Sample records for reservoir analysis capability

  1. An R package for the design, analysis and operation of reservoir systems

    NASA Astrophysics Data System (ADS)

    Turner, Sean; Ng, Jia Yi; Galelli, Stefano

    2016-04-01

    We present a new R package - named "reservoir" - which has been designed for rapid and easy routing of runoff through storage. The package comprises well-established tools for capacity design (e.g., the sequent peak algorithm), performance analysis (storage-yield-reliability and reliability-resilience-vulnerability analysis) and release policy optimization (Stochastic Dynamic Programming). Operating rules can be optimized for water supply, flood control and amenity objectives, as well as for maximum hydropower production. Storage-depth-area relationships are in-built, allowing users to incorporate evaporation from the reservoir surface. We demonstrate the capabilities of the software for global studies using thousands of reservoirs from the Global Reservoir and Dam (GRanD) database fed by historical monthly inflow time series from a 0.5 degree gridded global runoff dataset. The package is freely available through the Comprehensive R Archive Network (CRAN).

  2. Estimating Water Levels with Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Lucero, E.; Russo, T. A.; Zentner, M.; May, J.; Nguy-Robertson, A. L.

    2016-12-01

    Reservoirs serve multiple functions and are vital for storage, electricity generation, and flood control. For many areas, traditional ground-based reservoir measurements may not be available or data dissemination may be problematic. Consistent monitoring of reservoir levels in data-poor areas can be achieved through remote sensing, providing information to researchers and the international community. Estimates of trends and relative reservoir volume can be used to identify water supply vulnerability, anticipate low power generation, and predict flood risk. Image processing with automated cloud computing provides opportunities to study multiple geographic areas in near real-time. We demonstrate the prediction capability of a cloud environment for identifying water trends at reservoirs in the US, and then apply the method to data-poor areas in North Korea, Iran, Azerbaijan, Zambia, and India. The Google Earth Engine cloud platform hosts remote sensing data and can be used to automate reservoir level estimation with multispectral imagery. We combine automated cloud-based analysis from Landsat image classification to identify reservoir surface area trends and radar altimetry to identify reservoir level trends. The study estimates water level trends using three years of data from four domestic reservoirs to validate the remote sensing method, and five foreign reservoirs to demonstrate the method application. We report correlations between ground-based reservoir level measurements in the US and our remote sensing methods, and correlations between the cloud analysis and altimetry data for reservoirs in data-poor areas. The availability of regular satellite imagery and an automated, near real-time application method provides the necessary datasets for further temporal analysis, reservoir modeling, and flood forecasting. All statements of fact, analysis, or opinion are those of the author and do not reflect the official policy or position of the Department of Defense or any of its components or the U.S. Government

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keefer, Donald A.; Shaffer, Eric G.; Storsved, Brynne

    A free software application, RVA, has been developed as a plugin to the US DOE-funded ParaView visualization package, to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed as an open-source plugin to the 64 bit Windows version of ParaView 3.14. RVA was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing jointmore » visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed on enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including: sophisticated connectivity analysis, cross sections through simulation results between selected wells, simplified volumetric calculations, global vertical exaggeration adjustments, ingestion of UTChem simulation results, ingestion of Isatis geostatistical framework models, interrogation of joint geologic and reservoir modeling results, joint visualization and analysis of well history files, location-targeted visualization, advanced correlation analysis, visualization of flow paths, and creation of static images and animations highlighting targeted reservoir features.« less

  4. RVA: A Plugin for ParaView 3.14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-04

    RVA is a plugin developed for the 64-bit Windows version of the ParaView 3.14 visualization package. RVA is designed to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing joint visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed onmore » enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including: sophisticated connectivity analysis, cross sections through simulation results between selected wells, simplified volumetric calculations, global vertical exaggeration adjustments, ingestion of UTChem simulation results, ingestion of Isatis geostatistical framework models, interrogation of joint geologic and reservoir modeling results, joint visualization and analysis of well history files, location-targeted visualization, advanced correlation analysis, visualization of flow paths, and creation of static images and animations highlighting targeted reservoir features.« less

  5. Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information

    NASA Astrophysics Data System (ADS)

    Yang, Tiantian; Asanjan, Ata Akbari; Welles, Edwin; Gao, Xiaogang; Sorooshian, Soroosh; Liu, Xiaomang

    2017-04-01

    Reservoirs are fundamental human-built infrastructures that collect, store, and deliver fresh surface water in a timely manner for many purposes. Efficient reservoir operation requires policy makers and operators to understand how reservoir inflows are changing under different hydrological and climatic conditions to enable forecast-informed operations. Over the last decade, the uses of Artificial Intelligence and Data Mining [AI & DM] techniques in assisting reservoir streamflow subseasonal to seasonal forecasts have been increasing. In this study, Random Forest [RF), Artificial Neural Network (ANN), and Support Vector Regression (SVR) are employed and compared with respect to their capabilities for predicting 1 month-ahead reservoir inflows for two headwater reservoirs in USA and China. Both current and lagged hydrological information and 17 known climate phenomenon indices, i.e., PDO and ENSO, etc., are selected as predictors for simulating reservoir inflows. Results show (1) three methods are capable of providing monthly reservoir inflows with satisfactory statistics; (2) the results obtained by Random Forest have the best statistical performances compared with the other two methods; (3) another advantage of Random Forest algorithm is its capability of interpreting raw model inputs; (4) climate phenomenon indices are useful in assisting monthly or seasonal forecasts of reservoir inflow; and (5) different climate conditions are autocorrelated with up to several months, and the climatic information and their lags are cross correlated with local hydrological conditions in our case studies.

  6. Microbial enhanced oil recovery and compositions therefor

    DOEpatents

    Bryant, Rebecca S.

    1990-01-01

    A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.

  7. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensormore » packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging survivability issues. Our findings indicate that packaging represents the most significant technical challenge associated with application of sensors in the downhole environment for long periods (5+ years) of time. These issues are described in detail within the report. The impact of successful reservoir monitoring programs and coincident improved reservoir management is measured by the production of additional oil and gas volumes from existing reservoirs, revitalization of nearly depleted reservoirs, possible re-establishment of already abandoned reservoirs, and improved economics for all cases. Smart Well monitoring provides the means to understand how a reservoir process is developing and to provide active reservoir management. At the same time it also provides data for developing high-fidelity simulation models. This work has been a joint effort with Sandia National Laboratories and UT-Austin's Bureau of Economic Geology, Department of Petroleum and Geosystems Engineering, and the Institute of Computational and Engineering Mathematics.« less

  8. Fallon, Nevada FORGE Distinct Element Reservoir Modeling

    DOE Data Explorer

    Blankenship, Doug; Pettitt, Will; Riahi, Azadeh; Hazzard, Jim; Blanksma, Derrick

    2018-03-12

    Archive containing input/output data for distinct element reservoir modeling for Fallon FORGE. Models created using 3DEC, InSite, and in-house Python algorithms (ITASCA). List of archived files follows; please see 'Modeling Metadata.pdf' (included as a resource below) for additional file descriptions. Data sources include regional geochemical model, well positions and geometry, principal stress field, capability for hydraulic fractures, capability for hydro-shearing, reservoir geomechanical model-stimulation into multiple zones, modeled thermal behavior during circulation, and microseismicity.

  9. Lacustrine Environment Reservoir Properties on Sandstone Minerals and Hydrocarbon Content: A Case Study on Doba Basin, Southern Chad

    NASA Astrophysics Data System (ADS)

    Sumery, N. F. Mohd; Lo, S. Z.; Salim, A. M. A.

    2017-10-01

    The contribution of lacustrine environment as the hydrocarbon reservoir has been widely known. However, despite its growing importance, the lacustrine petroleum geology has received far less attention than marine due to its sedimentological complexity. This study therefore aims in developing an understanding of the unique aspects of lacustrine reservoirs which eventually impacts the future exploration decisions. Hydrocarbon production in Doba Basin, particularly the northern boundary, for instance, has not yet succeeded due to the unawareness of its depositional environment. The drilling results show that the problems were due to the: radioactive sand and waxy oil/formation damage, which all are related to the lacustrine depositional environment. Detailed study of geological and petrophysical integration on wireline logs and petrographic thin sections analysis of this environment helps in distinguishing reservoir and non-reservoir areas and determining the possible mechanism causing the failed DST results. The interpretations show that the correlation of all types> of logs and rho matrix analysis are capable in identifying sand and shale bed despite of the radioactive sand present. The failure of DST results were due to the presence of arkose in sand and waxy oil in reservoir bed. This had been confirmed by the petrographic thin section analysis where the arkose has mineral twinning effect indicate feldspar and waxy oil showing bright colour under fluorescent light. Understanding these special lacustrine environment characteristics and features will lead to a better interpretation of hydrocarbon prospectivity for future exploration.

  10. Analysis of the influence of reservoirs utilization to water quality profiles in Indonesia (Saguling - Jatiluhur) and Malaysia (Temengor - Chenderoh) with special references to cascade reservoirs

    NASA Astrophysics Data System (ADS)

    Subehi, Luki; Norasikin Ismail, Siti; Ridwansyah, Iwan; Hamid, Muzzalifah Abd; Mansor, Mashhor

    2018-02-01

    Tropical reservoir is the one ecosystem which is functioning in both ecological and economical services. As the settling of water volume, it harbors many species of fish. The objective of this study is to analyze the utilization and management of reservoirs related to their water quality conditions, represent by tropical reservoirs from Indonesia and Malaysia. Survey at Jatiluhur and Saguling (Indonesia) was conducted in March 2014 and September 2015, respectively while in Temengor and Chenderoh (Malaysia), the survey was done in January 2014 and April 2017, respectively. Based on elevation, Saguling and Temengor are upstream reservoirs. On the contrary, Jatiluhur and Chenderoh are downstream reservoirs. The results of the surveys in Jatiluhur and Saguling reservoirs showed that the average depths are 32.9m and 17.9m, respectively. On the other hand, Temengor and Chenderoh reservoirs are 100m and 16.2m, respectively. All of them play multi-functional roles including as a source of power plant, fisheries and tourism, as well as water sources for irrigation. In addition, Saguling and Temengor reservoirs are relatively dendritic in shape. In Indonesia, there are three consecutive reservoirs along Citarum River, whereas in Malaysia there are four consecutive reservoirs along Perak River. The results showed the potential impact of fish cages as pollutant, especially at Indonesian reservoirs. In addition, these tropical reservoirs have become famous tourism getaway. The capabilities of economic values of these reservoirs and ecosystem should be balanced. Basic ecological information is necessary for the next study.

  11. Forecasting the remaining reservoir capacity in the Laurentian Great Lakes watershed

    NASA Astrophysics Data System (ADS)

    Alighalehbabakhani, Fatemeh; Miller, Carol J.; Baskaran, Mark; Selegean, James P.; Barkach, John H.; Dahl, Travis; Abkenar, Seyed Mohsen Sadatiyan

    2017-12-01

    Sediment accumulation behind a dam is a significant factor in reservoir operation and watershed management. There are many dams located within the Laurentian Great Lakes watershed whose operations have been adversely affected by excessive reservoir sedimentation. Reservoir sedimentation effects include reduction of flood control capability and limitations to both water supply withdrawals and power generation due to reduced reservoir storage. In this research, the sediment accumulation rates of twelve reservoirs within the Great Lakes watershed were evaluated using the Soil and Water Assessment Tool (SWAT). The estimated sediment accumulation rates by SWAT were compared to estimates relying on radionuclide dating of sediment cores and bathymetric survey methods. Based on the sediment accumulation rate, the remaining reservoir capacity for each study site was estimated. Evaluation of the anthropogenic impacts including land use change and dam construction on the sediment yield were assessed in this research. The regression analysis was done on the current and pre-European settlement sediment yield for the modeled watersheds to predict the current and natural sediment yield in un-modeled watersheds. These eleven watersheds are in the state of Indiana, Michigan, Ohio, New York, and Wisconsin.

  12. Compaction within the South Belridge diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chase C.A. Jr.; Dietrich, J.K.

    1989-11-01

    Compaction is incorporated into a field-scale finite-difference thermal simulator to allow practical engineering analysis of reservoir compaction caused by fluid withdrawal. Capabilities new to petroleum applications include hysteresis in the form of limited rebound during fluid injection and the concept of relaxation time (i.e., creep).

  13. Unconventional Tight Reservoirs Characterization with Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Santiago, C. J. S.; Solatpour, R.; Kantzas, A.

    2017-12-01

    The increase in tight reservoir exploitation projects causes producing many papers each year on new, modern, and modified methods and techniques on estimating characteristics of these reservoirs. The most ambiguous of all basic reservoir property estimations deals with permeability. One of the logging methods that is advertised to predict permeability but is always met by skepticism is Nuclear Magnetic Resonance (NMR). The ability of NMR to differentiate between bound and movable fluids and providing porosity increased the capability of NMR as a permeability prediction technique. This leads to a multitude of publications and the motivation of a review paper on this subject by Babadagli et al. (2002). The first part of this presentation is dedicated to an extensive review of the existing correlation models for NMR based estimates of tight reservoir permeability to update this topic. On the second part, the collected literature information is used to analyze new experimental data. The data are collected from tight reservoirs from Canada, the Middle East, and China. A case study is created to apply NMR measurement in the prediction of reservoir characterization parameters such as porosity, permeability, cut-offs, irreducible saturations etc. Moreover, permeability correlations are utilized to predict permeability. NMR experiments were conducted on water saturated cores. NMR T2 relaxation times were measured. NMR porosity, the geometric mean relaxation time (T2gm), Irreducible Bulk Volume (BVI), and Movable Bulk Volume (BVM) were calculated. The correlation coefficients were computed based on multiple regression analysis. Results are cross plots of NMR permeability versus the independently measured Klinkenberg corrected permeability. More complicated equations are discussed. Error analysis of models is presented and compared. This presentation is beneficial in understanding existing tight reservoir permeability models. The results can be used as a guide for choosing the best permeability estimation model for tight reservoirs data.

  14. Advancing the capabilities of reservoir remote sensing by leveraging multi-source satellite data

    NASA Astrophysics Data System (ADS)

    Gao, H.; Zhang, S.; Zhao, G.; Li, Y.

    2017-12-01

    With a total global capacity of more than 6000 km3, reservoirs play a key role in the hydrological cycle and in water resources management. However, essential reservoir data (e.g., elevation, storage, and evaporation loss) are usually not shared at a large scale. While satellite remote sensing offers a unique opportunity for monitoring large reservoirs from space, the commonly used radar altimeters can only detect storage variations of about 15% of global lakes at a repeat period of 10 days or longer. To advance the capabilities of reservoir sensing, we developed a series of algorithms geared towards generating long term reservoir records at improved spatial coverage, and at improved temporal resolution. To this goal, observations are leveraged from multiple satellite sensors, which include radar/laser altimeters, imagers, and passive microwave radiometers. In South Asia, we demonstrate that reservoir storage can be estimated under all-weather conditions at a 4 day time step, with the total capacity of monitored reservoirs increased to 45%. Within the Continuous United States, a first Landsat based evaporation loss dataset was developed (containing 204 reservoirs) from 1984 to 2011. The evaporation trends of these reservoirs are identified and the causes are analyzed. All of these algorithms and products were validated with gauge observations. Future satellite missions, which will make significant contributions to monitoring global reservoirs, are also discussed.

  15. Symbolic Computation Using Cellular Automata-Based Hyperdimensional Computing.

    PubMed

    Yilmaz, Ozgur

    2015-12-01

    This letter introduces a novel framework of reservoir computing that is capable of both connectionist machine intelligence and symbolic computation. A cellular automaton is used as the reservoir of dynamical systems. Input is randomly projected onto the initial conditions of automaton cells, and nonlinear computation is performed on the input via application of a rule in the automaton for a period of time. The evolution of the automaton creates a space-time volume of the automaton state space, and it is used as the reservoir. The proposed framework is shown to be capable of long-term memory, and it requires orders of magnitude less computation compared to echo state networks. As the focus of the letter, we suggest that binary reservoir feature vectors can be combined using Boolean operations as in hyperdimensional computing, paving a direct way for concept building and symbolic processing. To demonstrate the capability of the proposed system, we make analogies directly on image data by asking, What is the automobile of air?

  16. Miniature Reservoir Cathode: An Update

    NASA Technical Reports Server (NTRS)

    Vancil, Bernard K.; Wintucky, Edwin G.

    2002-01-01

    We report on recent work to produce a small low power, low cost reservoir cathode capable of long life (more than 100,000 hours) at high loading (> 5 A/sq cm). Our objective is a highly manufacturable, commercial device costing less than $30. Small highly loaded cathodes are needed, especially for millimeter wave tubes, where focusing becomes difficult when area convergence ratios are too high. We currently have 3 models ranging from .060-inch diameter to. 125-inch diameter. Reservoir type barium dispenser cathodes have a demonstrated capability for simultaneous high emission density and long life. Seven reservoir cathodes continue to operate on the cathode life test facility at NSWC, Crane, Indiana at 2 and 4 amps/sq cm. They have accumulated nearly 100,000 hours with practically no change in emission levels or knee temperature.

  17. [Structure and function of Fenshuijiang Reservoir ecosystem based on the analysis with Ecopath model].

    PubMed

    Wu, Zhen; Jia, Pei-Qiao; Hu, Zhong-Jun; Chen, Li-Qiao; Gu, Zhi-Min; Liu, Qi-Gen

    2012-03-01

    Based on the 2008-2009 survey data of fishery resources and eco-environment of Fenshuijiang Reservoir, a mass balance model for the Reservoir ecosystem was constructed by Ecopath with Ecosim software. The model was composed of 14 functional groups, including silver carp, bighead carp, Hemibarbus maculates, Cutler alburnus, Microlepis and other fishes, Oligochaeta, aquatic insect, zooplankton, phytoplankton, and organic detritus, etc. , being able to better simulate Fenshuijiang Reservoir ecosystem. In this ecosystem, there were five trophic levels (TLs), and the nutrient flow mainly occurred in the first three TLs. Grazing and detritus food chains were the main energy flows in the ecosystem, but the food web was simpler and susceptible to be disturbed by outer environment. The transfer efficiency at lower TLs was relatively low, indicating that the ecosystem had a lower capability in energy utilization, and the excessive stock of nutrients in the ecosystem could lead to eutrophication. The lower connectance index, system omnivory index, Finn' s cycled index, and Finn's mean path length demonstrated that the ecosystem was unstable, while the high ecosystem property indices such as Pp/R and Pp/B showed that the ecosystem was immature and highly productive. It was suggested that Fenshuijiang Reservoir was still a developing new reservoir ecosystem, with a very short history and comparatively high primary productivity.

  18. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOEpatents

    Horton, James A.; Hayden, H. Wayne

    1995-01-01

    An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

  19. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOEpatents

    Horton, J.A.; Hayden, H.W.

    1995-01-10

    An apparatus and method are disclosed for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode. 2 figures.

  20. CARVE: The Carbon in Arctic Reservoirs Vulnerability Experiment

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.; Dinardo, Steven J.

    2012-01-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a NASA Earth Ventures (EV-1) investigation designed to quantify correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems through intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. CARVE's objectives are to: (1) Directly test hypotheses attributing the mobilization of vulnerable Arctic carbon reservoirs to climate warming; (2) Deliver the first direct measurements and detailed maps of CO2 and CH4 sources on regional scales in the Alaskan Arctic; and (3) Demonstrate new remote sensing and modeling capabilities to quantify feedbacks between carbon fluxes and carbon cycle-climate processes in the Arctic (Figure 1). We describe the investigation design and results from 2011 test flights in Alaska.

  1. Contributed Review: Nuclear magnetic resonance core analysis at 0.3 T

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan; Fordham, Edmund J.

    2014-11-01

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.

  2. Microbial Life in an Underground Gas Storage Reservoir

    NASA Astrophysics Data System (ADS)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In contrast, bacteria belonging to Enterobacteriaceae were the most frequently encountered species in the sample from the water production well. Furthermore, bacterial sequences belonging to thermophiles within the family Thermotogaceae were found in all samples investigated. Archaeal community analysis revealed the dominance of methanogens clustering with members of Methanosarcinaceae, Methanomicrobiaceae and Methanobacteriaceae in three reservoir samples and the sample from the water production well. Cultivations of water samples under an atmosphere of storage gas blended by hydrogen as electron source at in situ-like conditions (45°C, 92 bar, p(H2) = 6 bar) revealed that hydrogen was quickly consumed in all laboratory microcosms with reservoir samples. Quantitative PCR analysis of the gene encoding for methyl-coenzyme M reductase (mcrA) along with reaction educt and product analyses suggested that methanogenesis was primarily responsible for hydrogen consumption during the experiments. While it is currently in question whether or not the laboratory data can be upscaled to actual reservoir conditions, they may allude to fermenting and thermophilic bacteria playing an important role for the investigated reservoir microbiology and also indicate potential stimulation of hydrogenotrophic methanogens if hydrogen would be introduced into the reservoir.

  3. Characterisation of culture-independent and -dependent microbial communities in a high-temperature offshore chalk petroleum reservoir.

    PubMed

    Kaster, Krista M; Bonaunet, Kristin; Berland, Harald; Kjeilen-Eilertsen, Grethe; Brakstad, Odd Gunnar

    2009-11-01

    Recent studies have indicated that oil reservoirs harbour diverse microbial communities. Culture-dependent and culture-independent methods were used to evaluate the microbial diversity in produced water samples of the Ekofisk oil field, a high temperature, and fractured chalk reservoir in the North Sea. DGGE analyses of 16S rRNA gene fragments were used to assess the microbial diversity of both archaeal and bacterial communities in produced water samples and enrichment cultures from 4 different wells (B-08, X-08, X-18 and X-25). Low diversity communities were found when 16S rDNA libraries of bacterial and archaeal assemblages were generated from total community DNA obtained from produced water samples and enrichment cultures. Sequence analysis of the clones indicated close matches to microbes associated with high-temperature oil reservoirs or other similar environments. Sequences were found to be similar to members of the genera Thermotoga, Caminicella, Thermoanaerobacter, Archaeoglobus, Thermococcus, and Methanobulbus. Enrichment cultures obtained from the produced water samples were dominated by sheathed rods. Sequence analyses of the cultures indicated predominance of the genera Petrotoga, Arcobacter, Archaeoglobus and Thermococcus. The communities of both produced water and enrichment cultures appeared to be dominated by thermophilic fermenters capable of reducing sulphur compounds. These results suggest that the biochemical processes in the Ekofisk chalk reservoir are similar to those observed in high-temperature sandstone reservoirs.

  4. Evaluating the Implications of Climate Phenomenon Indices in Supporting Reservoir Operation Using the Artificial Neural Network and Decision-Tree Methods: A Case Study on Trinity Lake in Northern California

    NASA Astrophysics Data System (ADS)

    Yang, T.; Akbari Asanjan, A.; Gao, X.; Sorooshian, S.

    2016-12-01

    Reservoirs are fundamental human-built infrastructures that collect, store, and deliver fresh surface water in a timely manner for all kinds of purposes, including residential and industrial water supply, flood control, hydropower, and irrigation, etc. Efficient reservoir operation requires that policy makers and operators understand how reservoir inflows, available storage, and discharges are changing under different climatic conditions. Over the last decade, the uses of Artificial Intelligence and Data Mining (AI & DM) techniques in assisting reservoir management and seasonal forecasts have been increasing. Therefore, in this study, two distinct AI & DM methods, Artificial Neural Network (ANN) and Random Forest (RF), are employed and compared with respect to their capabilities of predicting monthly reservoir inflow, managing storage, and scheduling reservoir releases. A case study on Trinity Lake in northern California is conducted using long-term (over 50 years) reservoir operation records and 17 known climate phenomenon indices, i.e. PDO and ENSO, etc., as predictors. Results show that (1) both ANN and RF are capable of providing reasonable monthly reservoir storage, inflow, and outflow prediction with satisfactory statistics, and (2) climate phenomenon indices are useful in assisting monthly or seasonal forecasts of reservoir inflow and outflow. It is also found that reservoir storage has a consistent high autocorrelation effect, while inflow and outflow are more likely to be influenced by climate conditions. Using a Gini diversity index, RF method identifies that the reservoir discharges are associated with Southern Oscillation Index (SOI) and reservoir inflows are influenced by multiple climate phenomenon indices during different seasons. Furthermore, results also show that, during the winter season, reservoir discharges are controlled by the storage level for flood-control purposes, while, during the summer season, the flood-control operation is not as significant as that in the winter. With regard to the suitability of the AI & DM methods in support of reservoir operation, the Decision Tree method is suggested for future reservoir studies because of its transparency and non-parametric features over the "black-box" style ANN regression model.

  5. Mesoscale carbon sequestration site screening and CCS infrastructure analysis.

    PubMed

    Keating, Gordon N; Middleton, Richard S; Stauffer, Philip H; Viswanathan, Hari S; Letellier, Bruce C; Pasqualini, Donatella; Pawar, Rajesh J; Wolfsberg, Andrew V

    2011-01-01

    We explore carbon capture and sequestration (CCS) at the meso-scale, a level of study between regional carbon accounting and highly detailed reservoir models for individual sites. We develop an approach to CO(2) sequestration site screening for industries or energy development policies that involves identification of appropriate sequestration basin, analysis of geologic formations, definition of surface sites, design of infrastructure, and analysis of CO(2) transport and storage costs. Our case study involves carbon management for potential oil shale development in the Piceance-Uinta Basin, CO and UT. This study uses new capabilities of the CO(2)-PENS model for site screening, including reservoir capacity, injectivity, and cost calculations for simple reservoirs at multiple sites. We couple this with a model of optimized source-sink-network infrastructure (SimCCS) to design pipeline networks and minimize CCS cost for a given industry or region. The CLEAR(uff) dynamical assessment model calculates the CO(2) source term for various oil production levels. Nine sites in a 13,300 km(2) area have the capacity to store 6.5 GtCO(2), corresponding to shale-oil production of 1.3 Mbbl/day for 50 years (about 1/4 of U.S. crude oil production). Our results highlight the complex, nonlinear relationship between the spatial deployment of CCS infrastructure and the oil-shale production rate.

  6. Libya, Algeria and Egypt: crude oil potential from known deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietzman, W.D.; Rafidi, N.R.; Ross, T.A.

    1982-04-01

    An analysis is presented of the discovered crude oil resources, reserves, and estimated annual production from known fields of the Republics of Libya, Algeria, and Egypt. Proved reserves are defined as the remaining producible oil as of a specified date under operating practice in effect at that time and include estimated recoverable oil in undrilled portions of a given structure or structures. Also included in the proved reserve category are the estimated indicated additional volumes of recoverable oil from the entire oil reservoir where fluid injection programs have been started in a portion, or portions, of the reservoir. The indicatedmore » additional reserves (probable reserves) reported herein are the volumes of crude oil that might be obtained with the installation of secondary recovery or pressure maintenance operations in reservoirs where none have been previously installed. The sum of cumulative production, proved reserves, and probable reserves is defined as the ultimate oil recovery from known deposits; and resources are defined as the original oil in place (OOIP). An assessment was made of the availability of crude oil under three assumed sustained production rates for each country; an assessment was also made of each country's capability of sustaining production at, or near, the 1980 rates assuming different limiting reserve to production ratios. Also included is an estimate of the potential maximum producing capability from known deposits that might be obtained from known accumulations under certain assumptions, using a simple time series approach. The theoretical maximum oil production capability from known fields at any time is the maximum deliverability rate assuming there are no equipment, investment, market, or political constraints.« less

  7. Optimal nonlinear information processing capacity in delay-based reservoir computers

    NASA Astrophysics Data System (ADS)

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2015-09-01

    Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.

  8. Optimal nonlinear information processing capacity in delay-based reservoir computers.

    PubMed

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2015-09-11

    Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.

  9. Optimal nonlinear information processing capacity in delay-based reservoir computers

    PubMed Central

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2015-01-01

    Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature. PMID:26358528

  10. Balancing exploration, uncertainty and computational demands in many objective reservoir optimization

    NASA Astrophysics Data System (ADS)

    Zatarain Salazar, Jazmin; Reed, Patrick M.; Quinn, Julianne D.; Giuliani, Matteo; Castelletti, Andrea

    2017-11-01

    Reservoir operations are central to our ability to manage river basin systems serving conflicting multi-sectoral demands under increasingly uncertain futures. These challenges motivate the need for new solution strategies capable of effectively and efficiently discovering the multi-sectoral tradeoffs that are inherent to alternative reservoir operation policies. Evolutionary many-objective direct policy search (EMODPS) is gaining importance in this context due to its capability of addressing multiple objectives and its flexibility in incorporating multiple sources of uncertainties. This simulation-optimization framework has high potential for addressing the complexities of water resources management, and it can benefit from current advances in parallel computing and meta-heuristics. This study contributes a diagnostic assessment of state-of-the-art parallel strategies for the auto-adaptive Borg Multi Objective Evolutionary Algorithm (MOEA) to support EMODPS. Our analysis focuses on the Lower Susquehanna River Basin (LSRB) system where multiple sectoral demands from hydropower production, urban water supply, recreation and environmental flows need to be balanced. Using EMODPS with different parallel configurations of the Borg MOEA, we optimize operating policies over different size ensembles of synthetic streamflows and evaporation rates. As we increase the ensemble size, we increase the statistical fidelity of our objective function evaluations at the cost of higher computational demands. This study demonstrates how to overcome the mathematical and computational barriers associated with capturing uncertainties in stochastic multiobjective reservoir control optimization, where parallel algorithmic search serves to reduce the wall-clock time in discovering high quality representations of key operational tradeoffs. Our results show that emerging self-adaptive parallelization schemes exploiting cooperative search populations are crucial. Such strategies provide a promising new set of tools for effectively balancing exploration, uncertainty, and computational demands when using EMODPS.

  11. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method.

    PubMed

    Yang, Jun-He; Cheng, Ching-Hsue; Chan, Chia-Pan

    2017-01-01

    Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir's water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  12. 49 CFR 232.105 - General requirements for locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT AND OTHER NON-PASSENGER... reservoir on locomotives and related piping shall be zero, unless the system is capable of maintaining the... equalizing-reservoir leakage can be corrected. On locomotives equipped with electronic brakes, if the system...

  13. A modern regional geological analysis of Venezuela - lessons from a major new world oil province on exploration in mature areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, M.; Audemard, F.; Valdes, G.

    1993-09-01

    Venezuela has produced some 44 billion bbl of oil since the early part of the century. As such, it represents one of the world's major oil producers and a mature petroleum province. However, major tracts of Venezuela's sedimentary basins remain underexplored and large discoveries are still being made in new and old reservoir systems. A regional geological analysis of Venezuela, focusing on basin evolution and sequence stratigraphy and incorporating data from the three national oil companies, is presented. The analysis presents a regionally consistent tectonostratigraphic model capable of explaining the evolution of the Mesozoic and Cenozoic basins of Venezuela andmore » placing the major reservoir facies in their regional tectonic and sequence stratigraphic context. Four regional cross sections describe the stratigraphic and structural model. The model recognizes a Jurassic rifting event and inversion, succeeded by an Early Cretaceous passive margin. In western Venezuela, the Early Cretaceous passive subsidence is enhanced locally by extension related to the Colombian active margin. Venezuela experienced a major change in the Campanian with the initial collision of the Caribbean arc, recorded by foreland structuring and widespread stratigraphic changes. From the Campanian onward, the tectonostratigraphic evolution can be modeled in terms of a progressive southeast-directed arc-continent collision and the migration of the associated foredeep and rift basins. Within the tectonic framework, the major sequence stratigraphic units are identified and the reservoir distribution interpreted. This model provides a strong predictive tool to extrapolate reservoir systems into Venezuela's underexplored areas and to readdress its traditional areas.« less

  14. Geo-Engineering through Internet Informatics (GEMINI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W. Lynn; Doveton, John H.; Victorine, John R.

    GEMINI will resolve reservoir parameters that control well performance; characterize subtle reservoir properties important in understanding and modeling hydrocarbon pore volume and fluid flow; expedite recognition of bypassed, subtle, and complex oil and gas reservoirs at regional and local scale; differentiate commingled reservoirs; build integrated geologic and engineering model based on real-time, iterate solutions to evaluate reservoir management options for improved recovery; provide practical tools to assist the geoscientist, engineer, and petroleum operator in making their tasks more efficient and effective; enable evaluations to be made at different scales, ranging from individual well, through lease, field, to play and regionmore » (scalable information infrastructure); and provide training and technology transfer to evaluate capabilities of the client.« less

  15. Deduction of reservoir operating rules for application in global hydrological models

    NASA Astrophysics Data System (ADS)

    Coerver, Hubertus M.; Rutten, Martine M.; van de Giesen, Nick C.

    2018-01-01

    A big challenge in constructing global hydrological models is the inclusion of anthropogenic impacts on the water cycle, such as caused by dams. Dam operators make decisions based on experience and often uncertain information. In this study information generally available to dam operators, like inflow into the reservoir and storage levels, was used to derive fuzzy rules describing the way a reservoir is operated. Using an artificial neural network capable of mimicking fuzzy logic, called the ANFIS adaptive-network-based fuzzy inference system, fuzzy rules linking inflow and storage with reservoir release were determined for 11 reservoirs in central Asia, the US and Vietnam. By varying the input variables of the neural network, different configurations of fuzzy rules were created and tested. It was found that the release from relatively large reservoirs was significantly dependent on information concerning recent storage levels, while release from smaller reservoirs was more dependent on reservoir inflows. Subsequently, the derived rules were used to simulate reservoir release with an average Nash-Sutcliffe coefficient of 0.81.

  16. Reservoir Characterization using geostatistical and numerical modeling in GIS with noble gas geochemistry

    NASA Astrophysics Data System (ADS)

    Vasquez, D. A.; Swift, J. N.; Tan, S.; Darrah, T. H.

    2013-12-01

    The integration of precise geochemical analyses with quantitative engineering modeling into an interactive GIS system allows for a sophisticated and efficient method of reservoir engineering and characterization. Geographic Information Systems (GIS) is utilized as an advanced technique for oil field reservoir analysis by combining field engineering and geological/geochemical spatial datasets with the available systematic modeling and mapping methods to integrate the information into a spatially correlated first-hand approach in defining surface and subsurface characteristics. Three key methods of analysis include: 1) Geostatistical modeling to create a static and volumetric 3-dimensional representation of the geological body, 2) Numerical modeling to develop a dynamic and interactive 2-dimensional model of fluid flow across the reservoir and 3) Noble gas geochemistry to further define the physical conditions, components and history of the geologic system. Results thus far include using engineering algorithms for interpolating electrical well log properties across the field (spontaneous potential, resistivity) yielding a highly accurate and high-resolution 3D model of rock properties. Results so far also include using numerical finite difference methods (crank-nicholson) to solve for equations describing the distribution of pressure across field yielding a 2D simulation model of fluid flow across reservoir. Ongoing noble gas geochemistry results will also include determination of the source, thermal maturity and the extent/style of fluid migration (connectivity, continuity and directionality). Future work will include developing an inverse engineering algorithm to model for permeability, porosity and water saturation.This combination of new and efficient technological and analytical capabilities is geared to provide a better understanding of the field geology and hydrocarbon dynamics system with applications to determine the presence of hydrocarbon pay zones (or other reserves) and improve oil field management (e.g. perforating, drilling, EOR and reserves estimation)

  17. Surrogate Reservoir Model

    NASA Astrophysics Data System (ADS)

    Mohaghegh, Shahab

    2010-05-01

    Surrogate Reservoir Model (SRM) is new solution for fast track, comprehensive reservoir analysis (solving both direct and inverse problems) using existing reservoir simulation models. SRM is defined as a replica of the full field reservoir simulation model that runs and provides accurate results in real-time (one simulation run takes only a fraction of a second). SRM mimics the capabilities of a full field model with high accuracy. Reservoir simulation is the industry standard for reservoir management. It is used in all phases of field development in the oil and gas industry. The routine of simulation studies calls for integration of static and dynamic measurements into the reservoir model. Full field reservoir simulation models have become the major source of information for analysis, prediction and decision making. Large prolific fields usually go through several versions (updates) of their model. Each new version usually is a major improvement over the previous version. The updated model includes the latest available information incorporated along with adjustments that usually are the result of single-well or multi-well history matching. As the number of reservoir layers (thickness of the formations) increases, the number of cells representing the model approaches several millions. As the reservoir models grow in size, so does the time that is required for each run. Schemes such as grid computing and parallel processing helps to a certain degree but do not provide the required speed for tasks such as: field development strategies using comprehensive reservoir analysis, solving the inverse problem for injection/production optimization, quantifying uncertainties associated with the geological model and real-time optimization and decision making. These types of analyses require hundreds or thousands of runs. Furthermore, with the new push for smart fields in the oil/gas industry that is a natural growth of smart completion and smart wells, the need for real time reservoir modeling becomes more pronounced. SRM is developed using the state of the art in neural computing and fuzzy pattern recognition to address the ever growing need in the oil and gas industry to perform accurate, but high speed simulation and modeling. Unlike conventional geo-statistical approaches (response surfaces, proxy models …) that require hundreds of simulation runs for development, SRM is developed only with a few (from 10 to 30 runs) simulation runs. SRM can be developed regularly (as new versions of the full field model become available) off-line and can be put online for real-time processing to guide important decisions. SRM has proven its value in the field. An SRM was developed for a giant oil field in the Middle East. The model included about one million grid blocks with more than 165 horizontal wells and took ten hours for a single run on 12 parallel CPUs. Using only 10 simulation runs, an SRM was developed that was able to accurately mimic the behavior of the reservoir simulation model. Performing a comprehensive reservoir analysis that included making millions of SRM runs, wells in the field were divided into five clusters. It was predicted that wells in cluster one & two are best candidates for rate relaxation with minimal, long term water production while wells in clusters four and five are susceptive to high water cuts. Two and a half years and 20 wells later, rate relaxation results from the field proved that all the predictions made by the SRM analysis were correct. While incremental oil production increased in all wells (wells in clusters 1 produced the most followed by wells in cluster 2, 3 …) the percent change in average monthly water cut for wells in each cluster clearly demonstrated the analytic power of SRM. As it was correctly predicted, wells in clusters 1 and 2 actually experience a reduction in water cut while a substantial increase in water cut was observed in wells classified into clusters 4 and 5. Performing these analyses would have been impossible using the original full field simulation model.

  18. 43 CFR 3138.11 - How do I apply for a subsurface storage agreement?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... participation factor for all parties to the subsurface storage agreement; and (11) Supporting data (geologic maps showing the storage formation, reservoir data, etc.) demonstrating the capability of the reservoir... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How do I apply for a subsurface storage...

  19. 43 CFR 3138.11 - How do I apply for a subsurface storage agreement?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... participation factor for all parties to the subsurface storage agreement; and (11) Supporting data (geologic maps showing the storage formation, reservoir data, etc.) demonstrating the capability of the reservoir... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How do I apply for a subsurface storage...

  20. 43 CFR 3138.11 - How do I apply for a subsurface storage agreement?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... participation factor for all parties to the subsurface storage agreement; and (11) Supporting data (geologic maps showing the storage formation, reservoir data, etc.) demonstrating the capability of the reservoir... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How do I apply for a subsurface storage...

  1. 43 CFR 3138.11 - How do I apply for a subsurface storage agreement?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... participation factor for all parties to the subsurface storage agreement; and (11) Supporting data (geologic maps showing the storage formation, reservoir data, etc.) demonstrating the capability of the reservoir... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How do I apply for a subsurface storage...

  2. Investigation on trophic state index by artificial neural networks (case study: Dez Dam of Iran)

    NASA Astrophysics Data System (ADS)

    Saghi, H.; Karimi, L.; Javid, A. H.

    2015-06-01

    Dam construction and surface runoff control is one of the most common approaches for water-needs supply of human societies. However, the increasing development of social activities and hence the subsequent increase in environmental pollutants leads to deterioration of water quality in dam reservoirs and eutrophication process could be intensified. So, the water quality of reservoirs is now one of the key factors in operation and water quality management of reservoirs. Hence, maintaining the quality of the stored water and identification and examination of changes along time has been a constant concern of humans that involves the water authorities. Traditionally, empirical trophic state indices of dam reservoirs often defined based on changes in concentration of effective factors (nutrients) and its consequences (increase in chlorophyll a), have been used as an efficient tool in the definition of dam reservoirs quality. In recent years, modeling techniques such as artificial neural networks have enhanced the prediction capability and the accuracy of these studies. In this study, artificial neural networks have been applied to analyze eutrophication process in the Dez Dam reservoir in Iran. In this paper, feed forward neural network with one input layer, one hidden layer and one output layer was applied using MATLAB neural network toolbox for trophic state index (TSI) analysis in the Dez Dam reservoir. The input data of this network are effective parameters in the eutrophication: nitrogen cycle parameters and phosphorous cycle parameters and parameters that will be changed by eutrophication: Chl a, SD, DO and the output data is TSI. Based on the results from estimation of modified Carlson trophic state index, Dez Dam reservoir is considered to be eutrophic in the early July to mid-November and would be mesotrophic with decrease in temperature. Therefore, a decrease in water quality of the dam reservoir during the warm seasons is expectable. The results indicated that artificial neural network (ANN) is a suitable tool for quality modeling of reservoir of dam and increment and decrement of nutrients in trend of eutrophication. Therefore, ANN is a suitable tool for quality modeling of reservoir of dam.

  3. Sensitivity of California water supply to changes in runoff magnitude and timing: A bottom-up assessment of vulnerabilities and adaptation strategies

    NASA Astrophysics Data System (ADS)

    Fefer, M.; Dogan, M. S.; Herman, J. D.

    2017-12-01

    Long-term shifts in the timing and magnitude of reservoir inflows will potentially have significant impacts on water supply reliability in California, though projections remain uncertain. Here we assess the vulnerability of the statewide system to changes in total annual runoff (a function of precipitation) and the fraction of runoff occurring during the winter months (primarily a function of temperature). An ensemble of scenarios is sampled using a bottom-up approach and compared to the most recent available streamflow projections from the state's 4th Climate Assessment. We evaluate these scenarios using a new open-source version of the CALVIN model, a network flow optimization model encompassing roughly 90% of the urban and agricultural water demands in California, which is capable of running scenario ensembles on a high-performance computing cluster. The economic representation of water demand in the model yields several advantages for this type of analysis: optimized reservoir operating policies to minimize shortage cost and the marginal value of adaptation opportunities, defined by shadow prices on infrastructure and regulatory constraints. Results indicate a shift in optimal reservoir operations and high marginal value of additional reservoir storage in the winter months. The collaborative management of reservoirs in CALVIN yields increased storage in downstream reservoirs to store the increased winter runoff. This study contributes an ensemble evaluation of a large-scale network model to investigate uncertain climate projections, and an approach to interpret the results of economic optimization through the lens of long-term adaptation strategies.

  4. Richness and structure of ant assemblies (Hymenoptera: Formicidae) in Atlantic forest in southern Brazil.

    PubMed

    Lutinski, Junir A; Lutinski, Cladis J; Guarda, Carin; Busato, Maria A; Garcia, Flávio R M

    2017-01-01

    Ant diversity is influenced by the structural complexity of the environment. Ants are thus an ecologically important group due to their potential to serve as indicators of environmental quality. The objective of this study was to evaluate ant diversity in areas with different land use histories and thus, within different stages of regeneration in the Permanent Preservation Area of the Foz do Chapecó Hydroelectric Plant reservoir. Ant assemblies among sample sites were compared using rarefaction analysis, and estimated richness, frequency of occurrence, and relative abundance were calculated. Associations between species and sample sites were evaluated using Principal Component Analysis (PCA). We identified 55 species in total from 24 genera, distributed among seven subfamilies. Eight species had positive associations with sample sites. Estimates indicated that ant richness may be up to 21.4% greater than that observed. This study presents an inventory of species capable of colonizing environments undergoing natural regeneration processes, and aids our understanding of ecological recovery dynamics in protected areas near hydroelectric plant reservoirs southern Brazil.

  5. The architecture of dynamic reservoir in the echo state network

    NASA Astrophysics Data System (ADS)

    Cui, Hongyan; Liu, Xiang; Li, Lixiang

    2012-09-01

    Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.

  6. Applications of the SWOT Mission to Reservoirs in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Bonnema, M.; Hossain, F.

    2017-12-01

    The forthcoming Surface Water and Ocean Topography (SWOT) mission has the potential to significantly improve our ability to observe artificial reservoirs globally from a remote sensing perspective. By providing simultaneous estimates of reservoir water surface extent and elevation with near global coverage, reservoir storage changes can be estimated. Knowing how reservoir storage changes over time is critical for understanding reservoir impacts on river systems. In data limited regions, remote sensing is often the only viable method of retrieving such information about reservoir operations. When SWOT launches in 2021, it will join an array of satellite sensors with long histories of reservoir observation and monitoring capabilities. There are many potential synergies in the complimentary use of future SWOT observations with observations from current satellite sensors. The work presented here explores the potential benefits of utilizing SWOT observations over 20 reservoirs in the Mekong River Basin. The SWOT hydrologic simulator, developed by NASA Jet Propulsion Laboratory, is used to generate realistic SWOT observations, which are then inserted into a previously established remote sensing modeling framework of the 20 Mekong Basin reservoirs. This framework currently combines data from Landsat missions, Jason radar altimeters, and the Shuttle Radar and Topography Mission (SRTM), to provide monthly estimates of reservoir storage change. The incorporation of SWOT derived reservoir surface area and elevation into the model is explored in an effort to improve both accuracy and temporal resolution of observed reservoir operations.

  7. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

  8. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitzman, D.O.; stepp, A.K.; Dennis, D.M.

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

  9. Hydropower Optimization Using Artificial Neural Network Surrogate Models of a High-Fidelity Hydrodynamics and Water Quality Model

    NASA Astrophysics Data System (ADS)

    Shaw, Amelia R.; Smith Sawyer, Heather; LeBoeuf, Eugene J.; McDonald, Mark P.; Hadjerioua, Boualem

    2017-11-01

    Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2 is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. The reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.

  10. Hydropower Optimization Using Artificial Neural Network Surrogate Models of a High-Fidelity Hydrodynamics and Water Quality Model

    DOE PAGES

    Shaw, Amelia R.; Sawyer, Heather Smith; LeBoeuf, Eugene J.; ...

    2017-10-24

    Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2more » is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. Here, the reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.« less

  11. Metabolic capability and in situ activity of microorganisms in an oil reservoir.

    PubMed

    Liu, Yi-Fan; Galzerani, Daniela Domingos; Mbadinga, Serge Maurice; Zaramela, Livia S; Gu, Ji-Dong; Mu, Bo-Zhong; Zengler, Karsten

    2018-01-05

    Microorganisms have long been associated with oxic and anoxic degradation of hydrocarbons in oil reservoirs and oil production facilities. While we can readily determine the abundance of microorganisms in the reservoir and study their activity in the laboratory, it has been challenging to resolve what microbes are actively participating in crude oil degradation in situ and to gain insight into what metabolic pathways they deploy. Here, we describe the metabolic potential and in situ activity of microbial communities obtained from the Jiangsu Oil Reservoir (China) by an integrated metagenomics and metatranscriptomics approach. Almost complete genome sequences obtained by differential binning highlight the distinct capability of different community members to degrade hydrocarbons under oxic or anoxic condition. Transcriptomic data delineate active members of the community and give insights that Acinetobacter species completely oxidize alkanes into carbon dioxide with the involvement of oxygen, and Archaeoglobus species mainly ferment alkanes to generate acetate which could be consumed by Methanosaeta species. Furthermore, nutritional requirements based on amino acid and vitamin auxotrophies suggest a complex network of interactions and dependencies among active community members that go beyond classical syntrophic exchanges; this network defines community composition and microbial ecology in oil reservoirs undergoing secondary recovery. Our data expand current knowledge of the metabolic potential and role in hydrocarbon metabolism of individual members of thermophilic microbial communities from an oil reservoir. The study also reveals potential metabolic exchanges based on vitamin and amino acid auxotrophies indicating the presence of complex network of interactions between microbial taxa within the community.

  12. Hydropower Optimization Using Artificial Neural Network Surrogate Models of a High-Fidelity Hydrodynamics and Water Quality Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Amelia R.; Sawyer, Heather Smith; LeBoeuf, Eugene J.

    Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2more » is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. Here, the reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.« less

  13. Mars aqueous chemistry experiment

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.; Mason, Larry W.

    1994-01-01

    Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. The second year of the MACE project has shown significant progress in two major areas. MACE Instrument concept definition is a baseline design that has been generated for the complete MACE instrument, including definition of analysis modes, mass estimates and thermal model. The design includes multiple reagent reservoirs, 10 discrete analysis cells, sample manipulation capability, and thermal control. The MACE Measurement subsystems development progress is reported regarding measurement capabilities for aqueous ion sensing, evolved gas sensing, solution conductivity measurement, reagent addition (titration) capabilities, and optical sensing of suspended particles.

  14. Mars aqueous chemistry experiment

    NASA Astrophysics Data System (ADS)

    Clark, Benton C.; Mason, Larry W.

    1994-06-01

    Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. The second year of the MACE project has shown significant progress in two major areas. MACE Instrument concept definition is a baseline design that has been generated for the complete MACE instrument, including definition of analysis modes, mass estimates and thermal model. The design includes multiple reagent reservoirs, 10 discrete analysis cells, sample manipulation capability, and thermal control. The MACE Measurement subsystems development progress is reported regarding measurement capabilities for aqueous ion sensing, evolved gas sensing, solution conductivity measurement, reagent addition (titration) capabilities, and optical sensing of suspended particles.

  15. Reservoir competence of Microtus pennsylvanicus (Rodentia: Cricetidae) for the Lyme disease spirochete, Borrelia burgdorferi

    USGS Publications Warehouse

    Markowski, D.; Ginsberg, H.S.; Hyland, K.E.; Hu, R.

    1998-01-01

    The reservoir competence of the meadow vole, Microtus pennsylvanicus Ord, for the Lyme disease spirochete, Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner was established on Patience Island, RI. Meadow voles were collected from 5 locations throughout Rhode Island. At 4 of the field sites, M. pennsylvanicus represented only 4.0% (n = 141) of the animals captured. However, on Patience Island, M. pennsylvanicus was the sole small mammal collected (n = 48). Of the larval Ixodes scapularis Say obtained from the meadow voles on Patience Island, 62% (n = 78) was infected with B. burgdorferi. Meadow voles from all 5 locations were successfully infected with B. burgdorferi in the laboratory and were capable of passing the infection to xenodiagnostic I. scapularis larvae for 9 wk. We concluded that M. pennsylvanicus was physiologically capable of maintaining B. burgdorferi infection. However, in locations where Peromyscus leucopus (Rafinesque) is abundant, the role of M. pennsylvanicus as a primary reservoir for B. burgdorferi was reduced.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, R.D.; Lekia, S.D.L.

    This paper presents the results of parametric studies of two naturally fractured lenticular tight gas reservoirs, Fluvial E-1 and Puludal Zones 3 and 4, of the U.S. Department of Energy Multi-Well Experiment (MWX) site of Northwestern Colorado. The three-dimensional, two-phase, black oil reservoir simulator that was developed in a previous phase of this research program is also discussed and the capabilities further explored by applying it to several example problems.

  17. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding seismicity in unconventional reservoirs is the role of anisotropy of rocks. We evaluate an elastic VTI rock model corresponding to a shale gas reservoir in the Horn River Basin to understand the relation between stress, event occurrence and elastic heterogeneity in anisotropic rocks.

  18. Alkali-enhanced steam foam oil recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, H.C.

    1986-09-02

    This patent describes a process in which steam and steam-foaming surfactant are injected into a subterranean reservoir for displacing a relatively acidic oil toward a production location. An improvement is described which consisits of: injecting into the reservoir, at least as soon as at least some portion of the steam is injected, (a) a kind and amount of water soluble, alkaline material effective for ion-exchanging multivalent ions from the reservoir rocks and precipitating compounds containing those ions and for causing the aqueous liquid phase of the injected fluid to form soaps of substantially all of the petroleum acids in themore » reservoir oil, and (b) at least one surfactant arranged for foaming the steam and providing a preformed cosurfactant material capable of increasing the salinity requirement of an aqueous surfactant system in which soaps derived from the reservoir oil comprise a primary surfactant.« less

  19. Combining microseismic and geomechanical observations to interpret storage integrity at the In Salah CCS site

    NASA Astrophysics Data System (ADS)

    Goertz-Allmann, Bettina P.; Kühn, Daniela; Oye, Volker; Bohloli, Bahman; Aker, Eyvind

    2014-07-01

    We present results from microseismic monitoring and geomechanical analysis obtained at the industrial-scale CO2 sequestration site at the In Salah gas development project in Algeria. More than 5000 microseismic events have been detected at a pilot monitoring well using a master event cross-correlation method. The microseismic activity occurs in four distinct clusters and thereof three clearly correlate with injection rates and wellhead pressures. These event clusters are consistent with a location within the reservoir interval. However, due to insufficient network geometry there are large uncertainties on event location. We estimate a fracture pressure of 155 bar (at the wellhead) from the comparison of injection pressure and injection rate and conclude that reservoir fracture pressure of the injection horizon has most likely been exceeded occasionally, accompanied by increased microseismic activity. Our analysis of 3-D ray tracing for direct and converted phases suggests that one of the event clusters is located at a shallower depth than the reservoir injection interval. However, this event cluster is most likely unrelated to changes in the injection activity at a single well, as the event times do not correlate with the wellhead pressures. Furthermore, this event cluster shows b-values close to one, indicating re-activated natural or tectonic seismicity on pre-existing weakness zones rather than injection induced seismicity. Analysis of event azimuths and significant shear wave splitting of up to 5 per cent provide further valuable insight into fluid migration and fracture orientation at the reservoir level. Although only one geophone was available during the critical injection period, the microseismic monitoring of CO2 injection at In Salah is capable of addressing some of the most relevant questions about fluid migration and reservoir integrity. An improved monitoring array with larger aperture and higher sensitivity is highly recommended, as it could greatly enhance the value of this technique. As such, real-time microseismic monitoring can be used to guide the injection pressure below fracture pressure, thus providing a tool to mitigate the risk of inducing felt seismicity and compromising seal integrity.

  20. Potential for Carbon Dioxide Sequestration and Enhanced Oil Recovery in the Vedder Formation, Greeley Field, San Joaquin Valley, California.

    NASA Astrophysics Data System (ADS)

    Jameson, S.

    2015-12-01

    Most scientists agree that greenhouse gases (GHG) such as carbon dioxide (CO2), Methane (CH4), and nitrous oxide (N2O) are major contributors to the global warming trend and climate change. One effort to mitigate anthropogenic sourced CO2 is through carbon capture and sequestration. Depleted oil and gas reservoirs due to their known trapping capability, in-place infrastructure, and proximity to carbon emission sources are good candidates for possible CO2 storage. The Vedder formation is one of three reservoirs identified in the San Joaquin Basin that meets standards for possible storage. An analysis of net fluid production data (produced minus injected) from discovery to the present is used to determine the reservoir volume available for CO2 storage. Data regarding reservoir pressure response to injection and production of fluids include final shut-in pressures from drill stem test, static bottom-hole pressure measurements from well completion histories, and idle well fluid level measurements for recent pressure data. Proprietary experimental pressure, volume and temperature data (PVT), gas oil ratios (GOR), well by well permeability, porosity, and oil gravity, and relative permeability and perforation intervals are used to create static and dynamic multiphase fluid flow models. All data collected was logged and entered into excel spreadsheets and mapping software to create subsurface structure, reservoir thickness and pressure maps, cross sections, production/injection charts on a well-by-well basis, and both static and dynamic flow models. This data is used to determine storage capacity and the amount of pressure variance within the field to determine how the reservoir will react to CO2 injection and to gain insight into the subsurface fluid movement of CO2. Results indicate a homogenous field with a storage capacity of approximately 26 Million Metric Tons of CO2. Analysis of production by stream and pressure change through time indicates a strong water drive. The connection to a large and active aquifer allows pressure changes to be spread over large areas. Flow modeling will help to determine the impact that the water influx will have on storage capacity and EOR production potential.

  1. Maximization of permanent trapping of CO{sub 2} and co-contaminants in the highest-porosity formations of the Rock Springs Uplift (Southwest Wyoming): experimentation and multi-scale modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piri, Mohammad

    2014-03-31

    Under this project, a multidisciplinary team of researchers at the University of Wyoming combined state-of-the-art experimental studies, numerical pore- and reservoir-scale modeling, and high performance computing to investigate trapping mechanisms relevant to geologic storage of mixed scCO{sub 2} in deep saline aquifers. The research included investigations in three fundamental areas: (i) the experimental determination of two-phase flow relative permeability functions, relative permeability hysteresis, and residual trapping under reservoir conditions for mixed scCO{sub 2}-­brine systems; (ii) improved understanding of permanent trapping mechanisms; (iii) scientifically correct, fine grid numerical simulations of CO{sub 2} storage in deep saline aquifers taking into account themore » underlying rock heterogeneity. The specific activities included: (1) Measurement of reservoir-­conditions drainage and imbibition relative permeabilities, irreducible brine and residual mixed scCO{sub 2} saturations, and relative permeability scanning curves (hysteresis) in rock samples from RSU; (2) Characterization of wettability through measurements of contact angles and interfacial tensions under reservoir conditions; (3) Development of physically-­based dynamic core-­scale pore network model; (4) Development of new, improved high-­performance modules for the UW-­team simulator to provide new capabilities to the existing model to include hysteresis in the relative permeability functions, geomechanical deformation and an equilibrium calculation (Both pore-­ and core-­scale models were rigorously validated against well-­characterized core-­ flooding experiments); and (5) An analysis of long term permanent trapping of mixed scCO{sub 2} through high-­resolution numerical experiments and analytical solutions. The analysis takes into account formation heterogeneity, capillary trapping, and relative permeability hysteresis.« less

  2. The NASA/USDA Reservoir and Lake Monitor: Present and Future Capabilities and Water Resources Applications

    NASA Astrophysics Data System (ADS)

    Birkett, C. M.; Beckley, B. D.; Reynolds, C. A.; Brakenridge, G. R.; Ricko, M.

    2013-12-01

    The USDA/NASA Global Reservoir and Lake Monitor (GRLM) provides satellite-based surface water level products for large reservoirs and lakes around the world. It utilizes a suite of NASA/CNES and ESA radar altimetry data sets and outputs near real time and archival products via a web interface. Several stakeholders utilize the products for applications that focus on water resources management and natural hazards mitigation, particularly in arid and semi-arid regions. The satellite data sets prove particularly useful in un-gauged or poorly gauged basins where in situ data is sparse. Here, we present water-level product examples based on data from the NASA/CNES Jason-2/OSTM mission, and the new ISRO/CNES SARAL mission. We also demonstrate product application from the viewpoint of various end users who have interests ranging from crop production and fisheries, to regional security and climate change. In the current phase of the program the team is also looking to the potential of additional lake/reservoir products such as areal extent (NASA/MODIS), lake volume variations (combined altimetry/imagery), and model-derived water levels, that will enhance the GRLM via improved observation and prediction, and provide a more global lake basin monitoring capability. Surface water level variations for Lake Nasser.

  3. Appalachian Basin Play Fairway Analysis: Natural Reservoir Analysis in Low-Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB)

    DOE Data Explorer

    Teresa E. Jordan

    2015-10-22

    The files included in this submission contain all data pertinent to the methods and results of this task’s output, which is a cohesive multi-state map of all known potential geothermal reservoirs in our region, ranked by their potential favorability. Favorability is quantified using a new metric, Reservoir Productivity Index, as explained in the Reservoirs Methodology Memo (included in zip file). Shapefile and images of the Reservoir Productivity and Reservoir Uncertainty are included as well.

  4. Slaughterhouse pigs are a major reservoir of Streptococcus suis serotype 2 capable of causing human infection in southern Vietnam.

    PubMed

    Ngo, Thi Hoa; Tran, Thi Bich Chieu; Tran, Thi Thu Nga; Nguyen, Van Dung; Campbell, James; Pham, Hong Anh; Huynh, Huu Tho; Nguyen, Van Vinh Chau; Bryant, Juliet E; Tran, Tinh Hien; Farrar, Jeremy; Schultsz, Constance

    2011-03-28

    Streptococcus suis is a pathogen of major economic significance to the swine industry and is increasingly recognized as an emerging zoonotic agent in Asia. In Vietnam, S. suis is the leading cause of bacterial meningitis in adult humans. Zoonotic transmission is most frequently associated with serotype 2 strains and occupational exposure to pigs or consumption of infected pork. To gain insight into the role of pigs for human consumption as a reservoir for zoonotic infection in southern Vietnam, we determined the prevalence and diversity of S. suis carriage in healthy slaughterhouse pigs. Nasopharyngeal tonsils were sampled from pigs at slaughterhouses serving six provinces in southern Vietnam and Ho Chi Minh City area from September 2006 to November 2007. Samples were screened by bacterial culture. Isolates of S. suis were serotyped and characterized by multi locus sequence typing (MLST) and pulse field gel electrophoresis (PFGE). Antibiotic susceptibility profiles and associated genetic resistance determinants, and the presence of putative virulence factors were determined. 41% (222/542) of pigs carried S. suis of one or multiple serotypes. 8% (45/542) carried S. suis serotype 2 which was the most common serotype found (45/317 strains, 14%). 80% of serotype 2 strains belonged to the MLST clonal complex 1,which was previously associated with meningitis cases in Vietnam and outbreaks of severe disease in China in 1998 and 2005. These strains clustered with representative strains isolated from patients with meningitis in PFGE analysis, and showed similar antimicrobial resistance and virulence factor profiles. Slaughterhouse pigs are a major reservoir of S. suis serotype 2 capable of causing human infection in southern Vietnam. Strict hygiene at processing facilities, and health education programs addressing food safety and proper handling of pork should be encouraged.

  5. Crustal-scale magmatism and its control on the longevity of magmatic systems

    NASA Astrophysics Data System (ADS)

    Karakas, Ozge; Degruyter, Wim; Bachmann, Olivier; Dufek, Josef

    2017-04-01

    Constraining the duration and evolution of crustal magma reservoirs is crucial to our understanding of the eruptive potential of magmatic systems, as well as the volcanic:plutonic ratios in the crust, but estimates of such parameters vary widely in the current literature. Although no consensus has been reached on the lifetime of magma reservoirs, recent studies have revealed about the presence, location, and melt fraction of multi-level (polybaric) storage zones in the crust. If magma accumulates at different crustal levels, it must redistribute significant enthalpy within the crustal column and therefore must influence the lifetime of magma plumbing systems. However, an evaluation of the mass and heat budget of the entire crustal column is lacking. Here, we use a two-dimensional thermal model to determine the thermal conditions under which both lower and upper crustal magma bodies form. We find that large lower crustal mush zones supply heat to the upper crust and reduce the amount of thermal energy necessary to form subvolcanic reservoirs. This indicates that the crust is thermally viable to sustain partially molten magma reservoirs over long timescales (>10^5-106 yr) for a range of magma fluxes (10^-4 to 10^-2 km^3/yr). Our results reconcile physical models of crustal magma evolution and field-based estimates of intrusion rates in numerous magmatic provinces (which include both volcanic and plutonic lithologies). We also show that young magmatic provinces (< 105 yr old) are unlikely to support large upper crustal reservoirs, whereas longer-lived systems (> 106 yr) can accumulate magma and build reservoirs capable of triggering supereruptions, even with intrusion rates as low as ≤10^-2 km^3/yr. Hence, the total duration of magmatism is critical in determining the size of the magma reservoirs, and should be combined with the magma intrusions rates to assess the capability of volcanic systems to form the largest eruptions on Earth.

  6. Improvements in 2016 to Natural Reservoir Analysis in Low-Temperature Geothermal Play Fairway Analysis for the Appalachian Basin

    DOE Data Explorer

    Teresa E. Jordan

    2016-08-18

    *These files add to and replace same-named files found within Submission 559 (https://gdr.openei.org/submissions/559)* The files included in this submission contain all data pertinent to the methods and results of a cohesive multi-state analysis of all known potential geothermal reservoirs in sedimentary rocks in the Appalachian Basin region, ranked by their potential favorability. Favorability is quantified using three metrics: Reservoir Productivity Index for water; Reservoir Productivity Index; Reservoir Flow Capacity. The metrics are explained in the Reservoirs Methodology Memo (included in zip file). The product represents a minimum spatial extent of potential sedimentary rock geothermal reservoirs. Only natural porosity and permeability were analyzed. Shapefile and images of the spatial distributions of these reservoir quality metrics and of the uncertainty on these metrics are included as well. UPDATE: Accompanying geologic reservoirs data may be found at: https://gdr.openei.org/submissions/881 (linked below).

  7. Using a hot dry rock geothermal reservoir for load following

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D.W.; Duteau, R.J.

    1995-01-01

    Field measurements and modeling have shown the potential for using a Hot Dry Rock (HDR) geothermal reservoir for electric load following: either with Power-Peaking from a base-load operating condition, or for Pumped Storage of off-peak electric energy with a very significant thermal augmentation of the stored mechanical energy during periods of power production. For the base-load with power- peaking mode of operation, and HDR reservoir appears capable of producing over twice its nominal power output for short -- 2 to 4 hour -- periods of time. In this mode of operation, the reservoir normally would be produced under a high-backpressuremore » condition with the HDR reservoir region near the production well highly inflated. Upon demand, the production backpressure would be sharply reduced, surging the production flow. The analytical tool used in these investigations has been the transient finite element model of the an HDR reservoir called GEOCRACK, which is being developed by Professor Dan Swenson and his students at Kansas State University. This discrete-element representation of a jointed rock mass has recently been validated for transient operations using the set of cyclic reservoir operating data obtained at the end of the LTFT.« less

  8. Fractured reservoir characterization through injection, falloff, and flowback tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, C.P.; Singh, P.K.; Halvorsen, H.

    1992-09-01

    This paper presents the development of a multiphase pressure-transient-analysis technique for naturally fractured reservoirs and the analysis of a series of field tests performed to evaluate the water injection potential and the reservoir characteristics of a naturally fractured reservoir. These included step-rate, water-injectivity, pressure-falloff, and flowback tests. Through these tests, a description of the reservoir was obtained.

  9. Oil industry first field trial of inter-well reservoir nanoagent tracers

    NASA Astrophysics Data System (ADS)

    Kanj, Mazen Y.; Kosynkin, Dmitry V.

    2015-05-01

    This short manuscript highlights the industry's first proven reservoir nanoagents' design and demonstrates a successful multi-well field trial using these agents. Our fundamental nanoparticles tracer template, A-Dots or Arab-D Dots, is intentionally geared towards the harsh but prolific Arab-D carbonate reservoir environment of 100+°C temperature, 150,000+ppm salinity, and an abundant presence of divalent ions in the connate water. Preliminary analyses confirmed nanoparticles' breakthrough at a producer nearly 500m from the injector at the reservoir level; thus, proving the tracer nanoparticles' mobility and transport capability. This is considered industry-first and a breakthrough achievement complementing earlier accomplishments in regard to the nanoagents' reservoir stability with the first successful single well test and ease of scale up with the synthesis of one metric ton of this material. The importance of this accomplishment is not in how sophisticated is the sensing functionalities of this design but rather in its stability, mobility, scalability, and field application potentials. This renders the concept of having active, reactive, and even communicative, in-situ reservoir nanoagents for underground sensing and intervention a well anticipated near-future reality.

  10. Suspended-sediment transport and storage: A demonstration of acoustic methods in the evaluation of reservoir management strategies for a small water-supply reservoir in western Colorado

    USGS Publications Warehouse

    Williams, Cory A.; Richards, Rodney J.; Collins, Kent L.

    2015-01-01

    The U.S. Bureau of Reclamation (USBR) and local stakeholder groups are evaluating reservoir-management strategies within Paonia Reservoir. This small reservoir fills to capacity each spring and requires approximately half of the snowmelt-runoff volume from its sediment-laden source waters, Muddy Creek. The U.S. Geological Survey is currently conducting high-resolution (15-minute data-recording interval) sediment monitoring to characterize incoming and outgoing sediment flux during reservoir operations at two sites on Muddy Creek. The high-resolution monitoring is being used to establish current rates of reservoir sedimentation, support USBR sediment transport and storage models, and assess the viability of water-storage recovery in Paonia Reservoir. These sites are equipped with in situ, single-frequency, side-looking acoustic Doppler current meters in conjunction with turbidity sensors to monitor sediment flux. This project serves as a demonstration of the capability of using surrogate techniques to predict suspended-sediment concentrations in small streams (less than 20 meters in width and 2 meters in depth). These two sites provide the ability to report near real-time suspended-sediment concentrations through the U.S. Geological Survey National Water Information System (NWIS) web interface and National Real-Time Water Quality websites (NRTWQ) to aid in reservoir operations and assessments.

  11. Hydrogeology from 10,000 ft below: lessons learned in applying pulse testing for leakage detection in a carbon sequestration formation

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.; Lu, J.; Hovorka, S. D.; Freifeld, B. M.; Islam, A.

    2015-12-01

    Monitoring techniques capable of deep subsurface detection are desirable for early warning and leakage pathway identification in geologic carbon storage formations. This work investigates the feasibility of a leakage detection technique based on pulse testing, which is a traditional hydrogeological characterization tool. In pulse testing, the monitoring reservoir is stimulated at a fixed frequency and the acquired pressure perturbation signals are analyzed in the frequency domain to detect potential deviations in the reservoir's frequency domain response function. Unlike traditional time-domain analyses, the frequency-domain analysis aims to minimize the interference of reservoir noise by imposing coded injection patterns such that the reservoir responses to injection can be uniquely determined. We have established the theoretical basis of the approach in previous work. Recently, field validation of this pressure-based, leakage detection technique was conducted at a CO2-EOR site located in Mississippi, USA. During the demonstration, two sets of experiments were performed using 90-min and 150-min pulsing periods, for both with and without leak scenarios. Because of the lack of pre-existing leakage pathways, artificial leakage CO2 was simulated by rate-controlled venting from one of the monitoring wells. Our results show that leakage events caused a significant deviation in the amplitude of the frequency response function, indicating that pulse testing may be used as a cost-effective monitoring technique with a strong potential for automation.

  12. Petro-elastic modelling and characterization of solid-filled reservoirs: Comparative analysis on a Triassic North Sea reservoir

    NASA Astrophysics Data System (ADS)

    Auduson, Aaron E.

    2018-07-01

    One of the most common problems in the North Sea is the occurrence of salt (solid) in the pores of Triassic sandstones. Many wells have failed due to interpretation errors based conventional substitution as described by the Gassmann equation. A way forward is to device a means to model and characterize the salt-plugging scenarios. Modelling the effects of fluid and solids on rock velocity and density will ascertain the influence of pore material types on seismic data. In this study, two different rock physics modelling approaches are adopted in solid-fluid substitution, namely the extended Gassmann theory and multi-mineral mixing modelling. Using the modified new Gassmann equation, solid-and-fluid substitutions were performed from gas or water filling in the hydrocarbon reservoirs to salt materials being the pore-filling. Inverse substitutions were also performed from salt-filled case to gas- and water-filled scenarios. The modelling results show very consistent results - Salt-plugged wells clearly showing different elastic parameters when compared with gas- and water-bearing wells. While the Gassmann equation-based modelling was used to discretely compute effective bulk and shear moduli of the salt plugs, the algorithm based on the mineral-mixing (Hashin-Shtrikman) can only predict elastic moduli in a narrow range. Thus, inasmuch as both of these methods can be used to model elastic parameters and characterize pore-fill scenarios, the New Gassmann-based algorithm, which is capable of precisely predicting the elastic parameters, is recommended for use in forward seismic modelling and characterization of this reservoir and other reservoir types. This will significantly help in reducing seismic interpretation errors.

  13. New generation of exploration tools: interactive modeling software and microcomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krajewski, S.A.

    1986-08-01

    Software packages offering interactive modeling techniques are now available for use on microcomputer hardware systems. These packages are reasonably priced for both company and independent explorationists; they do not require users to have high levels of computer literacy; they are capable of rapidly completing complex ranges of sophisticated geologic and geophysical modeling tasks; and they can produce presentation-quality output for comparison with real-world data. For example, interactive packages are available for mapping, log analysis, seismic modeling, reservoir studies, and financial projects as well as for applying a variety of statistical and geostatistical techniques to analysis of exploration data. More importantly,more » these packages enable explorationists to directly apply their geologic expertise when developing and fine-tuning models for identifying new prospects and for extending producing fields. As a result of these features, microcomputers and interactive modeling software are becoming common tools in many exploration offices. Gravity and magnetics software programs illustrate some of the capabilities of such exploration tools.« less

  14. A chemical EOR benchmark study of different reservoir simulators

    NASA Astrophysics Data System (ADS)

    Goudarzi, Ali; Delshad, Mojdeh; Sepehrnoori, Kamy

    2016-09-01

    Interest in chemical EOR processes has intensified in recent years due to the advancements in chemical formulations and injection techniques. Injecting Polymer (P), surfactant/polymer (SP), and alkaline/surfactant/polymer (ASP) are techniques for improving sweep and displacement efficiencies with the aim of improving oil production in both secondary and tertiary floods. There has been great interest in chemical flooding recently for different challenging situations. These include high temperature reservoirs, formations with extreme salinity and hardness, naturally fractured carbonates, and sandstone reservoirs with heavy and viscous crude oils. More oil reservoirs are reaching maturity where secondary polymer floods and tertiary surfactant methods have become increasingly important. This significance has added to the industry's interest in using reservoir simulators as tools for reservoir evaluation and management to minimize costs and increase the process efficiency. Reservoir simulators with special features are needed to represent coupled chemical and physical processes present in chemical EOR processes. The simulators need to be first validated against well controlled lab and pilot scale experiments to reliably predict the full field implementations. The available data from laboratory scale include 1) phase behavior and rheological data; and 2) results of secondary and tertiary coreflood experiments for P, SP, and ASP floods under reservoir conditions, i.e. chemical retentions, pressure drop, and oil recovery. Data collected from corefloods are used as benchmark tests comparing numerical reservoir simulators with chemical EOR modeling capabilities such as STARS of CMG, ECLIPSE-100 of Schlumberger, REVEAL of Petroleum Experts. The research UTCHEM simulator from The University of Texas at Austin is also included since it has been the benchmark for chemical flooding simulation for over 25 years. The results of this benchmark comparison will be utilized to improve chemical design for field-scale studies using commercial simulators. The benchmark tests illustrate the potential of commercial simulators for chemical flooding projects and provide a comprehensive table of strengths and limitations of each simulator for a given chemical EOR process. Mechanistic simulations of chemical EOR processes will provide predictive capability and can aid in optimization of the field injection projects. The objective of this paper is not to compare the computational efficiency and solution algorithms; it only focuses on the process modeling comparison.

  15. Medical ice slurry production device

    DOEpatents

    Kasza, Kenneth E [Palos Park, IL; Oras, John [Des Plaines, IL; Son, HyunJin [Naperville, IL

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  16. Wildlife as Source of Zoonotic Infections

    PubMed Central

    Kirkemo, Anne-Mette; Handeland, Kjell

    2004-01-01

    Zoonoses with a wildlife reservoir represent a major public health problem, affecting all continents. Hundreds of pathogens and many different transmission modes are involved, and many factors influence the epidemiology of the various zoonoses. The importance and recognition of wildlife as a reservoir of zoonoses are increasing. Cost-effective prevention and control of these zoonoses necessitate an interdisciplinary and holistic approach and international cooperation. Surveillance, laboratory capability, research, training and education, and communication are key elements. PMID:15663840

  17. Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism

    NASA Astrophysics Data System (ADS)

    Karakas, Ozge; Degruyter, Wim; Bachmann, Olivier; Dufek, Josef

    2017-06-01

    Magmatic processes on Earth govern the mass, energy and chemical transfer between the mantle, crust and atmosphere. To understand magma storage conditions in the crust that ultimately control volcanic activity and growth of continents, an evaluation of the mass and heat budget of the entire crustal column during magmatic episodes is essential. Here we use a numerical model to constrain the physical conditions under which both lower and upper crustal magma bodies form. We find that over long durations of intrusions (greater than 105 to 106 yr), extensive lower crustal mush zones develop, which modify the thermal budget of the upper crust and reduce the flux of magma required to sustain upper crustal magma reservoirs. Our results reconcile physical models of magma reservoir construction and field-based estimates of intrusion rates in numerous volcanic and plutonic localities. Young igneous provinces (less than a few hundred thousand years old) are unlikely to support large upper crustal reservoirs, whereas longer-lived systems (active for longer than 1 million years) can accumulate magma and build reservoirs capable of producing super-eruptions, even with intrusion rates smaller than 10-3 to 10-2 km3 yr-1. Hence, total duration of magmatism should be combined with the magma intrusion rates to assess the capability of volcanic systems to form the largest explosive eruptions on Earth.

