DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest A. Mancini
The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The models represent an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic models served as the framework for the simulations. The geologic-engineering models of the Appleton and Vocation Field reservoirs have been developed. These models are being tested. The geophysical interpretation for the paleotopographic feature being tested has been made, and the study of the data resulting from drilling of a well on this paleohigh is in progress. Numerous presentations on reservoir characterization and modeling at Appleton and Vocation Fields have been made at professional meetings and conferences and a short course on microbial reservoir characterization and modeling based on these fields has been prepared.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest A. Mancini
The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 1 of the project has been reservoir description and characterization. This effort has included four tasks: (1) geoscientific reservoir characterization, (2) the study of rock-fluid interactions, (3) petrophysical and engineering characterization and (4) data integration. This work was scheduled for completion in Year 1. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been initiated. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization is progressing. Data on reservoir production rate and pressure history at Appleton and Vocation Fields have been tabulated, and porosity data from core analysis has been correlated with porosity as observed from well log response. Data integration is on schedule, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database for reservoir characterization, modeling and simulation for the reef and carbonate shoal reservoirs for each of these fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest A. Mancini
The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been essentially completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The model represents an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic model served as the framework for the simulations. A technology workshop on reservoir characterization and modeling at Appleton and Vocation Fields was conducted to transfer the results of the project to the petroleum industry.« less
NASA Astrophysics Data System (ADS)
de Faria Scheidt, Rafael; Vilain, Patrícia; Dantas, M. A. R.
2014-10-01
Petroleum reservoir engineering is a complex and interesting field that requires large amount of computational facilities to achieve successful results. Usually, software environments for this field are developed without taking care out of possible interactions and extensibilities required by reservoir engineers. In this paper, we present a research work which it is characterized by the design and implementation based on a software product line model for a real distributed reservoir engineering environment. Experimental results indicate successfully the utilization of this approach for the design of distributed software architecture. In addition, all components from the proposal provided greater visibility of the organization and processes for the reservoir engineers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honarpour, M.; Szpakiewicz, M.; Sharma, B.
This report covers the development of a generic approach to reservoir characterization, the preliminary studies leading to the selection of an appropriate depositional system for detailed study, the application of outcrop studies to quantified reservoir characterization, and the construction of a quantified geological/engineering model used to screen the effects and scales of various geological heterogeneities within a reservoir. These heterogeneities result in large production/residual oil saturation contrasts over small distances. 36 refs., 124 figs., 38 tabs.
Geo-Engineering through Internet Informatics (GEMINI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watney, W. Lynn; Doveton, John H.; Victorine, John R.
GEMINI will resolve reservoir parameters that control well performance; characterize subtle reservoir properties important in understanding and modeling hydrocarbon pore volume and fluid flow; expedite recognition of bypassed, subtle, and complex oil and gas reservoirs at regional and local scale; differentiate commingled reservoirs; build integrated geologic and engineering model based on real-time, iterate solutions to evaluate reservoir management options for improved recovery; provide practical tools to assist the geoscientist, engineer, and petroleum operator in making their tasks more efficient and effective; enable evaluations to be made at different scales, ranging from individual well, through lease, field, to play and regionmore » (scalable information infrastructure); and provide training and technology transfer to evaluate capabilities of the client.« less
Cunningham, Kevin J.; Sukop, Michael C.
2012-01-01
Current research has demonstrated that trace fossils and their related ichnofabrics can have a critical impact on the fluid-flow properties of hydrocarbon reservoirs and groundwater aquifers. Most petroleum-associated research has used ichnofabrics to support the definition of depositional environments and reservoir quality, and has concentrated on siliciclastic reservoir characterization and, to a lesser degree, carbonate reservoir characterization (for example, Gerard and Bromley, 2008; Knaust, 2009). The use of ichnology in aquifer characterization has almost entirely been overlooked by the hydrologic community because the dynamic reservoir-characterization approach has not caught on with hydrologists and so hydrology is lagging behind reservoir engineering in this area (de Marsily and others, 2005). The objective of this research is to show that (1) ichnofabric analysis can offer a productive methodology for purposes of carbonate aquifer characterization, and (2) a clear relation can exist between ichnofabrics and groundwater flow in carbonate aquifers.
A micrometre-sized heat engine operating between bacterial reservoirs
NASA Astrophysics Data System (ADS)
Krishnamurthy, Sudeesh; Ghosh, Subho; Chatterji, Dipankar; Ganapathy, Rajesh; Sood, A. K.
2016-12-01
Artificial microscale heat engines are prototypical models to explore the mechanisms of energy transduction in a fluctuation-dominated regime. The heat engines realized so far on this scale have operated between thermal reservoirs, such that stochastic thermodynamics provides a precise framework for quantifying their performance. It remains to be seen whether these concepts readily carry over to situations where the reservoirs are out of equilibrium, a scenario of particular importance to the functioning of synthetic and biological microscale engines and motors. Here, we experimentally realize a micrometre-sized active Stirling engine by periodically cycling a colloidal particle in a time-varying optical potential across bacterial baths characterized by different degrees of activity. We find that the displacement statistics of the trapped particle becomes increasingly non-Gaussian with activity and contributes substantially to the overall power output and the efficiency. Remarkably, even for engines with the same energy input, differences in non-Gaussianity of reservoir noise results in distinct performances. At high activities, the efficiency of our engines surpasses the equilibrium saturation limit of Stirling efficiency, the maximum efficiency of a Stirling engine where the ratio of cold to hot reservoir temperatures is vanishingly small. Our experiments provide fundamental insights into the functioning of micromotors and engines operating out of equilibrium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest A. Mancini
The University of Alabama, in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company, has undertaken an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary goal of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. Geoscientific reservoir property, geophysical seismic attribute, petrophysical property, and engineering property characterization has shown that reef (thrombolite) and shoal reservoir lithofacies developed on the flanks of high-relief crystalline basement paleohighs (Vocation Field example) and on the crest and flanks of low-relief crystalline basement paleohighs (Appleton Field example). The reef thrombolite lithofacies have higher reservoir quality than the shoal lithofacies due to overall higher permeabilities and greater interconnectivity. Thrombolite dolostone flow units, which are dominated by dolomite intercrystalline and vuggy pores, are characterized by a pore system comprised of a higher percentage of large-sized pores and larger pore throats. Rock-fluid interactions (diagenesis) studies have shown that although the primary control on reservoir architecture and geographic distribution of Smackover reservoirs is the fabric and texture of the depositional lithofacies, diagenesis (chiefly dolomitization) is a significant factor that preserves and enhances reservoir quality. The evaporative pumping mechanism is favored to explain the dolomitization of the thrombolite doloboundstone and dolostone reservoir flow units at Appleton and Vocation Fields. Geologic modeling, reservoir simulation, and the testing and applying the resulting integrated geologic-engineering models have shown that little oil remains to be recovered at Appleton Field and a significant amount of oil remains to be recovered at Vocation Field through a strategic infill drilling program. The drive mechanisms for primary production in Appleton and Vocation Fields remain effective; therefore, the initiation of a pressure maintenance program or enhanced recovery project is not required at this time. The integrated geologic-engineering model developed for a low-relief paleohigh (Appleton Field) was tested for three scenarios involving the variables of present-day structural elevation and the presence/absence of potential reef thrombolite lithofacies. In each case, the predictions based upon the model were correct. From this modeling, the characteristics of the ideal prospect in the basement ridge play include a low-relief paleohigh associated with dendroidal/chaotic thrombolite doloboundstone and dolostone that has sufficient present-day structural relief so that these carbonates rest above the oil-water contact. Such a prospect was identified from the modeling, and it is located northwest of well Permit No. 3854B (Appleton Field) and south of well No. Permit No.11030B (Northwest Appleton Field).« less
NASA Astrophysics Data System (ADS)
Vasquez, D. A.; Swift, J. N.; Tan, S.; Darrah, T. H.
2013-12-01
The integration of precise geochemical analyses with quantitative engineering modeling into an interactive GIS system allows for a sophisticated and efficient method of reservoir engineering and characterization. Geographic Information Systems (GIS) is utilized as an advanced technique for oil field reservoir analysis by combining field engineering and geological/geochemical spatial datasets with the available systematic modeling and mapping methods to integrate the information into a spatially correlated first-hand approach in defining surface and subsurface characteristics. Three key methods of analysis include: 1) Geostatistical modeling to create a static and volumetric 3-dimensional representation of the geological body, 2) Numerical modeling to develop a dynamic and interactive 2-dimensional model of fluid flow across the reservoir and 3) Noble gas geochemistry to further define the physical conditions, components and history of the geologic system. Results thus far include using engineering algorithms for interpolating electrical well log properties across the field (spontaneous potential, resistivity) yielding a highly accurate and high-resolution 3D model of rock properties. Results so far also include using numerical finite difference methods (crank-nicholson) to solve for equations describing the distribution of pressure across field yielding a 2D simulation model of fluid flow across reservoir. Ongoing noble gas geochemistry results will also include determination of the source, thermal maturity and the extent/style of fluid migration (connectivity, continuity and directionality). Future work will include developing an inverse engineering algorithm to model for permeability, porosity and water saturation.This combination of new and efficient technological and analytical capabilities is geared to provide a better understanding of the field geology and hydrocarbon dynamics system with applications to determine the presence of hydrocarbon pay zones (or other reserves) and improve oil field management (e.g. perforating, drilling, EOR and reserves estimation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallenbeck, L.D.; Harpole, K.J.; Gerard, M.G.
The work reported here covers Budget Phase I of the project. The principal tasks in Budget Phase I are the Reservoir Analysis and Characterization Task and the Advanced Technology Definition Task. Completion of these tasks have enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed and evaluated from an economic and risk analysis standpoint. Field implementation of the project has been recommended to the working interest owner of the South Cowden Unit (SCU) and approval has been obtained. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the projectmore » in the best productivity area of the field. An innovative CO{sub 2} purchase agreement (no take or pay requirements, CO{sub 2} purchase price tied to West Texas Intermediate crude oil price) and gas recycle agreements (expensing cost as opposed to large capital investments for compression) were negotiated to further improve project economics. A detailed reservoir characterization study was completed by an integrated team of geoscientists and engineers. The study consisted of detailed core description, integration of log response to core descriptions, mapping of the major flow units, evaluation of porosity and permeability relationships, geostatistical analysis of permeability trends, and direct integration of reservoir performance with the geological interpretation. The study methodology fostered iterative bidirectional feedback between the reservoir characterization team and the reservoir engineering/simulation team to allow simultaneous refinement and convergence of the geological interpretation with the reservoir model. The fundamental conclusion from the study is that South Cowden exhibits favorable enhanced oil recovery characteristics, particularly reservoir quality and continuity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, P.R.; Holtz, M.H.; McRae, L.E.
Domestic fluvial-dominated deltaic (FDD) reservoirs contain more than 30 Billion barrels (Bbbl) of remaining oil, more than any other type of reservoir, approximately one-third of which is in danger of permanent loss through premature field abandonments. The U.S. Department of Energy has placed its highest priority on increasing near-term recovery from FDD reservoirs in order to prevent abandonment of this important strategic resource. To aid in this effort, the Bureau of Economic Geology, The University of Texas at Austin, began a 46-month project in October, 1992, to develop and demonstrate advanced methods of reservoir characterization that would more accurately locatemore » remaining volumes of mobile oil that could then be recovered by recompleting existing wells or drilling geologically targeted infill. wells. Reservoirs in two fields within the Frio Fluvial-Deltaic Sandstone (Vicksburg Fault Zone) oil play of South Texas, a mature play which still contains 1.6 Bbbl of mobile oil after producing 1 Bbbl over four decades, were selected as laboratories for developing and testing reservoir characterization techniques. Advanced methods in geology, geophysics, petrophysics, and engineering were integrated to (1) identify probable reservoir architecture and heterogeneity, (2) determine past fluid-flow history, (3) integrate fluid-flow history with reservoir architecture to identify untapped, incompletely drained, and new pool compartments, and (4) identify specific opportunities for near-term reserve growth. To facilitate the success of operators in applying these methods in the Frio play, geologic and reservoir engineering characteristics of all major reservoirs in the play were documented and statistically analyzed. A quantitative quick-look methodology was developed to prioritize reservoirs in terms of reserve-growth potential.« less
Petrofacies Analysis - A Petrophysical Tool for Geologic/Engineering Reservoir Characterization
Watney, W.L.; Guy, W.J.; Doveton, J.H.; Bhattacharya, S.; Gerlach, P.M.; Bohling, Geoffrey C.; Carr, T.R.
1998-01-01
Petrofacies analysis is defined as the characterization and classification of pore types and fluid saturations as revealed by petrophysical measurements of a reservoir. The word "petrofacies" makes an explicit link between petroleum engineers' concerns with pore characteristics as arbiters of production performance and the facies paradigm of geologists as a methodology for genetic understanding and prediction. In petrofacies analysis, the porosity and resistivity axes of the classical Pickett plot are used to map water saturation, bulk volume water, and estimated permeability, as well as capillary pressure information where it is available. When data points are connected in order of depth within a reservoir, the characteristic patterns reflect reservoir rock character and its interplay with the hydrocarbon column. A third variable can be presented at each point on the crossplot by assigning a color scale that is based on other well logs, often gamma ray or photoelectric effect, or other derived variables. Contrasts between reservoir pore types and fluid saturations are reflected in changing patterns on the crossplot and can help discriminate and characterize reservoir heterogeneity. Many hundreds of analyses of well logs facilitated by spreadsheet and object-oriented programming have provided the means to distinguish patterns typical of certain complex pore types (size and connectedness) for sandstones and carbonate reservoirs, occurrences of irreducible water saturation, and presence of transition zones. The result has been an improved means to evaluate potential production, such as bypassed pay behind pipe and in old exploration wells, or to assess zonation and continuity of the reservoir. Petrofacies analysis in this study was applied to distinguishing flow units and including discriminating pore type as an assessment of reservoir conformance and continuity. The analysis is facilitated through the use of colorimage cross sections depicting depositional sequences, natural gamma ray, porosity, and permeability. Also, cluster analysis was applied to discriminate petrophysically similar reservoir rock.
Characterization of Reaerosolization in an Effort to Improve Sampling of Airborne Viruses
2008-04-01
financial support which helped me get through graduate school: Camp Dresser McKee for the CDM Fellowship; the UF Environmental Engineering Department...reservoir H um id ifi er /S at ur at or C ondenser THot TCold RH Figure A-1. BAU prototype schematic. A) Overview of system. B) Cross -sectional view of...degree in environmental engineering in August 2008 and entered the environmental engineering consulting industry with Camp Dresser McKee as an Engineer II in the Water/Wastewater Services Group.
Inverse Theory for Petroleum Reservoir Characterization and History Matching
NASA Astrophysics Data System (ADS)
Oliver, Dean S.; Reynolds, Albert C.; Liu, Ning
This book is a guide to the use of inverse theory for estimation and conditional simulation of flow and transport parameters in porous media. It describes the theory and practice of estimating properties of underground petroleum reservoirs from measurements of flow in wells, and it explains how to characterize the uncertainty in such estimates. Early chapters present the reader with the necessary background in inverse theory, probability and spatial statistics. The book demonstrates how to calculate sensitivity coefficients and the linearized relationship between models and production data. It also shows how to develop iterative methods for generating estimates and conditional realizations. The text is written for researchers and graduates in petroleum engineering and groundwater hydrology and can be used as a textbook for advanced courses on inverse theory in petroleum engineering. It includes many worked examples to demonstrate the methodologies and a selection of exercises.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrell, L.A.; Sippel, M.A.
1996-09-01
The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in Red River and Ratcliffe shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short-radius lateral technologies. Improved completion efficiency, additional wells at closer spacing andmore » better estimates of oil in place will result in additional oil recovery by primary and enhanced recovery processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardage, B.A.; Carr, D.L.; Finley, R.J.
1995-07-01
The objectives of this project are to define undrained or incompletely drained reservoir compartments controlled primarily by depositional heterogeneity in a low-accommodation, cratonic Midcontinent depositional setting, and, afterwards, to develop and transfer to producers strategies for infield reserve growth of natural gas. Integrated geologic, geophysical, reservoir engineering, and petrophysical evaluations are described in complex difficult-to-characterize fluvial and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a large, mature gas field located in the Fort Worth Basin of North Texas. The purpose of this project is to demonstrate approaches to overcoming the reservoir complexity, targeting the gas resource, and doing somore » using state-of-the-art technologies being applied by a large cross section of Midcontinent operators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMechan et al.
2001-08-31
Existing reservoir models are based on 2-D outcrop;3-D aspects are inferred from correlation between wells,and so are inadequately constrained for reservoir simulations. To overcome these deficiencies, we initiated a multidimensional characterization of reservoir analogs in the Cretaceous Ferron Sandstone in Utah.The study was conducted at two sites(Corbula Gulch Coyote Basin); results from both sites are contained in this report. Detailed sedimentary facies maps of cliff faces define the geometry and distribution of potential reservoir flow units, barriers and baffles at the outcrop. High resolution 2-D and 3-D ground penetrating radar(GPR) images extend these reservoir characteristics into 3-D to allow developmentmore » of realistic 3-D reservoir models. Models use geometric information from the mapping and the GPR data, petrophysical data from surface and cliff-face outcrops, lab analyses of outcrop and core samples, and petrography. The measurements are all integrated into a single coordinate system using GPS and laser mapping of the main sedimentologic features and boundaries. The final step is analysis of results of 3-D fluid flow modeling to demonstrate applicability of our reservoir analog studies to well siting and reservoir engineering for maximization of hydrocarbon production. The main goals of this project are achieved. These are the construction of a deterministic 3-D reservoir analog model from a variety of geophysical and geologic measurements at the field sites, integrating these into comprehensive petrophysical models, and flow simulation through these models. This unique approach represents a significant advance in characterization and use of reservoir analogs. To data,the team has presented five papers at GSA and AAPG meetings produced a technical manual, and completed 15 technical papers. The latter are the main content of this final report. In addition,the project became part of 5 PhD dissertations, 3 MS theses,and two senior undergraduate research projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unknown
2001-08-08
The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which aremore » common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.« less
Reservoir characterization using core, well log, and seismic data and intelligent software
NASA Astrophysics Data System (ADS)
Soto Becerra, Rodolfo
We have developed intelligent software, Oilfield Intelligence (OI), as an engineering tool to improve the characterization of oil and gas reservoirs. OI integrates neural networks and multivariate statistical analysis. It is composed of five main subsystems: data input, preprocessing, architecture design, graphics design, and inference engine modules. More than 1,200 lines of programming code as M-files using the language MATLAB been written. The degree of success of many oil and gas drilling, completion, and production activities depends upon the accuracy of the models used in a reservoir description. Neural networks have been applied for identification of nonlinear systems in almost all scientific fields of humankind. Solving reservoir characterization problems is no exception. Neural networks have a number of attractive features that can help to extract and recognize underlying patterns, structures, and relationships among data. However, before developing a neural network model, we must solve the problem of dimensionality such as determining dominant and irrelevant variables. We can apply principal components and factor analysis to reduce the dimensionality and help the neural networks formulate more realistic models. We validated OI by obtaining confident models in three different oil field problems: (1) A neural network in-situ stress model using lithology and gamma ray logs for the Travis Peak formation of east Texas, (2) A neural network permeability model using porosity and gamma ray and a neural network pseudo-gamma ray log model using 3D seismic attributes for the reservoir VLE 196 Lamar field located in Block V of south-central Lake Maracaibo (Venezuela), and (3) Neural network primary ultimate oil recovery (PRUR), initial waterflooding ultimate oil recovery (IWUR), and infill drilling ultimate oil recovery (IDUR) models using reservoir parameters for San Andres and Clearfork carbonate formations in west Texas. In all cases, we compared the results from the neural network models with the results from regression statistical and non-parametric approach models. The results show that it is possible to obtain the highest cross-correlation coefficient between predicted and actual target variables, and the lowest average absolute errors using the integrated techniques of multivariate statistical analysis and neural networks in our intelligent software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott Hara
2000-02-18
The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tarmore » (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD and gross and net oil production rates of 7,700 BPD and 750 BOPD (injection to production ratio of 4) will occur in October 1999. At that time, the reservoir should act more like a waterflood and production and cold water injection can be operated at lower net injection rates to be determined. Modeling runs developed this quarter found that varying individual well injection rates to meet added production and local pressure problems by sub-zone could reduce steam chest fill-up by up to one month.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-01
The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration in the US Department of Energy Class III Program. Advanced reservoir characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir description was too simplistic to capture the critical features of this complex formation. As a result of the analysis, a proposed pilot area was reconsidered. Comparison of seismic data and engineering data have shownmore » evidence of discontinuities in the area surrounding the proposed injector. Analysis of the 3-D seismic has shown that wells in the proposed pilot are in an area of poor quality amplitude development. The implication is that since amplitude attenuation is a function of porosity, then this is not the best area to be attempting a pilot pressure maintenance project. Because the original pilot area appears to be compartmentalized, the lateral continuity between the pilot wells could be reduced. The 3-D seismic interpretation indicates other areas may be better suited for the initial pilot area. Therefore, the current focus has shifted more to targeted drilling, and the pilot injection will be considered in a more continuous area of the NDP in the future. Results of reservoir simulation studies indicate that pressure maintenance should be started early when reservoir pressure is still high.« less
Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick
2006-11-01
The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensormore » packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging survivability issues. Our findings indicate that packaging represents the most significant technical challenge associated with application of sensors in the downhole environment for long periods (5+ years) of time. These issues are described in detail within the report. The impact of successful reservoir monitoring programs and coincident improved reservoir management is measured by the production of additional oil and gas volumes from existing reservoirs, revitalization of nearly depleted reservoirs, possible re-establishment of already abandoned reservoirs, and improved economics for all cases. Smart Well monitoring provides the means to understand how a reservoir process is developing and to provide active reservoir management. At the same time it also provides data for developing high-fidelity simulation models. This work has been a joint effort with Sandia National Laboratories and UT-Austin's Bureau of Economic Geology, Department of Petroleum and Geosystems Engineering, and the Institute of Computational and Engineering Mathematics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan
In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic amplitude versus angle (AVA) and controlled source electromagnetic (CSEM) data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo (MCMC) sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis (DREAM) and Adaptive Metropolis (AM) samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and CSEM data. The multi-chain MCMC is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration,more » the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic AVA and CSEM joint inversion provides better estimation of reservoir saturations than the seismic AVA-only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated – reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less
NASA Astrophysics Data System (ADS)
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura
2017-12-01
In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated - reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, C.D.; Allison, M.L.
