contract Number DEFG0293ER75859, approximately $100,000 of internal MIT funds and Nuclear Engineering Department graduate student fellowships as well as assistance from international visiting scientists and engineers.

  10. Photon spectrum behind biological shielding of the LVR-15 research reactor

    SciTech Connect

    Klupak, V.; Viererbl, L.; Lahodova, Z.; Marek, M.; Vins, M.

    2011-07-01

    The LVR-15 reactor is a light water research reactor situated at the Research Centre Rez, near Prague. It operates as a multipurpose facility with a maximum thermal power of 10 MW. The reactor core usually contains from 28 to 32 fuel assemblies with a total mass of {sup 235}U of about 5 kg. Emitted radiation from the fuel caused by fission is shielded by moderating water, a steel reactor vessel, and heavy concrete. This paper deals with measurement and analysis of the gamma spectrum near the outer surface of the concrete wall, behind biological shielding, mainly in the 3- to 10-MeV energy range. A portable HPGe detector with a portable multichannel analyzer was used to measure gamma spectra. The origin of energy lines in gamma detector spectra was identified. (authors)

  11. Decontamination, decommissioning, and vendor advertorial issue, 2007

    SciTech Connect

    Agnihotri, Newal

    2007-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: An interesting year ahead of us, by Tom Christopher, AREVA NP Inc.; U.S.-India Civil Nuclear Cooperation; Decontamination and recycling of retired components, by Sean P. Brushart, Electric Power Research Institute; and, ANO is 33 and going strong, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The industry innovation article is: Continuous improvement process, by ReNae Kowalewski, Arkansas Nuclear One.

  12. Operational performance of the three bean salad control algorithm on the ACRR (Annular Core Research Reactor)

    SciTech Connect

    Ball, R.M.; Madaras, J.J. . Space and Defense Systems); Trowbridge, F.R. Jr.; Talley, D.G.; Parma, E.J. Jr. )

    1991-01-01

    Experimental tests on the Annular Core Research Reactor have confirmed that the Three-Bean-Salad'' control algorithm based on the Pontryagin maximum principle can change the power of a nuclear reactor many decades with a very fast startup rate and minimal overshoot. The paper describes the results of simulations and operations up to 25 MW and 87 decades per minute. 3 refs., 4 figs., 1 tab.

  13. Neutron flux parameters at irradiation positions in the new research reactor FRM-II

    NASA Astrophysics Data System (ADS)

    Lin, Xilei; Henkelmann, Richard; Türler, Andreas; Gerstenberg, Heiko; De Corte, Frans

    2006-08-01

    The new research reactor FRM-II in Garching, Germany, was at full power 20 MW for the first time on 24th August, 2004. Since then, highly thermalized neutrons are available also for neutron activation analysis (NAA). In this report, all essential neutron flux parameters needed to calculate neutron induced reaction rates based on the Høgdahl or Westcott convention are presented for all irradiation positions in this reactor.

  14. Dry Storage of Research Reactor Spent Nuclear Fuel - 13321

    SciTech Connect

    Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.; Severynse, T.F.; Sindelar, R.L.; Moore, E.N.

    2013-07-01

    Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. The initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage

  15. Safety Issues at the DOE Test and Research Reactors. A Report to the U.S. Department of Energy.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    This report provides an assessment of safety issues at the Department of Energy (DOE) test and research reactors. Part A identifies six safety issues of the reactors. These issues include the safety design philosophy, the conduct of safety reviews, the performance of probabilistic risk assessments, the reliance on reactor operators, the fragmented…

  16. Boron neutron capture therapy and radiation synovectomy research at the Massachusetts Institute of Technology Research Reactor

    SciTech Connect

    Zamenhof, R.G.; Nwanguma, C.I.; Wazer, D.E.; Saris, S.; Madoc-Jones, H. ); Sledge, C.B.; Shortkroff, S. )

    1992-04-01

    In this paper, current research in boron neutron capture therapy (BNCT) and radiation synovectomy at the Massachusetts Institute of Technology Research Reactor is reviewed. In the last few years, major emphasis has been placed on the development of BNCT primarily for treatment of brain tumors. This has required a concerted effort in epithermal beam design and construction as well as the development of analytical capabilities for {sup 10}B analysis and patient treatment planning. Prompt gamma analysis and high-resolution track-etch autoradiography have been developed to meet the needs, respectively, for accurate bulk analysis and for quantitative imaging of {sup 10}B in tissue at subcellular resolutions. Monte Carlo-based treatment planning codes have been developed to ensure optimized and individualized patient treatments. In addition, the development of radiation synovectomy as an alternative therapy to surgical intervention is joints that are affected by rheumatoid arthritis is described.

  17. Decontaminating metal surfaces

    DOEpatents

    Childs, Everett L.

    1984-11-06

    Radioactively contaminated surfaces can be electrolytically decontaminated with greatly increased efficiencies by using electrolytes containing higher than heretofore conventional amounts of nitrate, e.g.,>600 g/l of NaNO.sub.3, or by using nitrate-containing electrolytes which are acidic, e.g., of a pH<6.

  18. Decontaminating metal surfaces

    DOEpatents

    Childs, E.L.

    1984-01-23

    Radioactively contaminated surfaces can be electrolytically decontaminated with greatly increased efficiencies by using electrolytes containing higher than heretofore conventional amounts of nitrate, e.g., >600 g/1 of NaNO/sub 3/, or by using nitrate-containing electrolytes which are acidic, e.g., of a pH < 6.

  19. Advances in Sterilization and Decontamination: a Survey

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Recent technical advances made in the field of sterilization and decontamination and their applicability to private and commercial interests are discussed. Government-sponsored programs by NASA produced the bulk of material presented in this survey. The summary of past and current research discussed is detailed to enhance an effective transfer of technology from NASA to potential users.

  20. Testing and evaluation of light ablation decontamination

    SciTech Connect

    Demmer, R.L.; Ferguson, R.L.

    1994-10-01

    This report details the testing and evaluation of light ablation decontamination. It details WINCO contracted research and application of light ablation efforts by Ames Laboratory. Tests were conducted with SIMCON (simulated contamination) coupons and REALCON (actual radioactive metal coupons) under controlled conditions to compare cleaning effectiveness, speed and application to plant process type equipment.

  1. Decontamination and decommissioning focus area. Technology summary

    SciTech Connect

    1995-06-01

    This report presents details of the facility deactivation, decommissioning, and material disposition research for development of new technologies sponsored by the Department of Energy. Topics discussed include; occupational safety, radiation protection, decontamination, remote operated equipment, mixed waste processing, recycling contaminated metals, and business opportunities.

  2. Process for Descaling and Decontaminating Metals

    DOEpatents

    Baybarz, R. D.

    1961-04-25

    The oxide scale on the surface of stainless steels and similar metals is removed by contacting the metal under an inert atmosphere with a dilute H/sub 2/ SO/sub 4/ solution containing CrSO/sub 4/. The removed oxide scale is either dissolved or disintegrated into a slurry by the solution. Preferred reagent concentrations are 0.3 to 0.5 M CrSO/sub 4/ and 0.5 to 0.6 M H/sub 2/SO/sub 4/. The process is particularly applicable to decontamination of aqueous homogeneous nuclear reactor systems. (AEC)

  3. Quality management in BNCT at a nuclear research reactor.

    PubMed

    Sauerwein, Wolfgang; Moss, Raymond; Stecher-Rasmussen, Finn; Rassow, Jürgen; Wittig, Andrea

    2011-12-01

    Each medical intervention must be performed respecting Health Protection directives, with special attention to Quality Assurance (QA) and Quality Control (QC). This is the basis of safe and reliable treatments. BNCT must apply QA programs as required for performance and safety in (conventional) radiotherapy facilities, including regular testing of performance characteristics (QC). Furthermore, the well-established Quality Management (QM) system of the nuclear reactor used has to be followed. Organization of these complex QM procedures is offered by the international standard ISO 9001:2008. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Evaluation of Five Decontamination Methods for Filtering Facepiece Respirators

    PubMed Central

    Bergman, Michael S.; Eimer, Benjamin C.; Shaffer, Ronald E.

    2009-01-01

    Concerns have been raised regarding the availability of National Institute for Occupational Safety and Health (NIOSH)-certified N95 filtering facepiece respirators (FFRs) during an influenza pandemic. One possible strategy to mitigate a respirator shortage is to reuse FFRs following a biological decontamination process to render infectious material on the FFR inactive. However, little data exist on the effects of decontamination methods on respirator integrity and performance. This study evaluated five decontamination methods [ultraviolet germicidal irradiation (UVGI), ethylene oxide, vaporized hydrogen peroxide (VHP), microwave oven irradiation, and bleach] using nine models of NIOSH-certified respirators (three models each of N95 FFRs, surgical N95 respirators, and P100 FFRs) to determine which methods should be considered for future research studies. Following treatment by each decontamination method, the FFRs were evaluated for changes in physical appearance, odor, and laboratory performance (filter aerosol penetration and filter airflow resistance). Additional experiments (dry heat laboratory oven exposures, off-gassing, and FFR hydrophobicity) were subsequently conducted to better understand material properties and possible health risks to the respirator user following decontamination. However, this study did not assess the efficiency of the decontamination methods to inactivate viable microorganisms. Microwave oven irradiation melted samples from two FFR models. The remainder of the FFR samples that had been decontaminated had expected levels of filter aerosol penetration and filter airflow resistance. The scent of bleach remained noticeable following overnight drying and low levels of chlorine gas were found to off-gas from bleach-decontaminated FFRs when rehydrated with deionized water. UVGI, ethylene oxide (EtO), and VHP were found to be the most promising decontamination methods; however, concerns remain about the throughput capabilities for EtO and VHP

  5. Evaluation of five decontamination methods for filtering facepiece respirators.

    PubMed

    Viscusi, Dennis J; Bergman, Michael S; Eimer, Benjamin C; Shaffer, Ronald E

    2009-11-01

    Concerns have been raised regarding the availability of National Institute for Occupational Safety and Health (NIOSH)-certified N95 filtering facepiece respirators (FFRs) during an influenza pandemic. One possible strategy to mitigate a respirator shortage is to reuse FFRs following a biological decontamination process to render infectious material on the FFR inactive. However, little data exist on the effects of decontamination methods on respirator integrity and performance. This study evaluated five decontamination methods [ultraviolet germicidal irradiation (UVGI), ethylene oxide, vaporized hydrogen peroxide (VHP), microwave oven irradiation, and bleach] using nine models of NIOSH-certified respirators (three models each of N95 FFRs, surgical N95 respirators, and P100 FFRs) to determine which methods should be considered for future research studies. Following treatment by each decontamination method, the FFRs were evaluated for changes in physical appearance, odor, and laboratory performance (filter aerosol penetration and filter airflow resistance). Additional experiments (dry heat laboratory oven exposures, off-gassing, and FFR hydrophobicity) were subsequently conducted to better understand material properties and possible health risks to the respirator user following decontamination. However, this study did not assess the efficiency of the decontamination methods to inactivate viable microorganisms. Microwave oven irradiation melted samples from two FFR models. The remainder of the FFR samples that had been decontaminated had expected levels of filter aerosol penetration and filter airflow resistance. The scent of bleach remained noticeable following overnight drying and low levels of chlorine gas were found to off-gas from bleach-decontaminated FFRs when rehydrated with deionized water. UVGI, ethylene oxide (EtO), and VHP were found to be the most promising decontamination methods; however, concerns remain about the throughput capabilities for EtO and VHP

  6. Proceedings of the 1990 International Meeting on Reduced Enrichment for Research and Test Reactors

    SciTech Connect

    Not Available

    1993-07-01

    The global effort to reduce, and possibly, eliminate the international traffic in highly-enriched uranium caused by its use in research reactors requires extensive cooperation and free exchange of information among all participants. To foster this free exchange of information, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the thirteenth of a series which began in 1978. The common effort brought together, past, a large number of specialists from many countries. On hundred twenty-three participants from 26 countries, including scientists, reactor operators, and personnel from commercial fuel suppliers, research centers, and government organizations, convened in Newport, Rhode Island to discuss their results, their activities, and their plans relative to converting research reactors to low-enriched fuels. As more and more reactors convert to the use of low-enriched uranium, the emphasis of our effort has begun to shift from research and development to tasks more directly related to implementation of the new fuels and technologies that have been developed, and to refinements of those fuels and technologies. It is appropriate, for this reason, that the emphasis of this meeting was placed on safety and on conversion experiences. This individual papers in this report have been cataloged separately.

  7. New Remote Method for Estimation of Contamination Levels of Reactor Equipment - 13175

    SciTech Connect

    Danilovich, Alexey; Ivanov, Oleg; Potapov, Victor; Semenov, Sergey; Semin, Ilya; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly

    2013-07-01

    Projects for decommissioning of shutdown reactors and reactor facilities carried out in several countries, including Russia. In the National Research Centre 'Kurchatov Institute' decontamination and decommissioning of the research reactor MR (Material Testing Reactor) has been initiated. The research reactor MR has a long history and consists of nine loop facilities for experiments with different kinds of fuel. During the operation of main and auxiliary equipment of reactors it was subjected to strong radioactive contamination. The character of this contamination requires individual strategies for the decontamination work. This requires information about the character of the distribution of radioactive contamination of equipment in the premises. A detailed radiation survey of these premises using standard dosimetric equipment is almost impossible because of high levels of radiation and high-density of the equipment that does not allow identifying the most active fragments using standard tools of measurement. The problem can be solved using the method of remote measurements of distribution of radioactivity with help of the collimated gamma-ray detectors. For radiation surveys of the premises of loop installations remotely operated spectrometric collimated system was used [1, 2, 3]. As a result of the work, maps of the distribution of activity and dose rate for surveyed premises were plotted and superimposed on its photo. The new results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. (authors)

  8. Health physics and industrial hygiene aspects of decontamination as a precursor to decontamination

    SciTech Connect

    Card, C.J.; Hoenes, G.R.; Munson, L.F.; Halseth, G.A.

    1982-06-01

    The Pacific Northwest Laboratory is conducting a comprehensive study of the impacts, benefits and effects of decontamination as a precursor to decommissioning for the US Nuclear Regulatory Commission. The program deals primarily with chemical cleaning of light-water reactor (LWR) systems that will not be returned to operation. A major section of this study defines the health physics and industrial hygiene and safety concerns during decontamination operations. The primary health physics concerns include providing adequate protection for workers from radiation sources which are transported by the decontamination processes, estimating and limiting radioactive effluents to the environment and maintaining operations in accordance with the ALARA philosophy. Locating and identifying the areas of contamination and measuring the radiation exposure rates throughout the reactor primary system are fundamental to implementing these health physics goals. The principal industrial hygiene and safety concerns stem from the fact that a nuclear power plant is being converted for a time to a chemical plant which will contain large volumes of chemical solutions.

  9. Using low-enriched uranium in research reactors: The RERTR program

    SciTech Connect

    Travelli, A.

    1994-05-01

    The goal of the RERTR program is to minimize and eventually eliminate use of highway enriched uranium (HEU) in research and test reactors. The program has been very successful, and has developed low-enriched uranium (LEU) fuel materials and designs which can be used effectively in approximately 90 percent of the research and test reactors which used HEU when the program began. This progress would not have been possible without active international cooperation among fuel developers, commercial vendors, and reactor operators. The new tasks which the RERTR program is undertaking at this time include development of new and better fuels that will allow use of LEU fuels in all research and test reactors; cooperation with Russian laboratories, which will make it possible to minimize and eventually eliminate use of HEU in research reactors throughout the world, irrespective of its origin; and development of an LEU-based process for the production of {sup 99}Mo. Continuation and intensification of international cooperation are essential to the achievement of the ultimate goals of the RERTR program.

  10. Status of the DOE`s foreign research reactor spent nuclear fuel acceptance program

    SciTech Connect

    Chacey, K.; Saris, E.C.

    1997-12-01

    In May 1996, the U.S. Department of Energy (DOE), in consultation with the U.S. Department of State (DOS), adopted a policy to accept and manage in the United States {approximately}20 tonnes of spent nuclear fuel from research reactors in up to 41 countries. This spent fuel is being accepted under the nuclear weapons non-proliferation policy concerning foreign research reactor spent nuclear fuel. Only spent fuel containing uranium enriched in the United States is covered under this policy. Implementing this policy is a top priority of the DOE. The purpose of this paper is to provide the current status of the foreign research reactor acceptance program, including achievements to date and future challenges.

  11. Research and development of an electrochemical biocide reactor

    NASA Technical Reports Server (NTRS)

    See, G. G.; Bodo, C. A.; Glennon, J. P.

    1975-01-01

    An alternate disinfecting process to chemical agents, heat, or radiation in an aqueous media has been studied. The process is called an electrochemical biocide and employs cyclic, low-level voltages at chemically inert electrodes to pass alternating current through water and, in the process, to destroy microorganisms. The paper describes experimental hardware, methodology, and results with a tracer microorganism (Escherichia coli). The results presented show the effects on microorganism kill of operating parameters, including current density (15 to 55 mA/sq cm (14 to 51 ASF)), waveform of applied electrical signal (square, triangular, sine), frequency of applied electrical signal (0.5 to 1.5 Hz), process water flow rate (100 to 600 cc/min (1.6 to 9.5 gph)), and reactor resident time (0 to 4 min). Comparisons are made between the disinfecting property of the electrochemical biocide and chlorine, bromine, and iodine.

  12. Research and development of an electrochemical biocide reactor

    NASA Technical Reports Server (NTRS)

    See, G. G.; Bodo, C. A.; Glennon, J. P.

    1975-01-01

    An alternate disinfecting process to chemical agents, heat, or radiation in an aqueous media has been studied. The process is called an electrochemical biocide and employs cyclic, low-level voltages at chemically inert electrodes to pass alternating current through water and, in the process, to destroy microorganisms. The paper describes experimental hardware, methodology, and results with a tracer microorganism (Escherichia coli). The results presented show the effects on microorganism kill of operating parameters, including current density (15 to 55 mA/sq cm (14 to 51 ASF)), waveform of applied electrical signal (square, triangular, sine), frequency of applied electrical signal (0.5 to 1.5 Hz), process water flow rate (100 to 600 cc/min (1.6 to 9.5 gph)), and reactor resident time (0 to 4 min). Comparisons are made between the disinfecting property of the electrochemical biocide and chlorine, bromine, and iodine.

  13. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    SciTech Connect

    Bissani, M; O'Kelly, D S

    2006-05-08

    A joint assessment meeting was conducted at the Egyptian Atomic Energy Agency (EAEA) followed by a tour of Egyptian Second Research Reactor (ETRR-2) on March 22 and 23, 2006. The purpose of the visit was to evaluate the capabilities of the new research reactor and its operations under Action Sheet 4 between the U.S. DOE and the EAEA, ''Research Reactor Operation'', and Action Sheet 6, ''Technical assistance in The Production of Radioisotopes''. Preliminary Recommendations of the joint assessment are as follows: (1) ETRR-2 utilization should be increased by encouraging frequent and sustained operations. This can be accomplished in part by (a) Improving the supply-chain management for fresh reactor fuel and alleviating the perception that the existing fuel inventory should be conserved due to unreliable fuel supply; and (b) Promulgating a policy for sample irradiation priority that encourages the use of the reactor and does not leave the decision of when to operate entirely at the discretion of reactor operations staff. (2) Each experimental facility in operation or built for a single purpose should be reevaluated to focus on those that most meet the goals of the EAEA strategic business plan. Temporary or long-term elimination of some experimental programs might be necessary to provide more focused utilization. There may be instances of emerging reactor applications for which no experimental facility is yet designed or envisioned. In some cases, an experimental facility may have a more beneficial use than the purpose for which it was originally designed. For example, (a) An effective Boron Neutron Capture Therapy (BNCT) program requires nearby high quality medical facilities. These facilities are not available and are unlikely to be constructed near the Inshas site. Further, the BNCT facility is not correctly designed for advanced research and therapy programs using epithermal neutrons. (b) The ETRR-2 is frequently operated to provide color-enhanced gemstones but is

  14. Management of Spent Nuclear Fuel of Nuclear Research Reactor VVR-S at the National Institute of Physics and Nuclear Engineering, Bucharest, Romania

    NASA Astrophysics Data System (ADS)

    Biro, Lucian

    2009-05-01

    The Nuclear Research Reactor VVR-S (RR-VVR-S) located in Magurele-Bucharest, Romania, was designed for research and radioisotope production. It was commissioned in 1957 and operated without any event or accident for forty years until shut down in 1997. In 2002, by government decree, it was permanently shutdown for decommissioning. The National Institute of Physics and Nuclear Engineering (IFIN-HH) is responsible for decommissioning the RR-VVR-S, the first nuclear decommissioning project in Romania. In this context, IFIN-HH prepared and obtained approval from the Romanian Nuclear Regulatory Body for the Decommissioning Plan. One of the most important aspects for decommissioning the RR-VVR-S is solving the issue of the fresh and spent nuclear fuel (SNF) stored on site in wet storage pools. In the framework of the Russian Research Reactor Fuel Return Program (RRRFR), managed by the U.S. Department of Energy and in cooperation with the International Atomic Energy Agency and the Rosatom State Corporation, Romania repatriated all fresh HEU fuel to the Russian Federation in 2003 and the HEU SNF will be repatriated to Russia in 2009. With the experience and lessons learned from this action and with the financial support of the Romanian Government it will be possible for Romania to also repatriate the LEU SNF to the Russian Federation before starting the dismantling and decontamination of the nuclear facility. [4pt] In collaboration with K. Allen, Idaho National Laboratory, USA; L. Biro, National Commission for Nuclear Activities Control, Romania; and M. Dragusin, National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania.

  15. The Need for Cyber-Informed Engineering Expertise for Nuclear Research Reactors

    SciTech Connect

    Anderson, Robert Stephen

    2015-12-01

    Engineering disciplines may not currently understand or fully embrace cyber security aspects as they apply towards analysis, design, operation, and maintenance of nuclear research reactors. Research reactors include a wide range of diverse co-located facilities and designs necessary to meet specific operational research objectives. Because of the nature of research reactors (reduced thermal energy and fission product inventory), hazards and risks may not have received the same scrutiny as normally associated with power reactors. Similarly, security may not have been emphasized either. However, the lack of sound cybersecurity defenses may lead to both safety and security impacts. Risk management methodologies may not contain the foundational assumptions required to address the intelligent adversary’s capabilities in malevolent cyber attacks. Although most research reactors are old and may not have the same digital footprint as newer facilities, any digital instrument and control function must be considered as a potential attack platform that can lead to sabotage or theft of nuclear material, especially for some research reactors that store highly enriched uranium. This paper will provide a discussion about the need for cyber-informed engineering practices that include the entire engineering lifecycle. Cyber-informed engineering as referenced in this paper is the inclusion of cybersecurity aspects into the engineering process. A discussion will consider several attributes of this process evaluating the long-term goal of developing additional cyber safety basis analysis and trust principles. With a culture of free information sharing exchanges, and potentially a lack of security expertise, new risk analysis and design methodologies need to be developed to address this rapidly evolving (cyber) threatscape.