  18. CO{sub 2} Injectivity, Storage Capacity, Plume Size, and Reservoir and Seal Integrity of the Ordovician St. Peter Sandstone and the Cambrian Potosi Formation in the Illnois Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leetaru, Hannes; Brown, Alan; Lee, Donald

    2012-05-01

    The Cambro-Ordovician strata of the Illinois and Michigan Basins underlie most of the states of Illinois, Indiana, Kentucky, and Michigan. This interval also extends through much of the Midwest of the United States and, for some areas, may be the only available target for geological sequestration of CO{sub 2}. We evaluated the Cambro-Ordovician strata above the basal Mt. Simon Sandstone reservoir for sequestration potential. The two targets were the Cambrian carbonate intervals in the Knox and the Ordovician St. Peter Sandstone. The evaluation of these two formations was accomplished using wireline data, core data, pressure data, and seismic data frommore » the USDOE-funded Illinois Basin Decatur Project being conducted by the Midwest Geological Sequestration Consortium in Macon County, Illinois. Interpretations were completed using log analysis software, a reservoir flow simulator, and a finite element solver that determines rock stress and strain changes resulting from the pressure increase associated with CO{sub 2} injection. Results of this research suggest that both the St. Peter Sandstone and the Potosi Dolomite (a formation of the Knox) reservoirs may be capable of storing up to 2 million tonnes of CO{sub 2} per year for a 20-year period. Reservoir simulation results for the St. Peter indicate good injectivity and a relatively small CO{sub 2} plume. While a single St. Peter well is not likely to achieve the targeted injection rate of 2 million tonnes/year, results of this study indicate that development with three or four appropriately spaced wells may be sufficient. Reservoir simulation of the Potosi suggest that much of the CO{sub 2} flows into and through relatively thin, high permeability intervals, resulting in a large plume diameter compared with the St. Peter.« less

  19. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. O. Hitzman; A. K. Stepp; D. M. Dennis

    This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work is underway. Microbial cultures have been isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters withmore » cultures and conditions representative of oil reservoirs. Field pilot studies are underway.« less

  20. A Bayesian-based two-stage inexact optimization method for supporting stream water quality management in the Three Gorges Reservoir region.

    PubMed

    Hu, X H; Li, Y P; Huang, G H; Zhuang, X W; Ding, X W

    2016-05-01

    In this study, a Bayesian-based two-stage inexact optimization (BTIO) method is developed for supporting water quality management through coupling Bayesian analysis with interval two-stage stochastic programming (ITSP). The BTIO method is capable of addressing uncertainties caused by insufficient inputs in water quality model as well as uncertainties expressed as probabilistic distributions and interval numbers. The BTIO method is applied to a real case of water quality management for the Xiangxi River basin in the Three Gorges Reservoir region to seek optimal water quality management schemes under various uncertainties. Interval solutions for production patterns under a range of probabilistic water quality constraints have been generated. Results obtained demonstrate compromises between the system benefit and the system failure risk due to inherent uncertainties that exist in various system components. Moreover, information about pollutant emission is accomplished, which would help managers to adjust production patterns of regional industry and local policies considering interactions of water quality requirement, economic benefit, and industry structure.

  1. The Effect of Model Grid Resolution on the Distributed Hydrologic Simulations for Forecasting Stream Flows and Reservoir Storage

    NASA Astrophysics Data System (ADS)

    Turnbull, S. J.

    2017-12-01

    Within the US Army Corps of Engineers (USACE), reservoirs are typically operated according to a rule curve that specifies target water levels based on the time of year. The rule curve is intended to maximize flood protection by specifying releases of water before the dominant rainfall period for a region. While some operating allowances are permissible, generally the rule curve elevations must be maintained. While this operational approach provides for the required flood control purpose, it may not result in optimal reservoir operations for multi-use impoundments. In the Russian River Valley of California a multi-agency research effort called Forecast-Informed Reservoir Operations (FIRO) is assessing the application of forecast weather and streamflow predictions to potentially enhance the operation of reservoirs in the watershed. The focus of the study has been on Lake Mendocino, a USACE project important for flood control, water supply, power generation and ecological flows. As part of this effort the Engineer Research and Development Center is assessing the ability of utilizing the physics based, distributed watershed model Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to simulate stream flows, reservoir stages, and discharges while being driven by weather forecast products. A key question in this application is the effect of watershed model resolution on forecasted stream flows. To help resolve this question, GSSHA models of multiple grid resolutions, 30, 50, and 270m, were developed for the upper Russian River, which includes Lake Mendocino. The models were derived from common inputs: DEM, soils, land use, stream network, reservoir characteristics, and specified inflows and discharges. All the models were calibrated in both event and continuous simulation mode using measured precipitation gages and then driven with the West-WRF atmospheric model in prediction mode to assess the ability of the model to function in short term, less than one week, forecasting mode. In this presentation we will discuss the effect the grid resolution has model development, parameter assignment, streamflow prediction and forecasting capability utilizing the West-WRF forecast hydro-meteorology.

  2. Deriving adaptive operating rules of hydropower reservoirs using time-varying parameters generated by the EnKF

    NASA Astrophysics Data System (ADS)

    Feng, Maoyuan; Liu, Pan; Guo, Shenglian; Shi, Liangsheng; Deng, Chao; Ming, Bo

    2017-08-01

    Operating rules have been used widely to decide reservoir operations because of their capacity for coping with uncertain inflow. However, stationary operating rules lack adaptability; thus, under changing environmental conditions, they cause inefficient reservoir operation. This paper derives adaptive operating rules based on time-varying parameters generated using the ensemble Kalman filter (EnKF). A deterministic optimization model is established to obtain optimal water releases, which are further taken as observations of the reservoir simulation model. The EnKF is formulated to update the operating rules sequentially, providing a series of time-varying parameters. To identify the index that dominates the variations of the operating rules, three hydrologic factors are selected: the reservoir inflow, ratio of future inflow to current available water, and available water. Finally, adaptive operating rules are derived by fitting the time-varying parameters with the identified dominant hydrologic factor. China's Three Gorges Reservoir was selected as a case study. Results show that (1) the EnKF has the capability of capturing the variations of the operating rules, (2) reservoir inflow is the factor that dominates the variations of the operating rules, and (3) the derived adaptive operating rules are effective in improving hydropower benefits compared with stationary operating rules. The insightful findings of this study could be used to help adapt reservoir operations to mitigate the effects of changing environmental conditions.

  3. The application of hydrometeorological data obtained by remote sensing techniques for multipurpose reservoir operations. [Arizona

    NASA Technical Reports Server (NTRS)

    Warskow, W. L.; Wilson, T. T., Jr.; Kirdar, K.

    1975-01-01

    Watershed snowpack and streamflow data obtained and transmitted by (ERTS) satellite were used in the operational and water management decisions in the Salt River Project. Located in central Arizona, the Project provides water and electric power for the more than 1.1 million residents of the Salt River Valley. The water supply source is a 33,670 square kilometer (13,000 square mile) watershed and 250 deep well pumps. Six storage reservoirs, four of which have hydroelectric capability, located on two river systems have a storage capacity of over 246,600 hectare-meters (2,000,000 AF.). Information from the watershed during the normal runoff period of December to May and more especially during critical periods of high runoff and minimum reservoir storage capacity is necessary for the reservoir operation regimen. Extent of the snowpack, depth of snow, and the condition of the pack were observed in aerial flights over the watershed.

  4. Refinement and evaluation of the Massachusetts firm-yield estimator model version 2.0

    USGS Publications Warehouse

    Levin, Sara B.; Archfield, Stacey A.; Massey, Andrew J.

    2011-01-01

    The firm yield is the maximum average daily withdrawal that can be extracted from a reservoir without risk of failure during an extended drought period. Previously developed procedures for determining the firm yield of a reservoir were refined and applied to 38 reservoir systems in Massachusetts, including 25 single- and multiple-reservoir systems that were examined during previous studies and 13 additional reservoir systems. Changes to the firm-yield model include refinements to the simulation methods and input data, as well as the addition of several scenario-testing capabilities. The simulation procedure was adapted to run at a daily time step over a 44-year simulation period, and daily streamflow and meteorological data were compiled for all the reservoirs for input to the model. Another change to the model-simulation methods is the adjustment of the scaling factor used in estimating groundwater contributions to the reservoir. The scaling factor is used to convert the daily groundwater-flow rate into a volume by multiplying the rate by the length of reservoir shoreline that is hydrologically connected to the aquifer. Previous firm-yield analyses used a constant scaling factor that was estimated from the reservoir surface area at full pool. The use of a constant scaling factor caused groundwater flows during periods when the reservoir stage was very low to be overestimated. The constant groundwater scaling factor used in previous analyses was replaced with a variable scaling factor that is based on daily reservoir stage. This change reduced instability in the groundwater-flow algorithms and produced more realistic groundwater-flow contributions during periods of low storage. Uncertainty in the firm-yield model arises from many sources, including errors in input data. The sensitivity of the model to uncertainty in streamflow input data and uncertainty in the stage-storage relation was examined. A series of Monte Carlo simulations were performed on 22 reservoirs to assess the sensitivity of firm-yield estimates to errors in daily-streamflow input data. Results of the Monte Carlo simulations indicate that underestimation in the lowest stream inflows can cause firm yields to be underestimated by an average of 1 to 10 percent. Errors in the stage-storage relation can arise when the point density of bathymetric survey measurements is too low. Existing bathymetric surfaces were resampled using hypothetical transects of varying patterns and point densities in order to quantify the uncertainty in stage-storage relations. Reservoir-volume calculations and resulting firm yields were accurate to within 5 percent when point densities were greater than 20 points per acre of reservoir surface. Methods for incorporating summer water-demand-reduction scenarios into the firm-yield model were developed as well as the ability to relax the no-fail reliability criterion. Although the original firm-yield model allowed monthly reservoir releases to be specified, there have been no previous studies examining the feasibility of controlled releases for downstream flows from Massachusetts reservoirs. Two controlled-release scenarios were tested—with and without a summer water-demand-reduction scenario—for a scenario with a no-fail criterion and a scenario that allows for a 1-percent failure rate over the entire simulation period. Based on these scenarios, about one-third of the reservoir systems were able to support the flow-release scenarios at their 2000–2004 usage rates. Reservoirs with higher storage ratios (reservoir storage capacity to mean annual streamflow) and lower demand ratios (mean annual water demand to annual firm yield) were capable of higher downstream release rates. For the purposes of this research, all reservoir systems were assumed to have structures which enable controlled releases, although this assumption may not be true for many of the reservoirs studied.

  5. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitzman, D.O.; Stepp, A.K.

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery.

  6. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitzman, D.O.; Bailey, S.A.; Stepp, A.K.

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery.

  7. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data

    NASA Astrophysics Data System (ADS)

    Pathak, Jaideep; Lu, Zhixin; Hunt, Brian R.; Girvan, Michelle; Ott, Edward

    2017-12-01

    We use recent advances in the machine learning area known as "reservoir computing" to formulate a method for model-free estimation from data of the Lyapunov exponents of a chaotic process. The technique uses a limited time series of measurements as input to a high-dimensional dynamical system called a "reservoir." After the reservoir's response to the data is recorded, linear regression is used to learn a large set of parameters, called the "output weights." The learned output weights are then used to form a modified autonomous reservoir designed to be capable of producing an arbitrarily long time series whose ergodic properties approximate those of the input signal. When successful, we say that the autonomous reservoir reproduces the attractor's "climate." Since the reservoir equations and output weights are known, we can compute the derivatives needed to determine the Lyapunov exponents of the autonomous reservoir, which we then use as estimates of the Lyapunov exponents for the original input generating system. We illustrate the effectiveness of our technique with two examples, the Lorenz system and the Kuramoto-Sivashinsky (KS) equation. In the case of the KS equation, we note that the high dimensional nature of the system and the large number of Lyapunov exponents yield a challenging test of our method, which we find the method successfully passes.

  8. Intelligent reservoir operation system based on evolving artificial neural networks

    NASA Astrophysics Data System (ADS)

    Chaves, Paulo; Chang, Fi-John

    2008-06-01

    We propose a novel intelligent reservoir operation system based on an evolving artificial neural network (ANN). Evolving means the parameters of the ANN model are identified by the GA evolutionary optimization technique. Accordingly, the ANN model should represent the operational strategies of reservoir operation. The main advantages of the Evolving ANN Intelligent System (ENNIS) are as follows: (i) only a small number of parameters to be optimized even for long optimization horizons, (ii) easy to handle multiple decision variables, and (iii) the straightforward combination of the operation model with other prediction models. The developed intelligent system was applied to the operation of the Shihmen Reservoir in North Taiwan, to investigate its applicability and practicability. The proposed method is first built to a simple formulation for the operation of the Shihmen Reservoir, with single objective and single decision. Its results were compared to those obtained by dynamic programming. The constructed network proved to be a good operational strategy. The method was then built and applied to the reservoir with multiple (five) decision variables. The results demonstrated that the developed evolving neural networks improved the operation performance of the reservoir when compared to its current operational strategy. The system was capable of successfully simultaneously handling various decision variables and provided reasonable and suitable decisions.

  9. STRUCTURAL HETEROGENEITIES AND PALEO FLUID FLOW IN AN ANALOG SANDSTONE RESERVOIR 2001-2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollard, David; Aydin, Atilla

    2005-02-22

    Fractures and faults are brittle structural heterogeneities that can act both as conduits and barriers with respect to fluid flow in rock. This range in the hydraulic effects of fractures and faults greatly complicates the challenges faced by geoscientists working on important problems: from groundwater aquifer and hydrocarbon reservoir management, to subsurface contaminant fate and transport, to underground nuclear waste isolation, to the subsurface sequestration of CO2 produced during fossil-fuel combustion. The research performed under DOE grant DE-FG03-94ER14462 aimed to address these challenges by laying a solid foundation, based on detailed geological mapping, laboratory experiments, and physical process modeling, onmore » which to build our interpretive and predictive capabilities regarding the structure, patterns, and fluid flow properties of fractures and faults in sandstone reservoirs. The material in this final technical report focuses on the period of the investigation from July 1, 2001 to October 31, 2004. The Aztec Sandstone at the Valley of Fire, Nevada, provides an unusually rich natural laboratory in which exposures of joints, shear deformation bands, compaction bands and faults at scales ranging from centimeters to kilometers can be studied in an analog for sandstone aquifers and reservoirs. The suite of structures there has been documented and studied in detail using a combination of low-altitude aerial photography, outcrop-scale mapping and advanced computational analysis. In addition, chemical alteration patterns indicative of multiple paleo fluid flow events have been mapped at outcrop, local and regional scales. The Valley of Fire region has experienced multiple episodes of fluid flow and this is readily evident in the vibrant patterns of chemical alteration from which the Valley of Fire derives its name. We have successfully integrated detailed field and petrographic observation and analysis, process-based mechanical modeling, and numerical simulation of fluid flow to study a typical sandstone aquifer/reservoir at a variety of scales. We have produced many tools and insights which can be applied to active subsurface flow systems and practical problems of pressing global importance.« less

  10. Role of reservoirs in sustained seismicity of Koyna-Warna region—a statistical analysis

    NASA Astrophysics Data System (ADS)

    Yadav, Amrita; Gahalaut, Kalpna; Purnachandra Rao, N.

    2018-03-01

    Koyna-Warna region in western India is a globally recognized site of reservoir-triggered seismicity near the Koyna and Warna reservoirs. The region has been reported with several M > 5 earthquakes in the last five decades including M6.3 Koyna earthquake which is considered as the largest triggered earthquake worldwide. In the present study, a detailed statistical analysis has been done for long period earthquake catalogues during 1968-2004 of MERI and 2005-2012 of CSIR-NGRI to find out the spatio-temporal influence of the Koyna and Warna reservoirs impoundment on the seismicity of the region. Depending upon the earthquake clusters, we divided the region into three different zones and performed power spectrum and singular spectrum analysis (SSA) on them. For the time period 1983-1995, the earthquake zone near the Warna reservoir; for 1996-2004, the earthquake zone near the Koyna reservoir; and for 2005-2012, the earthquake zone near the Warna reservoir found to be influenced by the annual water level variations in the reservoirs that confirm the continuous role of both the reservoirs in the seismicity of the Koyna-Warna region.

  11. Influences of porous reservoir Laplace pressure on emissions from passively fed ionic liquid electrospray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtney, Daniel G., E-mail: dcourtney@alum.mit.edu; Shea, Herbert

    2015-09-07

    Passively fed ionic liquid electrospray sources are capable of efficiently emitting a variety of ion beams with promising applications to spacecraft propulsion and as focused ion beams. Practical devices will require integrated or coupled ionic liquid reservoirs; the effects of which have not been explored in detail. Porous reservoirs are a simple, scalable solution. However, we have shown that their pore size can dramatically alter the beam composition. Emitting the ionic liquid 1-ethyl-3-methylimidazolium bis(triflouromethylsulfonyl)amide, the same device was shown to yield either an ion or droplet dominated beam when using reservoirs of small or large pore size, respectively; with themore » latter having a mass flow in excess of 15 times larger than the former at negative polarity. Another source, emitting nearly purely ionic beams of 1-ethyl-3-methylimidazolium tetrafluoroborate, was similarly shown to emit a significant droplet population when coupled to reservoirs of large (>100 μm) pores; constituting a reduction in propulsive efficiency from greater than 70% to less than 30%. Furthermore, we show that reservoir selection can alter the voltage required to obtain and sustain emission, increasing with smaller pore size.« less

  12. Advances in coalbed methane reservoirs using integrated reservoir characterization and hydraulic fracturing in Karaganda coal basin, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, Aleksandr; Aimukhan, Adina; Kenshimova, Aida; Mullagaliyev, Fandus; Akbarov, Erlan; Mullagaliyeva, Lylia; Kabirova, Svetlana; Almukhametov, Azamat

    2017-04-01

    Coalbed methane from Karaganda coal basin is considered to be an unconventional source of energy for the Central and Eastern parts of Kazakhstan. These regions are situated far away from the main traditional sources of oil and gas related to Precaspian petroleum basin. Coalbed methane fields in Karaganda coal basin are characterized by geological and structural complexity. Majority of production zones were characterized by high methane content and extremely low coal permeability. The coal reservoirs also contained a considerable natural system of primary, secondary, and tertiary fractures that were usually capable to accommodate passing fluid during hydraulic fracturing process. However, after closing was often observed coal formation damage including the loss of fluids, migration of fines and higher pressures required to treat formation than were expected. Unusual or less expected reservoir characteristics and values of properties of the coal reservoir might be the cause of the unusual occurred patterns in obtained fracturing, such as lithological peculiarities, rock mechanical properties and previous natural fracture systems in the coals. Based on these properties we found that during the drilling and fracturing of the coal-induced fractures have great sensitivity to complex reservoir lithology and stress profiles, as well as changes of those stresses. In order to have a successful program of hydraulic fracturing and avoid unnecessary fracturing anomalies we applied integrated reservoir characterization to monitor key parameters. In addition to logging data, core sample analysis was applied for coalbed methane reservoirs to observe dependence tiny lithological variations through the magnetic susceptibility values and their relation to permeability together with expected principal stress. The values of magnetic susceptibility were measured by the core logging sensor, which is equipped with the probe that provides volume magnetic susceptibility parameters. Permeability was measured by air permeameter. Results confirmed that there is a correspondence between the high permeability and the low magnetic susceptibility values of production zones. Importantly also were found relation of the coal envelope type between only shales coal framing or only sandstone coal framing that most likely led to different stress profiles. In addition, we briefly describe potential of other types of unconventional resources in Kazakhstan, such as shale oil, tight gas and shale gas, where this integrated approach could be useful to apply in the future.

  13. Geostatistics applied to gas reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meunier, G.; Coulomb, C.; Laille, J.P.

    1989-09-01

    The spatial distribution of many of the physical parameters connected with a gas reservoir is of primary interest to both engineers and geologists throughout the study, development, and operation of a field. It is therefore desirable for the distribution to be capable of statistical interpretation, to have a simple graphical representation, and to allow data to be entered from either two- or three-dimensional grids. To satisfy these needs while dealing with the geographical variables, new methods have been developed under the name geostatistics. This paper describes briefly the theory of geostatistics and its most recent improvements for the specific problemmore » of subsurface description. The external-drift technique has been emphasized in particular, and in addition, four case studies related to gas reservoirs are presented.« less

  14. L-Lake macroinvertebrate community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, W.L.

    1996-06-01

    To characterize the present benthic macroinvertebrate community of L-Lake, Regions 5 and 7 of the reservoir were sampled in September 1995 at the same locations sampled in 1988 and 1989 during the L-Lake monitoring program. The macroinvertebrate community of 1995 is compared to that of 1988 and 1989. The species composition of L-Lake`s macroinvertebrate community has changed considerably since 1988-1989, due primarily to maturation of the reservoir ecosystem. L-Lake contains a reasonably diverse macroinvertebrate community that is capable of supporting higher trophic levels, including a diverse assemblage of fish species. The L-Lake macroinvertebrate community is similar to those of manymore » other southeastern reservoirs, and there is no indication that the macroinvertebrate community is perturbed by chemical or physical stressors.« less

  15. Exploring How Changing Monsoonal Dynamics and Human Pressures Challenge Multi-Reservoir Management of Food-Energy-Water Tradeoffs

    NASA Astrophysics Data System (ADS)

    Quinn, J.; Reed, P. M.; Giuliani, M.; Castelletti, A.; Oyler, J.; Nicholas, R.

    2017-12-01

    Multi-reservoir systems require robust and adaptive control policies capable of managing evolving hydroclimatic variability and human demands across a wide range of time scales. This is especially true for systems with high intra-annual and inter-annual variability, such as monsoonal river systems that need to buffer against seasonal droughts while also managing extreme floods. Moreover, the timing, intensity, duration, and frequency of these hydrologic extremes may be affected by deeply uncertain changes in socioeconomic and climatic pressures. This study contributes an innovative method for exploring how possible changes in the timing and magnitude of monsoonal seasonal extremes impact the robustness of reservoir operating policies optimized to historical conditions assuming stationarity. We illustrate this analysis on the Red River basin in Vietnam, where reservoirs and dams serve as important sources of hydropower production, irrigable water supply, and flood protection for the capital city of Hanoi. Applying our scenario discovery approach, we find food-energy-water tradeoffs are exacerbated by potential hydrologic shifts, with wetter worlds threatening the ability of operating strategies to manage flood risk and drier worlds threatening their ability to provide sufficient water supply and hydropower production, especially if demands increase. Most notably, though, amplification of the within-year monsoonal cycle and increased inter-annual variability threaten all of the above. These findings highlight the importance of considering changes in both lower order moments of annual streamflow and intra-annual monsoonal behavior when evaluating the robustness of alternative water systems control strategies for managing deeply uncertain futures.

  16. Seismic Reservoir Characterization for Assessment of CO2 EOR at the Mississippian Reservoir in South-Central Kansas

    NASA Astrophysics Data System (ADS)

    Tsoflias, G. P.; Graham, B.; Haga, L.; Watney, L.

    2017-12-01

    The Mississippian in Kansas and Oklahoma is a highly heterogeneous, fractured, oil producing reservoir with thickness typically below seismic resolution. At Wellington field in south-central Kansas CO2 was injected in the Mississippian reservoir for enhanced oil recovery. This study examines the utility of active source surface seismic for characterization of Mississippian reservoir properties and monitoring CO2. Analysis of post-stack 3D seismic data showed the expected response of a gradational transition (ramp velocity) where thicker reservoir units corresponded with lower reflection amplitudes, lower frequency and a 90o phase change. Reflection amplitude could be correlated to reservoir thickness. Pre-stack gather analysis showed that porosity zones of the Mississippian reservoir exhibit characteristic AVO response. Simultaneous AVO inversion estimated P- and S-Impedances, which along with formation porosity logs and post-stack seismic data attributes were incorporated in multi-attribute linear-regression analysis and predicted reservoir porosity with an overall correlation of 0.90 to well data. The 3D survey gather azimuthal anisotropy analysis (AVAZ) provided information on the fault and fracture network and showed good agreement to the regional stress field and well data. Mississippian reservoir porosity and fracture predictions agreed well with the observed mobility of the CO2 in monitoring wells. Fluid substitution modeling predicted acoustic impedance reduction in the Mississippian carbonate reservoir introduced by the presence of CO2. Future work includes the assessment of time-lapse seismic, acquired after the injection of CO2. This work demonstrates that advanced seismic interpretation methods can be used successfully for characterization of the Mississippian reservoir and monitoring of CO2.

  17. Trona-enhanced steam foam oil recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, H.C.

    1988-03-01

    In a process in which steam and steam-foaming surfactant are injected into a subterranean reservoir for displacing a relatively acidic oil toward a production location, which process includes injecting into the reservoir, at least as soon as at least some portion of the steam is injected, (a) a kind and amount of water soluble, alkaline material effective for ion-exchanging multivalent ions from the reservoir rocks and precipitating compounds containing those ions and for causing the aqueous liquid phase of the injected fluid to form soaps of substantially all of the petroleum acids in the reservoir oil, and (b) at leastmore » one surfactant arranged for foaming the steam and providing a preformed cosurfactant material capable of increasing the salinity requirement of an aqueous surfactant system in which soaps derived from the reservoir oil comprise a primary surfactant, an improvement is described comprising: using as the water soluble alkaline material, a material consisting essentially of a substantially equal molar mixture of alkali metal carbonates and bicarbonates which is, or is substantially equivalent to, trona.« less

  18. Magnetic Skyrmion as a Nonlinear Resistive Element: A Potential Building Block for Reservoir Computing

    NASA Astrophysics Data System (ADS)

    Prychynenko, Diana; Sitte, Matthias; Litzius, Kai; Krüger, Benjamin; Bourianoff, George; Kläui, Mathias; Sinova, Jairo; Everschor-Sitte, Karin

    2018-01-01

    Inspired by the human brain, there is a strong effort to find alternative models of information processing capable of imitating the high energy efficiency of neuromorphic information processing. One possible realization of cognitive computing involves reservoir computing networks. These networks are built out of nonlinear resistive elements which are recursively connected. We propose that a Skyrmion network embedded in magnetic films may provide a suitable physical implementation for reservoir computing applications. The significant key ingredient of such a network is a two-terminal device with nonlinear voltage characteristics originating from magnetoresistive effects, such as the anisotropic magnetoresistance or the recently discovered noncollinear magnetoresistance. The most basic element for a reservoir computing network built from "Skyrmion fabrics" is a single Skyrmion embedded in a ferromagnetic ribbon. In order to pave the way towards reservoir computing systems based on Skyrmion fabrics, we simulate and analyze (i) the current flow through a single magnetic Skyrmion due to the anisotropic magnetoresistive effect and (ii) the combined physics of local pinning and the anisotropic magnetoresistive effect.

  19. Limnological study with reference to fish culture of Bothali (Mendha) reservoir, district - Gadchiroli (India).

    PubMed

    Tijare, Rajendra V

    2012-04-01

    Limnological study with reference to fish culture was carried out at Bothali (Mendha) reservoir, district Gadchiroli, India. Water samples from different sampling locations were collected and processed for physico-chemical analysis. The physico-chemical analysis revealed that the reservoir is favourable for fish culture as the phosphate content in water is moderate in amount. This reservoir can produce a good yield of fishes. Though the reservoir is presently exploited and is under pisciculture, a better treatment of the reservoir such as prevention of entry of organic matter, reduction of phosphate ion concentration to certain extent is necessary to obtain a maximum fish yield.

  20. Reservoir transport and poroelastic properties from oscillating pore pressure experiments

    NASA Astrophysics Data System (ADS)

    Hasanov, Azar K.

    Hydraulic transport properties of reservoir rocks, permeability and storage capacity are traditionally defined as rock properties, responsible for the passage of fluids through the porous rock sample, as well as their storage. The evaluation of both is an important part of any reservoir characterization workflow. Moreover, permeability and storage capacity are main inputs into any reservoir simulation study, routinely performed by reservoir engineers on almost any major oil and gas field in the world. An accurate reservoir simulation is essential for production forecast and economic analysis, hence the transport properties directly control the profitability of the petroleum reservoir and their estimation is vital for oil and gas industry. This thesis is devoted to an integrated study of reservoir rocks' hydraulic, streaming potential and poroelastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressure method is traditionally used to measure hydraulic transport properties. We modified the method and built an experimental setup, capable of measuring all aforementioned rock properties simultaneously. The measurements were carried out for four conventional reservoir-rock quality samples at a range of oscillation frequencies and effective stresses. An apparent frequency dependence of permeability and streaming potential coupling coefficient was observed. Measured frequency dispersion of drained poroelastic properties indicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demonstrated the best fit to the experimental dispersion data. Pore collapse and grain crushing effects took place during hydrostatic loading of the dolomitic sample and were observed in permeability, coupling coefficient and poroelastic measurements simultaneously. I established that hydraulically-measured storage capacities are overestimated by almost one order of magnitude when compared to elastically-derived ones. The fact that the values of storage capacities as estimated from the hydraulic component of the oscillating pore pressure experiment are unreliable was also demonstrated by comparing poroelastic Biot and Skempton coefficients. These coefficients were estimated both from hydraulic and strain measurements and the comparison of two datasets points out ambiguity of hydraulic measurements. I also introduce a novel method, which allowed us to estimate the permeability from the full range of acquired frequency data by utilizing a nonlinear least-squares regression. I additionally performed numerical simulation of oscillatory fluid flow. The simulated frequency-dependent results displayed an excellent agreement with both analytical solution and experimental data. This agreement proves that numerical simulation is a powerful tool in predicting frequency response of a porous rock sample to harmonic pore pressure excitations.

  1. Developing an integrated 3D-hydrodynamic and emerging contaminant model for assessing water quality in a Yangtze Estuary Reservoir.

    PubMed

    Xu, Cong; Zhang, Jingjie; Bi, Xiaowei; Xu, Zheng; He, Yiliang; Gin, Karina Yew-Hoong

    2017-12-01

    An integrated 3D-hydrodynamic and emerging contaminant model was developed for better understanding of the fate and transport of emerging contaminants in Qingcaosha Reservoir. The reservoir, which supplies drinking water for nearly half of Shanghai's population, is located in Yangtze Delta. The integrated model was built by Delft3D suite, a fully integrated multidimensional modeling software. Atrazine and Bisphenol A (BPA) were selected as two representative emerging contaminants for the study in this reservoir. The hydrodynamic model was calibrated and validated against observations from 2011 to 2015 while the integrated model was calibrated against observations from 2014 to 2015 and then applied to explore the potential risk of high atrazine concentrations in the reservoir driven by agriculture activities. Our results show that the model is capable of describing the spatial and temporal patterns of water temperature, salinity and the dynamic distributions of two representative emerging contaminants (i.e. atrazine and BPA) in the reservoir. The physical and biodegradation processes in this study were found to play a crucial role in determining the fate and transport of atrazine and BPA in the reservoir. The model also provides an insight into the potential risk of emerging contaminants and possible mitigation thresholds. The integrated approach can be a very useful tool to support policy-makers in the future management of Qingcaosha Reservoir. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Reservoir assessment of the Nubian sandstone reservoir in South Central Gulf of Suez, Egypt

    NASA Astrophysics Data System (ADS)

    El-Gendy, Nader; Barakat, Moataz; Abdallah, Hamed

    2017-05-01

    The Gulf of Suez is considered as one of the most important petroleum provinces in Egypt and contains the Saqqara and Edfu oil fields located in the South Central portion of the Gulf of Suez. The Nubian sandstone reservoir in the Gulf of Suez basin is well known for its great capability to store and produce large volumes of hydrocarbons. The Nubian sandstone overlies basement rocks throughout most of the Gulf of Suez region. It consists of a sequence of sandstones and shales of Paleozoic to Cretaceous age. The Nubian sandstone intersected in most wells has excellent reservoir characteristics. Its porosity is controlled by sedimentation style and diagenesis. The cementation materials are mainly kaolinite and quartz overgrowths. The permeability of the Nubian sandstone is mainly controlled by grain size, sorting, porosity and clay content especially kaolinite and decreases with increase of kaolinite. The permeability of the Nubian Sandstone is evaluated using the Nuclear Magnetic Resonance (NMR technology) and formation pressure data in addition to the conventional logs and the results were calibrated using core data. In this work, the Nubian sandstone was investigated and evaluated using complete suites of conventional and advanced logging techniques to understand its reservoir characteristics which have impact on economics of oil recovery. The Nubian reservoir has a complicated wettability nature which affects the petrophysical evaluation and reservoir productivity. So, understanding the reservoir wettability is very important for managing well performance, productivity and oil recovery.

  3. Examining Reservoir Influences on Fluvial Sediment Supply to Estuaries and Coastal Oceans with Sediment Geochronologies: Example from Conowingo Reservoir (Upper Chesapeake Bay, USA)

    NASA Astrophysics Data System (ADS)

    Palinkas, C. M.; Russ, E.

    2016-12-01

    The flux of fluvial sediment to estuaries and coastal oceans is often interrupted by natural and anthropogenic influences. Here, we focus on river dams, which alter the connection between rivers and their receiving basins via sediment sequestration in their reservoirs. Sediments are effectively trapped until river discharge is high enough to create flow velocities capable of resuspending sediment. Sediment resuspension often varies within the reservoir, driven by morphological features such as channels and islands. Thus, sediment residence times in the reservoir are often highly variable in space and time. This study focuses on reading the sedimentary record in one such system - the reservoir upstream of Conowingo Dam, built in the late 1920s and the last and largest dam on the Susquehanna River (Maryland, USA) before it enters Chesapeake Bay. This study establishes geochronologies of reservoir sedimentation on seasonal to decadal time scales with a variety of techniques (e.g., natural and anthropogenic radioisotopes (7Be, 210Pb, 137Cs), coal from mining in the watershed) to interpret observed down-core sedimentary structures and characteristics (grain size, organic content). These observations reveal spatial and temporal patterns of sediment deposition and/or erosion. Placed within the broader context of reservoir geomorphology, these results can improve predictions of sediment supply to downstream environments, in this case Chesapeake Bay, where it can impact water quality and/or benthic organisms.

  4. Hydrology and Mosquito Population Dynamics around a Hydropower Reservoir in Africa

    NASA Astrophysics Data System (ADS)

    Endo, N.; Eltahir, E. A.

    2013-12-01

    Malaria is associated with dams because their reservoirs provide mosquitoes, the vector of malaria, with permanent breeding sites. The risk of contracting malaria is likely to be enhanced following the increasing trend of hydropower dam construction to satisfy the expanding energy needs in developing countries. A close examination of its adverse health impacts is critical in the design, construction, and operation phases. We will present results of extensive field studies in 2012 and 2013 around the Koka Reservoir, Ethiopia. The results uncover the importance of reservoir management especially after the rainy seasons. Furthermore, we show the capability of a newly modified hydrology, entomology and malaria transmission simulator, HYDREMATS (Bomblies et al, 2008), and its potential as a tool for evaluating environmental management strategies to control malaria. HYDREMATS was developed to represent how the hydrology in nearby villages is impacted by the reservoir system, and the role of different types of vector ecologies associated with different Anopheles mosquito species. The hydrology component of HYDREMATS simulates three different mosquito breeding habitats: rain-fed pools, groundwater pools, and shoreline water. The entomology component simulates the life cycles of An. funestus and An. arabiensis, the two main vectors around the reservoir. The model was calibrated over the 2012-2013 period. The impact of reservoir water level management on the mosquito population is explored based on numerical model simulations and field experiments.

  5. Petrofacies Analysis - A Petrophysical Tool for Geologic/Engineering Reservoir Characterization

    USGS Publications Warehouse

    Watney, W.L.; Guy, W.J.; Doveton, J.H.; Bhattacharya, S.; Gerlach, P.M.; Bohling, Geoffrey C.; Carr, T.R.

    1998-01-01

    Petrofacies analysis is defined as the characterization and classification of pore types and fluid saturations as revealed by petrophysical measurements of a reservoir. The word "petrofacies" makes an explicit link between petroleum engineers' concerns with pore characteristics as arbiters of production performance and the facies paradigm of geologists as a methodology for genetic understanding and prediction. In petrofacies analysis, the porosity and resistivity axes of the classical Pickett plot are used to map water saturation, bulk volume water, and estimated permeability, as well as capillary pressure information where it is available. When data points are connected in order of depth within a reservoir, the characteristic patterns reflect reservoir rock character and its interplay with the hydrocarbon column. A third variable can be presented at each point on the crossplot by assigning a color scale that is based on other well logs, often gamma ray or photoelectric effect, or other derived variables. Contrasts between reservoir pore types and fluid saturations are reflected in changing patterns on the crossplot and can help discriminate and characterize reservoir heterogeneity. Many hundreds of analyses of well logs facilitated by spreadsheet and object-oriented programming have provided the means to distinguish patterns typical of certain complex pore types (size and connectedness) for sandstones and carbonate reservoirs, occurrences of irreducible water saturation, and presence of transition zones. The result has been an improved means to evaluate potential production, such as bypassed pay behind pipe and in old exploration wells, or to assess zonation and continuity of the reservoir. Petrofacies analysis in this study was applied to distinguishing flow units and including discriminating pore type as an assessment of reservoir conformance and continuity. The analysis is facilitated through the use of colorimage cross sections depicting depositional sequences, natural gamma ray, porosity, and permeability. Also, cluster analysis was applied to discriminate petrophysically similar reservoir rock.

  6. Application of MRIL-WD (Magnetic Resonance Imaging Logging While Drilling) for irreducible water saturation, total reservoir, free-fluid, bound-fluid porosity measurements and its value for the petrophysical analysis of RT/RM data from the Shah Deniz well

    NASA Astrophysics Data System (ADS)

    Amirov, Elnur

    2016-04-01

    Sperry-Sun (Sperry Drilling Services) is the leader in MWD/LWD reliability, has developed the industry's first LWD NMR/MRIL-WD (nuclear magnetic resonance) tool. The MRIL-WD (magnetic resonance imaging logging-while-drilling) service directly measures the T1 component of hydrogen in subsurface rock units while drilling to obtain total reservoir porosity and to dissect the observed total porosity into its respective components of free fluid and bound fluid porosity. These T1 data are used to secure accurate total, free-fluid, capillary-bound water, and clay-bound water porosity of the reservoir sections which can be drilled in the several Runs. Over the last decade, results from Magnetic Resonance Imaging logs (NMR) have added significant value to petrophysical analysis and understanding by providing total, free-fluid and bound-fluid porosities, combined with fluid typing capabilities. With MRIL-WD very valuable Real-Time or Recorded Memory data/information is now available during or shortly after the drilling operation (formation properties measurement can be taken right after a drill bit penetration), while trip in and trip out as well. A key point in utilizing MRIL in an LWD environment is motion-tolerant measurements. Recent MRIL-WD logging runs from the Shah Deniz wells located in the Khazarian-Caspian Sea of the Azerbaijan Republic helped to delineate and assess hydrocarbon bearing zones. Acquired results demonstrate how MRIL data can be acquired while-drilling and provide reliable/high quality measurements. Magnetic Resonance Imaging logs at some developments wells have become a cornerstone in formation evaluation and petrophysical understanding. By providing total, free-fluid, and bound-fluid porosities together with fluid typing, MRIL results have significantly added to the assessment of reservoirs. In order to reduce NPT (Non-Productive Time) and save the rig operations time, there is always the desire to obtain logging results as soon as possible, preferably while the drilling of the brand new wells (logging-while-drilling, LWD). The MRIL-WD Tool can accomplish any tasks reliably and in a timely manner thus saving drilling time and reducing the overall risk for the well. Control of water production and identification of pay zones with high irreducible water saturation are also very important for formation evaluation and petrophysical analysis in oil fields located in the Azerbaijan Republic and also other fields around the world. Sometimes above-mentioned problems can cause delay in completion decisions which will create additional expenses for field management. In many wells, breakthroughs in reservoir characterization have been achieved in directly determining hydrocarbon volumes, net permeability thickness, and hydrocarbon type, thus circumventing the problems associated with obtaining wireline data and the considerable amount of rig time required (so MRIL-WD can considerably reduce the NPT). Some reservoir zones with relatively low water saturation, which calculated from the other conventional logs, can produce with relatively high percentage of water cut, primarily because much of the water is movable. However, other zones with high calculated water saturation produce water free hydrocarbons. The difficulty in predicting water production can be related with the producing from the complex lithology, which can contain low-permeability, medium- to fine-grained shaly sands. Where grains are small, the formations have high surface to volume ratios that result in high irreducible water saturation and due to this we can see low resistivity values. As a result the use of resistivity logs as pay indicator, sometimes can cause low resistivity pay zones might be overlooked and consequently net field pay could be underestimated. In the last few years, nuclear magnetic resonance logs have shown great promise in solving problems of formation evaluation that could not be directly resolved with conventional logs. The capability of MRIL-WD can help many engineers to differentiate between the immovable and movable water in oil reservoirs in many fields. Sometimes MRIL-WD have also been capable of providing better formation permeability than conventional logs, a feature which can save time and expense in well-completion decisions. The RT & RM bound fluid and total porosity measurements can provide a tremendous new insight into the formation evaluation of shaly sands and low resistivity pays. Unlike traditional porosity devices, which are affected by rock matrix changes, the MRIL-WD tool can be used in complex or mixed lithology sequences and provide measurements of porosity that are lithology independent.

  7. Thermal electron-tunneling devices as coolers and amplifiers

    NASA Astrophysics Data System (ADS)

    Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo

    2016-02-01

    Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices.

  8. Thermal electron-tunneling devices as coolers and amplifiers

    PubMed Central

    Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo

    2016-01-01

    Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices. PMID:26893109

  9. Are watershed and lacustrine controls on planktonic N2 fixation hierarchically structured?

    PubMed

    Scott, J Thad; Doyle, Robert D; Prochnow, Shane J; White, Joseph D

    2008-04-01

    N2 fixation can be an important source of N to limnetic ecosystems and can influence the structure of phytoplankton communities. However, watershed-scale conditions that favor N2 fixation in lakes and reservoirs have not been well studied. We measured N2 fixation and lacustrine variables monthly over a 19-month period in Waco Reservoir, Texas, USA, and linked these data with nutrient-loading estimates from a physically based watershed model. Readily available topographic, soil, land cover, effluent discharge, and climate data were used in the Soil and Water Assessment Tool (SWAT) to derive watershed nutrient-loading estimates. Categorical and regression tree (CART) analysis revealed that lacustrine and watershed correlates of N2 fixation were hierarchically structured. Lacustrine conditions showed greater predictive capability temporally. For instance, low NO3(-) concentration (<25 microg N/L) and high water temperatures (>27 degrees C) in the reservoir were correlated with the initiation of N2 fixation seasonally. When lacustrine conditions were favorable for N2 fixation, watershed conditions appeared to influence spatial patterns of N2 fixation within the reservoir. For example, spatially explicit patterns of N2 fixation were correlated with the ratio of N:P in nutrient loadings and the N loading rate, which were driven by anthropogenic activity in the watershed and periods of low stream flow, respectively. Although N2 fixation contributed <5% of the annual N load to the reservoir, 37% of the N load was derived from atmospheric N2 fixation during summertime when stream flow in the watershed was low. This study provides evidence that watershed anthropogenic activity can exert control on planktonic N2 fixation, but that temporality is controlled by lacustrine conditions. Furthermore, this study also supports suggestions that reduced inflows may increase the propensity of N2-fixing cyanobacterial blooms in receiving waters of anthropogenically modified landscapes.

  10. Hydraulic Characteristics of the Lower Snake River During Periods of Juvenile Fall Chinook Migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Chris B.; Dibrani, Berhon; Richmond, Marshall C.

    2006-01-30

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences betweenmore » the Clearwater and Snake rivers of 10°C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir’s epilimnion at the Clearwater/Snake River confluence is of key biological importance to juvenile fall Chinook salmon. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four lower Snake reservoirs are also heavily influenced by wind forcing at the water’s surface, and during periods of low river discharge, often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The depth of this upper warm layer and its direction of travel may also be of key biological importance to juvenile fall Chinook salmon. This report describes field data collection, modeling, and analysis of hydrodynamic and temperature conditions in the Lower Granite Reservoir during the summer flow augmentation periods of 2002, 2003, and 2004 plus a brief one-week period in 2005 of Lower Monumental, Little Goose, and Lower Granite Reservoirs. Circulation patterns in all four lower Snake River reservoirs were numerically simulated for periods of 2002, 2003, 2004, and 2005 using CE-QUAL-W2. Simulation results show that these models are sufficiently capable of matching diurnal and long term temperature and velocity changes in the reservoirs. In addition, the confluence zone of the Clearwater and Snake rivers was modeled using the 3-D model Flow3-D. This model was used to better understand mixing processing and entrainment. Once calibrated and validated, the reservoir models were used to investigate downstream impacts of alternative reservoir operation schemes, such as increasing or decreasing the ratio of Clearwater to Snake discharge. Simulation results were also linked with the particle tracking model FINS to better understand alterations of integrated metrics due to alternative operation schemes. These findings indicate that significant alterations in water temperature throughout the lower Snake River are possible by altering hypolimnetic discharges from Dworshak Reservoir and may have a significant impact on the behavior of migrating juvenile fall Chinook salmon during periods of flow augmentation.« less

  11. Network analysis of a regional fishery: Implications for management of natural resources, and recruitment and retention of anglers

    USGS Publications Warehouse

    Martin, Dustin R.; Shizuka, Daizaburo; Chizinski, Christopher J.; Pope, Kevin L.

    2017-01-01

    Angler groups and water-body types interact to create a complex social-ecological system. Network analysis could inform detailed mechanistic models on, and provide managers better information about, basic patterns of fishing activity. Differences in behavior and reservoir selection among angler groups in a regional fishery, the Salt Valley fishery in southeastern Nebraska, USA, were assessed using a combination of cluster and network analyses. The four angler groups assessed ranged from less active, unskilled anglers (group One) to highly active, very skilled anglers (group Four). Reservoir use patterns and the resulting network communities of these four angler groups differed; the number of reservoir communities for these groups ranged from two to three and appeared to be driven by reservoir location (group One), reservoir size and its associated attributes (groups Two and Four), or an interaction between reservoir size and location (group Three). Network analysis is a useful tool to describe differences in participation among angler groups within a regional fishery, and provides new insights about possible recruitment of anglers. For example, group One anglers fished reservoirs closer to home and had a greater probability of dropping out if local reservoir access were restricted.

  12. Analysis of change of retention capacity of a small water reservoir

    NASA Astrophysics Data System (ADS)

    Výleta, R.; Danáčová, M.; Valent, P.

    2017-10-01

    This study is focused on the analysis of the changes of retention capacity of a small water reservoir induced by intensive erosion and sedimentation processes. The water reservoir is situated near the village of Vrbovce in the Western part of Slovakia, and the analysis is carried out for a period 2008-2017. The data used to build a digital elevation model (DEM) of the reservoir’s bed came from a terrain measurement, utilizing an acoustic Doppler current profiler (ADCP) to measure the water depth in the reservoir. The DEM was used to quantify the soil loss from agricultural land situated within the basin of the reservoir. The ability of the water reservoir to transform a design flood with a return period of 100 years is evaluated for both design (2008) and current conditions (2017). The results show that the small water reservoir is a subject to siltation, with sediments comprised of fine soil particles transported from nearby agricultural land. The ability of the water reservoir to transform a 100-year flood has not changed significantly. The reduction of the reservoir’s retention capacity should be systematically and regularly monitored in order to adjust its operational manual and improve its efficiency.

  13. A novel surface-enhanced Raman scattering (SERS) detection for natural gas exploration using methane-oxidizing bacteria.

    PubMed

    Liang, Weiwei; Chen, Qiao; Peng, Fang; Shen, Aiguo; Hu, Jiming

    2018-07-01

    Methane-oxidizing bacteria (MOB), a unique group of Gram-negative bacteria utilizing methane as a sole source of carbon and energy, have been proved to be a biological indicator for gas prospecting. Field and cultivation-free detection of MOB is important but still challenging in current microbial prospecting of oil and gas (MPOG) system. Herein, SERS was used for the first time to our knowledge to investigate two species of methanotrophs and four closely relevant bacteria that universally coexisted in the upper soil of natural gas. A special but very simple approach was utilized to make silver nanoparticles (Ag NPs) sufficiently contact with every single bacterial cell, and highly strong and distinct Raman signals free from any native fluorescence have been obtained, and successfully utilized for distinguishing MOB from other species. A more convincing multi-Raman criterion based on single Raman bands, and further the entire Raman spectrum in combination with statistical analysis (e.g., principal component analysis (PCA)), which were found capable of classifying MOB related bacterial cells in soil with an accuracy of 100%. This study therefore demonstrated sensitive and rapid SERS measurement technique accompanied by complete Raman database of various gas reservoirs related bacteria could aid field exploration of natural gas reservoir. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Coupling groundwater and riparian vegetation models to assess effects of reservoir releases

    USGS Publications Warehouse

    Springer, Abraham E.; Wright, Julie M.; Shafroth, Patrick B.; Stromberg, Juliet C.; Patten, Duncan T.

    1999-01-01

    Although riparian areas in the arid southwestern United States are critical for maintaining species diversity, their extent and health have been declining since Euro‐American settlement. The purpose of this study was to develop a methodology to evaluate the potential for riparian vegetation restoration and groundwater recharge. A numerical groundwater flow model was coupled with a conceptual riparian vegetation model to predict hydrologic conditions favorable to maintaining riparian vegetation downstream of a reservoir. A Geographic Information System (GIS) was used for this one‐way coupling. Constant and seasonally varying releases from the dam were simulated using volumes anticipated to be permitted by a regional water supplier. Simulations indicated that seasonally variable releases would produce surface flow 5.4–8.5 km below the dam in a previously dry reach. Using depth to groundwater simulations from the numerical flow model with conceptual models of depths to water necessary for maintenance of riparian vegetation, the GIS analysis predicted a 5‐ to 6.5‐fold increase in the area capable of sustaining riparian vegetation.

  15. Quantification of sand fraction from seismic attributes using Neuro-Fuzzy approach

    NASA Astrophysics Data System (ADS)

    Verma, Akhilesh K.; Chaki, Soumi; Routray, Aurobinda; Mohanty, William K.; Jenamani, Mamata

    2014-12-01

    In this paper, we illustrate the modeling of a reservoir property (sand fraction) from seismic attributes namely seismic impedance, seismic amplitude, and instantaneous frequency using Neuro-Fuzzy (NF) approach. Input dataset includes 3D post-stacked seismic attributes and six well logs acquired from a hydrocarbon field located in the western coast of India. Presence of thin sand and shale layers in the basin area makes the modeling of reservoir characteristic a challenging task. Though seismic data is helpful in extrapolation of reservoir properties away from boreholes; yet, it could be challenging to delineate thin sand and shale reservoirs using seismic data due to its limited resolvability. Therefore, it is important to develop state-of-art intelligent methods for calibrating a nonlinear mapping between seismic data and target reservoir variables. Neural networks have shown its potential to model such nonlinear mappings; however, uncertainties associated with the model and datasets are still a concern. Hence, introduction of Fuzzy Logic (FL) is beneficial for handling these uncertainties. More specifically, hybrid variants of Artificial Neural Network (ANN) and fuzzy logic, i.e., NF methods, are capable for the modeling reservoir characteristics by integrating the explicit knowledge representation power of FL with the learning ability of neural networks. In this paper, we opt for ANN and three different categories of Adaptive Neuro-Fuzzy Inference System (ANFIS) based on clustering of the available datasets. A comparative analysis of these three different NF models (i.e., Sugeno-type fuzzy inference systems using a grid partition on the data (Model 1), using subtractive clustering (Model 2), and using Fuzzy c-means (FCM) clustering (Model 3)) and ANN suggests that Model 3 has outperformed its counterparts in terms of performance evaluators on the present dataset. Performance of the selected algorithms is evaluated in terms of correlation coefficients (CC), root mean square error (RMSE), absolute error mean (AEM) and scatter index (SI) between target and predicted sand fraction values. The achieved estimation accuracy may diverge minutely depending on geological characteristics of a particular study area. The documented results in this study demonstrate acceptable resemblance between target and predicted variables, and hence, encourage the application of integrated machine learning approaches such as Neuro-Fuzzy in reservoir characterization domain. Furthermore, visualization of the variation of sand probability in the study area would assist in identifying placement of potential wells for future drilling operations.

  16. A rock physics and seismic reservoir characterization study of the Rock Springs Uplift, a carbon dioxide sequestration site in Southwestern Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grana, Dario; Verma, Sumit; Pafeng, Josiane

    We present a reservoir geophysics study, including rock physics modeling and seismic inversion, of a carbon dioxide sequestration site in Southwestern Wyoming, namely the Rock Springs Uplift, and build a petrophysical model for the potential injection reservoirs for carbon dioxide sequestration. Our objectives include the facies classification and the estimation of the spatial model of porosity and permeability for two sequestration targets of interest, the Madison Limestone and the Weber Sandstone. The available dataset includes a complete set of well logs at the location of the borehole available in the area, a set of 110 core samples, and a seismicmore » survey acquired in the area around the well. The proposed study includes a formation evaluation analysis and facies classification at the well location, the calibration of a rock physics model to link petrophysical properties and elastic attributes using well log data and core samples, the elastic inversion of the pre-stack seismic data, and the estimation of the reservoir model of facies, porosity and permeability conditioned by seismic inverted elastic attributes and well log data. In particular, the rock physics relations are facies-dependent and include granular media equations for clean and shaley sandstone, and inclusion models for the dolomitized limestone. The permeability model has been computed by applying a facies-dependent porosity-permeability relation calibrated using core sample measurements. Finally, the study shows that both formations show good storage capabilities. The Madison Limestone includes a homogeneous layer of high-porosity high-permeability dolomite; the Weber Sandstone is characterized by a lower average porosity but the layer is thicker than the Madison Limestone.« less

  17. A rock physics and seismic reservoir characterization study of the Rock Springs Uplift, a carbon dioxide sequestration site in Southwestern Wyoming

    DOE PAGES

    Grana, Dario; Verma, Sumit; Pafeng, Josiane; ...

    2017-06-20

    We present a reservoir geophysics study, including rock physics modeling and seismic inversion, of a carbon dioxide sequestration site in Southwestern Wyoming, namely the Rock Springs Uplift, and build a petrophysical model for the potential injection reservoirs for carbon dioxide sequestration. Our objectives include the facies classification and the estimation of the spatial model of porosity and permeability for two sequestration targets of interest, the Madison Limestone and the Weber Sandstone. The available dataset includes a complete set of well logs at the location of the borehole available in the area, a set of 110 core samples, and a seismicmore » survey acquired in the area around the well. The proposed study includes a formation evaluation analysis and facies classification at the well location, the calibration of a rock physics model to link petrophysical properties and elastic attributes using well log data and core samples, the elastic inversion of the pre-stack seismic data, and the estimation of the reservoir model of facies, porosity and permeability conditioned by seismic inverted elastic attributes and well log data. In particular, the rock physics relations are facies-dependent and include granular media equations for clean and shaley sandstone, and inclusion models for the dolomitized limestone. The permeability model has been computed by applying a facies-dependent porosity-permeability relation calibrated using core sample measurements. Finally, the study shows that both formations show good storage capabilities. The Madison Limestone includes a homogeneous layer of high-porosity high-permeability dolomite; the Weber Sandstone is characterized by a lower average porosity but the layer is thicker than the Madison Limestone.« less

  18. Area of Interest 1, CO 2 at the Interface. Nature and Dynamics of the Reservoir/Caprock Contact and Implications for Carbon Storage Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mozley, Peter; Evans, James; Dewers, Thomas

    2014-10-31

    We examined the influence of geologic features present at the reservoir/caprock interface on the transmission of supercritical CO 2 into and through caprock. We focused on the case of deformation-band faults in reservoir lithologies that intersect the interface and transition to opening-mode fractures in caprock lithologies. Deformation-band faults are exceeding common in potential CO 2 injection units and our fieldwork in Utah indicates that this sort of transition is common. To quantify the impact of these interface features on flow and transport we first described the sedimentology and permeability characteristics of selected sites along the Navajo Sandstone (reservoir lithology) andmore » Carmel Formation (caprock lithology) interface, and along the Slickrock Member (reservoir lithology) and Earthy Member (caprock lithology) of the Entrada Sandstone interface, and used this information to construct conceptual permeability models for numerical analysis. We then examined the impact of these structures on flow using single-phase and multiphase numerical flow models for these study sites. Key findings include: (1) Deformation-band faults strongly compartmentalize the reservoir and largely block cross-fault flow of supercritical CO 2. (2) Significant flow of CO 2 through the fractures is possible, however, the magnitude is dependent on the small-scale geometry of the contact between the opening-mode fracture and the deformation band fault. (3) Due to the presence of permeable units in the caprock, caprock units are capable of storing significant volumes of CO 2, particularly when the fracture network does not extend all the way through the caprock. The large-scale distribution of these deformation-bandfault-to-opening-mode-fractures is related to the curvature of the beds, with greater densities of fractures in high curvature regions. We also examined core and outcrops from the Mount Simon Sandstone and Eau Claire Formation reservoir/caprock interface in order to extend our work to a reservoir/caprock pair this is currently being assessed for long-term carbon storage. These analyses indicate that interface features similar to those observed at the Utah sites 3 were not observed. Although not directly related to our main study topic, one byproduct of our investigation is documentation of exceptionally high degrees of heterogeneity in the pore-size distribution of the Mount Simon Sandstone. This suggests that the unit has a greater-than-normal potential for residual trapping of supercritical CO 2.« less

  19. The nonlinear oil-water two-phase flow behavior for a horizontal well in triple media carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Tao, Zhengwu; Chen, Liang; Ma, Xin

    2017-10-01

    Carbonate reservoir is one of the important reservoirs in the world. Because of the characteristics of carbonate reservoir, horizontal well has become a key technology for efficiently developing carbonate reservoir. Establishing corresponding mathematical models and analyzing transient pressure behaviors of this type of well-reservoir configuration can provide a better understanding of fluid flow patterns in formation as well as estimations of important parameters. A mathematical model for a oil-water two-phase flow horizontal well in triple media carbonate reservoir by conceptualizing vugs as spherical shapes are presented in this article. A semi-analytical solution is obtained in the Laplace domain using source function theory, Laplace transformation, and superposition principle. Analysis of transient pressure responses indicates that seven characteristic flow periods of horizontal well in triple media carbonate reservoir can be identified. Parametric analysis shows that water saturation of matrix, vug and fracture system, horizontal section length, and horizontal well position can significantly influence the transient pressure responses of horizontal well in triple media carbonate reservoir. The model presented in this article can be applied to obtain important parameters pertinent to reservoir by type curve matching.

  20. DEVELOPMENT OF AN IMPROVED SIMULATOR FOR CHEMICAL AND MICROBIAL IOR METHODS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary A. Pope; Kamy Sepehrnoori; Mojdeh Delshad

    2001-10-01

    This is the final report of a three-year research project on further development of a chemical and microbial improved oil recovery reservoir simulator. The objective of this research was to extend the capability of an existing simulator (UTCHEM) to improved oil recovery methods which use surfactants, polymers, gels, alkaline chemicals, microorganisms and foam as well as various combinations of these in both conventional and naturally fractured oil reservoirs. The first task was the addition of a dual-porosity model for chemical IOR in naturally fractured oil reservoirs. They formulated and implemented a multiphase, multicomponent dual porosity model for enhanced oil recoverymore » from naturally fractured reservoirs. The multiphase dual porosity model was tested against analytical solutions, coreflood data, and commercial simulators. The second task was the addition of a foam model. They implemented a semi-empirical surfactant/foam model in UTCHEM and validated the foam model by comparison with published laboratory data. The third task addressed several numerical and coding enhancements that will greatly improve its versatility and performance. Major enhancements were made in UTCHEM output files and memory management. A graphical user interface to set up the simulation input and to process the output data on a Windows PC was developed. New solvers for solving the pressure equation and geochemical system of equations were implemented and tested. A corner point grid geometry option for gridding complex reservoirs was implemented and tested. Enhancements of physical property models for both chemical and microbial IOR simulations were included in the final task of this proposal. Additional options for calculating the physical properties such as relative permeability and capillary pressure were added. A microbiological population model was developed and incorporated into UTCHEM. They have applied the model to microbial enhanced oil recovery (MEOR) processes by including the capability of permeability reduction due to biomass growth and retention. The formations of bio-products such as surfactant and polymer surfactant have also been incorporated.« less

  1. [Application of in situ cryogenic Raman spectroscopy to analysis of fluid inclusions in reservoirs].

    PubMed

    Chen, Yong; Lin, Cheng-yan; Yu, Wen-quan; Zheng, Jie; Wang, Ai-guo

    2010-01-01

    Identification of salts is a principal problem for analysis of fluid inclusions in reservoirs. The fluid inclusions from deep natural gas reservoirs in Minfeng sub-sag were analyzed by in situ cryogenic Raman spectroscopy. The type of fluid inclusions was identified by Raman spectroscopy at room temperature. The Raman spectra show that the inclusions contain methane-bearing brine aqueous liquids. The fluid inclusions were analyzed at -180 degrees C by in situ cryogenic Raman spectroscopy. The spectra show that inclusions contain three salts, namely NaCl2, CaCl2 and MgCl2. Sodium chloride is most salt component, coexisting with small calcium chloride and little magnesium chloride. The origin of fluids in inclusions was explained by analysis of the process of sedimentation and diagenesis. The mechanism of diagenesis in reservoirs was also given in this paper. The results of this study indicate that in situ cryogenic Raman spectroscopy is an available method to get the composition of fluid inclusions in reservoirs. Based on the analysis of fluid inclusions in reservoirs by in situ cryogenic Raman spectroscopy with combination of the history of sedimentation and diagenesis, the authors can give important evidence for the type and mechanism of diagenesis in reservoirs.

  2. Application of decline curve analysis to estimate recovery factors for carbon dioxide enhanced oil recovery

    USGS Publications Warehouse

    Jahediesfanjani, Hossein

    2017-07-17

    IntroductionIn the decline curve analysis (DCA) method of estimating recoverable hydrocarbon volumes, the analyst uses historical production data from a well, lease, group of wells (or pattern), or reservoir and plots production rates against time or cumu­lative production for the analysis. The DCA of an individual well is founded on the same basis as the fluid-flow principles that are used for pressure-transient analysis of a single well in a reservoir domain and therefore can provide scientifically reasonable and accurate results. However, when used for a group of wells, a lease, or a reservoir, the DCA becomes more of an empirical method. Plots from the DCA reflect the reservoir response to the oil withdrawal (or production) under the prevailing operating and reservoir conditions, and they continue to be good tools for estimating recoverable hydrocarbon volumes and future production rates. For predicting the total recov­erable hydrocarbon volume, the DCA results can help the analyst to evaluate the reservoir performance under any of the three phases of reservoir productive life—primary, secondary (waterflood), or tertiary (enhanced oil recovery) phases—so long as the historical production data are sufficient to establish decline trends at the end of the three phases.

  3. Effects of Injected CO2 on Geomechanical Properties Due to Mineralogical Changes

    NASA Astrophysics Data System (ADS)

    Nguyen, B. N.; Hou, Z.; Bacon, D. H.; Murray, C. J.; White, J. A.

    2013-12-01

    Long-term injection and storage of CO2 in deep underground reservoirs may significantly modify the geomechanical behavior of rocks since CO2 can react with the constituent phases of reservoir rocks and modify their composition. This can lead to modifications of their geomechanical properties (i.e., elastic moduli, Biot's coefficients, and permeability). Modifications of rock geomechanical properties have important consequences as these directly control stress and strain distributions, affect conditions for fracture initiation and development and/or fault healing. This paper attempts to elucidate the geochemical effects of CO2 on geomechanical properties of typical reservoir rocks by means of numerical analyses using the STOMP-ABAQUS sequentially coupled simulator that includes the capability to handle geomechanics and the reactive transport of CO2 together with a module (EMTA) to compute the homogenized rock poroelastic properties as a function of composition changes. EMTA, a software module developed at PNNL, implements the standard and advanced Eshelby-Mori-Tanaka approaches to compute the thermoelastic properties of composite materials. In this work, EMTA will be implemented in the coupled STOMP-ABAQUS simulator as a user subroutine of ABAQUS and used to compute local elastic stiffness based on rock composition. Under the STOMP-ABAQUS approach, STOMP models are built to simulate aqueous and CO2 multiphase fluid flows, and relevant chemical reactions of pore fluids with minerals in the reservoirs. The ABAQUS models then read STOMP output data for cell center coordinates, gas pressures, aqueous pressures, temperatures, saturations, constituent volume fractions, as well as permeability and porosity that are affected by chemical reactions. These data are imported into ABAQUS meshes using a mapping procedure developed for the exchange of data between STOMP and ABAQUS. Constitutive models implemented in ABAQUS via user subroutines then compute stiffness, stresses, strains, pore pressure, permeability, porosity, and capillary pressure, and return updated permeability, porosity, and capillary pressure to STOMP at selected times. In preliminary work, the enhanced STOMP-ABAQUS sequentially coupled approach is validated and illustrated in an example analysis of a cylindrical rock specimen subjected to axial loading, confining pressure, and CO2 fluid injection. The geomechanical analysis accounting for CO2 reactions with rock constituents is compared to that without chemical reactions to elucidate the geochemical effects of injected CO2 on the response of the reservoir rock to stress.

  4. Hydraulic Characteristics of the Lower Snake River during Periods of Juvenile Fall Chinook Salmon Migration, 2002-2006 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, C.; Dibrani, B.; Richmond, M.

    2006-01-01

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences betweenmore » the Clearwater and Snake rivers of 10 C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir's epilimnion at the Clearwater/Snake River confluence is of key biological importance. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four reservoirs are also heavily influenced by wind forcing at the water's surface and during periods of low river discharge often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The thickness (depth) of this upper warm layer and its direction of travel may be of key biological importance to juvenile fall Chinook salmon. This report describes field data collection, modeling, and analysis of hydrodynamic and temperature conditions in the Lower Granite Reservoir during the summer flow augmentation periods of 2002, 2003, and 2004. Although temperature, and hence density, differences during flow augmentation periods between the Clearwater and Snake rivers were approximately equal (7-12 C) for all four years, the discharge ratio varied which resulted in significant differences in entrainment of cooler Clearwater River water into the Lower Granite Reservoir epilimnion. However, as a direct result of system management, Lower Granite Dam tailrace temperatures were maintained near 20 C during all years. Primary differences in the other three lower Snake River reservoirs were therefore a result of meteorological conditions and dam operations, which produced variations in wind setup and surface heating. Circulation patterns in all four lower Snake River reservoirs were numerically simulated for periods of 2002, 2003, 2004, and 2005 using CE-QUAL-W2. Simulation results show that these models are capable of matching diurnal and long-term temperature and velocity changes in the reservoirs. In addition, the confluence zone of the Clearwater and Snake rivers was modeled using the three-dimensional non-hydrostatic model Flow3D. Once calibrated and validated, the reservoir models were used to investigate downstream impacts of alternative reservoir operation schemes, such as increasing or decreasing the ratio of Clearwater to Snake river discharge. Simulation results were linked with the particle tracking model FINS to develop reservoir-integrated metrics that varied due to these alternative operation schemes. Findings indicate that significant alterations in water temperature throughout the lower Snake River are possible by altering hypolimnetic discharges from Dworshak Reservoir, which may also impact the behavior of migrating juvenile fall Chinook salmon during periods of flow augmentation.« less

  5. Forecast on Water Locking Damage of Low Permeable Reservoir with Quantum Neural Network

    NASA Astrophysics Data System (ADS)

    Zhao, Jingyuan; Sun, Yuxue; Feng, Fuping; Zhao, Fulei; Sui, Dianjie; Xu, Jianjun

    2018-01-01

    It is of great importance in oil-gas reservoir protection to timely and correctly forecast the water locking damage, the greatest damage for low permeable reservoir. An analysis is conducted on the production mechanism and various influence factors of water locking damage, based on which a quantum neuron is constructed based on the information processing manner of a biological neuron and the principle of quantum neural algorithm, besides, the quantum neural network model forecasting the water locking of the reservoir is established and related software is also made to forecast the water locking damage of the gas reservoir. This method has overcome the defects of grey correlation analysis that requires evaluation matrix analysis and complicated operation. According to the practice in Longxi Area of Daqing Oilfield, this method is characterized by fast operation, few system parameters and high accuracy rate (the general incidence rate may reach 90%), which can provide reliable support for the protection technique of low permeable reservoir.

  6. Publications - GMC 351 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 351 Publication Details Title: Geochemical analysis of Alaska North Slope NPR-A oil samples at Reservoir, and North Slope Borough US Navy South Barrow #12 - Sag River Reservoir Authors: Organic analysis of Alaska North Slope NPR-A oil samples at the Alaska GMC from: Umiat (generic) Nanushuk Reservoir

  7. Retrospective analysis of associations between water quality and toxic blooms of golden alga (Prymnesium parvum) in Texas reservoirs: Implications for understanding dispersal mechanisms and impacts of climate change

    USGS Publications Warehouse

    Patino, Reynaldo; Dawson, D.; VanLandeghem, Matthew M.

    2014-01-01

    Toxic blooms of golden alga (GA, Prymnesium parvum) in Texas typically occur in winter or early spring. In North America, they were first reported in Texas in the 1980s, and a marked range expansion occurred in 2001. Although there is concern about the influence of climate change on the future distribution of GA, factors responsible for past dispersals remain uncertain. To better understand the factors that influence toxic bloom dispersal in reservoirs, this study characterized reservoir water quality associated with toxic GA blooms since 2001, and examined trends in water quality during a 20-year period bracketing the 2001 expansion. Archived data were analyzed for six impacted and six nonimpacted reservoirs from two major Texas basins: Brazos River and Colorado River. Data were simplified for analysis by pooling spatially (across sampling stations) and temporally (winter, December-February) within reservoirs and generating depth-corrected (1 m) monthly values. Classification tree analysis [period of record (POR), 2001-2010] using salinity-associated variables (specific conductance, chloride, sulfate), dissolved oxygen (DO), pH, temperature, total hardness, potassium, nitrate+nitrite, and total phosphorus indicated that salinity best predicts the toxic bloom occurrence. Minimum estimated salinities for toxic bloom formation were 0.59 and 1.02 psu in Brazos and Colorado River reservoirs, respectively. Principal component analysis (POR, 2001-2010) indicated that GA habitat is best defined by higher salinity relative to nonimpacted reservoirs, with winter DO and pH also being slightly higher and winter temperature slightly lower in impacted reservoirs. Trend analysis, however, did not reveal monotonic changes in winter water quality of GA-impacted reservoirs during the 20-year period (1991-2010) bracketing the 2001 dispersal. Therefore, whereas minimum levels of salinity are required for GA establishment and toxic blooms in Texas reservoirs, the lack of trends in water quality suggests that conditions favorable for toxic blooms pre-date the 2001 expansion. These observations are consistent with a climate change-independent scenario of past GA dispersals in Texas reservoirs driven by novel introductions into pre-existing favorable habitat. Reports of latent GA populations in certain nonimpacted reservoirs, however, provide a plausible scenario of future dispersals characterized by prolonged periods between colonization and toxic bloom development and driven by changes in water quality, natural, or anthropogenic.

  8. Niobrara Discrete Fracture Network: From Outcrop Surveys to Subsurface Reservoir Models

    NASA Astrophysics Data System (ADS)

    Grechishnikova, Alena

    Heterogeneity of an unconventional reservoir is one of the main factors affecting production. Well performance depends on the size and efficiency of the interconnected fracture "plumbing system", as influenced by multistage hydraulic fracturing. A complex, interconnected natural fracture network can significantly increase the size of stimulated reservoir volume, provide additional surface area contact and enhance permeability. In 2013 the Reservoir Characterization Project (RCP) at the Colorado School of Mines began Phase XV to study Niobrara shale reservoir management. Anadarko Petroleum Corporation and RCP jointly acquired time-lapse multicomponent seismic data in Wattenberg Field, Denver Basin. Anadarko also provided RCP with a regional 3D seismic survey and a rich well dataset. The purpose of this study is to characterize the natural fracture patterns occurring in the unconventional Niobrara reservoir and to determine the drivers that influenced fracture trends and distributions. The findings are integrated into a reservoir model though DFN (Discrete Fracture Network) for further prediction of reservoir performance using reservoir simulations. Aiming to better understand the complexity of the natural fracture system I began my fracture analysis work at an active mine site that provides a Niobrara exposure. Access to a "fresh" outcrop surface created a perfect natural laboratory. Ground-based LIDAR and photogrammetry facilitated construction of a geological model and a DFN model for the mine site. The work was carried into subsurface where the information gained served to improve reservoir characterization at a sub-seismic scale and can be used in well planning. I then embarked on a challenging yet essential task of outcrop-to-subsurface data calibration and application to RCP's Wattenberg Field study site. In this research the surface data was proven to be valid for comparative use in the subsurface. The subsurface fracture information was derived from image logs run within the horizontal wellbores and augmented with microseismic data. Limitations of these datasets included the potential to induce biased interpretations; but the data collected during the outcrop study aided in removing the bias. All four fracture sets observed at the quarry were also interpreted in the subsurface; however there was a limitation on statistical validity for one of the four sets due to a low frequency of observed occurrence potentially caused by wellbore orientation. Microseismic data was used for identification of one of the reactivated natural fracture sets. An interesting phenomenon observed in the microseismic data trends was the low frequency of event occurrence within dense populations of open natural fracture swarms suggesting that zones of higher natural fracture intensities are capable of absorbing and transmitting energy resulting in lower levels of microseismicity. Thus currently open natural fractures could be challenging to detect using microseismic. Through this study I identified a significant variability in fracture intensity at a localized scale due to lithological composition and structural features. The complex faulting styles observed at the outcrop were utilized as an analog and verified by horizontal well log data and seismic volume interpretations creating a high resolution structural model for the subsurface. A lithofacies model was developed based on the well log, core, and seismic inversion analysis. These models combined served to accurately distribute fracture intensity information within the geological model for further use in DFN. As a product of this study, a workflow was developed to aid in fracture network model creation allowing for more intelligent decisions to be made during well planning and completion optimization aiming to improve recovery. A high resolution integrated discrete fracture network model serves to advance dynamic reservoir characterization in the subsurface at a sub-seismic scale resulting in improved reservoir characterization.

  9. Reservoir and Source Rock Identification Based on Geologycal, Geophysics and Petrophysics Analysis Study Case: South Sumatra Basin

    NASA Astrophysics Data System (ADS)

    Anggit Maulana, Hiska; Haris, Abdul

    2018-05-01

    Reservoir and source rock Identification has been performed to deliniate the reservoir distribution of Talangakar Formation South Sumatra Basin. This study is based on integrated geophysical, geological and petrophysical data. The aims of study to determine the characteristics of the reservoir and source rock, to differentiate reservoir and source rock in same Talangakar formation, to find out the distribution of net pay reservoir and source rock layers. The method of geophysical included seismic data interpretation using time and depth structures map, post-stack inversion, interval velocity, geological interpretations included the analysis of structures and faults, and petrophysical processing is interpret data log wells that penetrating Talangakar formation containing hydrocarbons (oil and gas). Based on seismic interpretation perform subsurface mapping on Layer A and Layer I to determine the development of structures in the Regional Research. Based on the geological interpretation, trapping in the form of regional research is anticline structure on southwest-northeast trending and bounded by normal faults on the southwest-southeast regional research structure. Based on petrophysical analysis, the main reservoir in the field of research, is a layer 1,375 m of depth and a thickness 2 to 8.3 meters.

  10. Improving multi-objective reservoir operation optimization with sensitivity-informed dimension reduction

    NASA Astrophysics Data System (ADS)

    Chu, J.; Zhang, C.; Fu, G.; Li, Y.; Zhou, H.

    2015-08-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed method dramatically reduces the computational demands required for attaining high-quality approximations of optimal trade-off relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed dimension reduction and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform dimension reduction of optimization problems when solving complex multi-objective reservoir operation problems.

  11. Improving multi-objective reservoir operation optimization with sensitivity-informed problem decomposition

    NASA Astrophysics Data System (ADS)

    Chu, J. G.; Zhang, C.; Fu, G. T.; Li, Y.; Zhou, H. C.

    2015-04-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce the computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed problem decomposition dramatically reduces the computational demands required for attaining high quality approximations of optimal tradeoff relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed problem decomposition and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform problem decomposition when solving the complex multi-objective reservoir operation problems.