The Bluebell field is productive from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then stimulating the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been usedmore » to define improved completion techniques. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The characterization study resulted in recommendations for improved completion techniques and a field-demonstration program to test those techniques. The results of the characterization study and the proposed demonstration program are discussed in the second annual technical progress report. The operator of the wells was unable to begin the field demonstration this project year (October 1, 1995 to September 20, 1996). Correlation and thickness mapping of individual beds in the Wasatch Formation was completed and resulted in a. series of maps of each of the individual beds. These data were used in constructing the reservoir models. Non-fractured and fractured geostatistical models and reservoir simulations were generated for a 20-square-mile (51.8-km{sup 2}) portion of the Bluebell field. The modeling provides insights into the effects of fracture porosity and permeability in the Green River and Wasatch reservoirs.« less
An overview of field-specific designs of microbial EOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, E.P.; Bala, G.A.; Fox, S.L.
1995-12-31
The selection and design of an MEOR process for application in a specific field involves geological, reservoir, and biological characterization. Microbially mediated oil recovery mechanisms (bigenic gas, biopolymers, and biosurfactants) are defined by the types of microorganisms used. The engineering and biological character of a given reservoir must be understood to correctly select a microbial system to enhance oil recovery. This paper discusses the methods used to evaluate three fields with distinct characteristics and production problems for the applicability of MEOR would not be applicable in two of the three fields considered. The development of a microbial oil recovery processmore » for the third field appeared promising. Development of a bacterial consortium capable of producing the desired metabolites was initiated, and field isolates were characterized.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankin, C.J.; Grasmick, M.K.
The Oklahoma Geological Survey (OGS), the Geological Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma have engaged in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all ofmore » Oklahoma`s oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs. Specifically, this project will identify all FDD oil reservoirs in the State; group those reservoirs into plays that have similar depositional and subsequent geologic histories; collect, organize and analyze all available data; conduct characterization and simulation studies on selected reservoirs in each play; and implement a technology transfer program targeted to the operators of FDD reservoirs to sustain the life expectancy of existing wells with the ultimate objective of increasing oil recovery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankin, C.J.; Banken, M.K.
The Oklahoma Geological Survey (OGS), the Geological Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaging in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all ofmore » Oklahoma`s oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs. Specifically, this project will identify all FDD oil reservoirs in the State; group those reservoirs into plays that have similar depositional and subsequent geologic histories; collect, organize and analyze all available data; conduct characterization and simulation studies on selected reservoirs in each play; and implement a technology transfer program targeted to the operators of FDD reservoirs to sustain the life expectancy of existing wells with the ultimate objective of increasing oil recovery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankin, C.J.; Banken, M.K.
The Oklahoma Geological Survey (OGS), the Geological Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaging in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all ofmore » Oklahoma`s oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs. Specifically, this project will identify all FDD oil reservoirs in the State; group those reservoirs into plays that have similar depositional and subsequent geologic histories; collect, organize and analyze all available data; conduct characterization and simulation studies on selected reservoirs in each play; and implement a technology transfer program targeted to the operators of FDD reservoirs to sustain the life expectancy of existing wells with the ultimate objective of increasing oil recovery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankin, G.J.; Banken, M.K.
The Oklahoma Geological Survey (OGS), the Geological Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaging in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery-technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all of Oklahoma`smore » oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs. Specifically, this project will identify all FDD oil reservoirs in the State; group those reservoirs into plays that have similar depositional and subsequent geologic histories; collect, organize and analyze all available data; conduct characterization and simulation studies on selected reservoirs in each play; and implement a technology transfer program targeted to the operators of FDD reservoirs to sustain the life expectancy of existing wells with the ultimate objective of increasing oil recovery.« less
Geothermal reservoir engineering research
NASA Technical Reports Server (NTRS)
Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.
1974-01-01
The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.
Williams, Marshall L.; Fosness, Ryan L.; Weakland, Rhonda J.
2012-01-01
The U.S. Geological Survey conducted a bathymetric survey of the Lower Granite Reservoir, Washington, using a multibeam echosounder, and an underwater video mapping survey during autumn 2009 and winter 2010. The surveys were conducted as part of the U.S. Army Corps of Engineer's study on sediment deposition and control in the reservoir. The multibeam echosounder survey was performed in 1-mile increments between river mile (RM) 130 and 142 on the Snake River, and between RM 0 and 2 on the Clearwater River. The result of the survey is a digital elevation dataset in ASCII coordinate positioning data (easting, northing, and elevation) useful in rendering a 3×3-foot point grid showing bed elevation and reservoir geomorphology. The underwater video mapping survey was conducted from RM 107.73 to 141.78 on the Snake River and RM 0 to 1.66 on the Clearwater River, along 61 U.S. Army Corps of Engineers established cross sections, and dredge material deposit transects. More than 900 videos and 90 bank photographs were used to characterize the sediment facies and ground-truth the multibeam echosounder data. Combined, the surveys were used to create a surficial sediment facies map that displays type of substrate, level of embeddedness, and presence of silt.
Molino, Bruno; De Vincenzo, Annamaria; Ferone, Claudio; Messina, Francesco; Colangelo, Francesco; Cioffi, Raffaele
2014-01-01
Reservoir silting is an unavoidable issue. It is estimated that in Italy, the potential rate of silting-up in large reservoirs ranges from 0.1% to 1% in the presence of wooded river basins and intensive agricultural land use, respectively. In medium and small-sized reservoirs, these values vary between 0.3% and 2%. Considering both the types of reservoirs, the annual average loss of storage capacity would be of about 1.59%. In this paper, a management strategy aimed at sediment productive reuse is presented. Particularly, the main engineering outcomes of an extensive experimental program on geopolymer binder synthesis is reported. The case study deals with Occhito reservoir, located in Southern Italy. Clay sediments coming from this silted-up artificial lake were characterized, calcined and activated, by means of a wide set of alkaline activating solutions. The results showed the feasibility of this recovery process, optimizing a few chemical parameters. The possible reuse in building material production (binders, precast concrete, bricks, etc.) represents a relevant sustainable alternative to landfill and other more consolidated practices. PMID:28788149
Molino, Bruno; De Vincenzo, Annamaria; Ferone, Claudio; Messina, Francesco; Colangelo, Francesco; Cioffi, Raffaele
2014-07-31
Reservoir silting is an unavoidable issue. It is estimated that in Italy, the potential rate of silting-up in large reservoirs ranges from 0.1% to 1% in the presence of wooded river basins and intensive agricultural land use, respectively. In medium and small-sized reservoirs, these values vary between 0.3% and 2%. Considering both the types of reservoirs, the annual average loss of storage capacity would be of about 1.59%. In this paper, a management strategy aimed at sediment productive reuse is presented. Particularly, the main engineering outcomes of an extensive experimental program on geopolymer binder synthesis is reported. The case study deals with Occhito reservoir, located in Southern Italy. Clay sediments coming from this silted-up artificial lake were characterized, calcined and activated, by means of a wide set of alkaline activating solutions. The results showed the feasibility of this recovery process, optimizing a few chemical parameters. The possible reuse in building material production (binders, precast concrete, bricks, etc. ) represents a relevant sustainable alternative to landfill and other more consolidated practices.
Integrated hydraulic cooler and return rail in camless cylinder head
Marriott, Craig D [Clawson, MI; Neal, Timothy L [Ortonville, MI; Swain, Jeff L [Flushing, MI; Raimao, Miguel A [Colorado Springs, CO
2011-12-13
An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.
Strontium isotopic signatures of oil-field waters: Applications for reservoir characterization
Barnaby, R.J.; Oetting, G.C.; Gao, G.
2004-01-01
The 87Sr/86Sr compositions of formation waters that were collected from 71 wells producing from a Pennsylvanian carbonate reservoir in New Mexico display a well-defined distribution, with radiogenic waters (up to 0.710129) at the updip western part of the reservoir, grading downdip to less radiogenic waters (as low as 0.708903 to the east. Salinity (2800-50,000 mg/L) displays a parallel trend; saline waters to the west pass downdip to brackish waters. Elemental and isotopic data indicate that the waters originated as meteoric precipitation and acquired their salinity and radiogenic 87Sr through dissolution of Upper Permian evaporites. These meteoric-derived waters descended, perhaps along deeply penetrating faults, driven by gravity and density, to depths of more than 7000 ft (2100 m). The 87 Sr/86Sr and salinity trends record influx of these waters along the western field margin and downdip flow across the field, consistent with the strong water drive, potentiometric gradient, and tilted gas-oil-water contacts. The formation water 87Sr/86Sr composition can be useful to evaluate subsurface flow and reservoir behavior, especially in immature fields with scarce pressure and production data. In mature reservoirs, Sr Sr isotopes can be used to differentiate original formation water from injected water for waterflood surveillance. Strontium isotopes thus provide a valuable tool for both static and dynamic reservoir characterization in conjunction with conventional studies using seismic, log, core, engineering, and production data. Copyright ??2004. The American Association of Petroleum Geologist. All rights reserved.
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; ...
2017-10-17
In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan
In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankin, C.J.; Banken, M.K.
The Oklahoma Geological Survey (OGS), the Geo Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaged in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all ofmore » Oklahoma`s oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs. Specifically, this project will identify all FDD oil reservoirs in the State; group those reservoirs into plays that have similar depositional and subsequent geologic histories; collect, organize and analyze all available data; conduct characterization and simulation studies on selected reservoirs in each play; and implement a technology transfer program targeted to the operators of FDD reservoirs to sustain the life expectancy of existing wells with the ultimate objective of increasing oil recovery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasquez, N.C.; Sarmiento, Z.F.
1986-07-01
After a geothermal well is completed, several tests and downhole measurements are conducted to help evaluate the subsurface fluid and reservoir properties intersected. From these tests, a conceptual model of the well can be developed by integrating data from the various parts of the field. This paper presents the completion techniques applied in geothermal wells, as well as the role of reservoir engineering science in delineating a field for development. Monitoring techniques and other reservoir engineering aspects of a field under exploitation are also discussed, with examples from the Philippines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott Hara
2007-03-31
The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibilitymore » problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.« less
Heat engine by exorcism of Maxwell Demon using spin angular momentum reservoir
NASA Astrophysics Data System (ADS)
Bedkihal, Salil; Wright, Jackson; Vaccaro, Joan; Gould, Tim
Landauer's erasure principle is a hallmark in thermodynamics and information theory. According to this principle, erasing one bit of information incurs a minimum energy cost. Recently, Vaccaro and Barnett (VB) have explored the role of multiple conserved quantities in memory erasure. They further illustrated that for the energy degenerate spin reservoirs, the cost of erasure can be solely in terms of spin angular momentum and no energy. Motivated by the VB erasure, in this work we propose a novel optical heat engine that operates under a single thermal reservoir and a spin angular momentum reservoir. The novel heat engine exploits ultrafast processes of phonon absorption to convert thermal phonon energy to coherent light. The entropy generated in this process then corresponds to a mixture of spin up and spin down populations of energy degenerate electronic ground states which acts as demon's memory. This information is then erased using a polarised spin reservoir that acts as an entropy sink. The proposed heat engines goes beyond the traditional Carnot engine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sippel, M.; Luff, K.D.; Hendricks, M.L.
1998-07-01
This topical report is a compilation of characterizations by different disciplines of the Mississippian Ratcliffe in portions of Richland County, MT. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity and methods for improved recovery. The report covers investigations of geology, petrography, reservoir engineering and seismic. The Ratcliffe is a low permeability oil reservoir which appears to be developed across much of the study area and occurs across much of the Williston Basin. The reservoir has not been a primary drilling target in the study area because average reserves have been insufficient to payout themore » cost of drilling and completion despite the application of hydraulic fracture stimulation. Oil trapping does not appear to be structurally controlled. For the Ratcliffe to be a viable drilling objective, methods need to be developed for (1) targeting better reservoir development and (2) better completions. A geological model is presented for targeting areas with greater potential for commercial reserves in the Ratcliffe. This model can be best utilized with the aid of 3D seismic. A 3D seismic survey was acquired and is used to demonstrate a methodology for targeting the Ratcliffe. Other data obtained during the project include oriented core, special formation-imaging log, pressure transient measurements and oil PVT. Although re-entry horizontal drilling was unsuccessfully tested, this completion technology should improve the economic viability of the Ratcliffe. Reservoir simulation of horizontal completions with productivity of three times that of a vertical well suggested two or three horizontal wells in a 258-ha (640-acre) area could recover sufficient reserves for profitable drilling.« less
Asymptotic entanglement dynamics phase diagrams for two electromagnetic field modes in a cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drumond, R. C.; Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, Vienna; Souza, L. A. M.
We investigate theoretically an open dynamics for two modes of electromagnetic field inside a microwave cavity. The dynamics is Markovian and determined by two types of reservoirs: the ''natural'' reservoirs due to dissipation and temperature of the cavity, and an engineered one, provided by a stream of atoms passing trough the cavity, as devised by Pielawa et al. [Phys. Rev. Lett. 98, 240401 (2007)]. We found that, depending on the reservoir parameters, the system can have distinct ''phases'' for the asymptotic entanglement dynamics: it can disentangle at finite time or it can have persistent entanglement for large times, with themore » transition between them characterized by the possibility of asymptotical disentanglement. Incidentally, we also discuss the effects of dissipation on the scheme proposed in the above reference for generation of entangled states.« less
Improved recovery demonstration for Williston Basin carbonates. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sippel, M.A.
The purpose of this project was to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, and methods for improved completion efficiency. The investigations and demonstrations were focussed on Red River and Ratcliffe reservoirs in the Williston Basin within portions of Montana, North Dakota and South Dakota. Both of these formations have been successfully explored with conventional 2-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) seismic was investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterizations were integrated with geological and engineering studies. The project tested lateral completion techniques, including high-pressure jetting lance technologymore » and short-radius lateral drilling to enhance completion efficiency. Lateral completions should improve economics for both primary and secondary oil where low permeability is a problem and higher-density drilling of vertical infill wells is limited by drilling cost. New vertical wells were drilled to test bypassed oil in ares that were identified by 3D seismic. These new wells are expected to recover as much or greater oil than was produced by nearby old wells. The project tested water injection through vertical and horizontal wells in reservoirs where application of waterflooding has been limited. A horizontal well was drilled for testing water injection. Injection rates were tested at three times that of a vertical well. This demonstration well shows that water injection with horizontal completions can improve injection rates for economic waterflooding. This report is divided into two sections, part 1 covers the Red River and part 2 covers the Ratcliffe. Each part summarizes integrated reservoir characterizations and outlines methods for targeting by-passed oil reserves in the respective formation and locality.« less
SEG and AAPG: common background, common problems, common future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larner, K.
1989-03-01
Today, products of the geophysical method are considered indispensable for geologic interpretation in petroleum exploration. Few exploration case histories today lack the evidence of seismic data upon which structural and stratigraphic interpretations have been constrained. Likewise, during the deep recession that exploration has been experiencing, exploration geophysicists are increasingly realizing that their tools have value only to the extent that they can yield geological and reservoir information that is more directly relevant to oil finding and field development than in the past. Geophysicists are now preoccupied with more than just their wavelets, static correction, and migration. As the papers inmore » this session indicate, geophysicists are extending their technology to estimate lithology, fluid content, monitoring of EOR efforts, and characterization and development of reservoirs. The three-dimensional seismic method, for example, is being brought right to the borehole with the use of the drill bit as the energy source. The futures of their two societies and their members are fully intertwined. Geologists and petroleum engineers who wish to gain considerably more information, cost-effectively, about their prospects, fields, and reservoirs must stay in touch with the exciting new developments from the geophysical community. Equally, geophysicists can maintain their relevance to oil finding only by staying closely in touch with developments in understanding of geology and the reservoir, and with the working interests and needs of geologists and petroleum engineers.« less
Cooperative Learning in Reservoir Simulation Classes: Overcoming Disparate Entry Skills
ERIC Educational Resources Information Center
Awang, Mariyamni
2006-01-01
Reservoir simulation is one of the core courses in the petroleum engineering curriculum and it requires knowledge and skills in three major disciplines, namely programming, numerical methods and reservoir engineering. However, there were often gaps in the students' readiness to undertake the course, even after completing the necessary…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankin, C.J.; Banken, M.K.
The Oklahoma Geological Survey (OGS), the Geo Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaged in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all ofmore » Oklahoma`s oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs. Specifically, this project will identify all FDD oil reservoirs in the State; group those reservoirs into plays that have similar depositional origins; collect, organize and analyze all available data conduct characterization and simulation studies on selected reservoirs in each play; and implement a technology transfer program targeted to the operators of FDD reservoirs. Activities were focused primarily on technology transfer elements of the project. This included regional play analysis and mapping, geologic field studies, and reservoir modeling for secondary water flood simulations as used in publication folios and workshops. The computer laboratory was fully operational for operator use. Computer systems design and database development activities were ongoing.« less
Mechanical equivalent of quantum heat engines.
Arnaud, Jacques; Chusseau, Laurent; Philippe, Fabrice
2008-06-01
Quantum heat engines employ as working agents multilevel systems instead of classical gases. We show that under some conditions quantum heat engines are equivalent to a series of reservoirs at different altitudes containing balls of various weights. A cycle consists of picking up at random a ball from one reservoir and carrying it to the next, thereby performing or absorbing some work. In particular, quantum heat engines, employing two-level atoms as working agents, are modeled by reservoirs containing balls of weight 0 or 1. The mechanical model helps us prove that the maximum efficiency of quantum heat engines is the Carnot efficiency. Heat pumps and negative temperatures are considered.
Reservoir management cost-cutting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulati, M.S.
This article by Mohinder S. Gulati, Chief Engineer, Unocal Geothermal Operations, discusses cost cutting in geothermal reservoir management. The reservoir engineer or geoscientist can make a big difference in the economical outcome of a project by improving well performance and thus making geothermal energy more competitive in the energy marketplace. Bringing plants online in less time and proving resources to reduce the cycle time are some of the ways to reduce reservoir management costs discussed in this article.
NASA Astrophysics Data System (ADS)
Kim, J.; Johnson, L.; Cifelli, R.; Chandra, C. V.; Gochis, D.; McCreight, J. L.; Yates, D. N.; Read, L.; Flowers, T.; Cosgrove, B.
2017-12-01
NOAA National Water Center (NWC) in partnership with the National Centers for Environmental Prediction (NCEP), the National Center for Atmospheric Research (NCAR) and other academic partners have produced operational hydrologic predictions for the nation using a new National Water Model (NWM) that is based on the community WRF-Hydro modeling system since the summer of 2016 (Gochis et al., 2015). The NWM produces a variety of hydrologic analysis and prediction products, including gridded fields of soil moisture, snowpack, shallow groundwater levels, inundated area depths, evapotranspiration as well as estimates of river flow and velocity for approximately 2.7 million river reaches. Also included in the NWM are representations for more than 1,200 reservoirs which are linked into the national channel network defined by the USGS NHDPlusv2.0 hydrography dataset. Despite the unprecedented spatial and temporal coverage of the NWM, many known deficiencies exist, including the representation of lakes and reservoirs. This study addresses the implementation of a reservoir assimilation scheme through coupling of a reservoir simulation model to represent the influence of managed flows. We examine the use of the reservoir operations to dynamically update lake/reservoir storage volume states, characterize flow characteristics of river reaches flowing into and out of lakes and reservoirs, and incorporate enhanced reservoir operating rules for the reservoir model options within the NWM. Model experiments focus on a pilot reservoir domain-Lake Mendocino, CA, and its contributing watershed, the East Fork Russian River. This reservoir is modeled using United States Army Corps of Engineers (USACE) HEC-ResSim developed for application to examine forecast informed reservoir operations (FIRO) in the Russian River basin.
Structural Oil Pan With Integrated Oil Filtration And Cooling System
Freese, V, Charles Edwin
2000-05-09
An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.
Nonlinearities in reservoir engineering: Enhancing quantum correlations
NASA Astrophysics Data System (ADS)
Hu, Xiangming; Hu, Qingping; Li, Lingchao; Huang, Chen; Rao, Shi
2017-12-01
There are two decisive factors for quantum correlations in reservoir engineering, but they are strongly reversely dependent on the atom-field nonlinearities. One is the squeezing parameter for the Bogoliubov modes-mediated collective interactions, while the other is the dissipative rates for the engineered collective dissipations. Exemplifying two-level atomic ensembles, we show that the moderate nonlinearities can compromise these two factors and thus enhance remarkably two-mode squeezing and entanglement of different spin atomic ensembles or different optical fields. This suggests that the moderate nonlinearities of the two-level systems are more advantageous for applications in quantum networks associated with reservoir engineering.
Tracer Methods for Characterizing Fracture Creation in Engineered Geothermal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Peter; Harris, Joel
2014-05-08
The aim of this proposal is to develop, through novel high-temperature-tracing approaches, three technologies for characterizing fracture creation within Engineered Geothermal Systems (EGS). The objective of a first task is to identify, develop and demonstrate adsorbing tracers for characterizing interwell reservoir-rock surface areas and fracture spacing. The objective of a second task is to develop and demonstrate a methodology for measuring fracture surface areas adjacent to single wells. The objective of a third task is to design, fabricate and test an instrument that makes use of tracers for measuring fluid flow between newly created fractures and wellbores. In one methodmore » of deployment, it will be used to identify qualitatively which fractures were activated during a hydraulic stimulation experiment. In a second method of deployment, it will serve to measure quantitatively the rate of fluid flowing from one or more activated fracture during a production test following a hydraulic stimulation.« less
CO2 Driven Mineral Transformations in Fractured Reservoir
NASA Astrophysics Data System (ADS)
Schaef, T.
2015-12-01
Engineering fracture systems in low permeable formations to increase energy production, accelerate heat extraction, or to enhance injectivity for storing anthropogenic CO2, is a challenging endeavor. To complicate matters, caprocks, essential components of subsurface reservoirs, need to maintain their sealing integrity in this modified subsurface system. Supercritical CO2 (scCO2), a proposed non-aqueous based working fluid, is capable of driving mineral transformations in fracture environments. Water dissolution in scCO2 significantly impacts the reactivity of this fluid, largely due to the development of thin adsorbed H2O films on the surfaces of exposed rocks and minerals. Adsorbed H2O films are geochemically complex microenvironments that host mineral dissolution and precipitation processes that could be tailored to influence overall formation permeability. Furthermore, manipulating the composition of injected CO2 (e.g., moisture content and/or reactive gases such as O2, NOx, or SOx) could stimulate targeted mineral transformations that enhance or sustain reservoir performance. PNNL has developed specialized experimental techniques that can be used to characterize chemical reactions occurring between minerals and pressurized gases. For example, hydration of a natural shale sample (Woodford Shale) has been characterized by an in situ infrared spectroscopic technique as water partitions from the scCO2 onto the shale. Mineral dissolution and carbonate precipitation reactions were tracked by monitoring changes of Si-O and C-O stretching bands, respectively Structural changes indicated expandable clays in the shale such as montmorillonite are intercalated with scCO2, a process not observed with the non-expandable kaolinite component. Extreme scale ab initio molecular dynamics simulations were used in conjunction with model mineral systems to identify the driving force and mechanism of water films. They showed that the film nucleation and formation on minerals is driven by both enthalpic and entropic requirements. Collectively, the synergy between laboratory observations, state-of-the-art atomistic simulations and reservoir modeling has generated important insights for the design and engineering of subsurface reservoirs for CO2 storage and energy extraction.