  16. Proceedings of the 1988 International Meeting on Reduced Enrichment for Research and Test Reactors

    SciTech Connect

    Not Available

    1993-07-01

    The international effort to develop and implement new research reactor fuels utilizing low-enriched uranium, instead of highly- enriched uranium, continues to make solid progress. This effort is the cornerstone of a widely shared policy aimed at reducing, and possibly eliminating, international traffic in highly-enriched uranium and the nuclear weapon proliferation concerns associated with this traffic. To foster direct communication and exchange of ideas among the specialists in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the eleventh of a series which began 1978. Individual papers presented at the meeting have been cataloged separately.

  17. Estimation of Na-24 activity concentration in BAEC TRIGA Research Reactor

    NASA Astrophysics Data System (ADS)

    Ajijul Hoq, M.; Malek Soner, M. A.; Salam, M. A.; Khanom, Salma; Fahad, S. M.

    The Bangladesh Atomic Energy Commission (BAEC) TRIGA Research Reactor is a unique nuclear installation of the country generally implemented for a wide variety of research applications and serves as an excellent source of neutron. During reactor operation it is necessary to measure and control the activity concentration of the pool water for fuel element failure detection and for the determination of contamination. The present study deals with the estimation of activity concentration for Na-24 present in water coolant produced as a result of 23Na (n, γ) 24Na reaction. Several governing equations have been employed to estimate the Na-24 activity concentrations theoretically at different reactor power levels including maximum reactor power of 2.4 MW. From the obtained result it is ensured that the estimated Na-24 activity of 8.83 × 10-3 μCi /cm3 is not significant enough for any radiological hazard. Thus for ensuring radiological safety issues of the research reactor the assessment performed under the present study has an implication.

  18. MYRRHA a multi-purpose hybrid research reactor for high-tech applications

    SciTech Connect

    Abderrahim, H. A.; Baeten, P.

    2012-07-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is the flexible experimental accelerator driven system (ADS) in development at SCK-CEN. MYRRHA is able to work both in subcritical (ADS) as in critical mode. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for generation IV (GEN IV) systems, material developments for fusion reactors, radioisotope production and industrial applications, such as Si-doping. MYRRHA will also demonstrate the ADS full concept by coupling the three components (accelerator, spallation target and subcritical reactor) at reasonable power level to allow operation feedback, scalable to an industrial demonstrator and allow the study of efficient transmutation of high-level nuclear waste. MYRRHA is based on the heavy liquid metal technology and so it will contribute to the development of lead fast reactor (LFR) technology and in critical mode, MYRRHA will play the role of European technology pilot plant in the roadmap for LFR. In this paper the historical evolution of MYRRHA and the rationale behind the design choices is presented and the latest configuration of the reactor core and primary system is described. (authors)

  19. MTR, TRA603. BASEMENT DECONTAMINATION ROOM DETAILS. WALLS OF SOLID CONCRETE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR, TRA-603. BASEMENT DECONTAMINATION ROOM DETAILS. WALLS OF SOLID CONCRETE MASONRY. STAINLESS STEEL WORK BENCH, FLOOR COVING AND DRAINS. "WARM" FLOOR DRAIN. OVERHEAD SHOWER WITH CHAIN PULL. IDO MTR-603-IDO-4, 12/1952. INL INDEX NO. 531-0603-00-396-110468, REV. 1. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  20. Chemical Decontaminant Testing

    DTIC Science & Technology

    2014-10-20

    structural members). (10) Carbon /stainless steels (vehicle, munitions substrate surface). (11) Brass/bronze/copper and nickel alloys (munitions substrate...construction materials (e.g., acrylic, stainless steel , glass, etc.) for containing the chemical agents, coupons, coupon holding fixture, and decontaminant(s...deliberately contaminated with chemical agent in a temperature - and humidity-controlled environment. The test fixture must include controlled doors with

  1. Radioisotope radiotherapy research and achievements at the University of Missouri Research Reactor

    NASA Astrophysics Data System (ADS)

    Ehrhardt, G. J.; Ketring, A. R.; Cutler, C. S.

    2003-01-01

    The University of Missouri Research Reactor (MURR) in collaboration with faculty in other departments at the University of Missouri has been involved in developing new means of internal radioisotopic therapy for cancer for many years. These efforts have centered on methods of targeting radioisotopes such as brachytherapy, embolisation of liver tumors with radioactive microspheres, small-molecule-labelled chelates for the treatment of bone cancer, and various means of radioimmunotherapy or labelled receptor agent targeting. This work has produced two radioactive agents, Sm-153 Quadramet™ and Y-90 TheraSphere™, which have U.S. Food and Drug Administration approval for the palliation of bone cancer pain and treatment of inoperable liver cancer, respectively. MURR has also pioneered development of other beta-emitting isotopes for internal radiotherapy such as Re-186, Re-188, Rh-105, Ho-166, Lu-177, and Pm-149, many of which are in research and clinical trials throughout the U.S. and the world. This important work has been made possible by the very high neutron flux available at MURR combined with MURR's outstanding reliability of operation and flexibility in meeting the needs of researchers and the radiopharmaceutical industry.

  2. Development of a Monolithic Research Reactor Fuel Type at Argonne National Laboratory

    SciTech Connect

    Clark, C.R.; Briggs, R.J.

    2004-10-06

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has been tasked with the conversion of research reactors from highly enriched to low-enriched uranium (LEU). To convert several high power reactors, monolithic fuel, a new fuel type, is being developed. This fuel type replaces the standard fuel dispersion with a fuel alloy foil, which allows for fuel densities far in excess of that found in dispersion fuel. The single-piece fuel foil also contains a significantly lower interface area between the fuel and the aluminum in the plate than the standard fuel type, limiting the amount of detrimental fuel-aluminum interaction that can occur. Implementation of monolithic fuel is dependant on the development of a suitable fabrication method as traditional roll-bonding techniques are inadequate.

  3. Characterization of the Annular Core Research Reactor (ACRR) Neutron Radiography System Imaging Plane

    NASA Astrophysics Data System (ADS)

    Kaiser, Krista; Chantel Nowlen, K.; DePriest, K. Russell

    2016-02-01

    The Annular Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1) available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.

  4. Radiation dosimetry for NCT facilities at the Brookhaven Medical Research Reactor

    SciTech Connect

    Holden, N.E.; Hu, J.P.; Greenberg, D.D.; Reciniello, R.N.

    1998-12-31

    Brookhaven Medical Research Reactor (BMRR) is a 3 mega-watt (MW) heterogeneous, tank-type, light water cooled and moderated, graphite reflected reactor, which was designed for medical and biological studies and became operational in 1959. Over time, the BMRR was modified to provide thermal and epithermal neutron beams suitable for research studies. NCT studies have been performed at both the epithermal neutron irradiation facility (ENIF) on the east side of the BMRR reactor core and the thermal neutron irradiation facility (TNIF) on the west side of the core. Neutron and gamma-ray dosimetry performed from 1994 to the present in both facilities are described and the results are presented and discussed.

  5. Initial verification and validation of RAZORBACK - A research reactor transient analysis code

    SciTech Connect

    Talley, Darren G.

    2015-09-01

    This report describes the work and results of the initial verification and validation (V&V) of the beta release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This initial V&V effort was intended to confirm that the code work to-date shows good agreement between simulation and actual ACRR operations, indicating that the subsequent V&V effort for the official release of the code will be successful.

  6. A reload and startup plan for conversion of the NIST research reactor

    SciTech Connect

    D. J. Diamond

    2016-03-31

    The National Institute of Standards and Technology operates a 20 MW research reactor for neutron-based research. The heavy-water moderated and cooled reactor is fueled with high-enriched uranium (HEU) but a program to convert the reactor to low-enriched uranium (LEU) fuel is underway. Among other requirements, a reload and startup test plan must be submitted to the U.S. Nuclear Regulatory Commission (NRC) for their approval. The NRC provides guidance for what should be in the plan to ensure that the licensee has sufficient information to operate the reactor safely. Hence, a plan has been generated consisting of two parts. The reload portion of the plan specifies the fuel management whereby initially only two LEU fuel elements are in the core for eight fuel cycles. This is repeated until a point when the optimum approach is to place four fresh LEU elements into the reactor each cycle. This final transition is repeated and after eight cycles the reactor is completely fueled with LEU. By only adding two LEU fuel elements initially, the plan allows for the consumption of HEU fuel elements that are expected to be in storage at the time of conversion and provides additional qualification of production LEU fuel under actual operating conditions. Because the reload is to take place over many fuel cycles, startup tests will be done at different stages of the conversion. The tests, to be compared with calculations to show that the reactor will operate as planned, are the measurement of critical shim arm position and shim arm and regulating rod reactivity worths. An acceptance criterion for each test is specified based on technical specifications that relate to safe operation. Additional tests are being considered that have less safety significance but may be of interest to bolster the validation of analysis tools.

  7. Determination of the optimal positions for installing gamma ray detection systems at Tehran Research Reactor

    NASA Astrophysics Data System (ADS)

    Sayyah, A.; Rahmani, F.; Khalafi, H.

    2015-09-01

    Dosimetric instruments must constantly monitor radiation dose levels in different areas of nuclear reactor. Tehran Research Reactor (TRR) has seven beam tubes for different research purposes. All the beam tubes extend from the reactor core to Beam Port Floor (BPF) of the reactor facility. During the reactor operation, the gamma rays exiting from each beam tube outlet produce a specific gamma dose rate field in the space of the BPF. To effectively monitor the gamma dose rates on the BPF, gamma ray detection systems must be installed in optimal positions. The selection of optimal positions is a compromise between two requirements. First, the installation positions must possess largest gamma dose rates and second, gamma ray detectors must not be saturated in these positions. In this study, calculations and experimental measurements have been carried out to identify the optimal positions of the gamma ray detection systems. Eight three dimensional models of the reactor core and related facilities corresponding to eight scenarios have been simulated using MCNPX Monte Carlo code to calculate the gamma dose equivalent rate field in the space of the BPF. These facilities are beam tubes, thermal column, pool, BPF space filled with air, facilities such as neutron radiography facility, neutron powder diffraction facility embedded in the beam tubes as well as biological shields inserted into the unused beam tubes. According to the analysis results of the combined gamma dose rate field, three positions on the north side and two positions on the south side of the BPF have been recognized as optimal positions for installing the gamma ray detection systems. To ensure the consistency of the simulation data, experimental measurements were conducted using TLDs (600 and 700) pairs during the reactor operation at 4.5 MW.

  8. Decontamination and detoxification of mycotoxins.

    PubMed

    Jemmali, M

    1990-01-01

    Product decontamination and chemical detoxification are needed because preventive measures are not fully able to avoid contamination by mycotoxins. Criteria for safety evaluation studies of decontaminated products have to be established. Few chemical methods are available on an industrial scale; among them, ammoniation and the mixture monomethylamine-calcium hydroxide treatments show greatest promise of short-term application to oilseed cakes. Technical, economic, and public health aspects of these treatments are considered. Other decontamination techniques are briefly reviewed.

  9. Research Reactor Preparations for the Air Shipment of Highly Enriched Uranium from Romania

    SciTech Connect

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin; C. Paunoiu; M. Ciocanescu

    2010-03-01

    In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation for conversion to low enriched uranium. The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR S research reactor at Magurele, Romania, to Chelyabinsk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation Rosatom and the International Atomic Energy Agency. Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel.

  10. Effects of CBRN decontaminants in common use by first responders on the recovery of latent fingerprints--assessment of the loss of ridge detail on glass.

    PubMed

    Zuidberg, Matthijs C; van Woerkom, Tiest; de Bruin, Karla G; Stoel, Reinoud D; de Puit, Marcel

    2014-01-01

    Following a CBRN incident, first responders use decontamination procedures to reduce the risk of exposure. The effect of decontamination on forensic trace material has, however, not been fully examined. This study sought to evaluate the effect of five different physical or chemical decontamination materials on the recovery of latent fingerprints. Fingerprints were deposited on glass slides, decontaminated, and assessed on the presence of ridge detail. The results demonstrate that decontamination affects the quality of latent fingerprints substantially. On at least 61% of the fingerprints, a reduced amount of ridge detail was observed upon decontamination. Furthermore, development with cyanoacrylate appeared not to succeed anymore. Instead, the ability of vacuum metal deposition to successfully develop decontaminated fingerprints is demonstrated. The results from this study may contribute to an increased forensic awareness regarding decontamination and emphasize the necessity for further research into new item decontamination procedures or new forensic initiatives prior to decontamination.

  11. Recent accomplishments in neutron beam projects at the University of Texas Research Reactor

    SciTech Connect

    Uenlue, K.; Wehring, B.W.

    1994-12-31

    The design of a cold neutron source facility at the University of Texas TRIGA research reactor is described. The UT-TRIGA has 5 neutron beam ports. Because of the different characteristics of the ports, various research projects are being pursued. Among these projects, The Texas cold neutron source and neutron depth profiling are operational; neutron focusing, prompt gamma activation analysis, and neutron capture therapy research are progressing.

  12. Advanced robotics for decontamination and dismantlement

    SciTech Connect

    Hamel, W.R.; Haley, D.C.

    1994-06-01

    The decontamination and dismantlement (D&D) robotics technology application area of the US Department of Energy`s Robotics Technology Development Program is explained and described. D&D robotic systems show real promise for the reduction of human exposure to hazards, for improvement of productivity, and for the reduction of secondary waste generation. Current research and development pertaining to automated floor characterization, robotic equipment removal, and special inspection is summarized. Future research directions for these and emerging activities is given.

  13. Status of DOE efforts to renew acceptance of foreign research reactor spent nuclear fuel

    SciTech Connect

    Head, C.R.

    1997-08-01

    This presentation summarizes the efforts being made by the Department of Energy to renew acceptance of spent nuclear fuel shipments from foreign research reactors. The author reviews the actions undertaken in this process in a fairly chronological manner, through the present time, as well as the development of an environmental impact statement to support the proposed actions.

  14. 75 FR 62892 - Massachusetts Institute of Technology Research Reactor Environmental Assessment and Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Massachusetts Institute of Technology Research Reactor Environmental Assessment and Finding of No Significant Impact Correction In notice document 2010-24809 beginning on page 61220 in the issue of Monday...

  15. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... COMMISSION Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY... access publicly-available documents online in the NRC Library at http://www.nrc.gov/reading-rm/adams.html... License No. R- 112, held by Reed College (the licensee), which authorizes continued operation of the Reed...

  16. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  17. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    SciTech Connect

    Not Available

    1994-04-01

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

  18. Neutronic safety parameters and transient analyses for potential LEU conversion of the Budapest Research Reactor.

    SciTech Connect

    Pond, R. B.; Hanan, N. A.; Matos, J. E.; Maraczy, C.

    1999-09-27

    An initial safety study for potential LEU conversion of the Budapest Research Reactor was completed. The study compares safety parameters and example transients for reactor cores with HEU and LEU fuels. Reactivity coefficients, kinetic parameters and control rod worths were calculated for cores with HEU(36%) UAl alloy fuel and UO{sub 2}-Al dispersion fuel, and with LEU (19.75%)UO{sub 2}-Al dispersion fuel that has a uranium density of about 2.5 g/cm{sup 3}. A preliminary fuel conversion plan was developed for transition cores that would convert the BRR from HEU to LEU fuel after the process is begun.

  19. Design of Cold Neutron Imaging Facility at China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Han, Songbai; Wu, Meimei; Wang, Hongli; Hao, Lijie; Wei, Guohai; He, Linfeng; Wang, Yu; Liu, Yuntao; Chen, Dongfeng

    The radiography imaging with cold neutrons is being planned at China Advanced Research Reactor (CARR). The 60MW CARR at China Institute of Atomic Energy (CIAE) has got full power in March, 2012. It is a tank-in-pool type reactor using a D2O reflector for inverse neutron trap, and the expected optimal undisturbed thermal neutron flux is 8 × 1014 n/cm2rad s. Cold neutron imaging facility will be built at the guide hall. At present, its conceptional and physical designs have been finished. The cold neutron imaging facilities will provide an efficient and versatile tool for basic scientific and industrial non-destructive investigation.

  20. Characterization of a New Continuous Air Monitoring System For the University of Massachusetts Lowell Research Reactor

    NASA Astrophysics Data System (ADS)

    Alqahtani, Mohammad Saad

    A continuous air monitor (CAM) is a critical piece of equipment to support radiation safety in nuclear facilities where the generation of airborne radioactivity is a possibility for either normal operations or accident scenarios. The University of Massachusetts Lowell Research Reactor is planning to install a new CAM system manufactured by Canberra Industries for monitoring airborne radioactive particulates. In this study, the new CAM was evaluated to determine 1) baseline response, 2) response to high exposure rates, 3) appropriate background compensation, 4) detection limits, and 5) alarm settings. The results of this study will help to properly integrate the new CAM into the reactor radiation monitoring system.

  1. Fuel burnup analysis for Thai research reactor by using MCNPX computer code

    NASA Astrophysics Data System (ADS)

    Sangkaew, S.; Angwongtrakool, T.; Srimok, B.

    2017-06-01

    This paper presents the fuel burnup analysis of the Thai research reactor (TRR-1/M1), TRIGA Mark-III, operated by Thailand Institute of Nuclear Technology (TINT) in Bangkok, Thailand. The modelling software used in this analysis is MCNPX (MCNP eXtended) version 2.6.0, a Fortran90 Monte Carlo radiation transport computer code. The analysis results will cover the core excess reactivity, neutron fluxes at the irradiation positions and neutron detector tubes, power distribution, fuel burnup, and fission products based on fuel cycle of first reactor core arrangement.

  2. A review of plant decontamination methods: 1988 Update: Final report

    SciTech Connect

    Remark, J.F.

    1989-01-01

    This document updates the state-of-the-art in decontamination technology since the publication of the previous review (EPRI NP- 1128) in May 1981. A brief description of the corrosion-film characteristics is presented as well as corrosion film differences between a BWR and PWR. The generation transportation, activation, and deposition of the radioisotopes found throughout the reactor coolant system is also discussed. Successful, well executed, decontamination campaigns are always preceded by meticulous planning and careful procedure preparation which include contingency operations. The Decontamination Planning and Preparation Section describes the technical planning steps as well as the methodology that should be followed in order to select the optimum decontamination technique for a specific application. A review of a number of the decontamination methods commercialized since 1980 is presented. The basic mechanism for each process is described as well as specific applications of the technology in the fields. Where possible, results obtained in the field are presented. The information was obtained from industry vendors as well as personnel at the plant locations that have utilized the technology. 72 refs., 5 tabs.

  3. Status report on conversion of the Georgia Tech Research Reactor to low enrichment fuel

    SciTech Connect

    Karam, R.A. ); Matos, J.E.; Mo, S.C.; Woodruff, W.L. )

    1991-01-01

    The 5 MW Georgia Tech Research Reactor (GTRR) is a heterogeneous, heavy water moderated and cooled reactor, fueled with highly-enriched uranium aluminum alloy fuel plates. The GTRR is required to convert to low enrichment (LEU) fuel in accordance with USNRC policy. The US Department of Energy is funding a program to compare reactor performance with high and low enrichment fuels. The goals of the program are: (1) to amend the SAR and the Technical Specifications of the GTRR so that LEU U{sub 3}Si{sub 2}-Al dispersion fuel plates can replace the current HEU U-Al alloy fuel, and (2) to optimize the LEU core such that maximum value neutron beams can be extracted for possible neutron capture therapy application. This paper presents a status report on the LEU conversion effort.

  4. Status report on conversion of the Georgia Tech Research Reactor to low enrichment fuel

    SciTech Connect

    Karam, R.A.; Matos, J.E.; Mo, S.C.; Woodruff, W.L.

    1991-12-31

    The 5 MW Georgia Tech Research Reactor (GTRR) is a heterogeneous, heavy water moderated and cooled reactor, fueled with highly-enriched uranium aluminum alloy fuel plates. The GTRR is required to convert to low enrichment (LEU) fuel in accordance with USNRC policy. The US Department of Energy is funding a program to compare reactor performance with high and low enrichment fuels. The goals of the program are: (1) to amend the SAR and the Technical Specifications of the GTRR so that LEU U{sub 3}Si{sub 2}-Al dispersion fuel plates can replace the current HEU U-Al alloy fuel, and (2) to optimize the LEU core such that maximum value neutron beams can be extracted for possible neutron capture therapy application. This paper presents a status report on the LEU conversion effort.

  5. The Oak Ridge Research Reactor: safety analysis: Volume 2, supplement 2

    SciTech Connect

    Hurt, S.S.

    1986-11-01

    The Oak Ridge Research Reactor Safety Analysis was last updated via ORNL-4169, Vol. 2, Supplement 1, in May of 1978. Since that date, several changes have been effected through the change-memo system described below. While these changes have involved the cooling system, the electrical system, and the reactor instrumentation and controls, they have not, for the most part, presented new or unreviewed safety questions. However, some of the changes have been based on questions or recommendations stemming from safety reviews or from reactor events at other sites. This paper discusses those changes which were judged to be safety related and which include revisions to the syphon-break system and changes related to seismic considerations which were very recently completed. The maximum hypothetical accident postulated in the original safety analysis requires dynamic containment and filtered flow for compliance with 10CFR100 limits at the site boundary.

  6. Empirical correlation of residual gamma radiation resulting from operation of the Health Physics Research Reactor

    SciTech Connect

    Chou, T.L.; Ragan, G.E.; Sims, C.S.

    1985-04-01

    An empirical equation has been developed which gives gamma dose equivalent rate as a function of time, distance, and fission yield after a pulsed operation of Oak Ridge National Laboratory's (ORNL) unshielded Health Physics Research Reactor (HPRR). A related expression which is applicable to steady-state reactor operation has been mathematically derived from the aforementioned empirical equation. The two relations can be used to predict the gamma dose equivalent rate to within 25% for times between 1 minute and 90 minutes after reactor shutdown. Similar agreement is expected for up to several days. In most cases the relations are expected to overestimate the gamma dose equivalent rate. 5 refs., 4 figs., 1 tab.

  7. Analysis of the Jamaican Slowpoke-2 Research Reactor for the Conversion from HEU to LEU Fuel

    SciTech Connect

    Puig, F.; Dennis, Haile T.

    2014-01-01

    The Jamaican SLOWPOKE-2 (JM-1) is a 20 kW research reactor manufactured by Atomic Energy of Canada Limited that has been operating for 30 years at the University of the West Indies, Mona Campus in Kingston, Jamaica. The University, with IAEA assistance under the GTRI/RERTR program, is currently in the process of converting from HEU to LEU. Full-reactor neutronic and thermal hydraulic analyses were performed, using MCNP5 and PLTEMP/ANL v4.1 respectively, on both the existing HEU and proposed LEU core configurations. Although conversion will result in the full nominal reactor power increasing from 20 kW to approximately 22 kW, in order to maintain the 1012 n·cm-2 s-1 flux in the inner irradiation channels, and maximum fuel temperature to increase from ~82°C to ~113°C, the analysis illustrates that increased safety margins will be obtained. No significant reactor behavior changes are expected and the characteristic SLOWPOKE-2 reactor inherent safety features will be preserved.