  12. A two-stage method of quantitative flood risk analysis for reservoir real-time operation using ensemble-based hydrologic forecasts

    NASA Astrophysics Data System (ADS)

    Liu, P.

    2013-12-01

    Quantitative analysis of the risk for reservoir real-time operation is a hard task owing to the difficulty of accurate description of inflow uncertainties. The ensemble-based hydrologic forecasts directly depict the inflows not only the marginal distributions but also their persistence via scenarios. This motivates us to analyze the reservoir real-time operating risk with ensemble-based hydrologic forecasts as inputs. A method is developed by using the forecast horizon point to divide the future time into two stages, the forecast lead-time and the unpredicted time. The risk within the forecast lead-time is computed based on counting the failure number of forecast scenarios, and the risk in the unpredicted time is estimated using reservoir routing with the design floods and the reservoir water levels of forecast horizon point. As a result, a two-stage risk analysis method is set up to quantify the entire flood risks by defining the ratio of the number of scenarios that excessive the critical value to the total number of scenarios. The China's Three Gorges Reservoir (TGR) is selected as a case study, where the parameter and precipitation uncertainties are implemented to produce ensemble-based hydrologic forecasts. The Bayesian inference, Markov Chain Monte Carlo, is used to account for the parameter uncertainty. Two reservoir operation schemes, the real operated and scenario optimization, are evaluated for the flood risks and hydropower profits analysis. With the 2010 flood, it is found that the improvement of the hydrologic forecast accuracy is unnecessary to decrease the reservoir real-time operation risk, and most risks are from the forecast lead-time. It is therefore valuable to decrease the avarice of ensemble-based hydrologic forecasts with less bias for a reservoir operational purpose.

  13. Landsat image and sample design for water reservoirs (Rapel dam Central Chile).

    PubMed

    Lavanderos, L; Pozo, M E; Pattillo, C; Miranda, H

    1990-01-01

    Spatial heterogeneity of the Rapel reservoir surface waters is analyzed through Landsat images. The image digital counts are used with the aim or developing an aprioristic quantitative sample design.Natural horizontal stratification of the Rapel Reservoir (Central Chile) is produced mainly by suspended solids. The spatial heterogeneity conditions of the reservoir for the Spring 86-Summer 87 period were determined by qualitative analysis and image processing of the MSS Landsat, bands 1 and 3. The space-time variations of the different observed strata obtained with multitemporal image analysis.A random stratified sample design (r.s.s.d) was developed, based on the digital counts statistical analysis. Strata population size as well as the average, variance and sampling size of the digital counts were obtained by the r.s.s.d method.Stratification determined by analysis of satellite images were later correlated with ground data. Though the stratification of the reservoir is constant over time, the shape and size of the strata varys.

  14. Analysis of Radar Images of Angkor, Cambodia

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony; Hensley, Scott; Moore, Elizabeth

    2000-01-01

    During the 1996 AIRSAR Pacific Rim Deployment, data were collected over Angkor in Cambodia. The temples of Angkor date the succession of cities to the 9th-13th century AD, but little is known of its prehistoric habitation. A related area of archaeological debate has been the origin, spiritual meaning and use of the hydraulic constructions in the urban zone. The high resolution, multi-channel capability of AIRSAR, together with the unprecedentedly accurate topography provided by TOPSAR, offer identification and delineation of these features. Examples include previously unrecorded circular earthworks around circular village sites, detection of unrecorded earthwork dykes, reservoirs and canal features, and of temple sites located some distance from the main temple complex at Angkor.

  15. Microbial diversity in degraded and non-degraded petroleum samples and comparison across oil reservoirs at local and global scales.

    PubMed

    Sierra-Garcia, Isabel Natalia; Dellagnezze, Bruna M; Santos, Viviane P; Chaves B, Michel R; Capilla, Ramsés; Santos Neto, Eugenio V; Gray, Neil; Oliveira, Valeria M

    2017-01-01

    Microorganisms have shown their ability to colonize extreme environments including deep subsurface petroleum reservoirs. Physicochemical parameters may vary greatly among petroleum reservoirs worldwide and so do the microbial communities inhabiting these different environments. The present work aimed at the characterization of the microbiota in biodegraded and non-degraded petroleum samples from three Brazilian reservoirs and the comparison of microbial community diversity across oil reservoirs at local and global scales using 16S rRNA clone libraries. The analysis of 620 16S rRNA bacterial and archaeal sequences obtained from Brazilian oil samples revealed 42 bacterial OTUs and 21 archaeal OTUs. The bacterial community from the degraded oil was more diverse than the non-degraded samples. Non-degraded oil samples were overwhelmingly dominated by gammaproteobacterial sequences with a predominance of the genera Marinobacter and Marinobacterium. Comparisons of microbial diversity among oil reservoirs worldwide suggested an apparent correlation of prokaryotic communities with reservoir temperature and depth and no influence of geographic distance among reservoirs. The detailed analysis of the phylogenetic diversity across reservoirs allowed us to define a core microbiome encompassing three bacterial classes (Gammaproteobacteria, Clostridia, and Bacteroidia) and one archaeal class (Methanomicrobia) ubiquitous in petroleum reservoirs and presumably owning the abilities to sustain life in these environments.

  16. Pinedale unit MHF experiments. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-10-01

    Three MHF experiments have been performed in a tight reservoir in the Northern Green River Basin at depths between 8,000 and 12,000 feet. A total of 894,190 gallons of fluid and 2,715,000 pounds of sand were pumped in three stages in two wells with the limited entry technique. Fluid viscosities were designed to give propped lengths of 1,000 to 1,500 feet and proppant sand beds having heights greater than 50 percent of the thickness of each sandstone fractured. The experiments included laboratory research to design limited entry with perforations through one and two strings of casing. Field data analysis tomore » determine fracture gradients and extent of perforation erosion has been complicated by a dependence of friction pressure in tubular goods upon sand concentration and by an apparent large variation in minimum principal in-situ stress between sandstones simultaneously fractured with the limited entry technique. A high proppant concentration was used to assure that production would be limited to reservoir characteristics, rather than fracture conductivity. Comparison was made with results of prior hydraulic fractures propped with a partial monolayer. Resulting production capacity to date has been only about one-fifth that projected in the National Gas Survey report. Evaluation of the resulting production capability and the cost of the hydraulic fracture treatmnet indicates that the stimulation technique employed is not commercially feasible at this time for the reservoir conditions tested. 10 fig, 6 tables.« less

  17. Integration of fracturing dynamics and pressure transient analysis for hydraulic fracture evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arihara, N.; Abbaszadeh, M.; Wright, C.A.

    This paper presents pre- and post-fracture pressure transient analysis, combined with net fracture pressure interpretation, for a well in a naturally fractured geothermal reservoir. Integrated analysis was performed to achieve a consistent interpretation of the created fracture geometry, propagation, conductivity, shrinkage, reservoir flow behavior, and formation permeability characteristics. The interpreted data includes two-rate pre-frac injection tests, step-rate injection tests, a series of pressure falloff tests, and the net fracturing pressure from a massive fracture treatment. Pressure transient analyses were performed utilizing advanced well test interpretation techniques and a thermal reservoir simulator with fracture propagation option. Hydraulic fracture propagation analysis wasmore » also performed Milt a generalized 3-D dynamic fracture growth model simulator. Three major conclusions resulted from the combined analysis: (1) that an increasing number of hydraulic fractures were being simultaneously propagated during the fracture treatment. (2) that the reservoir behaved as a composite reservoir Keith the outer region permeability being greater than the permeability of the region immediately surrounding the wellbore, and (3) that the created fractures extended into the outer region during the fracture treatment but retreated to the inner region several days after stimulation had ceased. These conclusions were apparent from independent pressure transient analysis and from independent hydraulic fracture propagation analysis. Integrated interpretation, however, increased the confidence in these conclusions and greatly aided the quantification of the created hydraulic fracture geometry and characterization of the reservoir permeability.« less

  18. The thermochemical structure and evolution of Earth's mantle: constraints and numerical models.

    PubMed

    Tackley, Paul J; Xie, Shunxing

    2002-11-15

    Geochemical observations place several constraints on geophysical processes in the mantle, including a requirement to maintain several distinct reservoirs. Geophysical constraints limit plausible physical locations of these reservoirs to a thin basal layer, isolated deep 'piles' of material under large-scale mantle upwellings, high-viscosity blobs/plums or thin strips throughout the mantle, or some combination of these. A numerical model capable of simulating the thermochemical evolution of the mantle is introduced. Preliminary simulations are more differentiated than Earth but display some of the proposed thermochemical processes, including the generation of a high-mu mantle reservoir by recycling of crust, and the generation of a high-(3)He/(4)He reservoir by recycling of residuum, although the resulting high-(3)He/(4)He material tends to aggregate near the top, where mid-ocean-ridge melting should sample it. If primitive material exists as a dense basal layer, it must be much denser than subducted crust in order to retain its primitive (e.g. high-(3)He) signature. Much progress is expected in the near future.

  19. Managing Tradeoffs between Hydropower and the Environment in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Loucks, Daniel P.; Wild, Thomas B.

    2015-04-01

    Hydropower dams are being designed and constructed at a rapid pace in the Mekong/Lancang River basin in Southeast Asia. These reservoirs are expected to trap significant amounts sediment, decreasing much of the river's capability to transport nutrients and maintain its geomorphology and habitats. We apply a simulation model for identifying and evaluating alternative dam siting, design and operating policy (SDO) options that could help maintain more natural sediment regimes downstream of dams and for evaluating the effect of these sediment-focused SDO strategies on hydropower production and reliability. We apply this approach to the planned reservoirs that would prevent a significant source of sediment from reaching critical Mekong ecosystems such as Cambodia's Tonle Sap Lake and the Mekong delta in Vietnam. Model results suggest that various SDO modifications could increase sediment discharge from this site by 300-450% compared to current plans, but a 30-55% loss in short-term annual energy production depending on various configurations of upstream reservoirs. Simulation results also suggest that sediment management-focused reservoir operating policies could cause ecological damage if they are not properly implemented.

  20. Reservoir Simulations of Low-Temperature Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Bedre, Madhur Ganesh

    The eastern United States generally has lower temperature gradients than the western United States. However, West Virginia, in particular, has higher temperature gradients compared to other eastern states. A recent study at Southern Methodist University by Blackwell et al. has shown the presence of a hot spot in the eastern part of West Virginia with temperatures reaching 150°C at a depth of between 4.5 and 5 km. This thesis work examines similar reservoirs at a depth of around 5 km resembling the geology of West Virginia, USA. The temperature gradients used are in accordance with the SMU study. In order to assess the effects of geothermal reservoir conditions on the lifetime of a low-temperature geothermal system, a sensitivity analysis study was performed on following seven natural and human-controlled parameters within a geothermal reservoir: reservoir temperature, injection fluid temperature, injection flow rate, porosity, rock thermal conductivity, water loss (%) and well spacing. This sensitivity analysis is completed by using ‘One factor at a time method (OFAT)’ and ‘Plackett-Burman design’ methods. The data used for this study was obtained by carrying out the reservoir simulations using TOUGH2 simulator. The second part of this work is to create a database of thermal potential and time-dependant reservoir conditions for low-temperature geothermal reservoirs by studying a number of possible scenarios. Variations in the parameters identified in sensitivity analysis study are used to expand the scope of database. Main results include the thermal potential of reservoir, pressure and temperature profile of the reservoir over its operational life (30 years for this study), the plant capacity and required pumping power. The results of this database will help the supply curves calculations for low-temperature geothermal reservoirs in the United States, which is the long term goal of the work being done by the geothermal research group under Dr. Anderson at West Virginia University.

  1. Role of monkeys in the sylvatic cycle of chikungunya virus in Senegal.

    PubMed

    Althouse, Benjamin M; Guerbois, Mathilde; Cummings, Derek A T; Diop, Ousmane M; Faye, Ousmane; Faye, Abdourahmane; Diallo, Diawo; Sadio, Bakary Djilocalisse; Sow, Abdourahmane; Faye, Oumar; Sall, Amadou A; Diallo, Mawlouth; Benefit, Brenda; Simons, Evan; Watts, Douglas M; Weaver, Scott C; Hanley, Kathryn A

    2018-03-13

    Arboviruses spillover into humans either as a one-step jump from a reservoir host species into humans or as a two-step jump from the reservoir to an amplification host species and thence to humans. Little is known about arbovirus transmission dynamics in reservoir and amplification hosts. Here we elucidate the role of monkeys in the sylvatic, enzootic cycle of chikungunya virus (CHIKV) in the region around Kédougou, Senegal. Over 3 years, 737 monkeys were captured, aged using anthropometry and dentition, and tested for exposure to CHIKV by detection of neutralizing antibodies. Infant monkeys were positive for CHIKV even when the virus was not detected in a concurrent survey of mosquitoes and when population immunity was too high for monkeys alone to support continuous transmission. We conclude that monkeys in this region serve as amplification hosts of CHIKV. Additional efforts are needed to identify other hosts capable of supporting continuous circulation.

  2. Mini-Shifts: An Alternative to Overtime

    ERIC Educational Resources Information Center

    Werther, William B., Jr.

    1976-01-01

    Widely held misconceptions about the dependability, availability, and ability of part-time manpower have prevented this reservoir of potential employees from realizing its full capabilities. These misconceptions are explored, the advantages to using part-time personnel are discussed, and a variety of possible schedule variations are described.…

  3. MUFITS Code for Modeling Geological Storage of Carbon Dioxide at Sub- and Supercritical Conditions

    NASA Astrophysics Data System (ADS)

    Afanasyev, A.

    2012-12-01

    Two-phase models are widely used for simulation of CO2 storage in saline aquifers. These models support gaseous phase mainly saturated with CO2 and liquid phase mainly saturated with H2O (e.g. TOUGH2 code). The models can be applied to analysis of CO2 storage only in relatively deeply-buried reservoirs where pressure exceeds CO2 critical pressure. At these supercritical reservoir conditions only one supercritical CO2-rich phase appears in aquifer due to CO2 injection. In shallow aquifers where reservoir pressure is less than the critical pressure CO2 can split in two different liquid-like and gas-like phases (e.g. Spycher et al., 2003). Thus a region of three-phase flow of water, liquid and gaseous CO2 can appear near the CO2 injection point. Today there is no widely used and generally accepted numerical model capable of the three-phase flows with two CO2-rich phases. In this work we propose a new hydrodynamic simulator MUFITS (Multiphase Filtration Transport Simulator) for multiphase compositional modeling of CO2-H2O mixture flows in porous media at conditions of interest for carbon sequestration. The simulator is effective both for supercritical flows in a wide range of pressure and temperature and for subcritical three-phase flows of water, liquid CO2 and gaseous CO2 in shallow reservoirs. The distinctive feature of the proposed code lies in the methodology for mixture properties determination. Transport equations and Darcy correlation are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines the mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. The potential is determined using a three-parametric generalization of Peng-Robinson equation of state fitted to experimental data (Todheide, Takenouchi, Altunin etc.). We apply MUFITS to simple 1D and 2D test problems of CO2 injection in shallow reservoirs subjected to phase changes between liquid and gaseous CO2. We consider CO2 injection into highly heterogeneous the 10th SPE reservoir. We provide analysis of physical phenomena that have control temperature distribution in the reservoir. The distribution is non-monotonic with regions of high and low temperature. The main phenomena responsible for considerable temperature decline around CO2 injection point is the liquid CO2 evaporation process. We also apply the code to real-scale 3D simulations of CO2 geological storage at supercritical conditions in Sleipner field and Johansen formation (Fig). The work is supported financially by the Russian Foundation for Basic Research (12-01-31117) and grant for leading scientific schools (NSh 1303.2012.1). CO2 phase saturation in Johansen formation after 50 years of injection and 1000 years of rest period

  4. Development of an Improved Simulator for Chemical and Microbial EOR Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, Gary A.; Sepehrnoori, Kamy; Delshad, Mojdeh

    2000-09-11

    The objective of this research was to extend the capability of an existing simulator (UTCHEM) to improved oil recovery methods that use surfactants, polymers, gels, alkaline chemicals, microorganisms and foam as well as various combinations of these in both conventional and naturally fractured oil reservoirs. Task 1 is the addition of a dual-porosity model for chemical improved of recovery processes in naturally fractured oil reservoirs. Task 2 is the addition of a foam model. Task 3 addresses several numerical and coding enhancements that will greatly improve the versatility and performance of UTCHEM. Task 4 is the enhancements of physical propertymore » models.« less

  5. Wood decomposition in Amazonian hydropower reservoirs: An additional source of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Abril, Gwenaël; Parize, Marcelo; Pérez, Marcela A. P.; Filizola, Naziano

    2013-07-01

    Amazonian hydroelectric reservoirs produce abundant carbon dioxide and methane from large quantities of flooded biomass that decompose anaerobically underwater. Emissions are extreme the first years after impounding and progressively decrease with time. To date, only water-to-air fluxes have been considered in these estimates. Here, we investigate in two Amazonian reservoirs (Balbina and Petit Saut) the fate of above water standing dead trees, by combining a qualitative analysis of wood state and density through time and a quantitative analysis of the biomass initially flooded. Dead wood was much more decomposed in the Balbina reservoir 23 years after flooding than in the Petit Saut reservoir 10 years after flooding. Termites apparently played a major role in wood decomposition, occurring mainly above water, and resulting in a complete conversion of this carbon biomass into CO2 and CH4 at a timescale much shorter than reservoir operation. The analysis of pre-impounding wood biomass reveals that above-water decomposition in Amazonian reservoirs is a large, previously unrecognized source of carbon emissions to the atmosphere, representing 26-45% of the total reservoir flux integrated over 100 years. Accounting for both below- and above-water fluxes, we could estimate that each km2 of Amazonian forest converted to reservoir would emit over 140 Gg CO2-eq in 100 years. Hydropower plants in the Amazon should thus generate 0.25-0.4 MW h per km2 flooded area to produce lower greenhouse gas emissions than gas power plants. They also have the disadvantage to emit most of their greenhouse gases the earliest years of operation.

  6. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W.L.

    1994-12-01

    Reservoirs in the Lansing-Kansas City limestone result from complex interactions among paleotopography (deposition, concurrent structural deformation), sea level, and diagenesis. Analysis of reservoirs and surface and near-surface analogs has led to developing a {open_quotes}strandline grainstone model{close_quotes} in which relative sea-level stabilized during regressions, resulting in accumulation of multiple grainstone buildups along depositional strike. Resulting stratigraphy in these carbonate units are generally predictable correlating to inferred topographic elevation along the shelf. This model is a valuable predictive tool for (1) locating favorable reservoirs for exploration, and (2) anticipating internal properties of the reservoir for field development. Reservoirs in the Lansing-Kansas Citymore » limestones are developed in both oolitic and bioclastic grainstones, however, re-analysis of oomoldic reservoirs provides the greatest opportunity for developing bypassed oil. A new technique, the {open_quotes}Super{close_quotes} Pickett crossplot (formation resistivity vs. porosity) and its use in an integrated petrophysical characterization, has been developed to evaluate extractable oil remaining in these reservoirs. The manual method in combination with 3-D visualization and modeling can help to target production limiting heterogeneities in these complex reservoirs and moreover compute critical parameters for the field such as bulk volume water. Application of this technique indicates that from 6-9 million barrels of Lansing-Kansas City oil remain behind pipe in the Victory-Northeast Lemon Fields. Petroleum geologists are challenged to quantify inferred processes to aid in developing rationale geologically consistent models of sedimentation so that acceptable levels of prediction can be obtained.« less

  7. Gas Reservoir Identification Basing on Deep Learning of Seismic-print Characteristics

    NASA Astrophysics Data System (ADS)

    Cao, J.; Wu, S.; He, X.

    2016-12-01

    Reservoir identification based on seismic data analysis is the core task in oil and gas geophysical exploration. The essence of reservoir identification is to identify the properties of rock pore fluid. We developed a novel gas reservoir identification method named seismic-print analysis by imitation of the vocal-print analysis techniques in speaker identification. The term "seismic-print" is referred to the characteristics of the seismic waveform which can identify determinedly the property of the geological objectives, for instance, a nature gas reservoir. Seismic-print can be characterized by one or a few parameters named as seismic-print parameters. It has been proven that gas reservoirs are of characteristics of negative 1-order cepstrum coefficient anomaly and Positive 2-order cepstrum coefficient anomaly, concurrently. The method is valid for sandstone gas reservoir, carbonate reservoir and shale gas reservoirs, and the accuracy rate may reach up to 90%. There are two main problems to deal with in the application of seismic-print analysis method. One is to identify the "ripple" of a reservoir on the seismogram, and another is to construct the mapping relationship between the seismic-print and the gas reservoirs. Deep learning developed in recent years is of the ability to reveal the complex non-linear relationship between the attribute and the data, and of ability to extract automatically the features of the objective from the data. Thus, deep learning could been used to deal with these two problems. There are lots of algorithms to carry out deep learning. The algorithms can be roughly divided into two categories: Belief Networks Network (DBNs) and Convolutional Neural Network (CNN). DBNs is a probabilistic generative model, which can establish a joint distribution of the observed data and tags. CNN is a feedforward neural network, which can be used to extract the 2D structure feature of the input data. Both DBNs and CNN can be used to deal with seismic data. We use an improved DBNs to identify carbonate rocks from log data, the accuracy rate can reach up to 83%. DBNs is used to deal with seismic waveform data, more information is obtained. The work was supported by NSFC under grant No. 41430323 and No. 41274128, and State Key Lab. of Oil and Gas Reservoir Geology and Exploration.

  8. Will building new reservoirs always help increase the water supply reliability? - insight from a modeling-based global study

    NASA Astrophysics Data System (ADS)

    Zhuang, Y.; Tian, F.; Yigzaw, W.; Hejazi, M. I.; Li, H. Y.; Turner, S. W. D.; Vernon, C. R.

    2017-12-01

    More and more reservoirs are being build or planned in order to help meet the increasing water demand all over the world. However, is building new reservoirs always helpful to water supply? To address this question, the river routing module of Global Change Assessment Model (GCAM) has been extended with a simple yet physical-based reservoir scheme accounting for irrigation, flood control and hydropower operations at each individual reservoir. The new GCAM river routing model has been applied over the global domain with the runoff inputs from the Variable Infiltration Capacity Model. The simulated streamflow is validated at 150 global river basins where the observed streamflow data are available. The model performance has been significantly improved at 77 basins and worsened at 35 basins. To facilitate the analysis of additional reservoir storage impacts at the basin level, a lumped version of GCAM reservoir model has been developed, representing a single lumped reservoir at each river basin which has the regulation capacity of all reservoir combined. A Sequent Peak Analysis is used to estimate how much additional reservoir storage is required to satisfy the current water demand. For basins with water deficit, the water supply reliability can be improved with additional storage. However, there is a threshold storage value at each basin beyond which the reliability stops increasing, suggesting that building new reservoirs will not help better relieve the water stress. Findings in the research can be helpful to the future planning and management of new reservoirs.

  9. Nonlinear Filtering Effects of Reservoirs on Flood Frequency Curves at the Regional Scale: RESERVOIRS FILTER FLOOD FREQUENCY CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Li, Hong-Yi; Leung, L. Ruby

    Anthropogenic activities, e.g., reservoir operation, may alter the characteristics of Flood Frequency Curve (FFC) and challenge the basic assumption of stationarity used in flood frequency analysis. This paper presents a combined data-modeling analysis of the nonlinear filtering effects of reservoirs on the FFCs over the contiguous United States. A dimensionless Reservoir Impact Index (RII), defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume, is used to quantify reservoir regulation effects. Analyses are performed for 388 river stations with an average record length of 50 years. The first two moments of the FFC, mean annual maximummore » flood (MAF) and coefficient of variations (CV), are calculated for the pre- and post-dam periods and compared to elucidate the reservoir regulation effects as a function of RII. It is found that MAF generally decreases with increasing RII but stabilizes when RII exceeds a threshold value, and CV increases with RII until a threshold value beyond which CV decreases with RII. The processes underlying the nonlinear threshold behavior of MAF and CV are investigated using three reservoir models with different levels of complexity. All models capture the non-linear relationships of MAF and CV with RII, suggesting that the basic flood control function of reservoirs is key to the non-linear relationships. The relative roles of reservoir storage capacity, operation objectives, available storage prior to a flood event, and reservoir inflow pattern are systematically investigated. Our findings may help improve flood-risk assessment and mitigation in regulated river systems at the regional scale.« less

  10. Co-Optimization of CO 2-EOR and Storage Processes in Mature Oil Reservoirs

    DOE PAGES

    Ampomah, William; Balch, Robert S.; Grigg, Reid B.; ...

    2016-08-02

    This article presents an optimization methodology for CO 2 enhanced oil recovery in partially depleted reservoirs. A field-scale compositional reservoir flow model was developed for assessing the performance history of an active CO 2 flood and for optimizing both oil production and CO 2 storage in the Farnsworth Unit (FWU), Ochiltree County, Texas. A geological framework model constructed from geophysical, geological, and engineering data acquired from the FWU was the basis for all reservoir simulations and the optimization method. An equation of state was calibrated with laboratory fluid analyses and subsequently used to predict the thermodynamic minimum miscible pressure (MMP).more » Initial history calibrations of primary, secondary and tertiary recovery were conducted as the basis for the study. After a good match was achieved, an optimization approach consisting of a proxy or surrogate model was constructed with a polynomial response surface method (PRSM). The PRSM utilized an objective function that maximized both oil recovery and CO 2 storage. Experimental design was used to link uncertain parameters to the objective function. Control variables considered in this study included: water alternating gas cycle and ratio, production rates and bottom-hole pressure of injectors and producers. Other key parameters considered in the modeling process were CO 2 purchase, gas recycle and addition of infill wells and/or patterns. The PRSM proxy model was ‘trained’ or calibrated with a series of training simulations. This involved an iterative process until the surrogate model reached a specific validation criterion. A sensitivity analysis was first conducted to ascertain which of these control variables to retain in the surrogate model. A genetic algorithm with a mixed-integer capability optimization approach was employed to determine the optimum developmental strategy to maximize both oil recovery and CO 2 storage. The proxy model reduced the computational cost significantly. The validation criteria of the reduced order model ensured accuracy in the dynamic modeling results. The prediction outcome suggested robustness and reliability of the genetic algorithm for optimizing both oil recovery and CO 2 storage. The reservoir modeling approach used in this study illustrates an improved approach to optimizing oil production and CO 2 storage within partially depleted oil reservoirs such as FWU. Lastly, this study may serve as a benchmark for potential CO 2–EOR projects in the Anadarko basin and/or geologically similar basins throughout the world.« less

  11. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    NASA Astrophysics Data System (ADS)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage volume changes. Ground-based data can, in some cases, test the remote sensing accuracy and precision. Data accuracy requirements vary for different applications: reservoir management for flood control, agriculture, or power generation may need more accurate and timely information than (for example) regional assessments of water and food security issues. Thus, the long-term goal for the hydrological sciences community should be to efficiently mesh both types of information and with as extensive geographic coverage as possible.

  12. Co-Optimization of CO 2-EOR and Storage Processes in Mature Oil Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ampomah, William; Balch, Robert S.; Grigg, Reid B.

    This article presents an optimization methodology for CO 2 enhanced oil recovery in partially depleted reservoirs. A field-scale compositional reservoir flow model was developed for assessing the performance history of an active CO 2 flood and for optimizing both oil production and CO 2 storage in the Farnsworth Unit (FWU), Ochiltree County, Texas. A geological framework model constructed from geophysical, geological, and engineering data acquired from the FWU was the basis for all reservoir simulations and the optimization method. An equation of state was calibrated with laboratory fluid analyses and subsequently used to predict the thermodynamic minimum miscible pressure (MMP).more » Initial history calibrations of primary, secondary and tertiary recovery were conducted as the basis for the study. After a good match was achieved, an optimization approach consisting of a proxy or surrogate model was constructed with a polynomial response surface method (PRSM). The PRSM utilized an objective function that maximized both oil recovery and CO 2 storage. Experimental design was used to link uncertain parameters to the objective function. Control variables considered in this study included: water alternating gas cycle and ratio, production rates and bottom-hole pressure of injectors and producers. Other key parameters considered in the modeling process were CO 2 purchase, gas recycle and addition of infill wells and/or patterns. The PRSM proxy model was ‘trained’ or calibrated with a series of training simulations. This involved an iterative process until the surrogate model reached a specific validation criterion. A sensitivity analysis was first conducted to ascertain which of these control variables to retain in the surrogate model. A genetic algorithm with a mixed-integer capability optimization approach was employed to determine the optimum developmental strategy to maximize both oil recovery and CO 2 storage. The proxy model reduced the computational cost significantly. The validation criteria of the reduced order model ensured accuracy in the dynamic modeling results. The prediction outcome suggested robustness and reliability of the genetic algorithm for optimizing both oil recovery and CO 2 storage. The reservoir modeling approach used in this study illustrates an improved approach to optimizing oil production and CO 2 storage within partially depleted oil reservoirs such as FWU. Lastly, this study may serve as a benchmark for potential CO 2–EOR projects in the Anadarko basin and/or geologically similar basins throughout the world.« less

  13. Large scale in-situ BOrehole and Geofluid Simulator (i.BOGS) for the development and testing of borehole technologies at reservoir conditions

    NASA Astrophysics Data System (ADS)

    Duda, Mandy; Bracke, Rolf; Stöckhert, Ferdinand; Wittig, Volker

    2017-04-01

    A fundamental problem of technological applications related to the exploration and provision of geothermal energy is the inaccessibility of subsurface processes. As a result, actual reservoir properties can only be determined using (a) indirect measurement techniques such as seismic surveys, machine feedback and geophysical borehole logging, (b) laboratory experiments capable of simulating in-situ properties, but failing to preserve temporal and spatial scales, or vice versa, and (c) numerical simulations. Moreover, technological applications related to the drilling process, the completion and cementation of a wellbore or the stimulation and exploitation of the reservoir are exposed to high pressure and temperature conditions as well as corrosive environments resulting from both, rock formation and geofluid characteristics. To address fundamental and applied questions in the context of geothermal energy provision and subsurface exploration in general one of Europe's largest geoscientific laboratory infrastructures is introduced. The in-situ Borehole and Geofluid Simulator (i.BOGS) allows to simulate quasi scale-preserving processes at reservoir conditions up to depths of 5000 m and represents a large scale pressure vessel for iso-/hydrostatic and pore pressures up to 125 MPa and temperatures from -10°C to 180°C. The autoclave can either be filled with large rock core samples (25 cm in diameter, up to 3 m length) or with fluids and technical borehole devices (e.g. pumps, sensors). The pressure vessel is equipped with an ultrasound system for active transmission and passive recording of acoustic emissions, and can be complemented by additional sensors. The i.BOGS forms the basic module for the Match.BOGS finally consisting of three modules, i.e. (A) the i.BOGS, (B) the Drill.BOGS, a drilling module to be attached to the i.BOGS capable of applying realistic torques and contact forces to a drilling device that enters the i.BOGS, and (C) the Fluid.BOGS, a geofluid reactor for the composition of highly corrosive geofluids serving as synthetic groundwater / pore fluid in the i.BOGS. The i.BOGS will support scientists and engineers in developing instruments and applications such as drilling tooling and drillstrings, borehole cements and cementation procedures, geophysical tooling and sensors, or logging/measuring while drilling equipment, but will also contribute to optimized reservoir exploitation methods, for example related to stimulation techniques, pumping equipment and long-term reservoir accessibility.

  14. Evaluating and optimizing the operation of the hydropower system in the Upper Yellow River: A general LINGO-based integrated framework.

    PubMed

    Si, Yuan; Li, Xiang; Yin, Dongqin; Liu, Ronghua; Wei, Jiahua; Huang, Yuefei; Li, Tiejian; Liu, Jiahong; Gu, Shenglong; Wang, Guangqian

    2018-01-01

    The hydropower system in the Upper Yellow River (UYR), one of the largest hydropower bases in China, plays a vital role in the energy structure of the Qinghai Power Grid. Due to management difficulties, there is still considerable room for improvement in the joint operation of this system. This paper presents a general LINGO-based integrated framework to study the operation of the UYR hydropower system. The framework is easy to use for operators with little experience in mathematical modeling, takes full advantage of LINGO's capabilities (such as its solving capacity and multi-threading ability), and packs its three layers (the user layer, the coordination layer, and the base layer) together into an integrated solution that is robust and efficient and represents an effective tool for data/scenario management and analysis. The framework is general and can be easily transferred to other hydropower systems with minimal effort, and it can be extended as the base layer is enriched. The multi-objective model that represents the trade-off between power quantity (i.e., maximum energy production) and power reliability (i.e., firm output) of hydropower operation has been formulated. With equivalent transformations, the optimization problem can be solved by the nonlinear programming (NLP) solvers embedded in the LINGO software, such as the General Solver, the Multi-start Solver, and the Global Solver. Both simulation and optimization are performed to verify the model's accuracy and to evaluate the operation of the UYR hydropower system. A total of 13 hydropower plants currently in operation are involved, including two pivotal storage reservoirs on the Yellow River, which are the Longyangxia Reservoir and the Liujiaxia Reservoir. Historical hydrological data from multiple years (2000-2010) are provided as input to the model for analysis. The results are as follows. 1) Assuming that the reservoirs are all in operation (in fact, some reservoirs were not operational or did not collect all of the relevant data during the study period), the energy production is estimated as 267.7, 357.5, and 358.3×108 KWh for the Qinghai Power Grid during dry, normal, and wet years, respectively. 2) Assuming that the hydropower system is operated jointly, the firm output can reach 3110 MW (reliability of 100%) and 3510 MW (reliability of 90%). Moreover, a decrease in energy production from the Longyangxia Reservoir can bring about a very large increase in firm output from the hydropower system. 3) The maximum energy production can reach 297.7, 363.9, and 411.4×108 KWh during dry, normal, and wet years, respectively. The trade-off curve between maximum energy production and firm output is also provided for reference.

  15. Evaluating and optimizing the operation of the hydropower system in the Upper Yellow River: A general LINGO-based integrated framework

    PubMed Central

    Si, Yuan; Liu, Ronghua; Wei, Jiahua; Huang, Yuefei; Li, Tiejian; Liu, Jiahong; Gu, Shenglong; Wang, Guangqian

    2018-01-01

    The hydropower system in the Upper Yellow River (UYR), one of the largest hydropower bases in China, plays a vital role in the energy structure of the Qinghai Power Grid. Due to management difficulties, there is still considerable room for improvement in the joint operation of this system. This paper presents a general LINGO-based integrated framework to study the operation of the UYR hydropower system. The framework is easy to use for operators with little experience in mathematical modeling, takes full advantage of LINGO’s capabilities (such as its solving capacity and multi-threading ability), and packs its three layers (the user layer, the coordination layer, and the base layer) together into an integrated solution that is robust and efficient and represents an effective tool for data/scenario management and analysis. The framework is general and can be easily transferred to other hydropower systems with minimal effort, and it can be extended as the base layer is enriched. The multi-objective model that represents the trade-off between power quantity (i.e., maximum energy production) and power reliability (i.e., firm output) of hydropower operation has been formulated. With equivalent transformations, the optimization problem can be solved by the nonlinear programming (NLP) solvers embedded in the LINGO software, such as the General Solver, the Multi-start Solver, and the Global Solver. Both simulation and optimization are performed to verify the model’s accuracy and to evaluate the operation of the UYR hydropower system. A total of 13 hydropower plants currently in operation are involved, including two pivotal storage reservoirs on the Yellow River, which are the Longyangxia Reservoir and the Liujiaxia Reservoir. Historical hydrological data from multiple years (2000–2010) are provided as input to the model for analysis. The results are as follows. 1) Assuming that the reservoirs are all in operation (in fact, some reservoirs were not operational or did not collect all of the relevant data during the study period), the energy production is estimated as 267.7, 357.5, and 358.3×108 KWh for the Qinghai Power Grid during dry, normal, and wet years, respectively. 2) Assuming that the hydropower system is operated jointly, the firm output can reach 3110 MW (reliability of 100%) and 3510 MW (reliability of 90%). Moreover, a decrease in energy production from the Longyangxia Reservoir can bring about a very large increase in firm output from the hydropower system. 3) The maximum energy production can reach 297.7, 363.9, and 411.4×108 KWh during dry, normal, and wet years, respectively. The trade-off curve between maximum energy production and firm output is also provided for reference. PMID:29370206

  16. An Overview of the Nuclear Electric Xenon Ion System (NEXIS) Activity

    NASA Technical Reports Server (NTRS)

    Randolph, Thomas M.; Polk, James E., Jr.

    2004-01-01

    The Nuclear Electric Xenon Ion System (NEXIS) research and development activity within NASA's Project Prometheus, was one of three proposals selected by NASA to develop thruster technologies for long life, high power, high specific impulse nuclear electric propulsion systems that would enable more robust and ambitious science exploration missions to the outer solar system. NEXIS technology represents a dramatic improvement in the state-of-the-art for ion propulsion and is designed to achieve propellant throughput capabilities >= 2000 kg and efficiencies >= 78% while increasing the thruster power to >= 20 kW and specific impulse to >= 6000 s. The NEXIS technology uses erosion resistant carbon-carbon grids, a graphite keeper, a new reservoir hollow cathode, a 65-cm diameter chamber masked to produce a 57-cm diameter ion beam, and a shared neutralizer architecture to achieve these goals. The accomplishments of the NEXIS activity so far include performance testing of a laboratory model thruster, successful completion of a proof of concept reservoir cathode 2000 hour wear test, structural and thermal analysis of a completed development model thruster design, fabrication of most of the development model piece parts, and the nearly complete vacuum facility modifications to allow long duration wear testing of high power ion thrusters.

  17. Origins of Protons in C-H Bond Insertion Products of Phenols: Proton-Self-Sufficient Function via Water Molecules.

    PubMed

    Luo, Zhoujie; Gao, Ya; Zhu, Tong; Zhang, John Zenghui; Xia, Fei

    2017-08-31

    Water molecules can serve as proton shuttles for proton transfer in the C-H bond insertion reactions catalyzed by transition metal complexes. Recently, the control experiments performed for C-H bond insertion of phenol and anisol by gold carbenes show that large discrepancy exists in the yields of hydrogenated and deuterated products. Thus, we conducted a detailed theoretical analysis on the function of water molecules in the C-H bond insertion reactions. The comparison of calculated results and control experiments indicates that the solution water molecules play a crucial role of proton shuttle in C-H bond insertion. In particular, it was found that the hydroxyl groups in phenols were capable of donating protons via water shuttles for the production of C-H products, which had a substantial influence on the yields of inserted products. The hydroxyl groups instead of C-H bonds in phenols function like "proton reservoirs" in the C-H bond insertion, which we call the "proton self-sufficient" (PSS) function of phenol. The PSS function of phenol indicates that the substrates with and without proton reservoirs will lead to different C-H bond insertion products.

  18. Geologic setting, petrophysical characteristics, and regional heterogeneity patterns of the Smackover in southwest Alabama. Draft topical report on Subtasks 2 and 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopaska-Merkel, D.C.; Mann, S.D.; Tew, B.H.

    1992-06-01

    This is the draft topical report on Subtasks 2 and 3 of DOE contract number DE-FG22-89BC14425, entitled ``Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity.`` This volume constitutes the final report on Subtask 3, which had as its primary goal the geological modeling of reservoir heterogeneity in Smackover reservoirs of southwest Alabama. This goal was interpreted to include a thorough analysis of Smackover reservoirs, which was required for an understanding of Smackover reservoir heterogeneity. This report is divided into six sections (including this brief introduction). Section two, entitled ``Geologicmore » setting,`` presents a concise summary of Jurassic paleogeography, structural setting, and stratigraphy in southwest Alabama. This section also includes a brief review of sedimentologic characteristics and stratigraphic framework of the Smackover, and a summary of the diagenetic processes that strongly affected Smackover reservoirs in Alabama. Section three, entitled ``Analytical methods,`` summarizes all nonroutine aspects of the analytical procedures used in this project. The major topics are thin-section description, analysis of commercial porosity and permeability data, capillary-pressure analysis, and field characterization. ``Smackover reservoir characteristics`` are described in section four, which begins with a general summary of the petrographic characteristics of porous and permeable Smackover strata. This is followed by a more-detailed petrophysical description of Smackover reservoirs.« less

  19. Reservoir sequence analysis: A new technology for the 90`s and its application to oil and gas fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wornardt, W.W.

    1996-08-01

    Reservoir Sequence Analysis when applied to existing fields can increase the production, life of the field and extend the field with a minimum of cost. In this technology we identify reservoir sands in a standard-of-reference well, to establish a seismic sequence stratigraphic well-tie for the entire field. Age date the Maximum Flooding Surfaces and Sequence Boundaries above and below reservoir sands on a well-log and seismic pro- file and/or workstation using High Resolution Biostratigraphic Analysis, species abundance and diversity histograms and their patterns, and paleoenvironmental paleobathymetric changes. Identify the systems tracts and their corresponding reservoir sands in between age datedmore » Maximum Flooding Surfaces. Interpret the reservoir sands as to type, i.e. IVF, point bar, coastal belt, forced regression, falling stage, bottom-set (shingled) turbidites, slope fan channel, channel overbank, and basin floor fans. Identify and correlate the same individual sands in different wells, and note new sands in a well and sands that shale-out in a well. Correlate the Maximum Flooding Surfaces above and below the reservoir section in additional wells to see which part of the reservoir section and sands have been penetrated. Identify systems tracts in additional wells and construct isopach, sand percent maps of individual systems tract interval in each well. Correlate sand packages, with a high degree of confidence, from upthrown to downthrown fault blocks, around salt domes, and updip with downdip.« less

  20. An Analysis of the Distribution and Economics of Oil Fields for Enhanced Oil Recovery-Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Hall, Kristyn Ann

    The rising carbon dioxide emissions contributing to climate change has lead to the examination of potential ways to mitigate the environmental impact. One such method is through the geological sequestration of carbon (CCS). Although there are several different forms of geological sequestration (i.e. Saline Aquifers, Oil and Gas Reservoirs, Unminable Coal Seams) the current projects are just initiating the large scale-testing phase. The lead entry point into CCS projects is to combine the sequestration with enhanced oil recovery (EOR) due to the improved economic model as a result of the oil recovery and the pre-existing knowledge of the geological structures. The potential scope of CCS-EOR projects throughout the continental United States in terms of a systematic examination of individual reservoir storage potential has not been examined. Instead the majority of the research completed has centered on either estimating the total United States storage potential or the potential of a single specific reservoir. The purpose of this paper is to examine the relationship between oil recovery, carbon dioxide storage and cost during CCS-EOR. The characteristics of the oil and gas reservoirs examined in this study from the Nehring Oil and Gas Database were used in the CCS-EOR model developed by Sean McCoy to estimate the lifting and storage costs of the different reservoirs throughout the continental United States. This allows for an examination of both technical and financial viability of CCS-EOR as an intermediate step for future CCS projects in other geological formations. One option for mitigating climate change is to store industrial CO2 emissions in geologic reservoirs as part of a process known as carbon capture and storage (CCS). There is general consensus that large-scale deployment of CCS would best be initiated by combining geologic sequestration with enhanced oil recovery (EOR), which can use CO2 to improve production from declining oil fields. Revenues from the produced oil could help offset the current high costs of CCS. The cumulative potential of CCS-EOR in the continental U.S. has been evaluated in terms of both CO2 storage capacity and additional oil production. This thesis examines the same potential, but on a reservoir-by-reservoir basis. Reservoir properties from the Nehring Oil and Gas Database are used as inputs to a CCS-EOR model developed by McCoy (YR) to estimate the storage capacity, oil production and CCS-EOR costs for over 10,000 oil reservoirs located throughout the continental United States. We find that 86% of the reservoirs could store ≤1 y or CO2 emissions from a single 500 MW coal-fired power plant (i.e., 3 Mtons CO2). Less than 1% of the reservoirs, on the other hand, appear capable of storing ≥30 y of CO2 emissions from a 500 MW plan. But these larger reservoirs are also estimated to contain 48% of the predicted additional oil that could be produced through CCS-EOR. The McCoy model also predicts that the reservoirs will on average produce 4.5 bbl of oil for each ton of sequestered CO2, a ratio known as the utilization factor. This utilization factor is 1.5 times higher that arrived at by the U.S. Department of Energy, and leads to a cumulative production of oil for all the reservoirs examined of ˜183 billion barrels along with a cumulative storage capacity of 41 Mtons CO2. This is equivalent to 26.5 y of current oil consumption by the nation, and 8.5 y of current coal plant emissions.

  1. Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil

    PubMed Central

    Hubert, Casey R J; Oldenburg, Thomas B P; Fustic, Milovan; Gray, Neil D; Larter, Stephen R; Penn, Kevin; Rowan, Arlene K; Seshadri, Rekha; Sherry, Angela; Swainsbury, Richard; Voordouw, Gerrit; Voordouw, Johanna K; Head, Ian M

    2012-01-01

    Summary The subsurface microbiology of an Athabasca oil sands reservoir in western Canada containing severely biodegraded oil was investigated by combining 16S rRNA gene- and polar lipid-based analyses of reservoir formation water with geochemical analyses of the crude oil and formation water. Biomass was filtered from formation water, DNA was extracted using two different methods, and 16S rRNA gene fragments were amplified with several different primer pairs prior to cloning and sequencing or community fingerprinting by denaturing gradient gel electrophoresis (DGGE). Similar results were obtained irrespective of the DNA extraction method or primers used. Archaeal libraries were dominated by Methanomicrobiales (410 of 414 total sequences formed a dominant phylotype affiliated with a Methanoregula sp.), consistent with the proposed dominant role of CO2-reducing methanogens in crude oil biodegradation. In two bacterial 16S rRNA clone libraries generated with different primer pairs, > 99% and 100% of the sequences were affiliated with Epsilonproteobacteria (n = 382 and 72 total clones respectively). This massive dominance of Epsilonproteobacteria sequences was again obtained in a third library (99% of sequences; n = 96 clones) using a third universal bacterial primer pair (inosine-341f and 1492r). Sequencing of bands from DGGE profiles and intact polar lipid analyses were in accordance with the bacterial clone library results. Epsilonproteobacterial OTUs were affiliated with Sulfuricurvum, Arcobacter and Sulfurospirillum spp. detected in other oil field habitats. The dominant organism revealed by the bacterial libraries (87% of all sequences) is a close relative of Sulfuricurvum kujiense – an organism capable of oxidizing reduced sulfur compounds in crude oil. Geochemical analysis of organic extracts from bitumen at different reservoir depths down to the oil water transition zone of these oil sands indicated active biodegradation of dibenzothiophenes, and stable sulfur isotope ratios for elemental sulfur and sulfate in formation waters were indicative of anaerobic oxidation of sulfur compounds. Microbial desulfurization of crude oil may be an important metabolism for Epsilonproteobacteria indigenous to oil reservoirs with elevated sulfur content and may explain their prevalence in formation waters from highly biodegraded petroleum systems. PMID:21824242

  2. Changes in the water quality and bacterial community composition of an alkaline and saline oxbow lake used for temporary reservoir of geothermal waters.

    PubMed

    Borsodi, Andrea K; Szirányi, Barbara; Krett, Gergely; Márialigeti, Károly; Janurik, Endre; Pekár, Ferenc

    2016-09-01

    Geothermal waters exploited in the southeastern region of Hungary are alkali-hydrogen-carbonate type, and beside the high amount of dissolved salt, they contain a variety of aromatic, heteroaromatic, and polyaromatic hydrocarbons. The majority of these geothermal waters used for heating are directed into surface waters following a temporary storage in reservoir lakes. The aim of this study was to gain information about the temporal and spatial changes of the water quality as well as the bacterial community composition of an alkaline and saline oxbow lake operated as reservoir of used geothermal water. On the basis of the water physical and chemical measurements as well as the denaturing gradient gel electrophoresis (DGGE) patterns of the bacterial communities, temporal changes were more pronounced than spatial differences. During the storage periods, the inflow, reservoir water, and sediment samples were characterized with different bacterial community structures in both studied years. The 16S ribosomal RNA (rRNA) gene sequences of the bacterial strains and molecular clones confirmed the differences among the studied habitats. Thermophilic bacteria were most abundant in the geothermal inflow, whereas the water of the reservoir was dominated by cyanobacteria and various anoxygenic phototrophic prokaryotes. In addition, members of several facultative anaerobic denitrifying, obligate anaerobic sulfate-reducing and syntrophic bacterial species capable of decomposition of different organic compounds including phenols were revealed from the water and sediment of the reservoir. Most of these alkaliphilic and/or halophilic species may participate in the local nitrogen and sulfur cycles and contribute to the bloom of phototrophs manifesting in a characteristic pink-reddish discoloration of the water of the reservoir.

  3. Fingerprinting Persistent Turbidity in Sheep Creek Reservoir, Owhyee, Nevada

    NASA Astrophysics Data System (ADS)

    Ransom, R. N.; Hooper, R. L.; Kerner, D.; Nicols, S.

    2007-12-01

    Sheep Creek Reservoir near Owyhee, NV is historically a quality rainbow trout fishery. Persistent high-turbidity has been an issue since a major storm event in 2005 resulted in surface water runoff into the Reservoir. The high turbidity is adversely impacting the quality of the fishery. Initial turbidity measurements in 2005 were upwards of 80NTU and these numbers have only decreased to 30NTU over the past two summers. Field parameters indicate the turbidity is associated with high total suspended solids (TSS) and not algae. Five water samples collected from around the reservoir during June, 2007 indicated uniform TSS values in the range of 5 to 12mg/L and oriented powder x-ray diffraction(XRD) and transmission electron microscopy(TEM) analyses of suspended sediment shows very uniform suspended particulate mineralogy including smectite, mixed layer illite/smectite (I/S), discrete illite, lesser amounts of kaolin, sub-micron quartz and feldspar. Diatoms represent a ubiquitous but minor component of the suspended solids. Six soil samples collected from possible source areas around the reservoir were analyzed using both XRD and TEM to see if a source area for the suspended solids could be unambiguously identified. Soils on the east side of the reservoir contain smectite and mixed layer I/S but very little of the other clays. The less than 2 micron size fraction from soils collected from a playa on the topographic bench immediately to the west of the reservoir show a mineralogic finger-print essentially identical to the current suspended sediment. The suspended sediment probably originates on the bench to the west of the reservoir and cascades into the reservoir over the topographic break during extreme storm events. The topographic relief, short travel distance and lack of a suitable vegetated buffer zone to the west are all consistent with a primary persistent suspended sediment source from the west. Identification of the sediment source allows for design of a cost effective remediation plan that includes minimizing future loading of the reservoir with soils capable of producing extended turbidity.

  4. Imaging CO2 reservoirs using muons borehole detectors

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Bonal, N.; Lintereur, A.; Mellors, R. J.; Paulsson, B. N. P.; Rowe, C. A.; Varner, G. S.; Kouzes, R.; Flygare, J.; Mostafanezhad, I.; Yamaoka, J. A. K.; Guardincerri, E.; Chapline, G.

    2016-12-01

    Monitoring of the post-injection fate of CO2 in subsurface reservoirs is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We present a method of 4D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Although muon flux rapidly decreases with depth, preliminary analyses indicate that the muon technique is sufficiently sensitive to effectively map density variations caused by fluid displacement at depths consistent with proposed CO2reservoirs. The intensity of the muon flux is, to first order, inversely proportional to the density times the path length, with resolution increasing with measurement time. The primary technical challenge preventing deployment of this technology in subsurface locations is the lack of miniaturized muon-tracking detectors both capable of fitting in standard boreholes and that will be able to resist the harsh underground conditions (temperature, pressure, corrosion) for long periods of time. Such a detector with these capabilities has been developed through a collaboration supported by the U.S. Department of Energy. A prototype has been tested in underground laboratories during 2016. In particular, we will present results from a series of tests performed in a tunnel comparing efficiencies, and angular and position resolution to measurements collected at the same locations by large instruments developed by Los Alamos and Sandia National Laboratories. We will also present the results of simulations of muon detection for various CO2 reservoir situations and muon detector configurations. Finally, to improve imaging of 3D subsurface structures, a combination of seismic data, gravity data, and muons can be used. Because seismic waves, gravity anomalies, and muons are all sensitive to density, the combination of two or three of these measurements promises to be a powerful way to improve spatial resolution and reduce uncertainty. With sufficient crossing paths, the muon data can resolve spatial density anomalies, rather than simply a path-integrated flux variance. Several approaches for combining these three measurements will be presented and discussed.

  5. Hydrogeology, water quality, and ground-water development alternatives in the Beaver-Pasquiset ground-water reservoir, Rhode Island

    USGS Publications Warehouse

    Dickerman, D.C.; Ozbilgin, M.M.

    1985-01-01

    In a 23 sq mi study area, the Beaver-Pasquiset groundwater reservoir within the Pawcatuck River basin in southern Rhode Island, stratified drift is the only principal geologic unit capable of producing yields > 350 gal/min. Transmissivity of the aquifer ranges from 7,200 to 24,300 sq ft/day. Water table conditions prevail in the aquifer, which is in good hydraulic connection with perennial streams and ponds. A digital model of two-dimensional groundwater flow was used to simulate the interaction between surface water and groundwater, and to evaluate the impact of alternative schemes of groundwater development on groundwater levels, pond levels, and streamflow in the Beaver-Pasquiset groundwater reservoir. Transient simulations of theoretical pumpage were made for a drought period (1963-66) and a wet period (1976-78). The areas most favorable for development of high-capacity wells (350 gal/min or more) are along the Beaver River and near Pasquiset Pond. The water is soft and generally contains < 100 mg/L dissolved solids. Locally, groundwater contains elevated concentrations of iron and manganese (7.5 and 3.7 mg/L, respectively), southeast of Pasquiset Pond, and will require treatment if used for public supply. The groundwater reservoir was simulated with a two-dimensional finite-difference model using a block-centered grid consisting of 33 rows and 75 columns. Differences between measured and simulated water table altitudes for the final steady state run for 21 selected observation wells averaged +0.07 ft. Combined pumping rates for simulation of groundwater development alternatives at eight sites ranged from 3.25 to 7.00 Mgal/d. Pumping rates for individual wells ranged from 0.25 to 1.50 Mgal/d. Transient simulations suggest that the Beaver-Pasquiset groundwater reservoir is capable of sustaining a pumping rate of 4.25 Mgal/d during years of average groundwater recharge with minimal impact on groundwater levels, pond levels, and streamflow. During extreme drought periods (1965 and 1966) it would be necessary to reduce pumpage below 3.25 Mgal/d to maintain flow in both the Beaver River and Pasquiset Brook. (Author 's abstract)

  6. Sources of Heavy Metals in Surface Sediments and an Ecological Risk Assessment from Two Adjacent Plateau Reservoirs

    PubMed Central

    Wu, Binbin; Wang, Guoqiang; Wu, Jin; Fu, Qing; Liu, Changming

    2014-01-01

    The concentrations of heavy metals (mercury (Hg), cadmium (Cd), lead (Pb), chromium (Cr), copper (Cu) and arsenic (As)) in surface water and sediments were investigated in two adjacent drinking water reservoirs (Hongfeng and Baihua Reservoirs) on the Yunnan-Guizhou Plateau in Southwest China. Possible pollution sources were identified by spatial and statistical analyses. For both reservoirs, Cd was most likely from industrial activities, and As was from lithogenic sources. For the Hongfeng Reservoir, Pb, Cr and Cu might have originated from mixed sources (traffic pollution and residual effect of former industrial practices), and the sources of Hg included the inflows, which were different for the North (industrial activities) and South (lithogenic origin) Lakes, and atmospheric deposition resulting from coal combustion. For the Baihua Reservoir, the Hg, Cr and Cu were primarily derived from industrial activities, and the Pb originated from traffic pollution. The Hg in the Baihua Reservoir might also have been associated with coal combustion pollution. An analysis of ecological risk using sediment quality guidelines showed that there were moderate toxicological risks for sediment-dwelling organisms in both reservoirs, mainly from Hg and Cr. Ecological risk analysis using the Hakanson index suggested that there was a potential moderate to very high ecological risk to humans from fish in both reservoirs, mainly because of elevated levels of Hg and Cd. The upstream Hongfeng Reservoir acts as a buffer, but remains an important source of Cd, Cu and Pb and a moderately important source of Cr, for the downstream Baihua Reservoir. This study provides a replicable method for assessing aquatic ecosystem health in adjacent plateau reservoirs. PMID:25010771

  7. Development and applications of ruggedized VIS/NIR spectrometer system for oilfield wellbores

    NASA Astrophysics Data System (ADS)

    Fujisawa, Go; Yamate, Tsutomu

    2013-12-01

    The development and applications of a ruggedized visible to near-infrared (VIS/NIR) spectrometer system capable of measuring fluid spectra in oilfield wellbores are presented. Real-time assessment of formation fluid properties penetrated by an oilfield wellbore is critically important for oilfield operating companies to make informed decisions to optimize the development plan of the well and hydrocarbon reservoir. A ruggedized VIS/NIR spectrometer was designed and built to measure and analyze hydrocarbon spectra reliably under the harsh conditions of the oilfield wellbore environment, including temperature up to 175 °C, pressure up to 170 MPa, and severe mechanical shocks and vibrations. The accuracy of hydrocarbon group composition analysis was compared well with gas chromatography results in the laboratory.

  8. Safety analysis report for the SR-101 inert reservoir package

    DOT National Transportation Integrated Search

    1998-11-01

    Department of Energy (DOE) AL Weapons Surety Division (WSD) requires the SR-101 Inert Reservoir Package to : meet applicable hazardous material transportation requirements. This Safety Analysis Report (SAR) is based on : requirements in place at the ...

  9. Electrochemical performance investigations on the hydrogen depolarized CO2 concentrator

    NASA Technical Reports Server (NTRS)

    Aylward, J. R.

    1976-01-01

    An extensive investigation of anode and cathode polarization in complete cells and half cells was conducted to determine the factors affecting HDC electrode polarization and the nature of this polarization. Matrix-electrolyte-electrode interactions and cell electrolyte composition were also investigated. The electrodes were found to have normal performance capabilities. The HDC anode polarization characteristics were correlated with a theoretical kinetic analysis; and, except for some quantitative details, a rather complete understanding of the causes for HDC electrode polarization was formulated. One of the important finding resulting from the kinetic analysis was that platinum appears to catalyze the decomposition of carbonic acid to carbon dioxide and water. It was concluded that the abnormal voltage performance of the One Man ARS HDC cells was caused by insufficient cell electrolyte volume under normal operating conditions due to deficiencies in the reservoir to cell interfacing.

  10. Analysis of information systems for hydropower operations: Executive summary

    NASA Technical Reports Server (NTRS)

    Sohn, R. L.; Becker, L.; Estes, J.; Simonett, D.; Yeh, W.

    1976-01-01

    An analysis was performed of the operations of hydropower systems, with emphasis on water resource management, to determine how aerospace derived information system technologies can effectively increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined in detail to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results were used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept was outlined.

  11. Influence of reservoirs on solute transport: A regional-scale approach

    USGS Publications Warehouse

    Kelly, V.J.

    2001-01-01

    Regional transport of water and dissolved constituents through heavily regulated river systems is influenced by the presence of reservoirs. Analysis of seasonal patterns in solute fluxes for salinity and nutrients indicates that in-reservoir processes within large storage reservoirs in the Rio Grande and Colorado basins (southwestern USA) are superimposed over the underlying watershed processes that predominate in relatively unregulated stream reaches. Connectivity of the aquatic system with the landscape is apparently disrupted by processes within the reservoir systems; these processes result in large changes in characteristics for solute transport that persist downstream in the absence of significant inputs. Additionally, reservoir processes may be linked for upstream/downstream reservoirs that are located relatively close in a series. In contrast, the regional effect of in-reservoir processes is negligible for solute transport through run-of-river reservoirs in the lower Columbia River (northwestern USA).

  12. Policy tree optimization for adaptive management of water resources systems

    NASA Astrophysics Data System (ADS)

    Herman, Jonathan; Giuliani, Matteo

    2017-04-01

    Water resources systems must cope with irreducible uncertainty in supply and demand, requiring policy alternatives capable of adapting to a range of possible future scenarios. Recent studies have developed adaptive policies based on "signposts" or "tipping points" that suggest the need of updating the policy. However, there remains a need for a general method to optimize the choice of the signposts to be used and their threshold values. This work contributes a general framework and computational algorithm to design adaptive policies as a tree structure (i.e., a hierarchical set of logical rules) using a simulation-optimization approach based on genetic programming. Given a set of feature variables (e.g., reservoir level, inflow observations, inflow forecasts), the resulting policy defines both the optimal reservoir operations and the conditions under which such operations should be triggered. We demonstrate the approach using Folsom Reservoir (California) as a case study, in which operating policies must balance the risk of both floods and droughts. Numerical results show that the tree-based policies outperform the ones designed via Dynamic Programming. In addition, they display good adaptive capacity to the changing climate, successfully adapting the reservoir operations across a large set of uncertain climate scenarios.

  13. Degradation of hydrocarbons under methanogenic conditions in different geosystems

    NASA Astrophysics Data System (ADS)

    Straaten, Nontje; Jiménez García, Núria; Richnow, Hans-Hermann; Krueger, Martin

    2014-05-01

    With increasing energy demand the search for new resources is becoming increasingly important for the future energy supply. Therefore the knowledge about fossil fuels like oil or natural gas and their extraction should be expanded. Biodegraded oil is found in many reservoirs worldwide. Consequently, it is very important to get insight in the microbial communities and metabolic processes involved in hydrocarbon degradation. Due to the lack of alternative electron acceptors in hydrocarbon-rich geosystems, degradation often takes place under methanogenic conditions. The aim of the present study is to identify the microorganisms and mechanisms involved in the degradation of complex hydrocarbons, like BTEX and polycyclic aromatic hydrocarbons, using culture dependent and independent techniques. For this purpose enrichment cultures from marine sediments, shales, coal and oil reservoirs are monitored for their capability to degrade alkanes and aromatic compounds. Moreover the environmental samples of these different geosystems analysed for evidence for the in situ occurrence of methanogenic oil degradation. The gas geochemical data provided in several cases hints for a recent biological origin of the methane present. First results of the microbial community analysis showed in environmental samples and enrichment cultures the existence of Bacteria known to degrade hydrocarbons. Also a diverse community of methanogenic Archaea could be found in the clone libraries. Additionally, in oil and coal reservoir samples the degradation of model hydrocarbons, e.g. methylnaphthalene, hexadecane and BTEX, to CH4 was confirmed by 13C-labeling. To explore the mechanisms involved in biodegradation, the enrichments as well as the original environmental samples are further analysed for the presence of respective functional genes.

  14. GPFA-AB_Phase1ReservoirTask2DataUpload

    DOE Data Explorer

    Teresa E. Jordan

    2015-10-22

    This submission to the Geothermal Data Repository (GDR) node of the National Geothermal Data System (NGDS) in support of Phase 1 Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin. The files included in this zip file contain all data pertinent to the methods and results of this task’s output, which is a cohesive multi-state map of all known potential geothermal reservoirs in our region, ranked by their potential favorability. Favorability is quantified using a new metric, Reservoir Productivity Index, as explained in the Reservoirs Methodology Memo (included in zip file). Shapefile and images of the Reservoir Productivity and Reservoir Uncertainty are included as well.

  15. Potential hydrothermal resource temperatures in the Eastern Snake River Plain, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghanashayam Neupane; Earl D. Mattson; Cody J. Cannon

    The Eastern Snake River Plain (ESRP) in southern Idaho is a region of high heat flow. Sustained volcanic activities in the wake of the passage of the Yellowstone Hotspot have turned this region into an area with great potential for geothermal resources as evidenced by numerous hot springs scattered along the margins of the plain and several hot-water producing wells and hot springs within the plain. Despite these thermal expressions, it is hypothesized that the pervasive presence of an overlying groundwater aquifer in the region effectively masks thermal signatures of deep-seated geothermal resources. The dilution of deeper thermal water andmore » re-equilibration at lower temperature are significant challenges for the evaluation of potential resource areas in the ESRP. Over the past several years, we collected approximately 100 water samples from springs/wells for chemical analysis as well as assembled existing water chemistry data from literature. We applied several geothermometric and geochemical modeling tools to these chemical compositions of ESRP water samples. Geothermometric calculations based on principles of multicomponent equilibrium geothermometry with inverse geochemical modeling capability (e.g., Reservoir Temperature Estimator, RTEst) have been useful for the evaluation of reservoir temperatures. RTEst geothermometric calculations of ESRP thermal water samples indicated numerous potential geothermal areas with elevated reservoir temperatures. Specifically, areas around southern/southwestern side of the Bennett Hills and within the Camas Prairies in the western-northwestern regions of the ESRP and its margins suggest temperatures in the range of 140-200°C. In the northeastern portions of the ESRP, Lidy Hot Springs, Ashton, Newdale, and areas east of Idaho Falls have expected reservoir temperature =140 °C. In the southern ERSP, areas near Buhl and Twin Falls are found to have elevated temperatures as high as 160 °C. These areas are likely to host potentially economic geothermal resources; however, further detailed study is warranted to each site to evaluate hydrothermal suitability for economic use.« less

  16. Discrete fracture modeling of multiphase flow and hydrocarbon production in fractured shale or low permeability reservoirs

    NASA Astrophysics Data System (ADS)

    Hao, Y.; Settgast, R. R.; Fu, P.; Tompson, A. F. B.; Morris, J.; Ryerson, F. J.

    2016-12-01

    It has long been recognized that multiphase flow and transport in fractured porous media is very important for various subsurface applications. Hydrocarbon fluid flow and production from hydraulically fractured shale reservoirs is an important and complicated example of multiphase flow in fractured formations. The combination of horizontal drilling and hydraulic fracturing is able to create extensive fracture networks in low permeability shale rocks, leading to increased formation permeability and enhanced hydrocarbon production. However, unconventional wells experience a much faster production decline than conventional hydrocarbon recovery. Maintaining sustainable and economically viable shale gas/oil production requires additional wells and re-fracturing. Excessive fracturing fluid loss during hydraulic fracturing operations may also drive up operation costs and raise potential environmental concerns. Understanding and modeling processes that contribute to decreasing productivity and fracturing fluid loss represent a critical component for unconventional hydrocarbon recovery analysis. Towards this effort we develop a discrete fracture model (DFM) in GEOS (LLNL multi-physics computational code) to simulate multiphase flow and transfer in hydraulically fractured reservoirs. The DFM model is able to explicitly account for both individual fractures and their surrounding rocks, therefore allowing for an accurate prediction of impacts of fracture-matrix interactions on hydrocarbon production. We apply the DFM model to simulate three-phase (water, oil, and gas) flow behaviors in fractured shale rocks as a result of different hydraulic stimulation scenarios. Numerical results show that multiphase flow behaviors at the fracture-matrix interface play a major role in controlling both hydrocarbon production and fracturing fluid recovery rates. The DFM model developed in this study will be coupled with the existing hydro-fracture model to provide a fully integrated geomechanical and reservoir simulation capability for an accurate prediction and assessment of hydrocarbon production and hydraulic fracturing performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Using pressure transient analysis to improve well performance and optimize field development in compartmentalized shelf margin deltaic reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badgett, K.L.; Crawford, G.E.; Mills, W.H.

    1996-12-31

    BP Exploration`s Gulf of Mexico group developed procedures to conduct effective well tests on conventional production wells and employed them during the development drilling phase of the Mississippi Canyon 109 (MC109) field. Bottomhole pressure data were recorded during the initial few weeks of production. Typically, a 48 hour pressure buildup survey (surface shut-in) was obtained near the end of data acquisition. Data from these tests were analyzed for completion efficiency, reservoir flow capacity, reservoir heterogeneities, and drainage area. Initially wells were gravel packed for sand control, until buildup interpretations indicated skins greater than 20. Frac packing technology was then employed,more » and an immediate improvement was observed with skins dropping into the teens. Over a period of time frac packs were optimized using the test derived skins as a metric. Analysis of pressure data also played an important role in identifying reservoir compartmentalization. The two major reservoir horizons at MC 109 are interpreted as shelf margin deltas. However, each of these has distinctly different compartmentalization issues. The continuous character of the G Sand made it easier to define the depositional system and investigate reservoir compartmentalization issues using a combination of well log, 3D seismic, static pressure trends, and fluid information. In the more distal deltaic reservoirs of the J Sand however, complications with seismic amplitudes and a less reliable tie between wireline and seismic data required the use of pressure transient analysis to efficiently exploit the reservoir.« less

  18. Genesis analysis of high-gamma ray sandstone reservoir and its log evaluation techniques: a case study from the Junggar basin, northwest China.

    PubMed

    Wang, Liang; Mao, Zhiqiang; Sun, Zhongchun; Luo, Xingping; Song, Yong; Liu, Zhen

    2013-01-01

    In the Junggar basin, northwest China, many high gamma-ray (GR) sandstone reservoirs are found and routinely interpreted as mudstone non-reservoirs, with negative implications for the exploration and exploitation of oil and gas. Then, the high GR sandstone reservoirs' recognition principles, genesis, and log evaluation techniques are systematically studied. Studies show that the sandstone reservoirs with apparent shale content greater than 50% and GR value higher than 110API can be regarded as high GR sandstone reservoir. The high GR sandstone reservoir is mainly and directly caused by abnormally high uranium enrichment, but not the tuff, feldspar or clay mineral. Affected by formation's high water sensitivity and poor borehole quality, the conventional logs can not recognize reservoir and evaluate the physical property of reservoirs. Then, the nuclear magnetic resonance (NMR) logs is proposed and proved to be useful in reservoir recognition and physical property evaluation.

  19. Genesis Analysis of High-Gamma Ray Sandstone Reservoir and Its Log Evaluation Techniques: A Case Study from the Junggar Basin, Northwest China

    PubMed Central

    Wang, Liang; Mao, Zhiqiang; Sun, Zhongchun; Luo, Xingping; Song, Yong; Liu, Zhen

    2013-01-01

    In the Junggar basin, northwest China, many high gamma-ray (GR) sandstone reservoirs are found and routinely interpreted as mudstone non-reservoirs, with negative implications for the exploration and exploitation of oil and gas. Then, the high GR sandstone reservoirs' recognition principles, genesis, and log evaluation techniques are systematically studied. Studies show that the sandstone reservoirs with apparent shale content greater than 50% and GR value higher than 110API can be regarded as high GR sandstone reservoir. The high GR sandstone reservoir is mainly and directly caused by abnormally high uranium enrichment, but not the tuff, feldspar or clay mineral. Affected by formation's high water sensitivity and poor borehole quality, the conventional logs can not recognize reservoir and evaluate the physical property of reservoirs. Then, the nuclear magnetic resonance (NMR) logs is proposed and proved to be useful in reservoir recognition and physical property evaluation. PMID:24078797

  20. GEOS. User Tutorials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Pengchen; Settgast, Randolph R.; Johnson, Scott M.

    2014-12-17

    GEOS is a massively parallel, multi-physics simulation application utilizing high performance computing (HPC) to address subsurface reservoir stimulation activities with the goal of optimizing current operations and evaluating innovative stimulation methods. GEOS enables coupling of di erent solvers associated with the various physical processes occurring during reservoir stimulation in unique and sophisticated ways, adapted to various geologic settings, materials and stimulation methods. Developed at the Lawrence Livermore National Laboratory (LLNL) as a part of a Laboratory-Directed Research and Development (LDRD) Strategic Initiative (SI) project, GEOS represents the culmination of a multi-year ongoing code development and improvement e ort that hasmore » leveraged existing code capabilities and sta expertise to design new computational geosciences software.« less

  1. A three-dimensional self-assembled SnS 2 -nano-dots@graphene hybrid aerogel as an efficient polysulfide reservoir for high-performance lithium–sulfur batteries

    DOE PAGES

    Luo, Liu; Chung, Sheng-Heng; Manthiram, Arumugam

    2018-01-01

    A free-standing self-assembled graphene aerogel embedded with SnS 2 nano-dots (SnS 2 -ND@G) is established as an efficient substrate for high-loading sulfur cathodes with synergistically physical and chemical polysulfide-trapping capability.

  2. New Insights into HIV-1 Persistence in Sanctuary Sites During Antiretroviral Therapy.

    PubMed

    Poveda, Eva; Tabernilla, Andrés

    2016-01-01

    Current combinations of antiretroviral drugs for the treatment of HIV infection can successfully achieve and maintain long-term suppression of HIV-1 replication in plasma. Still, none of these therapies is capable of eradicating the virus from the long-lived cellular reservoir that represents the major barrier to HIV cure.

  3. A three-dimensional self-assembled SnS 2 -nano-dots@graphene hybrid aerogel as an efficient polysulfide reservoir for high-performance lithium–sulfur batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Liu; Chung, Sheng-Heng; Manthiram, Arumugam

    A free-standing self-assembled graphene aerogel embedded with SnS 2 nano-dots (SnS 2 -ND@G) is established as an efficient substrate for high-loading sulfur cathodes with synergistically physical and chemical polysulfide-trapping capability.

  4. Energy insurance for Anchorage, Alaska - Beluga river gas field, Cook Inlet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, N.D.; Lindblom, R.G.

    1987-05-01

    The Beluga River gas field is the primary energy source for Anchorage, Alaska. The field is located 40 mi west of Anchorage astride the northwest shoreline of the Cook Inlet. Gas was discovered in December 1962 by Chevron's Beluga River unit (BRU) 1 well in section 35, T13N, R10W, S.B. and M. There are 16 producing wells in the field capable of a total gas potential of 140,000 MCFD. The current production averages 75,000 MCFD and the field has produced 220 BCF gas. Chevron, Shell, and ARCO have equal interests in the field. The Beluga River unit was formed inmore » 1962 with Chevron as operator. The produced gas is sold to the Chugach Electric Company and the Enstar Gas Company, both Anchorage-based utilities. The gas accumulation is trapped by a doubly plunging, slightly asymmetric anticlinal fold trending northeast-southwest. Gas is found from 3000 to 6000 ft vertical depth in sands within the lower Sterling (Pliocene) and Beluga River (upper Miocene) Formations. Reservoir sands range in thickness from 5 to 85 ft with average porosities of 24 to 30%. The Sterling sands were deposited in broad sand channels in a fluvial-deltaic setting, whereas Beluga sands were deposited in a high-energy fluvial environment in shifting stream courses. The use of the wireline repeat formation tester has aided in correlation, evaluation, and management of the multiple sand reservoirs. New gas sand reservoirs and partly depleted reservoirs are recognized, enabling completion from reservoirs of similar pressures and reducing risks associated with cross flow between reservoirs.« less

  5. Hydraulic fracture propagation modeling and data-based fracture identification

    NASA Astrophysics Data System (ADS)

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the parameters used in the reservoir flow simulator have large uncertainty. Those biased and uncertain parameters will result in misleading oil and gas recovery predictions. The Ensemble Kalman Filter is used to estimate and update both the state variables (pressure and saturations) and uncertain reservoir parameters (permeability). In order to directly incorporate spatial information such as fracture location and formation heterogeneity into the algorithm, a new covariance matrix method is proposed. This new method has been applied to a simplified single-phase reservoir and a complex black oil reservoir with complex structures to prove its capability in calibrating the reservoir parameters.

  6. iTOUGH2 v7.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FINSTERLE, STEFAN; JUNG, YOOJIN; KOWALSKY, MICHAEL

    2016-09-15

    iTOUGH2 (inverse TOUGH2) provides inverse modeling capabilities for TOUGH2, a simulator for multi-dimensional, multi-phase, multi-component, non-isothermal flow and transport in fractured porous media. iTOUGH2 performs sensitivity analyses, data-worth analyses, parameter estimation, and uncertainty propagation analyses in geosciences and reservoir engineering and other application areas. iTOUGH2 supports a number of different combinations of fluids and components (equation-of-state (EOS) modules). In addition, the optimization routines implemented in iTOUGH2 can also be used for sensitivity analysis, automatic model calibration, and uncertainty quantification of any external code that uses text-based input and output files using the PEST protocol. iTOUGH2 solves the inverse problem bymore » minimizing a non-linear objective function of the weighted differences between model output and the corresponding observations. Multiple minimization algorithms (derivative-free, gradient-based, and second-order; local and global) are available. iTOUGH2 also performs Latin Hypercube Monte Carlo simulations for uncertainty propagation analyses. A detailed residual and error analysis is provided. This upgrade includes (a) global sensitivity analysis methods, (b) dynamic memory allocation (c) additional input features and output analyses, (d) increased forward simulation capabilities, (e) parallel execution on multicore PCs and Linux clusters, and (f) bug fixes. More details can be found at http://esd.lbl.gov/iTOUGH2.« less

  7. Three-dimensional geomechanical simulation of reservoir compaction and implications for well failures in the Belridge diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrich, J.T.; Argueello, J.G.; Thorne, B.J.