78 FR 42030 - Reservoirs at Headwaters of the Mississippi River; Use and Administration
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-15
... the reservoirs, the Secretary of War prescribed regulations governing operation of the reservoirs on... reservoir may operate but also the absolute upper limit on reservoir operations, effectively providing a... DEPARTMENT OF DEFENSE Department of the Army, Corps of Engineers 33 CFR Part 207 Reservoirs at...
Tracing Injection Fluids in Engineered Geothermal Systems
NASA Astrophysics Data System (ADS)
Rose, P. E.; Leecaster, K.; Mella, M.; Ayling, B.; Bartl, M. H.
2011-12-01
The reinjection of produced fluids is crucial to the effective management of geothermal reservoirs, since it provides a mechanism for maintaining reservoir pressures while allowing for the disposal of a toxic byproduct. Tracers are essential to the proper location of injection wells since they are the only known tool for reliably characterizing the flow patterns of recirculated fluids. If injection wells are placed too close to production wells, then reinjected fluids do not have sufficient residence time to extract heat from the reservoir and premature thermal breakthrough results. If injection wells are placed too far away, then the reservoir risks unacceptable pressure loss. Several thermally stable compounds from a family of very detectable fluorescent organic compounds (the naphthalene sulfonates) were characterized and found to be effective for use as geothermal tracers. Through batch-autoclave reactions, their Arrhenius pseudo-first-order decay-rate constants were determined. An analytical method was developed that allows for the laboratory determination of concentrations in the low parts-per-trillion range. Field experiments in numerous geothermal reservoirs throughout the world have confirmed the laboratory findings. Whereas conservative tracers such as the naphthalene sulfonates are effective tools for indicating interwell flow patterns and for measuring reservoir pore volumes, 'reactive' tracers can be used to constrain fracture surface area, which is the effective area for heat extraction. This is especially important for engineered geothermal system (EGS) wells, since reactive tracers can be used to measure fracture surface area immediately after drilling and while the well stimulation equipment is still on site. The reactive properties of these tracers that can be exploited to constrain fracture surface area are reversible sorption, contrasting diffusivity, and thermal decay. Laboratory batch- and flow-reactor experiments in combination with numerical simulation studies have served to identify candidate compounds for use as reactive tracers. An emerging class of materials that show promise for use as geothermal and EGS tracers are colloidal nanocrystals (quantum dots). These are semiconductor particles that fluoresce as a function of particle size. Preliminary laboratory experimentation has demonstrated that these thermally stable, water-soluble particles can serve as conservative tracers for geothermal applications. Likewise, they show promise as potential reactive tracers, since their surfaces can be modified to be reversibly sorptive and their diameters are sufficiently large to allow for contrasts in diffusivity with solute tracers.
Efficiency of Brownian heat engines.
Derényi, I; Astumian, R D
1999-06-01
We study the efficiency of one-dimensional thermally driven Brownian ratchets or heat engines. We identify and compare the three basic setups characterized by the type of the connection between the Brownian particle and the two heat reservoirs: (i) simultaneous, (ii) alternating in time, and (iii) position dependent. We make a clear distinction between the heat flow via the kinetic and the potential energy of the particle, and show that the former is always irreversible and it is only the third setup where the latter is reversible when the engine works quasistatically. We also show that in the third setup the heat flow via the kinetic energy can be reduced arbitrarily, proving that even for microscopic heat engines there is no fundamental limit of the efficiency lower than that of a Carnot cycle.
NASA Astrophysics Data System (ADS)
Wang, Baijie; Wang, Xin; Chen, Zhangxin
2013-08-01
Reservoir characterization refers to the process of quantitatively assigning reservoir properties using all available field data. Artificial neural networks (ANN) have recently been introduced to solve reservoir characterization problems dealing with the complex underlying relationships inherent in well log data. Despite the utility of ANNs, the current limitation is that most existing applications simply focus on directly implementing existing ANN models instead of improving/customizing them to fit the specific reservoir characterization tasks at hand. In this paper, we propose a novel intelligent framework that integrates fuzzy ranking (FR) and multilayer perceptron (MLP) neural networks for reservoir characterization. FR can automatically identify a minimum subset of well log data as neural inputs, and the MLP is trained to learn the complex correlations from the selected well log data to a target reservoir property. FR guarantees the selection of the optimal subset of representative data from the overall well log data set for the characterization of a specific reservoir property; and, this implicitly improves the modeling and predication accuracy of the MLP. In addition, a growing number of industrial agencies are implementing geographic information systems (GIS) in field data management; and, we have designed the GFAR solution (GIS-based FR ANN Reservoir characterization solution) system, which integrates the proposed framework into a GIS system that provides an efficient characterization solution. Three separate petroleum wells from southwestern Alberta, Canada, were used in the presented case study of reservoir porosity characterization. Our experiments demonstrate that our method can generate reliable results.
Fifteenth workshop on geothermal reservoir engineering: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.
Qaharir Field, Oman: A textbook case
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Dell, P.M.
1995-12-31
Qaharir Field is located in the southern part of the Sultanate of Oman. Like several fields in South Oman, it produces a light oil with very little solution gas. Qaharir Field contains a large depletion reservoir and several natural water drive reservoirs. There is, therefore, a large variation in the primary recovery efficiencies. A recent petroleum engineering review of this field determined the reservoir drive mechanisms and provided a basis for further development plans. This review of Qaharir Field demonstrates the application of conventional reservoir engineering tools to gain an understanding of the reservoir in sufficient detail to select andmore » plan the next development objectives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankin, C.J.; Banken, M.K.
The Oklahoma Geological Survey (OGS), the Geological Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaging in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all ofmore » Oklahoma`s oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs. Specifically, this project will identify all FDD oil reservoirs in the State; group those reservoirs into plays that have similar depositional and subsequent geologic histories; collect, organize and analyze all available data; conduct characterization and simulation studies on selected reservoirs in each play; and implement a technology transfer program targeted to the operators of FDD reservoirs to sustain the life expectancy of existing wells with the ultimate objective of increasing oil recovery. The elements of the technology transfer program include developing and publishing play portfolios, holding workshops to release play analyses and identify opportunities in each of the plays, and establishing a computer laboratory that is available for industry users.« less
Reservoir description and future development plans for the Unam/Mfem Fields, OML 67, Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kofron, B.M.; Jenkinson, J.T.; Maxwell, G.S.
1995-08-01
The Unam/Mfem fields, which are currently produced from three platforms, are, located 25 km offshore (southeastern Nigeria) in water depths of 60 feet to 100 feet. Over 100 MMBO have been produced to date from both unconformity bounded and fault trap reservoirs in the Upper and Middle Biafra Sands. These structural and stratigraphic geometries define at least eleven different reservoirs that are not interconnected. STOIIP for all eleven reservoirs is estimated to exceed 900 MMBO based on a recently completed reservoir characterization study. A two year reservoir description study followed the acquisition of a 1991 3-D seismic survey and resultedmore » in the drilling of six successful wells and two sidetracks. A 3-D model of reservoir geometries and fluid flow properties was generated by integrating geologic, geophysical, and reservoir engineering data. These diverse data sets were interpreted using a combination of workstations, software packages, and displays that included Landmark, IREX, wireline log and seismic correlation charts. A detailed stratigraphic zonation scheme with 28 zones was defined and correlated field wide and subregionally to build the reservoir framework. Twenty seismic horizons were created. More than 300 critical compute, generated grids were then used to calculate STOIIP volumes. This study led to the identification of new pay zones along with a much better understanding of the spatial distribution of all pays within the fields. A revised exploitation strategy has subsequently been proposed which calls for 5 new platforms and the drilling of 21 additional wells over the next few years.« less
Current rectification in a double quantum dot through fermionic reservoir engineering
NASA Astrophysics Data System (ADS)
Malz, Daniel; Nunnenkamp, Andreas
2018-04-01
Reservoir engineering is a powerful tool for the robust generation of quantum states or transport properties. Using both a weak-coupling quantum master equation and the exact solution, we show that directional transport of electrons through a double quantum dot can be achieved through an appropriately designed electronic environment. Directionality is attained through the interference of coherent and dissipative coupling. The relative phase is tuned with an external magnetic field, such that directionality can be reversed, as well as turned on and off dynamically. Our work introduces fermionic-reservoir engineering, paving the way to a new class of nanoelectronic devices.
Microbial enhanced oil recovery research. Annex 5, Summary annual report 1990--1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, M.M.; Georgiou, G.
1991-12-31
The objective of this work is to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. Specific goals include: (1) the production, isolation, chemical characterization and study of the physical properties of microbially produced surfactants; (2) development of simulators for MEOR; (3) model studies in sandstone cores for the characterization of the interactions between growing microbially cultures and oil reservoirs,; (4) design of operation strategies for the sequential injection of microorganisms and nutrient in reservoirs. Accomplishments are: (1) ultra low interfacial tensions (0.003 mN/M) were obtained between decane and 5% NaCl brine using biosurfactants obtained frommore » Bacillus Licheniformis, JF-2 which is the lowest IFT ever reported for biosurfactants; (2) a method to was developed isolate the biosurfactant from the growth medium; (3) the structure of the isolated biosurfactant has been determined; (4) several techniques have been proposed to increase the yield of the surfactant; and (5) an MEOR simulator has been completed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, F.P.; Dai, J.; Kerans, C.
1998-11-01
In part 1 of this paper, the authors discussed the rock-fabric/petrophysical classes for dolomitized carbonate-ramp rocks, the effects of rock fabric and pore type on petrophysical properties, petrophysical models for analyzing wireline logs, the critical scales for defining geologic framework, and 3-D geologic modeling. Part 2 focuses on geophysical and engineering characterizations, including seismic modeling, reservoir geostatistics, stochastic modeling, and reservoir simulation. Synthetic seismograms of 30 to 200 Hz were generated to study the level of seismic resolution required to capture the high-frequency geologic features in dolomitized carbonate-ramp reservoirs. Outcrop data were collected to investigate effects of sampling interval andmore » scale-up of block size on geostatistical parameters. Semivariogram analysis of outcrop data showed that the sill of log permeability decreases and the correlation length increases with an increase of horizontal block size. Permeability models were generated using conventional linear interpolation, stochastic realizations without stratigraphic constraints, and stochastic realizations with stratigraphic constraints. Simulations of a fine-scale Lawyer Canyon outcrop model were used to study the factors affecting waterflooding performance. Simulation results show that waterflooding performance depends strongly on the geometry and stacking pattern of the rock-fabric units and on the location of production and injection wells.« less
1991-09-01
SEVERITY INDEX (PDSI) ................. 116 iv FOREWORD Recent droughts in the United States have caused water management agencies to examine the operation ...detail, and a discussion of reservoir operating procedures, may be found in the Corps’ Engineering Manual on Management of Water Control Systems (U. S...fishery management . The seasonal fluctuation that occurs at many flood control reservoirs, and the daily fluctuations that occur with hydropower operation
EFFECT OF TRITIUM AND DECAY HELIUM ON WELDMENT FRACTURE TOUGHNESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, M; Scott West, S; Michael Tosten, M
2006-09-26
The fracture toughness data collected in this study are needed to assess the long-term effects of tritium and its decay product on tritium reservoirs. The results show that tritium and decay helium have negative effects on the fracture toughness properties of stainless steel and its weldments. The data and report from this study has been included in a material property database for use in tritium reservoir modeling efforts like the Technology Investment Program ''Lifecycle Engineering for Tritium Reservoirs''. A number of conclusions can be drawn from the data: (1) For unexposed Type 304L stainless steel, the fracture toughness of weldmentsmore » was two to three times higher than the base metal toughness. (2) Tritium exposure lowered the fracture toughness properties of both base metals and weldments. This was characterized by lower J{sub Q} values and lower J-da curves. (3) Tritium-exposed-and-aged base metals and weldments had lower fracture toughness values than unexposed ones but still retained good toughness properties.« less
Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits
Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswel, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.B.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.A.
2011-01-01
The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas-hydrate (GH) petroleum system; to discuss advances, requirements, and suggested practices in GH prospecting and GH deposit characterization; and to review the associated technical, economic, and environmental challenges and uncertainties, which include the following: accurate assessment of producible fractions of the GH resource; development of methods for identifying suitable production targets; sampling of hydrate-bearing sediments (HBS) and sample analysis; analysis and interpretation of geophysical surveys of GH reservoirs; well-testing methods; interpretation of well-testing results; geomechanical and reservoir/well stability concerns; well design, operation, and installation; field operations and extending production beyond sand-dominated GH reservoirs; monitoring production and geomechanical stability; laboratory investigations; fundamental knowledge of hydrate behavior; the economics of commercial gas production from hydrates; and associated environmental concerns. ?? 2011 Society of Petroleum Engineers.
Lee, Casey J.; Rasmussen, Patrick P.; Ziegler, Andrew C.
2008-01-01
Storage capacity in John Redmond Reservoir is being lost to sedimentation more rapidly than in other federal impoundments in Kansas. The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, initiated a study to characterize suspended-sediment loading to and from John Redmond Reservoir from February 21, 2007, through February 21, 2008. Turbidity sensors were installed at two U.S. Geological Survey stream gages upstream (Neosho River near Americus and the Cottonwood River near Plymouth) and one stream gage downstream (Neosho River at Burlington) from the reservoir to compute continuous, real-time (15-minute) measurements of suspended-sediment concentration and loading. About 1,120,000 tons of suspended-sediment were transported to, and 100,700 tons were transported from John Redmond Reservoir during the study period. Dependent on the bulk density of sediment stored in the reservoir, 5.0 to 1.4 percent of the storage in the John Redmond conservation pool was lost during the study period, with an average deposition of 3.4 to 1.0 inches. Nearly all (98-99 percent) of the incoming sediment load was transported during 9 storms which occurred 25 to 27 percent of the time. The largest storm during the study period (peak-flow recurrence interval of about 4.6-4.9 years) transported about 37 percent of the sediment load to the reservoir. Suspended-sediment yield from the unregulated drainage area upstream from the Neosho River near Americus was 530 tons per square mile, compared to 400 tons per square mile upstream from the Cottonwood River near Plymouth. Comparison of historical (1964-78) to current (2007) sediment loading estimates indicate statistically insignificant (99 percent) decrease in sediment loading at the Neosho River at Burlington. Ninety-percent confidence intervals of streamflow-derived estimates of total sediment load were 7 to 21 times larger than turbidity-derived estimates. Results from this study can be used by natural resource managers to calibrate sediment models and estimate the ability of John Redmond Reservoir to support designated uses into the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allison, M.L.
1996-05-13
The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin will is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil- bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch Formations in the Bluefell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of themore » project. Data (net pay thickness, porosity, and water saturation) of more than 100 individuals beds in he lower Green River and Wasatch Formations were used to generate geostatistical realization (numerical- representation) of the reservoir properties. The data set was derived from the Michelle Ute and Malnar Pike demonstration wells and 22 other wells in a 20 (52 km{sup 2}) square-mile area. Beds were studied independently of each other. Principles of sequential Gaussian simulations were used to generate geostatistical realizations of the beds.« less
Power control system for a hot gas engine
Berntell, John O.
1986-01-01
A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.
Optimizing Fracture Treatments in a Mississippian "Chat" Reservoir, South-Central Kansas
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. David Newell; Saibal Bhattacharya; Alan Byrnes
2005-10-01
This project is a collaboration of Woolsey Petroleum Corporation (a small independent operator) and the Kansas Geological Survey. The project will investigate geologic and engineering factors critical for designing hydraulic fracture treatments in Mississippian ''chat'' reservoirs. Mississippian reservoirs, including the chat, account for 159 million m3 (1 billion barrels) of the cumulative oil produced in Kansas. Mississippian reservoirs presently represent {approx}40% of the state's 5.6*106m3 (35 million barrels) annual production. Although geographically widespread, the ''chat'' is a heterogeneous reservoir composed of chert, cherty dolomite, and argillaceous limestone. Fractured chert with micro-moldic porosity is the best reservoir in this 18- tomore » 30-m-thick (60- to 100-ft) unit. The chat will be cored in an infill well in the Medicine Lodge North field (417,638 m3 [2,626,858 bbls] oil; 217,811,000 m3 [7,692,010 mcf] gas cumulative production; discovered 1954). The core and modern wireline logs will provide geological and petrophysical data for designing a fracture treatment. Optimum hydraulic fracturing design is poorly defined in the chat, with poor correlation of treatment size to production increase. To establish new geologic and petrophysical guidelines for these treatments, data from core petrophysics, wireline logs, and oil-field maps will be input to a fracture-treatment simulation program. Parameters will be established for optimal size of the treatment and geologic characteristics of the predicted fracturing. The fracturing will be performed and subsequent wellsite tests will ascertain the results for comparison to predictions. A reservoir simulation program will then predict the rate and volumetric increase in production. Comparison of the predicted increase in production with that of reality, and the hypothetical fracturing behavior of the reservoir with that of its actual behavior, will serve as tests of the geologic and petrophysical characterization of the oil field. After this feedback, a second well will be cored and logged, and procedure will be repeated to test characteristics determined to be critical for designing cost-effective fracture treatments. Most oil and gas production in Kansas, and that of the Midcontinent oil industry, is dominated by small companies. The overwhelming majority of these independent operators employ less than 20 people. These companies have limited scientific and engineering expertise and they are increasingly needing guidelines and technical examples that will help them to not be wasteful of their limited financial resources and petroleum reserves. To aid these operators, the technology transfer capabilities of the Kansas Geological Survey will disseminate the results of this study to the local, regional, and national oil industry. Internet access, seminars, presentations, and publications by Woolsey Petroleum Company and Kansas Geological Survey geologists and engineers are anticipated.« less
NASA Technical Reports Server (NTRS)
Berdahl, C. M.
1980-01-01
Sensor remains accurate in spite of varying temperatures. Very accurate, sensitive, and stable downhole pressure measurements are needed for vaiety of reservoir engineering applications, such as deep petroleum reservoirs, especially gas reservoirs, and in areas of high geothermal gradient.
4. International reservoir characterization technical conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energymore » Science and Technology database.« less
Integration of seismic and petrophysics to characterize reservoirs in "ALA" oil field, Niger Delta.
Alao, P A; Olabode, S O; Opeloye, S A
2013-01-01
In the exploration and production business, by far the largest component of geophysical spending is driven by the need to characterize (potential) reservoirs. The simple reason is that better reservoir characterization means higher success rates and fewer wells for reservoir exploitation. In this research work, seismic and well log data were integrated in characterizing the reservoirs on "ALA" field in Niger Delta. Three-dimensional seismic data was used to identify the faults and map the horizons. Petrophysical parameters and time-depth structure maps were obtained. Seismic attributes was also employed in characterizing the reservoirs. Seven hydrocarbon-bearing reservoirs with thickness ranging from 9.9 to 71.6 m were delineated. Structural maps of horizons in six wells containing hydrocarbon-bearing zones with tops and bottoms at range of -2,453 to -3,950 m were generated; this portrayed the trapping mechanism to be mainly fault-assisted anticlinal closures. The identified prospective zones have good porosity, permeability, and hydrocarbon saturation. The environments of deposition were identified from log shapes which indicate a transitional-to-deltaic depositional environment. In this research work, new prospects have been recommended for drilling and further research work. Geochemical and biostratigraphic studies should be done to better characterize the reservoirs and reliably interpret the depositional environments.
The report describes the results of pollution prevention opportunity assessments conducted at a representative U.S. Army Corps of Engineers civil works facilities including a flood control reservoir and associated public use areas. ecommended methods for reducing pollution result...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, B. Mack; Pruess, Karsten; Lippmann, Marcelo J.
2010-09-01
This report, the third in a four-part series, summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in reservoir engineering and to make generation of electricity from geothermal resources more cost-competitive.
33 CFR 211.81 - Reservoir areas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Reservoir areas. 211.81 Section 211.81 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION WITH CIVIL WORKS PROJECTS Sale of...
Quantum heat engine operating between thermal and spin reservoirs
NASA Astrophysics Data System (ADS)
Wright, Jackson S. S. T.; Gould, Tim; Carvalho, André R. R.; Bedkihal, Salil; Vaccaro, Joan A.
2018-05-01
Landauer's erasure principle is a cornerstone of thermodynamics and information theory [R. Landauer, IBM J. Res. Dev. 5, 183 (1961), 10.1147/rd.53.0183]. According to this principle, erasing information incurs a minimum energy cost. Recently, Vaccaro and Barnett [J. A. Vaccaro and S. M. Barnett, Proc. R. Soc. A 467, 1770 (2011), 10.1098/rspa.2010.0577] explored information erasure in the context of multiple conserved quantities and showed that the erasure cost can be solely in terms of spin angular momentum. As Landauer's erasure principle plays a fundamental role in heat engines, their result considerably widens the possible configurations that heat engines can have. Motivated by this, we propose here an optical heat engine that operates under a single thermal reservoir and a spin angular momentum reservoir coupled to a three-level system with two energy degenerate ground states. The proposed heat engine operates without producing waste heat and goes beyond the traditional Carnot engine where the working fluid is subjected to two thermal baths at different temperatures.
33 CFR 207.340 - Reservoirs at headwaters of the Mississippi River; use and administration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Reservoirs at headwaters of the... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.340 Reservoirs at headwaters of the Mississippi River; use and administration. (a) Description. These reservoirs include...
33 CFR 207.340 - Reservoirs at headwaters of the Mississippi River; use and administration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Reservoirs at headwaters of the... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.340 Reservoirs at headwaters of the Mississippi River; use and administration. (a) Description. These reservoirs include...
Slim hole drilling and testing strategies
NASA Astrophysics Data System (ADS)
Nielson, Dennis L.; Garg, Sabodh K.; Goranson, Colin
2017-12-01
The financial and geologic advantages of drilling slim holes instead of large production wells in the early stages of geothermal reservoir assessment has been understood for many years. However, the practice has not been fully embraced by geothermal developers. We believe that the reason for this is that there is a poor understanding of testing and reservoir analysis that can be conducted in slim holes. In addition to reservoir engineering information, coring through the cap rock and into the reservoir provides important data for designing subsequent production well drilling and completion. Core drilling requires significantly less mud volume than conventional rotary drilling, and it is typically not necessary to cure lost circulation zones (LCZ). LCZs should be tested by either production or injection methods as they are encountered. The testing methodologies are similar to those conducted on large-diameter wells; although produced and/or injected fluid volumes are much less. Pressure, temperature and spinner (PTS) surveys in slim holes under static conditions can used to characterize temperature and pressure distribution in the geothermal reservoir. In many cases it is possible to discharge slim holes and obtain fluid samples to delineate the geochemical properties of the reservoir fluid. Also in the latter case, drawdown and buildup data obtained using a downhole pressure tool can be employed to determine formation transmissivity and well properties. Even if it proves difficult to discharge a slim hole, an injection test can be performed to obtain formation transmissivity. Given the discharge (or injection) data from a slimhole, discharge properties of a large-diameter well can be inferred using wellbore modeling. Finally, slim hole data (pressure, temperature, transmissivity, fluid properties) together with reservoir simulation can help predict the ability of the geothermal reservoir to sustain power production.