  8. Development and operation of research-scale III-V nanowire growth reactors.

    PubMed

    Schroer, M D; Xu, S Y; Bergman, A M; Petta, J R

    2010-02-01

    III-V nanowires are useful platforms for studying the electronic and mechanical properties of materials at the nanometer scale. However, the costs associated with commercial nanowire growth reactors are prohibitive for most research groups. We developed hot-wall and cold-wall metal organic vapor phase epitaxy reactors for the growth of InAs nanowires, which both use the same gas handling system. The hot-wall reactor is based on an inexpensive quartz tube furnace and yields InAs nanowires for a narrow range of operating conditions. Improvement of crystal quality and an increase in growth run to growth run reproducibility are obtained using a homebuilt UHV cold-wall reactor with a base pressure of 2x10(-9) Torr. A load lock on the UHV reactor prevents the growth chamber from being exposed to atmospheric conditions during sample transfers. Nanowires grown in the cold-wall system have a low defect density, as determined using transmission electron microscopy, and exhibit field effect gating with mobilities approaching 16,000 cm(2)/(V s).

  9. Development and operation of research-scale III-V nanowire growth reactors

    NASA Astrophysics Data System (ADS)

    Schroer, M. D.; Xu, S. Y.; Bergman, A. M.; Petta, J. R.

    2010-02-01

    III-V nanowires are useful platforms for studying the electronic and mechanical properties of materials at the nanometer scale. However, the costs associated with commercial nanowire growth reactors are prohibitive for most research groups. We developed hot-wall and cold-wall metal organic vapor phase epitaxy reactors for the growth of InAs nanowires, which both use the same gas handling system. The hot-wall reactor is based on an inexpensive quartz tube furnace and yields InAs nanowires for a narrow range of operating conditions. Improvement of crystal quality and an increase in growth run to growth run reproducibility are obtained using a homebuilt UHV cold-wall reactor with a base pressure of 2×10-9 Torr. A load lock on the UHV reactor prevents the growth chamber from being exposed to atmospheric conditions during sample transfers. Nanowires grown in the cold-wall system have a low defect density, as determined using transmission electron microscopy, and exhibit field effect gating with mobilities approaching 16 000 cm2/(V s).

  10. The structure of decommissioning plan for VVR-S research reactor

    SciTech Connect

    Popescu, C.; Paunescu, A.; Garlea, I.; Garlea, C.

    1996-12-31

    This paper presents the activity in preparing the decommissioning plan for the VVR-S research reactor taking into account that there is no experience in this field in Hungary. VVR-S IPNE reactor, situated in Magurele Village, near Bucharest, was put into operation on the 27th of July 1957 and it has continuously been operating without major events, up to now. During this period, no modifications concerning the core and main circuits were made. The reactor is still operating with the original equipment and control instrumentation supplied by Ex-Soviets Union. The reactor was designed and built at the scientific and technological level of the 50`s. VVR-S IPNE reactor is a thermal one, of 2 MW nominal power and tank-type. It is light water cooled and moderated. The core operates with EK-10 type fuel assemblies (made of UO{sub 2} - MgO, with 10% U{sup 235} enrichment); after 1984 a mixed core with EK-10 and S-36 type assemblies was employed. The present fuel stock is S-36 type (36.6% U{sup 235} enrichment).

  11. Long-lived activation products in TRIGA Mark II research reactor concrete shield: calculation and experiment

    NASA Astrophysics Data System (ADS)

    Žagar, Tomaž; Božič, Matjaž; Ravnik, Matjaž

    2004-12-01

    In this paper, a process of long-lived activity determination in research reactor concrete shielding is presented. The described process is a combination of experiment and calculations. Samples of original heavy reactor concrete containing mineral barite were irradiated inside the reactor shielding to measure its long-lived induced radioactivity. The most active long-lived (γ emitting) radioactive nuclides in the concrete were found to be 133Ba, 60Co and 152Eu. Neutron flux, activation rates and concrete activity were calculated for actual shield geometry for different irradiation and cooling times using TORT and ORIGEN codes. Experimental results of flux and activity measurements showed good agreement with the results of calculations. Volume of activated concrete waste after reactor decommissioning was estimated for particular case of Jožef Stefan Institute TRIGA reactor. It was observed that the clearance levels of some important long-lived isotopes typical for barite concrete (e.g. 133Ba, 41Ca) are not included in the IAEA and EU basic safety standards.

  12. A Review of Previous Research in Direct Energy Conversion Fission Reactors

    SciTech Connect

    DUONG,HENRY; POLANSKY,GARY F.; SANDERS,THOMAS L.; SIEGEL,MALCOLM D.

    1999-09-22

    From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this

  13. ReactorHealth Physics operations at the NIST center for neutron research.

    PubMed

    Johnston, Thomas P

    2015-02-01

    Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems.

  14. Integrated decontamination process for metals

    DOEpatents

    Snyder, Thomas S.; Whitlow, Graham A.

    1991-01-01

    An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

  15. SURFACE DECONTAMINATION METHODOLOGIES FOR A ...

    EPA Pesticide Factsheets

    Technical Brief This brief will review a wide range of technologies (e.g., liquids, foams, gels, wipes, etc.) that have been shown to decontaminate surfaces contaminated with B. anthracis spores. It will provide decision makers practical information on surface decontaminations options for consideration during a B. anthracis response.

  16. SURFACE DECONTAMINATION EFFICACY STUDIES FOR ...

    EPA Pesticide Factsheets

    Technical Brief This Technical Brief summarizes the findings from three studies in which the decontamination efficacy was determined for various liquid contaminants when applied to various surfaces that are contaminated with blister agents (vesicants).This may provide decision-makers with practical information on surface decontaminations options during a blister agent response.

  17. SURFACE DECONTAMINATION EFFICACY STUDIES FOR ...

    EPA Pesticide Factsheets

    Technical Brief This Technical Brief summarizes the findings from three studies in which the decontamination efficacy was determined for various liquid contaminants when applied to various surfaces that are contaminated with blister agents (vesicants).This may provide decision-makers with practical information on surface decontaminations options during a blister agent response.

  18. Decontamination solution development studies

    SciTech Connect

    Allen, R.P.; Fetrow, L.K.; Kjarmo, H.E.; Pool, K.H.

    1993-09-01

    This study was conducted for the Westinghouse Hanford Company (WHC) by Pacific Northwest Laboratory (PNL) as part of the Hanford Grout Technology Program (HGTP). The objective of this study was to identify decontamination solutions capable of removing radioactive contaminants and grout from the Grout Treatment Facility (GTF) process equipment and to determine the impact of these solutions on equipment components and disposal options. The reference grout used in this study was prepared with simulated double-shell slurry feed (DSSF) and a dry blend consisting of 40 wt % limestone flour, 28 wt % blast furnace slag, 28 wt % fly ash, and 4 wt % type I/II Portland cement.

  19. Tool decontamination method

    SciTech Connect

    Capella, J.A.; Fowler, D.E.

    1984-04-17

    Disclosed is a system and method for cleaning radioactively contaminated articles, including tools and like items of hardware. The system includes a cleaning chamber for receiving and sealing therein the contaminated articles, a high pressure spray gun disposed within the cleaning chamber for spraying the contaminated articles with a clean solvent to dislodge and dissolve the contaminants, and a system for decontaminating the solvent for reuse. The cleaning chamber includes a drain having the capacity to remove contaminated solvent at a rate at least as great as that at which the solvent is sprayed into the chamber, such that substantially no contaminated solvent collects in the cleaning chamber.

  20. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    SciTech Connect

    Heiser,J.; Sullivan, T.

    2009-06-30

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers during the

  1. Further Development of Crack Growth Detection Techniques for US Test and Research Reactors

    SciTech Connect

    Kohse, Gordon; Carpenter, David M.; Ostrovsky, Yakov; Joseph Palmer, A.; Teysseyre, Sebastien P.; Davis, Kurt L.; Rempe, Joy L.

    2015-07-01

    One of the key issues facing Light Water Reactors (LWRs) in extending lifetimes beyond 60 years is characterizing the combined effect of irradiation and water chemistry on material degradation and failure. Irradiation Assisted Stress Corrosion Cracking (IASCC), in which a crack propagates in a susceptible material under stress in an aggressive environment, is a mechanism of particular concern. Full understanding of IASCC depends on real time crack growth data acquired under relevant irradiation conditions. Techniques to measure crack growth in actively loaded samples under irradiation have been developed outside the US - at the Halden Boiling Water Reactor, for example. Several types of IASCC tests have also been deployed at the MITR, including passively loaded crack growth measurements and actively loaded slow strain rate tests. However, there is not currently a facility available in the US to measure crack growth on actively loaded, pre-cracked specimens in LWR irradiation environments. A joint program between the Idaho National Laboratory (INL) and the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory (NRL) is currently underway to develop and demonstrate such a capability for US test and research reactors. Based on the Halden design, the samples will be loaded using miniature high pressure bellows and a compact loading mechanism, with crack length measured in real time using the switched Direct Current Potential Drop (DCPD) method. The basic design and initial mechanical testing of the load system and implementation of the DCPD method have been previously reported. This paper presents the results of initial autoclave testing at INL and the adaptation of the design for use in the high pressure, high temperature water loop at the MITR 6 MW research reactor, where an initial demonstration is planned in mid-2015. Materials considerations for the high pressure bellows are addressed. Design modifications to the loading mechanism required by the

  2. Nuclear Reactors. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  3. Preliminary study on new configuration with LEU fuel assemblies for the Dalat nuclear research reactor

    SciTech Connect

    Van Lam Pham; Vinh Vinh Le; Ton Nghiem Huynh; Ba Vien Luong; Kien Cuong Nguyen

    2008-07-15

    The fuel conversion of the Dalat Nuclear Research Reactor (DNRR) is being realized. The DNRR is a pool type research reactor which was reconstructed from the 250 kW TRIGA- MARK II reactor. The reconstructed reactor attained its nominal power of 500 kW in February 1984. According to the results of design and safety analyses performed by the joint study between RERTR Program at Argonne National Laboratory (ANL) and Vietnam Atomic Energy Commission (VAEC) the mixed core of irradiated HEU and new LEU WWR-M2 fuel assemblies will be created soon. This paper presents the results of preliminary study on new configuration with only LEU fuel assemblies for the DNRR. The codes MCNP, REBUS and VARI3D are used to calculate neutron flux performance in irradiation positions and kinetics parameters. The idea of change of Beryllium rod reloading enables to get working configuration assured shutdown margin, thermal-hydraulic safety and increase in thermal neutron flux in neutron trap at the center of DNRR active core. (author)

  4. A risk characterization of safety research areas for Integral Fast Reactor program planning

    SciTech Connect

    Mueller, C.J.; Cahalan, J.E.; Hill, D.J.; Kramer, J.M.; Marchaterre, J.F.; Pedersen, D.R.; Sevy, R.H.; Tilbrook, R.W.; Wei, T.Y.; Wright, A.E.

    1988-01-01

    This paper characterizes the areas of Integral Fast Reactor (IFR) safety research in terms of their importance in addressing the risk of core disruption sequences for innovative designs. Such sequences have traditionally been determined to constitute the primary risk to public health and safety. All core disruption sequences are folded into four fault categories: classic unprotected (unscrammed) events; loss of decay heat; local fault propagation; and failure of critical reactor structures. Event trees are used to describe these sequences and the areas in the IFR Safety and related Base Technology research programs are discussed with respect to their relevance in addressing the key issues in preventing or delimiting core disruptive sequences. Thus a measure of potential for risk reduction is obtained for guidance in establishing research priorites.

  5. Fresh and Spent Nuclear Fuel Repatriation from the IRT-2000 Research Reactor Facility, Sofia, Bulgaria

    SciTech Connect

    K. J. Allen; T. G. Apostolov; I. S. Dimitrov

    2009-03-01

    The IRT 2000 research reactor, operated by the Bulgarian Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped all of their Russian-origin nuclear fuel from the Republic of Bulgaria to the Russian Federation beginning in 2003 and completing in 2008. These fresh and spent fuel shipments removed all highly enriched uranium (HEU) from Bulgaria. The fresh fuel was shipped by air in December 2003 using trucks and a commercial cargo aircraft. One combined spent fuel shipment of HEU and low enriched uranium (LEU) was completed in July 2008 using high capacity VPVR/M casks transported by truck, barge, and rail. The HEU shipments were assisted by the Russian Research Reactor Fuel Return Program (RRRFR) and the LEU spent fuel shipment was funded by Bulgaria. This report describes the work, approvals, organizations, equipment, and agreements required to complete these shipments and concludes with several major lessons learned.

  6. Testing of a Transport Cask for Research Reactor Spent Fuel - 13003

    SciTech Connect

    Mourao, Rogerio P.; Leite da Silva, Luiz; Miranda, Carlos A.; Mattar Neto, Miguel; Quintana, Jose F.A.; Saliba, Roberto O.; Novara, Oscar E.

    2013-07-01

    Since the beginning of the last decade three Latin American countries that operate research reactors - Argentina, Brazil and Chile - have been joining efforts to improve the regional capability in the management of spent fuel elements from the TRIGA and MTR reactors operated in the region. A main drive in this initiative, sponsored by the International Atomic Energy Agency, is the fact that no definite solution regarding the back end of the research reactor fuel cycle has been taken by any of the participating country. However, any long-term solution - either disposition in a repository or storage away from reactor - will involve at some stage the transportation of the spent fuel through public roads. Therefore, a licensed cask that provides adequate shielding, assurance of subcriticality, and conformance to internationally accepted safety, security and safeguards regimes is considered a strategic part of any future solution to be adopted at a regional level. As a step in this direction, a packaging for the transport of irradiated fuel for MTR and TRIGA research reactors was designed by the tri-national team and a half-scale model equipped with the MTR version of the internal basket was constructed in Argentina and Brazil and tested in Brazil. Three test campaigns have been carried out so far, covering both normal conditions of transportation and hypothetical accident conditions. After failing the tests in the first two test series, the specimen successfully underwent the last test sequence. A second specimen, incorporating the structural improvements in view of the previous tests results, will be tested in the near future. Numerical simulations of the free drop and thermal tests are being carried out in parallel, in order to validate the computational modeling that is going to be used as a support for the package certification. (authors)

  7. Proposed design for the PGAA facility at the TRIGA IPR-R1 research reactor.

    PubMed

    Guerra, Bruno T; Jacimovic, Radojko; Menezes, Maria Angela Bc; Leal, Alexandre S

    2013-01-01

    This work presents an initial proposed design of a Prompt Gamma Activation Analysis (PGAA) facility to be installed at the TRIGA IPR-R1, a 60 years old research reactor of the Centre of Development of Nuclear Technology (CDTN) in Brazil. The basic characteristics of the facility and the results of the neutron flux are presented and discussed. The proposed design is based on a quasi vertical tube as a neutron guide from the reactor core, inside the reactor pool, 6 m below the room's level where shall be located the rack containing the set sample/detector/shielding. The evaluation of the thermal and epithermal neutron flux in the sample position was done considering the experimental data obtained from a vertical neutron guide, already existent in the reactor, and the simulated model for the facility. The experimental determination of the neutron flux was obtained through the standard procedure of using Au monitors in different positions of the vertical tube. In order to validate both, this experiment and calculations of the simulated model, the flux was also determined in different positions in the core used for sample irradiation. The model of the system was developed using the Monte Carlo code MCNP5. The preliminary results suggest the possibility of obtaining a beam with minimum thermal flux of magnitude 10(6) cm(-2) s(-1), which confirm the technical feasibility of the installation of PGAA at the TRIGA IPR-R1 reactor. This beam would open new possibilities for enhancing the applications using the reactor.

  8. Recent upgrades and new scientific infrastructure of MARIA research reactor, Otwock-Swierk, Poland

    SciTech Connect

    2015-07-01

    The MARIA reactor is open-pool type, water and beryllium moderated. It has two independent primary cooling systems: fuel and pool cooling system. Each fuel assembly is cooled down separately in pressurized channels with individual performances characterization. The fuel assemblies consist of five layers of bent plates or six concentric tubes. Currently it is one of the most powerful research reactors in Europe with operation availability at least up to 2030. Its nominal thermal power is 30 MW. It is characterized by high neutron flux density: up to 3x10{sup 14} n cm{sup -2} s{sup -1} in case of thermal neutrons, and up to 2x10{sup 13} n cm{sup -2} s{sup -1} in case of fast neutrons. The reactor is operated for ca. 4000 h per year. The reactor facility is equipped with fully equipped three hot cells with shielding up to 10{sup 15} Bq. Adjacent to the reactor facility, the radio-pharmaceutics plant (POLATOM) and Material Research Laboratory are located. They are equipped with a number of hot cells with instrumentation. The transport system of radioactive materials from reactor facility to Material Research Laboratory is available. During 2014 the MARIA reactor has been operated with three different types of fuel the same time: previous 36% enriched fuel, and two types of new LEU fuels. In the meantime, molybdenum irradiation programme has been developed. Maria is a multifunctional research tool, with a notable application in production of radioisotopes, radio-pharmaceutics manufacturing (ca. 600 TBq/y), {sup 99}Mo for medical scintigraphy (ca. 6000 TBq/y), neutron transmutation doping of silicon single crystals, wide scientific research based on neutron beams utilization. From the beginning MARIA reactor was intended for loop and fuel testing research activities. Currently it is used mostly as material testing and irradiation facility and for that reason it has wide experimental capabilities. There are eight horizontal irradiation channels from among whom six of them

  9. Corrosion Surveillance for Research Reactor Spent Nuclear Fuel in Wet Basin Storage

    SciTech Connect

    Howell, J.P.

    1998-10-16

    Foreign and domestic test and research reactor fuel is currently being shipped from locations over the world for storage in water filled basins at the Savannah River Site (SRS). The fuel was provided to many of the foreign countries as a part of the "Atoms for Peace" program in the early 1950's. In support of the wet storage of this fuel at the research reactor sites and at SRS, corrosion surveillance programs have been initiated. The International Atomic Energy Agency (IAEA) established a Coordinated Research Program (CRP) in 1996 on "Corrosion of Research Reactor Aluminum-Clad Spent Fuel in Water" and scientists from ten countries worldwide were invited to participate. This paper presents a detailed discussion of the IAEA sponsored CRP and provides the updated results from corrosion surveillance activities at SRS. In May 1998, a number of news articles around the world reported stories that microbiologically influenced corrosion (MIC) was active on the aluminum-clad spent fuel stored in the RBOF basin at SRS. This assessment was found to be in error with details presented in this paper. A biofilm was found on aluminum coupons, but resulted in no corrosion. Cracks seen on the surface were not caused by corrosion, but by stresses from the volume expansion of the oxide formed during pre-conditioning autoclaving. There has been no pitting caused by MIC or any other corrosion mechanism seen in the RBOF basin since initiation of the SRS Corrosion Surveillance Program in 1993.

  10. Strategic Plan for Light Water Reactor Research and Development

    SciTech Connect

    2004-02-01

    The purpose of this strategic plan is to establish a framework that will allow the Department of Energy (DOE) and the nuclear power industry to jointly plan the nuclear energy research and development (R&D) agenda important to achieving the Nation's energy goals. This strategic plan has been developed to focus on only those R&D areas that will benefit from a coordinated government/industry effort. Specifically, this plan focuses on safely sustaining and expanding the electricity output from currently operating nuclear power plants and expanding nuclear capacity through the deployment of new plants. By focusing on R&D that addresses the needs of both current and future nuclear plants, DOE and industry will be able to take advantage of the synergism between these two technology areas, thus improving coordination, enhancing efficiency, and further leveraging public and private sector resources. By working together under the framework of this strategic plan, DOE and the nuclear industry reinforce their joint commitment to the future use of nuclear power and the National Energy Policy's goal of expanding its use in the United States. The undersigned believe that a public-private partnership approach is the most efficient and effective way to develop and transfer new technologies to the marketplace to achieve this goal. This Strategic Plan is intended to be a living document that will be updated annually.

  11. Dosimetry at the Portuguese research reactor using thermoluminescence measurements and Monte Carlo calculations.

    PubMed

    Fernandes, A C; Gonçalves, I C; Santos, J; Cardoso, J; Santos, L; Ferro Carvalho, A; Marques, J G; Kling, A; Ramalho, A J G; Osvay, M

    2006-01-01

    This work presents an extensive study on Monte Carlo radiation transport simulation and thermoluminescent (TL) dosimetry for characterising mixed radiation fields (neutrons and photons) occurring in nuclear reactors. The feasibility of these methods is investigated for radiation fields at various locations of the Portuguese Research Reactor (RPI). The performance of the approaches developed in this work is compared with dosimetric techniques already existing at RPI. The Monte Carlo MCNP-4C code was used for a detailed modelling of the reactor core, the fast neutron beam and the thermal column of RPI. Simulations using these models allow to reproduce the energy and spatial distributions of the neutron field very well (agreement better than 80%). In the case of the photon field, the agreement improves with decreasing intensity of the component related to fission and activation products. (7)LiF:Mg,Ti, (7)LiF:Mg,Cu,P and Al(2)O(3):Mg,Y TL detectors (TLDs) with low neutron sensitivity are able to determine photon dose and dose profiles with high spatial resolution. On the other hand, (nat)LiF:Mg,Ti TLDs with increased neutron sensitivity show a remarkable loss of sensitivity and a high supralinearity in high-intensity fields hampering their application at nuclear reactors.

  12. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core

    PubMed Central

    Lashkari, A.; Khalafi, H.; Kazeminejad, H.

    2013-01-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change. PMID:24976672

  13. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core.

    PubMed

    Lashkari, A; Khalafi, H; Kazeminejad, H

    2013-05-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change.

  14. Skin decontamination: principles and perspectives.

    PubMed

    Chan, Heidi P; Zhai, Hongbo; Hui, Xiaoying; Maibach, Howard I

    2013-11-01

    Skin decontamination is the primary intervention needed in chemical, biological and radiological exposures, involving immediate removal of the contaminant from the skin performed in the most efficient way. The most readily available decontamination system on a practical basis is washing with soap and water or water only. Timely use of flushing with copious amounts of water may physically remove the contaminant. However, this traditional method may not be completely effective, and contaminants left on the skin after traditional washing procedures can have toxic consequences. This article focuses on the principles and practices of skin decontamination.

  15. Decontamination of radionuclides from skin: an overview.

    PubMed

    Tazrart, Anissa; Bérard, Philippe; Leiterer, Alexandra; Ménétrier, Florence

    2013-08-01

    The accident in Fukushima has emphasized the need to increase the capacity of health protection for exposed workers, first responders, and the general public in a major accident situation with release of radioactivity. Skin contamination is one of the most probable risks following major nuclear or radiological incidents, but this risk also exists and incidents can happen in industry, research laboratories, or in nuclear medicine departments. The aim of this paper is to provide an overview of the products currently used after skin contamination in order to highlight the needs and ways to improve the medical management of victims. From this review, it can be observed that the current use of these radiological decontamination products is essentially based on empiricism. In addition, some of these products are harsh and irritating, even toxic, possibly damaging the skin barrier. In some emergency situations in which clean water is in short supply, most of the current products cannot be used. Research on the mechanisms of action of decontaminating products is needed to develop a decontamination strategy.