    1996-11-01

    This paper describes an integrated geomechanics analysis of well casing damage induced by compaction of the diatomite reservoir at the Belridge Field, California. Historical data from the five field operators were compiled and analyzed to determine correlations between production, injection, subsidence, and well failures. The results of this analysis were used to develop a three-dimensional geomechanical model of South Belridge, Section 33 to examine the diatomite reservoir and overburden response to production and injection at the interwell scale and to evaluate potential well failure mechanisms. The time-dependent reservoir pressure field was derived from a three-dimensional finite difference reservoir simulation andmore » used as input to three-dimensional non-linear finite element geomechanical simulations. The reservoir simulation included -200 wells and covered 18 years of production and injection. The geomechanical simulation contained 437,100 nodes and 374,130 elements with the overburden and reservoir discretized into 13 layers with independent material properties. The results reveal the evolution of the subsurface stress and displacement fields with production and injection and suggest strategies for reducing the occurrence of well casing damage.« less

  8. Three-dimensional geomechanical simulation of reservoir compaction and implications for well failures in the Belridge diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrich, J.T.; Argueello, J.G.; Thorne, B.J.

    1996-12-31

    This paper describes an integrated geomechanics analysis of well casing damage induced by compaction of the diatomite reservoir at the Belridge Field, California. Historical data from the five field operators were compiled and analyzed to determine correlations between production, injection, subsidence, and well failures. The results of this analysis were used to develop a three-dimensional geomechanical model of South Belridge, Section 33 to examine the diatomite reservoir and overburden response to production and injection at the interwell scale and to evaluate potential well failure mechanisms. The time-dependent reservoir pressure field was derived from a three-dimensional finite difference reservoir simulation andmore » used as input to three-dimensional non-linear finite element geomechanical simulations. The reservoir simulation included approximately 200 wells and covered 18 years of production and injection. The geomechanical simulation contained 437,100 nodes and 374,130 elements with the overburden and reservoir discretized into 13 layers with independent material properties. The results reveal the evolution of the subsurface stress and displacement fields with production and injection and suggest strategies for reducing the occurrence of well casing damage.« less

  9. Field-based stable isotope analysis of carbon dioxide by mid-infrared laser spectroscopy for carbon capture and storage monitoring.

    PubMed

    van Geldern, Robert; Nowak, Martin E; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A C; Jost, Hans-Jürg

    2014-12-16

    A newly developed isotope ratio laser spectrometer for CO2 analyses has been tested during a tracer experiment at the Ketzin pilot site (northern Germany) for CO2 storage. For the experiment, 500 tons of CO2 from a natural CO2 reservoir was injected in supercritical state into the reservoir. The carbon stable isotope value (δ(13)C) of injected CO2 was significantly different from background values. In order to observe the breakthrough of the isotope tracer continuously, the new instruments were connected to a stainless steel riser tube that was installed in an observation well. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10 day carbon stable isotope data set with 30 min resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within analytical precision. This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time stable isotope data directly in the field. The laser spectroscopy data revealed for the first time a prior to this experiment unknown, intensive dynamic with fast changing δ(13)C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The short-term variances as observed in this study might have been missed during previous works that applied laboratory-based IRMS analysis. The new technique could contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long-term integrity of the reservoir.

  10. Reservoir Identification: Parameter Characterization or Feature Classification

    NASA Astrophysics Data System (ADS)

    Cao, J.

    2017-12-01

    The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601

  11. Sedimentology and Reservoir Characteristics of Early Cretaceous Fluvio-Deltaic and Lacustrine Deposits, Upper Abu Gabra Formation, Sufyan Sub-basin, Muglad Rift Basin, Sudan

    NASA Astrophysics Data System (ADS)

    Yassin, Mohamed; Abdullatif, Osman; Hariri, Mustafa

    2017-04-01

    Sufyan Sub-basin is an East-West trending Sub-basin located in the northwestern part of the Muglad Basin (Sudan), in the eastern extension of the West and Central Africa Rift System (WCARS). The Early Cretaceous Abu Gabra Formation considered as the main source rock in the Muglad Basin. In Sufyan Sub-basin the Early Cretaceous Upper Abu Gabra Formation is the main oil-producing reservoir. It is dominated by sandstone and shales deposited in fluvio-deltaic and lacustrine environment during the first rift cycle in the basin. Depositional and post-depositional processes highly influenced the reservoir quality and architecture. This study investigates different scales of reservoir heterogeneities from macro to micro scale. Subsurface facies analysis was analyzed based on the description of six conventional cores from two wells. Approaches include well log analysis, thin sections and scanning electron microscope (SEM) investigations, grain-size, and X-ray diffraction (XRD) analysis of the Abu Gabra sandstone. The cores and well logs analyses revealed six lithofacies representing fluvio-deltaic and lacustrine depositional environment. The sandstone is medium to coarse-grained, poorly to moderately sorted and sub-angular to subrounded, Sub-feldspathic arenite to quartz arenite. On macro-scale, reservoir quality varies within Abu Gabra reservoir where it shows progressive coarsening upward tendencies with different degrees of connectivity. The upper part of the reservoir showed well connected and amalgamated sandstone bodies, the middle to lower parts, however, have moderate to low sandstone bodies' connectivity and amalgamation. On micro-scale, sandstone reservoir quality is directly affected by textures and diagenesis.The XRD and SEM analyses show that kaolinite and chlorite clay are the common clay minerals in the studied samples. Clay matrix and quartz overgrowth have significantly reduced the reservoir porosity and permeability, while the dissolution of feldspars during the diagenetic process increase it. The estimated porosity in Abu Gabra Formation ranges from 10 to 21% with an average of 15%; while permeability varies from 200 to 400 md. The results of this study might contribute to better understanding of reservoir heterogeneities and help in reservoir quality prediction, therefore enhancing the hydrocarbon productivity.

  12. Verification of the use of completion-location analysis for initial assessment of reservoir heterogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDowell, R.R.; Avary, K.L.; Hohn, M.E.

    1996-12-31

    In 1991, a technique (completion-location analysis) was developed for a U.S. DOE-funded study to give a preliminary assessment of field-scale reservoir heterogeneity in two West Virginia oil fields (Granny Creek and Rock Creek). The study`s conclusions regarding heterogeneity agreed with initial predictions. However, as these fields were investigated specifically because they were thought to be heterogeneous, this test of the analysis was biased. In 1995, as part of a proposal to study siliciclastic strandplain reservoirs, the Jacksonburg- Stringtown field in West Virginia, was selected because it met the depositional criterion and was still being actively produced. Completion-location analysis was undertakenmore » on 214 producing oil wells from the field. Analysis indicated that drilling in the fields is clustered into eight time periods (1890-1903, 1904-1911, 1912-1916, 1917-1934, 1935-1953, 1954-1975, 1975-1985, and 1986-1995). Mapping of the locations of wells for each time period indicated that from 1890-1903 approximately 50% of the current geographic extent of the field was defined. Drilling in the periods 1935-1953, 1954-1975, 1975-1985, and 1985-1995 added significantly to the extent of the field - these episodes, especially 1986-1995, represent the discovery of new production. On this basis, a preliminary prediction was made that Jacksonburg-Stringtown field should exhibit a relatively high degree of reservoir heterogeneity. Subsequent discussions with the producer revealed that the reservoir varies considerably in pay thickness and quality across the field, has localized areas with high water injection rates and early water breakthrough, and has areas of anomalously high production. This suggests significant reservoir heterogeneity and appears to verify the utility of completion-location analysis.« less

  13. Verification of the use of completion-location analysis for initial assessment of reservoir heterogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDowell, R.R.; Avary, K.L.; Hohn, M.E.

    1996-01-01

    In 1991, a technique (completion-location analysis) was developed for a U.S. DOE-funded study to give a preliminary assessment of field-scale reservoir heterogeneity in two West Virginia oil fields (Granny Creek and Rock Creek). The study's conclusions regarding heterogeneity agreed with initial predictions. However, as these fields were investigated specifically because they were thought to be heterogeneous, this test of the analysis was biased. In 1995, as part of a proposal to study siliciclastic strandplain reservoirs, the Jacksonburg- Stringtown field in West Virginia, was selected because it met the depositional criterion and was still being actively produced. Completion-location analysis was undertakenmore » on 214 producing oil wells from the field. Analysis indicated that drilling in the fields is clustered into eight time periods (1890-1903, 1904-1911, 1912-1916, 1917-1934, 1935-1953, 1954-1975, 1975-1985, and 1986-1995). Mapping of the locations of wells for each time period indicated that from 1890-1903 approximately 50% of the current geographic extent of the field was defined. Drilling in the periods 1935-1953, 1954-1975, 1975-1985, and 1985-1995 added significantly to the extent of the field - these episodes, especially 1986-1995, represent the discovery of new production. On this basis, a preliminary prediction was made that Jacksonburg-Stringtown field should exhibit a relatively high degree of reservoir heterogeneity. Subsequent discussions with the producer revealed that the reservoir varies considerably in pay thickness and quality across the field, has localized areas with high water injection rates and early water breakthrough, and has areas of anomalously high production. This suggests significant reservoir heterogeneity and appears to verify the utility of completion-location analysis.« less

  14. Molten metal feed system controlled with a traveling magnetic field

    DOEpatents

    Praeg, Walter F.

    1991-01-01

    A continuous metal casting system in which the feed of molten metal is controlled by means of a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir so that p.sub.c =p.sub.g -p.sub.m where p.sub.c is the desired pressure in the caster, p.sub.g is the gravitational pressure in the duct exerted by the force of the head of molten metal in the reservoir, and p.sub.m is the electromagnetic pressure exerted by the force of the magnetic field traveling wave produced by the linear induction motor. The invention also includes feedback loops to the linear induction motor to control the casting pressure in response to measured characteristics of the metal being cast.

  15. Co-circulation of diverse paramyxoviruses in an urban African fruit bat population.

    PubMed

    Baker, K S; Todd, S; Marsh, G; Fernandez-Loras, A; Suu-Ire, R; Wood, J L N; Wang, L F; Murcia, P R; Cunningham, A A

    2012-04-01

    Bats constitute a reservoir of zoonotic infections and some bat paramyxoviruses are capable of cross-species transmission, often with fatal consequences. Determining the level of viral diversity in reservoir populations is fundamental to understanding and predicting viral emergence. This is particularly relevant for RNA viruses where the adaptive mutations required for cross-species transmission can be present in the reservoir host. We report the use of non-invasively collected, pooled, neat urine samples as a robust sample type for investigating paramyxoviruses in bat populations. Using consensus PCR assays we have detected a high incidence and genetic diversity of novel paramyxoviruses in an urban fruit bat population over a short period of time. This may suggest a similarly unique relationship between bats and the members of the family Paramyxoviridae as proposed for some other viral families. Additionally, the high rate of bat-human contact at the study site calls for the zoonotic potential of the detected viruses to be investigated further.

  16. Rapid differentiation in a sill-like magma reservoir: a case study from the campi flegrei caldera.

    PubMed

    Pappalardo, Lucia; Mastrolorenzo, Giuseppe

    2012-01-01

    In recent decades, geophysical investigations have detected wide magma reservoirs beneath quiescent calderas. However, the discovery of partially melted horizons inside the crust is not sufficient to put constraints on capability of reservoirs to supply cataclysmic eruptions, which strictly depends on the chemical-physical properties of magmas (composition, viscosity, gas content etc.), and thus on their differentiation histories. In this study, by using geochemical, isotopic and textural records of rocks erupted from the high-risk Campi Flegrei caldera, we show that the alkaline magmas have evolved toward a critical state of explosive behaviour over a time span shorter than the repose time of most volcanic systems and that these magmas have risen rapidly toward the surface. Moreover, similar results on the depth and timescale of magma storage were previously obtained for the neighbouring Somma-Vesuvius volcano. This consistency suggests that there might be a unique long-lived magma pool beneath the whole Neapolitan area.

  17. Rapid differentiation in a sill-like magma reservoir: a case study from the campi flegrei caldera

    PubMed Central

    Pappalardo, Lucia; Mastrolorenzo, Giuseppe

    2012-01-01

    In recent decades, geophysical investigations have detected wide magma reservoirs beneath quiescent calderas. However, the discovery of partially melted horizons inside the crust is not sufficient to put constraints on capability of reservoirs to supply cataclysmic eruptions, which strictly depends on the chemical-physical properties of magmas (composition, viscosity, gas content etc.), and thus on their differentiation histories. In this study, by using geochemical, isotopic and textural records of rocks erupted from the high-risk Campi Flegrei caldera, we show that the alkaline magmas have evolved toward a critical state of explosive behaviour over a time span shorter than the repose time of most volcanic systems and that these magmas have risen rapidly toward the surface. Moreover, similar results on the depth and timescale of magma storage were previously obtained for the neighbouring Somma-Vesuvius volcano. This consistency suggests that there might be a unique long-lived magma pool beneath the whole Neapolitan area. PMID:23050096

  18. Seismic low-frequency-based calculation of reservoir fluid mobility and its applications

    NASA Astrophysics Data System (ADS)

    Chen, Xue-Hua; He, Zhen-Hua; Zhu, Si-Xin; Liu, Wei; Zhong, Wen-Li

    2012-06-01

    Low frequency content of seismic signals contains information related to the reservoir fluid mobility. Based on the asymptotic analysis theory of frequency-dependent reflectivity from a fluid-saturated poroelastic medium, we derive the computational implementation of reservoir fluid mobility and present the determination of optimal frequency in the implementation. We then calculate the reservoir fluid mobility using the optimal frequency instantaneous spectra at the low-frequency end of the seismic spectrum. The methodology is applied to synthetic seismic data from a permeable gas-bearing reservoir model and real land and marine seismic data. The results demonstrate that the fluid mobility shows excellent quality in imaging the gas reservoirs. It is feasible to detect the location and spatial distribution of gas reservoirs and reduce the non-uniqueness and uncertainty in fluid identification.

  19. An ultrasonic analysis of the comparative efficiency of various cardiotomy reservoirs and micropore blood filters.

    PubMed Central

    Pearson, D T; Watson, B G; Waterhouse, P S

    1978-01-01

    The ability of 12 commercially available cardiotomy reservoirs to remove bubbles from aspirated blood was investigated by means of a simulated cardiopulmonary bypass circuit and an ultrasonic microbubble detector. Performance varied considerably. The number of gaseous microemboli remaining after passage of blood through the reservoir was reduced by (a) holding the blood in the reservoir, (b) reducing the volume of air mixed with the aspirated blood, and (c) using a reservoir that did not induce turbulence and that contained integral micropore filtration material. Further micropore filtration of the blood after passage through the cardiotomy reservoir was beneficial, and significantly more bubbles were extracted when the microfilter was sited below the reservoir than when it was placed in the arterial line. PMID:684672

  20. Genesis of the characteristic pulmonary venous pressure waveform as described by the reservoir-wave model

    PubMed Central

    Bouwmeester, J Christopher; Belenkie, Israel; Shrive, Nigel G; Tyberg, John V

    2014-01-01

    Conventional haemodynamic analysis of pulmonary venous and left atrial (LA) pressure waveforms yields substantial forward and backward waves throughout the cardiac cycle; the reservoir wave model provides an alternative analysis with minimal waves during diastole. Pressure and flow in a single pulmonary vein (PV) and the main pulmonary artery (PA) were measured in anaesthetized dogs and the effects of hypoxia and nitric oxide, volume loading, and positive-end expiratory pressure (PEEP) were observed. The reservoir wave model was used to determine the reservoir contribution to PV pressure and flow. Subtracting reservoir pressure and flow resulted in ‘excess’ quantities which were treated as wave-related. Wave intensity analysis of excess pressure and flow quantified the contributions of waves originating upstream (from the PA) and downstream (from the LA and/or left ventricle (LV)). Major features of the characteristic PV waveform are caused by sequential LA and LV contraction and relaxation creating backward compression (i.e. pressure-increasing) waves followed by decompression (i.e. pressure-decreasing) waves. Mitral valve opening is linked to a backwards decompression wave (i.e. diastolic suction). During late systole and early diastole, forward waves originating in the PA are significant. These waves were attenuated less with volume loading and delayed with PEEP. The reservoir wave model shows that the forward and backward waves are negligible during LV diastasis and that the changes in pressure and flow can be accounted for by the discharge of upstream reservoirs. In sharp contrast, conventional analysis posits forward and backward waves such that much of the energy of the forward wave is opposed by the backward wave. PMID:25015922

  1. Integrated approach for quantification of fractured tight reservoir rocks: Porosity, permeability analyses and 3D fracture network characterisation on fractured dolomite samples

    NASA Astrophysics Data System (ADS)

    Voorn, Maarten; Barnhoorn, Auke; Exner, Ulrike; Baud, Patrick; Reuschlé, Thierry

    2015-04-01

    Fractured reservoir rocks make up an important part of the hydrocarbon reservoirs worldwide. A detailed analysis of fractures and fracture networks in reservoir rock samples is thus essential to determine the potential of these fractured reservoirs. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this study, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna Basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. 3D μCT data is used to extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. The 3D analyses are complemented with thin sections made to provide some 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) of the µCT results towards more realistic reservoir conditions. Our results show that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner.

  2. Coupling large scale hydrologic-reservoir-hydraulic models for impact studies in data sparse regions

    NASA Astrophysics Data System (ADS)

    O'Loughlin, Fiachra; Neal, Jeff; Wagener, Thorsten; Bates, Paul; Freer, Jim; Woods, Ross; Pianosi, Francesca; Sheffied, Justin

    2017-04-01

    As hydraulic modelling moves to increasingly large spatial domains it has become essential to take reservoirs and their operations into account. Large-scale hydrological models have been including reservoirs for at least the past two decades, yet they cannot explicitly model the variations in spatial extent of reservoirs, and many reservoirs operations in hydrological models are not undertaken during the run-time operation. This requires a hydraulic model, yet to-date no continental scale hydraulic model has directly simulated reservoirs and their operations. In addition to the need to include reservoirs and their operations in hydraulic models as they move to global coverage, there is also a need to link such models to large scale hydrology models or land surface schemes. This is especially true for Africa where the number of river gauges has consistently declined since the middle of the twentieth century. In this study we address these two major issues by developing: 1) a coupling methodology for the VIC large-scale hydrological model and the LISFLOOD-FP hydraulic model, and 2) a reservoir module for the LISFLOOD-FP model, which currently includes four sets of reservoir operating rules taken from the major large-scale hydrological models. The Volta Basin, West Africa, was chosen to demonstrate the capability of the modelling framework as it is a large river basin ( 400,000 km2) and contains the largest man-made lake in terms of area (8,482 km2), Lake Volta, created by the Akosombo dam. Lake Volta also experiences a seasonal variation in water levels of between two and six metres that creates a dynamic shoreline. In this study, we first run our coupled VIC and LISFLOOD-FP model without explicitly modelling Lake Volta and then compare these results with those from model runs where the dam operations and Lake Volta are included. The results show that we are able to obtain variation in the Lake Volta water levels and that including the dam operations and Lake Volta has significant impacts on the water levels across the domain.

  3. A sensitivity analysis on seismic tomography data with respect to CO2 saturation of a CO2 geological sequestration field

    NASA Astrophysics Data System (ADS)

    Park, Chanho; Nguyen, Phung K. T.; Nam, Myung Jin; Kim, Jongwook

    2013-04-01

    Monitoring CO2 migration and storage in geological formations is important not only for the stability of geological sequestration of CO2 but also for efficient management of CO2 injection. Especially, geophysical methods can make in situ observation of CO2 to assess the potential leakage of CO2 and to improve reservoir description as well to monitor development of geologic discontinuity (i.e., fault, crack, joint, etc.). Geophysical monitoring can be based on wireline logging or surface surveys for well-scale monitoring (high resolution and nallow area of investigation) or basin-scale monitoring (low resolution and wide area of investigation). In the meantime, crosswell tomography can make reservoir-scale monitoring to bridge the resolution gap between well logs and surface measurements. This study focuses on reservoir-scale monitoring based on crosswell seismic tomography aiming describe details of reservoir structure and monitoring migration of reservoir fluid (water and CO2). For the monitoring, we first make a sensitivity analysis on crosswell seismic tomography data with respect to CO2 saturation. For the sensitivity analysis, Rock Physics Models (RPMs) are constructed by calculating the values of density and P and S-wave velocities of a virtual CO2 injection reservoir. Since the seismic velocity of the reservoir accordingly changes as CO2 saturation changes when the CO2 saturation is less than about 20%, while when the CO2 saturation is larger than 20%, the seismic velocity is insensitive to the change, sensitivity analysis is mainly made when CO2 saturation is less than 20%. For precise simulation of seismic tomography responses for constructed RPMs, we developed a time-domain 2D elastic modeling based on finite difference method with a staggered grid employing a boundary condition of a convolutional perfectly matched layer. We further make comparison between sensitivities of seismic tomography and surface measurements for RPMs to analysis resolution difference between them. Moreover, assuming a similar reservoir situation to the CO2 storage site in Nagaoka, Japan, we generate time-lapse tomographic data sets for the corresponding CO2 injection process, and make a preliminary interpretation of the data sets.

  4. Kinship and Social Behavior of Lowland Tapirs (Tapirus terrestris) in a Central Amazon Landscape

    PubMed Central

    Pinho, Gabriela M.; Gonçalves da Silva, Anders; Hrbek, Tomas; Venticinque, Eduardo M.; Farias, Izeni P.

    2014-01-01

    We tested the hypothesis that tapirs tolerate individuals from adjacent and overlapping home ranges if they are related. We obtained genetic data from fecal samples collected in the Balbina reservoir landscape, central Amazon. Samples were genotyped at 14 microsatellite loci, of which five produced high quality informative genotypes. Based on an analysis of 32 individuals, we inferred a single panmictic population with high levels of heterozygosity. Kinship analysis identified 10 pairs of full siblings or parent-offspring, 10 pairs of half siblings and 25 unrelated pairs. In 10 cases, the related individuals were situated on opposite margins of the reservoir, suggesting that tapirs are capable of crossing the main river, even after damming. The polygamous model was the most likely mating system for Tapirus terrestris. Moran's I index of allele sharing between pairs of individuals geographically close (<3 km) was similar to that observed between individual pairs at larger distances (>3 km). Confirming this result, the related individuals were not geographically closer than unrelated ones (W = 188.5; p = 0.339). Thus, we found no evidence of a preference for being close to relatives and observed a tendency for dispersal. The small importance of relatedness in determining spatial distribution of individuals is unusual in mammals, but not unheard of. Finally, non-invasive sampling allowed efficient access to the genetic data, despite the warm and humid climate of the Amazon, which accelerates DNA degradation. PMID:24671057

  5. Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma, Budget Period I, Class Revisit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelkar, Mohan

    2002-04-02

    This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. A geological history that explains the presence of mobile water and oil in the reservoir was proposed. The combination of matrix and fractures in the reservoir explains the reservoir?s flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.

  6. Assessment of the Water Quality Conditions at Ed Zorinsky Reservoir and the Zebra Mussel (Dreissena polymorpha) Population Emerged after the Drawdown of the Reservoir and Management Implications for the District’s Papillion and Salt Creek Reservoirs

    DTIC Science & Technology

    2012-04-23

    organic matter) can be a nutritional source (US Army Corps of Engineers, 2002; Benson & Raikow, 2012). When food resources are limiting, intraspecific...Food and Agriculture Organization of the United Nations mainly for the analysis of fish population length-frequency data (Gayanilo, Sparre, & Pauly... fish kill. The organically -rich sediments at all these reservoirs would place a high sediment-oxygen demand on the drawn down reservoir over the

  7. Analysis and application of classification methods of complex carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Li, Xiongyan; Qin, Ruibao; Ping, Haitao; Wei, Dan; Liu, Xiaomei

    2018-06-01

    There are abundant carbonate reservoirs from the Cenozoic to Mesozoic era in the Middle East. Due to variation in sedimentary environment and diagenetic process of carbonate reservoirs, several porosity types coexist in carbonate reservoirs. As a result, because of the complex lithologies and pore types as well as the impact of microfractures, the pore structure is very complicated. Therefore, it is difficult to accurately calculate the reservoir parameters. In order to accurately evaluate carbonate reservoirs, based on the pore structure evaluation of carbonate reservoirs, the classification methods of carbonate reservoirs are analyzed based on capillary pressure curves and flow units. Based on the capillary pressure curves, although the carbonate reservoirs can be classified, the relationship between porosity and permeability after classification is not ideal. On the basis of the flow units, the high-precision functional relationship between porosity and permeability after classification can be established. Therefore, the carbonate reservoirs can be quantitatively evaluated based on the classification of flow units. In the dolomite reservoirs, the average absolute error of calculated permeability decreases from 15.13 to 7.44 mD. Similarly, the average absolute error of calculated permeability of limestone reservoirs is reduced from 20.33 to 7.37 mD. Only by accurately characterizing pore structures and classifying reservoir types, reservoir parameters could be calculated accurately. Therefore, characterizing pore structures and classifying reservoir types are very important to accurate evaluation of complex carbonate reservoirs in the Middle East.

  8. Feasibility study of rainwater harvesting for domestic use (Case study: West Jakarta rainfall data)

    NASA Astrophysics Data System (ADS)

    Kartolo, Jason; Kusumawati, Elly

    2017-11-01

    Rainwater Harvesting system is one of considerable choice to reduce flood in Jakarta, moreover it helps to reduce main tap water consumption. In this study, rainwater is used for flushing toilet and watering garden for domestic use. Rainwater harvesting system is examined for 60 m2 and 90 m2 housing area, using rainfall data from Cengkareng station in West Jakarta. Two type of rainwater harvesting reservoir is designed, those are ground reservoir and underground reservoir. From the analysis, it finds that 60 m2 house feasible for 1 m3 ground reservoir and 9 m3 underground reservoir. Meanwhile for 90 m2 house 2 m3 tanks ground reservoir and 14 m3 tank underground reservoir is feasible. Underground reservoir retain more water volume so it provide higher rate of water supply. The cost of underground reservoir is lower 60% - 70% than ground reservoir. Even though rainwater harvesting is technically feasible for housing, it is not economically feasible. The construction cost is higher than the benefit of reduced tap water consumption.

  9. Hydrocarbon Reservoir Prediction Using Bi-Gaussian S Transform Based Time-Frequency Analysis Approach

    NASA Astrophysics Data System (ADS)

    Cheng, Z.; Chen, Y.; Liu, Y.; Liu, W.; Zhang, G.

    2015-12-01

    Among those hydrocarbon reservoir detection techniques, the time-frequency analysis based approach is one of the most widely used approaches because of its straightforward indication of low-frequency anomalies from the time-frequency maps, that is to say, the low-frequency bright spots usually indicate the potential hydrocarbon reservoirs. The time-frequency analysis based approach is easy to implement, and more importantly, is usually of high fidelity in reservoir prediction, compared with the state-of-the-art approaches, and thus is of great interest to petroleum geologists, geophysicists, and reservoir engineers. The S transform has been frequently used in obtaining the time-frequency maps because of its better performance in controlling the compromise between the time and frequency resolutions than the alternatives, such as the short-time Fourier transform, Gabor transform, and continuous wavelet transform. The window function used in the majority of previous S transform applications is the symmetric Gaussian window. However, one problem with the symmetric Gaussian window is the degradation of time resolution in the time-frequency map due to the long front taper. In our study, a bi-Gaussian S transform that substitutes the symmetric Gaussian window with an asymmetry bi-Gaussian window is proposed to analyze the multi-channel seismic data in order to predict hydrocarbon reservoirs. The bi-Gaussian window introduces asymmetry in the resultant time-frequency spectrum, with time resolution better in the front direction, as compared with the back direction. It is the first time that the bi-Gaussian S transform is used for analyzing multi-channel post-stack seismic data in order to predict hydrocarbon reservoirs since its invention in 2003. The superiority of the bi-Gaussian S transform over traditional S transform is tested on a real land seismic data example. The performance shows that the enhanced temporal resolution can help us depict more clearly the edge of the hydrocarbon reservoir, especially when the thickness of the reservoir is small (such as the thin beds).

  10. 75 FR 28596 - Bryant Mountain LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... acre-feet and normal water surface elevation of 5500 feet mean sea level; (2) an earthen dam... facility to release water into the stream below the dam; and (4) intake facilities for the power tunnel with facilities to store additional water to provide black start capability. Lower Reservoir (1) Will...

  11. Sedimentologic and reservoir characteristics under the tectono-sequence stratigraphic framework: A case study from the Early Cretaceous, upper Abu Gabra sandstones, Sufyan Sub-basin, Muglad Basin, Sudan

    NASA Astrophysics Data System (ADS)

    Yassin, Mohamed A.; Hariri, Mustafa M.; Abdullatif, Osman M.; Makkawi, M.; Bertotti, G.; Kaminski, Michael A.

    2018-06-01

    The Sufyan Sub-basin is an east-west trending Sub-basin located in the northwestern part of the Muglad Basin, in the eastern extension of the West and Central Africa Rift System (WCARS). Exploration results showed the occurrence of accumulations of hydrocarbon. The source rock for these hydrocarbons is believed to be the lacustrine shale of the Abu Gabra Formation. Fluvio-deltaic sandstones within the Abu Gabra Formation represent the primary reservoir. Depositional and post-depositional processes influence reservoir heterogeneity, quality, and architecture. This study investigates different scales of reservoir heterogeneities from basin to micro scale and discusses the impact of depositional facies and diagenesis on reservoir quality. Approaches include seismic interpretation, seismic attribute analysis, well log analysis, thin sections and scanning electron microscope (SEM) investigations, and X-ray diffraction (XRD) analysis of the Abu Gabra Formation. Sedimentologic interpretation in this study was performed based on core cuttings, well logs, and seismic data. Subsurface facies analysis was analyzed based on the description of six conventional cores from two wells. Seven lithofacies in Abu Gabra Formation are identified. Four types of depositional systems are identified in the studied succession. These are braided delta, fan delta, sublacustrine fan, and lacustrine systems. The sandstone is medium to coarse-grained, poorly to moderately sorted and sub-angular to sub-rounded, sub-feldspathic arenite to quartz arenite. At the basin scale, the Abu Gabra Formation showed different sandstone bodies thickness, geometry, and architecture and are ascribed to different depositional systems. At macro and meso-scales, reservoir quality varies within the Abu Gabra reservoir where it shows progressive coarsening upward tendencies with different degrees of connectivity. The upper part of the reservoir is well connected with amalgamated sandstone bodies, however, the middle to lower parts have moderate to low sandstone body connectivity and amalgamation. At a micro-scale, sandstone reservoir quality is directly affected by texture and diagenesis. The XRD and SEM analyses show that kaolinite and chlorite clay are the common clay minerals in the studied samples. Clay matrix and quartz overgrowth have significantly reduced the reservoir porosity and permeability, while the dissolution of feldspars during the diagenetic process increase it. The estimated porosity in Abu Gabra Formation ranges from 5 to 21% with an average of 13%; while permeability varies from 0.22 to 732 mD with an average of 240 mD. The results of this study contribute to a better understanding of reservoir heterogeneities and help in reservoir quality prediction, therefore enhancing the hydrocarbon productivity.

  12. GPFA-AB_Phase1GeologicReservoirsContentModel10_26_2015.xls

    DOE Data Explorer

    Teresa E. Jordan

    2015-09-30

    This dataset conforms to the Tier 3 Content Model for Geologic Reservoirs Version 1.0. It contains the known hydrocarbon reservoirs within the study area of the GPFA-AB Phase 1 Task 2, Natural Reservoirs Quality Analysis (Project DE-EE0006726). The final values for Reservoir Productivity Index (RPI) and uncertainty (in terms of coefficient of variation, CV) are included. RPI is in units of liters per MegaPascal-second (L/MPa-s), quantified using permeability, thickness of formation, and depth. A higher RPI is more optimal. Coefficient of Variation (CV) is the ratio of the standard deviation to the mean RPI for each reservoir. A lower CV is more optimal. Details on these metrics can be found in the Reservoirs_Methodology_Memo.pdf uploaded to the Geothermal Data Repository Node of the NGDS in October of 2015.

  13. Sediment accumulation and water volume in Loch Raven Reservoir, Baltimore County, Maryland

    USGS Publications Warehouse

    Banks, William S.L.; LaMotte, Andrew E.

    1999-01-01

    Baltimore City and its metropolitan area are supplied with water from three reservoirs, Liberty Reservoir, Prettyboy Reservoir, and Loch Raven Reservoir. Prettyboy and Loch Raven Reservoirs are located on the Gunpowder Falls (figure 1). The many uses of the reservoir system necessitate coordination and communication among resource managers. The 1996 Amendment to the Safe Drinking Water Act require States to complete source-water assessments for public drinking-water supplies. As part of an ongoing effort to provide safe drinking water and as a direct result of these laws, the City of Baltimore and the Maryland Department of the Environment (MDE), in cooperation with other State and local agencies, are studying the Gunpowder Falls Basin and its role as a source of water supply to the Baltimore area. As a part of this study, the U.S. Geological Survey (USGS), in cooperation with the Maryland Geological Survey (MGS), with funding provided by the City of Baltimore and MDE, is examining sediment accumulation in Loch Raven Reservoir. The Baltimore City Department of Public Works periodically determines the amount of water that can be stored in its reservoirs. To make this determination, field crews measure the water depth along predetermined transects or ranges. These transects provide consistent locations where water depth, or bathymetric, measurements can be made. Range surveys are repeated to provide a record of the change in storage capacity due to sediment accumulation over time. Previous bathymetric surveys of Loch Raven Reservoir were performed in 1943, 1961, 1972, and 1985. Errors in data-collection and analysis methods have been assessed and documented (Baltimore City Department of Public Works, 1989). Few comparisons can be made among survey results because of changing data-collection techniques and analysis methods.

  14. Facies Modeling Using 3D Pre-Stack Simultaneous Seismic Inversion and Multi-Attribute Probability Neural Network Transform in the Wattenberg Field, Colorado

    NASA Astrophysics Data System (ADS)

    Harryandi, Sheila

    The Niobrara/Codell unconventional tight reservoir play at Wattenberg Field, Colorado has potentially two billion barrels of oil equivalent requiring hundreds of wells to access this resource. The Reservoir Characterization Project (RCP), in conjunction with Anadarko Petroleum Corporation (APC), began reservoir characterization research to determine how to increase reservoir recovery while maximizing operational efficiency. Past research results indicate that targeting the highest rock quality within the reservoir section for hydraulic fracturing is optimal for improving horizontal well stimulation through multi-stage hydraulic fracturing. The reservoir is highly heterogeneous, consisting of alternating chalks and marls. Modeling the facies within the reservoir is very important to be able to capture the heterogeneity at the well-bore scale; this heterogeneity is then upscaled from the borehole scale to the seismic scale to distribute the heterogeneity in the inter-well space. I performed facies clustering analysis to create several facies defining the reservoir interval in the RCP Wattenberg Field study area. Each facies can be expressed in terms of a range of rock property values from wells obtained by cluster analysis. I used the facies classification from the wells to guide the pre-stack seismic inversion and multi-attribute transform. The seismic data extended the facies information and rock quality information from the wells. By obtaining this information from the 3D facies model, I generated a facies volume capturing the reservoir heterogeneity throughout a ten square mile study-area within the field area. Recommendations are made based on the facies modeling, which include the location for future hydraulic fracturing/re-fracturing treatments to improve recovery from the reservoir, and potential deeper intervals for future exploration drilling targets.

  15. T-F and S/DOE Gladys McCall No. 1 well, Cameron Parish, Louisiana. Geopressured-geothermal well report, Volume II. Well workover and production testing, February 1982-October 1985. Final report. Appendices 1-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    These appendices contain the following reports: (1) investigation of coupling failure from the Gladys McCall No. 1 well; (2) failure analysis - oil well casing coupling; (3) technical remedial requirements for 5-inch production tubing string; (4) reservoir limit test data for sand zone No. 9; (5) reservoir fluid study - sand zone No. 9; (6) engineering interpretation of exploration drawdown tests; and (7) reservoir analysis. (ACR)

  16. Vertical and temporal dynamics of cyanobacteria in the Carpina potable water reservoir in northeastern Brazil.

    PubMed

    Moura, A N; Dantas, E W; Oliveira, H S B; Bittencourt-Oliveira, M C

    2011-05-01

    This study analysed vertical and temporal variations of cyanobacteria in a potable water supply in northeastern Brazil. Samples were collected from four reservoir depths in the four months; September and December 2007; and March and June 2008. The water samples for the determination of nutrients and cyanobacteria were collected using a horizontal van Dorn bottle. The samples were preserved in 4% formaldehyde for taxonomic analysis using an optical microscope, and water aliquots were preserved in acetic Lugol solution for determination of density using an inverted microscope. High water temperatures, alkaline pH, low transparency, high phosphorous content and limited nitrogen content were found throughout the study. Dissolved oxygen stratification occurred throughout the study period whereas temperature stratification occurred in all sampling months, with the exception of June. No significant vertical differences were recorded for turbidity or total and dissolved forms of nutrients. There were high levels of biomass arising from Planktothrix agardhii, Cylindrospermopsis raciborskii, Geitlerinema amphibium and Pseudanabaena catenata. The study demonstrates that, in a tropical eutrophic environment with high temperatures throughout the water column, perennial multi-species cyanobacterial blooms, formed by species capable of regulating their position in the water column (those that have gas vesicles for buoyancy), are dominant in the photic and aphotic strata.

  17. Livelihood analysis of floating net cages fish farmers at Sendang Village Sub-district of Gajah Mungkur Reservoir of Wonogiri Regency

    NASA Astrophysics Data System (ADS)

    Nissa, Z. N. A.; Suadi; Sukardi

    2018-03-01

    Floating net cages farming (KJA) is one of the main livelihood resources in Sendang Village, Gajah Mungkur Reservoir. The purposes of this study were to determine the livelihood asset of fish farmers, the problems of livelihood asset management and the utilization strategy to support aquaculture businesses also farmers livelihood. The study showed that the natural capital, provides easiest way to farmer in fish cultivation. The fish farmers also have good technical capabilities in fish cultivation and the product has high demand and value which is essential for farmers livelihood. The main problems faced by small-scale farmers and all large-scale farmers were transition period, and the rise of cost price which sometime cause the failure in the business. The strategies to deal the problems include technological adjustment, managing the pattern of stocking of tilapia seeds and income source diversification. There were differences in dealing the rise of cost. The small-scale farmers borrow from the bank, while medium-scale farmers use their savings. Another difference of livelihood strategy was the management of financial capital. However, various strategies were still required to increase the livelihood of fish farmers and could address the vulnerabilities in the cultivation of KJA as a common pool resources.

  18. Anaerobic thermophilic bacteria isolated from a Venezuelan oil field and its potential use in microbial improved oil recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trebbau, G.; Fernandez, B.; Marin, A.

    1995-12-31

    The objective of this work is to determine the ability of indigenous bacteria from a Venezuelan oil field to grow under reservoir conditions inside a porous media, and to produce metabolites capable of recovering residual crude oil. For this purpose, samples of formation waters from a central-eastern Venezuelan oil reservoir were enriched with different carbon sources and a mineral basal media. Formation water was used as a source of trace metals. The enrichments obtained were incubated at reservoir temperature (71{degrees}C), reservoir pressure (1,200 psi), and under anaerobic conditions for both outside and inside porous media (Berea core). Growth and metabolicmore » activity was followed outside porous media by measuring absorbance at 660 nm, increases in pressure, and decreases in pH. Inside porous media bacterial activity was determined by visual examination of the produced waters (gas bubbles and bacterial cells). All the carbohydrates tested outside porous media showed good growth at reservoir conditions. The pH was lowered, gases such as CO{sub 2} and CH{sub 4} were identified by GC. Surface tension was lowered in some enrichments by 30% when compared to controls. Growth was decreased inside porous media, but gases were produced and helped displace oil. In addition, 10% residual oil was recovered from the Berea core. Mathematical modeling was applied to the laboratory coreflood experiment to evaluate the reproducibility of the results obtained.« less

  19. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs.

    PubMed

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  20. Microbial Diversity and Toxin Risk in Tropical Freshwater Reservoirs of Cape Verde.

    PubMed

    Semedo-Aguiar, Ana P; Pereira-Leal, Jose B; Leite, Ricardo B

    2018-05-05

    The Cape Verde islands are part of the African Sahelian arid belt that possesses an erratic rain pattern prompting the need for water reservoirs, which are now critical for the country’s sustainability. Worldwide, freshwater cyanobacterial blooms are increasing in frequency due to global climate change and the eutrophication of water bodies, particularly in reservoirs. To date, there have been no risk assessments of cyanobacterial toxin production in these man-made structures. We evaluated this potential risk using 16S rRNA gene amplicon sequencing and full metagenome sequencing in freshwater reservoirs of Cape Verde. Our analysis revealed the presence of several potentially toxic cyanobacterial genera in all sampled reservoirs. Faveta potentially toxic and bloom-forming Microcystis sp., dominated our samples, while a Cryptomonas green algae and Gammaproteobacteria dominated Saquinho and Poilão reservoirs. We reconstructed and assembled the Microcystis genome, extracted from the metagenome of bulk DNA from Faveta water. Phylogenetic analysis of Microcystis cf. aeruginosa CV01’s genome revealed its close relationship with other Microcystis genomes, as well as clustering with other continental African strains, suggesting geographical coherency. In addition, it revealed several clusters of known toxin-producing genes. This survey reinforces the need to better understand the country’s microbial ecology as a whole of water reservoirs on the rise.

  1. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs

    PubMed Central

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing. PMID:25966285

  2. Microbial Diversity and Toxin Risk in Tropical Freshwater Reservoirs of Cape Verde

    PubMed Central

    Pereira-Leal, Jose B.

    2018-01-01

    The Cape Verde islands are part of the African Sahelian arid belt that possesses an erratic rain pattern prompting the need for water reservoirs, which are now critical for the country’s sustainability. Worldwide, freshwater cyanobacterial blooms are increasing in frequency due to global climate change and the eutrophication of water bodies, particularly in reservoirs. To date, there have been no risk assessments of cyanobacterial toxin production in these man-made structures. We evaluated this potential risk using 16S rRNA gene amplicon sequencing and full metagenome sequencing in freshwater reservoirs of Cape Verde. Our analysis revealed the presence of several potentially toxic cyanobacterial genera in all sampled reservoirs. Faveta potentially toxic and bloom-forming Microcystis sp., dominated our samples, while a Cryptomonas green algae and Gammaproteobacteria dominated Saquinho and Poilão reservoirs. We reconstructed and assembled the Microcystis genome, extracted from the metagenome of bulk DNA from Faveta water. Phylogenetic analysis of Microcystis cf. aeruginosa CV01’s genome revealed its close relationship with other Microcystis genomes, as well as clustering with other continental African strains, suggesting geographical coherency. In addition, it revealed several clusters of known toxin-producing genes. This survey reinforces the need to better understand the country’s microbial ecology as a whole of water reservoirs on the rise. PMID:29734762

  3. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity.

    PubMed

    Zhang, Guojie; Cowled, Christopher; Shi, Zhengli; Huang, Zhiyong; Bishop-Lilly, Kimberly A; Fang, Xiaodong; Wynne, James W; Xiong, Zhiqiang; Baker, Michelle L; Zhao, Wei; Tachedjian, Mary; Zhu, Yabing; Zhou, Peng; Jiang, Xuanting; Ng, Justin; Yang, Lan; Wu, Lijun; Xiao, Jin; Feng, Yue; Chen, Yuanxin; Sun, Xiaoqing; Zhang, Yong; Marsh, Glenn A; Crameri, Gary; Broder, Christopher C; Frey, Kenneth G; Wang, Lin-Fa; Wang, Jun

    2013-01-25

    Bats are the only mammals capable of sustained flight and are notorious reservoir hosts for some of the world's most highly pathogenic viruses, including Nipah, Hendra, Ebola, and severe acute respiratory syndrome (SARS). To identify genetic changes associated with the development of bat-specific traits, we performed whole-genome sequencing and comparative analyses of two distantly related species, fruit bat Pteropus alecto and insectivorous bat Myotis davidii. We discovered an unexpected concentration of positively selected genes in the DNA damage checkpoint and nuclear factor κB pathways that may be related to the origin of flight, as well as expansion and contraction of important gene families. Comparison of bat genomes with other mammalian species has provided new insights into bat biology and evolution.

  4. Sediment deposition and trends and transport of phosphorus and other chemical constituents, Cheney Reservoir watershed, south-central Kansas

    USGS Publications Warehouse

    Mau, D.P.

    2001-01-01

    Sediment deposition, water-quality trends, and mass transport of phosphorus, nitrogen, selected trace elements, and selected pesticides within the Cheney Reservoir watershed in south-central Kansas were investigated using bathymetric survey data and reservoir bottom-sediment cores. Sediment loads in the reservoir were investigated by comparing 1964 topographic data to 1998 bathymetric survey data. Approximately 7,100 acre-feet of sediment deposition occurred in Cheney Reservoir from 1965 through 1998. As of 1998, sediment had filled 27 percent of the reservoir's inactive conservation storage pool, which is less than the design estimate of 34 percent. Mean annual sediment deposition was 209 acre-feet per year, or 0.22 acre-feet per year per square mile, and the mean annual sediment load was 453 million pounds per year. During the 3-year period from 1997 through 1999, 23 sediment cores were collected from the reservoir, and subsamples were analyzed for nutrients (phosphorus and nitrogen species), selected trace elements, and selected organic pesticides. Mean concentrations of total phosphorus in reservoir bottom sediment ranged from 94 milligrams per kilogram at the upstream end of the reservoir to 710 milligrams per kilogram farther downstream near the reservoir dam. The mean concentration for all sites was 480 milligrams per kilogram. Total phosphorus concentrations were greatest when more silt- and clay-sized particles were present. The implications are that if anoxic conditions (inadequate oxygen) occur near the dam, phosphorus could be released from the sediment and affect the drinking-water supply. Analysis of selected cores also indicates that total phosphorus concentrations in the reservoir sediment increased over time and were probably the result of nonpoint-source activities in the watershed, such as increased fertilizer use and livestock production. Mean annual phosphorus loading to Cheney Reservoir was estimated to be 226,000 pounds per year on the basis of calculations from deposited sediment in the reservoir. Mean total phosphorus concentration in the surface-water inflow to Cheney Reservoir was 0.76 milligram per liter, mean annual phosphorus yield of the watershed was estimated to be 0.38 pound per year per acre, and both are based on sediment deposition in the reservoir. A comparison of the Cheney Reservoir watershed to the Webster Reservoir, Tuttle Creek Lake, and Hillsdale Lake watersheds showed that phosphorus yields were smallest in the Webster Reservoir watershed where precipitation was less than in the other watersheds. Mean concentrations of total ammonia plus organic nitrogen in bottom sediment from Cheney Reservoir ranged from 1,200 to 2,400 milligrams per kilogram as nitrogen. A regression analysis between total ammonia plus organic nitrogen as nitrogen and sediment particle size showed a strong relation between the two variables and suggests, as with phosphorus, that total ammonia plus organic nitrogen as nitrogen adsorbs to the silt- and clay-sized particles that are transported to the deeper parts of the reservoir. An analysis of trends with depth of total ammonia plus organic nitrogen as nitrogen did not indicate a strong relation between the two variables despite the increase in fertilizer use in the watershed during the past 40 years. Selected cores were analyzed for trace elements. Concentrations of arsenic, chromium, copper, and nickel at many sites exceeded levels where adverse effects on aquatic organisms sometimes occur. Larger concentrations of these elements also occurred in sediment closer to the reservoir dam where there is a larger percentage of silt and clay in the bottom sediment than farther upstream. However, the lack of industrial or commercial land use in the watershed suggests that these concentrations may be the result of natural conditions. Organochlorine insecticides were detected in the reservoir-bottom sediment in Cheney Reservoir. DDT and its degradation products DDD and DD

  5. Drainage-system development in consecutive melt seasons at a polythermal, Arctic glacier, evaluated by flow-recession analysis and linear-reservoir simulation.

    PubMed

    Hodgkins, Richard; Cooper, Richard; Tranter, Martyn; Wadham, Jemma

    2013-07-26

    [1] The drainage systems of polythermal glaciers play an important role in high-latitude hydrology, and are determinants of ice flow rate. Flow-recession analysis and linear-reservoir simulation of runoff time series are here used to evaluate seasonal and inter-annual variability in the drainage system of the polythermal Finsterwalderbreen, Svalbard, in 1999 and 2000. Linear-flow recessions are pervasive, with mean coefficients of a fast reservoir varying from 16 (1999) to 41 h (2000), and mean coefficients of an intermittent, slow reservoir varying from 54 (1999) to 114 h (2000). Drainage-system efficiency is greater overall in the first of the two seasons, the simplest explanation of which is more rapid depletion of the snow cover. Reservoir coefficients generally decline during each season (at 0.22 h d -1 in 1999 and 0.52 h d -1 in 2000), denoting an increase in drainage efficiency. However, coefficients do not exhibit a consistent relationship with discharge. Finsterwalderbreen therefore appears to behave as an intermediate case between temperate glaciers and other polythermal glaciers with smaller proportions of temperate ice. Linear-reservoir runoff simulations exhibit limited sensitivity to a relatively wide range of reservoir coefficients, although the use of fixed coefficients in a spatially lumped model can generate significant subseasonal error. At Finsterwalderbreen, an ice-marginal channel with the characteristics of a fast reservoir, and a subglacial upwelling with the characteristics of a slow reservoir, both route meltwater to the terminus. This suggests that drainage-system components of significantly contrasting efficiencies can coexist spatially and temporally at polythermal glaciers.

  6. Use of frequency analysis and the extended streamflow prediction procedure to estimate evacuation dates for the joint-use pool of Pueblo Reservoir, Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard; Nickless, R.C.

    1994-01-01

    Part of the storage space of Pueblo Reservoir consists of a 65,950 acre-foot joint-use pool (JUP) that can be used to provide additional conservation capacity from November 1 to April 14; however, the JUP must be evacuated by April 15 and used only for flood-control capacity until November 1. A study was completed to determine if the JUP possibly could be used for conservation storage for any number of days from April 15 through May 14 under certain hydrologic conditions. The methods of the study were: (1) Frequency analysis of recorded daily mean discharge data for streamflow-gaging stations upstream and downstream from Pueblo Reservoir, and (2) Implementation of the extended streamflow prediction (ESP) procedure for the Arkansas River basin upstream from the reservoir. The frequency analyses enabled estimation of daily discharges at selected exceedance probabilities (EP's), including the 0.01 EP that was used in design of the flood- storage capacity of Pueblo Reservoir. The ESP procedure enabled probabilistic forecasts of inflow volume to the reservoir for April 15 through May 14. Daily discharges derived from the frequency analyses were routed through Pueblo Reservoir to estimate evacuation dates of the JUP for different reservoir inflow volumes; the estimates indicated a relation between the inflow volume and the JUP evacuation date. To apply the study results, only a ESP forecast of the April 15-May 14 reservoir inflow volume is needed. Study results indicate the JUP possibly could be used as late as May 5 depending on the forecast inflow volume.

  7. Level-set techniques for facies identification in reservoir modeling

    NASA Astrophysics Data System (ADS)

    Iglesias, Marco A.; McLaughlin, Dennis

    2011-03-01

    In this paper we investigate the application of level-set techniques for facies identification in reservoir models. The identification of facies is a geometrical inverse ill-posed problem that we formulate in terms of shape optimization. The goal is to find a region (a geologic facies) that minimizes the misfit between predicted and measured data from an oil-water reservoir. In order to address the shape optimization problem, we present a novel application of the level-set iterative framework developed by Burger in (2002 Interfaces Free Bound. 5 301-29 2004 Inverse Problems 20 259-82) for inverse obstacle problems. The optimization is constrained by (the reservoir model) a nonlinear large-scale system of PDEs that describes the reservoir dynamics. We reformulate this reservoir model in a weak (integral) form whose shape derivative can be formally computed from standard results of shape calculus. At each iteration of the scheme, the current estimate of the shape derivative is utilized to define a velocity in the level-set equation. The proper selection of this velocity ensures that the new shape decreases the cost functional. We present results of facies identification where the velocity is computed with the gradient-based (GB) approach of Burger (2002) and the Levenberg-Marquardt (LM) technique of Burger (2004). While an adjoint formulation allows the straightforward application of the GB approach, the LM technique requires the computation of the large-scale Karush-Kuhn-Tucker system that arises at each iteration of the scheme. We efficiently solve this system by means of the representer method. We present some synthetic experiments to show and compare the capabilities and limitations of the proposed implementations of level-set techniques for the identification of geologic facies.

  8. An Analysis Model for Water Cone Subsidence in Bottom Water Drive Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Xu, Hui; Wu, Shucheng; Yang, Chao; Kong, lingxiao; Zeng, Baoquan; Xu, Haixia; Qu, Tailai

    2017-12-01

    Water coning in bottom water drive reservoirs, which will result in earlier water breakthrough, rapid increase in water cut and low recovery level, has drawn tremendous attention in petroleum engineering field. As one simple and effective method to inhibit bottom water coning, shut-in coning control is usually preferred in oilfield to control the water cone and furthermore to enhance economic performance. However, most of the water coning researchers just have been done on investigation of the coning behavior as it grows up, the reported studies for water cone subsidence are very scarce. The goal of this work is to present an analytical model for water cone subsidence to analyze the subsidence of water cone when the well shut in. Based on Dupuit critical oil production rate formula, an analytical model is developed to estimate the initial water cone shape at the point of critical drawdown. Then, with the initial water cone shape equation, we propose an analysis model for water cone subsidence in bottom water reservoir reservoirs. Model analysis and several sensitivity studies are conducted. This work presents accurate and fast analytical model to perform the water cone subsidence in bottom water drive reservoirs. To consider the recent interests in development of bottom drive reservoirs, our approach provides a promising technique for better understanding the subsidence of water cone.

  9. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Second annual technical progress report, October 1, 1996--September 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-09-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration in the US Department of Energy Class III Program. Advanced reservoir characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir description was too simplistic to capture the critical features of this complex formation. As a result of the analysis, a proposed pilot area was reconsidered. Comparison of seismic data and engineering data have shownmore » evidence of discontinuities in the area surrounding the proposed injector. Analysis of the 3-D seismic has shown that wells in the proposed pilot are in an area of poor quality amplitude development. The implication is that since amplitude attenuation is a function of porosity, then this is not the best area to be attempting a pilot pressure maintenance project. Because the original pilot area appears to be compartmentalized, the lateral continuity between the pilot wells could be reduced. The 3-D seismic interpretation indicates other areas may be better suited for the initial pilot area. Therefore, the current focus has shifted more to targeted drilling, and the pilot injection will be considered in a more continuous area of the NDP in the future. Results of reservoir simulation studies indicate that pressure maintenance should be started early when reservoir pressure is still high.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallenbeck, L.D.; Harpole, K.J.; Gerard, M.G.

    The work reported here covers Budget Phase I of the project. The principal tasks in Budget Phase I are the Reservoir Analysis and Characterization Task and the Advanced Technology Definition Task. Completion of these tasks have enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed and evaluated from an economic and risk analysis standpoint. Field implementation of the project has been recommended to the working interest owner of the South Cowden Unit (SCU) and approval has been obtained. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the projectmore » in the best productivity area of the field. An innovative CO{sub 2} purchase agreement (no take or pay requirements, CO{sub 2} purchase price tied to West Texas Intermediate crude oil price) and gas recycle agreements (expensing cost as opposed to large capital investments for compression) were negotiated to further improve project economics. A detailed reservoir characterization study was completed by an integrated team of geoscientists and engineers. The study consisted of detailed core description, integration of log response to core descriptions, mapping of the major flow units, evaluation of porosity and permeability relationships, geostatistical analysis of permeability trends, and direct integration of reservoir performance with the geological interpretation. The study methodology fostered iterative bidirectional feedback between the reservoir characterization team and the reservoir engineering/simulation team to allow simultaneous refinement and convergence of the geological interpretation with the reservoir model. The fundamental conclusion from the study is that South Cowden exhibits favorable enhanced oil recovery characteristics, particularly reservoir quality and continuity.« less

  11. Application of particle and lattice codes to simulation of hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Damjanac, Branko; Detournay, Christine; Cundall, Peter A.

    2016-04-01

    With the development of unconventional oil and gas reservoirs over the last 15 years, the understanding and capability to model the propagation of hydraulic fractures in inhomogeneous and naturally fractured reservoirs has become very important for the petroleum industry (but also for some other industries like mining and geothermal). Particle-based models provide advantages over other models and solutions for the simulation of fracturing of rock masses that cannot be assumed to be continuous and homogeneous. It has been demonstrated (Potyondy and Cundall Int J Rock Mech Min Sci Geomech Abstr 41:1329-1364, 2004) that particle models based on a simple force criterion for fracture propagation match theoretical solutions and scale effects derived using the principles of linear elastic fracture mechanics (LEFM). The challenge is how to apply these models effectively (i.e., with acceptable models sizes and computer run times) to the coupled hydro-mechanical problems of relevant time and length scales for practical field applications (i.e., reservoir scale and hours of injection time). A formulation of a fully coupled hydro-mechanical particle-based model and its application to the simulation of hydraulic treatment of unconventional reservoirs are presented. Model validation by comparing with available analytical asymptotic solutions (penny-shape crack) and some examples of field application (e.g., interaction with DFN) are also included.

  12. Preparation System and Method

    NASA Technical Reports Server (NTRS)

    Zhang, Ye (Inventor); Wu, Honglu (Inventor)

    2015-01-01

    Systems and methods for preparing a sample for further analysis are provided. The system can include an enclosure. A membrane can be disposed within the enclosure. First and second reservoirs can be disposed within the enclosure, and at least one of the first and second reservoirs can be adapted to have a reagent disposed therein. A valve can be disposed within the enclosure and in fluid communication with the first or second reservoirs or both. The valve can also be in fluid communication with the membrane. The valve can be adapted to selectively regulate the flow of the reagent from the first reservoir, through the membrane, and into the second reservoir.

  13. Estimation of anisotropy parameters in organic-rich shale: Rock physics forward modeling approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herawati, Ida, E-mail: ida.herawati@students.itb.ac.id; Winardhi, Sonny; Priyono, Awali

    Anisotropy analysis becomes an important step in processing and interpretation of seismic data. One of the most important things in anisotropy analysis is anisotropy parameter estimation which can be estimated using well data, core data or seismic data. In seismic data, anisotropy parameter calculation is generally based on velocity moveout analysis. However, the accuracy depends on data quality, available offset, and velocity moveout picking. Anisotropy estimation using seismic data is needed to obtain wide coverage of particular layer anisotropy. In anisotropic reservoir, analysis of anisotropy parameters also helps us to better understand the reservoir characteristics. Anisotropy parameters, especially ε, aremore » related to rock property and lithology determination. Current research aims to estimate anisotropy parameter from seismic data and integrate well data with case study in potential shale gas reservoir. Due to complexity in organic-rich shale reservoir, extensive study from different disciplines is needed to understand the reservoir. Shale itself has intrinsic anisotropy caused by lamination of their formed minerals. In order to link rock physic with seismic response, it is necessary to build forward modeling in organic-rich shale. This paper focuses on studying relationship between reservoir properties such as clay content, porosity and total organic content with anisotropy. Organic content which defines prospectivity of shale gas can be considered as solid background or solid inclusion or both. From the forward modeling result, it is shown that organic matter presence increases anisotropy in shale. The relationships between total organic content and other seismic properties such as acoustic impedance and Vp/Vs are also presented.« less

  14. Mathematical modeling and simulation analysis of hydraulic fracture propagation in three-layered poro-elastic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, H.Y.; Advani, S.H.; Lee, T.S.

    1992-11-01

    Hydraulic fracturing plays a pivotal role in the enhancement of oil and gas production recovery from low permeability reservoirs. The process of hydraulic fracturing entails the generation of a fracture by pumping fluids blended with special chemicals and proppants into the payzone at high injection rates and pressures to extend and wedge fractures. The mathematical modeling of hydraulically induced fractures generally incorporates coupling between the formation elasticity, fracture fluid flow, and fracture mechanics equations governing the formation structural responses, fluid pressure profile, and fracture growth. Two allied unsymmetric elliptic fracture models are developed for fracture configuration evolutions in three-layered rockmore » formations. The first approach is based on a Lagrangian formulation incorporating pertinent energy components associated with the formation structural responses and fracture fluid flow. The second model is based on a generalized variational principle, introducing an energy rate related functional. These models initially simulate a penny-shaped fracture, which becomes elliptic if the crack tips encounters (upper and/or lower) barriers with differential reservoir properties (in situ stresses, 16 elastic moduli, and fracture toughness-contrasts and fluid leak-off characteristics). The energy rate component magnitudes are determined to interpret the governing hydraulic fracture mechanisms during fracture evolution. The variational principle is extended to study the phenomenon and consequences of fluid lag in fractures. Finally, parametric sensitivity and energy rate investigations to evaluate the roles of controllable hydraulic treatment variables and uncontrollable reservoir property characterization parameters are performed. The presented field applications demonstrate the overall capabilities of the developed models. These studies provide stimulation treatment guidelines for fracture configuration design, control, and optimization.« less

  15. Numerical analysis for electrokinetic soil processing enhanced by chemical conditioning of the electrode reservoirs.

    PubMed

    Park, Jin-Soo; Kim, Soon-Oh; Kim, Kyoung-Woong; Kim, Byung Ro; Moon, Seung-Hyeon

    2003-04-04

    A numerical analysis was undertaken for enhanced electrokinetic soil processing. To perform chemical conditioning of the electrode reservoirs, the electrokinetic soil process employed a membrane as a barrier between the electrode reservoirs and the contaminated soil. An alkaline solution was purged in the anode reservoir that was bounded by the membrane. A mathematical model was used for demonstration of pH change and phenol removal from a kaolinite soil bed, the prediction of pH variations in both electrode reservoirs, and the determination of an optimized injection time of the anode-purging solution. The time-dependent dispersion coefficient was employed in consideration of the averaging effect of the velocity profile on a one-dimensional transport. The estimation of pH and phenol profiles in the soil bed reasonably agreed with the experimental data. The simulation revealed that the removal efficiency of phenol from the kaolinite soil could be improved by maintaining pH of the anode solution.

  16. Effects of May through July 2015 storm events on suspended sediment loads, sediment trapping efficiency, and storage capacity of John Redmond Reservoir, east-central Kansas

    USGS Publications Warehouse

    Foster, Guy M.

    2016-06-20

    The U.S. Geological Survey, in cooperation with the Kansas Water Office, computed the suspended-sediment inflows and retention in John Redmond Reservoir during May through July 2015. Computations relied upon previously published turbidity-suspended sediment relations at water-quality monitoring sites located upstream and downstream from the reservoir. During the 3-month period, approximately 872,000 tons of sediment entered the reservoir, and 57,000 tons were released through the reservoir outlet. The average monthly trapping efficiency during this period was 93 percent, and monthly averages ranged from 83 to 97 percent. During the study period, an estimated 980 acre-feet of storage was lost, over 2.4 times the design annual sedimentation rate of the reservoir. Storm inflows during the 3-month analysis period reduced reservoir storage in the conservation pool approximately 1.6 percent. This indicates that large inflows, coupled with minimal releases, can have substantial effects on reservoir storage and lifespan.

  17. Research Note:An approach to integrated assessement of reservoir siltation: the Joaquín Costa reservoir as a case study

    NASA Astrophysics Data System (ADS)

    Navas, A.; Valero Garcés, B.; Machín, J.

    In 1932, the Esera river was dammed at the foothills of the Pyrenean External Ranges; since then, sedimentation has reduced its water storage capacity by a third. This study of the sediments in the Joaquín Costa reservoir has been based on detailed sedimentological examination and other analysis of mineralogy, grain size distribution and the chemical components of the materials accumulated at the bottom of the reservoir. Interpretations are based on results from four sediment cores collected at sites representative of the main environments in the reservoir. Records of known flood events and of reservoir management data have been combined with a 137Cs-derived chronology. Thus, it has been possible to ascribe the sedimentary record at the different reservoir environments to specific years, as well as some main changes in the facies types and sediment components. This methodology is a first approach to assessing siltation processes and dynamics in Mediterranean mountain reservoirs.

  18. Sensitivity Analysis of Methane Hydrate Reservoirs: Effects of Reservoir Parameters on Gas Productivity and Economics

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.

    2008-12-01

    This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP) for natural gas is approximately 7/mcf and for warmer and deeper reservoirs the BEP can approach 5.33/mcf.

  19. A pragmatic method for estimating seepage losses for small reservoirs with application in rural India

    NASA Astrophysics Data System (ADS)

    Oblinger, Jennifer A.; Moysey, Stephen M. J.; Ravindrinath, Rangoori; Guha, Chiranjit

    2010-05-01

    SummaryThe informal construction of small dams to capture runoff and artificially recharge ground water is a widespread strategy for dealing with water scarcity. A lack of technical capacity for the formal characterization of these systems, however, is often an impediment to the implementation of effective watershed management practices. Monitoring changes in reservoir storage provides a conceptually simple approach to quantify seepage, but does not account for the losses occurring when seepage is balanced by inflows to the reservoir and the stage remains approximately constant. To overcome this problem we evaluate whether a physically-based volume balance model that explicitly represents watershed processes, including reservoir inflows, can be constrained by a limited set of data readily collected by non-experts, specifically records of reservoir stage, rainfall, and evaporation. To assess the impact of parameter non-uniqueness associated with the calibration of the non-linear model, we perform a Monte Carlo analysis to quantify uncertainty in the total volume of water contributed to the subsurface by the 2007 monsoon for a dam located in the Deccan basalts near the village of Salri in Madhya Pradesh, India. The Monte Carlo analysis demonstrated that subsurface losses from the reservoir could be constrained with the available data, but additional measurements are required to constrain reservoir inflows. Our estimate of seepage from the reservoir (7.0 ± 0.6 × 10 4 m 3) is 3.5 times greater than the recharge volume estimated by considering reservoir volume changes alone. This result suggests that artificial recharge could be significantly underestimated when reservoir inflows are not explicitly included in models. Our seepage estimate also accounts for about 11% of rainfall occurring upstream of the dam and is comparable in magnitude to natural ground water recharge, thereby indicating that the reservoir plays a significant role in the hydrology of this small watershed.

  20. Geochemical analysis of reservoir continuity and connectivity, Arab-D and Hanifa Reservoirs, Abqaiq Field, Saudia Arabia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahdi, A.A.; Grover, G.; Hwang, R.

    1995-08-01

    Organic geochemistry and its integration with geologic and reservoir engineering data is becoming increasingly utilized to assist geologists and petroleum engineers in solving production related problems. In Abqaiq Field of eastern Saudi Arabia, gas chromatographic analysis (FSCOT) of produced oils from the Arab-D and Hanifa reservoirs was used to evaluate vertical and lateral continuity within and between these reservoirs. Bulk and molecular properties of produced Arab-D oils do not vary significantly over the 70 km length and 10 km width of the reservoir. Hanifa oils, however, do reflect two compositionally distinct populations that are hot in lateral communication, compatible withmore » the occurrence of a large oil pool in the southern part of the field, and a separate, and smaller northern accumulation. The Arab-D and underlying Hanifa oil pools are separated by over 450 feet of impermeable carbonates of the Jubaila Formation, yet the Southern Hanifa pool and the Arab-D have been in pressure communication since onset of Hanifa production in 1954. Recent borehole imaging and core data from horizontal Hanifa wells confirmed the long suspected occurrence of fractures responsible for fluid transmissibility within the porous (up to 35%) but tight (<10md matrix K) Hanifa reservoir, and between the Hanifa and Arab-D. The nearly identical hydrocarbon composition of oils from the Arab-D and southern Hanifa pool provided the final confirmation of fluid communication between the two reservoirs, and extension of a Hanifa fracture-fault network via the Jubaila Formation. This work lead to acquisition of 3-D seismic to image and map the fracture-fault system. The molecular fingerprinting approach demonstrated that produced oils can be used to evaluate vertical and lateral reservoir continuity, and at Abqaiq Field confirmed, in part, the need to produce the Hanifa reservoir via horizontal wells to arrest the reservoir communication that occurs with existing vertical wells.« less

  1. QUANTITATIVE METHODS FOR RESERVOIR CHARACTERIZATION AND IMPROVED RECOVERY: APPLICATION TO HEAVY OIL SANDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James W. Castle; Fred J. Molz; Ronald W. Falta

    2002-10-30

    Improved prediction of interwell reservoir heterogeneity has the potential to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involves application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation, particularly in heavy oil sands. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field. Observations of lateral variabilitymore » and vertical sequences observed in Temblor Formation outcrops has led to a better understanding of reservoir geology in West Coalinga Field. Based on the characteristics of stratigraphic bounding surfaces in the outcrops, these surfaces were identified in the subsurface using cores and logs. The bounding surfaces were mapped and then used as reference horizons in the reservoir modeling. Facies groups and facies tracts were recognized from outcrops and cores of the Temblor Formation and were applied to defining the stratigraphic framework and facies architecture for building 3D geological models. The following facies tracts were recognized: incised valley, estuarine, tide- to wave-dominated shoreline, diatomite, and subtidal. A new minipermeameter probe, which has important advantages over previous methods of measuring outcrop permeability, was developed during this project. The device, which measures permeability at the distal end of a small drillhole, avoids surface weathering effects and provides a superior seal compared with previous methods for measuring outcrop permeability. The new probe was used successfully for obtaining a high-quality permeability data set from an outcrop in southern Utah. Results obtained from analyzing the fractal structure of permeability data collected from the southern Utah outcrop and from core permeability data provided by Chevron from West Coalinga Field were used in distributing permeability values in 3D reservoir models. Spectral analyses and the Double Trace Moment method (Lavallee et al., 1991) were used to analyze the scaling and multifractality of permeability data from cores from West Coalinga Field. T2VOC, which is a numerical flow simulator capable of modeling multiphase, multi-component, nonisothermal flow, was used to model steam injection and oil production for a portion of section 36D in West Coalinga Field. The layer structure and permeability distributions of different models, including facies group, facies tract, and fractal permeability models, were incorporated into the numerical flow simulator. The injection and production histories of wells in the study area were modeled, including shutdowns and the occasional conversion of production wells to steam injection wells. The framework provided by facies groups provides a more realistic representation of the reservoir conditions than facies tracts, which is revealed by a comparison of the history-matching for the oil production. Permeability distributions obtained using the fractal results predict the high degree of heterogeneity within the reservoir sands of West Coalinga Field. The modeling results indicate that predictions of oil production are strongly influenced by the geologic framework and by the boundary conditions. The permeability data collected from the southern Utah outcrop, support a new concept for representing natural heterogeneity, which is called the fractal/facies concept. This hypothesis is one of the few potentially simplifying concepts to emerge from recent studies of geological heterogeneity. Further investigation of this concept should be done to more fully apply fractal analysis to reservoir modeling and simulation. Additional outcrop permeability data sets and further analysis of the data from distinct facies will be needed in order to fully develop this new concept.« less

  2. Applications and benefits of technology in naturally fractured, low permeability reservoirs with special emphasis on results from GRI`s devonian shale and berea sand research in the appalachian basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jochen, J.E.; Hopkins, C.W.

    1993-12-31

    ;Contents: Naturally fractured reservoir description; Geologic considerations; Shale-specific log model; Stress profiles; Berea reasearch; Benefits analysis; Summary of technologies; Novel well test methods; Natural fracture identification; Reverse drilling; Production data analysis; Fracture treatment quality control; Novel core analysis methods; and Shale well cleanouts.

  3. Development and application of coupled system dynamics and game theory: A dynamic water conflict resolution method.

    PubMed

    Zomorodian, Mehdi; Lai, Sai Hin; Homayounfar, Mehran; Ibrahim, Shaliza; Pender, Gareth

    2017-01-01

    Conflicts over water resources can be highly dynamic and complex due to the various factors which can affect such systems, including economic, engineering, social, hydrologic, environmental and even political, as well as the inherent uncertainty involved in many of these factors. Furthermore, the conflicting behavior, preferences and goals of stakeholders can often make such conflicts even more challenging. While many game models, both cooperative and non-cooperative, have been suggested to deal with problems over utilizing and sharing water resources, most of these are based on a static viewpoint of demand points during optimization procedures. Moreover, such models are usually developed for a single reservoir system, and so are not really suitable for application to an integrated decision support system involving more than one reservoir. This paper outlines a coupled simulation-optimization modeling method based on a combination of system dynamics (SD) and game theory (GT). The method harnesses SD to capture the dynamic behavior of the water system, utilizing feedback loops between the system components in the course of the simulation. In addition, it uses GT concepts, including pure-strategy and mixed-strategy games as well as the Nash Bargaining Solution (NBS) method, to find the optimum allocation decisions over available water in the system. To test the capability of the proposed method to resolve multi-reservoir and multi-objective conflicts, two different deterministic simulation-optimization models with increasing levels of complexity were developed for the Langat River basin in Malaysia. The later is a strategic water catchment that has a range of different stakeholders and managerial bodies, which are however willing to cooperate in order to avoid unmet demand. In our first model, all water users play a dynamic pure-strategy game. The second model then adds in dynamic behaviors to reservoirs to factor in inflow uncertainty and adjust the strategies for the reservoirs using the mixed-strategy game and Markov chain methods. The two models were then evaluated against three performance indices: Reliability, Resilience and Vulnerability (R-R-V). The results showed that, while both models were well capable of dealing with conflict resolution over water resources in the Langat River basin, the second model achieved a substantially improved performance through its ability to deal with dynamicity, complexity and uncertainty in the river system.

  4. Development and application of coupled system dynamics and game theory: A dynamic water conflict resolution method

    PubMed Central

    Lai, Sai Hin; Homayounfar, Mehran; Ibrahim, Shaliza; Pender, Gareth

    2017-01-01

    Conflicts over water resources can be highly dynamic and complex due to the various factors which can affect such systems, including economic, engineering, social, hydrologic, environmental and even political, as well as the inherent uncertainty involved in many of these factors. Furthermore, the conflicting behavior, preferences and goals of stakeholders can often make such conflicts even more challenging. While many game models, both cooperative and non-cooperative, have been suggested to deal with problems over utilizing and sharing water resources, most of these are based on a static viewpoint of demand points during optimization procedures. Moreover, such models are usually developed for a single reservoir system, and so are not really suitable for application to an integrated decision support system involving more than one reservoir. This paper outlines a coupled simulation-optimization modeling method based on a combination of system dynamics (SD) and game theory (GT). The method harnesses SD to capture the dynamic behavior of the water system, utilizing feedback loops between the system components in the course of the simulation. In addition, it uses GT concepts, including pure-strategy and mixed-strategy games as well as the Nash Bargaining Solution (NBS) method, to find the optimum allocation decisions over available water in the system. To test the capability of the proposed method to resolve multi-reservoir and multi-objective conflicts, two different deterministic simulation-optimization models with increasing levels of complexity were developed for the Langat River basin in Malaysia. The later is a strategic water catchment that has a range of different stakeholders and managerial bodies, which are however willing to cooperate in order to avoid unmet demand. In our first model, all water users play a dynamic pure-strategy game. The second model then adds in dynamic behaviors to reservoirs to factor in inflow uncertainty and adjust the strategies for the reservoirs using the mixed-strategy game and Markov chain methods. The two models were then evaluated against three performance indices: Reliability, Resilience and Vulnerability (R-R-V). The results showed that, while both models were well capable of dealing with conflict resolution over water resources in the Langat River basin, the second model achieved a substantially improved performance through its ability to deal with dynamicity, complexity and uncertainty in the river system. PMID:29216200

  5. A Study of the Optimal Planning Model for Reservoir Sustainable Management- A Case Study of Shihmen Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ho, C. C.; Chang, L. C.

    2017-12-01

    The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.