Fourteenth workshop geothermal reservoir engineering: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.
1989-01-01
The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.
Fourteenth workshop geothermal reservoir engineering: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.
The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.
2010-05-01
greatly by location in relation to north - easterly trade winds and topography. Annual rainfall ranges from about 10 to 60 in. (254 to 1,524 mm) on leeward...a small atoll located 200 mi (322 km) north of Pago Pago. The larger islands are characterized by steep volcanic mountainsides, small incised...from Africa and Asia. They inhabit a wide range of freshwater, brackish, and saltwater habitats, including streams, reservoirs, coastal lagoons, and
Pre- and postprocessing for reservoir simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, W.L.; Ingalls, L.J.; Prasad, S.J.
1991-05-01
This paper describes the functionality and underlying programing paradigms of Shell's simulator-related reservoir-engineering graphics system. THis system includes the simulation postprocessing programs Reservoir Display System (RDS) and Fast Reservoir Engineering Displays (FRED), a hypertext-like on-line documentation system (DOC), and a simulator input preprocessor (SIMPLSIM). RDS creates displays of reservoir simulation results. These displays represent the areal or cross-section distribution of computer reservoir parameters, such as pressure, phase saturation, or temperature. Generation of these images at real-time animation rates is discussed. FRED facilitates the creation of plot files from reservoir simulation output. The use of dynamic memory allocation, asynchronous I/O, amore » table-driven screen manager, and mixed-language (FORTRAN and C) programming are detailed. DOC is used to create and access on-line documentation for the pre-and post-processing programs and the reservoir simulators. DOC can be run by itself or can be accessed from within any other graphics or nongraphics application program. DOC includes a text editor, which is that basis for a reservoir simulation tutorial and greatly simplifies the preparation of simulator input. The use of sharable images, graphics, and the documentation file network are described. Finally, SIMPLSIM is a suite of program that uses interactive graphics in the preparation of reservoir description data for input into reservoir simulators. The SIMPLSIM user-interface manager (UIM) and its graphic interface for reservoir description are discussed.« less
NASA Astrophysics Data System (ADS)
Kittilä, Anniina; Evans, Keith; Puddu, Michela; Mikutis, Gediminas; Grass, Robert N.; Deuber, Claudia; Saar, Martin O.
2016-04-01
Groundwater flow in fractured media is heterogeneous and takes place in structures with complex geometry and scale effects, which make the characterization and modeling of the groundwater flow technically challenging. Surface geophysical surveys have limited resolution of permeable structures, and often provide ambiguous results, whereas the interpretation of borehole flow logs to infer hydraulic flow paths within fractured reservoirs is usually non-unique. Nonetheless, knowledge of the hydraulic properties of individual fractures and the role they play in determining the larger-scale flow within the fracture network (i.e. the overall flow conditions) is required in many hydrogeological and geo-engineering situations, such as in geothermal reservoir studies. Tracer tests can overcome some of the aforementioned limitations by providing strong constraints on the geometry and characteristics of flow paths linking boreholes within both porous media and fracture-dominated types of reservoirs. In the case of geothermal reservoirs, tracer tests are often used to provide estimates of the pore/fracture volume swept by flow between injection and production wells. This in turn places constraints on the swept surface area, a parameter that is key for estimating the commercial longevity of the geothermal system. A problem with conventional tracer tests is that the solute species used as the tracer tend to persist in detectable quantities within the reservoir for a long time, thereby impeding repeat tracer tests. DNA nanotracers do not suffer from this problem as they can be designed with a unique signature for each test. DNA nanotracers are environmentally friendly, sub-micron sized silica particles encapsulating small fragments of synthetic DNA which can be fabricated to have a specified, uniquely detectable configuration. For this reason, repeat tracer tests conducted with a differently-encoded DNA fragment to that used in the original will not suffer interference from the earlier test. In this study, we present the results of tests of applying novel DNA nanotracers to characterize groundwater flow properties and the flow pathways in a fracture-dominated reservoir in the Deep Underground Geothermal (DUG) Laboratory at the Grimsel Test Site in the Swiss Alps. This study is motivated by subsequent comparisons of similar characterizations of fractured rock masses after hydraulic stimulation. These will take place at the DUG Lab at the end of 2016. The results of the flow-path characterization are also compared with those obtained from classical solute tracer tests.
33 CFR 208.27 - Fort Cobb Dam and Reservoir, Pond (Cobb) Creek, Oklahoma.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Engineer showing the elevation of the reservoir level; number of river outlet works gates in operation with... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Fort Cobb Dam and Reservoir, Pond..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.27 Fort Cobb Dam and Reservoir...
33 CFR 208.27 - Fort Cobb Dam and Reservoir, Pond (Cobb) Creek, Oklahoma.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Engineer showing the elevation of the reservoir level; number of river outlet works gates in operation with... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Fort Cobb Dam and Reservoir, Pond..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.27 Fort Cobb Dam and Reservoir...
Geology of the Canyon Reservoir site on the Guadalupe River, Comal County, Texas
George, William O.; Welder, Frank A.
1955-01-01
In response to a request by Colonel Harry O. Fisher, District Engineer of the Fort Worth District of the Corps of Engineers, United States Army (letter of Dec. 13, 1954), a reconnaissance investigation was made of the geology of the Canyon (F-1) reservoir site on the Guadalupe River in Comal County, Tex. The purpose of the investigation was to study the geology in relation to possible leakage - particularly leakage of water that might then be lost from the drainage area of the Guadalupe River - and to add to the general knowledge of the ground-water hydrology of the San Antonio area. The dam (F-1) was originally designed for flood control and conservation only, with provision for the addition of a power unit if feasible. Since the completion of the investigation by the Corps of Engineers, the city of San Antonio has expressed an interest in the reservoir as a possible source of public water supply. The Corps of Engineers has made a thorough engineering and geologic study of the dam site (Corps of Engineers, 1950), which has Congressional approval. The geology and water resources of Comal County have been studied by George (1952). The rocks studied are those within the reservoir area and generally below the 1,000-foot contour as shown on the Smithson Valley quadrangle of the U.S. Geological Survey.
Neutron imaging for geothermal energy systems
NASA Astrophysics Data System (ADS)
Bingham, Philip; Polsky, Yarom; Anovitz, Lawrence
2013-03-01
Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or "engineered" within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.
A quantum Szilard engine without heat from a thermal reservoir
NASA Astrophysics Data System (ADS)
Hamed Mohammady, M.; Anders, Janet
2017-11-01
We study a quantum Szilard engine that is not powered by heat drawn from a thermal reservoir, but rather by projective measurements. The engine is constituted of a system { S }, a weight { W }, and a Maxwell demon { D }, and extracts work via measurement-assisted feedback control. By imposing natural constraints on the measurement and feedback processes, such as energy conservation and leaving the memory of the demon intact, we show that while the engine can function without heat from a thermal reservoir, it must give up at least one of the following features that are satisfied by a standard Szilard engine: (i) repeatability of measurements; (ii) invariant weight entropy; or (iii) positive work extraction for all measurement outcomes. This result is shown to be a consequence of the Wigner-Araki-Yanase theorem, which imposes restrictions on the observables that can be measured under additive conservation laws. This observation is a first-step towards developing ‘second-law-like’ relations for measurement-assisted feedback control beyond thermality.
Authorized and Operating Purposes of Corps of Engineers Reservoirs
1992-07-01
Puerto Rico CERRILLOS DAM AND RESERVOIR Jacksonville E-9O PORTUGUES DAM AND RESERVOIR Jacksonville E-92 South Carolina HARTWELL DAM AND LAKE Savannah E...LAKE Missouri Kansas City E-12 POMONA LAKE Kansas Kansas City E-12 PORTUGUES DAM AND RESERVOIR Puerto Rico Jacksonville E-92 PRADO DAM (SANTA ANA...PROJECT Florida Jacksonville E-92 PORTUGUES DAM AND RESERVOIR Puerto Rico Jacksonville E-92 RODMAN LOCK AND DAM (CROSS FLORIDA BARGE CANAL Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Poelgeest, F.; Niko, H.; Modwid, A.R.
1991-03-01
Shell Expro and Koninklijke/Shell E and P Laboratorium (KSEPL) have been engaged in a multidisciplinary effort to determine the water flood residual oil saturation (ROS) in two principal reservoirs of the Cormorant oil field in the U.K. sector of the North Sea. Data acquisition included special coring and testing. The study, which involved new reservoir-engineering and petrophysical techniques, was aimed at establishing consistent ROS values. This paper reports that reservoir-engineering work centered on reservoir-condition corefloods in the relative-permeability-at-reservoir-conditions (REPARC) apparatus, in which restoration of representative wettability condition was attempted with the aging technique. Aging results in a consistent reduction ofmore » water-wetness of all core samples. The study indicated that ROS values obtained on aged cores at water throughputs of at least 5 PV represented reservoir conditions. The petrophysical part of the study involved ROS estimation from sponge-core analysis and log evaluation.« less
NASA Astrophysics Data System (ADS)
El Sharawy, Mohamed S.; Gaafar, Gamal R.
2016-12-01
Both reservoir engineers and petrophysicists have been concerned about dividing a reservoir into zones for engineering and petrophysics purposes. Through decades, several techniques and approaches were introduced. Out of them, statistical reservoir zonation, stratigraphic modified Lorenz (SML) plot and the principal component and clustering analyses techniques were chosen to apply on the Nubian sandstone reservoir of Palaeozoic - Lower Cretaceous age, Gulf of Suez, Egypt, by using five adjacent wells. The studied reservoir consists mainly of sandstone with some intercalation of shale layers with varying thickness from one well to another. The permeability ranged from less than 1 md to more than 1000 md. The statistical reservoir zonation technique, depending on core permeability, indicated that the cored interval of the studied reservoir can be divided into two zones. Using reservoir properties such as porosity, bulk density, acoustic impedance and interval transit time indicated also two zones with an obvious variation in separation depth and zones continuity. The stratigraphic modified Lorenz (SML) plot indicated the presence of more than 9 flow units in the cored interval as well as a high degree of microscopic heterogeneity. On the other hand, principal component and cluster analyses, depending on well logging data (gamma ray, sonic, density and neutron), indicated that the whole reservoir can be divided at least into four electrofacies having a noticeable variation in reservoir quality, as correlated with the measured permeability. Furthermore, continuity or discontinuity of the reservoir zones can be determined using this analysis.
NASA Astrophysics Data System (ADS)
Asanuma, H.; Muraoka, H.; Tsuchiya, N.; Ito, H.
2013-12-01
Development using Engineered Geothermal System (EGS) technologies is considered to be the best solution to the problems of the localized distribution of geothermal resources. However, it is considered that a number of problems, including low water recovery rate, difficulty in design of the reservoir, and induced earthquake, would appear in Japanese EGS. These problems in the development of EGS reservoirs cannot be readily solved in Japan because they are intrinsically related to the physical characteristics and tectonic setting of the brittle rock mass. Therefore, we have initiated the Japan Beyond-Brittle Project (JBBP), which will take a multidisciplinary scientific approach, including geology, geochemistry, geophysics, water-rock interactions, rock mechanics, seismology, drilling technology, well-logging technology, and reservoir engineering. The science and technology required for the creation and control of geothermal reservoirs in superheated rocks in the ductile zone is at the frontier of modern research in most of the related disciplines. Solutions to the associated problems will not easily be found without international collaboration among researchers and engineers. For this reason, in March, 2013 we held a five-day ICDP-supported workshop in Japan to review and discuss various scientific and technological issues related to the JBBP. Throughout the discussions at the workshop on characteristics of the beyond-brittle rock mass and creation and control of EGS reservoirs in the ductile zone, it has concluded that there are two end-member reservoir models that should be considered (Fig. 1). The JBBP reservoir type-1 would be created near the top of the brittle-ductile transition (BDT) and connected to pre-existing hydrothermal systems, which would increase productivity and provide sustainability. The JBBP reservoir type-2 would be hydraulically or thermally created beyond the BDT, where pre-existing fractures are less permeable, and would be hydraulically isolated from the hydrothermal system. Discussions on exploration/monitoring of the BDT rock mass and JBBP reservoirs, and engineering development have been also made in the workshop. We finally identified scientific/technological challenges for the JBBP and established roadmap and implementation plan. The workshop report is available at http://jbbp.kankyo.tohoku.ac.jp/jbbp Conceptual model of the JBBP
Potential Hydrogeomechanical Impacts of Geological CO2 Sequestration
NASA Astrophysics Data System (ADS)
McPherson, B. J.; Haerer, D.; Han, W.; Heath, J.; Morse, J.
2006-12-01
Long-term sequestration of anthropogenic "greenhouse gases" such as CO2 is a proposed approach to managing climate change. Deep brine reservoirs in sedimentary basins are possible sites for sequestration, given their ubiquitous nature. We used a mathematical sedimentary basin model, including coupling of multiphase CO2-groundwater flow and rock deformation, to evaluate residence times in possible brine reservoir storage sites, migration patterns and rates away from such sites, and effects of CO2 injection on fluid pressures and rock strain. Study areas include the Uinta and Paradox basins of Utah, the San Juan basin of New Mexico, and the Permian basin of west Texas. Regional-scale hydrologic and mechanical properties, including the presence of fracture zones, were calibrated using laboratory and field data. Our initial results suggest that, in general, long-term (~100 years or more) sequestration in deep brine reservoirs is possible, if guided by robust structural and hydrologic data. However, specific processes must be addressed to characterize and minimize risks. In addition to CO2 migration from target sequestration reservoirs into other reservoirs or to the land surface, another environmental issue is displacement of brines into freshwater aquifers. We evaluated the potential for such unintended aquifer contamination by displacement of brines out of adjacent sealing layers such as marine shales. Results suggest that sustained injection of CO2 may incur significant brine displacement out of adjacent sealing layers, depending on the injection history, initial brine composition, and hydrologic properties of both reservoirs and seals. Model simulations also suggest that as injection-induced overpressures migrate, effective stresses may follow this migration under some conditions, as will associated rock strain. Such "strain migration" may lead to induced or reactivated fractures or faults, but can be controlled through reservoir engineering.
Superconductor Particles As The Working Media Of A Heat Engine
NASA Astrophysics Data System (ADS)
Keefe, Peter D.
2011-12-01
A heat engine is presented in which the working media comprises a multiplicity of mutually isolated particles of Type I superconductor which are selectively processed through H-T phase space so as to convert a heat influx from a high temperature heat reservoir into a useful work output, wherein no heat is rejected to a low temperature heat reservoir.
Groundwater Monitoring and Engineered Geothermal Systems: The Newberry EGS Demonstration
NASA Astrophysics Data System (ADS)
Grasso, K.; Cladouhos, T. T.; Garrison, G.
2013-12-01
Engineered Geothermal Systems (EGS) represent the next generation of geothermal energy development. Stimulation of multiple zones within a single geothermal reservoir could significantly reduce the cost of geothermal energy production. Newberry Volcano in central Oregon represents an ideal location for EGS research and development. As such, the goals of the Newberry EGS Demonstration, operated by AltaRock Energy, Inc., include stimulation of a multiple-zone EGS reservoir, testing of single-well tracers and a demonstration of EGS reservoir viability through flow-back and circulation tests. A shallow, local aquifer supplied the approximately 41,630 m3 (11 million gals) of water used during stimulation of NWG 55-29, a deep geothermal well on the western flank of Newberry Volcano. Protection of the local aquifer is of primary importance to both the Newberry EGS Demonstration and the public. As part of the Demonstration, AltaRock Energy, Inc. has developed and implemented a groundwater monitoring plan to characterize the geochemistry of the local aquifer before, during and after stimulation. Background geochemical conditions were established prior to stimulation of NWG 55-29, which was completed in 2012. Nine sites were chosen for groundwater monitoring. These include the water supply well used during stimulation of NWG 55-29, three monitoring wells, three domestic water wells and two hot seeps located in the Newberry Caldera. Together, these nine monitoring sites represent up-, down- and cross-gradient locations. Groundwater samples are analyzed for 25 chemical constituents, stable isotopes, and geothermal tracers used during stimulation. In addition, water level data is collected at three monitoring sites in order to better characterize the effects of stimulation on the shallow aquifer. To date, no significant geochemical changes and no geothermal tracers have been detected in groundwater samples from these monitoring sites. The Newberry EGS Demonstration groundwater monitoring program is currently on-going.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almansouri, Hani; Foster, Benjamin; Kisner, Roger A
2016-01-01
This paper documents our progress developing an ultrasound phased array system in combination with a model-based iterative reconstruction (MBIR) algorithm to inspect the health of and characterize the composition of the near-wellbore region for geothermal reservoirs. The main goal for this system is to provide a near-wellbore in-situ characterization capability that will significantly improve wellbore integrity evaluation and near well-bore fracture network mapping. A more detailed image of the fracture network near the wellbore in particular will enable the selection of optimal locations for stimulation along the wellbore, provide critical data that can be used to improve stimulation design, andmore » provide a means for measuring evolution of the fracture network to support long term management of reservoir operations. Development of such a measurement capability supports current hydrothermal operations as well as the successful demonstration of Engineered Geothermal Systems (EGS). The paper will include the design of the phased array system, the performance specifications, and characterization methodology. In addition, we will describe the MBIR forward model derived for the phased array system and the propagation of compressional waves through a pseudo-homogenous medium.« less
NASA Astrophysics Data System (ADS)
Lindholm, Garrison J.
The study of the Pouce Coupe Field is a joint effort between the Reservoir Characterization Project (RCP) and Talisman Energy Inc. My study focuses on the hydraulic stimulation of two horizontal wells within the Montney Formation located in north-western Alberta. The Montney is an example of a modern-day tight, engineering-driven play in which recent advances in drilling of horizontal wells and hydraulic fracturing have made shale gas exploitation economical. The wells were completed in December 2008 and were part of a science driven project in which a multitude of data were collected including multicomponent seismic, microseismic, and production logs. Since this time, a number of studies have been performed by students at Colorado School of Mines to better understand the effects the completions have had on the reservoir. This thesis utilizes the microseismic data that were recorded during the stimulation of the two horizontal wells in order to understand the origin of the microseismic events themselves. The data are then used to understand and correlate to the well production. To gain insight into the source of the microseismic events, amplitude ratios of recorded seismic modes (P, Sh and Sv) for the microseismic events are studied. By fitting trends of simple end member source mechanisms (strike-slip, dip-slip, and tensile) to groups of amplitude ratio data, the events are found to be of strike-slip nature. By comparing the focal mechanisms to other independent natural fracture determination techniques (shear-wave splitting analysis, FMI log), it is shown that the source of recorded microseismic events is likely to be a portion of the shear slip along existing weak planes (fractures) within a reservoir. The technique described in this work is one that is occasionally but increasingly used but offers the opportunity to draw further information from microseismic data using results that are already part of a typical processing workflow. The microseismic events are then used as a tool to analyze the effectiveness of the hydraulic stimulation and why production varies on a well and stage basis. The study shows that production disparities may be related to communication between horizontal wells, a potential weak zone of sub-seismic scale faults/fractures at the toe of one of the completed horizontal wells, and most importantly the quality of the stimulated rock. The results suggest that the quality of the stimulated reservoir rock is a greater driver of production than the total stimulated volume. By integrating the microseismic with other data (seismic and engineering), this work shows that the key to the understanding of these engineering-driven plays is an integrated solution. The methods shown in this thesis are applicable to many similar plays across North America and the world. The complicated nature of these tight reservoirs underscores the need for effective well planning, placement, and stimulation for economical development of shale resource plays.
Microbial enhanced oil recovery and wettability research program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, C.P.; Bala, G.A.; Duvall, M.L.
1991-07-01
This report covers research results for the microbial enhanced oil recovery (MEOR) and wettability research program conducted by EG G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. The wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC), to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is amore » significant contributing mechanism for MEOR systems. Eight facultatively anaerobic surfactant producing isolates able to function in the reservoir conditions of the Minnelusa A Sands of the Powder River Basin in Wyoming were isolated from naturally occurring oil-laden environments. Isolates were characterized according to morphology, thermostability, halotolerance, growth substrates, affinity to crude oil/brine interfaces, degradative effects on crude oils, and biochemical profiles. Research at the INEL has focused on the elucidation of microbial mechanisms by which crude oil may be recovered from a reservoir and the chemical and physical properties of the reservoir that may impact the effectiveness of MEOR. Bacillus licheniformis JF-2 (ATCC 39307) has been used as a benchmark organism to quantify MEOR of medium weight crude oils (17.5 to 38.1{degrees}API) the capacity for oil recovery of Bacillus licheniformis JF-2 utilizing a sucrose-based nutrient has been elucidated using Berea sandstone cores. Spacial distribution of cells after microbial flooding has been analyzed with scanning electron microscopy. Also the effect of microbial surfactants on the interfacial tensions (IFT) of aqueous/crude oil systems has been measured. 87 refs., 60 figs., 15 tabs.« less
Efficiency bounds for nonequilibrium heat engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehta, Pankaj; Polkovnikov, Anatoli, E-mail: asp@bu.edu
2013-05-15
We analyze the efficiency of thermal engines (either quantum or classical) working with a single heat reservoir like an atmosphere. The engine first gets an energy intake, which can be done in an arbitrary nonequilibrium way e.g. combustion of fuel. Then the engine performs the work and returns to the initial state. We distinguish two general classes of engines where the working body first equilibrates within itself and then performs the work (ergodic engine) or when it performs the work before equilibrating (non-ergodic engine). We show that in both cases the second law of thermodynamics limits their efficiency. For ergodicmore » engines we find a rigorous upper bound for the efficiency, which is strictly smaller than the equivalent Carnot efficiency. I.e. the Carnot efficiency can be never achieved in single reservoir heat engines. For non-ergodic engines the efficiency can be higher and can exceed the equilibrium Carnot bound. By extending the fundamental thermodynamic relation to nonequilibrium processes, we find a rigorous thermodynamic bound for the efficiency of both ergodic and non-ergodic engines and show that it is given by the relative entropy of the nonequilibrium and initial equilibrium distributions. These results suggest a new general strategy for designing more efficient engines. We illustrate our ideas by using simple examples. -- Highlights: ► Derived efficiency bounds for heat engines working with a single reservoir. ► Analyzed both ergodic and non-ergodic engines. ► Showed that non-ergodic engines can be more efficient. ► Extended fundamental thermodynamic relation to arbitrary nonequilibrium processes.« less
Reservoir Changes Derived from Seismic Observations at The Geysers Geothermal Field, CA, USA
NASA Astrophysics Data System (ADS)
Gritto, R.; Jarpre, S.