  16. NCTPlan application for neutron capture therapy dosimetric planning at MEPhI nuclear research reactor.

    PubMed

    Elyutina, A S; Kiger, W S; Portnov, A A

    2011-12-01

    The results of modeling of two therapeutic beams HEC-1 and HEC-4 at the NRNU "MEPhI" research nuclear reactor exploitable for preclinical treatments are reported. The exact models of the beams are constructed as an input to the NCTPlan code used for planning Neutron Capture Therapy (NCT) procedure. The computations are purposed to improve the accuracy of prediction of a dose absorbed in tissue with the account of all components of radiation.

  17. Neutron fluence depth profiles in water phantom on epithermal beam of LVR-15 research reactor.

    PubMed

    Viererbl, L; Klupak, V; Lahodova, Z; Marek, M; Burian, J

    2010-01-01

    Horizontal channel with epithermal neutron beam at the LVR-15 research reactor is used mainly for boron neutron capture therapy. Neutron fluence depth profiles in a water phantom characterise beam properties. The neutron fluence (approximated by reaction rates) depth profiles were measured with six different types of activation detectors. The profiles were determined for thermal, epithermal and fast neutrons. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. A Simple Setup for Neutron Tomography at the Portuguese Nuclear Research Reactor

    NASA Astrophysics Data System (ADS)

    Pereira, M. A. Stanojev; Marques, J. G.; Pugliesi, R.

    2012-12-01

    A simple setup for neutron radiography and tomography was recently installed at the Portuguese Research Reactor. The objective of this work was to determine the operational characteristics of the installed setup, namely the irradiation time to obtain the best dynamic range for individual images and the spatial resolution. The performance of the equipment was demonstrated by imaging a fragment of a seventeenth-century decorative tile.

  19. The Possible Use of Cermet Fuel in the Dido and Pluto Heavy-Water Research Reactors,

    DTIC Science & Technology

    1981-08-01

    tions, I.A.E.A., Vienna (September 1980). 5. TOULOUKIAN , Y.S., ’Thermophysical properties of high-temperature solid materials’, Purdue University...the implications of using lower-enrichment fuels in heavy-water-moderated research reactors. The uranium content of the U/Al alloy at present used...cannot be increased sufficiently to maintain the requisite UL3 5 content without undesirable effects on the physical properties of the alloy . A different

  20. Cladding hull decontamination and densification process. Part 1. The prototype cladding hull decontamination system

    SciTech Connect

    Lambright, T.M.; Montgomery, D.R.

    1980-04-01

    A prototype system for decontaminating Zircaloy-4 cladding hulls has been assembled and tested at Pacific Northwest Laboratory. The decontamination process consists of treatment with a gaseous mixture of hydrogen fluoride (HF) and argon (Ar) followed by a dilute aqueous etch of ammonium oxalate, ammonium citrate, ammonium fluoride, and hydrogen peroxide. The continuous cleaning process described in this report successfully descaled small portions of most charges, but was unable to handle the original design capacity of 4 kg/hr because of problems in the following areas: control of HF reactor temperatures, regulation of HF and argon mixtures and flows, isolation of the HF reactor atmosphere from the aqueous washer/rinser atmosphere, regulation of undesirable side reactions, and control over hull transport through the system. Due to the limited time available to solve these problems, the system did not attain fully operational status. The work was performed with unirradiated hulls that simulated irradiated hulls. The system was not built to be remotely operable. The process chemistry and system equipment are described in this report with particular emphasis on critical operating areas. Recommendations for improved system operation are included.

  1. Stainless steel decontamination manipulators

    SciTech Connect

    Sullivan, R.J.

    1986-01-01

    Three, large-volume coverage manipulator systems were designed and built for the Defense Water Processing Facility at the Savannah River Laboratory. These stainless steel systems will be used for high-pressure spray decontamination of waste containers and large process equipment modules. Each system has a manipulator arm, folding boom, and vertical drive and guide structure. Handling capacity is 45 kg, horizontal reach is 4.6 m with a 180-deg swing motion, and the vertical travel is 6 m. The system is remotely removable and replaceable in modules using an overhead crane and an impact wrench. The manipulator arm has seven motions: Shoulder rotation and pivot, elbow pivot, wrist pivot and rotation, and grip open-close. All motions are variable speed and are slip-clutch protected to prevent overloading from external forces (collisions).

  2. Glovebox decontamination technology comparison

    SciTech Connect

    Quintana, D.M.; Rodriguez, J.B.; Cournoyer, M.E.

    1999-09-26

    Reconfiguration of the CMR Building and TA-55 Plutonium Facility for mission requirements will require the disposal or recycle of 200--300 gloveboxes or open front hoods. These gloveboxes and open front hoods must be decontaminated to meet discharge limits for Low Level Waste. Gloveboxes and open front hoods at CMR have been painted. One of the deliverables on this project is to identify the best method for stripping the paint from large numbers of gloveboxes. Four methods being considered are the following: conventional paint stripping, dry ice pellets, strippable coatings, and high pressure water technology. The advantages of each technology will be discussed. Last, cost comparisons between the technologies will be presented.

  3. Granulated decontamination formulations

    DOEpatents

    Tucker, Mark D.

    2007-10-02

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  4. Oxidative Tritium Decontamination System

    SciTech Connect

    Charles A. Gentile; John J. Parker; Gregory L. Guttadora; Lloyd P. Ciebiera

    2002-02-11

    The Princeton Plasma Physics Laboratory, Tritium Systems Group has developed and fabricated an Oxidative Tritium Decontamination System (OTDS), which is designed to reduce tritium surface contamination on various components and items. The system is configured to introduce gaseous ozone into a reaction chamber containing tritiated items that require a reduction in tritium surface contamination. Tritium surface contamination (on components and items in the reaction chamber) is removed by chemically reacting elemental tritium to tritium oxide via oxidation, while purging the reaction chamber effluent to a gas holding tank or negative pressure HVAC system. Implementing specific concentrations of ozone along with catalytic parameters, the system is able to significantly reduce surface tritium contamination on an assortment of expendable and non-expendable items. This paper will present the results of various experimentation involving employment of this system.

  5. Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies

    SciTech Connect

    Pond, R.B.; Matos, J.E.

    1996-12-31

    This document has been prepared to assist research reactor operators possessing spent fuel containing enriched uranium of United States origin to prepare part of the documentation necessary to ship this fuel to the United States. Data are included on the nuclear mass inventory, photon dose rate, and thermal decay heat of spent research reactor fuel assemblies. Isotopic masses of U, Np, Pu and Am that are present in spent research reactor fuel are estimated for MTR, TRIGA and DIDO-type fuel assembly types. The isotopic masses of each fuel assembly type are given as functions of U-235 burnup in the spent fuel, and of initial U-235 enrichment and U-235 mass in the fuel assembly. Photon dose rates of spent MTR, TRIGA and DIDO-type fuel assemblies are estimated for fuel assemblies with up to 80% U-235 burnup and specific power densities between 0.089 and 2.857 MW/kg[sup 235]U, and for fission product decay times of up to 20 years. Thermal decay heat loads are estimated for spent fuel based upon the fuel assembly irradiation history (average assembly power vs. elapsed time) and the spent fuel cooling time.

  6. Decontamination and decommissioning activities photobriefing book FY 2000.

    SciTech Connect

    Fellhauer, C. F.

    2001-02-05

    A major milestone was reached in Fiscal Year (FY) 2000--the completion of the Chicago Pile-5 (CP-5) D and D Project. CP-5, the first reactor built on the Argonne National Laboratory-East (ANL-E) site, was a 5-megawatt, heavy water-moderated, enriched uranium-fueled reactor. It was the principal reactor on the Argonne site used to produce neutrons for scientific research from 1954 to 1979. The reactor was shut down and defueled in 1979, and placed in a lay-up condition. In 1990, funding was provided to begin the decontamination and decommissioning (D and D) of this facility, and work began in June 1991. D and D tasks were performed by both ANL-E personnel and subcontractor personnel from Duke Engineering and Services, Marlborough MA, under the management of ANL-E D and D Program personnel. In July 2000, the final project report was presented to the Department of Energy, and the facility was formally decommissioned and transferred to the landlord. Total project duration was 97 months, and total project cost was $29.5M. Also, in FY 2000, work began on the 60 Cyclotron D and D Project. An accelerator used for basic research, this facility produced beams of deuterons, helium ions, singly charged hydrogen molecules, and neutrons of a broad energy spectrum. This machine was built in 1952; operations ended in 1992. Late in FY 1999, MOTA Corporation, Columbia SC, was selected as subcontractor. MOTA used a custom-built 76-inch reciprocating saw manufactured by Reverse Engineering, Columbia SC, to cut the cyclotron's 220-ton steel yoke into blocks that were approximately 17,000 pounds each. This project is scheduled to be completed in March 2001. In addition to a photographic chronology of FY 2000 activities at the CP-5 D and D Project and the 60 Cyclotron D and D Project, brief descriptions of other FY 2000 activities and of projects planned for the future are provided in this photobriefing book.

  7. NUMERICAL SIMULATION FOR MECHANICAL BEHAVIOR OF U10MO MONOLITHIC MINIPLATES FOR RESEARCH AND TEST REACTORS

    SciTech Connect

    Hakan Ozaltun & Herman Shen

    2011-11-01

    This article presents assessment of the mechanical behavior of U-10wt% Mo (U10Mo) alloy based monolithic fuel plates subject to irradiation. Monolithic, plate-type fuel is a new fuel form being developed for research and test reactors to achieve higher uranium densities within the reactor core to allow the use of low-enriched uranium fuel in high-performance reactors. Identification of the stress/strain characteristics is important for understanding the in-reactor performance of these plate-type fuels. For this work, three distinct cases were considered: (1) fabrication induced residual stresses (2) thermal cycling of fabricated plates; and finally (3) transient mechanical behavior under actual operating conditions. Because the temperatures approach the melting temperature of the cladding during the fabrication and thermal cycling, high temperature material properties were incorporated to improve the accuracy. Once residual stress fields due to fabrication process were identified, solution was used as initial state for the subsequent simulations. For thermal cycling simulation, elasto-plastic material model with thermal creep was constructed and residual stresses caused by the fabrication process were included. For in-service simulation, coupled fluid-thermal-structural interaction was considered. First, temperature field on the plates was calculated and this field was used to compute the thermal stresses. For time dependent mechanical behavior, thermal creep of cladding, volumetric swelling and fission induced creep of the fuel foil were considered. The analysis showed that the stresses evolve very rapidly in the reactor. While swelling of the foil increases the stress of the foil, irradiation induced creep causes stress relaxation.

  8. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  9. Los Alamos DP West Plutonium Facility decontamination project, 1978-1981

    SciTech Connect

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-09-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation.

  10. US Department of Energy Three Mile Island research and development program: Annual report, 1986

    SciTech Connect

    1987-04-01

    Defueling of the Three Mile Island Unit 2 (TMI-2) reactor continued through 1986. This report summarizes this work and other TMI-2 related cleanup, research, and development activities. Other major topics include: core stratification sampling and other data acquisition tasks, the fuel shipping program, waste immobilization and management, decontamination and dose reduction, and future uses and applications of TMI-2 data.

  11. Ozone decontamination of bioclean rooms.

    PubMed Central

    Masaoka, T; Kubota, Y; Namiuchi, S; Takubo, T; Ueda, T; Shibata, H; Nakamura, H; Yoshitake, J; Yamayoshi, T; Doi, H; Kamiki, T

    1982-01-01

    To establish a convenient method for decontaminating bioclean rooms, the effect of ozone at 80 mg/m3 for 72 h was compared with formaldehyde vaporization at an initial concentration of 150 mg/m3 with a gradual decrease to 20 mg/m3 during 72 h. Ozone was found to be inferior to formaldehyde in activity. When the bioclean room was decontaminated twice with ozone, the mean colony count per 10 cm2 was decreased to about the same level as when formaldehyde was used. Ozone had a strong caustic effect upon rubber materials. Despite these disadvantages, ozone decontamination was demonstrated to be superior to formaldehyde vaporization because of convenience, insignificant inhalation of the disinfectant by the hospital staff, and very rapid expulsion of the gas after ventilation. Because the disadvantages of ozone can be easily controlled, this study suggests that ozone decontamination is a promising method for maintaining bioclean rooms. PMID:6803668

  12. Decontamination of Subway Infrastructure Materials ...

    EPA Pesticide Factsheets

    Report This report provides the results of an assessment to determine the decontamination efficacy of methyl bromide (MB) fumigant in inactivating Bacillus anthracis (B.a.; causative agent for anthrax) spores on materials typically found in subway system infrastructure. To facilitate future decontaminations employing MB in a subway environment, this investigation focused on finding efficacious conditions when using MB at temperatures that may be encountered in an underground subway system (i.e., temperatures lower than used in previous studies).

  13. Large-bore pipe decontamination

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  14. Analysis of neutron flux distribution for the validation of computational methods for the optimization of research reactor utilization.

    PubMed

    Snoj, L; Trkov, A; Jaćimović, R; Rogan, P; Zerovnik, G; Ravnik, M

    2011-01-01

    In order to verify and validate the computational methods for neutron flux calculation in TRIGA research reactor calculations, a series of experiments has been performed. The neutron activation method was used to verify the calculated neutron flux distribution in the TRIGA reactor. Aluminium (99.9 wt%)-Gold (0.1 wt%) foils (disks of 5mm diameter and 0.2mm thick) were irradiated in 33 locations; 6 in the core and 27 in the carrousel facility in the reflector. The experimental results were compared to the calculations performed with Monte Carlo code MCNP using detailed geometrical model of the reactor. The calculated and experimental normalized reaction rates in the core are in very good agreement for both isotopes indicating that the material and geometrical properties of the reactor core are modelled well. In conclusion one can state that our computational model describes very well the neutron flux and reaction rate distribution in the reactor core. In the reflector however, the accuracy of the epithermal and thermal neutron flux distribution and attenuation is lower, mainly due to lack of information about the material properties of the graphite reflector surrounding the core, but the differences between measurements and calculations are within 10%. Since our computational model properly describes the reactor core it can be used for calculations of reactor core parameters and for optimization of research reactor utilization.

  15. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect

    J. K. Wright; R. N. Wright

    2008-04-01

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have

  16. Decontamination impacts on solidification and waste disposal

    SciTech Connect

    Kempf, C.R.; Soo, P.

    1988-01-01

    Research to determine chemical and physical conditions which could lead to thermal excursions, gas generation, and/or general degradation of decontamination-reagent-loaded resins has shown that IRN-78, IONAC A-365, and IRN-77 organic ion exchange resin moisture contents vary significantly depending on the counter ion loading.'' The extent/vigor of the reaction is very highly dependent on the degree of dewatering of the resins and on the method of solution addition. The heat generation may be due, in part, to the heat of neutralization. In studies of the long-term compatibility effects of decontamination waste resins in contact with waste package container materials in the presence of decontamination reagents, radiolysis products and gamma irradiation, it has been found that the corrosion of carbon steel and austenitic stainless steel in mixed bed resins is enhanced by gamma irradiation. However, cracking in high density polyethylene is essentially eliminated because of the rapid removal of oxygen from the environment by gamma-induced oxidation of the large resin mass. 13 refs., 10 figs., 3 tabs.

  17. Metallic surfaces decontamination by using laser light

    SciTech Connect

    Moggia, Fabrice; Lecardonnel, Xavier

    2013-07-01

    Metal surface cleaning appears to be one of the major priorities for industries especially for nuclear industries. The research and the development of a new technology that is able to meet the actual requirements (i.e. waste volume minimization, liquid effluents and chemicals free process...) seems to be the main commitment. Currently, a wide panel of technologies already exists (e.g. blasting, disk sander, electro-decontamination...) but for some of them, the efficiency is limited (e.g, Dry Ice blasting) and for others, the wastes production (liquid and/or solid) remains an important issue. One answer could be the use of a LASER light process. Since a couple of years, the Clean- Up Business Unit of the AREVA group investigates this decontamination technology. Many tests have been already performed in inactive (i.e. on simulants such as paints, inks, resins, metallic oxides) or active conditions (i.e. pieces covered with a thick metallic oxide layer and metallic pieces covered with grease). The paper will describe the results obtained in term of decontamination efficiency during all our validation process. Metallographic characterizations (i.e. SEM, X-ray scattering) and radiological analysis will be provided. We will also focus our paper on the future deployment of the LASER technology and its commercial use at La Hague reprocessing facility in 2013. (authors)

  18. Georgia Institute of Technology research on the Gas Core Actinide Transmutation Reactor (GCATR)

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.; Schneider, A.; Hohl, F.

    1976-01-01

    The program reviewed is a study of the feasibility, design, and optimization of the GCATR. The program is designed to take advantage of initial results and to continue work carried out on the Gas Core Breeder Reactor. The program complements NASA's program of developing UF6 fueled cavity reactors for power, nuclear pumped lasers, and other advanced technology applications. The program comprises: (1) General Studies--Parametric survey calculations performed to examine the effects of reactor spectrum and flux level on the actinide transmutation for GCATR conditions. The sensitivity of the results to neutron cross sections are to be assessed. Specifically, the parametric calculations of the actinide transmutation are to include the mass, isotope composition, fission and capture rates, reactivity effects, and neutron activity of recycled actinides. (2) GCATR Design Studies--This task is a major thrust of the proposed research program. Several subtasks are considered: optimization criteria studies of the blanket and fuel reprocessing, the actinide insertion and recirculation system, and the system integration. A brief review of the background of the GCATR and ongoing research is presented.

  19. OVERVIEW OF CRITERIA FOR INTERIM WET & DRY STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL

    SciTech Connect

    Sindelar, R.; Vinson, D.; Iyer, N.; Fisher, D.

    2010-11-03

    Following discharge from research reactors, spent nuclear fuel may be stored 'wet' in water pools or basins, or it may be stored 'dry' in various configurations including non-sealed or sealed containers until retrieved for ultimate disposition. Interim safe storage practices are based on avoiding degradation to the fuel that would impact functions related to safety. Recommended practices including environmental controls with technical bases, are outlined for wet storage and dry storage of aluminum-clad, aluminum-based research reactor fuel. For wet storage, water quality must be maintained to minimize corrosion degradation of aluminum fuel. For dry storage, vented canister storage of aluminum fuel readily provides a safe storage configuration. For sealed dry storage, drying must be performed so as to minimize water that would cause additional corrosion and hydrogen generation. Consideration must also be given to the potential for radiolytically-generated hydrogen from the bound water in the attendant oxyhydroxides on aluminum fuel from reactor operation for dry storage systems.

  20. Georgia Institute of Technology research on the Gas Core Actinide Transmutation Reactor (GCATR)

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.; Schneider, A.; Hohl, F.

    1976-01-01

    The program reviewed is a study of the feasibility, design, and optimization of the GCATR. The program is designed to take advantage of initial results and to continue work carried out on the Gas Core Breeder Reactor. The program complements NASA's program of developing UF6 fueled cavity reactors for power, nuclear pumped lasers, and other advanced technology applications. The program comprises: (1) General Studies--Parametric survey calculations performed to examine the effects of reactor spectrum and flux level on the actinide transmutation for GCATR conditions. The sensitivity of the results to neutron cross sections are to be assessed. Specifically, the parametric calculations of the actinide transmutation are to include the mass, isotope composition, fission and capture rates, reactivity effects, and neutron activity of recycled actinides. (2) GCATR Design Studies--This task is a major thrust of the proposed research program. Several subtasks are considered: optimization criteria studies of the blanket and fuel reprocessing, the actinide insertion and recirculation system, and the system integration. A brief review of the background of the GCATR and ongoing research is presented.

  1. IGORR-1: Proceedings of the first meeting of the international group on research reactors

    SciTech Connect

    West, C.D.

    1990-05-01

    Many organizations, in several countries, are planning or implementing new or upgraded research reactor projects, but there has been no organized forum devoted entirely to discussion and exchange of information in this field. Over the past year or so, informal discussions resulted in widespread agreement that such a forum would serve a useful purpose. Accordingly, a proposal to form a group was submitted to the leading organizations known to be involved in projects to build or upgrade reactor facilities. Essentially all agreed to join in the formation of the International Group on Research Reactors (IGORR) and nominated a senior staff member to serve on its international organizing committee. The first IGORR meeting took place on February 28--March 2, 1990. It was very successful and well attended; some 52 scientists and engineers from 25 organizations in 10 countries participated in 2-1/2 days of open and informative presentations and discussions. Two workshop sessions offered opportunities for more detailed interaction among participants and resulted in identification of common R D needs, sources of data, and planned new facilities. Individual papers have been cataloged separately.

  2. Validation of deterministic and Monte Carlo codes for neutronics calculation of the IRT-type research reactor

    NASA Astrophysics Data System (ADS)

    Shchurovskaya, M. V.; Alferov, V. P.; Geraskin, N. I.; Radaev, A. I.

    2017-01-01

    The results of the validation of a research reactor calculation using Monte Carlo and deterministic codes against experimental data and based on code-to-code comparison are presented. The continuous energy Monte Carlo code MCU-PTR and the nodal diffusion-based deterministic code TIGRIS were used for full 3-D calculation of the IRT MEPhI research reactor. The validation included the investigations for the reactor with existing high enriched uranium (HEU, 90 w/o) fuel and low enriched uranium (LEU, 19.7 w/o, U-9%Mo) fuel.

  3. LARGE-BORE PIPE DECONTAMINATION

    SciTech Connect

    M.A. Ebadian

    1999-01-01

    The decontamination and characterization of large-bore pipe is difficult because of the various geometries and diameters of pipe and its different material types. A robust decontamination system must be capable of adapting to different pipe diameters (project scope is 6 inches to 24 inches), cleaning surfaces with various surface conditions and material types (i.e., painted, rusted, carbon steel, or stainless steel), and be cost-effective to operate and maintain. The characterization system must be capable of handling the different pipe parameters and detecting contamination on the inside and outside surfaces. It must also operate in a cost-effective manner. Current technology options do not provide a robust system to meet these objectives. The purpose of this project is to verify the need for this technology through determining quantities of pipe available for decontamination (completed FY97), perform a technology screening process to select technologies for decontamination (completed FY97) and characterization (completed FY98), perform treatability studies to collect required performance data (completed FY97), and design and fabricate a prototype system to decontaminate and characterize the internal and external surfaces of large-bore pipe. A field mobile system capable of performing decontamination and characterization operations will be the main deliverable for this project. A summary of activities completed during FY97 is provided to understand the project development and implementation process.

  4. RELAP5 Application to Accident Analysis of the NIST Research Reactor

    SciTech Connect

    Baek, J.; Cuadra Gascon, A.; Cheng, L.Y.; Diamond, D.

    2012-03-18

    Detailed safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The time-dependent analysis of the primary system is determined with a RELAP5 transient analysis model that includes the reactor vessel, the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. A post-processing of the simulation results has been conducted to evaluate minimum critical heat flux ratio (CHFR) using the Sudo-Kaminaga correlation. Evaluations are performed for the following accidents: (1) the control rod withdrawal startup accident and (2) the maximum reactivity insertion accident. In both cases the RELAP5 results indicate that there is adequate margin to CHF and no damage to the fuel will occur because of sufficient coolant flow through the fuel channels and the negative scram reactivity insertion.