  6. Greenhouse Gas Emissions from Reservoir Water Surfaces: A ...

    EPA Pesticide Factsheets

    Collectively, reservoirs are an important anthropogenic source of greenhouse gases (GHGs) to the atmosphere. Attempts to model reservoir GHG fluxes, however, have been limited by inconsistencies in methodological approaches and data availability. An increase in the number of published reservoir GHG flux estimates during the last 15 years warrants a comprehensive analysis of the magnitude and potential controls on these fluxes. Here we synthesize worldwide reservoir CH4, CO2, and N2O emission data and estimate that GHG emissions from reservoirs account for 80.2 Tmol CO2 equivalents yr-1, thus constituting approximately 5% of anthropogenic radiative forcing. The majority (93%) of these emissions are from CH4, and mainly in the form of bubbles. While age and latitude have historically been linked to reservoir GHG emissions, we found that factors related to reservoir nutrient status and rainfall were better predictors. In particular, nutrient-rich eutrophic reservoirs were found to have an order of magnitude higher per-area CH4 fluxes, on average, than their nutrient-poor oligotrophic counterparts. Therefore, management measures to reduce reservoir eutrophication may result in an important co-benefit, the reduction of GHG emissions to the atmosphere. Greenhouse gas emissions (GHG)

  7. Combining groundwater quality analysis and a numerical flow simulation for spatially establishing utilization strategies for groundwater and surface water in the Pingtung Plain

    NASA Astrophysics Data System (ADS)

    Jang, Cheng-Shin; Chen, Ching-Fang; Liang, Ching-Ping; Chen, Jui-Sheng

    2016-02-01

    Overexploitation of groundwater is a common problem in the Pingtung Plain area of Taiwan, resulting in substantial drawdown of groundwater levels as well as the occurrence of severe seawater intrusion and land subsidence. Measures need to be taken to preserve these valuable groundwater resources. This study seeks to spatially determine the most suitable locations for the use of surface water on this plain instead of extracting groundwater for drinking, irrigation, and aquaculture purposes based on information obtained by combining groundwater quality analysis and a numerical flow simulation assuming the planning of manmade lakes and reservoirs to the increase of water supply. The multivariate indicator kriging method is first used to estimate occurrence probabilities, and to rank townships as suitable or unsuitable for groundwater utilization according to water quality standards for drinking, irrigation, and aquaculture. A numerical model of groundwater flow (MODFLOW) is adopted to quantify the recovery of groundwater levels in townships after model calibration when groundwater for drinking and agricultural demands has been replaced by surface water. Finally, townships with poor groundwater quality and significant increases in groundwater levels in the Pingtung Plain are prioritized for the groundwater conservation planning based on the combined assessment of groundwater quality and quantity. The results of this study indicate that the integration of groundwater quality analysis and the numerical flow simulation is capable of establishing sound strategies for joint groundwater and surface water use. Six southeastern townships are found to be suitable locations for replacing groundwater with surface water from manmade lakes or reservoirs to meet drinking, irrigation, and aquaculture demands.

  8. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth D. Luff

    2002-06-30

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less

  9. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth D. Luff

    2002-09-30

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less

  10. Reservoir-development impacts on surface-water quantity and quality in the Yampa River basin, Colorado and Wyoming

    USGS Publications Warehouse

    Adams, D. Briane; Bauer, Daniel P.; Dale, Robert H.; Steele, Timothy Doak

    1983-01-01

    Development of coal resources and associated economy is accelerating in the Yampa River basin in northwestern Colorado and south-central Wyoming. Increased use of the water resources of the area will have a direct impact on their quantity and quality. As part of 18 surface-water projects, 35 reservoirs have been proposed with a combined total storage of 2.18 million acre-feet, 41% greater than the mean annual outflow from the basin. Three computer models were used to demonstrate methods of evaluating future impacts of reservoir development in the Yampa River basin. Four different reservoir configurations were used to simulate the effects of different degrees of proposed reservoir development. A multireservoir-flow model included both within-basin and transmountain diversions. Simulations indicated that in many cases diversion amounts would not be available for either type of diversion. A corresponding frequency analysis of reservoir storage levels indicated that most reservoirs would be operating with small percentages of total capacities and generally with less than 20% of conservation-pool volumes. Simulations using a dissolved-solids model indicated that extensive reservoir development could increase average annual concentrations at most locations. Simulations using a single-reservoir model indicated no significant occurrence of water-temperature stratification in most reservoirs due to limited reservoir storage. (USGS)

  11. Environmental Statement for Lavon Dam and Reservoir Modification and East Fork Channel Improvement - Pertaining to East Fork Channel and Levee Improvement Increment I. Supplement.

    DTIC Science & Technology

    1977-01-01

    are capable of adapting to turbid conditions will probably be the dominant fish in the oxbows. The stream bottom dwelling population will not be much...the structure of the benthic conmunity. Snails ( gastropods ) and bivalve mollusks (pelecypods) are most abundant in the shallows areas. Stable gravel

  12. Development of a national, dynamic reservoir-sedimentation database

    USGS Publications Warehouse

    Gray, J.R.; Bernard, J.M.; Stewart, D.W.; McFaul, E.J.; Laurent, K.W.; Schwarz, G.E.; Stinson, J.T.; Jonas, M.M.; Randle, T.J.; Webb, J.W.

    2010-01-01

    The importance of dependable, long-term water supplies, coupled with the need to quantify rates of capacity loss of the Nation’s re servoirs due to sediment deposition, were the most compelling reasons for developing the REServoir- SEDimentation survey information (RESSED) database and website. Created under the auspices of the Advisory Committee on Water Information’s Subcommittee on Sedimenta ion by the U.S. Geological Survey and the Natural Resources Conservation Service, the RESSED database is the most comprehensive compilation of data from reservoir bathymetric and dry-basin surveys in the United States. As of March 2010, the database, which contains data compiled on the 1950s vintage Soil Conservation Service’s Form SCS-34 data sheets, contained results from 6,616 surveys on 1,823 reservoirs in the United States and two surveys on one reservoir in Puerto Rico. The data span the period 1755–1997, with 95 percent of the surveys performed from 1930–1990. The reservoir surface areas range from sub-hectare-scale farm ponds to 658 km2 Lake Powell. The data in the RESSED database can be useful for a number of purposes, including calculating changes in reservoir-storage characteristics, quantifying sediment budgets, and estimating erosion rates in a reservoir’s watershed. The March 2010 version of the RESSED database has a number of deficiencies, including a cryptic and out-of-date database architecture; some geospatial inaccuracies (although most have been corrected); other data errors; an inability to store all data in a readily retrievable manner; and an inability to store all data types that currently exist. Perhaps most importantly, the March 2010 version of RESSED database provides no publically available means to submit new data and corrections to existing data. To address these and other deficiencies, the Subcommittee on Sedimentation, through the U.S. Geological Survey and the U.S. Army Corps of Engineers, began a collaborative project in November 2009 to modernize the RESSED database architecture; provide public online input capability; and produce online reports. The ultimate goal of the Subcommittee on Sedimentation is to build a comprehensive, quality-assured database describing capacity changes over time for the largest suite of the Nation’s reservoirs.

  13. A strategy for low cost development of incremental oil in legacy reservoirs

    USGS Publications Warehouse

    Attanasi, E.D.

    2016-01-01

    The precipitous decline in oil prices during 2015 has forced operators to search for ways to develop low-cost and low-risk oil reserves. This study examines strategies to low cost development of legacy reservoirs, particularly those which have already implemented a carbon dioxide enhanced oil recovery (CO2 EOR) program. Initially the study examines the occurrence and nature of the distribution of the oil resources that are targets for miscible and near-miscible CO2 EOR programs. The analysis then examines determinants of technical recovery through the analysis of representative clastic and carbonate reservoirs. The economic analysis focusses on delineating the dominant components of investment and operational costs. The concluding sections describe options to maximize the value of assets that the operator of such a legacy reservoir may have that include incremental expansion within the same producing zone and to producing zones that are laterally or stratigraphically near main producing zones. The analysis identified the CO2 recycle plant as the dominant investment cost item and purchased CO2 and liquids management as a dominant operational cost items. Strategies to utilize recycle plants for processing CO2 from multiple producing zones and multiple reservoir units can significantly reduce costs. Industrial sources for CO2 should be investigated as a possibly less costly way of meeting EOR requirements. Implementation of tapered water alternating gas injection schemes can partially mitigate increases in fluid lifting costs.

  14. Risk Analysis of Extreme Rainfall Effects on the Shihmen Reservoir

    NASA Astrophysics Data System (ADS)

    Ho, Y.; Lien, W.; Tung, C.

    2009-12-01

    Typhoon Morakot intruded Taiwan during 7th and 8th of August 2009, brought about 2,700 mm of total rainfall which caused serious flood and debris to the southern region of Taiwan. One of the serious flooded areas is in the downstream of Zengwen reservoir. People believed that the large amount of floodwater released from Zengwen reservoir led to the severe inundation. Therefore, the Shihmen reservoir is one of the important reservoirs in northern Taiwan. The Taipei metropolis, which is in downstream of Shihmen reservoir, is the political and economical center of Taiwan. If heavy rainfall as those brought by Typhoon Marakot falls in the Shihmen reservoir watershed, it may create a bigger disaster. This study focused on the impacts of a typhoon, like Morakot, in Shihmen reservoir. The hydrological model is used to simulate the reservoir inflows under different rainfall conditions. The reservoir water balance model is developed to calculate reservoir’s storage and outflows under the inflows and operational rules. The ability of flood mitigation is also evaluated. Besides, the released floodwater from reservoir and the inflows from different tributaries are used to determine whether or not the river stage will overtop levee. Also, the maximum released floodwater and other inflows which could lead to damages will be stated. Lastly, the criteria of rainfall conditions and initial stages of reservoir will be analyzed in this study.

  15. An efficient cooling loop for connecting cryocooler to a helium reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, C.E.; Abbott, C.S.R.; Leitner, D.

    2003-09-21

    The magnet system of the VENUS ECR Ion Source at LBNL has two 1.5-watt cryocoolers suspended in the cryostat vacuum. Helium vapor from the liquid reservoir is admitted to a finned condenser bolted to the cryocooler 2nd stage and returns as liquid via gravity. Small-diameter flexible tubes allow the cryocoolers to be located remotely from the reservoir. With 3.1 watts load, the helium reservoir is maintained at 4.35 K, 0.05K above the cryocooler temperature. Design, analysis, and performance are presented.

  16. Stability of a penny-shaped geothermal reservoir in the earth's crust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, H.; Sekine, H.

    1982-06-01

    The theoretical analysis of a penny-shaped geothermal reservoir in the earth's crust subject to linear tectonic stress gradients has been made on the basis of the three dimensional theory of elasticity. The condition for stability of a reservoir requires K/sub 1/ < K /SUB c/ , where K/sub 1/ and K /SUB c/ are, respectively, the stress intensity factor for the opening mode and the fracture toughness of the surrounding rock. From this condition the upper critical pressure being necessary for the reservoir stability is obtained and is shown graphically.

  17. Spatial and temporal assessment of the initial pattern of phytoplankton population in a newly built coastal reservoir

    NASA Astrophysics Data System (ADS)

    Ren, Xiangyu; Yang, Kai; Che, Yue; Wang, Mingwei; Zhou, Lili; Chen, Liqiao

    2016-09-01

    For decades, the main threat to the water security of a metropolis, such as the city of Shanghai, has been the rapidly growing demand for water and at the same time, the decrease in water quality, including eutrophication. Therefore Shanghai shifted the preferred freshwater source to the Yangtze Estuary and constructed the Qingcaosha Reservoir, which is subject to less eutrophic water from the Yangtze River. To assess the population of phytoplankton for the first time in the newly built reservoir, this study improved an integrated method to assess the phytoplankton pattern in large-water-area reservoirs and lakes, using partial triadic analysis and Geographic Information Systems. Monthly sampling and monitoring from 10 stations in the reservoir from July 2010 to December 2011 were conducted. The study examined the common pattern of the phytoplankton population structure and determined the differences in the specific composition of the phytoplankton community during the transition period of the reservoir. The results suggest that in all but three sampling stations in the upper parts of Qingcaosha Reservoir, there was a strong common compromise in 2011. The two most important periods occurred from late summer to autumn and from winter to early spring. The former was characterized by the dominance of cyanobacteria, whereas the latter was characterized by the dominance of both chlorophyta and diatoms. Cyanobacteria ( Microcystis spp. as the main genus) were the monopolistic dominant species in the summer after reservoir operation. The statistical analysis also indicated the necessity for regular monitoring to focus on the stations in the lower parts of the reservoir and on several limited species.

  18. Geophysical monitoring in a hydrocarbon reservoir

    NASA Astrophysics Data System (ADS)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the environmental footprint of the shale-gas exploration and exploitation.

  19. Integrated core-log petrofacies analysis in the construction of a reservoir geomodel: A case study of a mature Mississippian carbonate reservoir using limited data

    USGS Publications Warehouse

    Bhattacharya, S.; Doveton, J.H.; Carr, T.R.; Guy, W.R.; Gerlach, P.M.

    2005-01-01

    Small independent operators produce most of the Mississippian carbonate fields in the United States mid-continent, where a lack of integrated characterization studies precludes maximization of hydrocarbon recovery. This study uses integrative techniques to leverage extant data in an Osagian and Meramecian (Mississippian) cherty carbonate reservoir in Kansas. Available data include petrophysical logs of varying vintages, limited number of cores, and production histories from each well. A consistent set of assumptions were used to extract well-level porosity and initial saturations, from logs of different types and vintages, to build a geomodel. Lacking regularly recorded well shut-in pressures, an iterative technique, based on material balance formulations, was used to estimate average reservoir-pressure decline that matched available drillstem test data and validated log-analysis assumptions. Core plugs representing the principal reservoir petrofacies provide critical inputs for characterization and simulation studies. However, assigning plugs among multiple reservoir petrofacies is difficult in complex (carbonate) reservoirs. In a bottom-up approach, raw capillary pressure (Pc) data were plotted on the Super-Pickett plot, and log- and core-derived saturation-height distributions were reconciled to group plugs by facies, to identify core plugs representative of the principal reservoir facies, and to discriminate facies in the logged interval. Pc data from representative core plugs were used for effective pay evaluation to estimate water cut from completions, in infill and producing wells, and guide-selective perforations for economic exploitation of mature fields. The results from this study were used to drill 22 infill wells. Techniques demonstrated here can be applied in other fields and reservoirs. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.

  20. Millimeter-scale liquid metal droplet thermal switch

    NASA Astrophysics Data System (ADS)

    Yang, Tianyu; Kwon, Beomjin; Weisensee, Patricia B.; Kang, Jin Gu; Li, Xuejiao; Braun, Paul; Miljkovic, Nenad; King, William P.

    2018-02-01

    Devices capable of actively controlling heat flow have been desired by the thermal management community for decades. The need for thermal control has become particularly urgent with power densification resulting in devices with localized heat fluxes as high as 1 kW/cm2. Thermal switches, capable of modulating between high and low thermal conductances, enable the partitioning and active control of heat flow pathways. This paper reports a millimeter-scale thermal switch with a switching ratio >70, at heat fluxes near 10 W/cm2. The device consists of a silicone channel filled with a reducing liquid or vapor and an immersed liquid metal Galinstan slug. Galinstan has a relatively high thermal conductivity (≈16.5 W/mK at room temperature), and its position can be manipulated within the fluid channel, using either hydrostatic pressure or electric fields. When Galinstan bridges the hot and cold reservoirs (the "ON" state), heat flows across the channel. When the hot and cold reservoirs are instead filled with the encapsulating liquid or vapor (the "OFF" state), the cross-channel heat flow significantly reduces due to the lower thermal conductivity of the solution (≈0.03-0.6 W/mK). We demonstrate switching ratios as high as 15.6 for liquid filled channels and 71.3 for vapor filled channels. This work provides a framework for the development of millimeter-scale thermal switches and diodes capable of spatial and temporal control of heat flows.

  1. Quantitative Analysis of Existing Conditions and Production Strategies for the Baca Geothermal System, New Mexico

    NASA Astrophysics Data System (ADS)

    Faust, Charles R.; Mercer, James W.; Thomas, Stephen D.; Balleau, W. Pete

    1984-05-01

    The Baca geothermal reservoir and adjacent aquifers in the Jemez Mountains of New Mexico comprise an integrated hydrogeologic system. Analysis of the geothermal reservoir either under natural conditions or subject to proposed development should account for the mass (water) and energy (heat) balances of adjacent aquifers as well as the reservoir itself. A three-dimensional model based on finite difference approximations is applied to this integrated system. The model simulates heat transport associated with the flow of steam and water through an equivalent porous medium. The Baca geothermal reservoir is dominated by flow in fractures and distinct strata, but at the scale of application the equivalent porous media concept is appropriate. The geothermal reservoir and adjacent aquifers are simulated under both natural conditions and proposed production strategies. Simulation of natural conditions compares favorably with observed pressure, temperature, and thermal discharge data. The history matching simulations show that the results used for comparison are most sensitive to vertical permeability and the area of an assumed high-permeability zone connecting the reservoir to a deep hydrothermal source. Simulations using proposed production strategies and optimistic estimates of certain hydrologic parameters and reservoir extent indicate that a 50-MW power plant could be maintained for a period greater than 30 years. This production, however, will result in significant decreases in the total water discharge to the Jemez River.

  2. Mathematical and field analysis of longitudinal reservoir infill

    NASA Astrophysics Data System (ADS)

    Ke, W. T.; Capart, H.

    2016-12-01

    In reservoirs, severe problems are caused by infilled sediment deposits. In long term, the sediment accumulation reduces the capacity of reservoir storage and flood control benefits. In the short term, the sediment deposits influence the intakes of water-supply and hydroelectricity generation. For the management of reservoir, it is important to understand the deposition process and then to predict the sedimentation in reservoir. To investigate the behaviors of sediment deposits, we propose a one-dimensional simplified theory derived by the Exner equation to predict the longitudinal sedimentation distribution in idealized reservoirs. The theory models the reservoir infill geomorphic actions for three scenarios: delta progradation, near-dam bottom deposition, and final infill. These yield three kinds of self-similar analytical solutions for the reservoir bed profiles, under different boundary conditions. Three analytical solutions are composed by error function, complementary error function, and imaginary error function, respectively. The theory is also computed by finite volume method to test the analytical solutions. The theoretical and numerical predictions are in good agreement with one-dimensional small-scale laboratory experiment. As the theory is simple to apply with analytical solutions and numerical computation, we propose some applications to simulate the long-profile evolution of field reservoirs and focus on the infill sediment deposit volume resulting the uplift of near-dam bottom elevation. These field reservoirs introduced here are Wushe Reservoir, Tsengwen Reservoir, Mudan Reservoir in Taiwan, Lago Dos Bocas in Puerto Rico, and Sakuma Dam in Japan.

  3. Summary of the analyses for recovery factors

    USGS Publications Warehouse

    Verma, Mahendra K.

    2017-07-17

    IntroductionIn order to determine the hydrocarbon potential of oil reservoirs within the U.S. sedimentary basins for which the carbon dioxide enhanced oil recovery (CO2-EOR) process has been considered suitable, the CO2 Prophet model was chosen by the U.S. Geological Survey (USGS) to be the primary source for estimating recovery-factor values for individual reservoirs. The choice was made because of the model’s reliability and the ease with which it can be used to assess a large number of reservoirs. The other two approaches—the empirical decline curve analysis (DCA) method and a review of published literature on CO2-EOR projects—were deployed to verify the results of the CO2 Prophet model. This chapter discusses the results from CO2 Prophet (chapter B, by Emil D. Attanasi, this report) and compares them with results from decline curve analysis (chapter C, by Hossein Jahediesfanjani) and those reported in the literature for selected reservoirs with adequate data for analyses (chapter D, by Ricardo A. Olea).To estimate the technically recoverable hydrocarbon potential for oil reservoirs where CO2-EOR has been applied, two of the three approaches—CO2 Prophet modeling and DCA—do not include analysis of economic factors, while the third approach—review of published literature—implicitly includes economics. For selected reservoirs, DCA has provided estimates of the technically recoverable hydrocarbon volumes, which, in combination with calculated amounts of original oil in place (OOIP), helped establish incremental CO2-EOR recovery factors for individual reservoirs.The review of published technical papers and reports has provided substantial information on recovery factors for 70 CO2-EOR projects that are either commercially profitable or classified as pilot tests. When comparing the results, it is important to bear in mind the differences and limitations of these three approaches.

  4. Reservoir Characterization for Unconventional Resource Potential, Pitsanulok Basin, Onshore Thailand

    NASA Astrophysics Data System (ADS)

    Boonyasatphan, Prat

    The Pitsanulok Basin is the largest onshore basin in Thailand. Located within the basin is the largest oil field in Thailand, the Sirikit field. As conventional oil production has plateaued and EOR is not yet underway, an unconventional play has emerged as a promising alternative to help supply the energy needs. Source rocks in the basin are from the Oligocene lacustrine shale of the Chum Saeng Formation. This study aims to quantify and characterize the potential of shale gas/oil development in the Chum Saeng Formation using advanced reservoir characterization techniques. The study starts with rock physics analysis to determine the relationship between geophysical, lithological, and geomechanical properties of rocks. Simultaneous seismic inversion is later performed. Seismic inversion provides spatial variation of geophysical properties, i.e. P-impedance, S-impedance, and density. With results from rock physics analysis and from seismic inversion, the reservoir is characterized by applying analyses from wells to the inverted seismic data. And a 3D lithofacies cube is generated. TOC is computed from inverted AI. Static moduli are calculated. A seismic derived brittleness cube is calculated from Poisson's ratio and Young's modulus. The reservoir characterization shows a spatial variation in rock facies and shale reservoir properties, including TOC, brittleness, and elastic moduli. From analysis, the most suitable location for shale gas/oil pilot exploration and development are identified. The southern area of the survey near the MD-1 well with an approximate depth around 650-850 m has the highest shale reservoir potential. The shale formation is thick, with intermediate brittleness and high TOC. These properties make it as a potential sweet spot for a future shale reservoir exploration and development.

  5. Numerical investigation of performance of vane-type propellant management device by VOF methods

    NASA Astrophysics Data System (ADS)

    Liu, J. T.; Zhou, C.; Wu, Y. L.; Zhuang, B. T.; Li, Y.

    2015-01-01

    The orbital propellant management performance of the vane-type tank is so important for the propellant system and it determines the lifetime of the satellite. The propellant in the tank can be extruded by helium gas. To study the two phase distribution in the vane-type surface tension tank and the capability of the vane-type propellant management device (PMD), a large volume vane-type surface tension tank is analysed using 3-D unsteady numerical simulations. VOF methods are used to analyse the location of the interface of the two phase. Performances of the propellant acquisition vanes and propellant refillable reservoir in the tank are investigated. The flow conductivity of the propellant acquisition vanes and the liquid storage capacity of propellant refillable reservoir can be affected by the value of the gravity and the volume of the propellant in the tank. To avoid the large resistance causing by surface tension in an outflow of a small hole, the design of the vanes in a propellant refillable reservoir should have suitable space.

  6. INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.O. Hitzman; S.A. Bailey

    This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery.This microbial technology has the capability of producing multiple oil releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery. Research has begun on the program and experimental laboratory work is underway. Polymer-producing cultures have been isolated frommore » produced water samples and initially characterized. Concurrently, a microcosm scale sand-packed column has been designed and developed for testing cultures of interest, including polymer-producing strains. In research that is planned to begin in future work, comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents will be conducted in sand pack and cores with synthetic and natural field waters at concentrations, flooding rates, and with cultures and conditions representative of oil reservoirs.« less

  7. Research on three-dimensional visualization based on virtual reality and Internet

    NASA Astrophysics Data System (ADS)

    Wang, Zongmin; Yang, Haibo; Zhao, Hongling; Li, Jiren; Zhu, Qiang; Zhang, Xiaohong; Sun, Kai

    2007-06-01

    To disclose and display water information, a three-dimensional visualization system based on Virtual Reality (VR) and Internet is researched for demonstrating "digital water conservancy" application and also for routine management of reservoir. To explore and mine in-depth information, after completion of modeling high resolution DEM with reliable quality, topographical analysis, visibility analysis and reservoir volume computation are studied. And also, some parameters including slope, water level and NDVI are selected to classify easy-landslide zone in water-level-fluctuating zone of reservoir area. To establish virtual reservoir scene, two kinds of methods are used respectively for experiencing immersion, interaction and imagination (3I). First virtual scene contains more detailed textures to increase reality on graphical workstation with virtual reality engine Open Scene Graph (OSG). Second virtual scene is for internet users with fewer details for assuring fluent speed.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoak, T.E.; Decker, A.D.

    Mesaverde Group reservoirs in the Piceance Basin, Western Colorado contain a large reservoir base. Attempts to exploit this resource base are stymied by low permeability reservoir conditions. The presence of abundant natural fracture systems throughout this basin, however, does permit economic production. Substantial production is associated with fractured reservoirs in Divide Creek, Piceance Creek, Wolf Creek, White River Dome, Plateau, Shire Gulch, Grand Valley, Parachute and Rulison fields. Successful Piceance Basin gas production requires detailed information about fracture networks and subsurface gas and water distribution in an overall gas-centered basin geometry. Assessment of these three parameters requires an integrated basinmore » analysis incorporating conventional subsurface geology, seismic data, remote sensing imagery analysis, and an analysis of regional tectonics. To delineate the gas-centered basin geometry in the Piceance Basin, a regional cross-section spanning the basin was constructed using hydrocarbon and gamma radiation logs. The resultant hybrid logs were used for stratigraphic correlations in addition to outlining the trans-basin gas-saturated conditions. The magnitude of both pressure gradients (paludal and marine intervals) is greater than can be generated by a hydrodynamic model. To investigate the relationships between structure and production, detailed mapping of the basin (top of the Iles Formation) was used to define subtle subsurface structures that control fractured reservoir development. The most productive fields in the basin possess fractured reservoirs. Detailed studies in the Grand Valley-Parachute-Rulison and Shire Gulch-Plateau fields indicate that zones of maximum structural flexure on kilometer-scale structural features are directly related to areas of enhanced production.« less

  9. Fluvial reservoir characterization using topological descriptors based on spectral analysis of graphs

    NASA Astrophysics Data System (ADS)

    Viseur, Sophie; Chiaberge, Christophe; Rhomer, Jérémy; Audigane, Pascal

    2015-04-01

    Fluvial systems generate highly heterogeneous reservoir. These heterogeneities have major impact on fluid flow behaviors. However, the modelling of such reservoirs is mainly performed in under-constrained contexts as they include complex features, though only sparse and indirect data are available. Stochastic modeling is the common strategy to solve such problems. Multiple 3D models are generated from the available subsurface dataset. The generated models represent a sampling of plausible subsurface structure representations. From this model sampling, statistical analysis on targeted parameters (e.g.: reserve estimations, flow behaviors, etc.) and a posteriori uncertainties are performed to assess risks. However, on one hand, uncertainties may be huge, which requires many models to be generated for scanning the space of possibilities. On the other hand, some computations performed on the generated models are time consuming and cannot, in practice, be applied on all of them. This issue is particularly critical in: 1) geological modeling from outcrop data only, as these data types are generally sparse and mainly distributed in 2D at large scale but they may locally include high-resolution descriptions (e.g.: facies, strata local variability, etc.); 2) CO2 storage studies as many scales of investigations are required, from meter to regional ones, to estimate storage capacities and associated risks. Recent approaches propose to define distances between models to allow sophisticated multivariate statistics to be applied on the space of uncertainties so that only sub-samples, representative of initial set, are investigated for dynamic time-consuming studies. This work focuses on defining distances between models that characterize the topology of the reservoir rock network, i.e. its compactness or connectivity degree. The proposed strategy relies on the study of the reservoir rock skeleton. The skeleton of an object corresponds to its median feature. A skeleton is computed for each reservoir rock geobody and studied through a graph spectral analysis. To achieve this, the skeleton is converted into a graph structure. The spectral analysis applied on this graph structure allows a distance to be defined between pairs of graphs. Therefore, this distance is used as support for clustering analysis to gather models that share the same reservoir rock topology. To show the ability of the defined distances to discriminate different types of reservoir connectivity, a synthetic data set of fluvial models with different geological settings was generated and studied using the proposed approach. The results of the clustering analysis are shown and discussed.

  10. Application of time series analysis for assessing reservoir trophic status

    Treesearch

    Paris Honglay Chen; Ka-Chu Leung

    2000-01-01

    This study is to develop and apply a practical procedure for the time series analysis of reservoir eutrophication conditions. A multiplicative decomposition method is used to determine the trophic variations including seasonal, circular, long-term and irregular changes. The results indicate that (1) there is a long high peak for seven months from April to October...

  11. Mapping Petroluem Migration Pathways Using Magnetics and Seismic Interpretations

    NASA Astrophysics Data System (ADS)

    Abubakar, R.; Muxworthy, A. R.; Sephton, M. A.; Fraser, A.; Heslop, D.; Paterson, G. A.; Southern, P.

    2015-12-01

    We report the formation of magnetic minerals in petroleum reservoirs. Eleven wells from Wessex Basin in Dorset, southern England, were sampled from the British Geological Core Store, across the main reservoir unit; Bridport Sandstone and the overlying Inferior Oolite. Sampling was carried out based on visible evidence of oil stain and a high magnetic susceptibility reading. The samples were chemically extracted to determine which were naturally stained with hydrocarbon and which were not. Magnetic analysis was carried out on all the samples: this including hysteresis analysis at low temperatures (5-15K) and room temperature, and low-temperature thermogmagentic analysis. The results indicated a trend based on the migration of hydrocarbons; from the source area, to the reservoir through the carrier beds.

  12. Evaluation of gas production potential from gas hydrate deposits in National Petroleum Reserve Alaska using numerical simulations

    USGS Publications Warehouse

    Nandanwar, Manish S.; Anderson, Brian J.; Ajayi, Taiwo; Collett, Timothy S.; Zyrianova, Margarita V.

    2016-01-01

    An evaluation of the gas production potential of Sunlight Peak gas hydrate accumulation in the eastern portion of the National Petroleum Reserve Alaska (NPRA) of Alaska North Slope (ANS) is conducted using numerical simulations, as part of the U.S. Geological Survey (USGS) gas hydrate Life Cycle Assessment program. A field scale reservoir model for Sunlight Peak is developed using Advanced Processes & Thermal Reservoir Simulator (STARS) that approximates the production design and response of this gas hydrate field. The reservoir characterization is based on available structural maps and the seismic-derived hydrate saturation map of the study region. A 3D reservoir model, with heterogeneous distribution of the reservoir properties (such as porosity, permeability and vertical hydrate saturation), is developed by correlating the data from the Mount Elbert well logs. Production simulations showed that the Sunlight Peak prospect has the potential of producing 1.53 × 109 ST m3 of gas in 30 years by depressurization with a peak production rate of around 19.4 × 104 ST m3/day through a single horizontal well. To determine the effect of uncertainty in reservoir properties on the gas production, an uncertainty analysis is carried out. It is observed that for the range of data considered, the overall cumulative production from the Sunlight Peak will always be within the range of ±4.6% error from the overall mean value of 1.43 × 109 ST m3. A sensitivity analysis study showed that the proximity of the reservoir from the base of permafrost and the base of hydrate stability zone (BHSZ) has significant effect on gas production rates. The gas production rates decrease with the increase in the depth of the permafrost and the depth of BHSZ. From the overall analysis of the results it is concluded that Sunlight Peak gas hydrate accumulation behaves differently than other Class III reservoirs (Class III reservoirs are composed of a single layer of hydrate with no underlying zone of mobile fluids) due to its smaller thickness and high angle of dip.

  13. The regional and global significance of nitrogen removal in lakes and reservoirs

    USGS Publications Warehouse

    Harrison, J.A.; Maranger, R.J.; Alexander, Richard B.; Giblin, A.E.; Jacinthe, P.-A.; Mayorga, Emilio; Seitzinger, S.P.; Sobota, D.J.; Wollheim, W.M.

    2009-01-01

    Human activities have greatly increased the transport of biologically available nitrogen (N) through watersheds to potentially sensitive coastal ecosystems. Lentic water bodies (lakes and reservoirs) have the potential to act as important sinks for this reactive N as it is transported across the landscape because they offer ideal conditions for N burial in sediments or permanent loss via denitrification. However, the patterns and controls on lentic N removal have not been explored in great detail at large regional to global scales. In this paper we describe, evaluate, and apply a new, spatially explicit, annual-scale, global model of lentic N removal called NiRReLa (Nitrogen Retention in Reservoirs and Lakes). The NiRReLa model incorporates small lakes and reservoirs than have been included in previous global analyses, and also allows for separate treatment and analysis of reservoirs and natural lakes. Model runs for the mid-1990s indicate that lentic systems are indeed important sinks for N and are conservatively estimated to remove 19.7 Tg N year-1 from watersheds globally. Small lakes (<50 km2) were critical in the analysis, retaining almost half (9.3 Tg N year -1) of the global total. In model runs, capacity of lakes and reservoirs to remove watershed N varied substantially at the half-degree scale (0-100%) both as a function of climate and the density of lentic systems. Although reservoirs occupy just 6% of the global lentic surface area, we estimate they retain ~33% of the total N removed by lentic systems, due to a combination of higher drainage ratios (catchment surface area:lake or reservoir surface area), higher apparent settling velocities for N, and greater average N loading rates in reservoirs than in lakes. Finally, a sensitivity analysis of NiRReLa suggests that, on-average, N removal within lentic systems will respond more strongly to changes in land use and N loading than to changes in climate at the global scale. ?? 2008 Springer Science+Business Media B.V.

  14. An analytical framework for extracting hydrological information from time series of small reservoirs in a semi-arid region

    NASA Astrophysics Data System (ADS)

    Annor, Frank; van de Giesen, Nick; Bogaard, Thom; Eilander, Dirk

    2013-04-01

    Small water reservoirs for water resources management have as important socio-economic advantage that they bring water close to villages and households. This proximity allows for many water uses in addition to irrigation, such as fisheries, household water, building materials (loam, reeds), tourism and recreation, and cattle watering. These positive aspects are offset by the relatively large evaporative losses in comparison to larger reservoirs, although, it is not exactly known how large these losses are. For decision makers, investors and donors, the decision to construct a small reservoir should be multifactored; and based on economic, socio-cultural and environmental factors. For the latter, getting the water balance and the energy budget of small reservoirs right is key for any environmental impact analyses. For Northern Ghana, the relation between volume of a small reservoir and its' surface area has been established in a robust equation as: Volume = 0.00857Area1.4367 with the surface area explaining more than 95% of the variation in water volume of the reservoirs. This allows the use of remote sensing observations for estimating water volume of small reservoirs in northern Ghana. Hydrological analyses of time series of small reservoir areas comprises estimates of evaporation fluxes and cumulative surface runoff curves. Once the reservoirs are full, spillage will occur and volumes and surface areas remain stable at their maximum extents. This implies that the time series of reservoir surface area contains information concerning the on-set of downstream surface runoff. This on-set does not coincide with the on-set of the rainy season but largely depends on the distribution of rainfall events and storage capacity in the subsurface. The main requirement for this analysis is that the reservoir has negligible seepage losses or water influx from the underlying subsurface. In our research, we carried out a time series analysis of surface area extent for about 45 small reservoirs in the Upper East Region of Ghana. Reservoirs without obvious large seepage losses (field survey) were selected. To verify this, stable water isotopic samples are collected from groundwater upstream and downstream from the reservoir. By looking at possible enrichment of downstream groundwater, a good estimate of seepage can be made in addition to estimates on evaporation. We estimated the evaporative losses and compared those with field measurements using eddy correlation measurements. Lastly, we determined the cumulative surface runoff curves for the small reservoirs .We will present this analytical framework for extracting hydrological information from time series of small reservoirs and show the first results for our study region of northern Ghana.

  15. Simulation of Hydrodynamics and Water Quality in Pueblo Reservoir, Southeastern Colorado, for 1985 through 1987 and 1999 through 2002

    USGS Publications Warehouse

    Galloway, Joel M.; Ortiz, Roderick F.; Bales, Jerad D.; Mau, David P.

    2008-01-01

    Pueblo Reservoir is west of Pueblo, Colorado, and is an important water resource for southeastern Colorado. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. In anticipation of increased population growth, the cities of Colorado Springs, Fountain, Security, and Pueblo West have proposed building a pipeline that would be capable of conveying 78 million gallons of raw water per day (240 acre-feet) from Pueblo Reservoir. The U.S. Geological Survey, in cooperation with Colorado Springs Utilities and the Bureau of Reclamation, developed, calibrated, and verified a hydrodynamic and water-quality model of Pueblo Reservoir to describe the hydrologic, chemical, and biological processes in Pueblo Reservoir that can be used to assess environmental effects in the reservoir. Hydrodynamics and water-quality characteristics in Pueblo Reservoir were simulated using a laterally averaged, two-dimensional model that was calibrated using data collected from October 1985 through September 1987. The Pueblo Reservoir model was calibrated based on vertical profiles of water temperature and dissolved-oxygen concentration, and water-quality constituent concentrations collected in the epilimnion and hypolimnion at four sites in the reservoir. The calibrated model was verified with data from October 1999 through September 2002, which included a relatively wet year (water year 2000), an average year (water year 2001), and a dry year (water year 2002). Simulated water temperatures compared well to measured water temperatures in Pueblo Reservoir from October 1985 through September 1987. Spatially, simulated water temperatures compared better to measured water temperatures in the downstream part of the reservoir than in the upstream part of the reservoir. Differences between simulated and measured water temperatures also varied through time. Simulated water temperatures were slightly less than measured water temperatures from March to May 1986 and 1987, and slightly greater than measured data in August and September 1987. Relative to the calibration period, simulated water temperatures during the verification period did not compare as well to measured water temperatures. In general, simulated dissolved-oxygen concentrations for the calibration period compared well to measured concentrations in Pueblo Reservoir. Spatially, simulated concentrations deviated more from the measured values at the downstream part of the reservoir than at other locations in the reservoir. Overall, the absolute mean error ranged from 1.05 (site 1B) to 1.42 milligrams per liter (site 7B), and the root mean square error ranged from 1.12 (site 1B) to 1.67 milligrams per liter (site 7B). Simulated dissolved oxygen in the verification period compared better to the measured concentrations than in the calibration period. The absolute mean error ranged from 0.91 (site 5C) to 1.28 milligrams per liter (site 7B), and the root mean square error ranged from 1.03 (site 5C) to 1.46 milligrams per liter (site 7B). Simulated total dissolved solids generally were less than measured total dissolved-solids concentrations in Pueblo Reservoir from October 1985 through September 1987. The largest differences between simulated and measured total dissolved solids were observed at the most downstream sites in Pueblo Reservoir during the second year of the calibration period. Total dissolved-solids data were not available from reservoir sites during the verification period, so in-reservoir specific-conductance data were compared to simulated total dissolved solids. Simulated total dissolved solids followed the same patterns through time as the measured specific conductance data during the verification period. Simulated total nitrogen concentrations compared relatively well to measured concentrations in the Pueblo Reservoir model. The absolute mean error ranged from 0.21 (site 1B) to 0.27 milligram per liter as nitrogen (sites 3B and 7

  16. [The study of the multifactorial anthropogenic effect on the ecosystems of the industrial reservoirs of "Maiak" industrial complex].

    PubMed

    Smagin, A I

    2006-01-01

    The analysis of the ecological situation of the Southern Urals industrial water reservoirs of the nuclear fuel cycle enterprise, "Mayak" PA is represented. The study was held in the 80s - early 90s. The subjects of the study were: a cooling water reservoir--Kysyl-Tash Lake (R-2) as well as a radioactive waste storage reservoir (R-10). Irtyash Lake, which is a drinking water reservoir for the city of Ozyorsk and Alabuga and Kazhakul Lakes, located on the boundary of the Eastern Urals Radioactive Trace (EURT), were taken as control ones. Such water reservoirs as Irtyash, Kysyl-Tash and the waste storage reservoir (R-10) are incorporated into the Techa River basin; while Alabuga and Kazhakul Lakes are related to the interfluve between the Techa River and the Sinara River. The complex effect from such man--caused factors as radiation, chemical and thermal to water reservoirs' ecosystems was studied. Radionuclide specific activities of the major reservoir components (water, bottom sediments, and biological objects), cumulative stock and radiation doses to the biota were determined. Assessment of the condition of biological structures of individual reservoirs was performed. It was found that the long-term complex influence of radiation, thermal and chemical factors resulted in the formation of the unique technology-induced ecosystems being a part of "Mayak" PA process cycle. Radiation doses to the fish of the cooling water reservoir and the radioactive waste storage reservoir were experimentally estimated. These doses from the incorporated beta-emitters were not less then 2-3 Gy/year. The long-term complex influence of radiation and chemical factors didn't cause any irreversible changes either in the fish population or in the ecosystem. Water purity indicators like crayfish (Astacus leptodactilus Esch) and mollusk (Anodonta cygnea L.) were found in the cooling water reservoir. The comparative analysis of the ecological situation of the reservoirs carried out on the basis of several qualitative indicators and with the help of the formalized scoring system allowed determining that the optimum ecological conditions can be observed in Irtyash Lake. The quality of the environment of Alabuga Lake is slightly lower. The ecological conditions in Kysyl-Tash Lake are up to the standard, while in Kazhakul Lake they are lower than the standard. This is the result of the natural salinization of the ecosystem. The lowest indicator was obtained for the radioactive waste storage reservoir.

  17. Gas Resource Potential of Volcanic Reservoir in Yingtai Fault Depression of Southern Songliao Basin,China

    NASA Astrophysics Data System (ADS)

    Zheng, M.

    2016-12-01

    There are 2 kinds of volcanic reservoir of gas resource in the Yingtai fault depression, southern Songliao basin,China: volcanic lava reservoir in the Yingcheng-1formation and sedimentary pryoclastics rock of the Yingcheng-2 formation. Based on analysis of the 2 kinds of gas pool features and controlling factors, distribution of each kind has been studied. The resources of these gas reservoirs have been estimated by Delphi method and volumetric method, respectively. The results of resources assessment show the total volcanic gas resources of the Yingtai depression is rich, and the resource proving rate is low, with the remaining gas resource in volcanic reservoir accounting for more than 70%. Thus there will be great exploration potential in the volcanic reservoir in the future gas exploration of this area.

  18. Understanding CO2 Plume Behavior and Basin-Scale Pressure Changes during Sequestration Projects through the use of Reservoir Fluid Modeling

    USGS Publications Warehouse

    Leetaru, H.E.; Frailey, S.M.; Damico, J.; Mehnert, E.; Birkholzer, J.; Zhou, Q.; Jordan, P.D.

    2009-01-01

    Large scale geologic sequestration tests are in the planning stages around the world. The liability and safety issues of the migration of CO2 away from the primary injection site and/or reservoir are of significant concerns for these sequestration tests. Reservoir models for simulating single or multi-phase fluid flow are used to understand the migration of CO2 in the subsurface. These models can also help evaluate concerns related to brine migration and basin-scale pressure increases that occur due to the injection of additional fluid volumes into the subsurface. The current paper presents different modeling examples addressing these issues, ranging from simple geometric models to more complex reservoir fluid models with single-site and basin-scale applications. Simple geometric models assuming a homogeneous geologic reservoir and piston-like displacement have been used for understanding pressure changes and fluid migration around each CO2 storage site. These geometric models are useful only as broad approximations because they do not account for the variation in porosity, permeability, asymmetry of the reservoir, and dip of the beds. In addition, these simple models are not capable of predicting the interference between different injection sites within the same reservoir. A more realistic model of CO2 plume behavior can be produced using reservoir fluid models. Reservoir simulation of natural gas storage reservoirs in the Illinois Basin Cambrian-age Mt. Simon Sandstone suggest that reservoir heterogeneity will be an important factor for evaluating storage capacity. The Mt. Simon Sandstone is a thick sandstone that underlies many significant coal fired power plants (emitting at least 1 million tonnes per year) in the midwestern United States including the states of Illinois, Indiana, Kentucky, Michigan, and Ohio. The initial commercial sequestration sites are expected to inject 1 to 2 million tonnes of CO2 per year. Depending on the geologic structure and permeability anisotropy, the CO2 injected into the Mt. Simon are expected to migrate less than 3 km. After 30 years of continuous injection followed by 100 years of shut-in, the plume from a 1 million tonnes a year injection rate is expected to migrate 1.6 km for a 0 degree dip reservoir and over 3 km for a 5 degree dip reservoir. The region where reservoir pressure increases in response to CO2 injection is typically much larger than the CO2 plume. It can thus be anticipated that there will be basin wide interactions between different CO2 injection sources if multiple, large volume sites are developed. This interaction will result in asymmetric plume migration that may be contrary to reservoir dip. A basin- scale simulation model is being developed to predict CO2 plume migration, brine displacement, and pressure buildup for a possible future sequestration scenario featuring multiple CO2 storage sites within the Illinois Basin Mt. Simon Sandstone. Interactions between different sites will be evaluated with respect to impacts on pressure and CO2 plume migration patterns. ?? 2009 Elsevier Ltd. All rights reserved.

  19. Small leucine-rich repeat proteoglycans associated with mature insoluble elastin serve as binding sites for galectins.

    PubMed

    Itoh, Aiko; Nonaka, Yasuhiro; Ogawa, Takashi; Nakamura, Takanori; Nishi, Nozomu

    2017-11-01

    We previously reported that galectin-9 (Gal-9), an immunomodulatory animal lectin, could bind to insoluble collagen preparations and exerted direct cytocidal effects on immune cells. In the present study, we found that mature insoluble elastin is capable of binding Gal-9 and other members of the human galectin family. Lectin blot analysis of a series of commercial water-soluble elastin preparations, PES-(A) ~ PES-(E), revealed that only PES-(E) contained substances recognized by Gal-9. Gal-9-interacting substances in PES-(E) were affinity-purified, digested with trypsin and then analyzed by reversed-phase HPLC. Peptide fragments derived from five members of the small leucine-rich repeat proteoglycan family, versican, lumican, osteoglycin/mimecan, prolargin, and fibromodulin, were identified by N-terminal amino acid sequence analysis. The results indicate that Gal-9 and possibly other galectins recognize glycans attached to small leucine-rich repeat proteoglycans associated with insoluble elastin and also indicate the possibility that mature insoluble elastin serves as an extracellular reservoir for galectins.

  20. HIV-1 Phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues

    PubMed Central

    Lamers, Susanna L.; Gray, Rebecca R.; Salemi, Marco; Huysentruyt, Leanne C.; McGrath, Michael

    2010-01-01

    Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that 1) HIV-1 is clearly capable of migrating out of the brain, 2) the meninges are the most likely primary transport tissues, and 3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy. PMID:21055482

  1. An overview of field-specific designs of microbial EOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, E.P.; Bala, G.A.; Fox, S.L.

    1995-12-31

    The selection and design of an MEOR process for application in a specific field involves geological, reservoir, and biological characterization. Microbially mediated oil recovery mechanisms (bigenic gas, biopolymers, and biosurfactants) are defined by the types of microorganisms used. The engineering and biological character of a given reservoir must be understood to correctly select a microbial system to enhance oil recovery. This paper discusses the methods used to evaluate three fields with distinct characteristics and production problems for the applicability of MEOR would not be applicable in two of the three fields considered. The development of a microbial oil recovery processmore » for the third field appeared promising. Development of a bacterial consortium capable of producing the desired metabolites was initiated, and field isolates were characterized.« less

  2. Long-life leak standard assembly

    DOEpatents

    Basford, James A.; Mathis, John E.; Wright, Harlan C.

    1982-01-01

    The present invention is directed to a portable leak standard assembly which is capable of providing a stream of high-purity reference gas at a virtually constant flow rate over an extensive period of time. The leak assembly comprises a high pressure reservoir coupled to a metal leak valve through a valve-controlled conduit. A reproducible leak valve useful in this assembly is provided by a metal tube crimped with a selected pressure loading for forming an orifice in the tube with this orifice being of a sufficient size to provide the selected flow rate. The leak valve assembly is formed of metal so that it can be "baked-out" in a vacuum furnace to rid the reservoir and attendent components of volatile impurities which reduce the efficiency of the leak standard.

  3. Long-life leak standard assembly. [Patent application

    DOEpatents

    Basford, J.A.; Mathis, J.E.; Wright, H.C.

    1980-11-12

    The present invention is directed to a portable leak standard assembly which is capable of providing a stream of high-purity reference gas at a virtually constant flow rate over an extensive period of time. The leak assembly comprises a high pressure reservoir coupled to a metal leak valve through a valve-controlled conduit. A reproducible leak valve useful in this assembly is provided by a metal tube crimped with a selected pressure loading for forming an orifice in the tube with this orifice being of a sufficient size to provide the selected flow rate. The leak valve assembly is formed of metal so that it can be baked-out in a vacuum furnace to rid the reservoir and attendent components of volatile impurities which reduce the efficiency of the leak standard.

  4. Fast-acting self-healing metallic fuse.

    NASA Technical Reports Server (NTRS)

    Schwartz, F. C.; Renton, C. A.; Rabinovici, B.

    1971-01-01

    Description of a fast-acting nonmechanical self-healing mercury fuse capable of protecting a high current circuit or device from overcurrent fault damages. Basically the self-healing fuse consists of two enclosed mercury reservoirs connected by a fine capillary tube filled with mercury that serves as the fusing element. It is pointed out that a better understanding of the energy conversion process involved in the operation of the device could help explore other device configurations (such as a tapering geometry and use of magnetic field to drive the arc into the fuse wall on inductive loads, etc.) and thus extend the range of capabilities for this type of protective device.

  5. OM300 Direction Drilling Module

    DOE Data Explorer

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  6. Climate Change Assessment of Precipitation in Tandula Reservoir System

    NASA Astrophysics Data System (ADS)

    Jaiswal, Rahul Kumar; Tiwari, H. L.; Lohani, A. K.

    2018-02-01

    The precipitation is the principle input of hydrological cycle affect availability of water in spatial and temporal scale of basin due to widely accepted climate change. The present study deals with the statistical downscaling using Statistical Down Scaling Model for rainfall of five rain gauge stations (Ambagarh, Bhanpura, Balod, Chamra and Gondli) in Tandula, Kharkhara and Gondli reservoirs of Chhattisgarh state of India to forecast future rainfall in three different periods under SRES A1B and A2 climatic forcing conditions. In the analysis, twenty-six climatic variables obtained from National Centers for Environmental Prediction were used and statistically tested for selection of best-fit predictors. The conditional process based statistical correlation was used to evolve multiple linear relations in calibration for period of 1981-1995 was tested with independent data of 1996-2003 for validation. The developed relations were further used to predict future rainfall scenarios for three different periods 2020-2035 (FP-1), 2046-2064 (FP-2) and 2081-2100 (FP-3) and compared with monthly rainfalls during base period (1981-2003) for individual station and all three reservoir catchments. From the analysis, it has been found that most of the rain gauge stations and all three reservoir catchments may receive significant less rainfall in future. The Thiessen polygon based annual and seasonal rainfall for different catchments confirmed a reduction of seasonal rainfall from 5.1 to 14.1% in Tandula reservoir, 11-19.2% in Kharkhara reservoir and 15.1-23.8% in Gondli reservoir. The Gondli reservoir may be affected the most in term of water availability in future prediction periods.

  7. 3D Seismic Reflection Amplitude and Instantaneous Frequency Attributes in Mapping Thin Hydrocarbon Reservoir Lithofacies: Morrison NE Field and Morrison Field, Clark County, KS

    NASA Astrophysics Data System (ADS)

    Raef, Abdelmoneam; Totten, Matthew; Vohs, Andrew; Linares, Aria

    2017-12-01

    Thin hydrocarbon reservoir facies pose resolution challenges and waveform-signature opportunities in seismic reservoir characterization and prospect identification. In this study, we present a case study, where instantaneous frequency variation in response to a thin hydrocarbon pay zone is analyzed and integrated with other independent information to explain drilling results and optimize future drilling decisions. In Morrison NE Field, some wells with poor economics have resulted from well-placement incognizant of reservoir heterogeneities. The study area in Clark County, Kanas, USA, has been covered by a surface 3D seismic reflection survey in 2010. The target horizon is the Viola limestone, which continues to produce from 7 of the 12 wells drilled within the survey area. Seismic attributes extraction and analyses were conducted with emphasis on instantaneous attributes and amplitude anomalies to better understand and predict reservoir heterogeneities and their control on hydrocarbon entrapment settings. We have identified a higher instantaneous frequency, lower amplitude seismic facies that is in good agreement with distinct lithofacies that exhibit better (higher porosity) reservoir properties, as inferred from well-log analysis and petrographic inspection of well cuttings. This study presents a pre-drilling, data-driven approach of identifying sub-resolution reservoir seismic facies in a carbonate formation. This workflow will assist in placing new development wells in other locations within the area. Our low amplitude high instantaneous frequency seismic reservoir facies have been corroborated by findings based on well logs, petrographic analysis data, and drilling results.

  8. Research on the Log Interpretation Method of Tuffaceous Sandstone Reservoirs of X Depression in Hailar-Tamtsag Basin

    NASA Astrophysics Data System (ADS)

    Liu, S.; Pan, B.

    2015-12-01

    The logging evaluation of tuffaceous sandstone reservoirs is always a difficult problem. Experiments show that the tuff and shale have different logging responses. Since the tuff content exerts an influence on the computation of shale content and the parameters of the reservoir, and the accuracy of saturation evaluation is reduced. Therefore, the effect of tuff on the calculation of saturation cannot be ignored. This study takes the tuffaceous sandstone reservoirs in the X depression of Hailar-Tamtsag basin as an example to analyze. And the electric conduction model of tuffaceous sandstone reservoirs is established. The method which combines bacterial foraging algorithm and particle swarm optimization algorithm is used to calculate the content of reservoir components in well logging for the first time, and the calculated content of tuff and shale corresponds to the results analysis of thin sections. The experiment on cation exchange capacity (CEC) proves that tuff has conductivity, and the conversion relationship between CEC and resistivity proposed by Toshinobu Iton has been improved. According to the rock electric experiment under simulated reservoir conditions, the rock-electro parameters (a, b, m and n) are determined. The improved relationship between CEC and resistivity and the rock-electro parameters are used in the calculation of saturation. Formula (1) shows the saturation equation of the tuffaceous reservoirs:According to the comparative analysis between irreducible water saturation and the calculated saturation, we find that the saturation equation used CEC data and rock-electro parameters has a better application effect at oil layer than Archie's formulas.

  9. Hydrogeomorphic features mediate the effects of land use/cover on reservoir productivity and food webs

    USGS Publications Warehouse

    Bremigan, M.T.; Soranno, P.A.; Gonzalez, M.J.; Bunnell, D.B.; Arend, K.K.; Renwick, W.H.; Stein, R.A.; Vanni, M.J.

    2008-01-01

    Although effects of land use/cover on nutrient concentrations in aquatic systems are well known, half or more of the variation in nutrient concentration remains unexplained by land use/cover alone. Hydrogeomorphic (HGM) landscape features can explain much remaining variation and influence food web interactions. To explore complex linkages among land use/cover, HGM features, reservoir productivity, and food webs, we sampled 11 Ohio reservoirs, ranging broadly in agricultural catchment land use/cover, for 3 years. We hypothesized that HGM features mediate the bottom-up effects of land use/cover on reservoir productivity, chlorophyll a, zooplankton, and recruitment of gizzard shad, an omnivorous fish species common throughout southeastern U.S. reservoirs and capable of exerting strong effects on food web and nutrient dynamics. We tested specific hypotheses using a model selection approach. Percent variation explained was highest for total nitrogen (R2 = 0.92), moderately high for total phosphorus, chlorophyll a, and rotifer biomass (R2 = 0.57 to 0.67), relatively low for crustacean zooplankton biomass and larval gizzard shad hatch abundance (R2 = 0.43 and 0.42), and high for larval gizzard shad survivor abundance (R2 = 0.79). The trophic status models included agricultural land use/cover and an HGM predictor, whereas the zooplankton models had few HGM predictors. The larval gizzard shad models had the highest complexity, including more than one HGM feature and food web components. We demonstrate the importance of integrating land use/cover, HGM features, and food web interactions to investigate critical interactions and feedbacks among physical, chemical, and biological components of linked land-water ecosystems.

  10. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs

    PubMed Central

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-01-01

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006–2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources. PMID:26492263

  11. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs.

    PubMed

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-10-20

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006-2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  12. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead

    2003-04-01

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Informationmore » System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.« less

  13. Trophic classification of Tennessee Valley area reservoirs derived from LANDSAT multispectral scanner data. [Alabama, Georgia, Kentucky, Tennessee, and North Carolina

    NASA Technical Reports Server (NTRS)

    Meinert, D. L.; Malone, D. L.; Voss, A. W. (Principal Investigator); Scarpace, F. L.

    1980-01-01

    LANDSAT MSS data from four different dates were extracted from computer tapes using a semiautomated digital data handling and analysis system. Reservoirs were extracted from the surrounding land matrix by using a Band 7 density level slice of 3; and descriptive statistics to include mean, variance, and ratio between bands for each of the four bands were calculated. Significant correlations ( 0.80) were identified between the MSS statistics and many trophic indicators from ground truth water quality data collected at 35 reservoirs in the greater Tennessee Valley region. Regression models were developed which gave significant estimates of each reservoir's trophic state as defined by its trophic state index and explained in all four LANDSAT frames at least 85 percent of the variability in the data. To illustrate the spatial variations within reservoirs as well as the relative variations between reservoirs, a table look up elliptical classification was used in conjunction with each reservoir's trophic state index to classify each reservoir on a pixel by pixel basis and produce color coded thematic representations.

  14. Assessing contribution of DOC from sediments to a drinking-water reservoir using optical profiling

    USGS Publications Warehouse

    Downing, Bryan D.; Bergamaschi, Brian A.; Evans, David G.; Boss, Emmanuel

    2008-01-01

    Understanding the sources of dissolved organic carbon (DOC) in drinking-water reservoirs is an important management issue because DOC may form disinfection by-products, interfere with disinfection, or increase treatment costs. DOC may be derived from a host of sources-algal production of DOC in the reservoir, marginal production of DOC from mucks and vascular plants at the margins, and sediments in the reservoir. The purpose of this study was to assess if release of DOC from reservoir sediments containing ferric chloride coagulant was a significant source of DOC to the reservoir. We examined the source-specific contributions of DOC using a profiling system to measure the in situ distribution of optical properties of absorption and fluorescence at various locations in the reservoir. Vertical optical profiles were coupled with discrete water samples measured in the laboratory for DOC concentration and optical properties: absorption spectra and excitation emission matrix spectra (EEMs). Modeling the in situ optical data permitted estimation of the bulk DOC profile in the reservoir as well as separation into source-specific contributions. Analysis of the source-specific profiles and their associated optical characteristics indicated that the sedimentary source of DOC to the reservoir is significant and that this DOC is labile in the reservoir. We conclude that optical profiling is a useful technique for understanding complex biogeochemical processes in a reservoir.

  15. Optimal reservoir operation policies using novel nested algorithms

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri

    2015-04-01

    Historically, the two most widely practiced methods for optimal reservoir operation have been dynamic programming (DP) and stochastic dynamic programming (SDP). These two methods suffer from the so called "dual curse" which prevents them to be used in reasonably complex water systems. The first one is the "curse of dimensionality" that denotes an exponential growth of the computational complexity with the state - decision space dimension. The second one is the "curse of modelling" that requires an explicit model of each component of the water system to anticipate the effect of each system's transition. We address the problem of optimal reservoir operation concerning multiple objectives that are related to 1) reservoir releases to satisfy several downstream users competing for water with dynamically varying demands, 2) deviations from the target minimum and maximum reservoir water levels and 3) hydropower production that is a combination of the reservoir water level and the reservoir releases. Addressing such a problem with classical methods (DP and SDP) requires a reasonably high level of discretization of the reservoir storage volume, which in combination with the required releases discretization for meeting the demands of downstream users leads to computationally expensive formulations and causes the curse of dimensionality. We present a novel approach, named "nested" that is implemented in DP, SDP and reinforcement learning (RL) and correspondingly three new algorithms are developed named nested DP (nDP), nested SDP (nSDP) and nested RL (nRL). The nested algorithms are composed from two algorithms: 1) DP, SDP or RL and 2) nested optimization algorithm. Depending on the way we formulate the objective function related to deficits in the allocation problem in the nested optimization, two methods are implemented: 1) Simplex for linear allocation problems, and 2) quadratic Knapsack method in the case of nonlinear problems. The novel idea is to include the nested optimization algorithm into the state transition that lowers the starting problem dimension and alleviates the curse of dimensionality. The algorithms can solve multi-objective optimization problems, without significantly increasing the complexity and the computational expenses. The algorithms can handle dense and irregular variable discretization, and are coded in Java as prototype applications. The three algorithms were tested at the multipurpose reservoir Knezevo of the Zletovica hydro-system located in the Republic of Macedonia, with eight objectives, including urban water supply, agriculture, ensuring ecological flow, and generation of hydropower. Because the Zletovica hydro-system is relatively complex, the novel algorithms were pushed to their limits, demonstrating their capabilities and limitations. The nSDP and nRL derived/learned the optimal reservoir policy using 45 (1951-1995) years historical data. The nSDP and nRL optimal reservoir policy was tested on 10 (1995-2005) years historical data, and compared with nDP optimal reservoir operation in the same period. The nested algorithms and optimal reservoir operation results are analysed and explained.

  16. Brain Macrophages in Simian Immunodeficiency Virus-Infected, Antiretroviral-Suppressed Macaques: a Functional Latent Reservoir.

    PubMed

    Avalos, Claudia R; Abreu, Celina M; Queen, Suzanne E; Li, Ming; Price, Sarah; Shirk, Erin N; Engle, Elizabeth L; Forsyth, Ellen; Bullock, Brandon T; Mac Gabhann, Feilim; Wietgrefe, Stephen W; Haase, Ashley T; Zink, M Christine; Mankowski, Joseph L; Clements, Janice E; Gama, Lucio

    2017-08-15

    A human immunodeficiency virus (HIV) infection cure requires an understanding of the cellular and anatomical sites harboring virus that contribute to viral rebound upon treatment interruption. Despite antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) are reported in HIV-infected individuals on ART. Biomarkers for macrophage activation and neuronal damage in cerebrospinal fluid (CSF) of HIV-infected individuals demonstrate continued effects of HIV in brain and suggest that the central nervous system (CNS) may serve as a viral reservoir. Using a simian immunodeficiency virus (SIV)/macaque model for HIV encephalitis and AIDS, we evaluated whether infected cells persist in brain despite ART. Eight SIV-infected pig-tailed macaques were virally suppressed with ART, and plasma and CSF viremia levels were analyzed longitudinally. To assess whether virus persisted in brain macrophages (BrMΦ) in these macaques, we used a macrophage quantitative viral outgrowth assay (MΦ-QVOA), PCR, and in situ hybridization (ISH) to measure the frequency of infected cells and the levels of viral RNA and DNA in brain. Viral RNA in brain tissue of suppressed macaques was undetectable, although viral DNA was detected in all animals. The MΦ-QVOA demonstrated that the majority of suppressed animals contained latently infected BrMΦ. We also showed that virus produced in the MΦ-QVOAs was replication competent, suggesting that latently infected BrMΦ are capable of reestablishing productive infection upon treatment interruption. This report provides the first confirmation of the presence of replication-competent SIV in BrMΦ of ART-suppressed macaques and suggests that the highly debated issue of viral latency in macrophages, at least in brain, has been addressed in SIV-infected macaques treated with ART. IMPORTANCE Resting CD4 + T cells are currently the only cells that fit the definition of a latent reservoir. However, recent evidence suggests that HIV/SIV-infected macrophages persist despite ART. Markers of macrophage activation and neuronal damage are observed in the CSF of HIV-infected individuals and of SIV-infected macaques on suppressive ART regimens, suggesting that the CNS has continued virus infection and latent infection. A controversy exists as to whether brain macrophages represent a latent source of replication-competent virus capable of reestablishing infection upon treatment interruption. In this study, we demonstrated the presence of the latent macrophage reservoir in brains of SIV-infected ART-treated macaques and analyzed the reservoir using our established outgrowth assay to quantitate macrophages harboring replication-competent SIV genomes. Our results support the idea of the existence of other latent reservoirs in addition to resting CD4 + T cells and underscore the importance of macrophages in developing strategies to eradicate HIV. Copyright © 2017 Avalos et al.

  17. Autonomous microexplosives subsurface tracing system final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engler, Bruce Phillip; Nogan, John; Melof, Brian Matthew

    The objective of the autonomous micro-explosive subsurface tracing system is to image the location and geometry of hydraulically induced fractures in subsurface petroleum reservoirs. This system is based on the insertion of a swarm of autonomous micro-explosive packages during the fracturing process, with subsequent triggering of the energetic material to create an array of micro-seismic sources that can be detected and analyzed using existing seismic receiver arrays and analysis software. The project included investigations of energetic mixtures, triggering systems, package size and shape, and seismic output. Given the current absence of any technology capable of such high resolution mapping ofmore » subsurface structures, this technology has the potential for major impact on petroleum industry, which spends approximately $1 billion dollar per year on hydraulic fracturing operations in the United States alone.« less

  18. Reservoir zonation based on statistical analyses: A case study of the Nubian sandstone, Gulf of Suez, Egypt

    NASA Astrophysics Data System (ADS)

    El Sharawy, Mohamed S.; Gaafar, Gamal R.

    2016-12-01

    Both reservoir engineers and petrophysicists have been concerned about dividing a reservoir into zones for engineering and petrophysics purposes. Through decades, several techniques and approaches were introduced. Out of them, statistical reservoir zonation, stratigraphic modified Lorenz (SML) plot and the principal component and clustering analyses techniques were chosen to apply on the Nubian sandstone reservoir of Palaeozoic - Lower Cretaceous age, Gulf of Suez, Egypt, by using five adjacent wells. The studied reservoir consists mainly of sandstone with some intercalation of shale layers with varying thickness from one well to another. The permeability ranged from less than 1 md to more than 1000 md. The statistical reservoir zonation technique, depending on core permeability, indicated that the cored interval of the studied reservoir can be divided into two zones. Using reservoir properties such as porosity, bulk density, acoustic impedance and interval transit time indicated also two zones with an obvious variation in separation depth and zones continuity. The stratigraphic modified Lorenz (SML) plot indicated the presence of more than 9 flow units in the cored interval as well as a high degree of microscopic heterogeneity. On the other hand, principal component and cluster analyses, depending on well logging data (gamma ray, sonic, density and neutron), indicated that the whole reservoir can be divided at least into four electrofacies having a noticeable variation in reservoir quality, as correlated with the measured permeability. Furthermore, continuity or discontinuity of the reservoir zones can be determined using this analysis.

  19. Effects of Reservoir Characteristics on Malaria and its vector Abundance: A Case Study of the Bongo District of Ghana

    NASA Astrophysics Data System (ADS)

    Ofosu, E.; Awuah, E.; Annor, F. O.

    2009-04-01

    In the seven (7) administrative zones of the Bongo District of the Upper East Region of Ghana, the occurrences of malaria and relative abundance of the principal malaria vector, Anopheles species, were studied as a function of the presence and characteristics of reservoirs during the rainy season. Case studies in the sub-Sahara Africa indicate that malaria transmission may increase decrease or remain largely unchanged as a consequence of reservoir presence. Analysis made, shows that the distance from reservoir to settlement and surface area of reservoirs significantly affected adult Anopheles mosquito abundance. Percentage of inhabitants using insecticide treated nets, livestock population density, human population density and Anopheles mosquito abundance significantly affected the occurrence of malaria. The results suggest that vector control targeted at reservoir characteristics and larval control, and supplemented by high patronage of insecticide treated nets may be an effective approach for epidemic malaria control in the Bongo District. Key Words: Bongo District, Reservoir, Anopheles species, Malaria, Vector abundance.

  20. Estimating Cyanobacteria Community Dynamics and its Relationship with Environmental Factors

    PubMed Central

    Luo, Wenhuai; Chen, Huirong; Lei, Anping; Lu, Jun; Hu, Zhangli

    2014-01-01

    The cyanobacteria community dynamics in two eutrophic freshwater bodies (Tiegang Reservoir and Shiyan Reservoir) was studied with both a traditional microscopic counting method and a PCR-DGGE genotyping method. Results showed that cyanobacterium Phormidium tenue was the predominant species; twenty-six cyanobacteria species were identified in water samples collected from the two reservoirs, among which fourteen were identified with the morphological method and sixteen with the PCR-DGGE method. The cyanobacteria community composition analysis showed a seasonal fluctuation from July to December. The cyanobacteria population peaked in August in both reservoirs, with cell abundances of 3.78 × 108 cells L-1 and 1.92 × 108 cells L-1 in the Tiegang and Shiyan reservoirs, respectively. Canonical Correspondence Analysis (CCA) was applied to further investigate the correlation between cyanobacteria community dynamics and environmental factors. The result indicated that the cyanobacteria community dynamics was mostly correlated with pH, temperature and total nitrogen. This study demonstrated that data obtained from PCR-DGGE combined with a traditional morphological method could reflect cyanobacteria community dynamics and its correlation with environmental factors in eutrophic freshwater bodies. PMID:24448632

  1. Development of a management tool for reservoirs in Mediterranean environments based on uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Gómez-Beas, R.; Moñino, A.; Polo, M. J.

    2012-05-01

    In compliance with the development of the Water Framework Directive, there is a need for an integrated management of water resources, which involves the elaboration of reservoir management models. These models should include the operational and technical aspects which allow us to forecast an optimal management in the short term, besides the factors that may affect the volume of water stored in the medium and long term. The climate fluctuations of the water cycle that affect the reservoir watershed should be considered, as well as the social and economic aspects of the area. This paper shows the development of a management model for Rules reservoir (southern Spain), through which the water supply is regulated based on set criteria, in a sustainable way with existing commitments downstream, with the supply capacity being well established depending on demand, and the probability of failure when the operating requirements are not fulfilled. The results obtained allowed us: to find out the reservoir response at different time scales, to introduce an uncertainty analysis and to demonstrate the potential of the methodology proposed here as a tool for decision making.

  2. FRACOR-software toolbox for deterministic mapping of fracture corridors in oil fields on AutoCAD platform

    NASA Astrophysics Data System (ADS)

    Ozkaya, Sait I.

    2018-03-01

    Fracture corridors are interconnected large fractures in a narrow sub vertical tabular array, which usually traverse entire reservoir vertically and extended for several hundreds of meters laterally. Fracture corridors with their huge conductivities constitute an important element of many fractured reservoirs. Unlike small diffuse fractures, actual fracture corridors must be mapped deterministically for simulation or field development purposes. Fracture corridors can be identified and quantified definitely with borehole image logs and well testing. However, there are rarely sufficient image logs or well tests, and it is necessary to utilize various fracture corridor indicators with varying degrees of reliability. Integration of data from many different sources, in turn, requires a platform with powerful editing and layering capability. Available commercial reservoir characterization software packages, with layering and editing capabilities, can be cost intensive. CAD packages are far more affordable and may easily acquire the versatility and power of commercial software packages with addition of a small software toolbox. The objective of this communication is to present FRACOR, a software toolbox which enables deterministic 2D fracture corridor mapping and modeling on AutoCAD platform. The FRACOR toolbox is written in AutoLISPand contains several independent routines to import and integrate available fracture corridor data from an oil field, and export results as text files. The resulting fracture corridor maps consists mainly of fracture corridors with different confidence levels from combination of static and dynamic data and exclusion zones where no fracture corridor can exist. The exported text file of fracture corridors from FRACOR can be imported into an upscaling programs to generate fracture grid for dual porosity simulation or used for field development and well planning.

  3. Upper Rio Grande water operations model: A tool for enhanced system management

    Treesearch

    Gail Stockton; D. Michael Roark

    1999-01-01

    The Upper Rio Grande Water Operations Model (URGWOM) under development through a multi-agency effort has demonstrated capability to represent the physical river/reservoir system, to track and account for Rio Grande flows and imported San Juan flows, and to forecast flows at various points in the system. Testing of the Rio Chama portion of the water operations model was...

  4. Stream temperature investigations: field and analytic methods

    USGS Publications Warehouse

    Bartholow, J.M.

    1989-01-01

    Alternative public domain stream and reservoir temperature models are contrasted with SNTEMP. A distinction is made between steady-flow and dynamic-flow models and their respective capabilities. Regression models are offered as an alternative approach for some situations, with appropriate mathematical formulas suggested. Appendices provide information on State and Federal agencies that are good data sources, vendors for field instrumentation, and small computer programs useful in data reduction.

  5. The aortic reservoir-wave as a paradigm for arterial haemodynamics: insights from three-dimensional fluid-structure interaction simulations in a model of aortic coarctation.

    PubMed

    Segers, Patrick; Taelman, Liesbeth; Degroote, Joris; Bols, Joris; Vierendeels, Jan

    2015-03-01

    The reservoir-wave paradigm considers aortic pressure as the superposition of a 'reservoir pressure', directly related to changes in reservoir volume, and an 'excess' component ascribed to wave dynamics. The change in reservoir pressure is assumed to be proportional to the difference between aortic inflow and outflow (i.e. aortic volume changes), an assumption that is virtually impossible to validate in vivo. The aim of this study is therefore to apply the reservoir-wave paradigm to aortic pressure and flow waves obtained from three-dimensional fluid-structure interaction simulations in a model of a normal aorta, aortic coarctation (narrowed descending aorta) and stented coarctation (stiff segment in descending aorta). We found no unequivocal relation between the intraaortic volume and the reservoir pressure for any of the simulated cases. When plotted in a pressure-volume diagram, hysteresis loops are found that are looped in a clockwise way indicating that the reservoir pressure is lower than the pressure associated with the change in volume. The reservoir-wave analysis leads to very high excess pressures, especially for the coarctation models, but to surprisingly little changes of the reservoir component despite the impediment of the buffer capacity of the aorta. With the observation that reservoir pressure is not related to the volume in the aortic reservoir in systole, an intrinsic assumption in the wave-reservoir concept is invalidated and, consequently, also the assumption that the excess pressure is the component of pressure that can be attributed to wave travel and reflection.

  6. Stress-Induced Fracturing of Reservoir Rocks: Acoustic Monitoring and μCT Image Analysis

    NASA Astrophysics Data System (ADS)

    Pradhan, Srutarshi; Stroisz, Anna M.; Fjær, Erling; Stenebråten, Jørn F.; Lund, Hans K.; Sønstebø, Eyvind F.

    2015-11-01

    Stress-induced fracturing in reservoir rocks is an important issue for the petroleum industry. While productivity can be enhanced by a controlled fracturing operation, it can trigger borehole instability problems by reactivating existing fractures/faults in a reservoir. However, safe fracturing can improve the quality of operations during CO2 storage, geothermal installation and gas production at and from the reservoir rocks. Therefore, understanding the fracturing behavior of different types of reservoir rocks is a basic need for planning field operations toward these activities. In our study, stress-induced fracturing of rock samples has been monitored by acoustic emission (AE) and post-experiment computer tomography (CT) scans. We have used hollow cylinder cores of sandstones and chalks, which are representatives of reservoir rocks. The fracture-triggering stress has been measured for different rocks and compared with theoretical estimates. The population of AE events shows the location of main fracture arms which is in a good agreement with post-test CT image analysis, and the fracture patterns inside the samples are visualized through 3D image reconstructions. The amplitudes and energies of acoustic events clearly indicate initiation and propagation of the main fractures. Time evolution of the radial strain measured in the fracturing tests will later be compared to model predictions of fracture size.

  7. Hierarchical clusters of phytoplankton variables in dammed water bodies

    NASA Astrophysics Data System (ADS)

    Silva, Eliana Costa e.; Lopes, Isabel Cristina; Correia, Aldina; Gonçalves, A. Manuela

    2017-06-01

    In this paper a dataset containing biological variables of the water column of several Portuguese reservoirs is analyzed. Hierarchical cluster analysis is used to obtain clusters of phytoplankton variables of the phylum Cyanophyta, with the objective of validating the classification of Portuguese reservoirs previewly presented in [1] which were divided into three clusters: (1) Interior Tagus and Aguieira; (2) Douro; and (3) Other rivers. Now three new clusters of Cyanophyta variables were found. Kruskal-Wallis and Mann-Whitney tests are used to compare the now obtained Cyanophyta clusters and the previous Reservoirs clusters, in order to validate the classification of the water quality of reservoirs. The amount of Cyanophyta algae present in the reservoirs from the three clusters is significantly different, which validates the previous classification.

  8. Advanced Reservoir Characterization and Evaluation of CO2 Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Bill; Schechter, David S.