2012-04-01
Induced seismicity associated with the exploitation of geothermal fields is used as a tool to characterize and delineate changes associated with injection and production of fluids from the reservoir. At the same time public concern of felt seismicity has led to objections against the operation of geothermal reservoirs in close proximity to population centers. Production at the EGS sites in Basel (Switzerland) was stopped after renewed seismicity caused concern and objection from the public in the city. Operations in other geothermal reservoirs had to be scaled back or interrupted due to an unexpected increase in seismicity (Soultz-sous-forêt, France, Berlín, El Salvador). As a consequence of these concerns and in order to optimize the use of induced seismicity for reservoir engineering purposes, it becomes imperative to understand the relationship between seismic events and stress changes in the reservoir. We will address seismicity trends at The Geysers Geothermal Reservoir, CA USA, to understand the role of historical seismicity associated with past injection of water and/or production of steam. Our analysis makes use of a comprehensive database of earthquakes and associated phase arrivals from 2004 to 2011. A high-precision sub-set of the earthquake data was selected to analyze temporal changes in seismic velocities and Vp/Vs-ratio throughout the whole reservoir. We find relatively low Vp/Vs values in 2004 suggestive of a vapor dominated reservoir. With passing time, however, the observed temporal increase in Vp/Vs, coupled with a decrease in P- and S-wave velocities suggests the presence of fluid-filled fractured rock. Considering the start of a continuous water injection project in 2004, it can be concluded that the fluid saturation of the reservoir has successfully recovered. Preliminary results of 3-D velocity inversions of seismic data appear to corroborate earlier findings that the lowest Vp/Vs estimates are observed in the center of the reservoir. Vertical depth-sections indicate that these low values are co-located with production zones and production related seismicity. In contrast, the highest Vp/Vs estimates are co-located with injection zones and their associated seismicity.
Reservoir and canal system regulation for operation of the Raymond Reservoir Hydro Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, H.D.; Davidson, B.
1995-12-31
In 1989 LIMA Engineering Ltd. of Lethbridge, Alberta, Canada and Tudor Engineering Company of Oakland, California investigated the feasibility of installing a hydroelectric facility for the St. Mary River Irrigation District at Raymond Chute. This chute is a 29.3 m (96 ft) drop structure on the District`s main canal outside of the town of Raymond in southern Alberta. The chute discharges into the east end of Raymond Reservoir, a small regulating reservoir. The engineering team concluded that the project could be made more attractive by combining the drop at Raymond Chute with an additional 17.7 m (58 ft) of headmore » available at the upstream Milk River Ridge Reservoir. The result was the 20 MW Raymond Reservoir Hydro Project which went into commercial operation in May, 1994. Combining these two drops in elevation required the construction of a complete bypass system with a new approach canal and tailrace discharging into the west end of Raymond Reservoir, approximately 5 km (3 miles) west of the Raymond Chute. The system allows up to 56.7 cms (2,000 cfs) to be diverted through the powerhouse and thereby bypass Milk River Ridge Reservoir, Raymond Chute and approximately 6.5 km (4 miles) of canal. No synchronous bypass valve or spill facility was provided at the powerhouse. Rather, a system of rehabilitated or new check structures and controls were provided to automatically transfer flow from the power canal to the original system and thereby maintain a constant pre-set discharge downstream of the powerhouse following load rejections. This constant discharge is essential for meeting downstream irrigation demand.« less
124. ARAI Reservoir (ARA727), later named water storage tank. Shows ...
124. ARA-I Reservoir (ARA-727), later named water storage tank. Shows plan of 100,000-gallon tank, elevation, image of "danger radiation hazard" sign, and other details. Norman Engineering Company 961-area/SF-727-S-1. Date: January 1959. Ineel index code no. 068-0727-60-613-102779. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Xuejiao, M.; Chang, J.; Wang, Y.
2017-12-01
Flood risk reduction with non-engineering measures has become the main idea for flood management. It is more effective for flood risk management to take various non-engineering measures. In this paper, a flood control operation model for cascade reservoirs in the Upper Yellow River was proposed to lower the flood risk of the water system with multi-reservoir by combining the reservoir flood control operation (RFCO) and flood early warning together. Specifically, a discharge control chart was employed to build the joint RFCO simulation model for cascade reservoirs in the Upper Yellow River. And entropy-weighted fuzzy comprehensive evaluation method was adopted to establish a multi-factorial risk assessment model for flood warning grade. Furthermore, after determining the implementing mode of countermeasures with future inflow, an intelligent optimization algorithm was used to solve the optimization model for applicable water release scheme. In addition, another model without any countermeasure was set to be a comparative experiment. The results show that the model developed in this paper can further decrease the flood risk of water system with cascade reservoirs. It provides a new approach to flood risk management by coupling flood control operation and flood early warning of cascade reservoirs.
Estimating Water Levels with Google Earth Engine
NASA Astrophysics Data System (ADS)
Lucero, E.; Russo, T. A.; Zentner, M.; May, J.; Nguy-Robertson, A. L.
2016-12-01
Reservoirs serve multiple functions and are vital for storage, electricity generation, and flood control. For many areas, traditional ground-based reservoir measurements may not be available or data dissemination may be problematic. Consistent monitoring of reservoir levels in data-poor areas can be achieved through remote sensing, providing information to researchers and the international community. Estimates of trends and relative reservoir volume can be used to identify water supply vulnerability, anticipate low power generation, and predict flood risk. Image processing with automated cloud computing provides opportunities to study multiple geographic areas in near real-time. We demonstrate the prediction capability of a cloud environment for identifying water trends at reservoirs in the US, and then apply the method to data-poor areas in North Korea, Iran, Azerbaijan, Zambia, and India. The Google Earth Engine cloud platform hosts remote sensing data and can be used to automate reservoir level estimation with multispectral imagery. We combine automated cloud-based analysis from Landsat image classification to identify reservoir surface area trends and radar altimetry to identify reservoir level trends. The study estimates water level trends using three years of data from four domestic reservoirs to validate the remote sensing method, and five foreign reservoirs to demonstrate the method application. We report correlations between ground-based reservoir level measurements in the US and our remote sensing methods, and correlations between the cloud analysis and altimetry data for reservoirs in data-poor areas. The availability of regular satellite imagery and an automated, near real-time application method provides the necessary datasets for further temporal analysis, reservoir modeling, and flood forecasting. All statements of fact, analysis, or opinion are those of the author and do not reflect the official policy or position of the Department of Defense or any of its components or the U.S. Government
Verma, M.K.; Bird, K.J.
2005-01-01
The geology and reservoir-engineering data were integrated in the 2002 U.S. Geological Survey assessment of the National Petroleum Reserve in Alaska (NPRA). VVhereas geology defined the analog pools and fields and provided the basic information on sizes and numbers of hypothesized petroleum accumulations, reservoir engineering helped develop necessary equations and correlations, which allowed the determination of reservoir parameters for better quantification of in-place petroleum volumes and recoverable reserves. Seismic- and sequence-stratigraphic study of the NPRA resulted in identification of 24 plays. Depth ranges in these 24 plays, however, were typically greater than depth ranges of analog plays for which there were available data, necessitating the need for establishing correlations. The basic parameters required were pressure, temperature, oil and gas formation volume factors, liquid/gas ratios for the associated and nonassociated gas, and recovery factors. Finally, the re sults of U.S. Geological Survey deposit simulation were used in carrying out an economic evaluation, which has been separately published. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.
Cassidy conducts MDCA Fuel Reservoir Remove and Replace OPS
2013-04-10
ISS035-E-017699 (10 April 2013) --- This is one of several photos documenting the Multi-user Droplet Combustion Apparatus (MDCA) Fuel Reservoir replacement. Here, Expedition 35 Flight Engineer Chris Cassidy removes and replaces one of the Fuel Reservoirs with the MDCA Chamber Insert Assembly (CIA) pulled partially out of the Combustion Chamber. The MDCA Fuel Reservoirs contain the liquid fuel used during droplet combustion experiments. This reservoir change-out was in support of the FLame EXtinguishment (FLEX)-2 experiment, scheduled to be executed by ground controllers.
Cassidy conducts MDCA Fuel Reservoir Remove and Replace OPS
2013-04-10
ISS035-E-017712 (10 April 2013)?-- This is one of several photos documenting the Multi-user Droplet Combustion Apparatus (MDCA) Fuel Reservoir replacement in the U.S. lab Destiny. Here, Expedition 35 Flight Engineer Chris Cassidy removes and replaces one of the Fuel Reservoirs with the MDCA Chamber Insert Assembly (CIA) pulled partially out of the Combustion Chamber. The MDCA Fuel Reservoirs contain the liquid fuel used during droplet combustion experiments. This reservoir change-out was in support of the FLame EXtinguishment (FLEX)-2 experiment, scheduled to be executed by ground controllers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aminzadeh, Fred; Sammis, Charles; Sahimi, Mohammad
The ultimate objective of the project was to develop new methodologies to characterize the northwestern part of The Geysers geothermal reservoir (Sonoma County, California). The goal is to gain a better knowledge of the reservoir porosity, permeability, fracture size, fracture spacing, reservoir discontinuities (leaky barriers) and impermeable boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott Hara
2001-06-27
The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands,more » high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, F.M. Jr.; Best, D.A.; Clarke, R.T.
The need for even more efficient reservoir characterization and management has forced a change in the way Mobil Oil provides technical support to its production operations. We`ve learned that to be successful, a good understanding of the reservoir is essential. This includes an understanding of the technical and business significance of reservoir heterogeneities at different stages of field development. A multi-disciplinary understanding of the business of integrated reservoir characterization is essential and to facilitate this understanding, Mobil has developed a highly successful {open_quotes}Reservoir Characterization Field Seminar{close_quotes}. Through specific team based case studies that incorporate outcrop examples and data the programmore » provides participants the opportunity to explore historic and alternative approaches to reservoir description, characterization and management. We explore appropriate levels and timing of data gathering, technology applications, risk assessment and management practices at different stages of field development. The case studies presented throughout the course are a unique element of the program which combine real life and hypothetical problem sets that explore how different technical disciplines interact, the approaches to a problem solving they use, the assumptions and uncertainties contained in their contributions and the impact those conclusions may have on other disciplines involved in the overall reservoir management process. The team building aspect of the course was an added bonus.« less
Compressed air energy storage system
Ahrens, F.W.; Kartsounes, G.T.
An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.
33 CFR 222.3 - Clearances for power and communication lines over reservoirs.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE ENGINEERING AND DESIGN § 222.3 Clearances for power and... reservoir projects. (b) Applicability. This regulation applies to all field operating agencies having Civil...
NASA Astrophysics Data System (ADS)
Wang, Lei; Bai, Bing; Li, Xiaochun; Liu, Mingze; Wu, Haiqing; Hu, Shaobin
2016-07-01
Induced seismicity and fault reactivation associated with fluid injection and depletion were reported in hydrocarbon, geothermal, and waste fluid injection fields worldwide. Here, we establish an analytical model to assess fault reactivation surrounding a reservoir during fluid injection and extraction that considers the stress concentrations at the fault tips and the effects of fault length. In this model, induced stress analysis in a full-space under the plane strain condition is implemented based on Eshelby's theory of inclusions in terms of a homogeneous, isotropic, and poroelastic medium. The stress intensity factor concept in linear elastic fracture mechanics is adopted as an instability criterion for pre-existing faults in surrounding rocks. To characterize the fault reactivation caused by fluid injection and extraction, we define a new index, the "fault reactivation factor" η, which can be interpreted as an index of fault stability in response to fluid pressure changes per unit within a reservoir resulting from injection or extraction. The critical fluid pressure change within a reservoir is also determined by the superposition principle using the in situ stress surrounding a fault. Our parameter sensitivity analyses show that the fault reactivation tendency is strongly sensitive to fault location, fault length, fault dip angle, and Poisson's ratio of the surrounding rock. Our case study demonstrates that the proposed model focuses on the mechanical behavior of the whole fault, unlike the conventional methodologies. The proposed method can be applied to engineering cases related to injection and depletion within a reservoir owing to its efficient computational codes implementation.
Modeling thermal stress propagation during hydraulic stimulation of geothermal wells
NASA Astrophysics Data System (ADS)
Jansen, Gunnar; Miller, Stephen A.
2017-04-01
A large fraction of the world's water and energy resources are located in naturally fractured reservoirs within the earth's crust. Depending on the lithology and tectonic history of a formation, fracture networks can range from dense and homogeneous highly fractured networks to single large scale fractures dominating the flow behavior. Understanding the dynamics of such reservoirs in terms of flow and transport is crucial to successful application of engineered geothermal systems (also known as enhanced geothermal systems or EGS) for geothermal energy production in the future. Fractured reservoirs are considered to consist of two distinct separate media, namely the fracture and matrix space respectively. Fractures are generally thin, highly conductive containing only small amounts of fluid, whereas the matrix rock provides high fluid storage but typically has much smaller permeability. Simulation of flow and transport through fractured porous media is challenging due to the high permeability contrast between the fractures and the surrounding rock matrix. However, accurate and efficient simulation of flow through a fracture network is crucial in order to understand, optimize and engineer reservoirs. It has been a research topic for several decades and is still under active research. Accurate fluid flow simulations through field-scale fractured reservoirs are still limited by the power of current computer processing units (CPU). We present an efficient implementation of the embedded discrete fracture model, which is a promising new technique in modeling the behavior of enhanced geothermal systems. An efficient coupling strategy is determined for numerical performance of the model. We provide new insight into the coupled modeling of fluid flow, heat transport of engineered geothermal reservoirs with focus on the thermal stress changes during the stimulation process. We further investigate the interplay of thermal and poro-elastic stress changes in the reservoir. Combined with a analytical formulation for the injection temperatures in the open hole section of a geothermal well, the stress changes induced during the injection period of reservoir development can be studied.
Hydraulic characterization of aquifers, reservoir rocks, and soils: A history of ideas
NASA Astrophysics Data System (ADS)
Narasimhan, T. N.
1998-01-01
Estimation of the hydraulic properties of aquifers, petroleum reservoir rocks, and soil systems is a fundamental task in many branches of Earth sciences and engineering. The transient diffusion equation proposed by Fourier early in the 19th century for heat conduction in solids constitutes the basis for inverting hydraulic test data collected in the field to estimate the two basic parameters of interest, namely, hydraulic conductivity and hydraulic capacitance. Combining developments in fluid mechanics, heat conduction, and potential theory, the civil engineers of the 19th century, such as Darcy, Dupuit, and Forchheimer, solved many useful problems of steady state seepage of water. Interest soon shifted towards the understanding of the transient flow process. The turn of the century saw Buckingham establish the role of capillary potential in governing moisture movement in partially water-saturated soils. The 1920s saw remarkable developments in several branches of the Earth sciences; Terzaghi's analysis of deformation of watersaturated earth materials, the invention of the tensiometer by Willard Gardner, Meinzer's work on the compressibility of elastic aquifers, and the study of the mechanics of oil and gas reservoirs by Muskat and others. In the 1930s these led to a systematic analysis of pressure transients from aquifers and petroleum reservoirs through the work of Theis and Hurst. The response of a subsurface flow system to a hydraulic perturbation is governed by its geometric attributes as well as its material properties. In inverting field data to estimate hydraulic parameters, one makes the fundamental assumption that the flow geometry is known a priori. This approach has generally served us well in matters relating to resource development primarily concerned with forecasting fluid pressure declines. Over the past two decades, Earth scientists have become increasingly concerned with environmental contamination problems. The resolution of these problems requires that hydraulic characterization be carried out at a much finer spatial scale, for which adequate information on geometric detail is not forthcoming. Traditional methods of interpretation of field data have relied heavily on analytic solutions to specific, highly idealized initial-value problems. The availability of efficient numerical models and versatile spreadsheets of personal computers offer promising opportunities to relax many unavoidable assumptions of analytical solutions and interpret field data much more generally and with fewer assumptions. Currently, a lot of interest is being devoted to the characterization of permeability. However, all groundwater systems are transient on appropriate timescales. The dynamics of groundwater systems cannot be understood without paying attention to capacitance. Much valuable insights about the dynamic attributes of groundwater systems could be gained by long-term passive monitoring of responses of groundwater systems to barometric changes, Earth tides, and ocean tides.
Probing Earth's State of Stress
NASA Astrophysics Data System (ADS)
Delorey, A. A.; Maceira, M.; Johnson, P. A.; Coblentz, D. D.
2016-12-01
The state of stress in the Earth's crust is a fundamental physical property that controls both engineered and natural systems. Engineered environments including those for hydrocarbon, geothermal energy, and mineral extraction, as well those for storage of wastewater, carbon dioxide, and nuclear fuel are as important as ever to our economy and environment. Yet, it is at spatial scales relevant to these activities where stress is least understood. Additionally, in engineered environments the rate of change in the stress field can be much higher than that of natural systems. In order to use subsurface resources more safely and effectively, we need to understand stress at the relevant temporal and spatial scales. We will present our latest results characterizing the state of stress in the Earth at scales relevant to engineered environments. Two important components of the state of stress are the orientation and magnitude of the stress tensor, and a measure of how close faults are to failure. The stress tensor at any point in a reservoir or repository has contributions from both far-field tectonic stress and local density heterogeneity. We jointly invert seismic (body and surface waves) and gravity data for a self-consistent model of elastic moduli and density and use the model to calculate the contribution of local heterogeneity to the total stress field. We then combine local and plate-scale contributions, using local indicators for calibration and ground-truth. In addition, we will present results from an analysis of the quantity and pattern of microseismicity as an indicator of critically stressed faults. Faults are triggered by transient stresses only when critically stressed (near failure). We show that tidal stresses can trigger earthquakes in both tectonic and reservoir environments and can reveal both stress and poroelastic conditions.
WATER PUMP HOUSE, TRA619, AND TWO WATER STORAGE RESERVOIRS. INDUSTRIAL ...
WATER PUMP HOUSE, TRA-619, AND TWO WATER STORAGE RESERVOIRS. INDUSTRIAL WINDOWS AND COPING STRIPS AT TOP OF WALLS AND ENTRY VESTIBULE. BOLLARDS PROTECT UNDERGROUND FACILITIES. SWITCHYARD AT RIGHT EDGE OF VIEW. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON ORIGINAL NEGATIVE. INL NEGATIVE NO. 3816. Unknown Photographer, 11/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Quantum heat engines and refrigerators: continuous devices.
Kosloff, Ronnie; Levy, Amikam
2014-01-01
Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.
Third workshop on geothermal reservoir engineering: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramey, H.J. Jr.; Kruger, P.
1977-12-15
The Third Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 14, 1977, with 104 attendees from six nations. In keeping with the recommendations expressed by the participants at the Second Workshop, the format of the Workshop was retained, with three days of technical sessions devoted to reservoir physics, well and reservoir testing, field development, and mathematical modeling of geothermal reservoirs. The program presented 33 technical papers, summaries of which are included in these Proceedings. Although the format of the Workshop has remained constant, it is clear from a perusal of the Table of Contents that considerable advancesmore » have occurred in all phases of geothermal reservoir engineering over the past three years. Greater understanding of reservoir physics and mathematical representations of vapor-dominated and liquid-dominated reservoirs are evident; new techniques for their analysis are being developed, and significant field data from a number of newer reservoirs are analyzed. The objectives of these workshops have been to bring together researchers active in the various physical and mathematical disciplines comprising the field of geothermal reservoir engineering, to give the participants a forum for review of progress and exchange of new ideas in this rapidly developing field, and to summarize the effective state of the art of geothermal reservoir engineering in a form readily useful to the many government and private agencies involved in the development of geothermal energy. To these objectives, the Third Workshop and these Proceedings have been successfully directed. Several important events in this field have occurred since the Second Workshop in December 1976. The first among these was the incorporation of the Energy Research and Development Administration (ERDA) into the newly formed Department of Energy (DOE) which continues as the leading Federal agency in geothermal reservoir engineering research. The Third Workshop under the Stanford Geothermal Program was supported by a grant from DOE through a subcontract with the Lawrence Berkeley Laboratory of the University of California. A second significant event was the first conference under the ERDA (DOE)-ENEL cooperative program where many of the results of well testing in both nations were discussed. The Proceedings of that conference should be an important contribution to the literature. These Proceedings of the Third Workshop should also make an important contribution to the literature on geothermal reservoir engineering. Much of the data presented at the Workshop were given for the first time, and full technical papers on these subjects will appear in the professional journals. The results of these studies will assist markedly in developing the research programs to be supported by the Federal agencies, and in reducing the costs of research for individual developers and utilities. It is expected that future workshops of the Stanford Geothermal Program will be as successful as this third one. Planning and execution of the Workshop... [see file; ljd, 10/3/2005] The Program Committee recommended two novel sessions for the Third Workshop, both of which were included in the program. The first was the three overviews given at the Workshop by George Pinder (Princeton) on the Academic aspect, James Bresee (DOE-DGE) on the Government aspect, and Charles Morris (Phillips Petroleum) on the Industry aspect. These constituted the invited slate of presentations from the several sectors of the geothermal community. The Program Committee acknowledges their contributions with gratitude. Recognition of the importance of reservoir assurance in opting for geothermal resources as an alternate energy source for electric energy generation resulted in a Panel Session on Various Definitions of Geothermal Reservoirs. Special acknowledgments are offered to Jack Howard and Werner Schwarz (LBL) and to Jack Howard as moderator; to the panelists: James Leigh (Lloyd's Bank of California), Stephen Lipman (Union Oil), Mark Mathisen (PG&E), Patrick Muffler (USGS-MP), and Mark Silverman (DOE-SAN); and to the rapporteurs: George Frye (Aminoil), Vasel Roberts (Electrical Power Research Institute), and Alexander Graf (LBL), whose Valuable summaries are included in the Proceedings. Special thanks are also due Roland Horne, Visiting Professor from New Zealand and Program Manager of the Stanford Geothermal Program, for his efforts with the Program graduate students in conducting the Workshop. Further thanks go to Marion Wachtel, who in spite of tremendous personal hardship, administered the Workshop and prepared the Proceedings in a timely and professional manner. Professor Ramey and I also express our appreciation to the Department of Energy, whose financial support of the Workshop made possible the program and these Proceedings. Paul Kruger Stanford University December 31, 1977« less
The application of ANN for zone identification in a complex reservoir
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, A.C.; Molnar, D.; Aminian, K.