  5. Characterisation of the epithermal neutron irradiation facility at the Portuguese research reactor using MCNP.

    PubMed

    Beasley, D G; Fernandes, A C; Santos, J P; Ramos, A R; Marques, J G; King, A

    2015-05-01

    The radiation field at the epithermal beamline and irradiation chamber installed at the Portuguese Research Reactor (RPI) at the Campus Tecnológico e Nuclear of Instituto Superior Técnico was characterised in the context of Prompt Gamma Neutron Activation Analysis (PGNAA) applications. Radiographic films, activation foils and thermoluminescence dosimeters were used to measure the neutron fluence and photon dose rates in the irradiation chamber. A fixed-source MCNPX model of the beamline and chamber was developed and compared to measurements in the first step towards planning a new irradiation chamber. The high photon background from the reactor results in the saturation of the detector and the current facility configuration yields an intrinsic insensitivity to various elements of interest for PGNAA. These will be addressed in future developments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Production and modeling of radioactive gold nanoparticles in Tehran research reactor.

    PubMed

    Hosseini, Seyedeh Fatemeh; Sadeghi, Mahdi; Aboudzadeh, Mohammad Reza; Mohseni, Morteza

    2016-12-01

    Gold has two medically useful radioactive isotopes, (198)Au and (199)Au, for locally irradiating and killing tumor cells. (198)Au radionuclide has been produced through the irradiation of the pure gold via (197)Au(n,γ)(198)Au reaction in the Tehran Research Reactor at a thermal neutron flux of 4.5×10(13)ncm(-2)s(-1) for the different irradiation times. In this paper, the activity of (198)Au radionuclide has been determined using MCNPX-2.6 and TALYS-1.6 codes and also the theoretical approach. The calculated results were compared with the corresponding experimental values. The calculated results were in good agreement with the experimental data, thus the used codes can be used as a powerful tool to predict and optimize production conditions in reactor.

  7. Decommissioning Small Research and Training Reactors; Experience on Three Recent University Projects - 12455

    SciTech Connect

    Gilmore, Thomas; DeWitt, Corey; Miller, Dustin; Colborn, Kurt

    2012-07-01

    Decommissioning small reactors within the confines of an active University environment presents unique challenges. These range from the radiological protection of the nearby University population and grounds, to the logistical challenges of working in limited space without benefit of the established controlled, protected, and vital areas common to commercial facilities. These challenges, and others, are discussed in brief project histories of three recent (calendar year 2011) decommissioning activities at three University training and research reactors. These facilities include three separate Universities in three states. The work at each of the facilities addresses multiple phases of the decommissioning process, from initial characterization and pre-decommissioning waste removal, to core component removal and safe storage, through to complete structural dismantlement and site release. The results of the efforts at each University are presented, along with the challenges that were either anticipated or discovered during the decommissioning efforts, and results and lessons learned from each of the projects. (authors)

  8. Design of the cold neutron triple-axis spectrometer at the China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Cheng, P.; Zhang, Hongxia; Bao, W.; Schneidewind, A.; Link, P.; Grünwald, A. T. D.; Georgii, R.; Hao, L. J.; Liu, Y. T.

    2016-06-01

    The design of the first cold neutron triple-axis spectrometer at the China Advanced Research Reactor is presented. Based on the Monte Carlo simulations using neutron ray-tracing program McStas, the parameters of major neutron optics in this instrument are optimized. The neutron flux at sample position is estimated to be 5.6 ×107 n/cm2/s at neutron incident energy Ei=5 meV when the reactor operates normally at the designed 60 MW power. The performances of several neutron supermirror polarizing devices are compared and their critical parameters are optimized for this spectrometer. The polarization analysis will be realized with a flexible switch from the unpolarized experimental mode.

  9. The Advanced Neutron Source (ANS) project: A world-class research reactor facility

    SciTech Connect

    Thompson, P.B.; Meek, W.E.

    1993-07-01

    This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5{times}10{sup 19}m{sup {minus}2}{center_dot}sec{sup {minus}1}. Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities.

  10. Shielding calculation and criticality safety analysis of spent fuel transportation cask in research reactors.

    PubMed

    Mohammadi, A; Hassanzadeh, M; Gharib, M

    2016-02-01

    In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Reactor physics teaching and research in the Swiss nuclear engineering master

    SciTech Connect

    Chawla, R.

    2012-07-01

    Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)

  12. BNL Building 650 lead decontamination and treatment feasibility study. Final report

    SciTech Connect

    Kalb, P.D.; Cowgill, M.G.; Milian, L.W.

    1995-10-01

    Lead has been used extensively at Brookhaven National Laboratory (BNL) for radiation shielding in numerous reactor, accelerator and other research programs. A large inventory of excess lead (estimated at 410,000 kg) in many shapes and sizes is currently being stored. Due to it`s toxicity, lead and soluble lead compounds are considered hazardous waste by the Environmental Protection Agency. Through use at BNL, some of the lead has become radioactive, either by contamination of the surface or through activation by neutrons or deuterons. This study was conducted at BNL`s Environmental and Waste Technology Center for the BNL Safety and Environmental Protection Division to evaluate feasibility of various treatment options for excess lead currently being stored. The objectives of this effort included investigating potential treatment methods by conducting a review of the literature, developing a means of screening lead waste to determine the radioactive characteristics, examining the feasibility of chemical and physical decontamination technologies, and demonstrating BNL polyethylene macro-encapsulation as a means of treating hazardous or mixed waste lead for disposal. A review and evaluation of the literature indicated that a number of physical and chemical methods are available for decontamination of lead. Many of these techniques have been applied for this purpose with varying degrees of success. Methods that apply mechanical techniques are more appropriate for lead bricks and sheet which contain large smooth surfaces amenable to physical abrasion. Lead wool, turnings, and small irregularly shaped pieces would be treated more effectively by chemical decontamination techniques. Either dry abrasion or wet chemical methods result in production of a secondary mixed waste stream that requires treatment prior to disposal.

  13. International Atomic Energy Agency support of research reactor highly enriched uranium to low enriched uranium fuel conversion projects

    SciTech Connect

    Bradley, E.; Adelfang, P.; Goldman, I.N.

    2008-07-15

    The IAEA has been involved for more than twenty years in supporting international nuclear non- proliferation efforts associated with reducing the amount of highly enriched uranium (HEU) in international commerce. IAEA projects and activities have directly supported the Reduced Enrichment for Research and Test Reactors (RERTR) programme, as well as directly assisted efforts to convert research reactors from HEU to LEU fuel. HEU to LEU fuel conversion projects differ significantly depending on several factors including the design of the reactor and fuel, technical needs of the member state, local nuclear infrastructure, and available resources. To support such diverse endeavours, the IAEA tailors each project to address the relevant constraints. This paper presents the different approaches taken by the IAEA to address the diverse challenges involved in research reactor HEU to LEU fuel conversion projects. Examples of conversion related projects in different Member States are fully detailed. (author)

  14. Inspection methods for physical protection Task III review of other agencies' physical security activities for research reactors

    SciTech Connect

    1980-01-01

    In Task I of this project, the current Nuclear Regulatory Commission (NRC) position-on physical security practices and procedures at research reactors were reviewed. In the second task, a sampling of the physical security plans was presented and the three actual reactor sites described in the security plans were visited. The purpose of Task III is to review other agencies' physical security activities for research reactors. During this phase, the actions, procedures and policies of two domestic and two foreign agencies other than the NRC that relate to the research reactor community were examined. The agencies examined were: International Atomic Energy Agency; Canadian Atomic Energy Control Board; Department of Energy; and American Nuclear Insurers.

  15. Decommissioning of German Research Reactors Under the Governance of the Federal Ministry of Education and Research - 12154

    SciTech Connect

    Weigl, M.

    2012-07-01

    Since 1956, nuclear research and development (R and D) in Germany has been supported by the Federal Government. The goal was to help German industry to become competitive in all fields of nuclear technology. National research centers were established and demonstration plants were built. In the meantime, all these facilities were shut down and are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactor with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. Another big project was finished in 2008. The Forschungs-Reaktor Juelich 1 (FRJ1), a research reactor with a thermal power of 10 MW was completely dismantled and in September 2008 an oak tree was planted on a green field at the site, where the FRJ1 was standing before. This is another example for German success in the field of D and D. Within these projects a lot of new solutions and innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). Some examples are underwater-cutting technologies like plasma arc cutting and contact arc metal cutting. This clearly shows that research on the field of D and D is important for the future. Moreover, these research activities are important to save the know-how in nuclear engineering in Germany and will enable enterprises to compete on the increasing market of D and D services. The author assumes that an efficient decommissioning of nuclear installations will help stabilize the credibility of nuclear energy. Some critics of nuclear energy are insisting that a return to 'green field sites' is not possible

  16. Estimation of (41)Ar activity concentration and release rate from the TRIGA Mark-II research reactor.

    PubMed

    Hoq, M Ajijul; Soner, M A Malek; Rahman, A; Salam, M A; Islam, S M A

    2016-03-01

    The BAEC TRIGA research reactor (BTRR) is the only nuclear reactor in Bangladesh. Bangladesh Atomic Energy Regulatory Authority (BAERA) regulations require that nuclear reactor licensees undertake all reasonable precautions to protect the environment and the health and safety of persons, including identifying, controlling and monitoring the release of nuclear substances to the environment. The primary activation product of interest in terms of airborne release from the reactor is (41)Ar. (41)Ar is a noble gas readily released from the reactor stacks and most has not decayed by the time it moves offsite with normal wind speed. Initially (41)Ar is produced from irradiation of dissolved air in the primary water which eventually transfers into the air in the reactor bay. In this study, the airborne radioisotope (41)Ar generation concentration, ground level concentration and release rate from the BTRR bay region are evaluated theoretically during the normal reactor operation condition by several governing equations. This theoretical calculation eventually minimizes the doubt about radiological safety to determine the radiation level for (41)Ar activity whether it is below the permissible limit or not. Results show that the estimated activity for (41)Ar is well below the maximum permissible concentration limit set by the regulatory body, which is an assurance for the reactor operating personnel and general public. Thus the analysis performed within this paper is so much effective in the sense of ensuring radiological safety for working personnel and the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Current status of the development of high density LEU fuel for Russian research reactors

    SciTech Connect

    Vatulin, A.; Dobrikova, I.; Suprun, V.; Trifonov, Y.; Kartashev, E.; Lukichev, V.

    2008-07-15

    One of the main directions of the Russian RERTR program is to develop U-Mo fuel and fuel elements/FA with this fuel. The development is carried out both for existing reactors, and for new advanced designs of reactors. Many organizations in Russia, i.e. 'TVEL', RDIPE, RIAR, IRM, NPCC participate in the work. Two fuels are under development: dispersion and monolithic U-Mo fuel, as well two types of FA to use the dispersion U-Mo fuel: with tubular type fuel elements and with pin type fuel elements. The first stage of works was successfully completed. This stage included out-pile, in-pile and post irradiation examinations of U-Mo dispersion fuel in experimental tubular and pin fuel elements under parameters similar to operation conditions of Russian design pool-type research reactors. The results received both in Russia and abroad enabled to go on to the next stage of development which includes irradiation tests both of full-scale IRT pin-type and tube-type fuel assemblies with U-Mo dispersion fuel and of mini-fuel elements with modified U-Mo dispersion fuel and monolithic fuel. The paper gives a generalized review of the results of U-Mo fuel development accomplished by now. (author)

  18. Electroosmotic decontamination of concrete

    SciTech Connect

    Bostick, W.D.; Bush, S.A.; Marsh, G.C.; Henson, H.M.; Box, W.D.; Morgan, I.L.

    1993-03-01

    A method is described for the electroosmotic decontamination of concrete surfaces, in which an electrical field is used to induce migration of ionic contaminants from porous concrete into an electrolyte solution that may be disposed of as a low-level liquid radioactive waste (LLRW); alternately, the contaminants from the solution can be sorbed onto anion exchange media in order to prevent contaminant buildup in the solution and to minimize the amount of LLRW generated. We have confirmed the removal of uranium (and infer the removal of {sup 99}Tc) from previously contaminated concrete surfaces. In a typical experimental configuration, a stainless steel mesh is placed in an electrolyte solution contained within a diked cell to serve as the negative electrode (cathode) and contaminant collection medium, respectively, and an existing metal penetration (e.g., piping, conduit, or rebar reinforcement within the concrete surface) serves as the positive electrode (anode) to complete the cell. Typically we have achieved 70 to >90% reductions in surface activity by applying <400 V and <1 A for 1--3 h (energy consumption of 0.4--12 kWh/ft{sup 2}).

  19. Surface and subsurface decontamination technology

    SciTech Connect

    Tuck, Matt; Wray, Beth; Musgrave, Mark

    2013-07-01

    A number of proven technologies applicable to the chemical and physical decontamination of radioactive and non-radioactive contaminants within the environmental remediation and radiological waste management sectors exist. Previous work generally acknowledges that these methods have limitations such as production of large volumes of waste, destruction of the substrate, complex safety considerations [1a] and application of special precautions to meet disposal acceptance criteria [2]. A method that removes a variety of contaminants from the surface and subsurface of porous materials, with minimal contaminated waste arisings, is highly desirable. TechXtract{sup R} is a patented, sequential chemical extraction process developed to remove radionuclides, PCBs, and other hazardous organic and inorganic substances from solid materials such as concrete, brick, steel, and exotic metals [3]. The technology uses multifarious task-specific chemical formulations and engineered applications to achieve surface penetration and removal of the contaminants from the atomic voids of metals and other substrates, or the capillaries and gel pores of concretes. TechXtract{sup R} is proven to remove a variety of contaminants from various substrates, allowing free release of the substrate as waste for disposal, or re-use, whilst producing minimal secondary waste. Data from testing of TechXtract's capabilities and evidencing the technology's efficacy during site based applied research and development is presented here. (authors)

  20. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect

    J. K. Wright; R. N. Wright

    2010-07-01

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  1. Characterization Report for U.S. Army Materials Technology Laboratory Research Reactor

    DTIC Science & Technology

    1990-08-01

    there was no fuel breached during reactor operations or fuel transfers. The low levels of radioactivity and contamination found in the reactor vessel...organochlorine pesticides, organophosphorus pesticides/chlorinated herbicides, metals , lead or mercury at levels above Environmental Protection Agency...for reactor annulus fuel element storage ..................... 26 14. Smear survey results and contact-radiation readings for reactor annulus

  2. 105-H Reactor Interim Safe Storage Project Final Report

    SciTech Connect

    E.G. Ison

    2008-11-08

    The following information documents the decontamination and decommissioning of the 105-H Reactor facility, and placement of the reactor core into interim safe storage. The D&D of the facility included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, decontamination, demolition of the structure, and restoration of the site. The ISS work also included construction of the safe storage enclosure, which required the installation of a new roofing system, power and lighting, a remote monitoring system, and ventilation components.

  3. Electrochemical Decontamination of Painted and Heavily Corroded Metals

    SciTech Connect

    Marczak, S.; Anderson, J.; Dziewinski, J.

    1998-09-08

    The radioactive metal wastes that are generated from nuclear fuel plants and radiochemical laboratories are mainly contaminated by the surface deposition of radioactive isotopes. There are presently several techniques used in removing surface contamination involving physical and chemical processes. However, there has been very little research done in the area of soiled, heavily oxidized, and painted metals. Researchers at Los Alamos National Laboratory have been developing electrochemical procedures for the decontamination of bare and painted metal objects. These methods have been found to be effective on highly corroded as well as relatively new metals. This study has been successful in decontaminating projectiles and shrapnel excavated during environmental restoration projects after 40+ years of exposure to the elements. Heavily corroded augers used in sampling activities throughout the area were also successfully decontaminated. This process has demonstrated its effectiveness and offers several advantages over the present metal decontamination practices of media blasting and chemical solvents. These advantages include the addition of no toxic or hazardous chemicals, low operating temperature and pressure, and easily scaleable equipment. It is in their future plans to use this process in the decontamination of gloveboxes destined for disposal as TRU waste.

  4. Safety evaluation report related to the renewal of the facility license for the research reactor at the Dow Chemical Company

    SciTech Connect

    Not Available

    1989-04-01

    This safety evaluation report for the application filed by the Dow Chemical Company for renewal of facility Operating License R-108 to continue to operate its research reactor at an increased operating power level has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located on the grounds of the Michigan Division of the Dow Chemical Company in Midland, Michigan. The staff concludes that the Dow Chemical Company can continue to operate its reactor without endangering the health and safety of the public.

  5. Decontamination and Decommissioning activities photobriefing book FY 1997

    SciTech Connect

    1998-04-01

    The Decontamination and Decommissioning (D and D) Program at Argonne National Laboratory-East (ANL-E) is dedicated to the safe and cost effective D{ampersand}D of surplus nuclear facilities. There is currently a backlog of more than 7,000 contaminated US Department of Energy facilities nationwide. Added to this are 110 licensed commercial nuclear power reactors operated by utilities learning to cope with deregulation and an aging infrastructure that supports the commercial nuclear power industry, as well as medical and other uses of radioactive materials. With this volume it becomes easy to understand the importance of addressing the unique issues and objectives associated with the D{ampersand}D of surplus nuclear facilities. This photobriefing book summarizes the decontamination and decommissioning projects and activities either completed or continuing at the ANL-E site during the year.

  6. Preliminary results of a Rossi-alpha experiment in the IPEN/MB-01 research reactor

    SciTech Connect

    Spriggs, G.D.; Carneiro, A.L.G.; Abe, A.Y.; Miranda, A.F.

    1997-09-23

    A preliminary set of Rossi-alpha measurements were performed on the IPEN MB-01 research reactor. The intent of the measurements was to determine if the efficiency of the BF{sub 3} detectors placed in the central region of the core was sufficiently high enough to allow an accurate measurement of the effective delayed neutron fraction, {beta}{sub eff}, and the alpha at delayed critical. In addition, a preliminary measurement of the intrinsic source strength was performed to determine the optimum external/intrinsic source strength that would allow the obtainment of sufficient counting statistics in a reasonable length of time without degrading the signal-to-noise ratio.

  7. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor.

    PubMed

    Yavar, A R; Sarmani, S B; Wood, A K; Fadzil, S M; Radir, M H; Khoo, K S

    2011-05-01

    Determination of thermal to fast neutron flux ratio (f(fast)) and fast neutron flux (ϕ(fast)) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f(fast) and subsequently ϕ(fast) were determined using the absolute method. The f(fast) ranged from 48 to 155, and the ϕ(fast) was found in the range 1.03×10(10)-4.89×10(10) n cm(-2) s(-1). These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  8. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities.

    PubMed

    Mansy, M S; Bashter, I I; El-Mesiry, M S; Habib, N; Adib, M

    2015-03-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5-133keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named "QMNB" was developed in the "MATLAB" programming language to perform the required calculations.

  9. Modification of the radial beam port of ITU TRIGA Mark II research reactor for BNCT applications.

    PubMed

    Akan, Zafer; Türkmen, Mehmet; Çakir, Tahir; Reyhancan, İskender A; Çolak, Üner; Okka, Muhittin; Kiziltaş, Sahip

    2015-05-01

    This paper aims to describe the modification of the radial beam port of ITU (İstanbul Technical University) TRIGA Mark II research reactor for BNCT applications. Radial beam port is modified with Polyethylene and Cerrobend collimators. Neutron flux values are measured by neutron activation analysis (Au-Cd foils). Experimental results are verified with Monte Carlo results. The results of neutron/photon spectrum, thermal/epithermal neutron flux, fast group photon fluence and change of the neutron fluxes with the beam port length are presented.

  10. Dose Measurements at Epithermal Beams of Research Reactors with Fricke Gel and Thermoluminescence Detectors

    SciTech Connect

    Gambarini, Grazia; Artuso, Emanuele; Giove, Dario; Felisi, Marco; Agosteo, Stefano; Barcaglioni, Luca; Pola, Andrea; Garlati, Luisella; Borroni, Marta; Carrara, Mauro; Klupak, Vit; Viererbl, Ladislav; Vins, Miroslav; Marek, Milan

    2015-07-01

    Suitable dosimeter methods have to be developed to measure the different dose contributions in phantoms exposed to epithermal/thermal neutron beams of a research reactor. The method based on Fricke Xylenol Orange gel dosimeter in form of layers has shown to be very effective for achieving images of the various dose components in air or in phantoms exposed to epithermal/thermal neutron beams with very high fluence rate. Another useful method is based on the use of TLD-700 chips, from whose response the gamma dose and the thermal neutron fluence can be obtained by means of appropriate parameters of the glow curve. (authors)

  11. Evaluation of differential shim rod worth measurements in the Oak Ridge Research Reactor

    SciTech Connect

    Bretscher, M.M.

    1987-01-01

    Reasonable agreement between calculated and measured differential shim rod worths in the Oak Ridge Research Reactor (ORR) has been achieved by taking into account the combined effects of negative reactivity contributions from changing fuel-moderator temperatures and of delayed photoneutrons. A method has been developed for extracting the asymptotic period from the shape of the initial portion of the measured time-dependent neutron flux profile following a positive reactivity insertion. In this region of the curve temperature-related reactivity feedback effects are negligibly small. Results obtained by applying this technique to differential shim rod worth measurements made in a wide variety of ORR cores are presented.

  12. Decontaminating lead bricks and shielding

    SciTech Connect

    Lussiez, G.

    1994-02-01

    Lead used for shielding is often surface contaminated with radioisotopes and is therefore a RCRA D008 mixed waste. The technology-based standard for treatment is macroencapsulation. However, decontaminating and recycling the clean lead is a more attractive solution. Los Alamos National Laboratory decontaminates material and equipment contaminated with radioisotopes. Decontaminating lead poses special problems because of the RCRA hazard classification and the size of the inventory, now about 50 tons and likely to grow substantially of planned decommissioning operations. Thus lead, in the form of bricks and other shield shapes, is surface contaminated with fission products. One of the best methods for contaminated lead is removing the superficial layer of contamination with an abrasive medium under pressure. For lead, a mixture of alumina with water and air at about 40 psig rapidly and effectively decontaminates the lead. The abrasive medium is sprayed onto the lead in a scaled-off area. The slurry of abrasive and particles of lead falls through a floor and is collected in a sump. A pump sends the slurry mixture back to the spray gun, creating a continuous process. The process generates small volumes of lead slurry that can be solidified and, because it passes the TCLP, is not a mixed waste. The decontaminated lead can be released for recycling.

  13. Experience in Remote Demolition of the Activated Biological Shielding of the Multi Purpose Research Reactor (MZFR) on the German Karlsruhe Site - 12208

    SciTech Connect

    Eisenmann, Beata; Fleisch, Joachim; Prechtl, Erwin; Suessdorf, Werner; Urban, Manfred

    2012-07-01

    In 2009, WAK Decommissioning and Waste Management GmbH (WAK) became owner and operator of the waste treatment facilities of Karlsruhe Institute of Technology (KIT) as well as of the prototype reactors, the Compact Sodium-Cooled Fast Reactor (KNK) and Multi-Purpose Reactor (MZFR), both being in an advanced stage of dismantling. Together with the dismantling and decontamination activities of the former WAK reprocessing facility since 1990, the envisaged demolishing of the R and D reactor FR2 and a hot cell facility, all governmentally funded nuclear decommissioning projects on the Karlsruhe site are concentrated under the WAK management. The small space typical of prototype research reactors represented a challenge also during the last phase of activated dismantling, dismantling of the activated biological shield of the MZFR. Successful demolition of the biological shield required detailed planning and extensive testing in the years before. In view of the limited space and the ambient dose rate that was too high for manual work, it was required to find a tool carrier system to take up and control various demolition and dismantling tools in a remote manner. The strategy formulated in the concept of dismantling the biological shield by means of a modified electro-hydraulic demolition excavator in an adaptable working scaffolding turned out to be feasible. The following boundary conditions were essential: - Remote exchange of the dismantling and removal tools in smallest space. - Positioning of various supply facilities on the working platform. - Avoiding of interfering edges. - Optimization of mass flow (removal of the dismantled mass from the working area). - Maintenance in the surroundings of the dismantling area (in the controlled area). - Testing and qualification of the facilities and training of the staff. Both the dismantling technique chosen and the proceeding selected proved to be successful. Using various designs of universal cutters developed on the basis of

  14. Volume Reduction of Solid Radioactive Waste From Research Reactor and Nuclear Laboratories - Industrial Experience

    SciTech Connect

    Singh, B.N.; Gandhi, K.G.; Chander, M.; Raj, K.