    The goal of this project was to assess the economic feasibility of CO2 flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This provides results of the final year of the six-year project for each of the four areas.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hong -Yi; Leung, L. Ruby; Tesfa, Teklu

    A new large-scale stream temperature model has been developed within the Community Earth System Model (CESM) framework. The model is coupled with the Model for Scale Adaptive River Transport (MOSART) that represents river routing and a water management model (WM) that represents the effects of reservoir operations and water withdrawals on flow regulation. The coupled models allow the impacts of reservoir operations and withdrawals on stream temperature to be explicitly represented in a physically based and consistent way. The models have been applied to the Contiguous United States driven by observed meteorological forcing. It is shown that the model ismore » capable of reproducing stream temperature spatiotemporal variation satisfactorily by comparison against the observed streamflow from over 320 USGS stations. Including water management in the models improves the agreement between the simulated and observed streamflow at a large number of stream gauge stations. Both climate and water management are found to have important influence on the spatiotemporal patterns of stream temperature. More interestingly, it is quantitatively estimated that reservoir operation could cool down stream temperature in the summer low-flow season (August – October) by as much as 1~2oC over many places, as water management generally mitigates low flow, which has important implications to aquatic ecosystems. In conclusion, sensitivity of the simulated stream temperature to input data and reservoir operation rules used in the WM model motivates future directions to address some limitations in the current modeling framework.« less

  10. Fuzzy classifier based support vector regression framework for Poisson ratio determination

    NASA Astrophysics Data System (ADS)

    Asoodeh, Mojtaba; Bagheripour, Parisa

    2013-09-01

    Poisson ratio is considered as one of the most important rock mechanical properties of hydrocarbon reservoirs. Determination of this parameter through laboratory measurement is time, cost, and labor intensive. Furthermore, laboratory measurements do not provide continuous data along the reservoir intervals. Hence, a fast, accurate, and inexpensive way of determining Poisson ratio which produces continuous data over the whole reservoir interval is desirable. For this purpose, support vector regression (SVR) method based on statistical learning theory (SLT) was employed as a supervised learning algorithm to estimate Poisson ratio from conventional well log data. SVR is capable of accurately extracting the implicit knowledge contained in conventional well logs and converting the gained knowledge into Poisson ratio data. Structural risk minimization (SRM) principle which is embedded in the SVR structure in addition to empirical risk minimization (EMR) principle provides a robust model for finding quantitative formulation between conventional well log data and Poisson ratio. Although satisfying results were obtained from an individual SVR model, it had flaws of overestimation in low Poisson ratios and underestimation in high Poisson ratios. These errors were eliminated through implementation of fuzzy classifier based SVR (FCBSVR). The FCBSVR significantly improved accuracy of the final prediction. This strategy was successfully applied to data from carbonate reservoir rocks of an Iranian Oil Field. Results indicated that SVR predicted Poisson ratio values are in good agreement with measured values.

  11. Early warning of limit-exceeding concentrations of cyanobacteria and cyanotoxins in drinking water reservoirs by inferential modelling.

    PubMed

    Recknagel, Friedrich; Orr, Philip T; Bartkow, Michael; Swanepoel, Annelie; Cao, Hongqing

    2017-11-01

    An early warning scheme is proposed that runs ensembles of inferential models for predicting the cyanobacterial population dynamics and cyanotoxin concentrations in drinking water reservoirs on a diel basis driven by in situ sonde water quality data. When the 10- to 30-day-ahead predicted concentrations of cyanobacteria cells or cyanotoxins exceed pre-defined limit values, an early warning automatically activates an action plan considering in-lake control, e.g. intermittent mixing and ad hoc water treatment in water works, respectively. Case studies of the sub-tropical Lake Wivenhoe (Australia) and the Mediterranean Vaal Reservoir (South Africa) demonstrate that ensembles of inferential models developed by the hybrid evolutionary algorithm HEA are capable of up to 30days forecasts of cyanobacteria and cyanotoxins using data collected in situ. The resulting models for Dolicospermum circinale displayed validity for up to 10days ahead, whilst concentrations of Cylindrospermopsis raciborskii and microcystins were successfully predicted up to 30days ahead. Implementing the proposed scheme for drinking water reservoirs enhances current water quality monitoring practices by solely utilising in situ monitoring data, in addition to cyanobacteria and cyanotoxin measurements. Access to routinely measured cyanotoxin data allows for development of models that predict explicitly cyanotoxin concentrations that avoid to inadvertently model and predict non-toxic cyanobacterial strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Warm storage for arc magmas

    NASA Astrophysics Data System (ADS)

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K.; Harrison, T. Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-01

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the “cold storage” model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  13. Warm storage for arc magmas.

    PubMed

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K; Harrison, T Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-06

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the "cold storage" model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  14. Warm storage for arc magmas

    PubMed Central

    Barboni, Mélanie; Schmitt, Axel K.; Harrison, T. Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-01-01

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the “cold storage” model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes. PMID:27799558

  15. Analysis and reduction of well failures in diatomite reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, L.; Jacobsen, J.; Horsman, J.

    1995-12-31

    Well damage induced by compactable formation deformation has occurred in oil fields in the Gulf of Mexico, the mid-continent region, the North Sea, on-shore Europe, Asia, and South America. The diatomite reservoirs of California are particularly susceptible to compaction due to the very high porosity of the diatomite. In these reservoirs well replacement, lost production and abandonment costs have exceeded $200 million to date. In 1994 alone about 40 wells were damaged. A study is currently underway involving data analysis and 3-D visualization, laboratory testing, and numerical modelling to improve understanding of casing damage due to reservoir compaction and tomore » develop tools and operating strategies to reduce casing damage. The study is focused on the South Belridge field. Results to date show a consistent correlation between failure and structural markers and apparent influence of local production and injection supporting the need for 3-D simulation.« less

  16. Systems and methods for analyzing liquids under vacuum

    DOEpatents

    Yu, Xiao-Ying; Yang, Li; Cowin, James P.; Iedema, Martin J.; Zhu, Zihua

    2013-10-15

    Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path. An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.

  17. Vaccine breaks: Outbreaks of myxomatosis on Spanish commercial rabbit farms.

    PubMed

    Dalton, K P; Nicieza, I; de Llano, D; Gullón, J; Inza, M; Petralanda, M; Arroita, Z; Parra, F

    2015-08-05

    Despite the success of vaccination against myxoma virus, myxomatosis remains a problem on rabbit farms throughout Spain and Europe. In this study we set out to evaluate possible causes of myxoma virus (MYXV) vaccine failures addressing key issues with regard to pathogen, vaccine and vaccination strategies. This was done by genetically characterising MYXV field isolates from farm outbreaks, selecting a representative strain for which to assay its virulence and measuring the protective capability of a commercial vaccine against this strain. Finally, we compare methods (route) of vaccine administration under farm conditions and evaluate immune response in vaccinated rabbits. The data presented here show that the vaccine tested is capable of eliciting protection in rabbits that show high levels of seroconversion. However, the number of animals failing to seroconvert following subcutaneous vaccination may leave a large number of rabbits unprotected following vaccine administration. Successful vaccination requires the strict implication of workable, planned, on farm programs. Following this, analysis to confirm seroconversion rates may be advisable. Factors such as the wild rabbit reservoir, control of biting insects and good hygienic practices must be taken into consideration to prevent vaccine failures from occurring. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Megaporosity and permeability of Thalassinoides-dominated ichnofabrics in the Cretaceous karst-carbonate Edwards-Trinity aquifer system, Texas

    USGS Publications Warehouse

    Cunningham, Kevin J.; Sukop, Michael C.

    2012-01-01

    Current research has demonstrated that trace fossils and their related ichnofabrics can have a critical impact on the fluid-flow properties of hydrocarbon reservoirs and groundwater aquifers. Most petroleum-associated research has used ichnofabrics to support the definition of depositional environments and reservoir quality, and has concentrated on siliciclastic reservoir characterization and, to a lesser degree, carbonate reservoir characterization (for example, Gerard and Bromley, 2008; Knaust, 2009). The use of ichnology in aquifer characterization has almost entirely been overlooked by the hydrologic community because the dynamic reservoir-characterization approach has not caught on with hydrologists and so hydrology is lagging behind reservoir engineering in this area (de Marsily and others, 2005). The objective of this research is to show that (1) ichnofabric analysis can offer a productive methodology for purposes of carbonate aquifer characterization, and (2) a clear relation can exist between ichnofabrics and groundwater flow in carbonate aquifers.

  19. Toward Automated Generation of Reservoir Water Elevation Changes From Satellite Radar Altimetry.

    NASA Astrophysics Data System (ADS)

    Okeowo, M. A.; Lee, H.; Hossain, F.

    2015-12-01

    Until now, processing satellite radar altimetry data over inland water bodies on a large scale has been a cumbersome task primarily due to contaminated measurements from their surrounding topography. It becomes more challenging if the size of the water body is small and thus the number of available high-rate measurements from the water surface is limited. A manual removal of outliers is time consuming which limits a global generation of reservoir elevation profiles. This has limited a global study of lakes and reservoir elevation profiles for monitoring storage changes and hydrologic modeling. We have proposed a new method to automatically generate a time-series information from raw satellite radar altimetry without user intervention. With this method, scientist with little knowledge of altimetry can now independently process radar altimetry for diverse purposes. The method is based on K-means clustering, backscatter coefficient and statistical analysis of the dataset for outlier detection. The result of this method will be validated using in-situ gauges from US, Indus and Bangladesh reservoirs. In addition, a sensitivity analysis will be done to ascertain the limitations of this algorithm based on the surrounding topography, and the length of altimetry track overlap with the lake/reservoir. ­­ Finally, a reservoir storage change will be estimated on the study sites using MODIS and Landsat water classification for estimating the area of reservoir and the height will be estimated using Jason-2 and SARAL/Altika satellites.

  20. Reservoir analysis of the Palinpinon geothermal field, Negros Oriental, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amistoso, A.E.; Aquino, B.G.; Aunzo, Z.P.

    1993-10-01

    The Philippine National Oil Company and Lawrence Berkeley Laboratory have conducted an informal cooperative project on the reservoir evaluation of the Palinpinon geothermal field in the Philippines. The work involved the development of various numerical models of the field in order to understand the observed data. A three-dimensional porous medium model of the reservoir has been developed that matches well the observed pressure declines and enthalpy transients of the wells. Submodels representing the reservoir as a fractured porous medium were developed for the analysis of chemical transport of chlorides within the reservoir and the movement of the cold water frontmore » away from injection wells. These models indicate that the effective porosity of the reservoir varies between 1 and 7% and the effective permeability between 1 and 45 millidarcies. The numerical models were used to predict the future performance of the Palinpinon reservoir using various possible exploitation scenarios. A limited number of make-up wells were allocated to each sector of the field. When all the make-up wells had been put on line, power production gradually began to decline. The model indicates that under the assumed conditions it will not be possible to maintain the planned power production of 112.5 MWe at Palinpinon I and 80 MWe at Palinpinon II for the next 30 years, but the decline in power output will be within acceptable normal operating capacities of the plants.« less

  1. Andrew integrated reservoir description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, S.P.

    1996-12-31

    The Andrew field is an oil and gas accumulation in Palaeocene deep marine sands in the Central North Sea. It is currently being developed with mainly horizontal oil producers. Because of the field`s relatively small reserves (mean 118 mmbbls), the performance of each of the 10 or so horizontal wells is highly important. Reservoir description work at sanction time concentrated on supporting the case that the field could be developed commercially with the minimum number of wells. The present Integrated Reservoir Description (IRD) is focussed on delivering the next level of detail that will impact the understanding of the localmore » reservoir architecture and dynamic performance of each well. Highlights of Andrew IRD Include: (1) Use of a Reservoir Uncertainty Statement (RUS) developed at sanction time to focus the descriptive effort of both asset, support and contract petrotechnical staff, (2) High resolution biostratigraphic correlation to support confident zonation of the reservoir, (3) Detailed sedimentological analysis of the core including the use of dipmeter to interpret channel/sheet architecture to provide new insights into reservoir heterogeneity; (4) Integrated petrographical and petrophysical investigation of the controls on Sw-Height and relative permeability of water; (5) Fluids description using oil geochemistry and Residual Salt Analysis Sr isotope studies. Andrew IRD has highlighted several important risks to well performance, including the influence of more heterolithic intervals on gas breakthrough and the controls on water coning exerted by suppressed water relative permeability in the transition zone.« less

  2. Andrew integrated reservoir description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, S.P.

    1996-01-01

    The Andrew field is an oil and gas accumulation in Palaeocene deep marine sands in the Central North Sea. It is currently being developed with mainly horizontal oil producers. Because of the field's relatively small reserves (mean 118 mmbbls), the performance of each of the 10 or so horizontal wells is highly important. Reservoir description work at sanction time concentrated on supporting the case that the field could be developed commercially with the minimum number of wells. The present Integrated Reservoir Description (IRD) is focussed on delivering the next level of detail that will impact the understanding of the localmore » reservoir architecture and dynamic performance of each well. Highlights of Andrew IRD Include: (1) Use of a Reservoir Uncertainty Statement (RUS) developed at sanction time to focus the descriptive effort of both asset, support and contract petrotechnical staff, (2) High resolution biostratigraphic correlation to support confident zonation of the reservoir, (3) Detailed sedimentological analysis of the core including the use of dipmeter to interpret channel/sheet architecture to provide new insights into reservoir heterogeneity; (4) Integrated petrographical and petrophysical investigation of the controls on Sw-Height and relative permeability of water; (5) Fluids description using oil geochemistry and Residual Salt Analysis Sr isotope studies. Andrew IRD has highlighted several important risks to well performance, including the influence of more heterolithic intervals on gas breakthrough and the controls on water coning exerted by suppressed water relative permeability in the transition zone.« less

  3. Application of factor analysis to the water quality in reservoirs

    NASA Astrophysics Data System (ADS)

    Silva, Eliana Costa e.; Lopes, Isabel Cristina; Correia, Aldina; Gonçalves, A. Manuela

    2017-06-01

    In this work we present a Factor Analysis of chemical and environmental variables of the water column and hydro-morphological features of several Portuguese reservoirs. The objective is to reduce the initial number of variables, keeping their common characteristics. Using the Factor Analysis, the environmental variables measured in the epilimnion and in the hypolimnion, together with the hydromorphological characteristics of the dams were reduced from 63 variables to only 13 factors, which explained a total of 83.348% of the variance in the original data. After performing rotation using the Varimax method, the relations between the factors and the original variables got clearer and more explainable, which provided a Factor Analysis model for these environmental variables using 13 varifactors: Water quality and distance to the source, Hypolimnion chemical composition, Sulfite-reducing bacteria and nutrients, Coliforms and faecal streptococci, Reservoir depth, Temperature, Location, among other factors.

  4. Hydromechanics of Reservoir Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Dura-Gomez, Inmaculada

    Data from five reservoirs were analyzed to investigate the various factors and possible pore pressure thresholds associated with Reservoir Induced Seismicity (RIS). Data was obtained from the following reservoirs: Koyna and Warna Reservoirs in India, Itoiz Reservoir in the western Pyrenees, Spain, and Jocassee and Monticello Reservoirs in South Carolina, U.S.A. Koyna Reservoir is one out of four reservoirs in the world where M≥6.0 induced earthquakes have occurred, whereas Warna Reservoir accounts for one out of ten cases with 5.0≤M≤5.9 induced earthquakes. Induced seismicity in the Koyna-Warna region is associated with annual filling cycles in the two reservoirs, large water level changes (30 to 45 m) and the presence of regional scale fractures. The Koyna-Warna case includes 19 M≥5.0 earthquakes at non-repeating hypocenters. The calculation of excess pore pressures associated with these earthquakes suggests values >300 kPa or >600 kPa, before or after 1993 respectively. The need for larger pore pressures from 1993 suggests that M≥5 earthquakes were induced on stronger faults in the region. The exceedance of the previous water level maxima (stress memory) is the most important, although not determining factor in inducing these M≥5.0 earthquakes. Itoiz Reservoir is one of twenty nine reservoirs with 4.0≤M≤4.9 induced earthquakes. The analysis of the RIS associated with the Itoiz Reservoir impoundment, between January 2004 and the end of 2008, shows that that pore pressures diffuse away from Itoiz Reservoir through the carbonate megabreccia systems of the Early to Middle Eocene Hecho Group, and a series of near-vertical thrust faults above the gently dipping Gavarnie thrust. Excess diffused pore pressures destabilize saturated critically stressed seismogenic fractures where RIS takes place. In particular, M≥3.0 earthquakes in the region are associated with excess pore pressures of the order of 100 to 200 kPa. Jocassee and Monticello Reservoirs in South Carolina are among the best studied reservoir induced seismicity cases in the world, and have been associated with M<4 and M<3 earthquakes respectively. The analysis of some of these earthquakes emphasizes the contribution of the diffused pore pressures to the observed seismicity. In the case of Jocassee Reservoir, 2.0≤M≤3.0 earthquakes occurred in a homogenous, non-fractured crystalline rock and are associated with excess diffused pore pressures of the order of 600 to 700 kPa. Earthquakes associated with the impoundment of Monticello Reservoir occurred in a region of very complex geology, with many pre-existing local scale fractures. The calculation of the excess diffused pore pressures associated with 2.0≤M≤3.0 earthquakes yielded values of the order of 100 to 300 kPa. Synthesis of these data show that RIS occurs when excess pore pressures (which occur primarily by diffusion) reach threshold values needed to induce RIS. The occurrence of RIS and its magnitude are controlled by the filling history, availability of fluid filled saturated fractures and their hydrogeological properties.

  5. Experimental Reservoirs of Human Pathogens: The Vibrio Cholerae Paradigm (7th Annual SFAF Meeting, 2012)

    ScienceCinema

    Colwell, Rita

    2018-05-14

    Rita Colwell on "Experimental Reservoirs of Human Pathogens: The Vibrio cholerae paradigm" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  6. Experimental Reservoirs of Human Pathogens: The Vibrio Cholerae Paradigm (7th Annual SFAF Meeting, 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colwell, Rita

    Rita Colwell on "Experimental Reservoirs of Human Pathogens: The Vibrio cholerae paradigm" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  7. Evaluating options for balancing the water-electricity nexus in California: Part 2--greenhouse gas and renewable energy utilization impacts.

    PubMed

    Tarroja, Brian; AghaKouchak, Amir; Sobhani, Reza; Feldman, David; Jiang, Sunny; Samuelsen, Scott

    2014-11-01

    A study was conducted to compare the technical potential and effectiveness of different water supply options for securing water availability in a large-scale, interconnected water supply system under historical and climate-change augmented inflow and demand conditions. Part 2 of the study focused on determining the greenhouse gas and renewable energy utilization impacts of different pathways to stabilize major surface reservoir levels. Using a detailed electric grid model and taking into account impacts on the operation of the water supply infrastructure, the greenhouse gas emissions and effect on overall grid renewable penetration level was calculated for each water supply option portfolio that successfully secured water availability from Part 1. The effects on the energy signature of water supply infrastructure were found to be just as important as that of the fundamental processes for each option. Under historical (baseline) conditions, many option portfolios were capable of securing surface reservoir levels with a net neutral or negative effect on emissions and a benefit for renewable energy utilization. Under climate change augmented conditions, however, careful selection of the water supply option portfolio was required to prevent imposing major emissions increases for the system. Overall, this analysis provided quantitative insight into the tradeoffs associated with choosing different pathways for securing California's water supply. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Analysis of Gas Dissociation Solar Thermal Power System

    DTIC Science & Technology

    1975-01-01

    of utilizing the collected heat for chemical processing are discussed. / INrRoDUCro,4 treservoir.Along the bottom of the reservoir are placed The...that have accumulated at the facility is effected by using reversible chemical reactions bottom of the reservoir. in a dosed-cycle gaseous working fluid...solar energy collection field, the molten-solid salt heat plus 23 kcal mole’ of chemical reaction energy. Hence, energy reservoir, the gaseous closed

  9. Minimizing water consumption when producing hydropower

    NASA Astrophysics Data System (ADS)

    Leon, A. S.

    2015-12-01

    In 2007, hydropower accounted for only 16% of the world electricity production, with other renewable sources totaling 3%. Thus, it is not surprising that when alternatives are evaluated for new energy developments, there is strong impulse for fossil fuel or nuclear energy as opposed to renewable sources. However, as hydropower schemes are often part of a multipurpose water resources development project, they can often help to finance other components of the project. In addition, hydropower systems and their associated dams and reservoirs provide human well-being benefits, such as flood control and irrigation, and societal benefits such as increased recreational activities and improved navigation. Furthermore, hydropower due to its associated reservoir storage, can provide flexibility and reliability for energy production in integrated energy systems. The storage capability of hydropower systems act as a regulating mechanism by which other intermittent and variable renewable energy sources (wind, wave, solar) can play a larger role in providing electricity of commercial quality. Minimizing water consumption for producing hydropower is critical given that overuse of water for energy production may result in a shortage of water for other purposes such as irrigation, navigation or fish passage. This paper presents a dimensional analysis for finding optimal flow discharge and optimal penstock diameter when designing impulse and reaction water turbines for hydropower systems. The objective of this analysis is to provide general insights for minimizing water consumption when producing hydropower. This analysis is based on the geometric and hydraulic characteristics of the penstock, the total hydraulic head and the desired power production. As part of this analysis, various dimensionless relationships between power production, flow discharge and head losses were derived. These relationships were used to withdraw general insights on determining optimal flow discharge and optimal penstock diameter. For instance, it was found that for minimizing water consumption, the ratio of head loss to gross head should not exceed about 15%. Two examples of application are presented to illustrate the procedure for determining optimal flow discharge and optimal penstock diameter for impulse and reaction turbines.

  10. Analysis of Cathepsin and Furin Proteolytic Enzymes Involved in Viral Fusion Protein Activation in Cells of the Bat Reservoir Host

    PubMed Central

    El Najjar, Farah; Lampe, Levi; Baker, Michelle L.; Wang, Lin-Fa; Dutch, Rebecca Ellis

    2015-01-01

    Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing. PMID:25706132

  11. Minimum complexity echo state network.

    PubMed

    Rodan, Ali; Tino, Peter

    2011-01-01

    Reservoir computing (RC) refers to a new class of state-space models with a fixed state transition structure (the reservoir) and an adaptable readout form the state space. The reservoir is supposed to be sufficiently complex so as to capture a large number of features of the input stream that can be exploited by the reservoir-to-output readout mapping. The field of RC has been growing rapidly with many successful applications. However, RC has been criticized for not being principled enough. Reservoir construction is largely driven by a series of randomized model-building stages, with both researchers and practitioners having to rely on a series of trials and errors. To initialize a systematic study of the field, we concentrate on one of the most popular classes of RC methods, namely echo state network, and ask: What is the minimal complexity of reservoir construction for obtaining competitive models and what is the memory capacity (MC) of such simplified reservoirs? On a number of widely used time series benchmarks of different origin and characteristics, as well as by conducting a theoretical analysis we show that a simple deterministically constructed cycle reservoir is comparable to the standard echo state network methodology. The (short-term) MC of linear cyclic reservoirs can be made arbitrarily close to the proved optimal value.

  12. Experiments with Interaction between the National Water Model and the Reservoir System Simulation Model: A Case Study of Russian River Basin

    NASA Astrophysics Data System (ADS)

    Kim, J.; Johnson, L.; Cifelli, R.; Chandra, C. V.; Gochis, D.; McCreight, J. L.; Yates, D. N.; Read, L.; Flowers, T.; Cosgrove, B.

    2017-12-01

    NOAA National Water Center (NWC) in partnership with the National Centers for Environmental Prediction (NCEP), the National Center for Atmospheric Research (NCAR) and other academic partners have produced operational hydrologic predictions for the nation using a new National Water Model (NWM) that is based on the community WRF-Hydro modeling system since the summer of 2016 (Gochis et al., 2015). The NWM produces a variety of hydrologic analysis and prediction products, including gridded fields of soil moisture, snowpack, shallow groundwater levels, inundated area depths, evapotranspiration as well as estimates of river flow and velocity for approximately 2.7 million river reaches. Also included in the NWM are representations for more than 1,200 reservoirs which are linked into the national channel network defined by the USGS NHDPlusv2.0 hydrography dataset. Despite the unprecedented spatial and temporal coverage of the NWM, many known deficiencies exist, including the representation of lakes and reservoirs. This study addresses the implementation of a reservoir assimilation scheme through coupling of a reservoir simulation model to represent the influence of managed flows. We examine the use of the reservoir operations to dynamically update lake/reservoir storage volume states, characterize flow characteristics of river reaches flowing into and out of lakes and reservoirs, and incorporate enhanced reservoir operating rules for the reservoir model options within the NWM. Model experiments focus on a pilot reservoir domain-Lake Mendocino, CA, and its contributing watershed, the East Fork Russian River. This reservoir is modeled using United States Army Corps of Engineers (USACE) HEC-ResSim developed for application to examine forecast informed reservoir operations (FIRO) in the Russian River basin.

  13. Tube-wave seismic imaging

    DOEpatents

    Korneev, Valeri A [Lafayette, CA; Bakulin, Andrey [Houston, TX

    2009-10-13

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  14. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOEpatents

    Gross, K.C.; Markun, F.; Zawadzki, M.T.

    1998-04-28

    An apparatus and method are disclosed for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir. 6 figs.

  15. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOEpatents

    Gross, Kenneth C.; Markun, Francis; Zawadzki, Mary T.

    1998-01-01

    An apparatus and method for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir.

  16. Tube-wave seismic imaging

    DOEpatents

    Korneev, Valeri A [LaFayette, CA

    2009-05-05

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  17. Remote Sensing of Water Quality in Multipurpose Reservoirs: Case Study Applications in Indonesia, Mexico, and Uruguay

    NASA Astrophysics Data System (ADS)

    Miralles-Wilhelm, F.; Serrat-Capdevila, A.; Rodriguez, D.

    2017-12-01

    This research is focused on development of remote sensing methods to assess surface water pollution issues, particularly in multipurpose reservoirs. Three case study applications are presented to comparatively analyze remote sensing techniquesforo detection of nutrient related pollution, i.e., Nitrogen, Phosphorus, Chlorophyll, as this is a major water quality issue that has been identified in terms of pollution of major water sources around the country. This assessment will contribute to a better understanding of options for nutrient remote sensing capabilities and needs and assist water agencies in identifying the appropriate remote sensing tools and devise an application strategy to provide information needed to support decision-making regarding the targeting and monitoring of nutrient pollution prevention and mitigation measures. A detailed review of the water quality data available from ground based measurements was conducted in order to determine their suitability for a case study application of remote sensing. In the first case study, the Valle de Bravo reservoir in Mexico City reservoir offers a larger database of water quality which may be used to better calibrate and validate the algorithms required to obtain water quality data from remote sensing raw data. In the second case study application, the relatively data scarce Lake Toba in Indonesia can be useful to illustrate the value added of remote sensing data in locations where water quality data is deficient or inexistent. The third case study in the Paso Severino reservoir in Uruguay offers a combination of data scarcity and persistent development of harmful algae blooms. Landsat-TM data was obteined for the 3 study sites and algorithms for three key water quality parameters that are related to nutrient pollution: Chlorophyll-a, Total Nitrogen, and Total Phosphorus were calibrated and validated at the study sites. The three case study applications were developed into capacity building/training workshops for water resources students, applied scientists, practitioners, reservoir and water quality managers, and other interested stakeholders.

  18. A unique research partnership investigating the fundamental principles of subsurface carbon dioxide behaviour and carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Macdonald, I.; Blunt, M. J.; Maitland, G. C.

    2017-12-01

    Carbonate reservoirs hold the majority of CO2 sequestration potential, however, they are also more complicated than sandstone reservoirs in terms of heterogeneity and potential reactivity impact on operations. There are both significant carbonate reservoir CO2 sinks and CO2 point sources around Qatar making carbon capture and storage a potential decarbonisation pathway. The Qatar Carbonates and Carbon Storage Research Centre (QCCSRC) was formed in 2009 to address the gaps in our current knowledge of both local carbonate reservoir platforms and how CO2 would behave post sequestration. Our work spans 35 graduated PhD students, 10 still studying, 29 post-doctoral researchers, 18 faculty members all aided by 5 support staff and more than 100 MSc and summer students from 30 different countries, the centre has published over 150 papers in over 40 different journals. Our research is based within the Department of Chemical Engineering and the Department of Earth Science and Engineering. Our team annually attends over 20 conferences world-wide to disseminate our findings and activity engage in outreach events (UNFCCC, science festivals, social media, science bars, school visits, etc.). QCCSRC is a research framework agreement over 10 years and valued at $70 million between Qatar Petroleum, Shell, the Qatar Science and Technology Park and Imperial College London bringing together each organisation's unique capabilities. This novel quadruple helix management structure is responsible for the largest single industrially funded research programme conducted at Imperial College London. Our research has focused on data to create and/or improve predictive models for CO2 storage in carbonate reservoirs. Our three broad thematic areas include: Rocks : Rock-fluid interactions : Fluid-fluid interactions and are supported by 5 laboratories. Overall this unique programme is an example of how to approach grand challenges in the energy-carbon dilemma through long-term and multidisciplinary cooperative research.

  19. Introducing GEOPHIRES v2.0: Updated Geothermal Techno-Economic Simulation Tool: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckers, Koenraad J; McCabe, Kevin

    This paper presents an updated version of the geothermal techno-economic simulation tool GEOPHIRES (GEOthermal Energy for Production of Heat and electricity (IR) Economically Simulated). GEOPHIRES combines reservoir, wellbore, surface plant and economic models to estimate the capital, and operation and maintenance costs, lifetime energy production, and overall levelized cost of energy of a geothermal plant. The available end-use options are electricity, direct-use heat and cogeneration. The main updates in the new version include conversion of the source code from FORTRAN to Python, the option to couple to an external reservoir simulator, updated cost correlations, and more flexibility in selecting themore » time step and number of injection and production wells. An overview of all the updates and two case-studies to illustrate the tool's new capabilities are provided in this paper.« less

  20. Analysis of the heavy oil production technology effectiveness using natural thermal convection with heat agent recirculation method in reservoirs with varying initial water saturation

    NASA Astrophysics Data System (ADS)

    Osnos, V. B.; Kuneevsky, V. V.; Larionov, V. M.; Saifullin, E. R.; Gainetdinov, A. V.; Vankov, Yu V.; Larionova, I. V.

    2017-01-01

    The method of natural thermal convection with heat agent recirculation (NTC HAR) in oil reservoirs is described. The analysis of the effectiveness of this method for oil reservoir heating with the values of water saturation from 0 to 0.5 units is conducted. As the test element Ashalchinskoye oil field is taken. CMG STARS software was used for calculations. Dynamics of cumulative production, recovery factor and specific energy consumption per 1 m3 of crude oil produced in the application of the heat exchanger with heat agent in cases of different initial water saturation are defined and presented as graphs.

  1. Export Controls and the U.S. Defense Industrial Base. Volume 1. Summary Report, and Volume 2. Appendices

    DTIC Science & Technology

    2007-01-01

    producers still have a reservoir of intellectual property , product capabilities and process know-how built over several decades. These historical...remarkable properties superior to conventional materials (ultra lightweight, high strength and stiffness). Characteristics of these materials important to...with enforcement of trade agreements and intellectual property (IP) rights. Accordingly, the report recommends more federal support for S&T and

  2. Export Control and the U.S. Defense Industrial Base - Revised. Volume 1: Summary Report and Volume 2: Appendices

    DTIC Science & Technology

    2008-10-01

    advanced materials, US producers still have a reservoir of intellectual property , product capabilities and process know-how built over several...while providing remarkable properties superior to conventional materials (ultra lightweight, high strength and stiffness). Characteristics of these...investor and tax environment; and • A level playing field, with enforcement of trade agreements and intellectual property (IP) rights. Accordingly, the

  3. Soil microbe active community composition and capability of responding to litter addition after 12 years of no inputs

    Treesearch

    S.A. Yarwood; E.A. Brewer; R.R. Yarwood; K. Lajtha; D.D. Myrold

    2013-01-01

    One explanation given for the high microbial diversity found in soils is that they contain a large inactive biomass that is able to persist in soils for long periods of time. This persistent microbial fraction may help to buffer the functionality of the soil community during times of low nutrients by providing a reservoir of specialized functions that can be...

  4. Conceptualization of Karstic Aquifer with Multiple Outlets Using a Dual Porosity Model.

    PubMed

    Hosseini, Seiyed Mossa; Ataie-Ashtiani, Behzad

    2017-07-01

    In this study, two conceptual models, the classic reservoir (CR) model and exchange reservoirs model embedded by dual porosity approach (DPR) are developed for simulation of karst aquifer functioning drained by multiple outlets. The performances of two developed models are demonstrated at a less developed karstic aquifer with three spring outlets located in Zagros Mountain in the south-west of Iran using 22-years of daily data. During the surface recharge, a production function based on water mass balance is implemented for computing the time series of surface recharge to the karst formations. The efficiency of both models has been assessed for simulation of daily spring discharge during the recession and also surface recharge periods. Results indicate that both CR and DPR models are capable of simulating the ordinates of spring hydrographs which drainage less developed karstic aquifer. However, the goodness of fit criteria indicates outperformance of DPR model for simulation of total hydrograph ordinates. In addition, the DPR model is capable of quantifying hydraulic properties of two hydrologically connected overlapping continua conduits network and fissure matrix which lays important foundations for the mining operation and water resource management whereas homogeneous model representations of the karstic subsurface (e.g., the CR) do not work accurately in the karstic environment. © 2017, National Ground Water Association.

  5. Capabilities and Testing of the Fission Surface Power Primary Test Circuit (FSP-PTC)

    NASA Technical Reports Server (NTRS)

    Garber, Anne E.

    2007-01-01

    An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, is currently undergoing testing in the Early Flight Fission Test Facility (EFF-TF). Sodium potassium (NaK), which was used in the SNAP-10A fission reactor, was selected as the primary coolant. Basic circuit components include: simulated reactor core, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, liquid metal flowmeter, load/drain reservoir, expansion reservoir, test section, and instrumentation. Operation of the circuit is based around a 37-pin partial-array core (pin and flow path dimensions are the same as those in a full core), designed to operate at 33 kWt. NaK flow rates of greater than 1 kg/sec may be achieved, depending upon the power applied to the EM pump. The heat exchanger provides for the removal of thermal energy from the circuit, simulating the presence of an energy conversion system. The presence of the test section increases the versatility of the circuit. A second liquid metal pump, an energy conversion system, and highly instrumented thermal simulators are all being considered for inclusion within the test section. This paper summarizes the capabilities and ongoing testing of the Fission Surface Power Primary Test Circuit (FSP-PTC).

  6. Development of an Ultrasonic Phased Array System for Wellbore Integrity Evaluation and Near-Wellbore Fracture Network Mapping of Injection and Production Wells in Geothermal Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almansouri, Hani; Foster, Benjamin; Kisner, Roger A

    2016-01-01

    This paper documents our progress developing an ultrasound phased array system in combination with a model-based iterative reconstruction (MBIR) algorithm to inspect the health of and characterize the composition of the near-wellbore region for geothermal reservoirs. The main goal for this system is to provide a near-wellbore in-situ characterization capability that will significantly improve wellbore integrity evaluation and near well-bore fracture network mapping. A more detailed image of the fracture network near the wellbore in particular will enable the selection of optimal locations for stimulation along the wellbore, provide critical data that can be used to improve stimulation design, andmore » provide a means for measuring evolution of the fracture network to support long term management of reservoir operations. Development of such a measurement capability supports current hydrothermal operations as well as the successful demonstration of Engineered Geothermal Systems (EGS). The paper will include the design of the phased array system, the performance specifications, and characterization methodology. In addition, we will describe the MBIR forward model derived for the phased array system and the propagation of compressional waves through a pseudo-homogenous medium.« less

  7. Conjunctively optimizing flash flood control and water quality in urban water reservoirs by model predictive control and dynamic emulation

    NASA Astrophysics Data System (ADS)

    Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea

    2014-05-01

    Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.

  8. Reservoir-Scale Biological Community Response to Trace Element Additions in a Northern Montana Oil Field

    NASA Astrophysics Data System (ADS)

    Connors, D. E.; Bradfish, J.; DeBruyn, R. P.; Zemetra, J.; Mitchell, H.

    2017-12-01

    In subsurface oil bearing formations, microbial growth and metabolism is restricted due to a lack of elements other than carbon, hydrogen, and oxygen required for cell structure and as cofactors. A chemical treatment that adds these elements back into the formation was deployed into an oil reservoir in Northern Montana, with the intent of increasing biogenic methane generation. Samples of water from producing wells in the reservoir were collected anaerobically, and analyzed for geochemical content, and cells from the water were collected and analyzed via 16S rRNA gene DNA sequencing to determine the makeup of the microbial community over the course of twelve months of treatment, and for two years after. Prior to chemical treatment, this reservoir was depleted in elements required for enzyme co-factors in the methanogenesis metabolic pathway (Co, Mo, Ni, W, Zn) as well as nitrogen and phosphorus. Most the microbial community was composed of chemoheterotrophic bacteria associated with the biodegradation of large carbon molecules, with a small community of acetoclastic methanogens. During and after additions of the depleted elements, the metabolism of the community in the reservoir shifted towards chemoautotrophs and hydrogenotrophic methanogens, and the cell density increased. After treatment was ended, cell counts stabilized at a new equilibrium concentration, and the autotrophic metabolism was maintained. The pre-treatment community was dependent on energy input from solubilized oil molecules, whereas the post-treatment community more effectively utilized dissolved organics and carbon dioxide as carbon sources for fixation and respiration. This study demonstrates the capability of microbial communities to rapidly reorganize in the environment when provided with an influx of the elements required for growth and metabolism.

  9. Modeling Wettability Alteration using Chemical EOR Processes in Naturally Fractured Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2007-09-30

    The objective of our search is to develop a mechanistic simulation tool by adapting UTCHEM to model the wettability alteration in both conventional and naturally fractured reservoirs. This will be a unique simulator that can model surfactant floods in naturally fractured reservoir with coupling of wettability effects on relative permeabilities, capillary pressure, and capillary desaturation curves. The capability of wettability alteration will help us and others to better understand and predict the oil recovery mechanisms as a function of wettability in naturally fractured reservoirs. The lack of a reliable simulator for wettability alteration means that either the concept that hasmore » already been proven to be effective in the laboratory scale may never be applied commercially to increase oil production or the process must be tested in the field by trial and error and at large expense in time and money. The objective of Task 1 is to perform a literature survey to compile published data on relative permeability, capillary pressure, dispersion, interfacial tension, and capillary desaturation curve as a function of wettability to aid in the development of petrophysical property models as a function of wettability. The new models and correlations will be tested against published data. The models will then be implemented in the compositional chemical flooding reservoir simulator, UTCHEM. The objective of Task 2 is to understand the mechanisms and develop a correlation for the degree of wettability alteration based on published data. The objective of Task 3 is to validate the models and implementation against published data and to perform 3-D field-scale simulations to evaluate the impact of uncertainties in the fracture and matrix properties on surfactant alkaline and hot water floods.« less

  10. Application of facies analysis to improve gas reserve growth in Fluvial Frio Reservoirs, La Gloria Field, South Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrose, W.A.; Jackson, M.L.W.; Finley, R.J.

    1988-01-01

    Geologically based infill-drilling strategies hold great potential for extension of domestic gas resources. Traditional gas-well drilling and development have often assumed homogeneous and continuous reservoirs; uniform gas-well spacing has resulted in numerous untapped reservoirs isolated from other productive sand bodies. Strategically located infill wells drilled into these undrained reservoirs may ultimately contact an additional 20% of original gas in place in Texas gas fields. Tertiary formations in the Texas Gulf Coast commonly exhibit multiple fluvial and fluvial-deltaic reservoirs that contain vertical and horizontal permeability barriers. For example, the Frio La Gloria field (Jim Wells and Brooks Counties, Texas) contains isolatedmore » and compartmentalized reservoirs that can be related to the irregular distribution of heterogeneous facies. Net-sand and log-facies maps in areas of dense well spacing delineate relatively continuous pay defined by lenticular point-bar and channel-fill deposits 1,500-2,500 ft wide. These point-bar deposits are flanked laterally by sand-poor levee and splay facies that isolate the reservoirs into narrow, dip-elongate bands.« less

  11. Water-quality analysis of an intensively used on-farm storage reservoir in the northeast Arkansas delta.

    PubMed

    Moore, Matthew T; Pierce, Jon R; Farris, Jerry L

    2015-07-01

    The use of farm reservoirs for supplemental irrigation is gaining popularity in the Mississippi Alluvial Plain (MAP). Due to depletions of several aquifers, many counties within the MAP have been designated as critical-use groundwater areas. To help alleviate stress on these aquifers, many farmers are implementing storage reservoirs for economic and conservation benefits. When used in tandem with a tailwater recovery system, reservoirs have the potential to trap and transform potential contaminants (e.g., nutrients and pesticides) rather than releasing them through drainage into receiving systems such as lakes, rivers, and streams. Roberts Reservoir is an intensively used, 49-ha on-farm storage reservoir located in Poinsett County, Arkansas. Water-quality analyses and toxicity assessments of the reservoir and surrounding ditches indicated a stable water-quality environment with no observed toxicity present in collected samples. Results of this study suggest that water released into a local receiving stream poses no contaminant risk and could be maintained for irrigation purposes, thereby decreasing the need for additional groundwater depletion.

  12. Reservoir characterization of the Clough area, Barnett Shale, Wise County, Texas. Topical report, January-July 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, N.C.; Lancaster, D.E.

    1995-07-01

    The objective of this work was to learn more about the reservoir characteristics in the Barnett Shale. Specifically, from an analysis of pressure, production, interference, and fracture treatment data in three Mitchell Energy Corporation Cough area wells, the authors can infer the relationship between the induced hydraulic fractures and the natural fracture system in the reservoir. The authors are learning something about drainage area size, shape, and orientation.

  13. A relationship between porosity and permeability of carbonate rock reservoirs

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, Y.; Jo, Y.; Jeong, J.; Eom, S.

    2009-12-01

    Most of oil reservoirs in the world occur in carbonate rocks. Thus, characterization of the carbonate reservoirs, including understanding the correlation between porosity and permeability is essentially required to enhance oil recovery. Compared with the other sedimentary rocks such as sandstone and shale, the carbonate rocks would exhibit a wide variety of vertical and horizontal heterogeneities. In general, pores of the carbonate rocks can be affected by mineral dissolution, replacement by other minerals and re-crystallization, which are the post-depositional processes. Permeability has been estimated at a wide scale by thin section image analysis, rock core experiments, geophysical well logging data and large scale aquifer tests. For the same porosity, the permeability might show a wide variation. In this study, a large number of the porosity and the permeability data pairs for world wide carbonate rocks (reservoirs) were collected from many literatures. The porosity and permeability data were grouped according to test scale, the reservoir location and the rock types. As is already known, the relation showed a rather scattered distribution also in this study, not monotonous, which indicates that higher porosity does not mean higher permeability of the rock formation. This study provides the analysis results and implications for oil production of the carbonate reservoirs. This research was funded by Energy Efficiency and Resources Program of KETEP (Korea Institute of Energy Technology Evaluation and Planning), Grant No. 2009T100200058.

  14. Influence Assessment of Multiple Large-sized Reservoirs on Flooding in the Huai River Watershed, China

    NASA Astrophysics Data System (ADS)

    Wan, X. Y.

    2017-12-01

    The extensive constructions of reservoirs change the hydrologic characteristics of the associated watersheds, which obviously increases the complexity of watershed flood control decisions. By evaluating the impacts of the multi-reservoir system on the flood hydrograph, it becomes possible to improve the effectiveness of the flood control decisions. In this paper we compare the non-reservoir flood hydrograph with the actual observed flood hydrograph using the Lutaizi upstream of Huai river in East China as a representative case, where 20 large-scale/large-sized reservoirs have been built. Based on the total impact of the multi-reservoir system, a novel strategy, namely reservoir successively added (RSA) method, is presented to evaluate the contribution of each reservoir to the total impact. According each reservoir contribution, the "highly effective" reservoirs for watershed flood control are identified via hierarchical clustering. Moreover, we estimate further the degree of impact of the reservoir current operation rules on the flood hydrograph on the base of the impact of dams themselves. As a result, we find that the RSA method provides a useful method for analysis of multi-reservoir systems by partitioning the contribution of each reservoir to the total impacts on the flooding at the downstream section. For all the historical large floods examined, the multi-reservoir system in the Huai river watershed has a significant impact on flooding at the downstream Lutaizi section, on average reducing the flood volume and peak discharge by 13.92 × 108 m3 and 18.7% respectively. It is more informative to evaluate the maximum impact of each reservoir (on flooding at the downstream section) than to examine the average impact. Each reservoir has a different impact on the flood hydrograph at the Lutaizi section. In particular, the Meishan, Xianghongdian, Suyahu, Nanwan, Nianyushan and Foziling reservoirs exert a strong influence on the flood hydrograph, and are therefore important for flood control on the Huai river. Under the current operation rules, the volume and peak discharge of flooding at the Lutaizi section are reduced by 13.69 × 108m3 and 1429 m3/s respectively, accounting for 98% and 80.5% of the real reduction respectively.

  15. Paleogeographic evolution of carbonate reservoirs: geological and geophysical analysis at the Albian Campos Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Castillo Vincentelli, Maria Gabriela; Favoreto, Julia; Roemers-Oliveira, Eduardo

    2018-02-01

    An integrated geophysical and geological analysis of a carbonate reservoir can offer an effective method to better understand the paleogeographical evolution and distribution of a geological reservoir and non-reservoir facies. Therefore, we propose a better method for obtaining geological facies from geophysical facies, helping to characterize the permo-porous system of this kind of play. The goal is to determine the main geological phases from a specific hydrocarbon producer (Albian Campos Basin, Brazil). The applied method includes the use of a petrographic and qualitative description from the integrated reservoir with seismic interpretation of an attribute map (energy, root mean square, mean amplitude, maximum negative amplitude, etc), all calculated at the Albian level for each of the five identified phases. The studied carbonate reservoir is approximately 6 km long with a main direction of NE-SW, and it was sub-divided as follows (from bottom to top): (1) the first depositional sequence of the bank was composed mainly of packstone, indicating that the local structure adjacent to the main bank is protected from environmental conditions; (2) characterized by the presence of grainstone developed at the higher structure; (3) the main sequence of the peloidal packstone with mudstones oncoids; (4) corresponds to the oil production of carbonate reservoirs formed by oolitic grainstone deposited at the top of the carbonate bank; at this phase, rising sea levels formed channels that connected the open sea shelf with the restricted circulation shelf; and (5) mudstone and wackestone represent the system’s flooding phase.

  16. The combination of circle topology and leaky integrator neurons remarkably improves the performance of echo state network on time series prediction.

    PubMed

    Xue, Fangzheng; Li, Qian; Li, Xiumin

    2017-01-01

    Recently, echo state network (ESN) has attracted a great deal of attention due to its high accuracy and efficient learning performance. Compared with the traditional random structure and classical sigmoid units, simple circle topology and leaky integrator neurons have more advantages on reservoir computing of ESN. In this paper, we propose a new model of ESN with both circle reservoir structure and leaky integrator units. By comparing the prediction capability on Mackey-Glass chaotic time series of four ESN models: classical ESN, circle ESN, traditional leaky integrator ESN, circle leaky integrator ESN, we find that our circle leaky integrator ESN shows significantly better performance than other ESNs with roughly 2 orders of magnitude reduction of the predictive error. Moreover, this model has stronger ability to approximate nonlinear dynamics and resist noise than conventional ESN and ESN with only simple circle structure or leaky integrator neurons. Our results show that the combination of circle topology and leaky integrator neurons can remarkably increase dynamical diversity and meanwhile decrease the correlation of reservoir states, which contribute to the significant improvement of computational performance of Echo state network on time series prediction.

  17. INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.O. Hitzman; A.K. Stepp; D.M. Dennis

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions and technologies for improving oil production. The goal was to identify and utilize indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work in model sandpack cores was conducted using microbial cultures isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted inmore » sand packs with natural field waters using cultures and conditions representative of oil reservoirs. Increased oil recovery in multiple model sandpack systems was achieved and the technology and results were verified by successful field studies. Direct application of the research results has lead to the development of a feasible, practical, successful, and cost-effective technology which increases oil recovery. This technology is now being commercialized and applied in numerous field projects to increase oil recovery. Two field applications of the developed technology reported production increases of 21% and 24% in oil recovery.« less

  18. Bioavailability of pollutants sets risk of exposure to biota and human population in reservoirs from Iguaçu River (Southern Brazil).

    PubMed

    Yamamoto, F Y; Pereira, M V M; Lottermann, E; Santos, G S; Stremel, T R O; Doria, H B; Gusso-Choueri, P; Campos, S X; Ortolani-Machado, C F; Cestari, M M; Neto, F Filipak; Azevedo, J C R; Ribeiro, C A Oliveira

    2016-09-01

    The Iguaçu River, located at the Southern part of Brazil, has a great socioeconomic and environmental importance due to its high endemic fish fauna and its potential to generate hydroelectric power. However, Iguaçu River suffers intense discharge of pollutants in the origin of the river. In a previous report, the local environmental agency described water quality to improve along the river course. However, no study with integrated evaluation of chemical analysis and biological responses has been reported so far for the Iguaçu River. In the current study, three different Brazilian fish species (Astyanax bifasciatus, Chrenicicla iguassuensis, and Geophagus brasiliensis) were captured in the five cascading reservoirs of Iguaçu River for a multi-biomarker study. Chemical analysis in water, sediment, and muscle indicated high levels of bioavailable metals in all reservoirs. Polycyclic aromatic hydrocarbons (PAHs) were detected in the bile of the three fish species. Integration of the data through a FA/PCA analysis demonstrated the poorest environmental quality of the reservoir farthest from river's source, which is the opposite of what has been reported by the environmental agency. The presence of hazardous chemicals in the five reservoirs of Iguaçu River, their bioaccumulation in the muscle of fish, and the biological responses showed the impacts of human activities to this area and did not confirm a gradient of pollution between the five reservoirs, from the source toward Iguaçu River's mouth. Therefore, diffuse source of pollutants present along the river course are increasing the risk of exposure to biota and human populations.

  19. The impact of lake and reservoir parameterization on global streamflow simulation.

    PubMed

    Zajac, Zuzanna; Revilla-Romero, Beatriz; Salamon, Peter; Burek, Peter; Hirpa, Feyera A; Beck, Hylke

    2017-05-01

    Lakes and reservoirs affect the timing and magnitude of streamflow, and are therefore essential hydrological model components, especially in the context of global flood forecasting. However, the parameterization of lake and reservoir routines on a global scale is subject to considerable uncertainty due to lack of information on lake hydrographic characteristics and reservoir operating rules. In this study we estimated the effect of lakes and reservoirs on global daily streamflow simulations of a spatially-distributed LISFLOOD hydrological model. We applied state-of-the-art global sensitivity and uncertainty analyses for selected catchments to examine the effect of uncertain lake and reservoir parameterization on model performance. Streamflow observations from 390 catchments around the globe and multiple performance measures were used to assess model performance. Results indicate a considerable geographical variability in the lake and reservoir effects on the streamflow simulation. Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE) metrics improved for 65% and 38% of catchments respectively, with median skill score values of 0.16 and 0.2 while scores deteriorated for 28% and 52% of the catchments, with median values -0.09 and -0.16, respectively. The effect of reservoirs on extreme high flows was substantial and widespread in the global domain, while the effect of lakes was spatially limited to a few catchments. As indicated by global sensitivity analysis, parameter uncertainty substantially affected uncertainty of model performance. Reservoir parameters often contributed to this uncertainty, although the effect varied widely among catchments. The effect of reservoir parameters on model performance diminished with distance downstream of reservoirs in favor of other parameters, notably groundwater-related parameters and channel Manning's roughness coefficient. This study underscores the importance of accounting for lakes and, especially, reservoirs and using appropriate parameterization in large-scale hydrological simulations.

  20. A Statistical Graphical Model of the California Reservoir System

    NASA Astrophysics Data System (ADS)

    Taeb, A.; Reager, J. T.; Turmon, M.; Chandrasekaran, V.

    2017-11-01

    The recent California drought has highlighted the potential vulnerability of the state's water management infrastructure to multiyear dry intervals. Due to the high complexity of the network, dynamic storage changes in California reservoirs on a state-wide scale have previously been difficult to model using either traditional statistical or physical approaches. Indeed, although there is a significant line of research on exploring models for single (or a small number of) reservoirs, these approaches are not amenable to a system-wide modeling of the California reservoir network due to the spatial and hydrological heterogeneities of the system. In this work, we develop a state-wide statistical graphical model to characterize the dependencies among a collection of 55 major California reservoirs across the state; this model is defined with respect to a graph in which the nodes index reservoirs and the edges specify the relationships or dependencies between reservoirs. We obtain and validate this model in a data-driven manner based on reservoir volumes over the period 2003-2016. A key feature of our framework is a quantification of the effects of external phenomena that influence the entire reservoir network. We further characterize the degree to which physical factors (e.g., state-wide Palmer Drought Severity Index (PDSI), average temperature, snow pack) and economic factors (e.g., consumer price index, number of agricultural workers) explain these external influences. As a consequence of this analysis, we obtain a system-wide health diagnosis of the reservoir network as a function of PDSI.

  1. Compositions and Abundances of Sulfate-Reducing and Sulfur-Oxidizing Microorganisms in Water-Flooded Petroleum Reservoirs with Different Temperatures in China

    PubMed Central

    Tian, Huimei; Gao, Peike; Chen, Zhaohui; Li, Yanshu; Li, Yan; Wang, Yansen; Zhou, Jiefang; Li, Guoqiang; Ma, Ting

    2017-01-01

    Sulfate-reducing bacteria (SRB) have been studied extensively in the petroleum industry due to their role in corrosion, but very little is known about sulfur-oxidizing bacteria (SOB), which drive the oxidization of sulfur-compounds produced by the activity of SRB in petroleum reservoirs. Here, we surveyed the community structure, diversity and abundance of SRB and SOB simultaneously based on 16S rRNA, dsrB and soxB gene sequencing, and quantitative PCR analyses, respectively in petroleum reservoirs with different physicochemical properties. Similar to SRB, SOB were found widely inhabiting the analyzed reservoirs with high diversity and different structures. The dominant SRB belonged to the classes Deltaproteobacteria and Clostridia, and included the Desulfotignum, Desulfotomaculum, Desulfovibrio, Desulfobulbus, and Desulfomicrobium genera. The most frequently detected potential SOB were Sulfurimonas, Thiobacillus, Thioclava, Thiohalomonas and Dechloromonas, and belonged to Betaproteobacteria, Alphaproteobacteria, and Epsilonproteobacteria. Among them, Desulfovibrio, Desulfomicrobium, Thioclava, and Sulfurimonas were highly abundant in the low-temperature reservoirs, while Desulfotomaculum, Desulfotignum, Thiobacillus, and Dechloromonas were more often present in high-temperature reservoirs. The relative abundances of SRB and SOB varied and were present at higher proportions in the relatively high-temperature reservoirs. Canonical correspondence analysis also revealed that the SRB and SOB communities in reservoirs displayed high niche specificity and were closely related to reservoir temperature, pH of the formation brine, and sulfate concentration. In conclusion, this study extends our knowledge about the distribution of SRB and SOB communities in petroleum reservoirs. PMID:28210252

  2. Identification and evaluation of fluvial-dominated deltaic (Class I oil) reservoirs in Oklahoma. Quarterly technical progress report, July 1--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankin, C.J.; Banken, M.K.

    The Oklahoma Geological Survey (OGS), the Geo Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaged in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all ofmore » Oklahoma`s oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs. Specifically, this project will identify all FDD oil reservoirs in the State; group those reservoirs into plays that have similar depositional origins; collect, organize and analyze all available data conduct characterization and simulation studies on selected reservoirs in each play; and implement a technology transfer program targeted to the operators of FDD reservoirs. Activities were focused primarily on technology transfer elements of the project. This included regional play analysis and mapping, geologic field studies, and reservoir modeling for secondary water flood simulations as used in publication folios and workshops. The computer laboratory was fully operational for operator use. Computer systems design and database development activities were ongoing.« less

  3. Incorporating teleconnection information into reservoir operating policies using Stochastic Dynamic Programming and a Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Turner, Sean; Galelli, Stefano; Wilcox, Karen

    2015-04-01

    Water reservoir systems are often affected by recurring large-scale ocean-atmospheric anomalies, known as teleconnections, that cause prolonged periods of climatological drought. Accurate forecasts of these events -- at lead times in the order of weeks and months -- may enable reservoir operators to take more effective release decisions to improve the performance of their systems. In practice this might mean a more reliable water supply system, a more profitable hydropower plant or a more sustainable environmental release policy. To this end, climate indices, which represent the oscillation of the ocean-atmospheric system, might be gainfully employed within reservoir operating models that adapt the reservoir operation as a function of the climate condition. This study develops a Stochastic Dynamic Programming (SDP) approach that can incorporate climate indices using a Hidden Markov Model. The model simulates the climatic regime as a hidden state following a Markov chain, with the state transitions driven by variation in climatic indices, such as the Southern Oscillation Index. Time series analysis of recorded streamflow data reveals the parameters of separate autoregressive models that describe the inflow to the reservoir under three representative climate states ("normal", "wet", "dry"). These models then define inflow transition probabilities for use in a classic SDP approach. The key advantage of the Hidden Markov Model is that it allows conditioning the operating policy not only on the reservoir storage and the antecedent inflow, but also on the climate condition, thus potentially allowing adaptability to a broader range of climate conditions. In practice, the reservoir operator would effect a water release tailored to a specific climate state based on available teleconnection data and forecasts. The approach is demonstrated on the operation of a realistic, stylised water reservoir with carry-over capacity in South-East Australia. Here teleconnections relating to both the El Niño Southern Oscillation and the Indian Ocean Dipole influence local hydro-meteorological processes; statistically significant lag correlations have already been established. Simulation of the derived operating policies, which are benchmarked against standard policies conditioned on the reservoir storage and the antecedent inflow, demonstrates the potential of the proposed approach. Future research will further develop the model for sensitivity analysis and regional studies examining the economic value of incorporating long range forecasts into reservoir operation.

  4. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible (3)He/10 T cryostat.

    PubMed

    von Allwörden, H; Ruschmeier, K; Köhler, A; Eelbo, T; Schwarz, A; Wiesendanger, R

    2016-07-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped (3)He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  5. Analysis of information systems for hydropower operations

    NASA Technical Reports Server (NTRS)

    Sohn, R. L.; Becker, L.; Estes, J.; Simonett, D.; Yeh, W. W. G.

    1976-01-01

    The operations of hydropower systems were analyzed with emphasis on water resource management, to determine how aerospace derived information system technologies can increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept outlined.

  6. Comparison of laboratory and in-situ measurements of waterflood residual oil saturations for the Cormorant field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Poelgeest, F.; Niko, H.; Modwid, A.R.

    1991-03-01

    Shell Expro and Koninklijke/Shell E and P Laboratorium (KSEPL) have been engaged in a multidisciplinary effort to determine the water flood residual oil saturation (ROS) in two principal reservoirs of the Cormorant oil field in the U.K. sector of the North Sea. Data acquisition included special coring and testing. The study, which involved new reservoir-engineering and petrophysical techniques, was aimed at establishing consistent ROS values. This paper reports that reservoir-engineering work centered on reservoir-condition corefloods in the relative-permeability-at-reservoir-conditions (REPARC) apparatus, in which restoration of representative wettability condition was attempted with the aging technique. Aging results in a consistent reduction ofmore » water-wetness of all core samples. The study indicated that ROS values obtained on aged cores at water throughputs of at least 5 PV represented reservoir conditions. The petrophysical part of the study involved ROS estimation from sponge-core analysis and log evaluation.« less

  7. Heavy oil reservoirs recoverable by thermal technology

    NASA Astrophysics Data System (ADS)

    Kujawa, P.

    1981-02-01

    Data are presented on reservoirs that contain heavy oil in the 8 to 25(0) API gravity range, contain at least ten million barrels of oil currently in place, and are noncarbonate in lithology. The reservoirs within these constraints were analyzed in light of applicable recovery technology, either steam drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. An extensive basis for heavy oil development is provided, however, it is recommended that data on carbonate reservoirs, and tar sands be compiled. It was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

  8. Radiocarbon reservoir between charred seeds and fish bone in Neolithic sites, northeastern Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, A.; Dong, G.; Ren, L.

    2017-12-01

    Many efforts have been done to understand the reservoir effect of Qinghai Lake, yet no agreement has been reached. Five archaeological sites, located around the junction between the estuary of Rivers and Qinghai Lake, are the earliest Neolithic Age sites in the Qinghai- Tibetan Plateau (QTP), which is critical for understanding patterns of prehistoric human inhabitation in the high plateau extreme environments. This study compares radiocarbon dates of fish bones and terrestrial plant remains uncovered from the same archaeological strata to see whether there was reservoir effect reference to reliable data. Results demonstrate that there were reservoir effects ranging from 300 to 600 years back to 3600 years ago, nevertheless, no reservoir was observed of the modern fish. Besides, stable isotopic analysis illustrated that modern fish consumed similar food to those of millennias ago.

  9. Novel management of urinary tract infections.

    PubMed

    Storm, Douglas W; Patel, Ashay S; Koff, Stephen A; Justice, Sheryl S

    2011-07-01

    To highlight observations that have suggested the need for changing the conventional approach to the evaluation and management of urinary tract infections (UTIs) and vesicoureteral reflux in children and examine new alternative approaches to prevention of UTI and renal scarring based on research into host-pathogen interaction. Recent studies have questioned the traditional approach of using prophylactic antibiotics to prevent recurrence of UTI and development of renal scarring in children with vesicoureteral reflux. Ongoing research on host-pathogen interactions reveals a promising capability to analyze virulence factors in bacteria causing UTIs in children, identify highly virulent bacteria capable of causing pyelonephritis and renal injury, and to selectively target the gastrointestinal reservoirs of these bacteria for elimination using probiotics. Promising experimental studies correlating bacterial virulence with pattern of UTI and identification and characterization of a newly available probiotic capable of eradicating uropathogenic bacteria make targeted probiotic prevention of renal injury-inducing UTIs a potential therapeutic reality.

  10. Greenhouse gases concentrations and fluxes from subtropical small reservoirs in relation with watershed urbanization

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; He, Yixin; Yuan, Xingzhong; Chen, Huai; Peng, Changhui; Yue, Junsheng; Zhang, Qiaoyong; Diao, Yuanbin; Liu, Shuangshuang

    2017-04-01

    Greenhouse gas (GHG) emissions from reservoirs and global urbanization have gained widespread attention, yet the response of GHG emissions to the watershed urbanization is poorly understood. Meanwhile, there are millions of small reservoirs worldwide that receive and accumulate high loads of anthropogenic carbon and nitrogen due to watershed urbanization and can therefore be hotspots of GHG emissions. In this study, we assessed the GHG concentrations and fluxes in sixteen small reservoirs draining urban, agricultural and forested watersheds over a period of one year. The concentrations of pCO2, CH4 and N2O in sampled urban reservoirs that received more sewage input were higher than those in agricultural reservoirs, and were 3, 7 and 10 times higher than those in reservoirs draining in forested areas, respectively. Accordingly, urban reservoirs had the highest estimated GHG flux rate. Regression analysis indicated that dissolved total phosphorus, dissolved organic carbon (DOC) and chlorophyll-a (Chl-a) had great effect on CO2 production, while the nitrogen (N) and phosphorus (P) content of surface water were closely related to CH4 and N2O production. Therefore, these parameters can act as good predictors of GHG emissions in urban watersheds. Given the rapid progress of global urbanization, small urban reservoirs play a crucial role in accounting for regional GHG emissions and cannot be ignored.

  11. Optimal Reservoir Operation using Stochastic Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Sahu, R.; McLaughlin, D.

    2016-12-01

    Hydropower operations are typically designed to fulfill contracts negotiated with consumers who need reliable energy supplies, despite uncertainties in reservoir inflows. In addition to providing reliable power the reservoir operator needs to take into account environmental factors such as downstream flooding or compliance with minimum flow requirements. From a dynamical systems perspective, the reservoir operating strategy must cope with conflicting objectives in the presence of random disturbances. In order to achieve optimal performance, the reservoir system needs to continually adapt to disturbances in real time. Model Predictive Control (MPC) is a real-time control technique that adapts by deriving the reservoir release at each decision time from the current state of the system. Here an ensemble-based version of MPC (SMPC) is applied to a generic reservoir to determine both the optimal power contract, considering future inflow uncertainty, and a real-time operating strategy that attempts to satisfy the contract. Contract selection and real-time operation are coupled in an optimization framework that also defines a Pareto trade off between the revenue generated from energy production and the environmental damage resulting from uncontrolled reservoir spills. Further insight is provided by a sensitivity analysis of key parameters specified in the SMPC technique. The results demonstrate that SMPC is suitable for multi-objective planning and associated real-time operation of a wide range of hydropower reservoir systems.

  12. Seismic Stability Evaluation of Ririe Dam and Reservoir Project. Report 2. Stability Calculations, Analysis, and Evaluations. Volume 1. Main Text

    DTIC Science & Technology

    1991-09-01

    Army (i #Awleable) Engineer istrict. Walls Welli NPW-EN- GI _____________________ Bc DRSSW4~Sse.adZPa 10 SOURCE OF FUNDING NUMBERS Bldg. 602, City...cracks induced by ground motions. Z. Overtopping of dam due to seiches in reservoir. h. Overtopping of dam due to slides or rockfalls into reservoir. j...overtopping due to slides or rockfalls is not likely. Three potential modes of failure remain from the original list: (c) slope failures induced by

  13. Modeling stream temperature in the Anthropocene: An earth system modeling approach

    DOE PAGES

    Li, Hong -Yi; Leung, L. Ruby; Tesfa, Teklu; ...

    2015-10-29

    A new large-scale stream temperature model has been developed within the Community Earth System Model (CESM) framework. The model is coupled with the Model for Scale Adaptive River Transport (MOSART) that represents river routing and a water management model (WM) that represents the effects of reservoir operations and water withdrawals on flow regulation. The coupled models allow the impacts of reservoir operations and withdrawals on stream temperature to be explicitly represented in a physically based and consistent way. The models have been applied to the Contiguous United States driven by observed meteorological forcing. It is shown that the model ismore » capable of reproducing stream temperature spatiotemporal variation satisfactorily by comparison against the observed streamflow from over 320 USGS stations. Including water management in the models improves the agreement between the simulated and observed streamflow at a large number of stream gauge stations. Both climate and water management are found to have important influence on the spatiotemporal patterns of stream temperature. More interestingly, it is quantitatively estimated that reservoir operation could cool down stream temperature in the summer low-flow season (August – October) by as much as 1~2oC over many places, as water management generally mitigates low flow, which has important implications to aquatic ecosystems. In conclusion, sensitivity of the simulated stream temperature to input data and reservoir operation rules used in the WM model motivates future directions to address some limitations in the current modeling framework.« less

  14. Microchips and controlled-release drug reservoirs.

    PubMed

    Staples, Mark

    2010-01-01

    This review summarizes and updates the development of implantable microchip-containing devices that control dosing from drug reservoirs integrated with the devices. As the expense and risk of new drug development continues to increase, technologies that make the best use of existing therapeutics may add significant value. Trends of future medical care that may require advanced drug delivery systems include individualized therapy and the capability to automate drug delivery. Implantable drug delivery devices that promise to address these anticipated needs have been constructed in a variety of ways using micro- and nanoelectromechanical systems (MEMS or NEMS)-based technology. These devices expand treatment options for addressing unmet medical needs related to dosing. Within the last few years, advances in several technologies (MEMS or NEMS fabrication, materials science, polymer chemistry, and data management) have converged to enable the construction of miniaturized implantable devices for controlled delivery of therapeutic agents from one or more reservoirs. Suboptimal performance of conventional dosing methods in terms of safety, efficacy, pain, or convenience can be improved with advanced delivery devices. Microchip-based implantable drug delivery devices allow localized delivery by direct placement of the device at the treatment site, delivery on demand (emergency administration, pulsatile, or adjustable continuous dosing), programmable dosing cycles, automated delivery of multiple drugs, and dosing in response to physiological and diagnostic feedback. In addition, innovative drug-medical device combinations may protect labile active ingredients within hermetically sealed reservoirs. Copyright (c) 2010 John Wiley & Sons, Inc.

  15. Nonlinear Classification of AVO Attributes Using SVM

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Zhou, H.

    2005-05-01

    A key research topic in reservoir characterization is the detection of the presence of fluids using seismic and well-log data. In particular, partial gas discrimination is very challenging because low and high gas saturation can result in similar anomalies in terms of Amplitude Variation with Offset (AVO), bright spot, and velocity sag. Hence, a successful fluid detection will require a good understanding of the seismic signatures of the fluids, high-quality data, and good detection methodology. Traditional attempts of partial gas discrimination employ the Neural Network algorithm. A new approach is to use the Support Vector Machine (SVM) (Vapnik, 1995; Liu and Sacchi, 2003). While the potential of the SVM has not been fully explored for reservoir fluid detection, the current nonlinear methods classify seismic attributes without the use of rock physics constraints. The objective of this study is to improve the capability of distinguishing a fizz-water reservoir from a commercial gas reservoir by developing a new detection method using AVO attributes and rock physics constraints. This study will first test the SVM classification with synthetic data, and then apply the algorithm to field data from the King-Kong and Lisa-Anne fields in Gulf of Mexico. While both field areas have high amplitude seismic anomalies, King-Kong field produces commercial gas but Lisa-Anne field does not. We expect that the new SVM-based nonlinear classification of AVO attributes may be able to separate commercial gas from fizz-water in these two fields.

  16. Investigation of post hydraulic fracturing well cleanup physics in the Cana Woodford Shale

    NASA Astrophysics Data System (ADS)

    Lu, Rong

    Hydraulic fracturing was first carried out in the 1940s and has gained popularity in current development of unconventional resources. Flowing back the fracturing fluids is critical to a frac job, and determining well cleanup characteristics using the flowback data can help improve frac design. It has become increasingly important as a result of the unique flowback profiles observed in some shale gas plays due to the unconventional formation characteristics. Computer simulation is an efficient and effective way to tackle the problem. History matching can help reveal some mechanisms existent in the cleanup process. The Fracturing, Acidizing, Stimulation Technology (FAST) Consortium at Colorado School of Mines previously developed a numerical model for investigating the hydraulic fracturing process, cleanup, and relevant physics. It is a three-dimensional, gas-water, coupled fracture propagation-fluid flow simulator, which has the capability to handle commonly present damage mechanisms. The overall goal of this research effort is to validate the model on real data and to investigate the dominant physics in well cleanup for the Cana Field, which produces from the Woodford Shale in Oklahoma. To achieve this goal, first the early time delayed gas production was explained and modeled, and a simulation framework was established that included all three relevant damage mechanisms for a slickwater fractured well. Next, a series of sensitivity analysis of well cleanup to major reservoir, fracture, and operational variables was conducted; five of the Cana wells' initial flowback data were history matched, specifically the first thirty days' gas and water producing rates. Reservoir matrix permeability, net pressure, Young's modulus, and formation pressure gradient were found to have an impact on the gas producing curve's shape, in different ways. Some moderately good matches were achieved, with the outcome of some unknown reservoir information being proposed using the corresponding inputs from the history matching study. It was also concluded that extended shut-in durations after fracturing all the stages do not delay production in the overall situation. The success of history matching will further knowledge of well cleanup characteristics in the Cana Field, enable the future usage of this tool in other hydraulically fractured gas wells, and help operators optimize the flowback operations. Future improvements can be achieved by further developing the current simulator so that it has the capability of optimizing its grids setting every time the user changes the inputs, which will result in better stability when the relative permeability setting is modified.

  17. History matching through dynamic decision-making

    PubMed Central

    Maschio, Célio; Santos, Antonio Alberto; Schiozer, Denis; Rocha, Anderson

    2017-01-01

    History matching is the process of modifying the uncertain attributes of a reservoir model to reproduce the real reservoir performance. It is a classical reservoir engineering problem and plays an important role in reservoir management since the resulting models are used to support decisions in other tasks such as economic analysis and production strategy. This work introduces a dynamic decision-making optimization framework for history matching problems in which new models are generated based on, and guided by, the dynamic analysis of the data of available solutions. The optimization framework follows a ‘learning-from-data’ approach, and includes two optimizer components that use machine learning techniques, such as unsupervised learning and statistical analysis, to uncover patterns of input attributes that lead to good output responses. These patterns are used to support the decision-making process while generating new, and better, history matched solutions. The proposed framework is applied to a benchmark model (UNISIM-I-H) based on the Namorado field in Brazil. Results show the potential the dynamic decision-making optimization framework has for improving the quality of history matching solutions using a substantial smaller number of simulations when compared with a previous work on the same benchmark. PMID:28582413

  18. National Dam Safety Program. Delmar Reservoir Number 1 Dam (Inventory Number N.Y. 1401), Lower Hudson River Basin, Albany County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-09-14

    provides Infortiation ar’d analysis ort tlepk-sical conditi dain as of the report date. Informatior% andI analysis are baseti oA yis inspection of the... analysis was not performed in the usual manner of modeling a watershed area. The drainage area for this structure was limited to the reservoir itself...SYSTEM 6 4.4 EVALUATION 6 5 HYDROLOGIC/HYDRAULIC 7 * *1 I PAGE NO. 5.1 DRAINAGE AREA CHARACTERISTICS 7 5.2 ANALYSIS CRITERIA 7 5.3 SPILLWAY CRITERIA 7 5.4

  19. High-Resolution Numerical Analysis of the Triggering Mechanism of M L5.7 Aswan Reservoir Earthquake Through Fully Coupled Poroelastic Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Cheng, Huihong; Zhang, Huai; Shi, Yaolin

    2016-05-01

    In 1981, a powerful M L5.7 earthquake occurred 50 km away from the Aswan Reservoir dam. After the statistical analysis on the correlationship between long-term continuous seismicity occurrence and the reservoir water level variation attributed to the impoundment and drainage procedures, researchers believe that this event is a typical reservoir-triggered seismicity (Nature 301(6):14, 1983; Earthquake Activity in the Aswan Region, Egypt. Birkhäuser, Basel, pp. 69-86, 1995), although its triggering mechanism is poorly understood to date. To quantitatively address the triggering mechanism as well as its relationship with the characteristics of local geological settings around the reservoir region, in this paper, a fully coupled three-dimensional poroelastic finite element model of the Aswan reservoir is put forward by taking the consideration of the realistic observation data, for example, the high-resolution topography, water level fluctuation history, flood zone boundary and water depth variation, fault parameters, etc. Meanwhile, the change of Coulomb Failure Stress (ΔCFS) in correspondence to elastic stress and pore pressure variations induced by fluid diffusion is calculated. And the elastic strain energy accumulation in the reservoir region due to the impoundment load is obtained as well. Our primary results indicate that both the pore pressure and the coulomb stress on the seismogenic fault plane gradually increase with the respect of time while the water level rises. The magnitude of ΔCFS at the hypocenter of this major event is around 0.1 MPa, suggesting that the impoundment of the Aswan Reservoir possibly triggered the M L5.7 earthquake. The contribution of the elastic load is less than 3 percent of the total ΔCFS; on the other hand, the dynamic pore pressure change predominantly accounts for the contribution. The accumulative maximum surface deformation beneath the Aswan reservoir is up to 80 cm since its impounding began until the M L5.7 earthquake occurred. Although the total elastic strain energy accumulation caused by the impoundment water load is around 1.0 × 1010J, this energy density still insignificant compared to that of the vast reservoir inundation area, as it is only less than few percent of the total energy released by the major event, which confirms that the sustained regional geological loading controls the occurrence of this large reservoir-induced event. Furthermore, elastic loading and pore fluid pore pressure diffusion due to the impoundment of the Aswan reservoir might accelerate its occurrence.

  20. Transient pressure analysis of fractured well in bi-zonal gas reservoirs

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Long; Zhang, Lie-Hui; Liu, Yong-hui; Hu, Shu-Yong; Liu, Qi-Guo

    2015-05-01

    For hydraulic fractured well, how to evaluate the properties of fracture and formation are always tough jobs and it is very complex to use the conventional method to do that, especially for partially penetrating fractured well. Although the source function is a very powerful tool to analyze the transient pressure for complex structure well, the corresponding reports on gas reservoir are rare. In this paper, the continuous point source functions in anisotropic reservoirs are derived on the basis of source function theory, Laplace transform method and Duhamel principle. Application of construction method, the continuous point source functions in bi-zonal gas reservoir with closed upper and lower boundaries are obtained. Sequentially, the physical models and transient pressure solutions are developed for fully and partially penetrating fractured vertical wells in this reservoir. Type curves of dimensionless pseudo-pressure and its derivative as function of dimensionless time are plotted as well by numerical inversion algorithm, and the flow periods and sensitive factors are also analyzed. The source functions and solutions of fractured well have both theoretical and practical application in well test interpretation for such gas reservoirs, especial for the well with stimulated reservoir volume around the well in unconventional gas reservoir by massive hydraulic fracturing which always can be described with the composite model.