1995-12-31
Reservoir characterization plays a critical role in appraising the economic success of reservoir management and development methods. Nearly all reservoirs show some degree of heterogeneity, which invariably impacts production. As a result, the production performance of a complex reservoir cannot be realistically predicted without accurate reservoir description. Characterization of a heterogeneous reservoir is a complex problem. The difficulty stems from the fact that sufficient data to accurately predict the distribution of the formation attributes are not usually available. Generally the geophysical logs are available from a considerable number of wells in the reservoir. Therefore, a methodology for reservoir description andmore » characterization utilizing only well logs data represents a significant technical as well as economic advantage. One of the key issues in the description and characterization of heterogeneous formations is the distribution of various zones and their properties. In this study, several artificial neural networks (ANN) were successfully designed and developed for zone identification in a heterogeneous formation from geophysical well logs. Granny Creek Field in West Virginia has been selected as the study area in this paper. This field has produced oil from Big Injun Formation since the early 1900`s. The water flooding operations were initiated in the 1970`s and are currently still in progress. Well log data on a substantial number of wells in this reservoir were available and were collected. Core analysis results were also available from a few wells. The log data from 3 wells along with the various zone definitions were utilized to train the networks for zone recognition. The data from 2 other wells with previously determined zones, based on the core and log data, were then utilized to verify the developed networks predictions. The results indicated that ANN can be a useful tool for accurately identifying the zones in complex reservoirs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelkar, Mohan
2002-04-02
This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. A geological history that explains the presence of mobile water and oil in the reservoir was proposed. The combination of matrix and fractures in the reservoir explains the reservoir?s flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.
2012-04-23
organic matter) can be a nutritional source (US Army Corps of Engineers, 2002; Benson & Raikow, 2012). When food resources are limiting, intraspecific...Food and Agriculture Organization of the United Nations mainly for the analysis of fish population length-frequency data (Gayanilo, Sparre, & Pauly... fish kill. The organically -rich sediments at all these reservoirs would place a high sediment-oxygen demand on the drawn down reservoir over the
An Effective Reservoir Parameter for Seismic Characterization of Organic Shale Reservoir
NASA Astrophysics Data System (ADS)
Zhao, Luanxiao; Qin, Xuan; Zhang, Jinqiang; Liu, Xiwu; Han, De-hua; Geng, Jianhua; Xiong, Yineng
2017-12-01
Sweet spots identification for unconventional shale reservoirs involves detection of organic-rich zones with abundant porosity. However, commonly used elastic attributes, such as P- and S-impedances, often show poor correlations with porosity and organic matter content separately and thus make the seismic characterization of sweet spots challenging. Based on an extensive analysis of worldwide laboratory database of core measurements, we find that P- and S-impedances exhibit much improved linear correlations with the sum of volume fraction of organic matter and porosity than the single parameter of organic matter volume fraction or porosity. Importantly, from the geological perspective, porosity in conjunction with organic matter content is also directly indicative of the total hydrocarbon content of shale resources plays. Consequently, we propose an effective reservoir parameter (ERP), the sum of volume fraction of organic matter and porosity, to bridge the gap between hydrocarbon accumulation and seismic measurements in organic shale reservoirs. ERP acts as the first-order factor in controlling the elastic properties as well as characterizing the hydrocarbon storage capacity of organic shale reservoirs. We also use rock physics modeling to demonstrate why there exists an improved linear correlation between elastic impedances and ERP. A case study in a shale gas reservoir illustrates that seismic-derived ERP can be effectively used to characterize the total gas content in place, which is also confirmed by the production well.
Hydraulic fracture propagation modeling and data-based fracture identification
NASA Astrophysics Data System (ADS)
Zhou, Jing
Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the parameters used in the reservoir flow simulator have large uncertainty. Those biased and uncertain parameters will result in misleading oil and gas recovery predictions. The Ensemble Kalman Filter is used to estimate and update both the state variables (pressure and saturations) and uncertain reservoir parameters (permeability). In order to directly incorporate spatial information such as fracture location and formation heterogeneity into the algorithm, a new covariance matrix method is proposed. This new method has been applied to a simplified single-phase reservoir and a complex black oil reservoir with complex structures to prove its capability in calibrating the reservoir parameters.
33 CFR 222.3 - Clearances for power and communication lines over reservoirs.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE ENGINEERING AND DESIGN § 222.3 Clearances for power and... through the reservoir with a full conservation pool after 50 years of sedimentation, or (ii) the elevation...
Calibration of Seismic Attributes for Reservoir Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayne D. Pennington
2002-09-29
The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation ormore » printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.« less
NASA Astrophysics Data System (ADS)
Tsoflias, G. P.; Graham, B.; Haga, L.; Watney, L.
2017-12-01
The Mississippian in Kansas and Oklahoma is a highly heterogeneous, fractured, oil producing reservoir with thickness typically below seismic resolution. At Wellington field in south-central Kansas CO2 was injected in the Mississippian reservoir for enhanced oil recovery. This study examines the utility of active source surface seismic for characterization of Mississippian reservoir properties and monitoring CO2. Analysis of post-stack 3D seismic data showed the expected response of a gradational transition (ramp velocity) where thicker reservoir units corresponded with lower reflection amplitudes, lower frequency and a 90o phase change. Reflection amplitude could be correlated to reservoir thickness. Pre-stack gather analysis showed that porosity zones of the Mississippian reservoir exhibit characteristic AVO response. Simultaneous AVO inversion estimated P- and S-Impedances, which along with formation porosity logs and post-stack seismic data attributes were incorporated in multi-attribute linear-regression analysis and predicted reservoir porosity with an overall correlation of 0.90 to well data. The 3D survey gather azimuthal anisotropy analysis (AVAZ) provided information on the fault and fracture network and showed good agreement to the regional stress field and well data. Mississippian reservoir porosity and fracture predictions agreed well with the observed mobility of the CO2 in monitoring wells. Fluid substitution modeling predicted acoustic impedance reduction in the Mississippian carbonate reservoir introduced by the presence of CO2. Future work includes the assessment of time-lapse seismic, acquired after the injection of CO2. This work demonstrates that advanced seismic interpretation methods can be used successfully for characterization of the Mississippian reservoir and monitoring of CO2.
Compressed air energy storage system
Ahrens, Frederick W.; Kartsounes, George T.
1981-01-01
An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.
NASA Astrophysics Data System (ADS)
Saounatsou, Chara; Georgi, Julia
2014-08-01
The Polyphyto Hydroelectric Project was constructed in 1974 and it has been operating since on the Aliakmonas River, Kozani prefecture, by the Greek Public Power Corporation. The construction of the Ilarion Hydroelectric Project, upstream from the Polyphyto Reservoir, has been recently completed and will start operating in the near future. Apart from hydroelectric power production, the Polyphyto reservoir provides flood control to the areas below the Polyphyto dam. It is also used to manage water provision to the city of Thessaloniki and adjacent agricultural plain, providing at the same time cooling water to the Thermo Electric Projects in Ptolemaida. The Polyphyto reservoir has potential for further development as an economic fulcrum to the region in which is located. The Kozani and Servia-Velvendos Municipalities have proceeded to the construction of several touristic, nautical - athletic and fishing projects. In order to promote such developments, while preserving the artificial wetland, flora and fauna of the Polyphyto Reservoir, it is important to reduce the fluctuation of the reservoir elevation which according to its technical characteristics is 21m. The aim of this paper is to propose the combined operation of the two Hydroelectric Project reservoirs to satisfy all the present Polyphyto Hydroelectric Project functions and to reduce the annual fluctuation of the Polyphyto Reservoir. The HEC-5, Version 8 / 1998 computer model was used in our calculations, as developed by the Hydrologic Engineering Center (HEC) of the US Army Corps of Engineers for reservoir operation simulation. Five possible operation scenarios are tested in this paper to show that the present fluctuation of the Polyphyto Reservoir can be reduced, with some limitations, except during dry weather periods.
NASA Technical Reports Server (NTRS)
Rothrock, A M; Lee, D W
1932-01-01
Tests were made to determine the effect of the reservoir volume on the discharge pressures in the injection system of the N.A.C.A. spray photography equipment. The data obtained are applicable to the design of a common rail fuel-injection system. The data show that an injection system of the type described can be designed so that not more than full load fuel quantity can be injected into the engine cylinders, and so that the fuel spray characteristics remain constant over a large range of engine speeds. Formulas are presented for computing the volume of the reservoir and the diameter of the discharge orifice.
Reservoir Characterization of the Lower Green River Formation, Southwest Uinta Basin, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Craig D.; Chidsey, Jr., Thomas C.; McClure, Kevin P.
The objectives of the study were to increase both primary and secondary hydrocarbon recovery through improved characterization (at the regional, unit, interwell, well, and microscopic scale) of fluvial-deltaic lacustrine reservoirs, thereby preventing premature abandonment of producing wells. The study will encourage exploration and establishment of additional water-flood units throughout the southwest region of the Uinta Basin, and other areas with production from fluvial-deltaic reservoirs.
The hydrological model of the Mahanagdong sector, Greater Tongonan Geothermal Field, Philippines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herras, E.B.; Licup, A.C. Jr.; Vicedo, R.O.
1996-12-31
The Mahanagdong sector of the Greater Tongonan Geothermal Field is committed to supply 180 MWe of steam by mid-1997. An updated hydrological model was constructed based on available geoscientific and reservoir engineering data from a total of 34 wells drilled in the area. The Mahanagdong; resource is derived from a fracture-controlled and volcano hosted geothermal system characterized by neutral to slightly alkali-chloride fluids with reservoir temperatures exceeding 295{degrees}C. A major upflow region was identified in the vicinity of MG-3D, MG-14D and MG-5D. Isochemical contours indicate outflowing fluids with temperatures of 270-275{degrees}C to the south and west. Its southwesterly flow ismore » restricted by the intersection of the impermeable Mahanagdong Claystone near MG-10D, which delimits the southern part of the resource. Low temperature (<200{degrees}C), shallow inflows are evident at the west near MG-4D and MG-17D wells which act as a cold recharge in this sector.« less
Analysis and application of classification methods of complex carbonate reservoirs
NASA Astrophysics Data System (ADS)
Li, Xiongyan; Qin, Ruibao; Ping, Haitao; Wei, Dan; Liu, Xiaomei
2018-06-01
There are abundant carbonate reservoirs from the Cenozoic to Mesozoic era in the Middle East. Due to variation in sedimentary environment and diagenetic process of carbonate reservoirs, several porosity types coexist in carbonate reservoirs. As a result, because of the complex lithologies and pore types as well as the impact of microfractures, the pore structure is very complicated. Therefore, it is difficult to accurately calculate the reservoir parameters. In order to accurately evaluate carbonate reservoirs, based on the pore structure evaluation of carbonate reservoirs, the classification methods of carbonate reservoirs are analyzed based on capillary pressure curves and flow units. Based on the capillary pressure curves, although the carbonate reservoirs can be classified, the relationship between porosity and permeability after classification is not ideal. On the basis of the flow units, the high-precision functional relationship between porosity and permeability after classification can be established. Therefore, the carbonate reservoirs can be quantitatively evaluated based on the classification of flow units. In the dolomite reservoirs, the average absolute error of calculated permeability decreases from 15.13 to 7.44 mD. Similarly, the average absolute error of calculated permeability of limestone reservoirs is reduced from 20.33 to 7.37 mD. Only by accurately characterizing pore structures and classifying reservoir types, reservoir parameters could be calculated accurately. Therefore, characterizing pore structures and classifying reservoir types are very important to accurate evaluation of complex carbonate reservoirs in the Middle East.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Bill; Schechter, David S.
The goal of this project was to assess the economic feasibility of CO2 flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This provides results of the final year of the six-year project for each of the four areas.
NASA Astrophysics Data System (ADS)
Zhang, Penghui; Zhang, Jinliang; Wang, Jinkai; Li, Ming; Liang, Jie; Wu, Yingli
2018-05-01
Flow units classification can be used in reservoir characterization. In addition, characterizing the reservoir interval into flow units is an effective way to simulate the reservoir. Paraflow units (PFUs), the second level of flow units, are used to estimate the spatial distribution of continental clastic reservoirs at the detailed reservoir description stage. In this study, we investigate a nonroutine methodology to predict the external and internal distribution of PFUs. The methodology outlined enables the classification of PFUs using sandstone core samples and log data. The relationships obtained between porosity, permeability and pore throat aperture radii (r35) values were established for core and log data obtained from 26 wells from the Funing Formation, Gaoji Oilfield, Subei Basin, China. The present study refines predicted PFUs at logged (0.125-m) intervals, whose scale is much smaller than routine methods. Meanwhile, three-dimensional models are built using sequential indicator simulation to characterize PFUs in wells. Four distinct PFUs are classified and located based on the statistical methodology of cluster analysis, and each PFU has different seepage ability. The results of this study demonstrate the obtained models are able to quantify reservoir heterogeneity. Due to different petrophysical characteristics and seepage ability, PFUs have a significant impact on the distribution of the remaining oil. Considering these allows a more accurate understanding of reservoir quality, especially within non-marine sandstone reservoirs.
Fractured reservoir characterization through injection, falloff, and flowback tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, C.P.; Singh, P.K.; Halvorsen, H.
1992-09-01
This paper presents the development of a multiphase pressure-transient-analysis technique for naturally fractured reservoirs and the analysis of a series of field tests performed to evaluate the water injection potential and the reservoir characteristics of a naturally fractured reservoir. These included step-rate, water-injectivity, pressure-falloff, and flowback tests. Through these tests, a description of the reservoir was obtained.
NASA Astrophysics Data System (ADS)
Homuth, S.; Götz, A. E.; Sass, I.
2015-06-01
The Upper Jurassic carbonates of the southern German Molasse Basin are the target of numerous geothermal combined heat and power production projects since the year 2000. A production-orientated reservoir characterization is therefore of high economic interest. Outcrop analogue studies enable reservoir property prediction by determination and correlation of lithofacies-related thermo- and petrophysical parameters. A thermofacies classification of the carbonate formations serves to identify heterogeneities and production zones. The hydraulic conductivity is mainly controlled by tectonic structures and karstification, whilst the type and grade of karstification is facies related. The rock permeability has only a minor effect on the reservoir's sustainability. Physical parameters determined on oven-dried samples have to be corrected, applying reservoir transfer models to water-saturated reservoir conditions. To validate these calculated parameters, a Thermo-Triaxial-Cell simulating the temperature and pressure conditions of the reservoir is used and calorimetric and thermal conductivity measurements under elevated temperature conditions are performed. Additionally, core and cutting material from a 1600 m deep research drilling and a 4850 m (total vertical depth, measured depth: 6020 m) deep well is used to validate the reservoir property predictions. Under reservoir conditions a decrease in permeability of 2-3 magnitudes is observed due to the thermal expansion of the rock matrix. For tight carbonates the matrix permeability is temperature-controlled; the thermophysical matrix parameters are density-controlled. Density increases typically with depth and especially with higher dolomite content. Therefore, thermal conductivity increases; however the dominant factor temperature also decreases the thermal conductivity. Specific heat capacity typically increases with increasing depth and temperature. The lithofacies-related characterization and prediction of reservoir properties based on outcrop and drilling data demonstrates that this approach is a powerful tool for exploration and operation of geothermal reservoirs.
Beyond the replication-competent HIV reservoir: transcription and translation-competent reservoirs.
Baxter, Amy E; O'Doherty, Una; Kaufmann, Daniel E
2018-02-02
Recent years have seen a substantial increase in the number of tools available to monitor and study HIV reservoirs. Here, we discuss recent technological advances that enable an understanding of reservoir dynamics beyond classical assays to measure the frequency of cells containing provirus able to propagate a spreading infection (replication-competent reservoir). Specifically, we focus on the characterization of cellular reservoirs containing proviruses able to transcribe viral mRNAs (so called transcription-competent) and translate viral proteins (translation-competent). We suggest that the study of these alternative reservoirs provides complementary information to classical approaches, crucially at a single-cell level. This enables an in-depth characterization of the cellular reservoir, both following reactivation from latency and, importantly, directly ex vivo at baseline. Furthermore, we propose that the study of cellular reservoirs that may not contain fully replication-competent virus, but are able to produce HIV mRNAs and proteins, is of biological importance. Lastly, we detail some of the key contributions that the study of these transcription and translation-competent reservoirs has made thus far to investigations into HIV persistence, and outline where these approaches may take the field next.
1983-02-01
REPORT A PERInD O 2ERED I:UlLural Resources Survey, Harry S. Truman Dam F • ild Reservoir Project, Missouri, Volumes I - X 6 PERFORMING ORG. REPORT NUMBER...West Central Missouri, by R. A. Ward and T. L. Thompson, pp. 1-21 Part II: Report on Geochronological Investigations in the Harry S. Truman Reservoir...NATIONAL BUREAU OF SIANDARDS 1963 A LI I i * I Harry S. Truman DamaS Amand Reservoir, MissouriUS Army Corps of Engineers American Archaeology Division
Reservoir Characterization for Unconventional Resource Potential, Pitsanulok Basin, Onshore Thailand
NASA Astrophysics Data System (ADS)
Boonyasatphan, Prat
The Pitsanulok Basin is the largest onshore basin in Thailand. Located within the basin is the largest oil field in Thailand, the Sirikit field. As conventional oil production has plateaued and EOR is not yet underway, an unconventional play has emerged as a promising alternative to help supply the energy needs. Source rocks in the basin are from the Oligocene lacustrine shale of the Chum Saeng Formation. This study aims to quantify and characterize the potential of shale gas/oil development in the Chum Saeng Formation using advanced reservoir characterization techniques. The study starts with rock physics analysis to determine the relationship between geophysical, lithological, and geomechanical properties of rocks. Simultaneous seismic inversion is later performed. Seismic inversion provides spatial variation of geophysical properties, i.e. P-impedance, S-impedance, and density. With results from rock physics analysis and from seismic inversion, the reservoir is characterized by applying analyses from wells to the inverted seismic data. And a 3D lithofacies cube is generated. TOC is computed from inverted AI. Static moduli are calculated. A seismic derived brittleness cube is calculated from Poisson's ratio and Young's modulus. The reservoir characterization shows a spatial variation in rock facies and shale reservoir properties, including TOC, brittleness, and elastic moduli. From analysis, the most suitable location for shale gas/oil pilot exploration and development are identified. The southern area of the survey near the MD-1 well with an approximate depth around 650-850 m has the highest shale reservoir potential. The shale formation is thick, with intermediate brittleness and high TOC. These properties make it as a potential sweet spot for a future shale reservoir exploration and development.
Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.
2013-05-01
A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracermore » and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.« less
The role of snowpack, rainfall, and reservoirs in buffering California against drought effects
Johannis, Mary; Flint, Lorraine E.; Dettinger, Michael; Flint, Alan L.; Ochoa, Regina
2016-08-29
California’s vast reservoir system, fed by annual snow-and rainfall, plays an important part in providing water to the State’s human and wildlife population. There are almost 1,300 reservoirs throughout the State, but only approximately 200 of them are considered storage reservoirs, and many of the larger ones are critical components of the Federal Central Valley Project and California State Water Project. Storage reservoirs, such as the ones shown in figure 1, capture winter precipitation for use in California’s dry summer months. In addition to engineered reservoir storage, California also depends on water “stored” in the statewide snowpack, which slowly melts during the course of the summer, to augment the State’s water supply.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J.C.
1995-02-01
Producibility problems, such as low reservoir pressure and reservoir heterogeneity, have severely limited oil production from the Central Bluff and North Fairview fields. Specific objectives for this project were: To successfully apply detailed geologic and engineering studies with conventional waterflood technologies to these fields in an effort to increase the ultimate economic recovery of oil from Carter sandstone fields; To extensively model, test and evaluate these technologies; thereby, developing a sound methodology for their use and optimization; and To team with Advanced Resources International and the US DOE to assimilate and transfer the information and results gathered from this studymore » to other oil companies to encourage the widespread use of these technologies. At Central Bluff, water injection facilities were constructed and water injection into one well began in January 1993. Oil response from the waterflood has been observed at both producing wells. One of the producing wells has experienced early water breakthrough and a concomitant drop in secondary oil rate. A reservoir modeling study was initiated to help develop an appropriate operating strategy for Central Bluff. For the North Fairview unit waterflood, a previously abandoned well was converted for water injection which began in late June 1993. The reservoir is being re-pressurized, and unit water production has remained nil since flood start indicating the possible formation of an oil bank. A reservoir simulation to characterize the Carter sand at North Fairview was undertaken and the modeling results were used to forecast field performance. The project was terminated due to unfavorable economics. The factors contributing to this decision were premature water breakthrough at Central Bluff, delayed flood response at North Fairview and stalled negotiations at the South Bluff site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahdi, A.A.; Grover, G.; Hwang, R.
1995-08-01
Organic geochemistry and its integration with geologic and reservoir engineering data is becoming increasingly utilized to assist geologists and petroleum engineers in solving production related problems. In Abqaiq Field of eastern Saudi Arabia, gas chromatographic analysis (FSCOT) of produced oils from the Arab-D and Hanifa reservoirs was used to evaluate vertical and lateral continuity within and between these reservoirs. Bulk and molecular properties of produced Arab-D oils do not vary significantly over the 70 km length and 10 km width of the reservoir. Hanifa oils, however, do reflect two compositionally distinct populations that are hot in lateral communication, compatible withmore » the occurrence of a large oil pool in the southern part of the field, and a separate, and smaller northern accumulation. The Arab-D and underlying Hanifa oil pools are separated by over 450 feet of impermeable carbonates of the Jubaila Formation, yet the Southern Hanifa pool and the Arab-D have been in pressure communication since onset of Hanifa production in 1954. Recent borehole imaging and core data from horizontal Hanifa wells confirmed the long suspected occurrence of fractures responsible for fluid transmissibility within the porous (up to 35%) but tight (<10md matrix K) Hanifa reservoir, and between the Hanifa and Arab-D. The nearly identical hydrocarbon composition of oils from the Arab-D and southern Hanifa pool provided the final confirmation of fluid communication between the two reservoirs, and extension of a Hanifa fracture-fault network via the Jubaila Formation. This work lead to acquisition of 3-D seismic to image and map the fracture-fault system. The molecular fingerprinting approach demonstrated that produced oils can be used to evaluate vertical and lateral reservoir continuity, and at Abqaiq Field confirmed, in part, the need to produce the Hanifa reservoir via horizontal wells to arrest the reservoir communication that occurs with existing vertical wells.« less
Inlet Reservoir Model. Part 2: PC-Interface
2011-12-01
2008); and Zarillo and Kraus (2003). Figure 1 shows a schematic of an inlet system within the IRM with various types of reservoirs (e.g., channel...ERDC/CHL CHETN-IV-xx 2 Knowledge of engineering activities within the inlet system (e.g., dredging of a deposition basin or dredged channel...there to the Shore, S. As the first reservoir in the system , E, fills and its volume increases closer to the equilibrium (identified for all
1983-02-01
4 1983 • i • i . _ _ _ - K -^ REPORTS OF THE CULTURAL RISOURCES SURVEY HARRY S. TRUMAN DAM AND RESERVOIR PROJECT...iMiM US Army Corps of Engineers Kansas City District m 00 CO Harry S. Truman 15am and Reservoir, Missouri American Archaeology Division...Department of Anthropology, University of Missouri - Columbia Columbia, Missouri O Cultural Resources Survey Harry S. Truman Dam and eservoir
Geo-Engineering through Internet Informatics (GEMINI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doveton, John H.; Watney, W. Lynn
The program, for development and methodologies, was a 3-year interdisciplinary effort to develop an interactive, integrated Internet Website named GEMINI (Geo-Engineering Modeling through Internet Informatics) that would build real-time geo-engineering reservoir models for the Internet using the latest technology in Web applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
City of Long Beach; Tidelands Oil Production Company; University of Southern California
2002-09-30
The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.