    2006-07-01

    Various research reactors and nuclear laboratories at Bhabha Atomic Research Centre, Mumbai, India generate approximately 600 m{sup 3} of radioactive solid waste annually. These wastes are categorized and segregated based on their radiation field, physical nature and radionuclides present. The low level waste is further segregated based on compactability criteria. The compactable wastes are packed in 200 litres carbon steel drums and pelletized to get a volume reduction factor of about five. The compaction system designed for Cat-I (Table-1) radioactive waste is having 200 Tons capacity hydraulic press, housed in a well-ventilated enclosure. Before pelletizing, the drum is assayed to estimate {beta},{gamma} activity. Further, the imaging of waste drum is also done so as to avoid any possibility of non-compactable material being taken for pelletizing. The pelletizing system comprises of conveying, pushing, indexing and compacting. All operations are controlled by programmable logic control (PLC) based control system. Apart from the drum palletising, the system is also equipped to compact the used Pre and HEPA filters, being generated from exhaust and supply air system of clean room, nuclear laboratories, research reactors, fuel reprocessing plants, high level waste management facility etc. The system is designed to handle about 5 drums or filters per hour. So far about 3000 number of each, HEPA filters and waste drums have been safely compacted and disposed. (authors)

  15. Improving Research Reactor Accident Response Capability at the Hungarian Nuclear Safety Authority

    NASA Astrophysics Data System (ADS)

    Végh, János; Gajdos, Ferenc; Horváth, Csaba; Matisz, Attila; Nyisztor, Dániel

    2015-02-01

    The paper describes the design and implementation of an on-line operation monitoring and accident response support system to be used at the emergency response center of Hungarian Atomic Energy Authority (HAEA). The system is called CERTA VITA and it is able to monitor the four VVER-440 units of the Hungarian Paks nuclear power plant (NPP) during their normal operation and during emergencies (including severe accidents). As a result from the analyses following the severe accident at Fukushima the HAEA decided to extend the CERTA VITA system on the Budapest Research Reactor (BRR), which is a tank type research reactor with 10 MW thermal power. The extension of the present system was realized in co-operation with the Centre for Energy Research, the operator of BRR. It is believed that by the introduction of this new on-line system the accident response capabilities of HAEA will be further enhanced and the BRR emergencies will be handled at the same professional level as potential emergencies at Paks NPP.

  16. 134. ARAII SL1 decontamination and lay down building (ARA614) erected ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    134. ARA-II SL-1 decontamination and lay down building (ARA-614) erected after accidental explosion of SL-1 reactor. Shows vicinity map, index of related drawings, plot plan and other detail. F.C. Torkelson Company 842-area/SL-1-101-U-2. Date: September 1962. Ineel index code no. 070-0101-65-851-150713. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  17. Irradiation of electronic components and circuits at the Portuguese Research Reactor: Lessons learned

    SciTech Connect

    Marques, J.G.; Ramos, A.R.; Fernandes, A.C.; Santos, J.P.

    2015-07-01

    The behavior of electronic components and circuits under radiation is a concern shared by the nuclear industry, the space community and the high-energy physics community. Standard commercial components are used as much as possible instead of radiation hard components, since they are easier to obtain and allow a significant reduction of costs. However, these standard components need to be tested in order to determine their radiation tolerance. The Portuguese Research Reactor (RPI) is a 1 MW pool-type reactor, operating since 1961. The irradiation of electronic components and circuits is one area where a 1 MW reactor can be competitive, since the fast neutron fluences required for testing are in most cases well below 10{sup 16} n/cm{sup 2}. A program was started in 1999 to test electronics components and circuits for the LHC facility at CERN, initially using a dedicated in-pool irradiation device and later a beam line with tailored neutron and gamma filters. Neutron filters are essential to reduce the intensity of the thermal neutron flux, which does not produce significant defects in electronic components but produces unwanted radiation from activation of contacts and packages of integrated circuits and also of the printed circuit boards. In irradiations performed within the line-of-sight of the core of a fission reactor there is simultaneous gamma radiation which complicates testing in some cases. Filters can be used to reduce its importance and separate testing with a pure gamma radiation source can contribute to clarify some irradiation results. Practice has shown the need to introduce several improvements to the procedures and facilities over the years. We will review improvements done in the following areas: - Optimization of neutron and gamma filters; - Dosimetry procedures in mixed neutron / gamma fields; - Determination of hardness parameter and 1 MeV-equivalent neutron fluence; - Temperature measurement and control during irradiation; - Follow-up of reactor

  18. Supercritical Water Reactor (SCWR) - Survey of Materials Research and Development Needs to Assess Viability

    SciTech Connect

    Philip E. MacDonald

    2003-09-01

    Supercritical water-cooled reactors (SCWRs) are among the most promising advanced nuclear systems because of their high thermal efficiency [i.e., about 45% vs. 33% of current light water reactors (LWRs)] and considerable plant simplification. SCWRs achieve this with superior thermodynamic conditions (i.e., high operating pressure and temperature), and by reducing the containment volume and eliminating the need for recirculation and jet pumps, pressurizer, steam generators, steam separators and dryers. The reference SCWR design in the U.S. is a direct cycle, thermal spectrum, light-water-cooled and moderated reactor with an operating pressure of 25 MPa and inlet/outlet coolant temperature of 280/500 °C. The inlet flow splits, partly to a down-comer and partly to a plenum at the top of the reactor pressure vessel to flow downward through the core in special water rods to the inlet plenum. This strategy is employed to provide good moderation at the top of the core, where the coolant density is only about 15-20% that of liquid water. The SCWR uses a power conversion cycle similar to that used in supercritical fossil-fired plants: high- intermediate- and low-pressure turbines are employed with one moisture-separator re-heater and up to eight feedwater heaters. The reference power is 3575 MWt, the net electric power is 1600 MWe and the thermal efficiency is 44.8%. The fuel is low-enriched uranium oxide fuel and the plant is designed primarily for base load operation. The purpose of this report is to survey existing materials for fossil, fission and fusion applications and identify the materials research and development needed to establish the SCWR viabilitya with regard to possible materials of construction. The two most significant materials related factors in going from the current LWR designs to the SCWR are the increase in outlet coolant temperature from 300 to 500 °C and the possible compatibility issues associated with the supercritical water environment.

  19. Radioisotope production at the University of Missouri Research Reactor: Past and present

    SciTech Connect

    Ehrhardt, G.J.; Ketring, A.R.; Gunn, S.L.

    1993-12-31

    Isotope production for industrial, medical, and specialty research use has been a major effort at the University of Missouri Research Reactor (MURR) since its initial critically in 1966, due primarily to the MURR`s high thermal neutron flux and ongoing commitment to reliability for its customers and research users. The history of this effort will be described, from the early supply of (n,gamma) Mo-99 for Tc-99m generators to the current program of production of high specific activity isotopes such as Re-186, Sm-153, Ho-166, Lu-177, and Re-188 which support the renaissance now taking place in nuclear medicine therapy. Using {open_quotes}guidance{close_quotes} methods as varied as seed implantation, microsphere entrapment, and chemical or immunochemical uptake, this resurgence of internal radioisotope therapy techniques depends, particularly in its more elegant forms, on just such high specific activity, beta-emitting isotopes.

  20. Special issue on the "Consortium for Advanced Simulation of Light Water Reactors Research and Development Progress"

    NASA Astrophysics Data System (ADS)

    Turinsky, Paul J.; Martin, William R.

    2017-04-01

    In this special issue of the Journal of Computational Physics, the research and development completed at the time of manuscript submission by the Consortium for Advanced Simulation of Light Water Reactors (CASL) is presented. CASL is the first of several Energy Innovation Hubs that have been created by the Department of Energy. The Hubs are modeled after the strong scientific management characteristics of the Manhattan Project and AT&T Bell Laboratories, and function as integrated research centers that combine basic and applied research with engineering to accelerate scientific discovery that addresses critical energy issues. Lifetime of a Hub is expected to be five or ten years depending upon performance, with CASL being granted a ten year lifetime.

  1. Facility decontamination for reuse at West Valley

    SciTech Connect

    Gessner, R.F.; Tundo, D.; Lawrence, R.E.

    1989-01-01

    The West Valley Demonstration Project has been created to decontaminate and decommission a civilian fuel reprocessing plant. This activity involves decontamination of the former facility for installation of high- and low-level liquid waste processing equipment. About 70% of the plant has been decontaminated and liquid waste processing equipment installed. The decontamination effort utilized both contact and remote practices and a variety of commonplace and unique tools and equipment. Lessons learned during the cleanup are reviewed in this paper.

  2. The decontamination and decommissioning debate

    SciTech Connect

    Thompson, A.J.; Goo, M.L.

    1994-04-01

    DEcontamination and decommissioning (D&D) of radioactively contaminated sites is one of the major issues in radioactive waste management. Emerging developments in this area involving the USNRC, the USEPA, the USDOE, and the USDOD, the states and the publish will soon result in generic regulatory programs determining who must decontaminated, to what level and how, when decontamination will take place, how much radioactive waste will be generated by D&D, and the conditions for disposal of such waste. This article discusses the process of setting guidelines for D&D and the potential for interagency conflict, duplicative regulation and infeasible control standards. Topics covered include: recent D&D developments at the NRC and EPA; the NRC`s D&D rulemaking; the EPA`s D&D efforts; additional Agency Interplay; history - the Uranium Mill Tailing Experience; Dual Regulation under UMTRCA; Dual regulation under the Clean Air Acts.

  3. Status report on the Small Secure Transportable Autonomous Reactor (SSTAR) /Lead-cooled Fast Reactor (LFR) and supporting research and development.

    SciTech Connect

    Sienicki, J. J.; Moisseytsev, A.; Yang, W. S.; Wade, D. C.; Nikiforova, A.; Hanania, P.; Ryu, H. J.; Kulesza, K. P.; Kim, S. J.; Halsey, W. G.; Smith, C. F.; Brown, N. W.; Greenspan, E.; de Caro, M.; Li, N.; Hosemann, P.; Zhang, J.; Yu, H.; Nuclear Engineering Division; LLNL; LANL; Massachusetts Inst. of Tech.; Ecole des Mines de Paris; Oregon State Univ.; Univ.of California at Berkley

    2008-06-23

    This report provides an update on development of a pre-conceptual design for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) plant concept and supporting research and development activities. SSTAR is a small, 20 MWe (45 MWt), natural circulation, fast reactor plant for international deployment concept incorporating proliferation resistance for deployment in non-fuel cycle states and developing nations, fissile self-sufficiency for efficient utilization of uranium resources, autonomous load following making it suitable for small or immature grid applications, and a high degree of passive safety further supporting deployment in developing nations. In FY 2006, improvements have been made at ANL to the pre-conceptual design of both the reactor system and the energy converter which incorporates a supercritical carbon dioxide Brayton cycle providing higher plant efficiency (44 %) and improved economic competitiveness. The supercritical CO2 Brayton cycle technology is also applicable to Sodium-Cooled Fast Reactors providing the same benefits. One key accomplishment has been the development of a control strategy for automatic control of the supercritical CO2 Brayton cycle in principle enabling autonomous load following over the full power range between nominal and essentially zero power. Under autonomous load following operation, the reactor core power adjusts itself to equal the heat removal from the reactor system to the power converter through the large reactivity feedback of the fast spectrum core without the need for motion of control rods, while the automatic control of the power converter matches the heat removal from the reactor to the grid load. The report includes early calculations for an international benchmarking problem for a LBE-cooled, nitride-fueled fast reactor core organized by the IAEA as part of a Coordinated Research Project on Small Reactors without Onsite Refueling; the calculations use the same neutronics

  4. Decontamination in the Aftermath of a Radiological Attack

    NASA Astrophysics Data System (ADS)

    Yassif, Jaime

    2004-05-01

    Much of the damage caused by a radiological weapon would result from long-term contamination, yet the U.S. lacks a coherent plan for cleanup in the aftermath of an attack. A rapidly implemented decontamination strategy could minimize economic damage by restoring normal activity, when possible, and could ease the cleanup process, which can become more difficult as time passes. Loose dust particles can become trapped under layers of oxidized metal and organic materials or penetrate deeper into porous surfaces, and reactive elements, such as cesium-137, chemically bind to components of glass, asphalt and concrete. Decontamination planning requires identification of appropriate existing technologies that are transferable from small-scale tasks, such as nuclear facility decommissioning, and adaptable to urban-scale operations. Applicable technologies should effectively contain and remove fixed and loose contamination with α-, β- and γ-emitters without generating large quantities of secondary waste. Development of new technologies is also necessary, particularly to improve α-detection, as is research to test existing technologies for their effectiveness in large-scale operations. These techniques will be most effective if integrated into a broad strategy that identifies appropriate exposure limits, prioritizes decontamination tasks and assigns authority and responsibility for performing these tasks. This talk will address existing decontamination thresholds and suggest ways to modify them and will discuss appropriate, existing technologies that can decontaminate to the required levels.

  5. Skin decontamination cream for radiological contaminants: Formulation development and evaluation.

    PubMed

    Khan, Abdul Wadood; Kotta, Sabna; Rana, Sudha; Ansari, Shahid Husain; Sharma, Rakesh Kumar; Ali, Javed

    2013-01-01

    Increased use of the radioactive materials in the field of research, medical, nuclear power plant, and industry has increased the risk of accidental exposure. Intentional use of the radioisotopes by terrorist organizations could cause exposure/contamination of a number of the population. In view of the accidental contamination, there is a need to develop self-usable decontamination formulations that could be used immediately after contamination is suspected. Present work was planned to optimize and develop self-usable radiation decontamination cream formulation. Various pharmaceutical parameters were characterized. (99m)Tc-sodium pertechnetate was used as radiocontaminant. Static counts were recorded before and after decontamination using single photon emission computed tomography. Decontamination efficacy of the cream was found to be 42% ± 3% at 0-0.5 h after the exposure. Primary skin irritancy test was satisfactory as no erythema or edema was observed visually after 2 weeks of the formulation application. The decontamination studies proved the potential of EDTA to remove the radiological contaminants effectively.

  6. Decommissioning of the Austrian 10 MW Research Reactor, Results and Lessons learned Paper

    SciTech Connect

    Hillebrand, G.; Meyer, F.

    2008-07-01

    After the decision to shut down the 10 MW ASTRA-MTR Research Reactor was reached in May 1998, the possible options and required phases for decommissioning and removal of the radioactive components were evaluated in a decommissioning study. To support the decisions at each phase, an estimate of the activity inventory in the various parts of the reactor and the waste volume to be expected was performed. Of the possible options an immediate dismantling to phase 1 of IAEA Technical Guide Lines after the immediately following, continued dismantling to phase 2 of these guide lines was identified as the most reasonable and under the auspices optimum choice. The actual decommissioning work on the ASTRA-Reactor began in January 2000 after its final shutdown on July 31, 1999. Preliminary evaluations of the activity inventory gave an estimated amount of 320 kg of intermediate level waste, of about 60 metric tons of contaminated and another 100 metric tons of activated low level radioactive waste. The activities were roughly estimated to be at 200 TBq in the intermediate level and 6 GBq in the low level. The structure of the decommissioning process was decided against cost-, time- and risk-optimization following the basic layout of the main tasks, e.g. the removing of the fuel, the recovering and the treatment of the intermediate level activities in the vicinity of the core, the handling and conditioning of the neutron exposed graphite and the Beryllium-elements. As an example, the dismantling of approx. 1400 metric tons of the biological shield is described in more detail from the determination of the dismantling technique to the clearing procedures and the deposition. The process of dismantling of the biological shield is presented in fast motion. The dismantling of the pump-room installations of the primary loop, the processing of the contaminated or activated metals, the dismantling of the ventilation system and the radiological clearance of the reactor building was done

  7. Quality control of decontaminating agents.

    PubMed

    Arancegui, N; Cabanillas, M; Martinez, A; Funosas, E; Maestri, L; Hermida Lucena, P

    1999-01-01

    The present study evaluates the efficiency of the following decontaminating agents for the multiresistant, locally circulating bacterium Pseudomonas aeruginosa: glutaraldehyde 2%--makes A and B-, glutaraldehyde-formaldehyde; povidone-iodine-makes A, B and C-; sodium hypochloride; chloroxylenol--makes A and B-; and lapire chloride. The 9027 ATCC strain was used as a standard. A modification of the method of Kelsey and Sykes (1) was used to evaluate decontaminating efficiency. Highly satisfactory results were obtained with glutaraldehide 2% A and B, glutaraldehyde-formaldehyde and sodium hypochlorite. The results for povidone-iodine A, B and C were satisfactory but were unsatisfactory for chloroxylenol and lapirium chloride.

  8. The current state of the Russian reduced enrichment research reactors program

    SciTech Connect

    Aden, V.G.; Kartashov, E.F.; Lukichev, V.A.

    1997-08-01

    During the last year after the 16-th International Conference on Reducing Fuel Enrichment in Research Reactors held in October, 1993 in Oarai, Japan, the conclusive stage of the Program on reducing fuel enrichment (to 20% in U-235) in research reactors was finally made up in Russia. The Program was started late in 70th and the first stage of the Program was completed by 1986 which allowed to reduce fuel enrichment from 80-90% to 36%. The completion of the Program current stage, which is counted for 5-6 years, will exclude the use of the fuel enriched by more than 20% from RF to other countries such as: Poland, Czeck Republick, Hungary, Roumania, Bulgaria, Libya, Viet-Nam, North Korea, Egypt, Latvia, Ukraine, Uzbekistan and Kazakhstan. In 1994 the Program, approved by RF Minatom authorities, has received the status of an inter-branch program since it was admitted by the RF Ministry for Science and Technical Policy. The Head of RF Minatom central administrative division N.I.Ermakov was nominated as the Head of the Russian Program, V.G.Aden, RDIPE Deputy Director, was nominated as the scientific leader. The Program was submitted to the Commission for Scientific, Technical and Economical Cooperation between USA and Russia headed by Vice-President A. Gore and Prime Minister V. Chemomyrdin and was given support also.

  9. Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor

    SciTech Connect

    Hashim, Zaredah Lanyau, Tonny Anak Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi; Azhar, Noraishah Syahirah

    2016-01-22

    The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel’s center and surface, cladding, coolant temperatures as well as DNBR’s values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR.

  10. The Oak Ridge Research Reactor: Safety analysis: Volume 2, Supplement 3

    SciTech Connect

    Cook, D.H.; Hamrick, T.P.

    1987-06-29

    The Oak Ridge Research Reactor (ORR) was constructed in the mid 1950s. Since it is an older facility, the issue of life-limiting conditions or material deterioration resulting from prolonged exposure to the normal operating environment is an item that should be addressed in the safety analysis for the ORR. Life-limiting conditions were considered in the original design of ORR; but due to the limited data that were available at that time on material performance in research reactors, various studies were completed during the first 10 years of operation at ORR to verify the applicable life-limiting parameters. Based on today's knowledge of life limiting conditions and the previous 30 years of operating experience at the ORR facility, the three specific areas of concern are addressed in this supplement: (1) embrittlement of the structures due to radiation damage, which is described in Section 2; (2) fatigue due to the effects of both thermal cycling and vibration, which is addressed in Section 3; and (3) the effects of corrosion on the integrity of the primary system, which is described in Section 4. The purpose of this document is to provide a review of the applicable safety studies which have been performed, and to state the status of the ORR with regard to embrittlement, fatigue (due to thermal cycling and vibration), and corrosion.

  11. Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies

    SciTech Connect

    Pond, R.B.; Matos, J.E.

    1996-05-01

    As part of the Department of Energy`s spent nuclear fuel acceptance criteria, the mass of uranium and transuranic elements in spent research reactor fuel must be specified. These data are, however, not always known or readily determined. It is the purpose of this report to provide estimates of these data for some of the more common research reactor fuel assembly types. The specific types considered here are MTR, TRIGA and DIDO fuel assemblies. The degree of physical protection given to spent fuel assemblies is largely dependent upon the photon dose rate of the spent fuel material. These data also, are not always known or readily determined. Because of a self-protecting dose rate level of radiation (dose rate greater than 100 ren-x/h at I m in air), it is important to know the dose rate of spent fuel assemblies at all time. Estimates of the photon dose rate for spent MTR, TRIGA and DIDO-type fuel assemblies are given in this report.

  12. Thermal-hydraulic calculations for the conversion to LEU of a research reactor core

    SciTech Connect

    Grigoriadis, D.; Varvayanni, M.; Catsaros, N.; Stakakis, E.

    2008-07-15

    The thermal-hydraulic analysis performed for the needs of the conversion of the open pool 5MW Greek Research Reactor (GRR-1) to a pure Low Enrichment (LEU) configuration is presented. The methodology was based on a complete set of neutronic calculations performed for the new core configuration, in compliance with pre-defined Operation Limiting Conditions. The hottest channel analysis approach was adopted, and peaking factors were used to account for fabrication or measuring uncertainties. Calculations were carried out using the numerical codes NATCON, PLTEMP and PARET provided by Argonne National Laboratory (ANL). Two main different classes of conditions were considered, namely i) steady state normal operating conditions and ii) transient cases related to accidental events including reactivity feedback effects. For steady state operating conditions the behaviour of the new configuration was examined both for forced and natural convection cooling modes. Transient calculations considered several initiating events including reactivity insertion accidents (slow or fast reactivity insertion) and total or partial loss-of-flow accidents, i.e. in accordance to guidelines provided by the IAEA for research Reactors. (author)

  13. An Expert System to Analyze Homogeneity in Fuel Element Plates for Research Reactors

    SciTech Connect

    Tolosa, S.C.; Marajofsky, A.

    2004-10-06

    In the manufacturing control of Fuel Element Plates for Research Reactors, one of the problems to be addressed is how to determine the U-density homogeneity in a fuel plate and how to obtain qualitative and quantitative information in order to establish acceptance or rejection criteria for such, as well as carrying out the quality follow-up. This paper is aimed at developing computing software which implements an Unsupervised Competitive Learning Neural Network for the acknowledgment of regions belonging to a digitalized gray scale image. This program is applied to x-ray images. These images are generated when the x-ray beams go through a fuel plate of approximately 60 cm x 8 cm x 0.1 cm thick. A Nuclear Fuel Element for Research Reactors usually consists of 18 to 22 of these plates, positioned in parallel, in an arrangement of 8 x 7 cm. Carrying out the inspection of the digitalized x-ray image, the neural network detects regions with different luminous densities corresponding to U-densities in the fuel plate. This is used in quality control to detect failures and verify acceptance criteria depending on the homogeneity of the plate. This modality of inspection is important as it allows the performance of non-destructive measurements and the automatic generation of the map of U-relative densities of the fuel plate.