  1. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    PubMed

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.

  2. Multireaction equilibrium geothermometry: A sensitivity analysis using data from the Lower Geyser Basin, Yellowstone National Park, USA

    USGS Publications Warehouse

    King, Jonathan M.; Hurwitz, Shaul; Lowenstern, Jacob B.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2016-01-01

    A multireaction chemical equilibria geothermometry (MEG) model applicable to high-temperature geothermal systems has been developed over the past three decades. Given sufficient data, this model provides more constraint on calculated reservoir temperatures than classical chemical geothermometers that are based on either the concentration of silica (SiO2), or the ratios of cation concentrations. A set of 23 chemical analyses from Ojo Caliente Spring and 22 analyses from other thermal features in the Lower Geyser Basin of Yellowstone National Park are used to examine the sensitivity of calculated reservoir temperatures using the GeoT MEG code (Spycher et al. 2013, 2014) to quantify the effects of solute concentrations, degassing, and mineral assemblages on calculated reservoir temperatures. Results of our analysis demonstrate that the MEG model can resolve reservoir temperatures within approximately ±15°C, and that natural variation in fluid compositions represents a greater source of variance in calculated reservoir temperatures than variations caused by analytical uncertainty (assuming ~5% for major elements). The analysis also suggests that MEG calculations are particularly sensitive to variations in silica concentration, the concentrations of the redox species Fe(II) and H2S, and that the parameters defining steam separation and CO2 degassing from the liquid may be adequately determined by numerical optimization. Results from this study can provide guidance for future applications of MEG models, and thus provide more reliable information on geothermal energy resources during exploration.

  3. Entomology with the U.S. Marines in Vietnam - Some Lessons Learned

    DTIC Science & Technology

    2008-11-16

    these areas, and capability of individual commands. malaria, dengue, encephalitis, plague, This included the provision of scrub typhus and filariasis...any, probably due to the large, mobile was not available at the time. About 22 parasite reservoir (NVA, VC & local cases of scrub typhus occurred in...of light traps was November in Danang. often a challenge. Their use in the Filariasis, Scrub Typhus & Plague. "bush" was not feasible for security

  4. Decision scenario analysis for addressing sediment accumulation in Lago Lucchetti, Puerto Rico

    EPA Science Inventory

    A Bayesian belief network (BBN) was used to characterize the effects of sediment accumulation on water storage capacity of a reservoir (Lago Lucchetti) in southwest Puerto Rico and the potential of different management options to increase reservoir life expectancy. Water and sedi...

  5. Decision Support on the Sediments Flushing of Aimorés Dam Using Medium-Range Ensemble Forecasts

    NASA Astrophysics Data System (ADS)

    Mainardi Fan, Fernando; Schwanenberg, Dirk; Collischonn, Walter; Assis dos Reis, Alberto; Alvarado Montero, Rodolfo; Alencar Siqueira, Vinicius

    2015-04-01

    In the present study we investigate the use of medium-range streamflow forecasts in the Doce River basin (Brazil), at the reservoir of Aimorés Hydro Power Plant (HPP). During daily operations this reservoir acts as a "trap" to the sediments that originate from the upstream basin of the Doce River. This motivates a cleaning process called "pass through" to periodically remove the sediments from the reservoir. The "pass through" or "sediments flushing" process consists of a decrease of the reservoir's water level to a certain flushing level when a determined reservoir inflow threshold is forecasted. Then, the water in the approaching inflow is used to flush the sediments from the reservoir through the spillway and to recover the original reservoir storage. To be triggered, the sediments flushing operation requires an inflow larger than 3000m³/s in a forecast horizon of 7 days. This lead-time of 7 days is far beyond the basin's concentration time (around 2 days), meaning that the forecasts for the pass through procedure highly depends on Numerical Weather Predictions (NWP) models that generate Quantitative Precipitation Forecasts (QPF). This dependency creates an environment with a high amount of uncertainty to the operator. To support the decision making at Aimorés HPP we developed a fully operational hydrological forecasting system to the basin. The system is capable of generating ensemble streamflow forecasts scenarios when driven by QPF data from meteorological Ensemble Prediction Systems (EPS). This approach allows accounting for uncertainties in the NWP at a decision making level. This system is starting to be used operationally by CEMIG and is the one shown in the present study, including a hindcasting analysis to assess the performance of the system for the specific flushing problem. The QPF data used in the hindcasting study was derived from the TIGGE (THORPEX Interactive Grand Global Ensemble) database. Among all EPS available on TIGGE, three were selected: ECMWF, GEFS, and CPTEC. As a deterministic reference forecast, we adopt the high resolution ECMWF forecast for comparison. The experiment consisted on running retrospective forecasts for a full five-year period. To verify the proposed objectives of the study, we use different metrics to evaluate the forecast: ROC Curves, Exceedance Diagrams, Forecast Convergence Score (FCS). Metrics results enabled to understand the benefits of the hydrological ensemble prediction system as a decision making tool for the HPP operation. The ROC scores indicate that the use of the lower percentiles of the ensemble scenarios issues for a true alarm rate around 0,5 to 0,8 (depending on the model and on the percentile), for the lead time of seven days. While the false alarm rate is between 0 and 0,3. Those rates were better than the ones resulting from the deterministic reference forecast. Exceedance diagrams and forecast convergence scores indicate that the ensemble scenarios provide an early signal about the threshold crossing. Furthermore, the ensemble forecasts are more consistent between two subsequent forecasts in comparison to the deterministic forecast. The assessments results also give more credibility to CEMIG in the realization and communication of flushing operation with the stakeholders involved.

  6. Multiple long-term trends and trend reversals dominate environmental conditions in a man-made freshwater reservoir.

    PubMed

    Znachor, Petr; Nedoma, Jiří; Hejzlar, Josef; Seďa, Jaromír; Kopáček, Jiří; Boukal, David; Mrkvička, Tomáš

    2018-05-15

    Man-made reservoirs are common across the world and provide a wide range of ecological services. Environmental conditions in riverine reservoirs are affected by the changing climate, catchment-wide processes and manipulations with the water level, and water abstraction from the reservoir. Long-term trends of environmental conditions in reservoirs thus reflect a wider range of drivers in comparison to lakes, which makes the understanding of reservoir dynamics more challenging. We analysed a 32-year time series of 36 environmental variables characterising weather, land use in the catchment, reservoir hydrochemistry, hydrology and light availability in the small, canyon-shaped Římov Reservoir in the Czech Republic to detect underlying trends, trend reversals and regime shifts. To do so, we fitted linear and piecewise linear regression and a regime shift model to the time series of mean annual values of each variable and to principal components produced by Principal Component Analysis. Models were weighted and ranked using Akaike information criterion and the model selection approach. Most environmental variables exhibited temporal changes that included time-varying trends and trend reversals. For instance, dissolved organic carbon showed a linear increasing trend while nitrate concentration or conductivity exemplified trend reversal. All trend reversals and cessations of temporal trends in reservoir hydrochemistry (except total phosphorus concentrations) occurred in the late 1980s and during 1990s as a consequence of dramatic socioeconomic changes. After a series of heavy rains in the late 1990s, an administrative decision to increase the flood-retention volume of the reservoir resulted in a significant regime shift in reservoir hydraulic conditions in 1999. Our analyses also highlight the utility of the model selection framework, based on relatively simple extensions of linear regression, to describe temporal trends in reservoir characteristics. This approach can provide a solid basis for a better understanding of processes in freshwater reservoirs. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Applicability of WRF-Lake System in Studying Reservoir-Induced Impacts on Local Climate: Case Study of Two Reservoirs with Contrasting Characteristics

    NASA Astrophysics Data System (ADS)

    Wang, F.; Zhu, D.; Ni, G.; Sun, T.

    2017-12-01

    Large reservoirs play a key role in regional hydrological cycles as well as in modulating the local climate. The emerging large reservoirs in concomitant with rapid hydropower exploitation in southwestern China warrant better understanding of their impacts on local and regional climates. One of the crucial pathways through which reservoirs impact the climate is lake-atmospheric interaction. Although such interactions have been widely studied with numeric weather prediction (NWP) models, an outstanding limitation across various NWPs resides on the poor thermodynamic representation of lakes. The recent version of Weather Research and Forecasting (WRF) system has been equipped with a one-dimensional lake model to better represent the thermodynamics of large water body and has been shown to enhance the its predication skill in the lake-atmospheric interaction. In this study, we further explore the applicability of the WRF-Lake system in two reservoirs with contrasting characteristics: Miyun Reservoir with an average depth of 30 meters in North China Plain, and Nuozhadu Reservoir with an average depth of 200 meters in the Tibetan Plateau Region. Driven by the high spatiotemporal resolution meteorological forcing data, the WRF-Lake system is used to simulate the water temperature and surface energy budgets of the two reservoirs after the evaluation against temperature observations. The simulated results show the WRF-Lake model can well predict the vertical profile of water temperature in Miyun Reservoir, but underestimates deep water temperature and overestimates surface temperature in the deeper Nuozhadu Reservoir. In addition, sensitivity analysis indicates the poor performance of the WRF-Lake system in Nuozhadu Reservoir could be attributed to the weak vertical mixing in the model, which can be improved by tuning the eddy diffusion coefficient ke . Keywords: reservoir-induced climatic impact; lake-atmospheric interaction; WRF-Lake system; hydropower exploitation

  8. Concentration, sources and risk assessment of PAHs in bottom sediments.

    PubMed

    Baran, Agnieszka; Tarnawski, Marek; Urbański, Krzysztof; Klimkowicz-Pawlas, Agnieszka; Spałek, Iwona

    2017-10-01

    The aims of the study were to investigate the concentration, sources and ecological risk of PAHs (polycyclic aromatic hydrocarbons) in bottom sediments collected from nine reservoirs located in south-eastern Poland. The concentration of ∑PAHs in sediments ranged from 150 to 33,900 μg kg -1 . The total PAH concentration in the bottom sediments was arranged in the following order: Rybnik > Rzeszów > Brzóza Królewska > Brzóza Stadnicka > Besko > Chechło > Ożanna > Głuchów > Narożniki. BAP was the major compound in sediments from the Besko, Brzóza Stadnicka and Rzeszów reservoirs; FLT in the sediments from the Rybnik, Narożniki, Ożanna and Brzóza Królewska reservoirs; and FLN from the Głuchów and Chechło reservoirs. The major inputs of PAHs were of pyrolytic origin. However, petrogenic sources of PAHs occurred especially in the Chechło and Głuchów reservoirs. The ecological risk assessment indicated that non-adverse effects on the benthic fauna may occur for sediments from the Głuchów, Narozniki and Ożanna reservoirs, while slightly adverse effects were found for sediments from the Brzóza Królewska, Besko, Brzóza Stadnicka and Chechło reservoirs. The other sediments showed moderate (Rzeszów reservoirs) and strong effect (Rybnik reservoir) on biological communities. Individual PAHs such as NAP, PHE, FLT, PYR, BAA, CHR and BAP in sediments from the Rybnik reservoir and BAP in sediments from the Rzeszów reservoirs indicated a higher possibility of occurrence of an adverse ecological effect. PCA analysis found slight difference between the reservoirs in the profile of variable PAHs. Only the sediments from the Rybnik and Chechło reservoirs differ considerably from this grouping.

  9. Introducing GEOPHIRES v2.0: Updated Geothermal Techno-Economic Simulation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckers, Koenraad J; McCabe, Kevin

    This paper presents an updated version of the geothermal techno-economic simulation tool GEOPHIRES (GEOthermal energy for Production of Heat and electricity ('IR') Economically Simulated). GEOPHIRES combines engineering models of the reservoir, wellbores, and surface plant facilities of a geothermal plant with an economic model to estimate the capital and operation and maintenance costs, lifetime energy production, and overall levelized cost of energy. The available end-use options are electricity, direct-use heat, and cogeneration. The main updates in the new version include conversion of the source code from FORTRAN to Python, the option to import temperature data (e.g., measured or from stand-alonemore » reservoir simulator), updated cost correlations, and more flexibility in selecting the time step and number of injection and production wells. In this paper, we provide an overview of all the updates and two case studies to illustrate the tool's new capabilities.« less

  10. Field testing of Schistosoma japonicum DNA vaccines in cattle in China.

    PubMed

    Shi, Fuhui; Zhang, Yaobi; Lin, Jiaojiao; Zuo, Xin; Shen, Wei; Cai, Yiumin; Ye, Ping; Bickle, Quentin D; Taylor, Martin G

    2002-11-01

    Vaccines are needed to reduce the zoonotic reservoir of Schistosoma japonicum infection in bovines in China. We have developed two experimental DNA vaccines and have already shown these to be capable of inducing partial protection in water buffalo naturally exposed to the risk of S. japonicum infection in the field. We now report a similar field trial in cattle, the other major bovine reservoir host species in China. Groups of cattle were vaccinated with the VRSj28 vaccine or the VRSj23 vaccine, or, to test whether protection could be enhanced by combination vaccination, with both these DNA vaccines together. After vaccination, the cattle were exposed to natural infection in the field for a period of 54 days. Worm and egg counts carried out at the end of the experiment showed that each of the vaccine groups showed partial resistance, and that combined vaccination was not more effective than vaccination with the individual plasmids.

  11. Oral shedding of Marburg virus in experimentally infected Egyptian fruit bats (Rousettus aegyptiacus).

    PubMed

    Amman, Brian R; Jones, Megan E B; Sealy, Tara K; Uebelhoer, Luke S; Schuh, Amy J; Bird, Brian H; Coleman-McCray, JoAnn D; Martin, Brock E; Nichol, Stuart T; Towner, Jonathan S

    2015-01-01

    Marburg virus (Marburg marburgvirus; MARV) causes sporadic outbreaks of Marburg hemorrhagic fever (MHF) in Africa. The Egyptian fruit bat (Rousettus aegyptiacus) has been identified as a natural reservoir based most-recently on the repeated isolation of MARV directly from bats caught at two locations in southwestern Uganda where miners and tourists separately contracted MHF from 2007-08. Despite learning much about the ecology of MARV through extensive field investigations, there remained unanswered questions such as determining the primary routes of virus shedding and the severity of disease, if any, caused by MARV in infected bats. To answer these questions and others, we experimentally infected captive-bred R. aegyptiacus with MARV under high (biosafety level 4) containment. These experiments have shown infection profiles consistent with R. aegyptiacus being a bona fide natural reservoir host for MARV and demonstrated routes of viral shedding capable of infecting humans and other animals.

  12. Three-terminal quantum-dot thermal management devices

    NASA Astrophysics Data System (ADS)

    Zhang, Yanchao; Zhang, Xin; Ye, Zhuolin; Lin, Guoxing; Chen, Jincan

    2017-04-01

    We theoretically demonstrate that the heat flows can be manipulated by designing a three-terminal quantum-dot system consisting of three Coulomb-coupled quantum dots connected to respective reservoirs. In this structure, the electron transport between the quantum dots is forbidden, but the heat transport is allowed by the Coulomb interaction to transmit heat between the reservoirs with a temperature difference. We show that such a system is capable of performing thermal management operations, such as heat flow swap, thermal switch, and heat path selector. An important thermal rectifier, i.e., a thermal diode, can be implemented separately in two different paths. The asymmetric configuration of a quantum-dot system is a necessary condition for thermal management operations in practical applications. These results should have important implications in providing the design principle for quantum-dot thermal management devices and may open up potential applications for the thermal management of quantum-dot systems at the nanoscale.

  13. Method and apparatus for determining the hydraulic conductivity of earthen material

    DOEpatents

    Sisson, James B.; Honeycutt, Thomas K.; Hubbell, Joel M.

    1996-01-01

    An earthen material hydraulic conductivity determining apparatus includes, a) a semipermeable membrane having a fore earthen material bearing surface and an opposing rear liquid receiving surface; b) a pump in fluid communication with the semipermeable membrane rear surface, the pump being capable of delivering liquid to the membrane rear surface at a plurality of selected variable flow rates or at a plurality of selected variable pressures; c) a liquid reservoir in fluid communication with the pump, the liquid reservoir retaining a liquid for pumping to the membrane rear surface; and d) a pressure sensor in fluid communication with the membrane rear surface to measure pressure of liquid delivered to the membrane by the pump. Preferably, the pump comprises a pair of longitudinally opposed and aligned syringes which are operable to simultaneously fill one syringe while emptying the other. Methods of determining the hydraulic conductivity of earthen material are also disclosed.

  14. Method and apparatus for determining the hydraulic conductivity of earthen material

    DOEpatents

    Sisson, J.B.; Honeycutt, T.K.; Hubbell, J.M.

    1996-05-28

    An earthen material hydraulic conductivity determining apparatus includes: (a) a semipermeable membrane having a fore earthen material bearing surface and an opposing rear liquid receiving surface; (b) a pump in fluid communication with the semipermeable membrane rear surface, the pump being capable of delivering liquid to the membrane rear surface at a plurality of selected variable flow rates or at a plurality of selected variable pressures; (c) a liquid reservoir in fluid communication with the pump, the liquid reservoir retaining a liquid for pumping to the membrane rear surface; and (d) a pressure sensor in fluid communication with the membrane rear surface to measure pressure of liquid delivered to the membrane by the pump. Preferably, the pump comprises a pair of longitudinally opposed and aligned syringes which are operable to simultaneously fill one syringe while emptying the other. Methods of determining the hydraulic conductivity of earthen material are also disclosed. 15 figs.

  15. CATS - A process-based model for turbulent turbidite systems at the reservoir scale

    NASA Astrophysics Data System (ADS)

    Teles, Vanessa; Chauveau, Benoît; Joseph, Philippe; Weill, Pierre; Maktouf, Fakher

    2016-09-01

    The Cellular Automata for Turbidite systems (CATS) model is intended to simulate the fine architecture and facies distribution of turbidite reservoirs with a multi-event and process-based approach. The main processes of low-density turbulent turbidity flow are modeled: downslope sediment-laden flow, entrainment of ambient water, erosion and deposition of several distinct lithologies. This numerical model, derived from (Salles, 2006; Salles et al., 2007), proposes a new approach based on the Rouse concentration profile to consider the flow capacity to carry the sediment load in suspension. In CATS, the flow distribution on a given topography is modeled with local rules between neighboring cells (cellular automata) based on potential and kinetic energy balance and diffusion concepts. Input parameters are the initial flow parameters and a 3D topography at depositional time. An overview of CATS capabilities in different contexts is presented and discussed.

  16. Neurotoxins in a water supply reservoir: An alert to environmental and human health.

    PubMed

    Calado, Sabrina Loise de Morais; Wojciechowski, Juliana; Santos, Gustavo Souza; Magalhães, Valéria Freitas de; Padial, André Andrian; Cestari, Marta Margarete; Silva de Assis, Helena Cristina da

    2017-02-01

    Reservoirs are important source of power generation, recreation, and water supply. Nevertheless, human activities have favored the bloom of toxic cyanobacteria in many reservoirs, which has resulted in environmental, social, and economic problems. This study aims to evaluate the water quality of a reservoir in South Brazil through the analysis of cyanobacteria and cyanotoxins PSTs (Paralytic Shellfish Toxins) and biomarkers of environmental contamination in fish. For this purpose, water samples and fish (Geophagus brasiliensis) (Perciformes: Cichlidae) were collected from September 2013 to May 2014. The fish G. brasiliensis were separated in two groups. The first one "site group" was euthanized after the sampling and their weight and length were measured. The blood, brain, muscle and liver were collected for chemical, biochemical and genetics biomarkers analysis. The second group "depuration group" was submitted to depuration experiment for 40 days in clean water. After that, the same procedures as for the first group were carried out. Cylindrospermopsis raciborskii was the dominant cyanobacteria found in the reservoir, and it showed a density above the recommended limit by Brazilian legislation of 20,000 cells/mL. Results showed that the fish accumulate PSTs in the Reservoir and these were not eliminated after 40 days. The biochemical and genotoxic biomarkers showed a significant difference between "site groups" and "depuration groups", which suggests a recovery of the antioxidant system and a reduction of cellular damage after 40 days in clean water. In conjunction with results reported earlier by others, Alagados Reservoir, in South Brazil, appears to have a persistent contamination of cyanotoxins. Moreover, the mixture of contaminants which may be present in the water body can explain the seasonal differences in fish at the sampled points. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Attenuation and Dispersion Analysis in Laboratory Measured Elastic Properties in the Middle East Carbonate Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Sharma, R.

    2016-12-01

    Carbonate rocks are sensitive to circulation of fluid types that leads to diagenetic alterations and therefore to heterogeneity in distribution of porosity and permeability. These heterogeneities in turn, lead to heterogeneity in saturations varying from partial to patchy to uniform. Depending on the interaction between fluids and rock matrix, a weakening or strengthening in shear modulus of carbonate rocks can also develop (Eberli et al., 2003; Adam et al., 2006; Sharma et al., 2009; Sharma et al., 2013). Thus the elastic response over the production life of the carbonate reservoirs can change considerably. Efforts to couple fluid flow with varying seismic properties of these reservoirs are limited in success due to the differences between static elastic properties derived from reservoir simulation and dynamic elastic properties derived from inverted seismic. An additional limitation arises from the assumption that shear modulus does not change with fluid type and saturations. To overcome these limitations, we need to understand the relationships between the static and the dynamic elastic properties using laboratory measurements made at varying pressures, frequencies and with varying saturants. I will present the following results: 1) errors associated with using dynamic (2 - 2000 Hz and 1 MHz) elastic properties data for static ( 0 Hz) reservoir properties, 2) shear modulus variation in carbonates upon saturation with varying saturants The results will enable us to estimate, 1) distribution of stress-strain relations in reservoir rocks and 2) modulus dispersion to correct seismic-derived moduli as inputs for reservoir simulators. The results are critical to estimate, 1) modulus dispersion correction and 2) occurrence and amount of shear modulus variation with fluid change vital for rock stability analysis

  18. Mapping lacustrine syn-rift reservoir distribution using spectral attributes: A case study of the Pematang Brownshale Central Sumatra Basin

    NASA Astrophysics Data System (ADS)

    Haris, A.; Yustiawan, R.; Riyanto, A.; Ramadian, R.

    2017-07-01

    Pematang Brownshale is the lake sediment, which is proven as the main source rock in Malacca Strait Area. So far Brownshale is only considered as source rock, but the well data show intercalated sand layers encountered within the Pematang Brownshale, where several downhole tests proved this series as a potential hydrocarbon reservoir. Pematang formation is a syn-rift sequent deposited in Malacca Strait following the opening of central Sumatra basin during a late cretaceous to early Oligocene, which is proven as potential source rock and reservoir. The aim of the study is to identify the distribution of sandstone reservoir in Pematang Brownshale using spectral attributes. These works were carried out by integrating log data analysis and frequency maps extracted from spectral attributes Continuous Wavelet Transform (CWT). All these data are used to delineate reservoir distribution in Pematang Brownshale. Based on CWT analysis the anomalies are only visible on the frequency of I5 and I0 Hz maps, which are categorized as low frequencies. Low-frequency shadow anomaly is commonly used as an indication of the presence of hydrocarbons. The distribution of these anomalies is covering an area of approximately 3840.66 acres or equal to I554.25 sq. km, where the low-frequency pattern is interpreted as a deltaic lacustrine feature. By considering the Pematang Brown Shale of Malacca Strait area as a potential reservoir, it would open new play to another basin that has similar characteristics.

  19. Three-dimensional audio-magnetotelluric sounding in monitoring coalbed methane reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Zhao, Shanshan; Hui, Jian; Qin, Qiming

    2017-03-01

    Audio-magnetotelluric (AMT) sounding is widely employed in rapid resistivity delineation of objective geometry in near surface exploration. According to reservoir patterns and electrical parameters obtained in Qinshui Basin, China, two-dimensional and three-dimensional synthetic "objective anomaly" models were designed and inverted with the availability of a modular system for electromagnetic inversion (ModEM). The results revealed that 3-D full impedance inversion yielded the subsurface models closest to synthetic models. One or more conductive targets were correctly recovered. Therefore, conductive aquifers in the study area, including hydrous coalbed methane (CBM) reservoirs, were suggested to be the interpretation signs for reservoir characterization. With the aim of dynamic monitoring of CBM reservoirs, the AMT surveys in continuous years (June 2013-May 2015) were carried out. 3-D inversion results demonstrated that conductive anomalies accumulated around the producing reservoirs at the corresponding depths if CBM reservoirs were in high water production rates. In contrast, smaller conductive anomalies were generally identical with rapid gas production or stopping production of reservoirs. These analyses were in accordance with actual production history of CBM wells. The dynamic traces of conductive anomalies revealed that reservoir water migrated deep or converged in axial parts and wings of folds, which contributed significantly to formations of CBM traps. Then the well spacing scenario was also evaluated based on the dynamic production analysis. Wells distributed near closed faults or flat folds, rather than open faults, had CBM production potential to ascertain stable gas production. Therefore, three-dimensional AMT sounding becomes an attractive option with the ability of dynamic monitoring of CBM reservoirs, and lays a solid foundation of quantitative evaluation of reservoir parameters.

  20. Evaluation production index of test well about tight gas reservoir

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoliang; Yan, Wende; Yuan, Yingzhong; Li, Jiqiang; Li, Xiaoxue

    2018-03-01

    It is important that the tight gas reservoir is developed with test wells in the first place for the reasonable development, and it is necessary evaluation production index of test well. So, the paper will evaluate gas wells capacity, reasonable production, production decline law and producing reserves. Combining with calculation theory, comparison of adjacent wells and field practice, obtained reasonable production, production decline law and production reserves about test well, and through analysis the adjacent well obtained development experience and lessons about tight gas reservoir. The results show that the gas well development should pay attention to reasonable production and prevent energy falling too fast in tight gas reservoirs, The decline rule of wells with long production time should be analyzed by two stages. Through study, it will provide some reference and guidance for the development of gas wells in tight gas reservoirs.

  1. Hydrocarbon Reservoir Identification in Volcanic Zone by using Magnetotelluric and Geochemistry Information

    NASA Astrophysics Data System (ADS)

    Firda, S. I.; Permadi, A. N.; Supriyanto; Suwardi, B. N.

    2018-03-01

    The resistivity of Magnetotelluric (MT) data show the resistivity mapping in the volcanic reservoir zone and the geochemistry information for confirm the reservoir and source rock formation. In this research, we used 132 data points divided with two line at exploration area. We used several steps to make the resistivity mapping. There are time series correction, crosspower correction, then inversion of Magnetotelluric (MT) data. Line-2 and line-3 show anomaly geological condition with Gabon fault. The geology structure from the resistivity mapping show the fault and the geological formation with the geological rock data mapping distribution. The geochemistry information show the maturity of source rock formation. According to core sample analysis information, we get the visual porosity for reservoir rock formation in several geological structure. Based on that, we make the geological modelling where the potential reservoir and the source rock around our interest area.

  2. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs (Annex 1). Annual report, February 1, 1991--January 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W.L.

    1992-08-01

    Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to linkmore » the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.« less

  3. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs (Annex 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W.L.

    1992-01-01

    Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to linkmore » the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.« less

  4. Stable isotopic fingerprint of a hyporheic-hypolentic boundary in a reservoir

    NASA Astrophysics Data System (ADS)

    Aseltyne, Todd A.; Rowe, Harold D.; Fryar, Alan E.

    2006-12-01

    Stable isotopes of H2O are used to define the hyporheic-hypolentic boundary in Ledbetter Creek as it discharges to Kentucky Lake, a constructed reservoir in western Kentucky, USA. High-resolution (centimeter-scale) sample collection and analysis were utilized to determine one-dimensional variations in δ2H and δ18O of H2O and chloride (Cl-) across the boundary. During reservoir low stand in winter, the hyporheic-hypolentic zone contains water from Ledbetter Creek and groundwater separated by an interface at ~10 cm below the channel bottom. Following reservoir-stage increase in spring and summer, water from Kentucky Lake infiltrates into the hyporheic-hypolentic zone to a depth of at least 18 cm below the channel bottom. Reservoir-stage decline in autumn causes source-water mixing, largely obscuring the hyporheic-hypolentic boundary. Stable isotopes provide an effective complement to conventional tracers for delineation of water masses within the hyporheic-hypolentic zone.

  5. Time-lapse seismic waveform modelling and attribute analysis using hydromechanical models for a deep reservoir undergoing depletion

    NASA Astrophysics Data System (ADS)

    He, Y.-X.; Angus, D. A.; Blanchard, T. D.; Wang, G.-L.; Yuan, S.-Y.; Garcia, A.

    2016-04-01

    Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and reservoir units. More importantly, the results from this study indicate that integrated seismic and hydromechanical modelling can help constrain time-lapse uncertainty and hence reduce risk due to fluid extraction and injection.

  6. Risk Factors for Human Salmonellosis Originating from Pigs, Cattle, Broiler Chickens and Egg Laying Hens: A Combined Case-Control and Source Attribution Analysis

    PubMed Central

    Mughini-Gras, Lapo; Enserink, Remko; Friesema, Ingrid; Heck, Max; van Duynhoven, Yvonne; van Pelt, Wilfrid

    2014-01-01

    Several case-control studies have investigated risk factors for human salmonellosis while others have used Salmonella subtyping to attribute human infections to different food and animal reservoirs. This study combined case-control and source attribution data into a single analysis to explore risk factors at the point of exposure for human salmonellosis originating from four putative food-producing animal reservoirs (pigs, cattle, broilers and layers/eggs) in the Netherlands. We confirmed that most human cases (∼90%) were attributable to layers/eggs and pigs. Layers/eggs and broilers were the most likely reservoirs of salmonellosis in adults, in urban areas, and in spring/summer, whereas pigs and cattle were the most likely reservoirs of salmonellosis in children, in rural areas, and in autumn/winter. Several reservoir-specific risk factors were identified. Not using a chopping board for raw meat only and consuming raw/undercooked meat were risk factors for infection with salmonellas originating from pigs, cattle and broilers. Consuming raw/undercooked eggs and by-products were risk factors for layer/egg-associated salmonellosis. Using antibiotics was a risk factor for pig- and cattle-associated salmonellosis and using proton-pump inhibitors for salmonellosis attributable to any reservoir. Pig- and cattle-associated infections were also linked to direct contact with animals and environmental exposure (e.g. playing in sandboxes). Eating fish, meat in pastry, and several non-meat foods (fruit, vegetables and pasteurized dairy products) were protective factors. Consuming pork and occupational exposure to animals and/or raw meats were protective against layer/egg-associated salmonellosis. We concluded that individuals acquiring salmonellosis from different reservoirs have different associated risk factors, suggesting that salmonellas may infect humans through various transmission pathways depending on their original reservoirs. The outcome of classical case-control studies can be enhanced by incorporating source attribution data and vice versa. PMID:24503703

  7. Koenraad Beckers | NREL

    Science.gov Websites

    postdoctoral researcher working on geothermal energy and CSP projects. His interests include heat and mass geothermal energy systems modeling, reservoir simulation, and economic analysis, as well as on the design and transfer, energy conversion and storage systems, reservoir modeling, and direct-use applications of thermal

  8. Comparative analysis of water quality between runoff entrance and middle of recycling irrigation reservoirs

    USDA-ARS?s Scientific Manuscript database

    Recycling irrigation reservoirs (RIRs) are an emerging aquatic ecosystem of critical importance, for conserving and protecting increasingly scarce water resources. Here we compare water quality between runoff entrance and middle of four RIRs in nurseries in Virginia (VA) and Maryland (MD). Surface w...

  9. Long-term trend analysis of reservoir water quality and quantity at the landscape scale in two major river basins of Texas, USA.

    USGS Publications Warehouse

    Patino, Reynaldo; Asquith, William H.; VanLandeghem, Matthew M.; Dawson, D.

    2016-01-01

    Trends in water quality and quantity were assessed for 11 major reservoirs of the Brazos and Colorado river basins in the southern Great Plains (maximum period of record, 1965–2010). Water quality, major contributing-stream inflow, storage, local precipitation, and basin-wide total water withdrawals were analyzed. Inflow and storage decreased and total phosphorus increased in most reservoirs. The overall, warmest-, or coldest-monthly temperatures increased in 7 reservoirs, decreased in 1 reservoir, and did not significantly change in 3 reservoirs. The most common monotonic trend in salinity-related variables (specific conductance, chloride, sulfate) was one of no change, and when significant change occurred, it was inconsistent among reservoirs. No significant change was detected in monthly sums of local precipitation. Annual water withdrawals increased in both basins, but the increase was significant (P < 0.05) only in the Colorado River and marginally significant (P < 0.1) in the Brazos River. Salinity-related variables dominated spatial variability in water quality data due to the presence of high- and low-salinity reservoirs in both basins. These observations present a landscape in the Brazos and Colorado river basins where, in the last ∼40 years, reservoir inflow and storage generally decreased, eutrophication generally increased, and water temperature generally increased in at least 1 of 3 temperature indicators evaluated. Because local precipitation remained generally stable, observed reductions in reservoir inflow and storage during the study period may be attributable to other proximate factors, including increased water withdrawals (at least in the Colorado River basin) or decreased runoff from contributing watersheds.

  10. The legacy of leaded gasoline in bottom sediment of small rural reservoirs

    USGS Publications Warehouse

    Juracek, K.E.; Ziegler, A.C.

    2006-01-01

    The historical and ongoing lead (Pb) contamination caused by the 20th-century use of leaded gasoline was investigated by an analysis of bottom sediment in eight small rural reservoirs in eastern Kansas, USA. For the reservoirs that were completed before or during the period of maximum Pb emissions from vehicles (i.e., the 1940s through the early 1980s) and that had a major highway in the basin, increased Pb concentrations reflected the pattern of historical leaded gasoline use. For at least some of these reservoirs, residual Pb is still being delivered from the basins. There was no evidence of increased Pb deposition for the reservoirs completed after the period of peak Pb emissions and (or) located in relatively remote areas with little or no highway traffic. Results indicated that several factors affected the magnitude and variability of Pb concentrations in reservoir sediment including traffic volume, reservoir age, and basin size. The increased Pb concentrations at four reservoirs exceeded the U.S. Environmental Protection Agency threshold-effects level (30.2 mg kg-1) and frequently exceeded a consensus-based threshold-effects concentration (35.8 mg kg-1) for possible adverse biological effects. For two reservoirs it was estimated that it will take at least 20 to 70 yr for Pb in the newly deposited sediment to return to baseline (pre-1920s) concentrations (30 mg kg-1) following the phase out of leaded gasoline. The buried sediment with elevated Pb concentrations may pose a future environmental concern if the reservoirs are dredged, the dams are removed, or the dams fail. ?? ASA, CSSA, SSSA.

  11. Characteristics and origin of the relatively high-quality tight reservoir in the Silurian Xiaoheba Formation in the southeastern Sichuan Basin

    PubMed Central

    Gong, Xiaoxing; Shi, Zejin; Wang, Yong; Tian, Yaming; Li, Wenjie; Liu, Lei

    2017-01-01

    A mature understanding of the sandstone gas reservoir in the Xiaoheba Formation in the southeastern Sichuan Basin remains lacking. To assess the reservoir characteristics and the origin of the high-quality reservoir in the Xiaoheba Formation, this paper uses systematic field investigations, physical property analysis, thin section identification, scanning electron microscopy and electron microprobe methods. The results indicate that the Xiaoheba sandstone is an ultra-tight and ultra-low permeability reservoir, with an average porosity of 2.97% and an average permeability of 0.56×10−3 μm2. This promising reservoir is mainly distributed in the Lengshuixi and Shuangliuba regions and the latter has a relatively high-quality reservoir with an average porosity of 5.28% and average permeability of 0.53×10−3 μm2. The reservoir space comprises secondary intergranular dissolved pores, moldic pores and fractures. Microfacies, feldspar dissolution and fracture connectivity control the quality of this reservoir. The relatively weak compaction and cementation in the interbedded delta front distal bar and interdistributary bay microfacies indirectly protected the primary intergranular pores and enhanced late-stage dissolution. Late-stage potassium feldspar dissolution was controlled by the early-stage organic acid dissolution intensity and the distance from the hydrocarbon generation center. Early-stage fractures acted as pathways for organic acid migration and were therefore important factors in the formation of the reservoir. Based on these observations, the area to the west of the Shuangliuba and Lengshuixi regions has potential for gas exploration. PMID:28686735

  12. Age structure and mortality of walleyes in Kansas reservoirs: Use of mortality caps to establish realistic management objectives

    USGS Publications Warehouse

    Quist, M.C.; Stephen, J.L.; Guy, C.S.; Schultz, R.D.

    2004-01-01

    Age structure, total annual mortality, and mortality caps (maximum mortality thresholds established by managers) were investigated for walleye Sander vitreus (formerly Stizostedion vitreum) populations sampled from eight Kansas reservoirs during 1991-1999. We assessed age structure by examining the relative frequency of different ages in the population; total annual mortality of age-2 and older walleyes was estimated by use of a weighted catch curve. To evaluate the utility of mortality caps, we modeled threshold values of mortality by varying growth rates and management objectives. Estimated mortality thresholds were then compared with observed growth and mortality rates. The maximum age of walleyes varied from 5 to 11 years across reservoirs. Age structure was dominated (???72%) by walleyes age 3 and younger in all reservoirs, corresponding to ages that were not yet vulnerable to harvest. Total annual mortality rates varied from 40.7% to 59.5% across reservoirs and averaged 51.1% overall (SE = 2.3). Analysis of mortality caps indicated that a management objective of 500 mm for the mean length of walleyes harvested by anglers was realistic for all reservoirs with a 457-mm minimum length limit but not for those with a 381-mm minimum length limit. For a 500-mm mean length objective to be realized for reservoirs with a 381-mm length limit, managers must either reduce mortality rates (e.g., through restrictive harvest regulations) or increase growth of walleyes. When the assumed objective was to maintain the mean length of harvested walleyes at current levels, the observed annual mortality rates were below the mortality cap for all reservoirs except one. Mortality caps also provided insight on management objectives expressed in terms of proportional stock density (PSD). Results indicated that a PSD objective of 20-40 was realistic for most reservoirs. This study provides important walleye mortality information that can be used for monitoring or for inclusion into population models; these results can also be combined with those of other studies to investigate large-scale differences in walleye mortality. Our analysis illustrates the utility of mortality caps for monitoring walleye populations and for establishing realistic management goals.

  13. HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues.

    PubMed

    Lamers, Susanna L; Gray, Rebecca R; Salemi, Marco; Huysentruyt, Leanne C; McGrath, Michael S

    2011-01-01

    Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that (1) HIV-1 is clearly capable of migrating out of the brain, (2) the meninges are the most likely primary transport tissues, and (3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Sensitivity analysis for the total nitrogen pollution of the Danjiangkou Reservoir based on a 3-D water quality model

    NASA Astrophysics Data System (ADS)

    Chen, Libin; Yang, Zhifeng; Liu, Haifei

    2017-12-01

    Inter-basin water transfers containing a great deal of nitrogen are great threats to human health, biodiversity, and air and water quality in the recipient area. Danjiangkou Reservoir, the source reservoir for China's South-to-North Water Diversion Middle Route Project, suffers from total nitrogen pollution and threatens the water transfer to a number of metropolises including the capital, Beijing. To locate the main source of nitrogen pollution into the reservoir, especially near the Taocha canal head, where the intake of water transfer begins, we constructed a 3-D water quality model. We then used an inflow sensitivity analysis method to analyze the significance of inflows from each tributary that may contribute to the total nitrogen pollution and affect water quality. The results indicated that the Han River was the most significant river with a sensitivity index of 0.340, followed by the Dan River with a sensitivity index of 0.089, while the Guanshan River and the Lang River were not significant, with the sensitivity indices of 0.002 and 0.001, respectively. This result implies that the concentration and amount of nitrogen inflow outweighs the geographical position of the tributary for sources of total nitrogen pollution to the Taocha canal head of the Danjiangkou Reservoir.

  15. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China.

    PubMed

    Liu, Renzhi; Liu, Jing; Zhang, Zhijiao; Borthwick, Alistair; Zhang, Ke

    2015-12-02

    Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA), designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the "source-pathway-target" in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing) in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River). Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method.

  16. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China

    PubMed Central

    Liu, Renzhi; Liu, Jing; Zhang, Zhijiao; Borthwick, Alistair; Zhang, Ke

    2015-01-01

    Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA), designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the “source-pathway-target” in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing) in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River). Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method. PMID:26633450

  17. Lake sturgeon population attributes and reproductive structure in the Namakan Reservoir, Minnesota and Ontario

    USGS Publications Warehouse

    Shaw, S. L.; Chipps, Steven R.; Windels, Steve K.; Webb, M.A.H.; McLeod, D. T.; Willis, D.W.

    2012-01-01

    Quantified were the age, growth, mortality and reproductive structure of lake sturgeon (Acipenser fulvescens) collected in the US and Canadian waters of the Namakan Reservoir. The hypotheses were tested that (i) age and growth of lake sturgeon in the Namakan Reservoir would differ by sex and reproductive stage of maturity, and (ii) that the relative strength of year-classes of lake sturgeon in the reservoir would be affected by environmental variables. To quantify age, growth and mortality of the population, existing data was used from a multi-agency database containing information on all lake sturgeon sampled in the reservoir from 2004 to 2009. Lake sturgeon were sampled in the Minnesota and Ontario waters of the Namakan Reservoir using multi-filament gillnets 1.8 m high and 30–100 m long and varying in mesh size from 178 to 356 mm stretch. Reproductive structure of the lake sturgeon was assessed only during spring 2008 and 2009 using plasma testosterone and estradiol-17β concentrations. Ages of lake sturgeon >75 cm ranged from 9 to 86 years (n = 533, mean = 36 years). A catch-curve analysis using the 1981–1953 year classes estimated total annual mortality of adults to be 4.8% and annual survival as 95.2%. Using logistic regression analysis, it was found that total annual precipitation was positively associated with lake sturgeon year-class strength in the Namakan Reservoir. A 10 cm increase in total annual precipitation was associated with at least a 39% increase in the odds of occurrence of a strong year class of lake sturgeon in the reservoir. Plasma steroid analysis revealed a sex ratio of 2.4 females: 1 male and, on average, 10% of female and 30% of male lake sturgeon were reproductively mature each year (i.e. potential spawners). Moreover, there was evidence based on re-captured male fish of both periodic and annual spawning, as well as the ability of males to rapidly undergo gonadal maturation prior to spawning. Knowledge of lake sturgeon reproductive structure and factors influencing recruitment success contribute to the widespread conservation efforts for this threatened species.

  18. Vertical distribution of the subsurface microorganisms in Sagara oil reservoir

    NASA Astrophysics Data System (ADS)

    Nunoura, T.; Oida, H.; Masui, N.; Ingaki, F.; Takai, K.; Nealson, K. H.; Horikoshi, K.

    2002-12-01

    The recent microbiological studies reported that active microbial habitat for methanogen, sulfate reducers (Archaeoglobus, d-Proteobacteria, gram positives), fermenters (Thermococcus, Thermotogales, gram positives etc.) and other heterotrophs (g-Proteobacteria etc.) are in subsurface petroleum oil reservoirs. However, microbial distribution at vertical distances in depth has not been demonstrated since the samples in previous studies are only to use oil and the formation water. Here, we show the vertical profile of microbial community structure in Japanese terrestrial oil reservoir by a combination of molecular ecological analyses and culture dependent studies. The sequential WRC (Whole Round Core) samples (200 mbsf) were recovered from a drilling project for Sagara oil reservoir, Shizuoka Prefecture, Japan, conducted in Jar. -Mar. 2002. The lithology of the core samples was composed of siltstone, sandstone, or partially oil containing sand. The major oil components were gasoline, kerosene and light oil, that is a unique feature observed in the Sagara oil reservoir. The direct count of DAPI-stained cells suggested that the biomass was relatively constant, 1.0x104cells/g through the core of the non-oil layers, whereas the oil-bearing layers had quite higher population density at a range of 1.0x105 ? 3.7x107cells/g. The vertical profile of microbial community structures was analyzed by the sequence similarity analysis, phylogenetic analysis and T-RFLP fingerprinting of PCR-amplified 16S rDNA. From bacterial rDNA clone libraries, most of the examined rDNA were similar with the sequence of genera Pseudomanas, Stenotrophomonas and Sphingomonas within g-Proteobacteria. Especially, Pseudomonas stutzeri was predominantly present in all oil-bearing layers. From archaeal rDNA clone libraries, all rDNA clone sequences were phylogenetically associated with uncultured soil group in Crenarchaeota. We detected none of the sequences of sulfate reducers, sulfur dependent fermenters and methanogens that have been previously detected as dominant microbial components in other oil reservoir environments. The absence of methanogen was consistent with the results from the stable isotopic analysis that major hydrocarbon components including methane in Sagara oil reservoir are thermogenic origin. In this presentation, we will also show the activity of the subsurface microbial components by the cultivation assays and discuss about the relationship between the microbial community structure and the formation process of petroleum in Sagara oil reservoir.

  19. Quality of water and bottom material in Breckenridge Reservoir, Virginia, September 2008 through August 2009

    USGS Publications Warehouse

    Lotspeich, Russell

    2012-01-01

    Breckenridge Reservoir is located within the U.S. Marine Corps Base in Quantico, which is in the Potomac River basin and the Piedmont Physiographic Province of northern Virginia. Because it serves as the principal water supply for the U.S. Marine Corps Base in Quantico, an assessment of the water-quality of Breckenridge Reservoir was initiated. Water samples were collected and physical properties were measured by the U.S. Geological Survey at three sites in Breckenridge Reservoir, and physical properties were measured at six additional reservoir sites from September 2008 through August 2009. Water samples were also collected and physical properties were measured in each of the three major tributaries to Breckenridge Reservoir: North Branch Chopawamsic Creek, Middle Branch Chopawamsic Creek, and South Branch Chopawamsic Creek. One site on each tributary was sampled at least five times during the study. Monthly profiles were conducted for water temperature, dissolved-oxygen concentrations, specific conductance, pH, and turbidity measured at 2-foot intervals throughout the water column of the reservoir. These profiles were conducted at nine sites in the reservoir, and data values were measured at these sites from the water surface to the bottom of the reservoir. These profiles were conducted along three cross sections and were used to define the characteristics of the entire water column of the reservoir. The analytical results of reservoir and tributary samples collected and physical properties measured during this study were compared to ambient water-quality standards of the Virginia Department of Environmental Quality and Virginia State Water Control Board. Water temperature, dissolved-oxygen concentration, specific conductance, pH, and turbidity measured in Breckenridge Reservoir generally indicated a lack of stratification in the water column of the reservoir throughout the study period. This is unlike most other reservoirs in the region and may be influenced by the reservoir's relatively short length and the aerators that operate in the reservoir near the spillway. In general, the water-quality of Breckenridge Reservoir is similar to other reservoirs in the region, and the measurements made during this study indicate that the reservoir is healthy and is not in violation of published State Water Control Board ambient water-quality standards. Water samples at three reservoir sites were analyzed for 53 pesticides, but only atrazine was found to be above the laboratory minimum reporting level. Atrazine concentrations of 0.008 and 0.010 microgram per liter near the surface and bottom of the reservoir, respectively, were found at all three sampling locations. Bottom-material samples were collected for analysis of trace elements at all three reservoir sampling sites. Concentrations of arsenic, cadmium, and mercury in bottom material were similar to those analyzed in other reservoirs in the region. However, most other constituents that were collected from Breckenridge Reservoir, especially iron and lead, showed much higher concentrations than the other reservoirs. During the course of the study, increased turbidity and Escherichia coli bacteria counts were observed during or after periods of increased tributary discharge, and Secchi-disk depths decreased during those same periods. These streamflow and water-quality indicators suggest a close relationship between Breckenridge Reservoir and its tributaries.

  20. Flow units classification for geostatisitical three-dimensional modeling of a non-marine sandstone reservoir: A case study from the Paleocene Funing Formation of the Gaoji Oilfield, east China

    NASA Astrophysics Data System (ADS)

    Zhang, Penghui; Zhang, Jinliang; Wang, Jinkai; Li, Ming; Liang, Jie; Wu, Yingli

    2018-05-01

    Flow units classification can be used in reservoir characterization. In addition, characterizing the reservoir interval into flow units is an effective way to simulate the reservoir. Paraflow units (PFUs), the second level of flow units, are used to estimate the spatial distribution of continental clastic reservoirs at the detailed reservoir description stage. In this study, we investigate a nonroutine methodology to predict the external and internal distribution of PFUs. The methodology outlined enables the classification of PFUs using sandstone core samples and log data. The relationships obtained between porosity, permeability and pore throat aperture radii (r35) values were established for core and log data obtained from 26 wells from the Funing Formation, Gaoji Oilfield, Subei Basin, China. The present study refines predicted PFUs at logged (0.125-m) intervals, whose scale is much smaller than routine methods. Meanwhile, three-dimensional models are built using sequential indicator simulation to characterize PFUs in wells. Four distinct PFUs are classified and located based on the statistical methodology of cluster analysis, and each PFU has different seepage ability. The results of this study demonstrate the obtained models are able to quantify reservoir heterogeneity. Due to different petrophysical characteristics and seepage ability, PFUs have a significant impact on the distribution of the remaining oil. Considering these allows a more accurate understanding of reservoir quality, especially within non-marine sandstone reservoirs.

  1. Influence of filling-drawdown cycles of the Three Gorges reservoir on deformation and failure behaviors of anaclinal rock slopes in the Wu Gorge

    NASA Astrophysics Data System (ADS)

    Huang, Da; Gu, Dong Ming

    2017-10-01

    The upper Wu Gorge on the Yangtze River has been the site of tens of reservoir-induced landslides since the filling of the Three Gorges reservoir in 2003. These landslides have been occurring in heavily fractured carbonate rock materials along the rim of the reservoir in the Wu Gorge. A detailed investigation was carried out to examine the influence of reservoir operations (filling and drawdown) on slope stabilities in the upper Wu Gorge. Field investigations reveal many collapses of various types occurred at the toe of the anaclinal rock slopes, owing to the long-term intensive river erosion caused by periodic fluctuation of the reservoir level. Analysis of data from deformation monitoring suggests that the temporal movement of the slopes shows seasonal fluctuations that correlate with reservoir levels and drawdown conditions, with induced slope acceleration peaking when reservoir levels are lowest. This may illustrate that the main mechanism is the reservoir drawdown, which induces an episodic seepage force in the highly permeable materials at the slope toes, and thus leads to the episodic rockslides. The coupled hydraulic-mechanical (HM) modeling of the G2 landslide, which occurred in 2008, shows that collapse initiated at the submerged slope toe, which then caused the upper slope to collapse in a rock topple-rock slide pattern. The results imply that preventing water erosion at the slope toe might be an effective way for landslide prevention in the study area.

  2. Geothermometry Mapping of Deep Hydrothermal Reservoirs in Southeastern Idaho: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattson, Earl D.; Conrad, Mark; Neupane, Ghanashayam

    The Eastern Snake River Plain (ESRP) in southern Idaho is a region of high heat flow. Sustained volcanic activities in the wake of the passage of Yellowstone Hotspot have turned this region into an area with great potential for geothermal resources. Numerous hot springs with temperatures up to 75 ºC are scattered along the margins of the plain. Similarly, several hot-water producing wells and few hot springs are also present within the plain. The geothermal reservoirs in the area are likely to be hosted at depth in the felsic volcanic rocks underneath the thick sequences of basalts within the plainmore » and the Paleozoic rocks underneath both basalts and felsic volcanic rocks along the margins. The heat source to these geothermal resources is thought to be the mid-crustal sill complex which sustains high heat flow in the ESRP. Several thermal anomaly areas are believed to be associated with the local thermal perturbation because of the presence of favorable structural settings. However, it is hypothesized that the pervasive presence of an overlying groundwater aquifer in the region effectively masks thermal signatures of deep-seated geothermal resources. The dilution of deeper thermal water and re-equilibration at lower temperatures are significant challenges for the evaluation of potential resource areas in the ESRP. To address this issue, this project, led by the Idaho National Laboratory (INL), aimed at applying advanced geothermometry tools including temperature-dependent mineral and isotopic equilibria with mixing models that account for processes such as boiling and dilution with shallow groundwater that could affect calculated temperatures of underlying deep thermal waters. Over the past several years, we collected approximately 100 water samples from springs/wells for chemical analysis as well as assembled existing water chemistry data from literature. We applied several geothermometric and geochemical modeling tools to the compositions of ESRP water samples. Geothermometric calculations based on principle of multicomponent equilibrium geothermometry with inverse geochemical modeling capability (e.g., Reservoir Temperature Estimator, RTEst) have been useful for evaluation of reservoir temperatures. Similarly, sulfate-water oxygen isotope geothermometry was also applied to several samples in tandem with RTEst. In summary, geothermometric calculations of ESRP thermal water samples indicated numerous potential geothermal areas with elevated reservoir temperatures. Specifically, areas around southern/southwestern side of the Mount Bennet Hills and within the Camas Prairie in the southwestern portion of the ESRP suggest temperatures 140-190 °C. In the northern portion of the ESRP, Lidy Hot Springs, Ashton, Newdale, and areas east of Idaho Falls have expected reservoir temperature ?140 °C. In the southern ERSP, areas near Buhl and Twin Falls are found to have elevated temperatures as high as 160 °C. These areas are likely to host potentially economic geothermal resources; however, further detailed study is warranted to each site to evaluate hydrothermal suitability for economic use.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefeuvre, F.E.; Wrolstad, K.H.; Zou, Ke Shan

    Total and Unocal estimated sand-shale ratios in gas reservoirs from the upper Tertiary clastics of Myanmar. They separately used deterministic pre-stack and statistical post-stack seismic attribute analysis calibrated at two wells to objectively extrapolate the lithologies and reservoir properties several kilometers away from the wells. The two approaches were then integrated and lead to a unique distribution of the sands and shales in the reservoir which fit in the known regional geological model. For the sands, the fluid distributions (gas and brine) were also estimated as well as the porosity, water saturation, thickness and clay content of the sands. Thismore » was made possible by using precise elastic modeling based on the Biot-Gassmann equation in order to integrate the effects of reservoir properties on seismic signatures.« less

  4. Decoherence control mechanisms of a charged magneto-oscillator in contact with different environments

    NASA Astrophysics Data System (ADS)

    Rajesh, Asam; Bandyopadhyay, Malay; Jayannavar, Arun M.

    2017-12-01

    In this work, we consider two different techniques based on reservoir engineering process and quantum Zeno control method to analyze the decoherence control mechanism of a charged magneto-oscillator in contact with different type of environment. Our analysis reveals that both the control mechanisms are very much sensitive on the details of different environmental spectrum (J (ω)), and also on different system and reservoir parameters, e.g., external magnetic field (rc), confinement length (r0), temperature (T), cut-off frequency of reservoir spectrum (ωcut), and measurement interval (τ). We also demonstrate the manipulation scheme of the continuous passage from decay suppression to decay acceleration by tuning the above mentioned system or reservoir parameters, e.g., rc, r0, T and τ.

  5. Development of diagenetic seals in carbonates and sandstones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, V.; Almon, W.

    1983-03-01

    Diagenetic seals effectively block the movement of reservoir hydrocarbons in many sandstone and carbonate rock units. Diagenetic seals in sandstones and carbonate rocks encase reservoir rocks with either depositional or diagenetic porosity. Diagenetic reservoir porosity may originate before or after the establishment of an effective diagenetic seal. Hydrocarbon traps with diagenetic seals may conform in their geometry as well to structure or stratigraphy as to diagenetic facies. Therefore, some structural and stratigraphic traps may, in part or entirely, depend on diagenetic seals. Detailed analysis of diagenetic seals in sandstones and carbonate rocks can considerably improve our ability to predict theirmore » occurrence and to recognize their spatial and temporal relationship to reservoir rocks and hydrocarbon migration.« less

  6. Microflora of the selected water reservoirs in Swietokrzyskie Voivodship.

    PubMed

    Adamus-Bialek, Wioletta; Karwacka, Karolina; Bak, Lukasz

    2013-01-01

    One of the important environmental issues is the quality of surface waters in the world. Poland belongs to countries with a low quality of the inland waters. The sanitary condition of the five water reservoirs of south-east Poland was analyzed. Water and sediment samples were incubated on the selective and/or differential media. High concentrations of many common and pathogenic microbial indicators were shown in those samples. Those reservoirs are used by people, especially during summer. Because of the high epidemiological risk, detailed analysis of all inland waters should be performed routinely.

  7. [Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang Oilfield (China)].

    PubMed

    Nazina, T N; Shestakova, N M; Grigor'ian, A A; Mikhaĭlova, E M; Turova, T P; Poltaraus, A B; Feng, C; Ni, F; Beliaev, S S

    2006-01-01

    The number of microorganisms of major metabolic groups and the rates of sulfate-reducing and methanogenic processes in the formation waters of the high-temperature horizons of Dagang oilfield have been determined. Using cultural methods, it was shown that the microbial community contained aerobic bacteria oxidizing crude oil, anaerobic fermentative bacteria, sulfate-reducing bacteria, and methanogenic bacteria. Using cultural methods, the possibility of methane production from a mixture of hydrogen and carbon dioxide (H2 + CO2) and from acetate was established, and this result was confirmed by radioassays involving NaH14CO3 and 14CH3COONa. Analysis of 16S rDNA of enrichment cultures of methanogens demonstrated that these microorganisms belong to Methanothermobacter sp. (M. thermoautotrophicus), which consumes hydrogen and carbon dioxide as basic substrates. The genes of acetate-utilizing bacteria were not identified. Phylotypes of the representatives of Thermococcus spp. were found among 16S rDNAs of archaea. 16S rRNA genes of bacterial clones belong to the orders Thermoanaerobacteriales (Thermoanaerobacter, Thermovenabulum, Thermacetogenium, and Coprothermobacter spp.), Thermotogales, Nitrospirales (Thermodesulfovibrio sp.) and Planctomycetales. 16S rDNA of a bacterium capable of oxidizing acetate in the course of syntrophic growth with H2-utilizing methanogens was found at high-temperature petroleum reservoirs for the first time. These results provide further insight into the composition of microbial communities of high-temperature petroleum reservoirs, indicating that syntrophic processes play an important part in acetate degradation accompanied by methane production.

  8. Co-occurrence of the cyanotoxins BMAA, DABA and anatoxin-a in Nebraska reservoirs, fish, and aquatic plants.

    PubMed

    Al-Sammak, Maitham Ahmed; Hoagland, Kyle D; Cassada, David; Snow, Daniel D

    2014-01-28

    Several groups of microorganisms are capable of producing toxins in aquatic environments. Cyanobacteria are prevalent blue green algae in freshwater systems, and many species produce cyanotoxins which include a variety of chemical irritants, hepatotoxins and neurotoxins. Production and occurrence of potent neurotoxic cyanotoxins β-N-methylamino-L-alanine (BMAA), 2,4-diaminobutyric acid dihydrochloride (DABA), and anatoxin-a are especially critical with environmental implications to public and animal health. Biomagnification, though not well understood in aquatic systems, is potentially relevant to both human and animal health effects. Because little is known regarding their presence in fresh water, we investigated the occurrence and potential for bioaccumulation of cyanotoxins in several Nebraska reservoirs. Collection and analysis of 387 environmental and biological samples (water, fish, and aquatic plant) provided a snapshot of their occurrence. A sensitive detection method was developed using solid phase extraction (SPE) in combination with high pressure liquid chromatography-fluorescence detection (HPLC/FD) with confirmation by liquid chromatography-tandem mass spectrometry (LC/MS/MS). HPLC/FD detection limits ranged from 5 to 7 µg/L and LC/MS/MS detection limits were <0.5 µg/L, while detection limits for biological samples were in the range of 0.8-3.2 ng/g depending on the matrix. Based on these methods, measurable levels of these neurotoxic compounds were detected in approximately 25% of the samples, with detections of BMAA in about 18.1%, DABA in 17.1%, and anatoxin-a in 11.9%.

  9. Co-occurrence of the Cyanotoxins BMAA, DABA and Anatoxin-a in Nebraska Reservoirs, Fish, and Aquatic Plants

    PubMed Central

    Al-Sammak, Maitham Ahmed; Hoagland, Kyle D.; Cassada, David; Snow, Daniel D.

    2014-01-01

    Several groups of microorganisms are capable of producing toxins in aquatic environments. Cyanobacteria are prevalent blue green algae in freshwater systems, and many species produce cyanotoxins which include a variety of chemical irritants, hepatotoxins and neurotoxins. Production and occurrence of potent neurotoxic cyanotoxins β-N-methylamino-l-alanine (BMAA), 2,4-diaminobutyric acid dihydrochloride (DABA), and anatoxin-a are especially critical with environmental implications to public and animal health. Biomagnification, though not well understood in aquatic systems, is potentially relevant to both human and animal health effects. Because little is known regarding their presence in fresh water, we investigated the occurrence and potential for bioaccumulation of cyanotoxins in several Nebraska reservoirs. Collection and analysis of 387 environmental and biological samples (water, fish, and aquatic plant) provided a snapshot of their occurrence. A sensitive detection method was developed using solid phase extraction (SPE) in combination with high pressure liquid chromatography-fluorescence detection (HPLC/FD) with confirmation by liquid chromatography-tandem mass spectrometry (LC/MS/MS). HPLC/FD detection limits ranged from 5 to 7 µg/L and LC/MS/MS detection limits were <0.5 µg/L, while detection limits for biological samples were in the range of 0.8–3.2 ng/g depending on the matrix. Based on these methods, measurable levels of these neurotoxic compounds were detected in approximately 25% of the samples, with detections of BMAA in about 18.1%, DABA in 17.1%, and anatoxin-a in 11.9%. PMID:24476710

  10. Dickinson field lodgepole reservoir: Significance of this Waulsortian-type mound to exploration in the Williston Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, M.S.

    1995-07-01

    Conoco`s No. 74 Dickinson State well, a deep test in Dickinson Field, Stark County, North Dakota, was completed in early 1993 capable of producing over 2,000 BOPD. It represents the first commercial oil production from the Lower Mississippian Lodgepole Formation in the U.S. portion of the Williston Basin. Three additional oil producers have now been completed and this Lodgepole discovery is fully developed. The producing reservoir, at depths of 9,700 to 10,000 ft, is a Waulsortian-type mound approximately 300 ft thick with a characteristic faunal assemblage of bryozoans and crinoids. The mound has an areal extent of slightly more thanmore » 1 square mile. Similar Waulsortian-type mounds have been recognized in rocks of Paleozoic age around the world, but have only been reported in the Williston Basin during the past decade. Such mounds are shallow to deep water deposits, tend to develop over structurally or topographically-positive areas, and may form by algal or by current action in conjunction with baffling action caused by bryozoans. The prolific nature of the Conoco discovery, plus several more-recent excellent mound discoveries in this same area, have caused renewed drilling and leasing activity. These events have also encouraged a review of existing seismic data, the shooting of new 3-D seismic programs and re-analysis of wells previously drilled through the Lodgepole Formation for evidence of similar mounds elsewhere in the basin.« less

  11. Environmental estrogens in a drinking water reservoir area in Shanghai: occurrence, colloidal contribution and risk assessment.

    PubMed

    Nie, Minghua; Yang, Yi; Liu, Min; Yan, Caixia; Shi, Hao; Dong, Wenbo; Zhou, John L

    2014-07-15

    The occurrence and multi-phase distribution of six environmental estrogen compounds were investigated in a drinking water reservoir area by analyzing estrogens in suspended particulate matter (SPM), filtrate (conventional dissolved phase, <1 μm), permeate (truly soluble phase, <1 kDa) and retentate (colloidal phase, 1 kDa to 1 μm). The estrogen concentrations at different sites occurred in the following order: animal feed operation (AFO) wastewater-affected streams>tributaries>main stream channel. Correlation analysis showed that organic carbon (OC) contents had significantly positive correlations with environmental estrogens in filtrate, SPM and colloidal phases, respectively, indicating the important role played by OC. Aquatic colloids, often neglected, showed a much higher sorption capability of environmental estrogens compared to SPM. Similar Kcoc values in three types of sampling sites showed that colloids could be transported from AFO wastewater to tributaries and further into the main river channel. Mass balance calculations showed that 14.5-68.4% of OP, 4.5-32.1% of BPA, 2.0-58.4% of E1, 8.36-72.0% of E2, 0-20.6% of EE2, 3.4-62.7% of E3 and 8.3-36.1% of total estrogens were associated with colloidal fractions, suggesting that the colloids could act as a significant sink for environmental estrogens. Risk assessment demonstrated that the occurrence of environmental estrogens might pose a risk to aquatic organisms in the study area. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 1 of the project has been reservoir description and characterization. This effort has included four tasks: (1) geoscientific reservoir characterization, (2) the study of rock-fluid interactions, (3) petrophysical and engineering characterization and (4) data integration. This work was scheduled for completion in Year 1. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been initiated. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization is progressing. Data on reservoir production rate and pressure history at Appleton and Vocation Fields have been tabulated, and porosity data from core analysis has been correlated with porosity as observed from well log response. Data integration is on schedule, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database for reservoir characterization, modeling and simulation for the reef and carbonate shoal reservoirs for each of these fields.« less

  13. How hot? Systematic convergence of the replica exchange method using multiple reservoirs.

    PubMed

    Ruscio, Jory Z; Fawzi, Nicolas L; Head-Gordon, Teresa

    2010-02-01

    We have devised a systematic approach to converge a replica exchange molecular dynamics simulation by dividing the full temperature range into a series of higher temperature reservoirs and a finite number of lower temperature subreplicas. A defined highest temperature reservoir of equilibrium conformations is used to help converge a lower but still hot temperature subreplica, which in turn serves as the high-temperature reservoir for the next set of lower temperature subreplicas. The process is continued until an optimal temperature reservoir is reached to converge the simulation at the target temperature. This gradual convergence of subreplicas allows for better and faster convergence at the temperature of interest and all intermediate temperatures for thermodynamic analysis, as well as optimizing the use of multiple processors. We illustrate the overall effectiveness of our multiple reservoir replica exchange strategy by comparing sampling and computational efficiency with respect to replica exchange, as well as comparing methods when converging the structural ensemble of the disordered Abeta(21-30) peptide simulated with explicit water by comparing calculated Rotating Overhauser Effect Spectroscopy intensities to experimentally measured values. Copyright 2009 Wiley Periodicals, Inc.

  14. The reservoir of ozone in the boundary layer of the eastern United States and its potential impact on the global tropospheric ozone budget

    NASA Technical Reports Server (NTRS)

    Vukovich, F. M.; Fishman, J.; Browell, E. V.

    1985-01-01

    An analysis of available ozone data in the eastern two-thirds of the United States indicates that a substantial reservoir of ozone is present in the summertime. Five-year mean concentrations range from 40 to 65 ppbv. The reservoir covered an area of several million square kilometers and extends vertically from the surface to 1 to 2 km. The vertical distribution of ozone in the reservoir during midday supports a transport of additional ozone from the boundary layer to the free troposphere. Data are presented demonstrating the potential effect of transport by convective clouds and by the sea breeze circulation - mechanisms by which ozone may be transported out of the boundary layer into the free troposphere. The potential impact of this reservoir on the tropospheric ozone budget is discussed. It is shown that if less than half of the ozone mass in this reservoir is transported to the free troposphere, then the amount of ozone transported out of the boundary layer approximates the amount of ozone transported downward during a tropopause fold event.

  15. Hydrologic effects of annually diverting 131,000 acre-feet of water from Dillon Reservoir, central Colorado

    USGS Publications Warehouse

    Alley, William M.; Bauer, D.P.; Veenhuis, J.E.; Brennan, Robert

    1979-01-01

    Because of the increased demands for water in eastern Colorado, principally in the urbanizing Denver metropolitan area, increased diversions of water from Dillon Reservoir are planned. Estimates of end-of-month storage in Dillon Reservoir, assuming the reservoir was in place and 131,000 acre-feet of water were diverted from the reservoir each year, were reconstructed by mass balance for the 1931-77 water years. Based on the analysis, the annual maximum end-of-month drawdown below the elevation at full storage would have averaged 54 feet. The maximum end-of-month drawdown below the elevation at full storage would have been 171 feet. The mean-annual discharge-weighted dissolved-solids concentrations in the Colorado River near Glenwood Springs and Cameo, Colo., and Cisco, Utah, for the 1942-77 water years, were computed assuming an annual diversion of 131,000 acre-feet of water from Dillon Reservoir. The average increases in the dissolved-solids concentrations with the 131 ,000-acre-foot diversion were 15 to 16 milligrams per liter at the three sites. (Woodard-USGS)

  16. In-Situ MVA of CO 2 Sequestration Using Smart Field Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohaghegh, Shahab D.

    2014-09-01

    Capability of underground carbon dioxide storage to confine and sustain injected CO 2 for a long period of time is the main concern for geologic CO 2 sequestration. If a leakage from a geological CO 2 sequestration site occurs, it is crucial to find the approximate amount and the location of the leak, in a timely manner, in order to implement proper remediation activities. An overwhelming majority of research and development for storage site monitoring has been concentrated on atmospheric, surface or near surface monitoring of the sequestered CO 2 . This study aims to monitor themore » integrity of CO 2 storage at the reservoir level. This work proposes developing in-situ CO 2 Monitoring and Verification technology based on the implementation of Permanent Down-hole Gauges (PDG) or “Smart Wells” along with Artificial Intelligence and Data Mining (AI&DM). The technology attempts to identify the characteristics of the CO 2 leakage by de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). Citronelle field, a saline aquifer reservoir, located in the U.S. was considered as the basis for this study. A reservoir simulation model for CO 2 sequestration in the Citronelle field was developed and history matched. PDGs were installed, and therefore were considered in the numerical model, at the injection well and an observation well. Upon completion of the history matching process, high frequency pressure data from PDGs were generated using the history matched numerical model using different CO 2 leakage scenarios. Since pressure signal behaviors were too complicated to de-convolute using any existing mathematical formulations, a Machine Learning-based technology was introduced for this purpose. An Intelligent Leakage Detection System (ILDS) was developed as the result of this effort using the machine learning and pattern recognition technologies. The ILDS is able to detect leakage characteristics in a short period of time (less than a day from its occurrence) demonstrating the capability of the system in quantifying leakage characteristics subject to complex rate behaviors. The performance of ILDS is examined under different conditions such as multiple well leakages, cap rock leakage, availability of an additional monitoring well, presence of pressure drift and noise in the pressure sensor and uncertainty in the reservoir model.« less

  17. Quantifying alteration of river flow regime by large reservoirs in France

    NASA Astrophysics Data System (ADS)

    Cipriani, Thomas; Sauquet, Eric

    2017-04-01

    Reservoirs may highly modify river flow regime. Knowing the alterations is of importance to better understand the biological and physical patterns along the river network. However data are not necessary available to carry out an analysis of modifications at a national scale, e.g. due to industrial interests or to lack of measurements. The objective of this study is to quantify the changes in a set of hydrological indices due to large reservoirs in France combining different data sources. The analysis is based on a comparison between influenced discharges (observed discharges) and natural discharges available from: (i) gauging stations available upstream the dam, (ii) regionalization procedures (Sauquet et al., 2008; Sauquet et Catalogne, 2011; Cipriani et al., 2012), or (iii) historical data free from human influence close to the dam location. The impact of large reservoirs is assessed considering different facets of the river flow regime, including flood quantiles, low flow characteristics, quantiles from the flow duration curve and the twelve mean monthly discharges. The departures from the indice representative of natural conditions quantify the effect of the reservoir management on the river flow regime. The analysis is based on 62 study cases. Results show large spread in terms of impact depending on the purposes of the reservoirs and the season of interest. Results also point out inconsistencies in data (water balance between outflow and inflow, downstream of the dam is not warranted) due to uncertainties in mean monthly discharges and to the imperfect knowledge of inflows and outflows. Lastly, we suggest a typology of hydrological alterations based on the purposes of the reservoirs. Cipriani T., Toilliez T., Sauquet E. (2012). Estimating 10 year return period peak flows and flood durations at ungauged locations in France. La Houille Blanche, 4-5: 5-13, doi : 10.1051/lhb/2012024. Sauquet E., Catalogne C. (2011). Comparison of catchment grouping methods for flow duration curve estimation at ungauged sites in France. Hydrology and Earth System Sciences, 15: 2421-2435, doi:10.5194/hess-15-2421-2011. Sauquet E., Gottschalk L., Krasovskaïa I. (2008). Estimating mean monthly runoff at ungauged locations: an application to France. Hydrology Research, 39(5-6): 403-423.

  18. National Dam Safety Program. Elm Creek Dam (Dam Number 16), (Inventory Number N.Y. 593), Conewango Creek Watershed, Allegheny River Basin, Cattaraugus County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-08-18

    HYDRAULICS/HYDROLOGY 5.1 Drainage Area Characteristics 5-1 5.2 Design Data 5-1 5.3 Analysis Criteria 5-1 5.4 Reservoir Capacity 5-2 5.5 Experience...Data 5-2 5.6 Overtopping Potential 5-2 5.7 Analysis of Downstream Impacts 5-2 5.8 Evaluation 5-2 SECTION 6 STRUCTURAL STABILITY 6.1 Visual Observations...elevation is 1587.0 ft. (MSL). 5.3 Analysis Criteria The analysis of the spillway capacity of the dam and the storage of the reservoir was performed using

  19. Land use structures fish assemblages in reservoirs of the Tennessee River

    USGS Publications Warehouse

    Miranda, Leandro E.; Bies, J. M.; Hann, D. A.

    2015-01-01

    Inputs of nutrients, sediments and detritus from catchments can promote selected components of reservoir fish assemblages, while hindering others. However, investigations linking these catchment subsidies to fish assemblages have generally focussed on one or a handful of species. Considering this paucity of community-level awareness, we sought to explore the association between land use and fish assemblage composition in reservoirs. To this end, we compared fish assemblages in reservoirs of two sub-basins of the Tennessee River representing differing intensities of agricultural development, and hypothesised that fish assemblage structure indicated by species percentage composition would differ among reservoirs in the two sub-basins. Using multivariate statistical analysis, we documented inter-basin differences in land use, reservoir productivity and fish assemblages, but no differences in reservoir morphometry or water regime. Basins were separated along a gradient of forested and non-forested catchment land cover, which was directly related to total nitrogen, total phosphorous and chlorophyll-a concentrations. Considering the extensive body of knowledge linking land use to aquatic systems, it is reasonable to postulate a hierarchical model in which productivity has direct links to terrestrial inputs, and fish assemblages have direct links to both land use and productivity. We observed a shift from an invertivore-based fish assemblage in forested catchments to a detritivore-based fish assemblage in agricultural catchments that may be a widespread pattern among reservoirs and other aquatic ecosystems.

  20. Analysis of formation pressure test results in the Mount Elbert methane hydrate reservoir through numerical simulation

    USGS Publications Warehouse

    Kurihara, M.; Sato, A.; Funatsu, K.; Ouchi, H.; Masuda, Y.; Narita, H.; Collett, T.S.

    2011-01-01

    Targeting the methane hydrate (MH) bearing units C and D at the Mount Elbert prospect on the Alaska North Slope, four MDT (Modular Dynamic Formation Tester) tests were conducted in February 2007. The C2 MDT test was selected for history matching simulation in the MH Simulator Code Comparison Study. Through history matching simulation, the physical and chemical properties of the unit C were adjusted, which suggested the most likely reservoir properties of this unit. Based on these properties thus tuned, the numerical models replicating "Mount Elbert C2 zone like reservoir" "PBU L-Pad like reservoir" and "PBU L-Pad down dip like reservoir" were constructed. The long term production performances of wells in these reservoirs were then forecasted assuming the MH dissociation and production by the methods of depressurization, combination of depressurization and wellbore heating, and hot water huff and puff. The predicted cumulative gas production ranges from 2.16??106m3/well to 8.22??108m3/well depending mainly on the initial temperature of the reservoir and on the production method.This paper describes the details of modeling and history matching simulation. This paper also presents the results of the examinations on the effects of reservoir properties on MH dissociation and production performances under the application of the depressurization and thermal methods. ?? 2010 Elsevier Ltd.