Mechanical Autonomous Stochastic Heat Engine
NASA Astrophysics Data System (ADS)
Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara
2016-07-01
Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.
Mechanical Autonomous Stochastic Heat Engine.
Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara
2016-07-01
Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.
Microseismic monitoring: a tool for reservoir characterization.
NASA Astrophysics Data System (ADS)
Shapiro, S. A.
2011-12-01
Characterization of fluid-transport properties of rocks is one of the most important, yet one of most challenging goals of reservoir geophysics. There are some fundamental difficulties related to using active seismic methods for estimating fluid mobility. However, it would be very attractive to have a possibility of exploring hydraulic properties of rocks using seismic methods because of their large penetration range and their high resolution. Microseismic monitoring of borehole fluid injections is exactly the tool to provide us with such a possibility. Stimulation of rocks by fluid injections belong to a standard development practice of hydrocarbon and geothermal reservoirs. Production of shale gas and of heavy oil, CO2 sequestrations, enhanced recovery of oil and of geothermal energy are branches that require broad applications of this technology. The fact that fluid injection causes seismicity has been well-established for several decades. Observations and data analyzes show that seismicity is triggered by different processes ranging from linear pore pressure diffusion to non-linear fluid impact onto rocks leading to their hydraulic fracturing and strong changes of their structure and permeability. Understanding and monitoring of fluid-induced seismicity is necessary for hydraulic characterization of reservoirs, for assessments of reservoir stimulation and for controlling related seismic hazard. This presentation provides an overview of several theoretical, numerical, laboratory and field studies of fluid-induced microseismicity, and it gives an introduction into the principles of seismicity-based reservoir characterization.
Integrated water resources management using engineering measures
NASA Astrophysics Data System (ADS)
Huang, Y.
2015-04-01
The management process of Integrated Water Resources Management (IWRM) consists of aspects of policies/strategies, measures (engineering measures and non-engineering measures) and organizational management structures, etc., among which engineering measures such as reservoirs, dikes, canals, etc., play the backbone that enables IWRM through redistribution and reallocation of water in time and space. Engineering measures are usually adopted for different objectives of water utilization and water disaster prevention, such as flood control and drought relief. The paper discusses the planning and implementation of engineering measures in IWRM of the Changjiang River, China. Planning and implementation practices of engineering measures for flood control and water utilization, etc., are presented. Operation practices of the Three Gorges Reservoir, particularly the development and application of regulation rules for flood management, power generation, water supply, ecosystem needs and sediment issues (e.g. erosion and siltation), are also presented. The experience obtained in the implementation of engineering measures in Changjiang River show that engineering measures are vital for IWRM. However, efforts should be made to deal with changes of the river system affected by the operation of engineering measures, in addition to escalatory development of new demands associated with socio-economic development.
PROCESS WATER BUILDING, TRA605. AERIAL TAKEN WHILE SEVERAL PIPE TRENCHES ...
PROCESS WATER BUILDING, TRA-605. AERIAL TAKEN WHILE SEVERAL PIPE TRENCHES REMAINED OPEN. CAMERA FACES EASTERLY. NOTE DUAL PIPES BETWEEN REACTOR BUILDING AND NORTH SIDE OF PROCESS WATER BUILDING. PIPING NEAR WORKING RESERVOIR HEADS FOR RETENTION RESERVOIR. PIPE FROM DEMINERALIZER ENTERS MTR FROM NORTH. SEE ALSO TRENCH FOR COOLANT AIR DUCT AT SOUTH SIDE OF MTR AND LEADING TO FAN HOUSE AND STACK. INL NEGATIVE NO. 2966-A. Unknown Photographer, 7/31/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Thermodynamic fingerprints of non-Markovianity in a system of coupled superconducting qubits
NASA Astrophysics Data System (ADS)
Hamedani Raja, Sina; Borrelli, Massimo; Schmidt, Rebecca; Pekola, Jukka P.; Maniscalco, Sabrina
2018-03-01
The exploitation and characterization of memory effects arising from the interaction between system and environment is a key prerequisite for quantum reservoir engineering beyond the standard Markovian limit. In this paper we investigate a prototype of non-Markovian dynamics experimentally implementable with superconducting qubits. We rigorously quantify non-Markovianity, highlighting the effects of the environmental temperature on the Markovian to non-Markovian crossover. We investigate how memory effects influence, and specifically suppress, the ability to perform work on the driven qubit. We show that the average work performed on the qubit can be used as a diagnostic tool to detect the presence or absence of memory effects.
Economic Implementation and Optimization of Secondary Oil Recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary D. Brock
The St Mary West Barker Sand Unit (SMWBSU or Unit) located in Lafayette County, Arkansas was unitized for secondary recovery operations in 2002 followed by installation of a pilot injection system in the fall of 2003. A second downdip water injection well was added to the pilot project in 2005 and 450,000 barrels of saltwater has been injected into the reservoir sand to date. Daily injection rates have been improved over initial volumes by hydraulic fracture stimulation of the reservoir sand in the injection wells. Modifications to the injection facilities are currently being designed to increase water injection rates formore » the pilot flood. A fracture treatment on one of the production wells resulted in a seven-fold increase of oil production. Recent water production and increased oil production in a producer closest to the pilot project indicates possible response to the water injection. The reservoir and wellbore injection performance data obtained during the pilot project will be important to the secondary recovery optimization study for which the DOE grant was awarded. The reservoir characterization portion of the modeling and simulation study is in progress by Strand Energy project staff under the guidance of University of Houston Department of Geosciences professor Dr. Janok Bhattacharya and University of Texas at Austin Department of Petroleum and Geosystems Engineering professor Dr. Larry W. Lake. A geologic and petrophysical model of the reservoir is being constructed from geophysical data acquired from core, well log and production performance histories. Possible use of an outcrop analog to aid in three dimensional, geostatistical distribution of the flow unit model developed from the wellbore data will be investigated. The reservoir model will be used for full-field history matching and subsequent fluid flow simulation based on various injection schemes including patterned water flooding, addition of alkaline surfactant-polymer (ASP) to the injected water, and high pressure air injection (HPAI) for in-situ low temperature oxidization (LTO) will be studied for optimization of the secondary recovery process.« less
1. Photocopied December, 1977, from loose original engineering drawing, Jervis ...
1. Photocopied December, 1977, from loose original engineering drawing, Jervis Library. SECTIONS OF INDIAN BROOK CLUVERT - Old Croton Aqueduct, Indian Creek Culvert, Reservoir & Quaker Bridge Roads, Crotonville, Ossining, Westchester County, NY
Design optimum frac jobs using virtual intelligence techniques
NASA Astrophysics Data System (ADS)
Mohaghegh, Shahab; Popa, Andrei; Ameri, Sam
2000-10-01
Designing optimal frac jobs is a complex and time-consuming process. It usually involves the use of a two- or three-dimensional computer model. For the computer models to perform as intended, a wealth of input data is required. The input data includes wellbore configuration and reservoir characteristics such as porosity, permeability, stress and thickness profiles of the pay layers as well as the overburden layers. Among other essential information required for the design process is fracturing fluid type and volume, proppant type and volume, injection rate, proppant concentration and frac job schedule. Some of the parameters such as fluid and proppant types have discrete possible choices. Other parameters such as fluid and proppant volume, on the other hand, assume values from within a range of minimum and maximum values. A potential frac design for a particular pay zone is a combination of all of these parameters. Finding the optimum combination is not a trivial process. It usually requires an experienced engineer and a considerable amount of time to tune the parameters in order to achieve desirable outcome. This paper introduces a new methodology that integrates two virtual intelligence techniques, namely, artificial neural networks and genetic algorithms to automate and simplify the optimum frac job design process. This methodology requires little input from the engineer beyond the reservoir characterizations and wellbore configuration. The software tool that has been developed based on this methodology uses the reservoir characteristics and an optimization criteria indicated by the engineer, for example a certain propped frac length, and provides the detail of the optimum frac design that will result in the specified criteria. An ensemble of neural networks is trained to mimic the two- or three-dimensional frac simulator. Once successfully trained, these networks are capable of providing instantaneous results in response to any set of input parameters. These networks will be used as the fitness function for a genetic algorithm routine that will search for the best combination of the design parameters for the frac job. The genetic algorithm will search through the entire solution space and identify the optimal combination of parameters to be used in the design process. Considering the complexity of this task this methodology converges relatively fast, providing the engineer with several near-optimum scenarios for the frac job design. These scenarios, which can be achieved in just a minute or two, can be valuable initial points for the engineer to start his/her design job and save him/her hours of runs on the simulator.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-19
... Draft Feasibility Study; Environmental Impact Statement for the Chatfield Reservoir Storage Reallocation.... Army Corps of Engineers has prepared a Draft Feasibility Report/Environmental Impact Statement (FR/EIS) for the Chatfield Reservoir Storage Reallocation Study, Littleton, Colorado and by this notice is...
33 CFR 222.3 - Clearances for power and communication lines over reservoirs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... communication lines over reservoirs. 222.3 Section 222.3 Navigation and Navigable Waters CORPS OF ENGINEERS... Works responsibilities. (c) References. (1) ER 1180-1-1 (Section 73). (2) National Electrical Safety... including temperature, loading and length of spans as outlined in the National Electrical Safety Code. (3...
33 CFR 222.3 - Clearances for power and communication lines over reservoirs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... communication lines over reservoirs. 222.3 Section 222.3 Navigation and Navigable Waters CORPS OF ENGINEERS... Works responsibilities. (c) References. (1) ER 1180-1-1 (Section 73). (2) National Electrical Safety... including temperature, loading and length of spans as outlined in the National Electrical Safety Code. (3...
33 CFR 222.3 - Clearances for power and communication lines over reservoirs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... communication lines over reservoirs. 222.3 Section 222.3 Navigation and Navigable Waters CORPS OF ENGINEERS... Works responsibilities. (c) References. (1) ER 1180-1-1 (Section 73). (2) National Electrical Safety... including temperature, loading and length of spans as outlined in the National Electrical Safety Code. (3...
General Properties for an Agrawal Thermal Engine
NASA Astrophysics Data System (ADS)
Paéz-Hernández, Ricardo T.; Chimal-Eguía, Juan Carlos; Sánchez-Salas, Norma; Ladino-Luna, Delfino
2018-04-01
This paper presents a general property of endoreversible thermal engines known as the Semisum property previously studied in a finite-time thermodynamics context for a Curzon-Ahlborn (CA) engine but now extended to a simplified version of the CA engine studied by Agrawal in 2009 (A simplified version of the Curzon-Ahlborn engine, European Journal of Physics 30 (2009), 1173). By building the Ecological function, proposed by Angulo-Brown (An ecological optimization criterion for finite-time heat engines, Journal of Applied Physics 69 (1991), 7465-7469) in 1991, and considering two heat transfer laws an analytical expression is obtained for efficiency and power output which depends only on the heat reservoirs' temperature. When comparing the existing efficiency values of real power plants and the theoretical efficiencies obtained in this work, it is observed that the Semisum property is satisfied. Moreover, for the Newton and the Dulong-Petit heat transfer laws the existence of the g function is demonstrated and we confirm that in a Carnot-type thermal engine there is a general property independent of the heat transfer law used between the thermal reservoirs and the working substance.
Theoretical modeling of the subject: Western and Eastern types of human reflexion.
Lefebvre, Vladimir A
2017-12-01
The author puts forth the hypothesis that mental phenomena are connected with thermodynamic properties of large neural network. A model of the subject with reflexion and capable for meditation is constructed. The processes of reflexion and meditation are presented as the sequence of heat engines. Each subsequent engine compensates for the imperfectness of the preceding engine by performing work equal to the lost available work of the preceding one. The sequence of heat engines is regarded as a chain of the subject's mental images of the self. Each engine can be interpreted as an image of the self that the engine next to it has, and the work performed by engines as the emotions that the subject and his images are experiencing. Two types of meditation are analyzed: The dissolution in nothingness and union with the Absolute. In the first type, the initial engine is the one that yields heat to the coldest reservoir, and in the second type, the initial engine is the one that takes heat from the hottest reservoir. The main concepts of thermodynamics are reviewed in relation to the process of human reflexion. Copyright © 2017 Elsevier Ltd. All rights reserved.
1986-07-01
sluiceway and into the tailwater. In some instances, fish from the reservoir may dominate the fish community in the immediate tailwater. From a fishery ...TITLE (and Su.btitle) S. TYPE OF REPORT & PERIOD COVERED HANDBOOK ON RESERVOIR RELEASES FOR FISHERIES AND Final report ENV IRONMENTAL QUALITY 6...Releases for Fisheries and Environmental Quality," Instruction Report E-86-3, US Army Engineer Waterways Experiment Station, Vicksburg, Miss. 4.S ,k -i
Final Environmental Assessment: Evaluation of J-85-5 Engine Test Burn
2005-01-01
is highest in winter when birds migrate from the north. Most of the birds congregate during the winter at Reelfoot Lake and Dale Hollow Reservoir...Hydrological features include surface waters ( lakes , rivers, streams, and springs) and groundwater. Arnold AFB lies within the Duck River and the Elk...Smaller creeks R ow la nd C re ek Crumpton Creek Sinking Pond Woods Reservoir Normandy Lake Tims Ford Lake Retention Reservoir Duck River Figure 3-1 0
Code of Federal Regulations, 2010 CFR
2010-07-01
... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION WITH CIVIL WORKS PROJECTS Sale of Lands in Reservoir Areas... access roads is delegated to the Chief of Engineers, with authority to redelegate to Division and/or...
Coupled-Double-Quantum-Dot Environmental Information Engines: A Numerical Analysis
NASA Astrophysics Data System (ADS)
Tanabe, Katsuaki
2016-06-01
We conduct numerical simulations for an autonomous information engine comprising a set of coupled double quantum dots using a simple model. The steady-state entropy production rate in each component, heat and electron transfer rates are calculated via the probability distribution of the four electronic states from the master transition-rate equations. We define an information-engine efficiency based on the entropy change of the reservoir, implicating power generators that employ the environmental order as a new energy resource. We acquire device-design principles, toward the realization of corresponding practical energy converters, including that (1) higher energy levels of the detector-side reservoir than those of the detector dot provide significantly higher work production rates by faster states' circulation, (2) the efficiency is strongly dependent on the relative temperatures of the detector and system sides and becomes high in a particular Coulomb-interaction strength region between the quantum dots, and (3) the efficiency depends little on the system dot's energy level relative to its reservoir but largely on the antisymmetric relative amplitudes of the electronic tunneling rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joe Hachey
2007-09-30
The goals of this project were: (1) To enhance recovery of oil contained within algal mounds on the Ute Mountain Ute tribal lands. (2) To promote the use of advanced technology and expand the technical capability of the Native American Oil production corporations by direct assistance in the current project and dissemination of technology to other Tribes. (3) To develop an understanding of multicomponent seismic data as it relates to the variations in permeability and porosity of algal mounds, as well as lateral facies variations, for use in both reservoir development and exploration. (4) To identify any undiscovered algal moundsmore » for field-extension within the area of seismic coverage. (5) To evaluate the potential for applying CO{sub 2} floods, steam floods, water floods or other secondary or tertiary recovery processes to increase production. The technical work scope was carried out by: (1) Acquiring multicomponent seismic data over the project area; (2) Processing and reprocessing the multicomponent data to extract as much geological and engineering data as possible within the budget and time-frame of the project; (3) Preparing maps and data volumes of geological and engineering data based on the multicomponent seismic and well data; (4) Selecting drilling targets if warranted by the seismic interpretation; (5) Constructing a static reservoir model of the project area; and (6) Constructing a dynamic history-matched simulation model from the static model. The original project scope covered a 6 mi{sup 2} (15.6 km{sup 2}) area encompassing two algal mound fields (Towaoc and Roadrunner). 3D3C seismic data was to acquired over this area to delineate mound complexes and image internal reservoir properties such as porosity and fluid saturations. After the project began, the Red Willow Production Company, a project partner and fully-owned company of the Southern Ute Tribe, contributed additional money to upgrade the survey to a nine-component (3D9C) survey. The purpose of this upgrade to nine components was to provide additional shear wave component data that might prove useful in delineating internal mound reservoir attributes. Also, Red Willow extended the P-wave portion of the survey to the northwest of the original 6 mi{sup 2} (15.6 km{sup 2}) 3D9C area in order to extend coverage further to the northwest to the Marble Wash area. In order to accomplish this scope of work, 3D9C seismic data set covering two known reservoirs was acquired and processed. Three-dimensional, zero-offset vertical seismic profile (VSP) data was acquired to determine the shear wave velocities for processing the sh3Dseismic data. Anisotropic velocity, and azimuthal AVO processing was carried out in addition to the conventional 3D P-wave data processing. All P-, PS- and S-wave volumes of the seismic data were interpreted to map the seismic response. The interpretation consisted of conventional cross-plots of seismic attributes vs. geological and reservoir engineering data, as well as multivariate and neural net analyses to assess whether additional resolution on exploration and engineering parameters could be achieved through the combined use of several seismic variables. Engineering data in the two reservoirs was used to develop a combined lithology, structure and permeability map. On the basis of the seismic data, a well was drilled into the northern mound trend in the project area. This well, Roadrunner No.9-2, was brought into production in late April 2006 and continues to produce modest amounts of oil and gas. As of the end of August 2007, the well has produced approximately 12,000 barrels of oil and 32,000 mcf of gas. A static reservoir model was created from the seismic data interpretations and well data. The seismic data was tied to various markers identified in the well logs, which in turn were related to lithostratigraphy. The tops and thicknesses of the various units were extrapolated from well control based upon the seismic data that was calibrated to the well picks. The reservoir engineering properties were available from a number of wells in the project area. Multivariate regressions of seismic attributes versus engineering parameters, such as porosity, were then used to guide interpolation away from well control. These formed the basis for dynamic reservoir simulations. The simulations were used to assess the potential for additional reservoir development, and to provide insight as to how well the multivariate approach worked for assigning more realistic values of internal mound reservoir properties.« less
1987 Annual Report of the Reservoir Control Center, Southwestern Division, Army Corps of Engineers
1988-01-01
sediment ranges along the MClellan-Kerr Arkansas River Navigation Project. Due to the funding priorities assigned to reservoir sedimentation resurveys, it’ s...winter with the majority being released in February and March 1988. Numerous small deviations, which ranged from channel work to bridge construction...1987. This was still within the range of the conservation pool. The maximum pool elevation was 6,222.54 (61,668 ac-ft) on 20 June. Pueblo Reservoir is a
1991-09-01
Army (i #Awleable) Engineer istrict. Walls Welli NPW-EN- GI _____________________ Bc DRSSW4~Sse.adZPa 10 SOURCE OF FUNDING NUMBERS Bldg. 602, City...cracks induced by ground motions. Z. Overtopping of dam due to seiches in reservoir. h. Overtopping of dam due to slides or rockfalls into reservoir. j...overtopping due to slides or rockfalls is not likely. Three potential modes of failure remain from the original list: (c) slope failures induced by
1983-02-01
simple cause - effect relations. 00 Fish-Food Biota 32. Aquatic plants. The three major groups of plants in reservoirs are phytoplankton (microscopic...benthophagous fishes. Severe drawdowns may force fish into anoxic waters in summer, thereby causing mortality by suffocation. 116. Some effects of drawdowns are...RD-R127 5 777 A REVIEW OF’THE EFFECTS OF MATER-LEVEL CHANGES ON / RESERVOIR FISHERIES AND..(U) ARMY ENGINEER WATERWAYS U M AS EXPERIMENT STATION
1986-01-01
Mk H imm—mmp mad IdiUltr by block numb*) ■ Whis is a report of an archeological survey and recommaissance conducted at the Harry S. Truman Dam and...Conference. Chomko, Stephen A. 1976 The Phillips Spring äite: Harry S. Truman Reservoir. Report to the Nations • Park Service, Illinois State Museum...Society. 1977 Archaeological test excavations in the Harry S. Truman Reservoir, Missouri: 1975. Report submitted to U. S. Army Corps of Engineers
Discussion of case study of a stimulation experiment in a fluvial, tight-sandstone gas reservoir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azari, M.; Wooden, W.
The authors found Warpinski et al.'s paper (Case Study of a Stimulation Experiment in Fluvial, Tight-Sandstone Gas Reservoir. Nov. 1990 SPE Production Engineering, Pages 403-10) to be very thorough and informative. That paper considered geological, logging, completion, and pressure-transient data to produce a comprehensive formation evaluation of a fluvial, tight-sandstone gas reservoir. The purpose of this paper is to present the author's view on the peculiar pressure-transient responses shown.
Preservation of Gaussian state entanglement in a quantum beat laser by reservoir engineering
NASA Astrophysics Data System (ADS)
Qurban, Misbah; Islam, Rameez ul; Ge, Guo-Qin; Ikram, Manzoor
2018-04-01
Quantum beat lasers have been considered as sources of entangled radiation in continuous variables such as Gaussian states. In order to preserve entanglement and to minimize entanglement degradation due to the system’s interaction with the surrounding environment, we propose to engineer environment modes through insertion of another system in between the laser resonator and the environment. This makes the environment surrounding the two-mode laser a structured reservoir. It not only enhances the entanglement among two modes of the laser but also preserves the entanglement for sufficiently longer times, a stringent requirement for quantum information processing tasks.
Combined heat and power supply using Carnot engines
NASA Astrophysics Data System (ADS)
Horlock, J. H.
The Marshall Report on the thermodynamic and economic feasibility of introducing large scale combined heat and electrical power generation (CHP) into the United Kingdom is summarized. Combinations of reversible power plant (Carnot engines) to meet a given demand of power and heat production are analyzed. The Marshall Report states that fairly large scale CHP plants are an attractive energy saving option for areas of high heat load densities. Analysis shows that for given requirements, the total heat supply and utilization factor are functions of heat output, reservoir supply temperature, temperature of heat rejected to the reservoir, and an intermediate temperature for district heating.