  14. Neutron flux characterisation of the Pavia TRIGA Mark II research reactor for radiobiological and microdosimetric applications.

    PubMed

    Alloni, D; Prata, M; Salvini, A; Ottolenghi, A

    2015-09-01

    Nowadays the Pavia TRIGA reactor is available for national and international collaboration in various research fields. The TRIGA Mark II nuclear research reactor of the Pavia University offers different in- and out-core neutron irradiation channels, each characterised by different neutron spectra. In the last two years a campaign of measurements and simulations has been performed in order to guarantee a better characterisation of these different fluxes and to meet the demands of irradiations that require precise information on these spectra in particular for radiobiological and microdosimetric studies. Experimental data on neutron fluxes have been collected analysing and measuring the gamma activity induced in thin target foils of different materials irradiated in different TRIGA experimental channels. The data on the induced gamma activities have been processed with the SAND II deconvolution code and finally compared with the spectra obtained with Monte Carlo simulations. The comparison between simulated and measured spectra showed a good agreement allowing a more precise characterisation of the neutron spectra and a validation of the adopted method.

  15. Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor

    NASA Astrophysics Data System (ADS)

    Hashim, Zaredah; Lanyau, Tonny Anak; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi; Azhar, Noraishah Syahirah

    2016-01-01

    The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel's center and surface, cladding, coolant temperatures as well as DNBR's values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR.

  16. The Munich Fission Neutron Therapy Facility MEDAPP at the research reactor FRM II.

    PubMed

    Wagner, Franz M; Kneschaurek, Peter; Kastenmüller, Anton; Loeper-Kabasakal, Birgit; Kampfer, Severin; Breitkreutz, Harald; Waschkowski, Wolfgang; Molls, Michael; Petry, Winfried

    2008-12-01

    At the new research reactor FRM II of the Technical University of Munich (TUM), the facility for Medical Applications (MEDAPP) was installed where fast neutrons are available as a beam for medical use. Thermal neutrons induce fission in a pair of uranium converter plates and generate fast neutrons which are guided to the patient by a beam tube. The maximum opening of the multi leaf collimator (MLC) is 30x20 cm2 WxH. The beam is characterized by neutron-photon mixed beam phantom dosimetry. Specific safety measures are outlined. The neutron and gamma dose rates are 0.52 Gy/min and 0.20 Gy/min, respectively, in 2 cm depth of a water phantom. The half maximum depth of the neutron dose rate in water is 5.4 cm (mean neutron energy 1.9+/-0.1 MeV). Conformity with the European Medical Devices Directive (MDD) 93/42/EEG, was proven so that MEDAPP has a CE mark and since February 2007 also the license for clinical operation. The clinical neutron irradiations of malignant tumors, which were performed at the former research reactor FRM until 2000, can be continued at FRM II under improved conditions. First patients were irradiated in June 2007.

  17. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    SciTech Connect

    Strydom, Gerhard; Bostelmann, F.

    2015-09-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on

  18. Fighting Ebola with novel spore decontamination technologies for the military

    DOE PAGES

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; ...

    2015-08-12

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). Here, the basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized asmore » a dry mixed-chemical for bacterial spore decontamination.« less

  19. Fighting Ebola with novel spore decontamination technologies for the military

    SciTech Connect

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; Olinger, Gene G.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrance

    2015-08-12

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). Here, the basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination.

  20. Effectiveness of Spray-Based Decontamination Methods for ...

    EPA Pesticide Factsheets

    Report The objective of this project was to assess the effectiveness of spray-based common decontamination methods for inactivating Bacillus (B.) atrophaeus (surrogate for B. anthracis) spores and bacteriophage MS2 (surrogate for foot and mouth disease virus [FMDV]) on selected test surfaces (with or without a model agricultural soil load). Relocation of viable viruses or spores from the contaminated coupon surfaces into aerosol or liquid fractions during the decontamination methods was investigated. This project was conducted to support jointly held missions of the U.S. Department of Homeland Security (DHS) and the U.S. Environmental Protection Agency (EPA). Within the EPA, the project supports the mission of EPA’s Homeland Security Research Program (HSRP) by providing relevant information pertinent to the decontamination of contaminated areas resulting from a biological incident.

  1. Effectiveness of Spray-Based Decontamination Methods for ...

    EPA Pesticide Factsheets

    Report The objective of this project was to assess the effectiveness of spray-based common decontamination methods for inactivating Bacillus (B.) atrophaeus (surrogate for B. anthracis) spores and bacteriophage MS2 (surrogate for foot and mouth disease virus [FMDV]) on selected test surfaces (with or without a model agricultural soil load). Relocation of viable viruses or spores from the contaminated coupon surfaces into aerosol or liquid fractions during the decontamination methods was investigated. This project was conducted to support jointly held missions of the U.S. Department of Homeland Security (DHS) and the U.S. Environmental Protection Agency (EPA). Within the EPA, the project supports the mission of EPA’s Homeland Security Research Program (HSRP) by providing relevant information pertinent to the decontamination of contaminated areas resulting from a biological incident.

  2. Thermal, Structural, and Radiological Properties of Irradiated Graphite from the ASTRA Research Reactor - Implications for Disposal

    SciTech Connect

    Lexa, D.; Kropf, A.J.

    2006-07-01

    There is currently no consensus regarding the disposal of nuclear graphite. The two main problems include high activities of C-14 and H-3 as well as accumulation of Wigner energy (responsible for the Windscale Pile 1 fire in 1957). The release of Wigner energy from the graphite of the inner thermal column of the ASTRA research reactor has been studied by differential scanning calorimetry and simultaneous differential scanning calorimetry / synchrotron powder x-ray diffraction between 25 deg. C and 725 deg. C at a heating rate of 10 deg. C.min{sup -1}. The graphite, having been subject to a fast-neutron fluence from {approx}10{sup 17}' to {approx}10{sup 20} n.cm{sup -2} over the life time of the reactor at temperatures not exceeding 100 deg. C, exhibits Wigner energies ranging from 25 to 572 J.g{sup -1} and a Wigner energy accumulation rate of {approx}7 x 10{sup -17} J.g{sup -1}/n.cm{sup -2}. The shape of the rate-of-heat-release curves, e.g., maximum at ca. 200 deg. C and a fine structure at higher temperatures, varies with sample position within the inner thermal column, i.e., the distance from the reactor core. Crystal structure of samples closest to the reactor core (fast-neutron fluence > 1.5 - 5.0 x 10{sup 19} n.cm{sup -2}) is destroyed while that of samples farther from the reactor core (fast-neutron fluence < 1.5 - 5.0 x 10{sup 19} n.cm{sup -2}) is intact. The dependence of the c lattice parameter on temperature between 25 deg. C and 200 deg. C as determined by Rietveld refinement for the non-amorphous samples leads to the expected microscopic thermal expansion coefficient along the c axis of {approx}26 x 10{sup -6} deg. C{sup -1}. However, at 200 deg. C, coinciding with the maximum in the rate-of-heat-release curves, the rate of thermal expansion abruptly decreases indicating a crystal lattice relaxation. The C-14 activity in the inner thermal column graphite ranges from 6 to 467 kBq.g{sup -1}. Prior to interim storage or final disposal, thermal treatment

  3. Developing Decontamination Tools and Approaches to ...

    EPA Pesticide Factsheets

    Developing Decontamination Tools and Approaches to Address Indoor Pesticide Contamination from Improper Bed Bug Treatments The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

  4. Delayed Gamma Measurements in Different Nuclear Research Reactors Bringing Out the Importance of the Delayed Contribution in Gamma Flux Calculations

    SciTech Connect

    Fourmentel, D.; Radulovic, V.; Barbot, L.; Villard, J-F.; Zerovnik, G.; Snoj, L.; Tarchalski, M.; Pytel, K.; Malouch, F.

    2015-07-01

    Neutron and gamma flux levels are key parameters in nuclear research reactors. In Material Testing Reactors, such as the future Jules Horowitz Reactor, under construction at the French Alternative Energies and Atomic Energy Commission (CEA Cadarache, France), the expected gamma flux levels are very high (nuclear heating is of the order of 20 W/g at 100 MWth). As gamma rays deposit their energy in the reactor structures and structural materials it is important to take them into account when designing irradiation devices. There are only a few sensors which allow measurements of the nuclear heating ; a recent development at the CEA Cadarache allows measurements of the gamma flux using a miniature ionization chamber (MIC). The measured MIC response is often compared with calculation using modern Monte Carlo (MC) neutron and photon transport codes, such as TRIPOLI-4 and MCNP6. In these calculations only the production of prompt gamma rays in the reactor is usually modelled thus neglecting the delayed gamma rays. Hence calculations and measurements are usually in better accordance for the neutron flux than for the gamma flux. In this paper we study the contribution of delayed gamma rays to the total MIC signal in order to estimate the systematic error in gamma flux MC calculations. In order to experimentally determine the delayed gamma flux contributions to the MIC response, we performed gamma flux measurements with CEA developed MIC at three different research reactors: the OSIRIS reactor (MTR - 70 MWth at CEA Saclay, France), the TRIGA MARK II reactor (TRIGA - 250 kWth at the Jozef Stefan Institute, Slovenia) and the MARIA reactor (MTR - 30 MWth at the National Center for Nuclear Research, Poland). In order to experimentally assess the delayed gamma flux contribution to the total gamma flux, several reactor shut down (scram) experiments were performed specifically for the purpose of the measurements. Results show that on average about 30 % of the MIC signal is due to

  5. Monte Carlo simulation of a research reactor with nominal power of 7 MW to design new control safety rods

    NASA Astrophysics Data System (ADS)

    Shoushtari, M. K.; Kakavand, T.; Sadat Kiai, S. M.; Ghaforian, H.

    2010-03-01

    The Monte Carlo simulation has been established for a research reactor with nominal power of 7 MW. A detailed model of the reactor core was employed including standard and control fuel elements, reflectors, irradiation channels, control rods, reactor pool and thermal column. The following physical parameters of reactor core were calculated for the present LEU core: core reactivity ( ρ), control rod (CR) worth, thermal and epithermal neutron flux distributions, shutdown margin and delayed neutron fraction. Reduction of unfavorable effects of blockage probability of control safety rod (CSR)s in their interiors because of not enough space in their sites, and lack of suitable capabilities to fabricate very thin plates for CSR cladding, is the main aim of the present study. Making the absorber rod thinner and CSR cladding thicker by introducing a better blackness absorbing material and a new stainless steel alloy, respectively, are two studied ways to reduce the effects of mentioned problems.

  6. Decontamination of control rod housing from Palisades Nuclear Power Station.

    SciTech Connect

    Kaminski, M.D.; Nunez, L.; Purohit, A.

    1999-05-03

    Argonne National Laboratory has developed a novel decontamination solvent for removing oxide scales formed on ferrous metals typical of nuclear reactor piping. The decontamination process is based on the properties of the diphosphonic acids (specifically 1-hydroxyethane-1,1-diphosphonic acid or HEDPA) coupled with strong reducing-agents (e.g., sodium formaldehyde sulfoxylate, SFS, and hydroxylamine nitrate, HAN). To study this solvent further, ANL has solicited actual stainless steel piping material that has been recently removed from an operating nuclear reactor. On March 3, 1999 ANL received segments of control rod housing from Consumers Energy's Palisades Nuclear Plant (Covert, MI) containing radioactive contamination from both neutron activation and surface scale deposits. Palisades Power plant is a PWR type nuclear generating plant. A total of eight segments were received. These segments were from control rod housing that was in service for about 6.5 years. Of the eight pieces that were received two were chosen for our experimentation--small pieces labeled Piece A and Piece B. The wetted surfaces (with the reactor's pressurized water coolant/moderator) of the pieces were covered with as a scale that is best characterized visually as a smooth, shiny, adherent, and black/brown in color type oxide covering. This tenacious oxide could not be scratched or removed except by aggressive mechanical means (e.g., filing, cutting).

  7. The RERTR (Reduced Enrichment Research and Test Reactor) Program: Progress and plans

    SciTech Connect

    Travelli, A.

    1987-01-01

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. After a brief summary of the results which the RERTR Program, in collaboration with its many international partners, had achieved by the end of 1986, the activities, results, and new developments which occurred in 1987 are reviewed. Irradiation of the second miniplate series, concentrating on U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al fuels, was completed and postirradiation examinations were performed on many of its miniplates. The whole-core ORR demonstration with U/sub 3/Si/sub 2/-Al fuel at 4.8 g U/cm/sup 3/ was completed at the end of March with excellent results and with 29 elements estimated to have reached at least 40% average burnup. Good progress was made in the area of LEU usage for the production of fission /sup 99/Mo, and in the coordination of safety evaluations related to LEU conversions of US university reactors. Planned activities include testing and demonstrating advanced fuels intended to allow use of reduced enrichment uranium in very-high-performance reactors. Two candidate fuels are U/sub 3/Si-Al with 19.75% enrichment and U/sub 3/Si/sub 2/-Al with 45% enrichment. Demonstration of these fuels will include irradiation of full-size elements and, possibly, a full-core demonstration. Achievement of the final program goals is still projected for 1990. This progress could not have been possible without the close international cooperation which has existed from the beginning, and which is essential to the ultimate success of the RERTR Program.

  8. IAEA coordinated research projects on core physics benchmarks for high temperature gas-cooled reactors

    SciTech Connect

    Methnani, M.

    2006-07-01

    High-temperature Gas-Cooled Reactor (HTGR) designs present special computational challenges related to their core physics characteristics, in particular neutron streaming, double heterogeneities, impurities and the random distribution of coated fuel particles in the graphite matrix. In recent years, two consecutive IAEA Coordinated Research Projects (CRP 1 and CRP 5) have focused on code-to-code and code-to-experiment comparisons of representative benchmarks run by several participating international institutes. While the PROTEUS critical HTR experiments provided the test data reference for CRP-1, the more recent CRP-5 data has been made available by the HTTR, HTR-10 and ASTRA test facilities. Other benchmark cases are being considered for the GT-MHR and PBMR core designs. This paper overviews the scope and some sample results of both coordinated research projects. (authors)

  9. A neutronic feasibility study for LEU conversion of the Brookhaven Medical Research Reactor (BMRR).

    SciTech Connect

    Hanan, N. A.

    1998-01-14

    A neutronic feasibility study for converting the Brookhaven Medical Research Reactor from HEU to LEU fuel was performed at Argonne National Laboratory in cooperation with Brookhaven National Laboratory. Two possible LEU cores were identified that would provide nearly the same neutron flux and spectrum as the present HEU core at irradiation facilities that are used for Boron Neutron Capture Therapy and for animal research. One core has 17 and the other has 18 LEU MTR-type fuel assemblies with uranium densities of 2.5g U/cm{sup 3} or less in the fuel meat. This LEU fuel is fully-qualified for routine use. Thermal hydraulics and safety analyses need to be performed to complete the feasibility study.

  10. CERL/ORNL research and development programs in support of prestressed concrete reactor vessel development

    SciTech Connect

    Hornby, I.W.; Naus, D.J.

    1984-01-01

    In support of the evolution of PCRV designs being developed both in the UK and USA, research and developments programmers are being conducted at the CEGB Central Electricity Research Laboratories (CERL) and the Oak Ridge National Laboratory (ORNL) respectively. In the UK, recent work has focused on elevated temperature effects on concrete properties and instrument systems for PCRVs. The concrete development program at ORNL consists of generic studies designed to provide technical support for ongoing prestressed concrete reactor vessel-related activities, to contribute to the technological data base, and to provide independent review and evaluation of the relevant technology. Recent activities have been related to the development of properties for high-strength concrete mix designs for the PCRV of a 2240 MW(t) HTGR-SC/C lead plant project, and the development of PCRV model testing techniques.

  11. Dual Shell Pressure Balanced Reactor Vessel cooperative research and development agreement with Innotek, Inc., Final report

    SciTech Connect

    Robertus, R.J.; Fassbender, A.G.; Deverman, G.S.

    1995-04-01

    The Department of Energy`s Office of Energy Research (OER) has provided support for the development of several chemical processes, including supercritical water oxidation, liquefaction, and aqueous hazardous waste destruction, where chemical and phase transformations are conducted at high pressure and temperature. These and many other commercial processes require a pressure vessel capable of operating in a corrosive environment where safety and economy are important requirements. This document details a cooperative research and development agreement for a novel Dual Shell Pressure Balanced Vessel (DSPBV) which could solve a number of these problems. The Technology could be immediately useful in continuing commercialization of an R&D 100 award-winning technology, Sludge-to-oil Reactor System (STORS), originally developed through funding by OER.

  12. Recommendations concerning research and model evaluation needs to support breeder reactor environmental radiological assessments

    SciTech Connect

    Miller, C. W.; Dunning, Jr., D. E.; Etnier, E. L.; Kocher, D. C.; McDowell-Boyer, L. M.; Meyer, H. R.; Rohwer, P. S.

    1980-12-01

    Purpose of this report is to present recommendations concerning needs for model evaluations, environmental research, and biomedical research to support breeder reactor environmental radiological assessments. More data are needed to specify dry deposition velocities and to validate plume depletion models. More atmospheric dispersion data are required to characterize flow near buildings, in complex terrain, and for travel distances at 100 km or more. Field data are needed for terrestrial food chain transport models, especially those used to assess the impact of acute radionuclide releases. Efforts are needed to develop models for the estimation of dose from external exposure to photons from a finite, elevated plume resulting from an acute radionuclide release to the atmosphere. Estimates of doses to man from internally deposited radionuclides require scrutiny. Further study of tritium is needed to determine its dependence on dose and dose rate and to specify the relative toxicity of various physiochemical forms of tritium in the environment.

  13. DOE/NE University Program in robotics for advanced reactors research

    SciTech Connect

    Trivedi, M.M.

    1990-01-01

    The document presents the bimonthly progress reports published during 1990 regarding the US Department of Energy/NE-sponsored research at the University of Tennessee Knoxville under the DOE Robitics for Advanced Reactors Research Grant. Significant accomplishments are noted in the following areas: development of edge-segment based stereo matching algorithm; vision system integration in the CESAR laboratory; evaluation of algorithms for surface characterization from range data; comparative study of data fusion techniques; development of architectural framework, software, and graphics environment for sensor-based robots; algorithms for acquiring tactile images from planer surfaces; investigations in geometric model-based robotic manipulation; investigations of non-deterministic approaches to sensor fusion; and evaluation of sensor calibration techniques. (MB)

  14. Decontamination of dental implant surface in peri-implantitis treatment: A literature review

    PubMed Central

    Buitrago-Vera, Pedro; Solá-Ruiz, María F.; Ferrer-García, Juan C.

    2013-01-01

    Etiological treatment of peri-implantitis aims to reduce the bacterial load within the peri-implant pocket and decontaminate the implant surface in order to promote osseointegration. The aim of this literature review was to evaluate the efficacy of different methods of implant surface decontamination. A search was conducted using the PubMed (Medline) database, which identified 36 articles including in vivo and in vitro studies, and reviews of different decontamination systems (chemical, mechanical, laser and photodynamic therapies). There is sufficient consensus that, for the treatment of peri-implant infections, the mechanical removal of biofilm from the implant surface should be supplemented by chemical decontamination with surgical access. However, more long-term research is needed to confirm this and to establish treatment protocols responding to different implant characterics. Key words:Peri-implantitis, treatment, decontamination, implant surface, laser. PMID:23986023

  15. Evaluation of candidate decontaminants against percutaneous sulfur mustard and thickened soman challenges

    SciTech Connect

    Blank, J.A.; Hobson, D.W.; Menton, R.G.; Olson, C.T.; Korte, D.W.

    1993-05-13

    Studies were conducted to evaluate the efficacy of candidate skin decontaminants relative to a standard control decontaminant, XE-555 resin, against percutaneous sulfur mustard (HD) or thickened soman (TGD) challenge. Male, New Zealand White rabbits were used as the model system with lesion area as the end point for HD exposures and erythrocyte acetylcholinesterase (AChE) inhibition as the endpoint for TGD exposure. Initial studies were performed to establish assay parameters for, and to validate the use of, AChE inhibition as an endpoint for assessing candidate decontaminant efficacy against nerve agent exposures. XE-555 resin was concurrently evaluated with each candidate decontaminant for both assay control and comparative purpose. Decontamination was initiated at 1, 3, or 5 min after HD exposures and 2 min after TGD exposures. U.S. Army Medical Research Institute of Chemical Defense (USAMRICD) compounds 1513, 1514, 1515, 1516, and 1517 were evaluated against HD and against TGD. Results from these studies demonstrated the utility of AChE inhibition for evaluating skin decontaminants. None of the candidate decontaminants evaluated was more effective than the standard control decontaminant against HD or TGD exposures.

  16. Heat stress control in the TMI-2 (Three Mile Island Unit 2) defueling and decontamination activities

    SciTech Connect

    Schork, J.S.; Parfitt, B.A.

    1988-01-01

    During the initial stages of the Three Mile Island Unit 2 (TMI-2) defueling and decontamination activities for the reactor building, it was realized that the high levels of loose radioactive contamination would require the use of extensive protective clothing by entry personnel. While there was no doubt that layered protective clothing protects workers from becoming contaminated, it was recognized that these same layers of clothing would impose a very significant heat stress burden. To prevent the potentially serious consequences of a severe reaction to heat stress by workers in the hostile environment of the TMI-2 reactor building and yet maintain the reasonable work productivity necessary to perform the recovery adequately, an effective program of controlling worker exposure to heat stress had to be developed. Body-cooling devices produce a flow of cool air, which is introduced close to the skin to remove body heat through convection and increased sweat evaporation. The cooling effect produced by the Vortex tube successfully protected the workers from heat stress, however, there were several logistical and operational problems that hindered extensive use of these devices. The last type of cooling garment examined was the frozen water garment (FWG) developed by Elizier Kamon at the Pennsylvania State University as part of an Electric Power Research Institute research grant. Personal protection, i.e., body cooling, engineering controls, and administrative controls, have been implemented successfully.

  17. ORNL decontamination and decommissioning program

    SciTech Connect

    Bell, J. P.

    1980-01-01

    A program has been initiated at ORNL to decontaminate and decommission surplus or abandoned nuclear facilities. Program planning and technical studies have been performed by UCC-ND Engineering. A feasibility study for decommissioning the Metal Recovery Facility, a fuel reprocessing pilot plant, has been completed.

  18. Novel Protection and Decontamination Strategies

    DTIC Science & Technology

    2016-06-01

    Novel Protection and Decontamination Strategies Distribution Statement A. Approved for public release; distribution is unlimited. June 2016...development of novel rationally designed virus inactivation strategies and novel environmentally benign disinfection systems. The virus inactivation...1.2  Peptide  phage  display  –  mutagenesis  and  selection   studies ......................................................... 6

  19. Progressive Application Decommissioning Models for U.S. Power and Research Reactors

    SciTech Connect

    Studnicka, Z.; Lacy, N.H.; Nicholas, R.G.; Campagna, M.; Morgan, R.D.; Sawruk, W.