  1. Carbon Dioxide Emissions from Reservoirs in the Lower Jordan Watershed

    PubMed Central

    Alshboul, Zeyad; Lorke, Andreas

    2015-01-01

    We have analyzed monthly hydrological, meteorological and water quality data from three irrigation and drinking water reservoirs in the lower Jordan River basin and estimated the atmospheric emission rates of CO2. The data were collected between 2006 and 2013 and show that the reservoirs, which differ in size and age, were net sources of CO2. The estimated surface fluxes were comparable in magnitude to those reported for hydroelectric reservoirs in the tropical and sub-tropical zones. Highest emission rates were observed for a newly established reservoir, which was initially filled during the sampling period. In the two older reservoirs, CO2 partial pressures and fluxes were significantly decreasing during the observation period, which could be related to simultaneously occurring temporal trends in water residence time and chemical composition of the water. The results indicate a strong influence of water and reservoir management (e.g. water consumption) on CO2 emission rates, which is affected by the increasing anthropogenic pressure on the limited water resources in the study area. The low wind speed and relatively high pH favored chemical enhancement of the CO2 gas exchange at the reservoir surfaces, which caused on average a four-fold enhancement of the fluxes. A sensitivity analysis indicates that the uncertainty of the estimated fluxes is, besides pH, mainly affected by the poorly resolved wind speed and resulting uncertainty of the chemical enhancement factor. PMID:26588241

  2. Sediment pollution characteristics and in situ control in a deep drinking water reservoir.

    PubMed

    Zhou, Zizhen; Huang, Tinglin; Li, Yang; Ma, Weixing; Zhou, Shilei; Long, Shenghai

    2017-02-01

    Sediment pollution characteristics, in situ sediment release potential, and in situ inhibition of sediment release were investigated in a drinking water reservoir. Results showed that organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) in sediments increased from the reservoir mouth to the main reservoir. Fraction analysis indicated that nitrogen in ion exchangeable form and NaOH-extractable P (Fe/Al-P) accounted for 43% and 26% of TN and TP in sediments of the main reservoir. The Risk Assessment Code for metal elements showed that Fe and Mn posed high to very high risk. The results of the in situ reactor experiment in the main reservoir showed the same trends as those observed in the natural state of the reservoir in 2011 and 2012; the maximum concentrations of total OC, TN, TP, Fe, and Mn reached 4.42mg/L, 3.33mg/L, 0.22mg/L, 2.56mg/L, and 0.61mg/L, respectively. An in situ sediment release inhibition technology, the water-lifting aerator, was utilized in the reservoir. The results of operating the water-lifting aerator indicated that sediment release was successfully inhibited and that OC, TN, TP, Fe, and Mn in surface sediment could be reduced by 13.25%, 15.23%, 14.10%, 5.32%, and 3.94%, respectively. Copyright © 2016. Published by Elsevier B.V.

  3. Carbon Dioxide Emissions from Reservoirs in the Lower Jordan Watershed.

    PubMed

    Alshboul, Zeyad; Lorke, Andreas

    2015-01-01

    We have analyzed monthly hydrological, meteorological and water quality data from three irrigation and drinking water reservoirs in the lower Jordan River basin and estimated the atmospheric emission rates of CO2. The data were collected between 2006 and 2013 and show that the reservoirs, which differ in size and age, were net sources of CO2. The estimated surface fluxes were comparable in magnitude to those reported for hydroelectric reservoirs in the tropical and sub-tropical zones. Highest emission rates were observed for a newly established reservoir, which was initially filled during the sampling period. In the two older reservoirs, CO2 partial pressures and fluxes were significantly decreasing during the observation period, which could be related to simultaneously occurring temporal trends in water residence time and chemical composition of the water. The results indicate a strong influence of water and reservoir management (e.g. water consumption) on CO2 emission rates, which is affected by the increasing anthropogenic pressure on the limited water resources in the study area. The low wind speed and relatively high pH favored chemical enhancement of the CO2 gas exchange at the reservoir surfaces, which caused on average a four-fold enhancement of the fluxes. A sensitivity analysis indicates that the uncertainty of the estimated fluxes is, besides pH, mainly affected by the poorly resolved wind speed and resulting uncertainty of the chemical enhancement factor.

  4. On-farm irrigation reservoirs for surface water storage in eastern Arkansas: Trends in construction in response to aquifer depletion

    NASA Astrophysics Data System (ADS)

    Yaeger, M. A.; Reba, M. L.; Massey, J. H.; Adviento-Borbe, A.

    2017-12-01

    On-farm surface water storage reservoirs have been constructed to address declines in the Mississippi River Valley Alluvial aquifer, the primary source of irrigation for most of the row crops grown in eastern Arkansas. These reservoirs and their associated infrastructure represent significant investments in financial and natural resources, and may cause producers to incur costs associated with foregone crop production and long-term maintenance. Thus, an analysis of reservoir construction trends in the Grand Prairie Critical Groundwater Area (GPCGA) and Cache River Critical Groundwater Area (CRCGA) was conducted to assist future water management decisions. Between 1996 and 2015, on average, 16 and 4 reservoirs were constructed per year, corresponding to cumulative new reservoir surface areas of 161 and 60 ha yr-1, for the GPCGA and the CRCGA, respectively. In terms of reservoir locations relative to aquifer status, after 1996, 84.5% of 309 total reservoirs constructed in the GPCGA and 91.0% of 78 in the CRCGA were located in areas with remaining saturated aquifer thicknesses of 50% or less. The majority of new reservoirs (74% in the GPCGA and 63% in the CRCGA) were constructed on previously productive cropland. The next most common land use, representing 11% and 15% of new reservoirs constructed in the GPCGA and CRCGA, respectively, was the combination of a field edge and a ditch, stream, or other low-lying area. Less than 10% of post-1996 reservoirs were constructed on predominately low-lying land, and the use of such lands decreased in both critical groundwater areas during the past 20 years. These disparities in reservoir construction rates, locations, and prior land uses is likely due to groundwater declines being first observed in the GPCGA as well as the existence of two large-scale river diversion projects under construction in the GPCGA that feature on-farm storage as a means to offset groundwater use.

  5. Modelling of Reservoir Operations using Fuzzy Logic and ANNs

    NASA Astrophysics Data System (ADS)

    Van De Giesen, N.; Coerver, B.; Rutten, M.

    2015-12-01

    Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, <0,1>, was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.

  6. ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LANDI, J.T.; PLIVELICH, R.F.

    2006-04-30

    Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

  7. The Economic Benefits Of Multipurpose Reservoirs In The United States- Federal Hydropower Fleet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadjerioua, Boualem; Witt, Adam M.; Stewart, Kevin M.

    The United States is home to over 80,000 dams, of which approximately 3% are equipped with hydroelectric generating capabilities. When a dam serves as a hydropower facility, it provides a variety of energy services that range from clean, reliable power generation to load balancing that supports grid stability. In most cases, the benefits of dams and their associated reservoirs go far beyond supporting the nation s energy demand. As evidenced by the substantial presence of non-powered dams with the ability to store water in large capacities, the primary purpose of a dam may not be hydropower, but rather one ofmore » many other purposes. A dam and reservoir may support navigation, recreation, flood control, irrigation, and water supply, with each multipurpose benefit providing significant social and economic impacts on a local, regional, and national level. When hydropower is one of the services provided by a multipurpose reservoir, it is then part of an integrated system of competing uses. Operating rules, management practices, consumer demands, and environmental constraints must all be balanced to meet the multipurpose project s objectives. When federal dams are built, they are authorized by Congress to serve one or more functions. Legislation such as the Water Resources Development Act regulates the operation of the facility in order to coordinate the authorized uses and ensure the dam s intended objectives are being met. While multipurpose reservoirs account for billions of dollars in contributions to National Economic Development (NED) every year, no attempt has been made to evaluate their benefits on a national scale. This study is an on-going work conducted by Oak Ridge National Laboratory in an effort to estimate the economic benefits of multipurpose hydropower reservoirs in the United States. Given the important role that federal hydropower plays in the U.S., the first focus of this research will target the three main federal hydropower owners Tennessee Valley Authority, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. Together these three agencies own and operate 157 powered dams which account for almost half of the total installed hydropower capacity in the U.S. Future work will include engaging publicly-owned utilities and the private sector in order to quantify the benefits of all multipurpose hydropower reservoirs in the U.S.« less

  8. Effects of trophic status on microcystin production and the dominance of cyanobacteria in the phytoplankton assemblage of Mediterranean reservoirs

    PubMed Central

    Mariani, Maria Antonietta; Padedda, Bachisio Mario; Kaštovský, Jan; Buscarinu, Paola; Sechi, Nicola; Virdis, Tomasa; Lugliè, Antonella

    2015-01-01

    The aim of our study was to evaluate the abundance of cyanobacteria and microcystins in four Sardinian reservoirs (Italy) characterised by different trophic status to define a reference picture for future changes. Increasing levels of eutrophication and the abundance of cyanobacteria are expected to occur due to climate change, especially in the southern Mediterranean. Consequently, an in-depth study of the occurrence of harmful cyanobacteria is important to develop appropriate management strategies for water resources at a local scale. Monthly samples were collected at one station in each reservoir over an 18-month period. The Analysis of similarity indicated that cyanobacterial abundance and species composition differed significantly among the reservoirs. The Redundancy analysis highlighted their relationship to trophic, hydrological and seasonal patterns. Spearman’s analysis indicated that there were significant correlations among the most important species (Planktothrix agardhii–rubescens group, Aphanizomenon flos-aquae and Dolichospermum planctonicum), nutrients and microcystins. We highlighted that the species composition during periods of maximum microcystin concentrations differed from those typically reported for other Mediterranean sites. We found new potential microcystin producers (Aphanizomenon klebahnii, Dolichospermum macrosporum and Dolichospermum viguieri), which emphasised the high diversity of cyanobacteria in the Mediterranean area and the need for detailed research at the local scale. PMID:26648532

  9. Activation of CO2-reducing methanogens in oil reservoir after addition of nutrient.

    PubMed

    Yang, Guang-Chao; Zhou, Lei; Mbadinga, Serge Maurice; You, Jing; Yang, Hua-Zhen; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2016-12-01

    Nutrient addition as part of microbial enhanced oil recovery (MEOR) operations have important implications for more energy recovery from oil reservoirs, but very little is known about the in situ response of microorganisms after intervention. An analysis of two genes as biomarkers, mcrA encoding the key enzyme in methanogenesis and fthfs encoding the key enzyme in acetogenesis, was conducted during nutrient addition in oil reservoir. Clone library data showed that dominant mcrA sequences changed from acetoclastic (Methanosaetaceae) to CO 2 -reducing methanogens (Methanomicrobiales and Methanobacteriales), and the authentic acetogens affiliated to Firmicutes decreased after the intervention. Principal coordinates analysis (PCoA) and Jackknife environment clusters revealed evidence on the shift of the microbial community structure among the samples. Quantitative analysis of methanogens via qPCR showed that Methanobacteriales and Methanomicrobiales increased after nutrient addition, while acetoclastic methanogens (Methanosaetaceae) changed slightly. Nutrient treatment activated native CO 2 -reducing methanogens in oil reservoir. The high frequency of Methanobacteriales and Methanomicrobiales (CO 2 -reducers) after nutrient addition in this petroleum system suggested that CO 2 -reducing methanogenesis was involved in methane production. The nutrient addition could promote the methane production. The results will likely improve strategies of utilizing microorganisms in subsurface environments. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. High Temperature, high pressure equation of state density correlations and viscosity correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tapriyal, D.; Enick, R.; McHugh, M.

    2012-07-31

    Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil atmore » reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.« less

  11. Water quality analysis of an intensively used on-farm storage reservoir in the northeast Arkansas delta

    USDA-ARS?s Scientific Manuscript database

    The use of farm reservoirs for supplemental irrigation is gaining popularity in the Mississippi Alluvial Plain (MAP). Due to depletions of several aquifers, many counties within the MAP have been designated as critical-use groundwater areas. To help alleviate stress on these aquifers, many farmers...

  12. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.

    2009-01-01

    During the Indian National Gas Hydrate Program Expedition 01 (NGHP-Ol), one of the richest marine gas hydrate accumulations was discovered at Site NGHP-01-10 in the Krishna-Godavari Basin. The occurrence of concentrated gas hydrate at this site is primarily controlled by the presence of fractures. Assuming the resistivity of gas hydratebearing sediments is isotropic, th?? conventional Archie analysis using the logging while drilling resistivity log yields gas hydrate saturations greater than 50% (as high as ???80%) of the pore space for the depth interval between ???25 and ???160 m below seafloor. On the other hand, gas hydrate saturations estimated from pressure cores from nearby wells were less than ???26% of the pore space. Although intrasite variability may contribute to the difference, the primary cause of the saturation difference is attributed to the anisotropic nature of the reservoir due to gas hydrate in high-angle fractures. Archie's law can be used to estimate gas hydrate saturations in anisotropic reservoir, with additional information such as elastic velocities to constrain Archie cementation parameters m and the saturation exponent n. Theory indicates that m and n depend on the direction of the measurement relative to fracture orientation, as well as depending on gas hydrate saturation. By using higher values of m and n in the resistivity analysis for fractured reservoirs, the difference between saturation estimates is significantly reduced, although a sizable difference remains. To better understand the nature of fractured reservoirs, wireline P and S wave velocities were also incorporated into the analysis.

  13. Analysis of environmental variation in a Great Plains reservoir using principal components analysis and geographic information systems

    USGS Publications Warehouse

    Long, J.M.; Fisher, W.L.

    2006-01-01

    We present a method for spatial interpretation of environmental variation in a reservoir that integrates principal components analysis (PCA) of environmental data with geographic information systems (GIS). To illustrate our method, we used data from a Great Plains reservoir (Skiatook Lake, Oklahoma) with longitudinal variation in physicochemical conditions. We measured 18 physicochemical features, mapped them using GIS, and then calculated and interpreted four principal components. Principal component 1 (PC1) was readily interpreted as longitudinal variation in water chemistry, but the other principal components (PC2-4) were difficult to interpret. Site scores for PC1-4 were calculated in GIS by summing weighted overlays of the 18 measured environmental variables, with the factor loadings from the PCA as the weights. PC1-4 were then ordered into a landscape hierarchy, an emergent property of this technique, which enabled their interpretation. PC1 was interpreted as a reservoir scale change in water chemistry, PC2 was a microhabitat variable of rip-rap substrate, PC3 identified coves/embayments and PC4 consisted of shoreline microhabitats related to slope. The use of GIS improved our ability to interpret the more obscure principal components (PC2-4), which made the spatial variability of the reservoir environment more apparent. This method is applicable to a variety of aquatic systems, can be accomplished using commercially available software programs, and allows for improved interpretation of the geographic environmental variability of a system compared to using typical PCA plots. ?? Copyright by the North American Lake Management Society 2006.

  14. Spatial Risk Analysis of Hydraulic Fracturing near Abandoned and Converted Oil and Gas Wells.

    PubMed

    Brownlow, Joshua W; Yelderman, Joe C; James, Scott C

    2017-03-01

    Interaction between hydraulically generated fractures and existing wells (frac hits) could represent a potential risk to groundwater. In particular, frac hits on abandoned oil and gas wells could lead to upward leakage into overlying aquifers, provided migration pathways are present along the abandoned well. However, potential risk to groundwater is relatively unknown because few studies have investigated the probability of frac hits on abandoned wells. In this study, actual numbers of frac hits were not determined. Rather, the probability for abandoned wells to intersect hypothetical stimulated reservoir sizes of horizontal wells was investigated. Well data were compiled and analyzed for location and reservoir information, and sensitivity analyses were conducted by varying assumed sizes of stimulated reservoirs. This study used public and industry data for the Eagle Ford Shale play in south Texas, with specific attention paid to abandoned oil and gas wells converted into water wells (converted wells). In counties with Eagle Ford Shale activity, well-data analysis identified 55,720 abandoned wells with a median age of 1983, and 2400 converted wells with a median age of 1954. The most aggressive scenario resulted in 823 abandoned wells and 184 converted wells intersecting the largest assumed stimulated reservoir size. Analysis showed abandoned wells have the potential to be intersected by multiple stimulated reservoirs, and risks for intersection would increase if currently permitted horizontal wells in the Eagle Ford Shale are actually completed. Results underscore the need to evaluate historical oil and gas activities in areas with modern unconventional oil and gas activities. © 2016, National Ground Water Association.

  15. Radon and ammonia transects across the Cerro Prieto geothermal field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semprini, L.; Kruger, P.

    1981-01-01

    Radon and ammonia transects, conducted at the Cerro Prieto geothermal field, involve measurement of concentration gradients at wells along lines of structural significance in the reservoir. Analysis of four transects showed radon concentrations ranging from 0.20 to 3.60 nCi/kg and ammonia concentrations from 17.6 to 59.3 mg/l. The data showed the lower concentrations in wells of lowest enthalpy fluid and the higher concentrations in wells of highest enthalpy fluid. Linear correlation analysis of the radon-enthalpy data indicated a strong relationship, with a marked influence by the two-phase conditions of the produced fluid. It appears that after phase separation in themore » reservoir, radon achieves radioactive equilibrium between fluid and rock, suggesting that the phase separation occurs well within the reservoir. A two-phase mixing model based on radon-enthalpy relations allows estimation of the fluid phase temperatures in the reservoir. Correlations of ammonia concentration with fluid enthalpy suggests an equilibrium partitioning model in which enrichment of ammonia correlates with higher enthalpy vapor.« less

  16. Transient-pressure analysis in geothermal steam reservoirs with an immobile vaporizing liquid phase

    USGS Publications Warehouse

    Moench, A.F.; Atkinson, P.G.

    1978-01-01

    A finite-difference model for the radial horizontal flow of steam through a porous medium is used to evaluate transient-pressure behavior in the presence of an immobile vaporizing or condensing liquid phase. Graphs of pressure drawdown and buildup in terms of dimensionless pressure and time are obtained for a well discharging steam at a constant mass flow rate for a specified time. The assumptions are made that the steam is in local thermal equilibrium with the reservoir rocks, that temperature changes are due only to phase change, and that effects of vapor-pressure lowering are negligible. Computations show that when a vaporizing liquid phase is present the pressure drawdown exhibits behavior similar to that observed in noncondensable gas reservoirs, but delayed in time. A theoretical analysis allows for the computation of this delay and demonstrates that it is independent of flow geometry. The response that occurs upon pressure buildup is markedly different from that in a noncondensable gas system. This result may provide a diagnostic tool for establishing the existence of phase-change phenomena within a reservoir. ?? 1979.

  17. Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations

    NASA Astrophysics Data System (ADS)

    Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.

    2011-12-01

    HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of each timestep and minimize computational overhead. Power generation for each reservoir is estimated using a 2-dimensional regression that accounts for both the available head and turbine efficiency. The object-oriented architecture makes run configuration easy to update. The dynamic model inputs include inflow and meteorological forecasts while static inputs include bathymetry data, reservoir and power generation characteristics, and topological descriptors. Ensemble forecasts of hydrological and meteorological conditions are supplied in real-time by Pacific Northwest National Laboratory and are used as a proxy for uncertainty, which is carried through the simulation and optimization process to produce output that describes the probability that different operational scenario's will be optimal. The full toolset, which includes HydroSCOPE, is currently being tested on the Feather River system in Northern California and the Upper Colorado Storage Project.

  18. Tres Marias Reservoir, Minas Gerais State: Study of the dispersion of suspended sediments in surface waters using orbital images

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Sausen, T. M.

    1980-01-01

    Computer compatible tapes from LANDSAT were used to compartmentalize the Ires Marias reservoir according to respective grey level spectral response. Interactive and automatic, supervised classification, was executed from the IMAGE-100 system. From the simple correlation analysis and graphic representation, it is shown that grey tone levels are inversely proportional to Secchi Depth values. It is further shown that the most favorable period to conduct an analysis of this type is during the rainy season.

  19. Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples

    PubMed Central

    Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry

    2015-01-01

    With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method – non-destructive 3D X-ray micro-Computed Tomography (μCT) – to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations – in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner. PMID:26549935

  20. Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples.

    PubMed

    Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry

    2015-03-01

    With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner.

  1. Data Assimilation of InSAR Surface Deformation Measurements for the Estimation of Reservoir Geomechanical Parameters in the Upper Adriatic Sedimentary Basin, Italy

    NASA Astrophysics Data System (ADS)

    Bau, D. A.; Alzraiee, A.; Ferronato, M.; Gambolati, G.; Teatini, P.

    2012-12-01

    In the last decades, extensive work has been conducted to estimate land subsidence due the development of deep gas reservoirs situated in the Upper Adriatic sedimentary basin, Italy. These modeling efforts have stemmed from the development finite-element (FE) coupled reservoir-geomechanical models that can simulate the deformation due to the change in pore pressure induced by hydrocarbon production from the geological formations. However, the application of these numerical models has often been limited by the uncertainty in the hydrogeological and poro-mechanical input parameters that are necessary to simulate the impact on ground surface levels of past and/or future gas-field development scenarios. Resolving these uncertainties is of paramount importance, particularly the Northern Adriatic region, given the low elevation above the mean sea level observed along most of the coastline and in the areas surrounding the Venice Lagoon. In this work, we present a state-of-the-art data assimilation (DA) framework to incorporate measurements of displacement of the land surface obtained using Satellite Interferometric Synthetic Aperture Radar (InSAR) techniques into the response of geomechanical simulation models. In Northern Italy, InSAR measurement campaigns have been carried out over a depleted gas reservoir, referred to as "Lombardia", located at a depth of about 1200 m in the sedimentary basin of the Po River plain. In the last years, this reservoir has been used for underground gas storage and recovery (GSR). Because of the pore pressure periodical alternation produced by GSR, reservoir formations have undergone loading/unloading cycles, experiencing effective stress changes that have induced periodical variation of ground surface levels. Over the Lombardia reservoir, the pattern, magnitude and timing of time-laps land displacements both in the vertical and in the East-West directions have been acquired from 2003 until 2008. The availability of these data opens new pathways towards the improvement of current land subsidence modeling efforts. The DA framework presented here allows for merging, within an automated process, InSAR data into coupled reservoir-geomechanical model results. The framework relies upon Bayesian-based ensemble smoothing algorithms and has the potential to significantly reduce the uncertainty associated with compressibility vs. effective stress constitutive laws, as well as key geomechanical parameters characterizing the orthotropic behavior of the reservoir porous media and their spatial distribution. The DA framework is here applied using InSAR data collected over the "Lombardia" reservoir. The flexibility of smoothing algorithms is such that spatially distributed and possibly correlated measurement errors are accounted for in a relatively straightforward fashion, so that surface deformation data that are considered more reliable can be assigned a larger weight within the model calibration. A series of numerical simulation results are presented in order to assess the capabilities of the DA framework, its effectiveness, advantages and limitations.

  2. Reservoir Performance Under Future Climate For Basins With Different Hydrologic Sensitivities

    NASA Astrophysics Data System (ADS)

    Mateus, M. C.; Tullos, D. D.

    2013-12-01

    In addition to long-standing uncertainties related to variable inflows and market price of power, reservoir operators face a number of new uncertainties related to hydrologic nonstationarity, changing environmental regulations, and rapidly growing water and energy demands. This study investigates the impact, sensitivity, and uncertainty of changing hydrology on hydrosystem performance across different hydrogeologic settings. We evaluate the performance of reservoirs in the Santiam River basin, including a case study in the North Santiam Basin, with high permeability and extensive groundwater storage, and the South Santiam Basin, with low permeability, little groundwater storage and rapid runoff response. The modeling objective is to address the following study questions: (1) for the two hydrologic regimes, how does the flood management, water supply, and environmental performance of current reservoir operations change under future 2.5, 50 and 97.5 percentile streamflow projections; and (2) how much change in inflow is required to initiate a failure to meet downstream minimum or maximum flows in the future. We couple global climate model results with a rainfall-runoff model and a formal Bayesian uncertainty analysis to simulate future inflow hydrographs as inputs to a reservoir operations model. To evaluate reservoir performance under a changing climate, we calculate reservoir refill reliability, changes in flood frequency, and reservoir time and volumetric reliability of meeting minimum spring and summer flow target. Reservoir performance under future hydrology appears to vary with hydrogeology. We find higher sensitivity to floods for the North Santiam Basin and higher sensitivity to minimum flow targets for the South Santiam Basin. Higher uncertainty is related with basins with a more complex hydrologeology. Results from model simulations contribute to understanding of the reliability and vulnerability of reservoirs to a changing climate.

  3. 3D architecture modeling of reservoir compartments in a Shingled Turbidite Reservoir using high-resolution seismic data and sparse well control, example from Mars {open_quotes}Pink{close_quotes} reservoir, Mississippi Canyon Area, Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapin, M.A.; Mahaffie, M.J.; Tiller, G.M.

    1996-12-31

    Economics of most deep-water development projects require large reservoir volumes to be drained with relatively few wells. The presence of reservoir compartments must therefore be detected and planned for in a pre-development stage. We have used 3-D seismic data to constrain large-scale, deterministic reservoir bodies in a 3-D architecture model of Pliocene-turbidite sands of the {open_quotes}E{close_quotes} or {open_quotes}Pink{close_quotes} reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. Reservoir compartmentalization is influenced by stratigraphic shingling, which in turn is caused by low accommodation space predentin the upper portion of a ponded seismic sequence within a salt withdrawal mini-basin.more » The accumulation is limited by updip onlap onto a condensed section marl, and by lateral truncation by a large scale submarine erosion surface. Compartments were suggested by RFT pressure variations and by geochemical analysis of RFT fluid samples. A geological interpretation derived from high-resolution 3-D seismic and three wells was linked to 3-D architecture models through seismic inversion, resulting in a reservoir all available data. Distinguishing subtle stratigraphical shingles from faults was accomplished by detailed, loop-level mapping, and was important to characterize the different types of reservoir compartments. Seismic inversion was used to detune the seismic amplitude, adjust sandbody thickness, and update the rock properties. Recent development wells confirm the architectural style identified. This modeling project illustrates how high-quality seismic data and architecture models can be combined in a pre-development phase of a prospect, in order to optimize well placement.« less

  4. 3D architecture modeling of reservoir compartments in a Shingled Turbidite Reservoir using high-resolution seismic data and sparse well control, example from Mars [open quotes]Pink[close quotes] reservoir, Mississippi Canyon Area, Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapin, M.A.; Mahaffie, M.J.; Tiller, G.M.

    1996-01-01

    Economics of most deep-water development projects require large reservoir volumes to be drained with relatively few wells. The presence of reservoir compartments must therefore be detected and planned for in a pre-development stage. We have used 3-D seismic data to constrain large-scale, deterministic reservoir bodies in a 3-D architecture model of Pliocene-turbidite sands of the [open quotes]E[close quotes] or [open quotes]Pink[close quotes] reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. Reservoir compartmentalization is influenced by stratigraphic shingling, which in turn is caused by low accommodation space predentin the upper portion of a ponded seismic sequence withinmore » a salt withdrawal mini-basin. The accumulation is limited by updip onlap onto a condensed section marl, and by lateral truncation by a large scale submarine erosion surface. Compartments were suggested by RFT pressure variations and by geochemical analysis of RFT fluid samples. A geological interpretation derived from high-resolution 3-D seismic and three wells was linked to 3-D architecture models through seismic inversion, resulting in a reservoir all available data. Distinguishing subtle stratigraphical shingles from faults was accomplished by detailed, loop-level mapping, and was important to characterize the different types of reservoir compartments. Seismic inversion was used to detune the seismic amplitude, adjust sandbody thickness, and update the rock properties. Recent development wells confirm the architectural style identified. This modeling project illustrates how high-quality seismic data and architecture models can be combined in a pre-development phase of a prospect, in order to optimize well placement.« less

  5. 3D synthetic aperture for controlled-source electromagnetics

    NASA Astrophysics Data System (ADS)

    Knaak, Allison

    Locating hydrocarbon reservoirs has become more challenging with smaller, deeper or shallower targets in complicated environments. Controlled-source electromagnetics (CSEM), is a geophysical electromagnetic method used to detect and derisk hydrocarbon reservoirs in marine settings, but it is limited by the size of the target, low-spatial resolution, and depth of the reservoir. To reduce the impact of complicated settings and improve the detecting capabilities of CSEM, I apply synthetic aperture to CSEM responses, which virtually increases the length and width of the CSEM source by combining the responses from multiple individual sources. Applying a weight to each source steers or focuses the synthetic aperture source array in the inline and crossline directions. To evaluate the benefits of a 2D source distribution, I test steered synthetic aperture on 3D diffusive fields and view the changes with a new visualization technique. Then I apply 2D steered synthetic aperture to 3D noisy synthetic CSEM fields, which increases the detectability of the reservoir significantly. With more general weighting, I develop an optimization method to find the optimal weights for synthetic aperture arrays that adapts to the information in the CSEM data. The application of optimally weighted synthetic aperture to noisy, simulated electromagnetic fields reduces the presence of noise, increases detectability, and better defines the lateral extent of the target. I then modify the optimization method to include a term that minimizes the variance of random, independent noise. With the application of the modified optimization method, the weighted synthetic aperture responses amplifies the anomaly from the reservoir, lowers the noise floor, and reduces noise streaks in noisy CSEM responses from sources offset kilometers from the receivers. Even with changes to the location of the reservoir and perturbations to the physical properties, synthetic aperture is still able to highlight targets correctly, which allows use of the method in locations where the subsurface models are built from only estimates. In addition to the technical work in this thesis, I explore the interface between science, government, and society by examining the controversy over hydraulic fracturing and by suggesting a process to aid the debate and possibly other future controversies.

  6. Crop and Substrate Tests with Single Use Rooting "Pillows" for the VEGGIE Plant Growth Hardware

    NASA Technical Reports Server (NTRS)

    Massa, Gioia; Newsham, Gerard; Caro, Janicce; Stutte, Gary; Morrow, Robert; Wheeler, Raymond

    2011-01-01

    VEGGIE is a small plant production chamber built by ORBITEC. This chamber can be collapsed for easy stowage and deployed in orbit. It is designed for gravity independent operation, and provides 0.17 square m of crop growth area with three primary subsystems: an LED light panel, extendable transparent Teflon bellows to enclose the plants, and a wicking reservoir. VEGGIE would provide the capability for astronauts to grow fresh foods for dietary supplementation. Initial planting concepts tested with the VEGGIE included direct seeding or plug placement on the reservoir surface. These options had issues of salt accumulation and eventual toxicity if the reservoir was filled with nutrient solution, and hardware reuse was limited due to sanitation. In response a rooting packet or "pillow" concept was developed: single-use bags of media containing time release fertilizer with a wicking surface contacting the VEGGIE reservoir. Pillows being tested are small electrostatic bags with a Nitex nylon mesh side, each holding 100 mL of dry media. Six pillows fit in one VEGGIE unit; however pillow size could vary depending on crop selected. Seeds can be planted directly in pillows and planted pillows can be hydrated in space as desired. Our goals were to define optimal media and crops for an ISS mission scenario. Plant tests in pillows were performed in a controlled environment chamber set to habitat-relevant conditions, and capillary reservoir analogs were utilized. Media tested within pillows included: a commercial peat-based potting mix, arcillite (calcined clay), perlite: vermiculite, and peat-based: arcillite blends. Testing included 15 types of leafy greens, snow pea, radish, and herbs. Media performance was crop dependent, but generally plants showed the greatest growth in the peat-based: arcillite mixes. Crops with the best performance in pillows were identified, and testing is underway with select leafy greens examining plant and microbial load response to repeated harvest. We plan to use findings from previous flight testing with media to evaluate the effects of capillary flow from the reservoir to pillows in microgravity.

  7. Thermal-permeability structure and recharge conditions of the Mutnovsky high-temperature geothermal field (Kamchatka, Russia)

    NASA Astrophysics Data System (ADS)

    Kiryukhin, A. V.; Polyakov, A. Y.; Usacheva, O. O.; Kiryukhin, P. A.

    2018-05-01

    The Mutnovsky geothermal area is part of the Eastern Kamchatka active volcano belt. Mutnovsky, 80 kY old and an aging strato-volcano (a complex of 4 composite volcanic cones), acts as a magma- and water-injector into the 25-km-long North Mutnovsky extension zone. Magmatic injection events (dykes) are associated with plane-oriented MEQ (Micro Earth Quakes) clusters, most of them occurring in the NE sector of the volcano (2 × 10 km2) at elevations from -4 to -2 km, while some magmatic injections occur at elevations from -6.0 to -4.0 km below the Mutnovsky production field. Water recharge of production reservoirs is from the Mutnovsky volcano crater glacier (+1500 to +1800 masl), which was confirmed by water isotopic data (δD, δ18O) of production wells at an earlier stage of development. The Mutnovsky (Dachny) 260-310 °C high-temperature production geothermal reservoir with a volume of 16 km3 is at the junction of NNE- and NE-striking normal faults, which coincides with the current dominant dyke injection orientation. TOUGH2-modeling estimates of the reservoir properties are as follows: the reservoir permeability is 90-600 e-15 m2, the deep upflow recharge is 80 kg/s and the enthalpy is 1420 kJ/kg. Modeling was used to reproduce the history of the Mutnovsky (Dachny) reservoir exploitation since 1983 with an effective power of 48 MWe by 2016. Modeling also showed that the reservoir is capable of yielding 65-83 MWe of sustainable production until 2055, if additional production drilling in the SE part of the field is performed. Moreover, this power value may increase to 87-105 MWe if binary technologies are applied. Modeling also shows that the predicted power is sensitive to local meteoric water influx during development. Conceptual iTOUGH2-EOS1sc thermal hydrodynamic modeling of the Mutnovsky magma-hydrothermal system as a whole reasonably explains its evolution over the last 1500-5000 years in terms of heat recharge (dyke injection from the Mutnovsky-4 funnel) and mass recharge (water injection through the Mutnovsky-2 and Mutnovsky-3 funnels) conditions as previously mentioned.

  8. Assessment of economically optimal water management and geospatial potential for large-scale water storage

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Harshi; Schneider, Uwe A.

    2010-05-01

    Assessment of economically optimal water management and geospatial potential for large-scale water storage Weerasinghe, Harshi; Schneider, Uwe A Water is an essential but limited and vulnerable resource for all socio-economic development and for maintaining healthy ecosystems. Water scarcity accelerated due to population expansion, improved living standards, and rapid growth in economic activities, has profound environmental and social implications. These include severe environmental degradation, declining groundwater levels, and increasing problems of water conflicts. Water scarcity is predicted to be one of the key factors limiting development in the 21st century. Climate scientists have projected spatial and temporal changes in precipitation and changes in the probability of intense floods and droughts in the future. As scarcity of accessible and usable water increases, demand for efficient water management and adaptation strategies increases as well. Addressing water scarcity requires an intersectoral and multidisciplinary approach in managing water resources. This would in return safeguard the social welfare and the economical benefit to be at their optimal balance without compromising the sustainability of ecosystems. This paper presents a geographically explicit method to assess the potential for water storage with reservoirs and a dynamic model that identifies the dimensions and material requirements under an economically optimal water management plan. The methodology is applied to the Elbe and Nile river basins. Input data for geospatial analysis at watershed level are taken from global data repositories and include data on elevation, rainfall, soil texture, soil depth, drainage, land use and land cover; which are then downscaled to 1km spatial resolution. Runoff potential for different combinations of land use and hydraulic soil groups and for mean annual precipitation levels are derived by the SCS-CN method. Using the overlay and decision tree algorithms in GIS, potential water storage sites are identified for constructing regional reservoirs. Subsequently, sites are prioritized based on runoff generation potential (m3 per unit area), and geographical suitability for constructing storage structures. The results from the spatial analysis are used as input for the optimization model. Allocation of resources and appropriate dimension for dams and associated structures are identified using the optimization model. The model evaluates the capability of alternative reservoirs for cost-efficient water management. The Geographic Information System is used to store, analyze, and integrate spatially explicit and non-spatial attribute information whereas the algebraic modeling platform is used to develop the dynamic optimization model. The results of this methodology are validated over space against satellite remote sensing data and existing data on reservoir capacities and runoff. The method is suitable for application of on-farm water storage structures, water distribution networks, and moisture conservation structures in a global context.

  9. Integrated reservoir characterization for unconventional reservoirs using seismic, microseismic and well log data

    NASA Astrophysics Data System (ADS)

    Maity, Debotyam

    This study is aimed at an improved understanding of unconventional reservoirs which include tight reservoirs (such as shale oil and gas plays), geothermal developments, etc. We provide a framework for improved fracture zone identification and mapping of the subsurface for a geothermal system by integrating data from different sources. The proposed ideas and methods were tested primarily on data obtained from North Brawley geothermal field and the Geysers geothermal field apart from synthetic datasets which were used to test new algorithms before actual application on the real datasets. The study has resulted in novel or improved algorithms for use at specific stages of data acquisition and analysis including improved phase detection technique for passive seismic (and teleseismic) data as well as optimization of passive seismic surveys for best possible processing results. The proposed workflow makes use of novel integration methods as a means of making best use of the available geophysical data for fracture characterization. The methodology incorporates soft computing tools such as hybrid neural networks (neuro-evolutionary algorithms) as well as geostatistical simulation techniques to improve the property estimates as well as overall characterization efficacy. The basic elements of the proposed characterization workflow involves using seismic and microseismic data to characterize structural and geomechanical features within the subsurface. We use passive seismic data to model geomechanical properties which are combined with other properties evaluated from seismic and well logs to derive both qualitative and quantitative fracture zone identifiers. The study has resulted in a broad framework highlighting a new technique for utilizing geophysical data (seismic and microseismic) for unconventional reservoir characterization. It provides an opportunity to optimally develop the resources in question by incorporating data from different sources and using their temporal and spatial variability as a means to better understand the reservoir behavior. As part of this study, we have developed the following elements which are discussed in the subsequent chapters: 1. An integrated characterization framework for unconventional settings with adaptable workflows for all stages of data processing, interpretation and analysis. 2. A novel autopicking workflow for noisy passive seismic data used for improved accuracy in event picking as well as for improved velocity model building. 3. Improved passive seismic survey design optimization framework for better data collection and improved property estimation. 4. Extensive post-stack seismic attribute studies incorporating robust schemes applicable in complex reservoir settings. 5. Uncertainty quantification and analysis to better quantify property estimates over and above the qualitative interpretations made and to validate observations independently with quantified uncertainties to prevent erroneous interpretations. 6. Property mapping from microseismic data including stress and anisotropic weakness estimates for integrated reservoir characterization and analysis. 7. Integration of results (seismic, microseismic and well logs) from analysis of individual data sets for integrated interpretation using predefined integration framework and soft computing tools.

  10. Cost-Effective Mapping of Benthic Habitats in Inland Reservoirs through Split-Beam Sonar, Indicator Kriging, and Historical Geologic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venteris, Erik R.; May, Cassandra

    2014-04-23

    Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locationsmore » did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.« less

  11. Cost-Effective Mapping of Benthic Habitats in Inland Reservoirs through Split-Beam Sonar, Indicator Kriging, and Historical Geologic Data

    PubMed Central

    Venteris, Erik R.; May, Cassandra J.

    2014-01-01

    Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat. PMID:24759834

  12. Cost-effective mapping of benthic habitats in inland reservoirs through split-beam sonar, indicator kriging, and historical geologic data.

    PubMed

    Venteris, Erik R; May, Cassandra J

    2014-01-01

    Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.

  13. Gis-Based Site Selection for Underground Natural Resources Using Fuzzy Ahp-Owa

    NASA Astrophysics Data System (ADS)

    Sabzevari, A. R.; Delavar, M. R.

    2017-09-01

    Fuel consumption has significantly increased due to the growth of the population. A solution to address this problem is the underground storage of natural gas. The first step to reach this goal is to select suitable places for the storage. In this study, site selection for the underground natural gas reservoirs has been performed using a multi-criteria decision-making in a GIS environment. The "Ordered Weighted Average" (OWA) operator is one of the multi-criteria decision-making methods for ranking the criteria and consideration of uncertainty in the interaction among the criteria. In this paper, Fuzzy AHP_OWA (FAHP_OWA) is used to determine optimal sites for the underground natural gas reservoirs. Fuzzy AHP_OWA considers the decision maker's risk taking and risk aversion during the decision-making process. Gas consumption rate, temperature, distance from main transportation network, distance from gas production centers, population density and distance from gas distribution networks are the criteria used in this research. Results show that the northeast and west of Iran and the areas around Tehran (Tehran and Alborz Provinces) have a higher attraction for constructing a natural gas reservoir. The performance of the used method was also evaluated. This evaluation was performed using the location of the existing natural gas reservoirs in the country and the site selection maps for each of the quantifiers. It is verified that the method used in this study is capable of modeling different decision-making strategies used by the decision maker with about 88 percent of agreement between the modeling and test data.

  14. The capability of estuarine sediments to remove nitrogen: implications for drinking water resource in Yangtze Estuary.

    PubMed

    Liu, Lin; Wang, Dongqi; Deng, Huanguang; Li, Yangjie; Chang, Siqi; Wu, Zhanlei; Yu, Lin; Hu, Yujie; Yu, Zhongjie; Chen, Zhenlou

    2014-09-01

    Water in the Yangtze Estuary is fresh most of the year because of the large discharge of Yangtze River. The Qingcaosha Reservoir built on the Changxing Island in the Yangtze Estuary is an estuarine reservoir for drinking water. Denitrification rate in the top 10 cm sediment of the intertidal marshes and bare mudflat of Yangtze Estuarine islands was measured by the acetylene inhibition method. Annual denitrification rate in the top 10 cm of sediment was 23.1 μmol m(-2) h(-1) in marshes (ranged from 7.5 to 42.1 μmol m(-2) h(-1)) and 15.1 μmol m(-2) h(-1) at the mudflat (ranged from 6.6 to 26.5 μmol m(-2) h(-1)). Annual average denitrification rate is higher at mashes than at mudflat, but without a significant difference (p = 0.084, paired t test.). Taking into account the vegetation and water area of the reservoir, a total 1.42 × 10(8) g N could be converted into nitrogen gas (N2) annually by the sediment, which is 97.7 % of the dissolved inorganic nitrogen input through precipitation. Denitrification in reservoir sediment can control the bioavailable nitrogen level of the water body. At the Yangtze estuary, denitrification primarily took place in the top 4 cm of sediment, and there was no significant spatial or temporal variation of denitrification during the year at the marshes and mudflat, which led to no single factor determining the denitrification process but the combined effects of the environmental factors, hydrologic condition, and wetland vegetation.

  15. Considerations in Managing the Fill Rate of the Grand Ethiopian Renaissance Dam Reservoir Using a System Dynamics Approach.

    NASA Technical Reports Server (NTRS)

    Keith, Bruce; Ford, David N.; Horton, Radley M.

    2016-01-01

    The purpose of this study is to evaluate simulated fill rate scenarios for the Grand Ethiopian Renaissance Dam while taking into account plausible climate change outcomes for the Nile River Basin. The region lacks a comprehensive equitable water resource management strategy, which creates regional security concerns and future possible conflicts. We employ climate estimates from 33 general circulation models within a system dynamics model as a step in moving toward a feasible regional water resource management strategy. We find that annual reservoir fill rates of 8-15% are capable of building hydroelectric capacity in Ethiopia while concurrently ensuring a minimum level of stream flow disruption into Egypt before 2039. Insofar as climate change estimates suggest a modest average increase in stream flow into the Aswan, climate changes through 2039 are unlikely to affect the fill rate policies. However, larger fill rates will have a more detrimental effect on stream flow into the Aswan, particularly beyond a policy of 15%. While this study demonstrates that a technical solution for reservoir fill rates is feasible, the corresponding policy challenge is political. Implementation of water resource management strategies in the Nile River Basin specifically and Africa generally will necessitate a national and regional willingness to cooperate.

  16. The Quality of Water and Bottom Material in Lunga Reservoir, Virginia, September 2004 through August 2005

    USGS Publications Warehouse

    Lotspeich, R. Russell

    2007-01-01

    Lunga Reservoir is on the U.S. Marine Corps Base in Quantico, which is in the Potomac River basin and the Piedmont Physiographic Province of northern Virginia. Because of the potential use of the reservoir for scuba-diver training and public water supply in addition to current recreational activities, the U.S. Marine Corps wanted to know more about the water quality of Lunga Reservoir and how it compared to Virginia Department of Environmental Quality and Virginia State Water Control Board ambient water-quality standards. Water samples and physical properties were collected by the U.S. Geological Survey at 6 locations throughout Lunga Reservoir, and physical properties were collected at 11 additional locations in the reservoir from September 2004 through August 2005. Water samples for analysis of pesticides and bottom-material trace elements were collected once during the study at four of the sampling locations. Water temperature, dissolved-oxygen concentration, specific conductance, pH, and total chlorophyll concentration in Lunga Reservoir all had similar seasonal and spatial variations as in other lakes and reservoirs in this geographic region - thermal gradient in the summer and fall and isothermal conditions in the winter and early spring. Concentrations of water-quality indicators in Lunga Reservoir were within comparable levels of those in other reservoirs and did not violate the Virginia State Water Control Board standards for public water supplies. Water temperatures throughout Lunga Reservoir during the study period ranged from 4.4 to 30.1 degrees Celsius, well below the State Water Control Board maximum water temperature criteria of 32 degrees Celsius. Dissolved-oxygen concentrations ranged from 0.05 to 14.1 milligrams per liter throughout the reservoir during the study period, but never fell below the State Water Control Board minimum dissolved-oxygen criterion of 4.0 milligrams per liter at the surface of Lunga Reservoir. Specific conductance throughout Lunga Reservoir ranged from 29 to 173 microsiemens per centimeter at 25 degrees Celsius during the study period, with a mean specific conductance of 68 microsiemens per centimeter at 25 degrees Celsius. Measurements of pH throughout the reservoir ranged from 4.8 to 7.6 standard units. Concentrations of chemical constituents analyzed in Lunga Reservoir samples were below any State Water Control Board criteria and generally were similar in concentration to the same chemical constituents in other reservoirs in the State. Four water samples were analyzed for 54 pesticides, and none of these pesticides were above the laboratory minimum reporting level.

  17. Development and Application of a Taiwan Domestic Generalized Water Supply Model

    NASA Astrophysics Data System (ADS)

    Ho, C. C.; Chang, L. C.

    2016-12-01

    Water allocation in Taiwan is more complicated than other countries because high river turbidity caused by rainstorm, reservoir management governed by different organization and conjunctive use of inter-basin reservoirs and dams. Those properties cause water resource planners need make extra effort on developing customized model to simulate the impact of water supply strategies on water resources. Hence, the study develops a Generalized Water Supply Model (GWSM) to analysis Multi-reservoirs water allocation in Taiwan for advancing the planning process. The model has following functions: (1) considering reservoirs operating rule curve. (2) considering the rule of multi-reservoir operation. Such as setting supply priority of different reservoirs or using "index balance" rule. (3) considering optimal hydroelectric power operation. (4) estimating the impact of high river turbidity on water supply. (5) considering the supply priority of different water use. (6) considering irrigation supply under special constraint. Such as the maximum irrigation supply is subject to natural inflow without reservoir storage. (7) considering two-way conduit transport. (8) considering environmental flow reservation. Conjunctive use Taan and Dajia Rivers was selected to demonstrate the ability of GWSM. The results also can be provided to different authorities to realize the impact of different strategies and that is good for negotiation and reaching a consensus.

  18. China’s rising hydropower demand challenges water sector

    PubMed Central

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, P. W.; Guan, Dabo

    2015-01-01

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 109 m3 (Gm3), or 22% of China’s total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm3 yr−1 or 3.6 m3 of water to produce a GJ (109 J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability. PMID:26158871

  19. Heterogeneity of Chlorinity distribution within gas hydrate reservoir at Daini-Atsumi knoll, based on logging data analysis

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Takayama, T.; Fujii, T.

    2016-12-01

    We will present possible heterogeneity of pore-water salinity within methane hydrate reservoir of Daini-Atsumi knoll, on the basis of Logging-while-drilling (LWD) data and several kind of wire-line logging dataset. The LWD and the wire-line logging had been carried out during 2012 to 2013, before/after the first offshore gas-production-test from marine-methane-hydrate reservoir at Daini-Atsumi Knoll along the northeast Nankai trough. Several data from the logging, especially data from the reservoir saturation tool; RST, gave us some possible interpretation for heterogeneity distribution of chlorinity within the methane-hydrate reservoir. The computed pore-water chlorinity could be interpreted as condense of chlorinity at gas-hydrate formation. This year, we drilled several number of wells at Daini-Atsumi Knoll, again for next gas production test, and we have also found out possibility of chlorinity heterogeneity from LWD data of Neutron-capture cross section; i.e. Sigma. The distribution of chlorinity within gas-hydrate reservoir may help our understanding of gas hydrate-crystallization and/or dissociation in turbidite reservoir at Daini-Atsumi Knoll. This research is conducted as a part of the Research Consortium for Methane Hydrate Resource in Japan (MH21 Research consortium).

  20. China's rising hydropower demand challenges water sector.

    PubMed

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, P W; Guan, Dabo

    2015-07-09

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 10(9) m(3) (Gm(3)), or 22% of China's total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm(3) yr(-1) or 3.6 m(3) of water to produce a GJ (10(9) J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability.

  1. Occurrence and Characteristics of Microplastic Pollution in Xiangxi Bay of Three Gorges Reservoir, China.

    PubMed

    Zhang, Kai; Xiong, Xiong; Hu, Hongjuan; Wu, Chenxi; Bi, Yonghong; Wu, Yonghong; Zhou, Bingsheng; Lam, Paul K S; Liu, Jiantong

    2017-04-04

    Microplastic pollution in inland waters is receiving growing attentions. Reservoirs are suspected to be particularly vulnerable to microplastic pollution. However, very limited information is currently available on pollution characteristics of microplastics in reservoir ecosystems. This work studied the distribution and characteristics of microplastics in the backwater area of Xiangxi River, a typical tributary of the Three Gorges Reservoir. Microplastics were detected in both surface water and sediment with concentrations ranging from 0.55 × 10 5 to 342 × 10 5 items km -2 and 80 to 864 items m -2 , respectively. Polyethylene, polypropylene, and polystyrene were identified in surface water, whereas polyethylene, polypropylene, and polyethylene terephthalate, and pigments were observed in sediment. In addition, microplastics were also detected in the digestion tracts of 25.7% of fish samples, and polyethylene and nylon were identified. Redundancy analysis indicates a weak correlation between microplastics and water quality variables but a negative correlation with water level of the reservoir and Secchi depth. Results from this study confirm the presence of high abundance microplastics in reservoir impacted tributaries, and suggest that water level regulated hydrodynamic condition and input of nonpoint sources are important regulators for microplastic accumulation and distribution in the backwater area of reservoir tributaries.

  2. Quantifying the clay content with borehole depth and impact on reservoir flow

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, Aaraellu D.; Chattopadhyay, Pallavi B.

    2017-04-01

    This study focuses on the application of reservoir well log data and 3D transient numerical model for proper optimization of flow dynamics and hydrocarbon potential. Fluid flow through porous media depends on clay content that controls porosity, permeability and pore pressure. The pressure dependence of permeability is more pronounced in tight formations. Therefore, preliminary clay concentration analysis and geo-mechanical characterizations have been done by using wells logs. The assumption of a constant permeability for a reservoir is inappropriate and therefore the study deals with impact of permeability variation for pressure-sensitive formation. The study started with obtaining field data from available well logs. Then, the mathematical models are developed to understand the efficient extraction of oil in terms of reservoir architecture, porosity and permeability. The fluid flow simulations have been done using COMSOL Multiphysics Software by choosing time dependent subsurface flow module that is governed by Darcy's law. This study suggests that the reservoir should not be treated as a single homogeneous structure with unique porosity and permeability. The reservoir parameters change with varying clay content and it should be considered for effective planning and extraction of oil. There is an optimum drawdown for maximum production with varying permeability in a reservoir.

  3. Water quality of the Lexington Reservoir, Santa Clara County, California, 1978-80

    USGS Publications Warehouse

    Iwatsubo, R.T.; Sylvester, M.A.; Gloege, I.S.

    1988-01-01

    Analysis of water samples from Lexington Reservoir and Los Gatos Creek upstream from the reservoir from June 1978 through September 1980 showed that water generally met water-quality objectives identified by California Regional Water Quality Control Board, San Francisco Bay Region. Water-temperature profiles show that Lexington Reservoir is a warm monomictic lake. During summer, dissolved-oxygen concentrations generally were not reduced below 5.0 mg/L in the hyplimnion; only once during the study did bottom waters become anoxic. Water transparency decreased with depth. The euphotic zone ranged from 1.0 to 5.4 m, depending on suspended solids and algae, and was greater in summer than in spring. Calcium and bicarbonate were dominant ions at all stations except during spring, following the rainy season, when waters were a mixed cation bicarbonate type. Nitrogen concentrations were greater in samples from reservoir stations than in those from Los Gatos Creek, with most of the nitrogen in ammonia and organic forms. The amount of dissolved nitrate appeared to be related to phytoplankton abundance. Phosphorus and trace-element concentrations were low at all stations. Estimates of net primary productivity and Carlson 's trophic-state index, based on chlorophyll-a concentrations, indicated that reservoir classification ranges from oligotrophic to mesotrophic. Blue-green algae generally were predominant in reservoir samples. (USGS)

  4. Hydrologic characterization of Bushy Park Reservoir, South Carolina, 2013–15

    USGS Publications Warehouse

    Conrads, Paul; Petkewich, Matthew D.; Falls, W. Fred; Lanier, Timothy H.

    2017-06-14

    The Bushy Park Reservoir is a relatively shallow impoundment in a semi-tropical climate and is the principal water supply for the 400,000 people of the city of Charleston, South Carolina, and the surrounding areas including the Bushy Park Industrial Complex. Although there is an adequate supply of freshwater in the reservoir, taste-and-odor water-quality issues are a concern. The U.S. Geological Survey conducted an investigation in cooperation with the Charleston Water System to study the hydrology and hydrodynamics of the Bushy Park Reservoir to identify factors affecting water-quality conditions. Specifically, five areas for monitoring and (or) analysis were addressed: (1) hydrologic monitoring of the reservoir to establish a water budget, (2) flow monitoring in the tunnels to compute flow from Bushy Park Reservoir and at critical distribution junctions, (3) water-quality sampling, profiling, and continuous monitoring to identify the causes of taste-and-odor occurrence, (4) technical evaluation of appropriate hydrodynamic and water-quality simulation models for the reservoir, and (5) preliminary evaluation of alternative reservoir operations scenarios.This report describes the hydrodynamic and hydrologic data collected from 2013 to 2015 to support the application and calibration of a three-dimensional hydrodynamic model and the water-quality monitoring and analysis to gain insight into the principal causes of the Bushy Park Reservoir taste-and-odor episodes. The existing U.S. Geological Survey real-time network on the West Branch of the Cooper River was augmented with a tidal flow gage on Durham Canal Back River, and Foster Creek. The Charleston Water System intake structure was instrumented to collect water-level, water temperature (top and bottom probes), specific conductance (top and bottom probes), wind speed and direction, and photosynthetically active radiation data. In addition to the gages attached to fixed structures, four bottom-mounted velocity profilers were deployed at six locations over different periods. The deployment period for the velocity profiler ranged from 2 weeks to 4 months. During the investigation, tidal cycle (13-hour) streamflow measurements were made at 30-minute intervals at five locations.The Williams Station is a coal-fired powerplant that withdraws water from Bushy Park Reservoir for cooling purposes. The magnitude of the withdrawal (approximately 550 million gallons per day) is the major factor controlling the circulation in the reservoir. The net flow in Durham Canal to the reservoir is comparable to the withdrawal rates of the powerplant. When the Williams Station is not withdrawing water, the net flow in Durham Canal quickly goes to zero or reverses with a net flow away from the reservoir and to the Cooper River. Plan views of the velocity vectors for the tidal cycle streamflow measurements and rose diagram of the velocity profilers created with the Williams Station withdrawing and not withdrawing water show substantial effects of the distribution of magnitude and direction of the water velocities.

  5. Optimizing Water Management for Collocated Conventional and Unconventional Reservoirs

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Scanlon, B. R.; Walsh, M.

    2016-12-01

    With the U.S. producing much more water than oil from oil and gas reservoirs, managing produced water is becoming a critical issue. Here we quantify water production from collocated conventional and unconventional reservoirs using well by well analysis and evaluate various water management strategies using the U.S. Permian Basin as a case study. Water production during the past 15 years in the Permian Basin totaled 55×109 barrels (bbl), 95% from wells in conventional reservoirs resulting in an average water to oil ratio of 12 compared to ratios of 2-3 in wells in unconventional reservoirs. Some of this water ( 25%) is returned to the reservoir for secondary oil recovery (water flooding) while the remaining water is injected into an average of 18,000 salt water disposal wells. Total water production over the past 15 yr (2000 - 2015) exceeds water used for hydraulic fracturing by almost 40 times. Analyzing water injection into salt water disposal wells relative to water requirements for hydraulic fracturing at a 5 square mile grid scale based on 2014 data indicates that water disposal exceeds water requirements for hydraulic fracturing throughout most of the play. Reusing/recycling of produced water for hydraulic fracturing would reduce sourcing and disposal issues related to hydraulic fracturing. Because shales (unconventional reservoirs) provide the source rocks for many conventional reservoirs, coordinating water management from both conventional and unconventional reservoirs can help resolve issues related to sourcing of water for hydraulic fracturing and disposing of produced water. Reusing/recycling produced water can also help reduce water scarcity concerns in some regions.

  6. Fish habitat degradation in U.S. reservoirs

    USGS Publications Warehouse

    Miranda, Leandro E.; Spickard, M.; Dunn, T.; Webb, K.M.; Aycock, J.N.; Hunt, K.

    2010-01-01

    As the median age of the thousands of large reservoirs (> 200 ha) in the United States tops 50, many are showing various signs of fish habitat degradation. Our goal was to identify major factors degrading fish habitat in reservoirs across the country, and to explore regional degradation patterns. An online survey including 14 metrics was scored on a 0 (no degradation) to 5 (high degradation) point scale by 221 fisheries scientists (92% response rate) to describe degradation in 482 reservoirs randomly distributed throughout the continental United States. The highest scored sources of degradation were lack of aquatic macrophytes (41% of the reservoirs scored as 4–5), lack or loss of woody debris (35% scored 4–5), mistimed water level fluctuations (34% scored 4–5), and sedimentation (31% scored 4–5). Factor analysis identified five primary degradation factors that accounted for most of the variability in the 14 degradation metrics. The factors reflected siltation, structural habitat, eutrophication, water regime, and aquatic plants. Three degradation factors were driven principally by in-reservoir processes, whereas the other two were driven by inputs from the watershed. A comparison across U.S. regions indicated significant geographical differences in degradation relative to the factors emphasized by each region. Reservoirs sometimes have been dismissed as unnatural and disruptive, but they are a product of public policy, a critical feature of landscapes, and they cannot be overlooked if managers are to effectively conserve river systems. Protection and restoration of reservoir habitats may be enhanced with a broader perspective that includes watershed management, in addition to in reservoir activities.

  7. Fish habitat degradation in U.S. reservoirs

    USGS Publications Warehouse

    Miranda, L.E.; Spickard, M.; Dunn, T.; Webb, K.M.; Aycock, J.N.; Hunt, K.

    2010-01-01

    As the median age of the thousands of large reservoirs (> 200 ha) in the United States tops 50, many are showing various signs of fish habitat degradation. Our goal was to identify major factors degrading fish habitat in reservoirs across the country, and to explore regional degradation patterns. An online survey including 14 metrics was scored on a 0 (no degradation) to 5 (high degradation) point scale by 221 fisheries scientists (92% response rate) to describe degradation in 482 reservoirs randomly distributed throughout the continental United States. The highest scored sources of degradation were lack of aquatic macrophytes (41% of the reservoirs scored as 4-5), lack or loss of woody debris (35% scored 4-5), mistimed water level fluctuations (34% scored 4-5), and sedimentation (31% scored 4-5). Factor analysis identified five primary degradation factors that accounted for most of the variability in the 14 degradation metrics. The factors reflected siltation, structural habitat, eutrophication, water regime, and aquatic plants. Three degradation factors were driven principally by in-reservoir processes, whereas the other two were driven by inputs from the watershed. A comparison across U.S. regions indicated significant geographical differences in degradation relative to the factors emphasized by each region. Reservoirs sometimes have been dismissed as unnatural and disruptive, but they are a product of public policy, a critical feature of landscapes, and they cannot be overlooked if managers are to effectively conserve river systems. Protection and restoration of reservoir habitats may be enhanced with a broader perspective that includes watershed management, in addition to in reservoir activities.

  8. The identification of multi-cave combinations in carbonate reservoirs based on sparsity constraint inverse spectral decomposition

    NASA Astrophysics Data System (ADS)

    Li, Qian; Di, Bangrang; Wei, Jianxin; Yuan, Sanyi; Si, Wenpeng

    2016-12-01

    Sparsity constraint inverse spectral decomposition (SCISD) is a time-frequency analysis method based on the convolution model, in which minimizing the l1 norm of the time-frequency spectrum of the seismic signal is adopted as a sparsity constraint term. The SCISD method has higher time-frequency resolution and more concentrated time-frequency distribution than the conventional spectral decomposition methods, such as short-time Fourier transformation (STFT), continuous-wavelet transform (CWT) and S-transform. Due to these good features, the SCISD method has gradually been used in low-frequency anomaly detection, horizon identification and random noise reduction for sandstone and shale reservoirs. However, it has not yet been used in carbonate reservoir prediction. The carbonate fractured-vuggy reservoir is the major hydrocarbon reservoir in the Halahatang area of the Tarim Basin, north-west China. If reasonable predictions for the type of multi-cave combinations are not made, it may lead to an incorrect explanation for seismic responses of the multi-cave combinations. Furthermore, it will result in large errors in reserves estimation of the carbonate reservoir. In this paper, the energy and phase spectra of the SCISD are applied to identify the multi-cave combinations in carbonate reservoirs. The examples of physical model data and real seismic data illustrate that the SCISD method can detect the combination types and the number of caves of multi-cave combinations and can provide a favourable basis for the subsequent reservoir prediction and quantitative estimation of the cave-type carbonate reservoir volume.

  9. Sediment deposition in the White River Reservoir, northwestern Wisconsin

    USGS Publications Warehouse

    Batten, W.G.; Hindall, S.M.

    1980-01-01

    The history of deposition in the White River Reservoir was reconstructed from a study of sediment in the reservoir. Suspended-sediment concentrations, particle size, and streamflow characteristics were measured at gaging stations upstream and downstream from the reservoir from November 1975 through September 1977. Characteristics of the sediments were determined from borings and samples taken while the reservoir was drained in September 1976. The sediment surface and the pre-reservoir topography were mapped. Sediment thickness ranged from less than 1 foot near the shore to more than 20 feet in the old stream channel. The original reservoir capacity and the volume of deposited sediment were calculated to be 815 acre-feet and 487 acre-feet, respectively. Sediment size ranged from clay and silt in the pool area to large cobbles and boulders at the upstream end of the reservoir. Analyses of all samples averaged 43 percent sand, 40 percent silt, and 17 percent clay, and particle size typically increased upstream. Cobbles, boulders, and gravel deposits were not sampled. The average density of the deposited sediment was about 80 pounds per cubic foot for the entire reservoir. The reservoir was able to trap about 80 percent of the sediment entering from upstream, early in its history. This trap efficiency has declined as the reservoir filled with sediment. Today (1976), it traps only sand and silt-sized sediment, or only about 20 percent of the sediment entering from upstream. Data collected during this study indicate that essentially all of the clay-sized sediment (<0.062 mm) passes through the reservoir. The gross rate of deposition was 7.0 acre-feet per year over the reservoir history, 1907-76. Rates during 1907-63 and 1963-76 were 7.4 and 5.7 acre-feet per year, respectively, determined by the cesium-137 method. Based on scant data, the average annual sediment yield of the total 279 square mile drainage area above the gaging station at the powerhouse was about 50 tons per square mile. Analysis of the drainage-basin characteristics indicates that most of this sediment was derived from less than 10 percent of the total drainage area and from steep unvegetated streambanks.

  10. Nonuniversality of the Archie exponent due to multifractality of resistivity well logs

    NASA Astrophysics Data System (ADS)

    Dashtian, Hassan; Yang, Yafan; Sahimi, Muhammad

    2015-12-01

    Archie's law expresses a relation between the formation factor F of porous media and their porosity ϕ, F∝ϕ-m, where m is the Archie or the cementation exponent. Despite widespread use of Archie's law, the value of m and whether it is universal and independent of the type of reservoir have remained controversial. We analyze various porosity and resistivity logs along 36 wells in six Iranian oil and gas reservoirs using wavelet transform coherence and multifractal detrended fluctuation analysis. m is estimated for two sets of data: one set contains the resistivity data that include those segments of the well that contain significant clay content and one without. The analysis indicates that the well logs are multifractal and that due to the multifractality the exponent m is nonuniversal. Thus, analysis of the resistivity of laboratory or outcrop samples that are not multifractal yields estimates of m that are not applicable to well logs in oil or gas reservoirs.

  11. Streamflow Forecasting Using Nuero-Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Nanduri, U. V.; Swain, P. C.

    2005-12-01

    The prediction of flow into a reservoir is fundamental in water resources planning and management. The need for timely and accurate streamflow forecasting is widely recognized and emphasized by many in water resources fraternity. Real-time forecasts of natural inflows to reservoirs are of particular interest for operation and scheduling. The physical system of the river basin that takes the rainfall as an input and produces the runoff is highly nonlinear, complicated and very difficult to fully comprehend. The system is influenced by large number of factors and variables. The large spatial extent of the systems forces the uncertainty into the hydrologic information. A variety of methods have been proposed for forecasting reservoir inflows including conceptual (physical) and empirical (statistical) models (WMO 1994), but none of them can be considered as unique superior model (Shamseldin 1997). Owing to difficulties of formulating reasonable non-linear watershed models, recent attempts have resorted to Neural Network (NN) approach for complex hydrologic modeling. In recent years the use of soft computing in the field of hydrological forecasting is gaining ground. The relatively new soft computing technique of Adaptive Neuro-Fuzzy Inference System (ANFIS), developed by Jang (1993) is able to take care of the non-linearity, uncertainty, and vagueness embedded in the system. It is a judicious combination of the Neural Networks and fuzzy systems. It can learn and generalize highly nonlinear and uncertain phenomena due to the embedded neural network (NN). NN is efficient in learning and generalization, and the fuzzy system mimics the cognitive capability of human brain. Hence, ANFIS can learn the complicated processes involved in the basin and correlate the precipitation to the corresponding discharge. In the present study, one step ahead forecasts are made for ten-daily flows, which are mostly required for short term operational planning of multipurpose reservoirs. A Neuro-Fuzzy model is developed to forecast ten-daily flows into the Hirakud reservoir on River Mahanadi in the state of Orissa in India. Correlation analysis is carried out to find out the most influential variables on the ten daily flow at Hirakud. Based on this analysis, four variables, namely, flow during the previous time period, ql1, rainfall during the previous two time periods, rl1 and rl2, and flow during the same period in previous year, qpy, are identified as the most influential variables to forecast the ten daily flow. Performance measures such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and coefficient of efficiency R2 are computed for training and testing phases of the model to evaluate its performance. The results indicate that the ten-daily forecasting model is efficient in predicting the high and medium flows with reasonable accuracy. The forecast of low flows is associated with less efficiency. REFERENCES Jang, J.S.R. (1993). "ANFIS: Adaptive - network- based fuzzy inference system." IEEE Trans. on Systems, Man and Cybernetics, 23 (3), 665-685. Shamseldin, A.Y. (1997). "Application of a neural network technique to rainfall-runoff modeling." Journal of Hydrology, 199, 272-294. World Meteorological Organization (1975). Intercomparison of conceptual models used in operational hydrological forecasting. World Meteorological Organization, Technical Report No.429, Geneva, Switzerland.

  12. Selenium in Reservoir Sediment from the Republican River Basin

    USGS Publications Warehouse

    Juracek, Kyle E.; Ziegler, Andrew C.

    1998-01-01

    Reservoir sediment quality is an important environmental concern because sediment may act as both a sink and a source of water-quality constituents to the overlying water column and biota. Once in the food chain, sediment-derived constituents may pose an even greater concern due to bioaccumulation. An analysis of reservoir bottom sediment can provide historical information on sediment deposition as well as magnitudes and trends in constituents that may be related to changes in human activity in the basin. The assessment described in this fact sheet was initiated in 1997 by the U.S. Geological Survey (USGS), in cooperation with the Bureau of Reclamation (BOR), U.S. Department of the Interior, to determine if irrigation activities have affected selenium concentrations in reservoir sediment of the Republican River Basin of Colorado, Kansas, and Nebraska.

  13. Hydraulic Fracture Extending into Network in Shale: Reviewing Influence Factors and Their Mechanism

    PubMed Central

    Ren, Lan; Zhao, Jinzhou; Hu, Yongquan

    2014-01-01

    Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design. PMID:25032240

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoirmore » characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.« less

  15. Quantification of oil and water in preserved reservoir rock by NMR spectroscopy and imaging.

    PubMed

    Davies, S; Hardwick, A; Roberts, D; Spowage, K; Packer, K J

    1994-01-01

    Reservoir rock analysis by proton NMR requires separation of the response into brine and crude oil components. Tests on preserved core from a North Sea chalk reservoir show that spin-lattice relaxation time distributions can be used to distinguish the two fluids. NMR estimates of oil and water saturations for 1.5" diameter core examined in a 10 MHz Bruker Minispec spectrometer closely match fluid contents determined by distillation. The spin-lattice relaxation contrast mechanism developed for core samples can be applied in the quantitative analysis of NMR images. The relaxation data are compared with data from chemical shift imaging on the same core sample. The results indicate that it will be possible to monitor changes in fluid distributions, in this and similar systems, under dynamic conditions such as in a waterflood.

  16. Environmental parameters of the Tennessee River in Alabama. 2: Physical, chemical, and biological parameters. [biological and chemical effects of thermal pollution from nuclear power plants on water quality

    NASA Technical Reports Server (NTRS)

    Rosing, L. M.

    1976-01-01

    Physical, chemical and biological water quality data from five sites in the Tennessee River, two in Guntersville Reservoir and three in Wheeler Reservoir were correlated with climatological data for three annual cycles. Two of the annual cycles are for the years prior to the Browns Ferry Nuclear Power Plant operations and one is for the first 14 months of Plant operations. A comparison of the results of the annual cycles indicates that two distinct physical conditions in the reservoirs occur, one during the warm months when the reservoirs are at capacity and one during the colder winter months when the reservoirs have been drawn-down for water storage during the rainy months and for weed control. The wide variations of physical and chemical parameters to which the biological organisms are subjected on an annual basis control the biological organisms and their population levels. A comparison of the parameters of the site below the Power plant indicates that the heated effluent from the plant operating with two of the three reactors has not had any effect on the organisms at this site. Recommendations given include the development of prediction mathematical models (statistical analysis) for the physical and chemical parameters under specific climatological conditions which affect biological organisms. Tabulated data of chemical analysis of water and organism populations studied is given.

  17. An analytical model for pressure of volume fractured tight oil reservoir with horizontal well

    NASA Astrophysics Data System (ADS)

    Feng, Qihong; Dou, Kaiwen; Zhang, Xianmin; Xing, Xiangdong; Xia, Tian

    2017-05-01

    The property of tight oil reservoir is worse than common reservoir that we usually seen before, the porosity and permeability is low, the diffusion is very complex. Therefore, the ordinary depletion method is useless here. The volume fracture breaks through the conventional EOR mechanism, which set the target by amplifying the contact area of fracture and reservoir so as to improving the production of every single well. In order to forecast the production effectively, we use the traditional dual-porosity model, build an analytical model for production of volume fractured tight oil reservoir with horizontal well, and get the analytical solution in Laplace domain. Then we construct the log-log plot of dimensionless pressure and time by stiffest conversion. After that, we discuss the influential factors of pressure. Several factors like cross flow, skin factors and threshold pressure gradient was analyzed in the article. This model provides a useful method for tight oil production forecast and it has certain guiding significance for the production capacity prediction and dynamic analysis.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohaghegh, Shahab D.

    apability of underground carbon dioxide storage to confine and sustain injected CO2 for a very long time is the main concern for geologic CO2 sequestration. If a leakage from a geological CO2 sequestration site occurs, it is crucial to find the approximate amount and the location of the leak in order to implement proper remediation activity. An overwhelming majority of research and development for storage site monitoring has been concentrated on atmospheric, surface or near surface monitoring of the sequestered CO2. This study aims to monitor the integrity of CO2 storage at the reservoir level. This work proposes developing in-situmore » CO2 Monitoring and Verification technology based on the implementation of Permanent Down-hole Gauges (PDG) or “Smart Wells” along with Artificial Intelligence and Data Mining (AI&DM). The technology attempts to identify the characteristics of the CO2 leakage by de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). Citronelle field, a saline aquifer reservoir, located in the U.S. was considered for this study. A reservoir simulation model for CO2 sequestration in the Citronelle field was developed and history matched. The presence of the PDGs were considered in the reservoir model at the injection well and an observation well. High frequency pressure data from sensors were collected based on different synthetic CO2 leakage scenarios in the model. Due to complexity of the pressure signal behaviors, a Machine Learning-based technology was introduced to build an Intelligent Leakage Detection System (ILDS). The ILDS was able to detect leakage characteristics in a short period of time (less than a day) demonstrating the capability of the system in quantifying leakage characteristics subject to complex rate behaviors. The performance of ILDS was examined under different conditions such as multiple well leakages, cap rock leakage, availability of an additional monitoring well, presence of pressure drift and noise in the pressure sensor and uncertainty in the reservoir model.« less

  19. Supercomputing with TOUGH2 family codes for coupled multi-physics simulations of geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Yamamoto, H.; Nakajima, K.; Zhang, K.; Nanai, S.

    2015-12-01

    Powerful numerical codes that are capable of modeling complex coupled processes of physics and chemistry have been developed for predicting the fate of CO2 in reservoirs as well as its potential impacts on groundwater and subsurface environments. However, they are often computationally demanding for solving highly non-linear models in sufficient spatial and temporal resolutions. Geological heterogeneity and uncertainties further increase the challenges in modeling works. Two-phase flow simulations in heterogeneous media usually require much longer computational time than that in homogeneous media. Uncertainties in reservoir properties may necessitate stochastic simulations with multiple realizations. Recently, massively parallel supercomputers with more than thousands of processors become available in scientific and engineering communities. Such supercomputers may attract attentions from geoscientist and reservoir engineers for solving the large and non-linear models in higher resolutions within a reasonable time. However, for making it a useful tool, it is essential to tackle several practical obstacles to utilize large number of processors effectively for general-purpose reservoir simulators. We have implemented massively-parallel versions of two TOUGH2 family codes (a multi-phase flow simulator TOUGH2 and a chemically reactive transport simulator TOUGHREACT) on two different types (vector- and scalar-type) of supercomputers with a thousand to tens of thousands of processors. After completing implementation and extensive tune-up on the supercomputers, the computational performance was measured for three simulations with multi-million grid models, including a simulation of the dissolution-diffusion-convection process that requires high spatial and temporal resolutions to simulate the growth of small convective fingers of CO2-dissolved water to larger ones in a reservoir scale. The performance measurement confirmed that the both simulators exhibit excellent scalabilities showing almost linear speedup against number of processors up to over ten thousand cores. Generally this allows us to perform coupled multi-physics (THC) simulations on high resolution geologic models with multi-million grid in a practical time (e.g., less than a second per time step).

  20. Muon borehole detector development for use in four-dimensional tomographic density monitoring

    NASA Astrophysics Data System (ADS)

    Flygare, Joshua

    The increase of CO2 concentrations in the atmosphere and the correlated temperature rise has initiated research into methods of carbon sequestration. One promising possibility is to store CO2 in subsurface reservoirs of porous rock. After injection, the monitoring of the injected CO2 is of paramount importance because the CO2 plume, if escaped, poses health and environmental risks. Traditionally, seismic reflection methods are the chosen method of determining changes in the reservoir density due to CO2 injection, but this is expensive and not continuous. A potential and promising alternative is to use cosmic muon tomography to determine density changes in the reservoir over a period of time. The work I have completed was the development of a muon detector that will be capable of being deployed in boreholes and perform long-term tomography of the reservoir of interest. The detector has the required dimensions, an angular resolution of approximately 2 degrees, and is robust enough to survive the caustic nature of the fluids in boreholes, as well as temperature and pressure fluctuations. The detector design is based on polystyrene scintillating rods arrayed in alternating layers. The layers, as arranged, can provide four-dimensional (4D) tomographic data to detect small changes in density at depths up to approximately 2 kilometers. Geant4, a Monte Carlo simulation code, was used to develop and optimize the detector design. Additionally, I developed a method of determining the muon flux at depth, including CO2 saturation changes in subsurface reservoirs. Preliminary experiments were performed at Pacific Northwest National Laboratory. This thesis will show the simulations I performed to determine the angular resolution and background discrimination required of the detector, the experiments to determine light transport through the polystyrene scintillating rods and fibers, and the method developed to predict muon flux changes at depth expected after injection.

Top