    2006-07-01

    This paper presents progressive engineering techniques and experiences in decommissioning projects performed by Bums and Roe Enterprises within the last fifteen years. Specifically, engineering decommissioning technical methods and lessons learned are discussed related to the Trojan Large Component Removal Project, San Onofre Nuclear Generating Station (SONGS) Decommissioning Project and the Brookhaven Graphite Research Reactor (BGRR) Decommissioning Project Study. The 25 years since the 1979 TMI accident and the events following 9/11 have driven the nuclear industry away from excessive, closed/elitist conservative methods towards more pragmatic results-oriented and open processes. This includes the essential recognition that codes, standards and regulatory procedures must be efficient, effective and fit for purpose. Financial and open-interactive stakeholder pressures also force adherence to aggressive risk reduction posture in the area of a safety, security and operations. The engineering methods and techniques applied to each project presented unique technical solutions. The decommissioning design for each project had to adopt existing design rules applicable to construction of new nuclear power plants and systems. It was found that the existing ASME, NRC, and DOE codes and regulations for deconstruction were, at best, limited or extremely conservative in their applicability to decommissioning. This paper also suggests some practical modification to design code rules in application for decommissioning and deconstruction. The representative decommissioning projects, Trojan, SONGS and Brookhaven, are discussed separately and the uniqueness of each project, in terms of engineering processes and individual deconstruction steps, is discussed. Trojan Decommissioning. The project included removal of entire NSSS system. The engineering complexity was mainly related to the 1200 MW Reactor. The approach, process of removal, engineering method related to protect the worker

  20. Decontamination processes for waste glass canisters

    SciTech Connect

    Rankin, W.N.

    1981-06-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO/sub 3/-HF and H/sub 2/C/sub 2/O/sub 4/ to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated.

  1. Preliminary fracture analysis of the core pressure boundary tube for the Advanced Neutron Source Research Reactor

    SciTech Connect

    Schulz, K.C.; Yahr, G.T.

    1995-08-01

    The outer core pressure boundary tube (CPBT) of the Advanced neutron Source (ANS) reactor being designed at Oak Ridge National Laboratory is currently specified as being composed of 6061-T6 aluminum. ASME Boiler and Pressure Vessel Code fracture analysis rules for nuclear components are based on the use of ferritic steels; the expressions, tables, charts and equations were all developed from tests and analyses conducted for ferritic steels. Because of the nature of the Code, design with thin aluminum requires analytical approaches that do not directly follow the Code. The intent of this report is to present a methodology comparable to the ASME Code for ensuring the prevention of nonductile fracture of the CPBT in the ANS reactor. 6061-T6 aluminum is known to be a relatively brittle material; the linear elastic fracture mechanics (LEFM) approach is utilized to determine allowable flaw sizes for the CPBT. A J-analysis following the procedure developed by the Electric Power Research Institute was conducted as a check; the results matched those for the LEFM analysis for the cases analyzed. Since 6061-T6 is known to embrittle when irradiated, the reduction in K{sub Q} due to irradiation is considered in the analysis. In anticipation of probable requirements regarding maximum allowable flaw size, a survey of nondestructive inspection capabilities is also presented. A discussion of probabilistic fracture mechanics approaches, principally Monte Carlo techniques, is included in this report as an introduction to what quantifying the probability of nonductile failure of the CPBT may entail.

  2. Aqueous processing of U-10Mo scrap for high performance research reactor fuel

    NASA Astrophysics Data System (ADS)

    Youker, Amanda J.; Stepinski, Dominique C.; Maggos, Laura E.; Bakel, Allen J.; Vandegrift, George F.

    2012-08-01

    The Global Threat Reduction Initiative (GTRI) Conversion program, which is part of the US government's National Nuclear Security Administration (NNSA), supports the conversion of civilian use of highly enriched uranium (HEU) to low enriched uranium (LEU) for reactor fuel and targets. The reason for conversion is to eliminate the use of any material that may pose a threat to the United States or other foreign countries. High performance research reactors (HPRRs) cannot make the conversion to a standard LEU fuel because they require a more dense fuel to meet their performance requirements. As a result, a more dense fuel consisting of a monolithic uranium-molybdenum alloy containing 10% (w/w) Mo with Al cladding and a Zr bonding-layer is being considered. Significant losses are expected in the fabrication of this fuel, so a means to recycle the scrap pieces is needed. Argonne National Laboratory has developed an aqueous-processing flowsheet for scrap recovery in the fuel fabrication process for high-density LEU-monolithic fuel based on data found in the literature. Experiments have been performed to investigate dissolution conditions for solutions containing approximately 20 g-U/L and 50 g-U/L with and without Fe(NO3)3. HNO3 and HF concentrations have been optimized for timely dissolution of the fuel scrap and prevention of the formation of the U-Zr2 intermetallic, explosive complex, while meeting the requirements needed for further processing.

  3. [Research on Cultivation and Stability of Nitritation Granular Sludge in Integrated ABR-CSTR Reactor].

    PubMed

    Wu, Kai-cheng; Wu, Peng; Shen, Yao-liang; Li, Yue-han; Wang, Han-fang; Xu, Yue-zhong

    2015-11-01

    Abstract: The last two compartments of the Anaerobic Baffled Readtor ( ABR) were altered into aeration tank and sedimentation tank respectively to get an integrated anaerobic-aerobic reactor, using anaerobic granular sludge in anaerobic zone and aerobic granular sludge in aerobic zone as seed sludge. The research explored the condition to cultivate nitritation granular sludge, under the condition of continuous flow. The C/N rate was decreased from 1 to 0.4 and the ammonia nitrogen volumetric loading rate was increased from 0.89 kg x ( m3 x d)(-1) to 2.23 kg x (m3 x d)(-1) while the setting time of 1 h was controlled in the aerobic zone. After the system was operated for 45 days, the mature nitritation granular sludge in aerobic zone showed a compact structure and yellow color while the nitrite accumulation rate was about 80% in the effluent. The associated inhibition of free ammonia (FA) and free nitrous acid (FNA) dominated the nitritation. Part of granules lost stability during the initial period of operation and flocs appeared in the aerobic zone. However, the flocs were transformed into newly generated small particles in the following reactor operation, demonstrating that organic carbon was benefit to granulation and the enrichment of slow-growing nitrifying played an important role in the stability of granules.

  4. LOSS-OF-COOLANT ACIDENT SIMULATIONS IN THE NATIONAL RESEARCH UNIVERSAL REACTOR

    SciTech Connect

    Bennett, W D; Goodman, R L; Heaberlin, S W; Hesson, G M; Nealley, C; Kirg, L L; Marshall, R K; McNair, G W; Meitzler, W D; Neally, G W; Parchen, L J; Pilger, J P; Rausch, W N; Russcher, G E; Schreiber, R E; Wildung, N J; Wilson, C L

    1981-02-01

    Pressurized water reactor loss-of-coolant accident (LOCA) phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship among the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. Subsequent experiments establish the fuel rod failure characteristics at selected peak cladding temperatures. Fuel rod cladding pressurization simulates high burnup fission gas pressure levels of modern PWRs. This document contains both an experiment overview of the LOCA simulation program and a review of the safety analyses performed by Pacific Northwest Laboratory (PNL) to define the expected operating conditions as well as to evaluate the worst case operating conditions. The primary intent of this document is to supply safety information required by the Chalk River Nuclear Laboratories (CRNL), to establish readiness to proceed from one test phase to the next and to establish the overall safety of the experiment. A hazards review summarizes safety issues, normal operation and three worst case accidents that have been addressed during the development of the experiment plan.

  5. A neutronic feasibility study for LEU conversion of the WWR-SM research reactor in Uzbekistan.

    SciTech Connect

    Rakhmanov, A.

    1998-10-19

    The WWR-SM research reactor in Uzbekistan has operated at 10 MW since 1979, using Russian-supplied IRT-3M fuel assemblies containing 90% enriched uranium. Burnup tests of three full-sized IRT-3M FA with 36% enrichment were successfully completed to a burn up of about {approximately}50% in 1987-1989. In August 1998, four IRT-3M FA with 36% enriched uranium were loaded into the core to initiate conversion of the entire core to 36% enriched fuel. This paper presents the results of equilibrium fuel cycle comparisons of the reactor using HEU (90%) and HEU (36%) IRT-3M fuel and compares results with the performance of IRT-4M FA containing LEU (19.75%). The results show that an LEU (19.75%) density of 3.8 g/cm{sup 3} is required to match the cycle length of the HEU (90%) core and an LEU density 3.9 g/cm{sup 3} is needed to match the cycle length of the HEU (36%) core.

  6. A neutronic feasibility study for LEU conversion of the IR-8 research reactor.

    SciTech Connect

    Deen, J. R.

    1998-10-22

    Equilibrium fuel cycle comparisons for the IR-8 research reactor were made for HEU(90%), HEU(36%), and LEU (19.75%) fuel assembly (FA) designs using three dimensional multi-group diffusion theory models benchmarked to detailed Monte Carlo models of the reactor. Comparisons were made of changes in reactivity, cycle length, average {sup 235}U discharge burnup, thermal neutron flux, and control rod worths for the 90% and 36% enriched IRT-3M fuel assembly and the 19.75% enriched IRT-4M fuel assembly with the same fuel management strategy. The results of these comparisons showed that a uranium density of 3.5 g/cm{sup 3} in the fuel meat would be required in the LEU IRT-4M fuel assembly to match the cycle length of the HEU(90%) IRT-3M FA and an LEU density of 3.7 g/cm{sup 3} is needed to match the cycle length of the HEU(36%) IRT-3M FA.

  7. Mass Casualty Decontamination Guidance and Psychosocial Aspects of CBRN Incident Management: A Review and Synthesis

    PubMed Central

    Carter, Holly; Amlôt, Richard

    2016-01-01

    Introduction: Mass casualty decontamination is an intervention employed by first responders at the scene of an incident involving noxious contaminants.  Many countries have sought to address the challenge of decontaminating large numbers of affected casualties through the provision of rapidly deployable temporary showering structures, with accompanying decontamination protocols.  In this paper we review decontamination guidance for emergency responders and associated research evidence, in order to establish to what extent psychosocial aspects of casualty management have been considered within these documents. The review focuses on five psychosocial aspects of incident management: likely public behaviour; responder management style; communication strategy; privacy/ modesty concerns; and vulnerable groups. Methods: Two structured literature reviews were carried out; one to identify decontamination guidance documents for first responders, and another to identify evidence which is relevant to the understanding of the psychosocial aspects of mass decontamination.  The guidance documents and relevant research were reviewed to identify whether the guidance documents contain information relating to psychosocial issues and where it exists, that the guidance is consistent with the existing evidence-base. Results: Psychosocial aspects of incident management receive limited attention in current decontamination guidance.  In addition, our review has identified a number of gaps and inconsistencies between guidance and research evidence.  For each of the five areas we identify: what is currently presented in guidance documents, to what extent this is consistent with the existing research evidence and where it diverges.  We present a series of evidence-based recommendations for updating decontamination guidance to address the psychosocial aspects of mass decontamination. Conclusions: Effective communication and respect for casualties’ needs are critical in ensuring

  8. Characterization of wastes in and around early reactors at the Hanford Site: The use of historical research

    SciTech Connect

    Gerber, M.S.

    1993-10-01

    This paper will present the waste characterization knowledge that has been gained in the first, ``Large-Scale Remediation Study`` to be performed on the reactor areas (100 Areas) of the Hanford Site. Undertaken throughout the past year, this research project has identified thousands of pieces of buried hardware, as well as the volumes of liquid wastes in burial sites in the reactor areas. The author of this landmark study, Dr. Michele Gerber, will discuss historical research as a safe and cost-effective characterization tool.

  9. NRC review of Electric Power Research Institute's Advanced Light Reactor Utility Requirements Document - Program summary, Project No. 669

    SciTech Connect

    Not Available

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 1 of a safety evaluation report (SER), NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Program Summary,'' to document the results of its review of the Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document.'' This SER provides a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  10. Nuclear Fuel Traces Definition in Storage Ponds of Research VVR-2 and OR Reactors in NRC 'Kurchatov Institute'

    SciTech Connect

    Stepanov, Alexey; Simirskii, Iurii; Stepanov, Vyacheslav; Semin, Ilya; Volkovich, Anatoly

    2015-07-01

    The Gas Plant complex is the experimental base of the Institute of Nuclear Reactors, which is part of the Kurchatov Institute. In 1954 the commissioning of the first Soviet water-cooled water-moderated research reactor VVR-2 on enriched uranium, and until 1983 the complex operated two research water-cooled water-moderated reactors 3 MW (VVR-2) and 300 kW (OR) capacity, which were dismantled in connection with the overall upgrades of the complex. The complex has three storage ponds in the reactor building. They are sub-surface vessels filled with water (the volume of water in each is about 6 m{sup 3}). In 2007-2013 the spent nuclear fuel from storages was removed for processing to 'Mayk'. Survey of Storage Ponds by Underwater Collimated Spectrometric System shows a considerable layer of slime on the bottom of ponds and traces of spent nuclear fuel in one of the storage. For determination qualitative and the quantitative composition of radionuclide we made complex α-, β-, γ- spectrometric research of water and bottom slimes from Gas Plant complex storage ponds. We found the spent nuclear fuel in water and bottom slime in all storage ponds. Specific activity of radionuclides in the bottom slime exceeded specific activity of radionuclides in the ponds water and was closed to levels of high radioactive waste. Analysis of the obtained data and data from earlier investigation of reactor MR storage ponds showed distinctions of specific activity of uranium and plutonium radionuclides. (authors)

  11. Skin decontamination with mineral cationic carrier against sarin determined in vivo.

    PubMed

    Vucemilović, Ante; Hadzija, Mirko; Jukić, Ivan

    2009-06-01

    Our Institute's nuclear, biological, and chemical defense research team continuously investigates and develops preparations for skin decontamination against nerve agents. In this in vivo study, we evaluated skin decontamination efficacy against sarin by a synthetic preparation called Mineral Cationic Carrier (MCC) with known ion exchange, absorption efficacy and bioactive potential. Mice were treated with increasing doses of sarin applied on their skin, and MCC was administered immediately after contamination. The results showed that decontamination with MCC could achieve therapeutic efficacy corresponding to 3 x LD(50) of percutaneous sarin and call for further research.

  12. Assessment of strippable coatings for decontamination and decommissioning

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    Strippable or temporary coatings were developed to assist in the decontamination of the Three Mile Island (TMI-2) reactor. These coatings have become a viable option during the decontamination and decommissioning (D and D) of both US Department of Energy (DOE) and commercial nuclear facilities to remove or fix loose contamination on both vertical and horizontal surfaces. A variety of strippable coatings are available to D and D professionals. However, these products exhibit a wide range of performance criteria and uses. The Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) was commissioned to perform a 2-year investigation into strippable coatings. This investigation was divided into four parts: (1) identification of commercially available strippable coating products; (2) survey of D and D professionals to determine current uses of these coatings and performance criteria; (3) design and implementation of a non-radiological testing program to evaluate the physical properties of these coatings; and (4) design and implementation of a radiological testing program to determine decontamination factors and effects of exposure to ionizing radiation. Activities during fiscal year 1997 are described.

  13. Reactor pressure vessel integrity research at the Oak Ridge National Laboratory

    SciTech Connect

    Corwin, W.R.; Pennell, W.E.; Pace, J.V.

    1995-12-31

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is the only key safety-related component of the plant for which a duplicate or redundant backup system does not exist. It is therefore imperative to understand and be able to predict the integrity inherent in the RPV. For this reason, the U.S. Nuclear Regulatory Commission has established the related research programs at ORNL described herein to provide for the development and confirmation of the methods used for: (1) establishing the irradiation exposure conditions within the RPV in the Embrittlement Data Base and Dosimetry Evaluation Program, (2) assessing the effects of irradiation on the RPV materials in the Heavy-Section Steel Irradiation Program, and (3) developing overall structural and fracture analyses of RPVs in the Heavy-Section Steel Technology Program.

  14. Neutronic calculations for the conversion to LEU of a research reactor core

    SciTech Connect

    Varvayanni, M.; Catsaros, N.; Stakakis, E.; Grigoriadis, D.

    2008-07-15

    For a five-year transitional period the Greek Research Reactor (GRR-1) was operating with a mixed core, containing both Low Enrichment (LEU) and High Enrichment (HEU) Uranium MTR- type fuel assemblies. The neutronic study of the GRR-1 conversion to LEU has been performed using a code system comprising the core-analysis code CITATION-LDI2 and the cell-calculation modules XSDRNPM and NITAWL-II of the SCALE code. A conceptual LEU core configuration was defined and analyzed with respect to the three dimensional multi-group neutron fluxes, the power distribution, the control-rod worth and the compliance with pre-defined Operation Limiting Conditions. Perturbation calculations and reactivity feedback computations were also carried out to provide input to a subsequent thermal-hydraulic study. (author)

  15. Fuel development activities of the US RERTR Program. [Reduced Enrichment Research and Test Reactor

    SciTech Connect

    Snelgrove, J.L.; Domagala, R.F.; Wiencek, T.C.; Copeland, G.L.

    1983-01-01

    Progress in the development and irradiation testing of high-density fuels for use with low-enriched uranium in research and test reactors is reported. Swelling and blister-threshold temperature data obtained from the examination of miniature fuel plates containing UAl/sub x/, U/sub 3/O/sub 8/, U/sub 3/Si/sub 2/, or U/sub 3/Si dispersed in an aluminum matrix are presented. Combined with the results of metallurgical examinations, these data show that these four fuel types will perform adequately to full burnup of the /sup 235/U contained in the low-enriched fuel. The exothermic reaction of the uranium-silicide fuels with aluminum has been found to occur at about the same temperature as the melting of the aluminum matrix and cladding and to be essentially quenched by the melting endotherm. A new series of miniature fuel plate irradiations is also discussed.

  16. Isotope production target irradiation experience at the annular core research reactor

    SciTech Connect

    Talley, D.G.

    1997-02-01

    As a result of an Environmental Impact Statement (EIS) recently issued by the Department of Energy, Sandia National Laboratories (SNL) has been selected as the {open_quotes}most appropriate facility{close_quotes} for the production of {sup 99}Mo. The daughter product of {sup 99}Mo is {sup 99m}Tc, a radioisotope used in 36,000 medical procedures per day in the U.S.{close_quote} At SNL, the {sup 99}Mo would be created by the fission process in UO{sub 2} coated {open_quotes}targets{close_quotes} and chemically separated in the SNL Hot Cell Facility (HCF). SNL has recently completed the irradiation of five production targets at its Annular Core Research Reactor (ACRR). Following irradiation, four of the targets were chemically processed in the HCF using the Cintichem process.

  17. Residual stress diffractometer KOWARI at the Australian research reactor OPAL: Status of the project

    NASA Astrophysics Data System (ADS)

    Brule, Alain; Kirstein, Oliver

    2006-11-01

    Neutron scattering using diffraction techniques is now recognized as the most precise and reliable method of mapping sub-surface residual stresses in materials or even components, which are not only of academic but also of industrial-economic relevance. The great potential of neutrons in the field of residual stresses was recognized by ANSTO and its external Beam Instrument Advisory Group for the new research reactor OPAL. The recommendation was to build the dedicated strain scanner KOWARI among the first suite of instruments available to users. We give an update on the overall project and present the current status of the diffractometer. It is anticipated that the instrument will be commissioned in mid 2006 and available to users at the end of the OPAL project.

  18. Neutronic safety and transient analyses for potential LEU conversion of the IR-8 research reactor.

    SciTech Connect

    Deen, J. R.; Hanan, N. A.; Smith, R. S.; Matos, J. E.; Egorenkov, P. M.; Nasonov, V. A.

    1999-09-27

    Kinetic parameters, isothermal reactivity feedback coefficients and three transients for the IR-8 research reactor cores loaded with either HEU(90%), HEU(36%), or LEU (19.75%) fuel assemblies (FA) were calculated using three dimensional diffusion theory flux solutions, RELAP5/MOD3.2 and PARET. The prompt neutron generation time and effective delayed neutron fractions were calculated for fresh and beginning-of-equilibrium-cycle cores. Isothermal reactivity feedback coefficients were calculated for changes in coolant density, coolant temperature and fuel temperature in fresh and equilibrium cores. These kinetic parameters and reactivity coefficients were used in transient analysis models to predict power histories, and peak fuel, clad and coolant temperatures. The transients modeled were a rapid and slow loss-of-flow, a slow reactivity insertion, and a fast reactivity insertion.

  19. Very High Temperature Reactor (VHTR) Survey of Materials Research and Development Needs to Support Early Deployment

    SciTech Connect

    Eric Shaber; G. Baccaglini; S. Ball; T. Burchell; B. Corwin; T. Fewell; M. Labar; P. MacDonald; P. Rittenhouse; Russ Vollam; F. Southworth

    2003-01-01

    The VHTR reference concept is a helium-cooled, graphite moderated, thermal neutron spectrum reactor with an outlet temperature of 1000 C or higher. It is expected that the VHTR will be purchased in the future as either an electricity producing plant with a direct cycle gas turbine or a hydrogen producing (or other process heat application) plant. The process heat version of the VHTR will require that an intermediate heat exchanger (IHX) and primary gas circulator be located in an adjoining power conversion vessel. A third VHTR mission - actinide burning - can be accomplished with either the hydrogen-production or gas turbine designs. The first ''demonstration'' VHTR will produce both electricity and hydrogen using the IHX to transfer the heat to either a hydrogen production plant or the gas turbine. The plant size, reactor thermal power, and core configuration will be designed to assure passive decay heat removal without fuel damage during accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. The purpose of this report is to identify the materials research and development needs for the VHTR. To do this, we focused on the plant design described in Section 2, which is similar to the GT-MHR plant design (850 C core outlet temperature). For system or component designs that present significant material challenges (or far greater expense) there may be some viable design alternatives or options that can reduce development needs or allow use of available (cheaper) materials. Nevertheless, we were not able to assess those alternatives in the time allotted for this report and, to move forward with this material research and development assessment, the authors of this report felt that it was necessary to use a GT-MHR type design as the baseline design.

  20. The development and application of k0-standardization method of neutron activation analysis at Es-Salam research reactor

    NASA Astrophysics Data System (ADS)

    Alghem, L.; Ramdhane, M.; Khaled, S.; Akhal, T.

    2006-01-01

    In recent years the k0-NAA method has been applied and developed at the 15 MW Es-Salam research reactor, which includes: (1) the detection efficiency calibration of γ-spectrometer used in k0-NAA, (2) the determination of reactor neutron spectrum parameters such as α and f factors in the irradiation channel, and (3) the validation of the developed k0-NAA procedure by analysing SRM, namely AIEA-Soil7 and CRM, namely IGGE-GSV4. The analysis results obtained by k0-NAA with 27 elements of Soil-7 standard and 14 elements of GSV-4 standard were compared with certified values. The analysis results showed that the deviations between experimental and certified values were mostly less than 10%. The k0-NAA procedure established at Es-Salam research reactor has been regarded as a reliable standardization method of NAA and as available for practical applications.