NASA Astrophysics Data System (ADS)
Götz, Annette E.; Sass, Ingo; Török, Ákos
2015-04-01
The characterization of geothermal reservoirs of deep sedimentary basins is supported by outcrop analogue studies since reservoir characteristics are strongly related to the sedimentary facies and thus influence the basic direction of geothermal field development and applied technology (Sass & Götz, 2012). Petro- and thermophysical rock properties are key parameters in geothermal reservoir characterization and the data gained from outcrop samples serve to understand the reservoir system. New data from the Meso- and Cenozoic sedimentary rocks of Budapest include carbonates and siliciclastics of Triassic, Eocene, Oligocene and Miocene age, exposed on the western side of the river Danube in the Buda Hills (Götz et al., 2014). Field and laboratory analyses revealed distinct horizons of different geothermal potential and thus, enable to identify and interpret corresponding exploration target horizons in geothermal prone depths in the Budapest region as well as in the Hungarian sub-basins of the Pannonian Basins System (Zala and Danube basins, Great Plain) exhibiting geothermal anomalies. References Götz, A.E., Török, Á., Sass, I., 2014. Geothermal reservoir characteristics of Meso- and Cenozoic sedimentary rocks of Budapest (Hungary). German Journal of Geosciences, 165, 487-493. Sass, I., Götz, A.E., 2012. Geothermal reservoir characterization: a thermofacies concept. Terra Nova, 24, 142-147.
NASA Astrophysics Data System (ADS)
Park, A. J.; Tuncay, K.; Ortoleva, P. J.
2003-12-01
An important component of CO2 sequestration in geologic formations is the reactions between the injected fluid and the resident geologic material. In particular, carbonate mineral reaction rates are several orders of magnitude faster than those of siliciclastic minerals. The reactions between resident and injected components can create complex flow regime modifications, and potentially undermine the reservoir integrity by changing their mineralogic and textural compositions on engineering time scale. This process can be further enhanced due to differences in pH and temperature of the injectant from the resident sediments and fluids. CIRF.B is a multi-process simulator originally developed for basin simulations. Implemented processes include kinetic and thermodynamic reactions between minerals and fluid, fluid flow, mass-transfer, composite-media approach to sediment textural description and dynamics, elasto-visco-plastic rheology, and fracturing dynamics. To test the feasibility of applying CIRF.B to CO2 sequestration, a number of engineering scale simulations are carried out to delineate the effects of changing injectant chemistry and injection rates on both carbonate and siliciclastic sediments. Initial findings indicate that even moderate amounts of CO2 introduced into sediments can create low pH environments, which affects feldspar-clay interactions. While the amount of feldspars reacting in engineering time scale may be small, its consequence to clay alteration and permeability modfication can be significant. Results also demonstrate that diffusion-imported H+ can affect sealing properties of both siliciclastic and carbonate formations. In carbonate systems significant mass transfer can occur due to dissolution and reprecipitation. The resulting shifts in in-situ stresses can be sufficient to initiate fracturing. These simulations allow characterization of injectant fluids, thus assisting in the implementation of effective sequestration procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Zhufeng; Hou, Zhangshuan; Lin, Guang
2014-04-01
This study examined the impacts of reservoir properties on CO2 migration after subsurface injection and evaluated the possibility of characterizing reservoir properties using CO2 monitoring data such as saturation distribution. The injection reservoir was assumed to be located 1400-1500 m below the ground surface such that CO2 remained in the supercritical state. The reservoir was assumed to contain layers with alternating conductive and resistive properties, which is analogous to actual geological formations such as the Mount Simon Sandstone unit. The CO2 injection simulation used a cylindrical grid setting in which the injection well was situated at the center of themore » domain, which extended up to 8000 m from the injection well. The CO2 migration was simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). We adopted a nonlinear parameter estimation and optimization modeling software package, PEST, for automated reservoir parameter estimation. We explored the effects of data quality, data worth, and data redundancy on the detectability of reservoir parameters using CO2 saturation monitoring data, by comparing PEST inversion results using data with different levels of noises, various numbers of monitoring wells and locations, and different data collection spacing and temporal sampling intervals. This study yielded insight into the use of CO2 saturation monitoring data for reservoir characterization and how to design the monitoring system to optimize data worth and reduce data redundancy.« less
GEOLOGIC ASPECTS OF TIGHT GAS RESERVOIRS IN THE ROCKY MOUNTAIN REGION.
Spencer, Charles W.
1985-01-01
The authors describe some geologic characteristics of tight gas reservoirs in the Rocky Mountain region. These reservoirs usually have an in-situ permeability to gas of 0. 1 md or less and can be classified into four general geologic and engineering categories: (1) marginal marine blanket, (2) lenticular, (3) chalk, and (4) marine blanket shallow. Microscopic study of pore/permeability relationships indicates the existence of two varieties of tight reservoirs. One variety is tight because of the fine grain size of the rock. The second variety is tight because the rock is relatively tightly cemented and the pores are poorly connected by small pore throats and capillaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
City of Long Beach; Tidelands Oil Production Company; University of Southern California
2002-09-30
The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.
Development and evaluation of a reservoir model for the Chain of Lakes in Illinois
Domanski, Marian M.
2017-01-27
Forecasts of flows entering and leaving the Chain of Lakes reservoir on the Fox River in northeastern Illinois are critical information to water-resource managers who determine the optimal operation of the dam at McHenry, Illinois, to help minimize damages to property and loss of life because of flooding on the Fox River. In 2014, the U.S. Geological Survey; the Illinois Department of Natural Resources, Office of Water Resources; and National Weather Service, North Central River Forecast Center began a cooperative study to develop a system to enable engineers and planners to simulate and communicate flows and to prepare proactively for precipitation events in near real time in the upper Fox River watershed. The purpose of this report is to document the development and evaluation of the Chain of Lakes reservoir model developed in this study.The reservoir model for the Chain of Lakes was developed using the Hydrologic Engineering Center–Reservoir System Simulation program. Because of the complex relation between the dam headwater and reservoir pool elevations, the reservoir model uses a linear regression model that relates dam headwater elevation to reservoir pool elevation. The linear regression model was developed using 17 U.S. Geological Survey streamflow measurements, along with the gage height in the reservoir pool and the gage height at the dam headwater. The Nash-Sutcliffe model efficiency coefficients for all three linear regression model variables ranged from 0.90 to 0.98.The reservoir model performance was evaluated by graphically comparing simulated and observed reservoir pool elevation time series during nine periods of high pool elevation. In addition, the peak elevations during these time periods were graphically compared to the closest-in-time observed pool elevation peak. The mean difference in the simulated and observed peak elevations was -0.03 feet, with a standard deviation of 0.19 feet. The Nash-Sutcliffe coefficient for peak prediction was calculated as 0.94. Evaluation of the model based on accuracy of peak prediction and the ability to simulate an elevation time series showed the performance of the model was satisfactory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watney, W.L.
1992-08-01
Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to linkmore » the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watney, W.L.
1992-01-01
Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to linkmore » the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest A. Mancini
Characterization of stratigraphic sequences (T-R cycles or sequences) included outcrop studies, well log analysis and seismic reflection interpretation. These studies were performed by researchers at the University of Alabama, Wichita State University and McGill University. The outcrop, well log and seismic characterization studies were used to develop a depositional sequence model, a T-R cycle (sequence) model, and a sequence stratigraphy predictive model. The sequence stratigraphy predictive model developed in this study is based primarily on the modified T-R cycle (sequence) model. The T-R cycle (sequence) model using transgressive and regressive systems tracts and aggrading, backstepping, and infilling intervals or sectionsmore » was found to be the most appropriate sequence stratigraphy model for the strata in the onshore interior salt basins of the Gulf of Mexico to improve petroleum stratigraphic trap and specific reservoir facies imaging, detection and delineation. The known petroleum reservoirs of the Mississippi Interior and North Louisiana Salt Basins were classified using T-R cycle (sequence) terminology. The transgressive backstepping reservoirs have been the most productive of oil, and the transgressive backstepping and regressive infilling reservoirs have been the most productive of gas. Exploration strategies were formulated using the sequence stratigraphy predictive model and the classification of the known petroleum reservoirs utilizing T-R cycle (sequence) terminology. The well log signatures and seismic reflector patterns were determined to be distinctive for the aggrading, backstepping and infilling sections of the T-R cycle (sequence) and as such, well log and seismic data are useful for recognizing and defining potential reservoir facies. The use of the sequence stratigraphy predictive model, in combination with the knowledge of how the distinctive characteristics of the T-R system tracts and their subdivisions are expressed in well log patterns and seismic reflection configurations and terminations, improves the ability to identify and define the limits of potential stratigraphic traps and the stratigraphic component of combination stratigraphic and structural traps and the associated continental, coastal plain and marine potential reservoir facies. The assessment of the underdeveloped and undiscovered reservoirs and resources in the Mississippi Interior and North Louisiana Salt Basins resulted in the confirmation of the Monroe Uplift as a feature characterized by a major regional unconformity, which serves as a combination stratigraphic and structural trap with a significant stratigraphic component, and the characterization of a developing play in southwest Alabama, which involves a stratigraphic trap, located updip near the pinchout of the potential reservoir facies. Potential undiscovered and underdeveloped reservoirs in the onshore interior salt basins are identified as Jurassic and Cretaceous aggrading continental and coastal, backstepping nearshore marine and marine shelf, and infilling fluvial, deltaic, coastal plain and marine shelf.« less
Seismic Characterization of EGS Reservoirs
NASA Astrophysics Data System (ADS)
Templeton, D. C.; Pyle, M. L.; Matzel, E.; Myers, S.; Johannesson, G.
2014-12-01
To aid in the seismic characterization of Engineered Geothermal Systems (EGS), we enhance the traditional microearthquake detection and location methodologies at two EGS systems. We apply the Matched Field Processing (MFP) seismic imaging technique to detect new seismic events using known discrete microearthquake sources. Events identified using MFP are typically smaller magnitude events or events that occur within the coda of a larger event. Additionally, we apply a Bayesian multiple-event seismic location algorithm, called MicroBayesLoc, to estimate the 95% probability ellipsoids for events with high signal-to-noise ratios (SNR). Such probability ellipsoid information can provide evidence for determining if a seismic lineation could be real or simply within the anticipated error range. We apply this methodology to the Basel EGS data set and compare it to another EGS dataset. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Inventory of gate-sensing equipment at 14 U.S. Army Corps of Engineers dams in Texas
Harwell, Glenn R.
2005-01-01
The U.S. Army Corps of Engineers (USACE) is a worldwide organization that provides engineering services, environmental restoration, and construction support for a wide variety of civil and military projects. The primary civil mission of the USACE is developing and managing the Nation's water resources. USACE develops projects to reduce flood damage, improve navigation channels and harbors, protect wetlands, and preserve, safeguard, and enhance the environment. Additional missions of the Corps include managing federal real estate, assisting communities with emergency operations and recovery, and providing recreation opportunities.Accurate and timely information on reservoir gate openings is critical for managing flood pools, reducing flood damage downstream from reservoirs, delivering drinking-water supplies, and meeting an assortment of competing downstream water-use needs. Documentation, operation, and maintenance of gate sensors are needed so that reliable, timely information is available to USACE to make reservoir operation decisions.USACE requested that the U.S. Geological Survey (USGS) prepare an inventory and documentation of existing gate-sensing equipment at 14 reservoirs that will serve as a user’s manual for operating the equipment. The 14 reservoirs include Aquilla Lake, Bardwell Lake, Benbrook Lake, Canyon Lake, Georgetown Lake, Granger Lake, Grapevine Lake, Jim Chapman Lake, Joe Pool Lake, Lake O’ the Pines, Ray Roberts Lake, Somerville Lake, Stillhouse Hollow Lake, and Wright Patman Lake.This report presents the inventory and documentation of the existing gate-sensing equipment at the 14. The report is organized by lake; information in each lake section includes location of lake and intake structure, directions to each lake (road log), access, equipment description, operation and maintenance information, job hazard analysis, wiring diagrams, photographs, and datalogger programs. The report also includes a list of contact information for the different manufacturers of equipment in service at the lakes.
We used multiple approaches to characterize temporal and spatial patterns in methane (CH4) emissions from a mid-latitude reservoir (William H. Harsha Lake, Ohio, USA) draining an agricultural watershed. Weekly to monthly monitoring at six sites in the reservoir during a 13 month...
We used multiple approaches to characterize temporal and spatial patterns in methane (CH4) emissions from a mid-latitude reservoir (William H. Harsha Lake, Ohio, USA) draining an agricultural watershed. Weekly to monthly monitoring at six sites in the reservoir during a 13 month...
1980-01-01
Engineering Branch Engineering Division CARNEY M. TERZIAN, MEMBER Design Branch Engineering Division S, RICHARD DIE O CHIRA Water Control Branch...Associates, P.C. under a letter of 19 October 1979 from William E. Hodgson, Jr., Colonel, Corps of Engineers. Contract No. DACW33-80-C-0001 has been assigned
NASA Astrophysics Data System (ADS)
Jackson, S.; Szpaklewicz, M.; Tomutsa, L.
1987-09-01
The primary objective of this research is to develop a methodology for constructing accurate quantitative models of reservoir heterogeneities. The resulting models are expected to improve predictions of flow patterns, spatial distribution of residual oil after secondary and tertiary recovery operations, and ultimate oil recovery. The purpose of this study is to provide preliminary evaluation of the usefulness of outcrop information in characterizing analogous reservoirs and to develop research techniques necessary for model development. The Shannon Sandstone, a shelf sand ridge deposit in the Powder River Basin, Wyoming, was studied. Sedimentologic and petrophysical features of an outcrop exposure of the High-Energy Ridge-Margin facies (HERM) within the Shannon were compared with those from a Shannon sandstone reservoir in Teapot Dome field. Comparisons of outcrop and subsurface permeability and porosity histograms, cumulative distribution functions, correlation lengths and natural logarithm of permeability versus porosity plots indicate a strong similarity between Shannon outcrop and Teapot Dome HERM facies petrophysical properties. Permeability classes found in outcrop samples can be related to crossbedded zones and shaley, rippled, and bioturbated zones. Similar permeability classes related to similar sedimentologic features were found in Teapot Dome field. The similarities of outcrop and Teapot Dome petrophysical properties, which are from the same geologic facies but from different depositional episodes, suggest that rocks deposited under similar depositional processes within a given deposystem have similar reservoir properties. The results of the study indicate that the use of quantitative outcrop information in characterizing reservoirs may provide a significant improvement in reservoir characterization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... reservoir; logging. 207.330 Section 207.330 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT... reservoir; logging. (a) Parties engaged in the transportation of loose logs, timbers, and rafts of logs, poles, posts, ties, or pulpwood, on the waters described in this section, shall conduct their operations...
Code of Federal Regulations, 2011 CFR
2011-07-01
... reservoir; logging. 207.330 Section 207.330 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT... reservoir; logging. (a) Parties engaged in the transportation of loose logs, timbers, and rafts of logs, poles, posts, ties, or pulpwood, on the waters described in this section, shall conduct their operations...
An application of geostatistics and fractal geometry for reservoir characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aasum, Y.; Kelkar, M.G.; Gupta, S.P.
1991-03-01
This paper presents an application of geostatistics and fractal geometry concepts for 2D characterization of rock properties (k and {phi}) in a dolomitic, layered-cake reservoir. The results indicate that lack of closely spaced data yield effectively random distributions of properties. Further, incorporation of geology reduces uncertainties in fractal interpolation of wellbore properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laubach, S.E.; Marrett, R.; Rossen, W.
The research for this project provides new technology to understand and successfully characterize, predict, and simulate reservoir-scale fractures. Such fractures have worldwide importance because of their influence on successful extraction of resources. The scope of this project includes creation and testing of new methods to measure, interpret, and simulate reservoir fractures that overcome the challenge of inadequate sampling. The key to these methods is the use of microstructures as guides to the attributes of the large fractures that control reservoir behavior. One accomplishment of the project research is a demonstration that these microstructures can be reliably and inexpensively sampled. Specificmore » goals of this project were to: create and test new methods of measuring attributes of reservoir-scale fractures, particularly as fluid conduits, and test the methods on samples from reservoirs; extrapolate structural attributes to the reservoir scale through rigorous mathematical techniques and help build accurate and useful 3-D models of the interwell region; and design new ways to incorporate geological and geophysical information into reservoir simulation and verify the accuracy by comparison with production data. New analytical methods developed in the project are leading to a more realistic characterization of fractured reservoir rocks. Testing diagnostic and predictive approaches was an integral part of the research, and several tests were successfully completed.« less
NASA Astrophysics Data System (ADS)
Peters, Max; Lesueur, Martin; Held, Sebastian; Poulet, Thomas; Veveakis, Manolis; Regenauer-Lieb, Klaus; Kohl, Thomas
2017-04-01
The dynamic response of the geothermal reservoirs of Soultz-sous-Forêts (NE France) and a new site in Iceland are theoretically studied upon fluid injection and production. Since the Soultz case can be considered the most comprehensive project in the area of enhanced geothermal systems (EGS), it is tailored for the testing of forward modeling techniques that aim at the characterization of fluid dynamics and mechanical properties in any deeply-seated fractured cystalline reservoir [e.g. Held et al., 2014]. We present multi-physics finite element models using the recently developed framework MOOSE (mooseframework.org) that implicitly consider fully-coupled feedback mechanisms of fluid-rock interaction at depth where EGS are located (depth > 5 km), i.e. the effects of dissipative strain softening on chemical reactions and reactive transport [Poulet et al., 2016]. In a first suite of numerical experiments, we show that an accurate simulation of propagation fronts allows studying coupled fluid and heat transport, following preferred pathways, and the transport time of the geothermal fluid between injection and production wells, which is in good agreement with tracer experiments performed inside the natural reservoir. Based on induced seismicity experiments and related damage along boreholes, we concern with borehole instabilities resulting from pore pressure variations and (a)seismic creep in a second series of simulations. To this end, we account for volumetric and deviatoric components, following the approach of Veveakis et al. (2016), and discuss the mechanisms triggering slow earthquakes in the stimulated reservoirs. Our study will allow applying concepts of unconventional geomechanics, which were previously reviewed on a theoretical basis [Regenauer-Lieb et al., 2015], to substantial engineering problems of deep geothermal reservoirs in the future. REFERENCES Held, S., Genter, A., Kohl, T., Kölbel, T., Sausse, J. and Schoenball, M. (2014). Economic evaluation of geothermal reservoir performance through modeling the complexity of the operating EGS in Soultz-sous-Forêts. Geothermics, 51, 270-280, doi:10.1016/j.geothermics.2014.01.016 Poulet, T., Paesold, M. and Veveakis, M. (2016). Multi-Physics Modelling of Fault Mechanics Using REDBACK: A Parallel Open-Source Simulator for Tightly Coupled Problems. Rock Mechanics and Rock Engineering, doi:10.1007/s00603-016-0927-y Regenauer-Lieb, K., Bunger, A., Chua, H. T., et al., 2015. Deep Geothermal: The 'Moon Landing' Mission in the Unconventional Energy and Minerals Space. Journal of Earth Science, 26(1): 2-10, doi:10.1007/s12583-015-0515-1 Veveakis, M., Alevizos, S., Poulet, T. (2016). Episodic Tremor and Slip (ETS) as a chaotic Multiphysics spring. Physics of the Earth and Planetary Interiors, in press, doi:10.1016/j.pepi.2016.10.002
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. Lynn Watney; John H. Doveton
GEMINI (Geo-Engineering Modeling through Internet Informatics) is a public-domain web application focused on analysis and modeling of petroleum reservoirs and plays (http://www.kgs.ukans.edu/Gemini/index.html). GEMINI creates a virtual project by ''on-the-fly'' assembly and analysis of on-line data either from the Kansas Geological Survey or uploaded from the user. GEMINI's suite of geological and engineering web applications for reservoir analysis include: (1) petrofacies-based core and log modeling using an interactive relational rock catalog and log analysis modules; (2) a well profile module; (3) interactive cross sections to display ''marked'' wireline logs; (4) deterministic gridding and mapping of petrophysical data; (5) calculation and mappingmore » of layer volumetrics; (6) material balance calculations; (7) PVT calculator; (8) DST analyst, (9) automated hydrocarbon association navigator (KHAN) for database mining, and (10) tutorial and help functions. The Kansas Hydrocarbon Association Navigator (KHAN) utilizes petrophysical databases to estimate hydrocarbon pay or other constituent at a play- or field-scale. Databases analyzed and displayed include digital logs, core analysis and photos, DST, and production data. GEMINI accommodates distant collaborations using secure password protection and authorized access. Assembled data, analyses, charts, and maps can readily be moved to other applications. GEMINI's target audience includes small independents and consultants seeking to find, quantitatively characterize, and develop subtle and bypassed pays by leveraging the growing base of digital data resources. Participating companies involved in the testing and evaluation of GEMINI included Anadarko, BP, Conoco-Phillips, Lario, Mull, Murfin, and Pioneer Resources.« less
A Statistical Graphical Model of the California Reservoir System
NASA Astrophysics Data System (ADS)
Taeb, A.; Reager, J. T.; Turmon, M.; Chandrasekaran, V.
2017-11-01
The recent California drought has highlighted the potential vulnerability of the state's water management infrastructure to multiyear dry intervals. Due to the high complexity of the network, dynamic storage changes in California reservoirs on a state-wide scale have previously been difficult to model using either traditional statistical or physical approaches. Indeed, although there is a significant line of research on exploring models for single (or a small number of) reservoirs, these approaches are not amenable to a system-wide modeling of the California reservoir network due to the spatial and hydrological heterogeneities of the system. In this work, we develop a state-wide statistical graphical model to characterize the dependencies among a collection of 55 major California reservoirs across the state; this model is defined with respect to a graph in which the nodes index reservoirs and the edges specify the relationships or dependencies between reservoirs. We obtain and validate this model in a data-driven manner based on reservoir volumes over the period 2003-2016. A key feature of our framework is a quantification of the effects of external phenomena that influence the entire reservoir network. We further characterize the degree to which physical factors (e.g., state-wide Palmer Drought Severity Index (PDSI), average temperature, snow pack) and economic factors (e.g., consumer price index, number of agricultural workers) explain these external influences. As a consequence of this analysis, we obtain a system-wide health diagnosis of the reservoir network as a function of PDSI.
Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.P. McGrail; E. C. Sullivan; F. A. Spane
2009-12-01
The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling ofmore » Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow reservoir zones and 3 flow-interior/caprock intervals were performed during drilling and immediately following reaching the final borehole drilling depth (i.e., 4,110 ft). In addition, six of the 12 basalt interflow zones were selected for detailed hydrochemical characterization. Results from the detailed hydrologic test characterization program provided the primary information on basalt interflow zone transmissivity/injectivity, and caprock permeability characteristics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
These appendices contain the following reports: (1) investigation of coupling failure from the Gladys McCall No. 1 well; (2) failure analysis - oil well casing coupling; (3) technical remedial requirements for 5-inch production tubing string; (4) reservoir limit test data for sand zone No. 9; (5) reservoir fluid study - sand zone No. 9; (6) engineering interpretation of exploration drawdown tests; and (7) reservoir analysis. (ACR)
Thermodynamics of non-Markovian reservoirs and heat engines
NASA Astrophysics Data System (ADS)
Thomas, George; Siddharth, Nana; Banerjee, Subhashish; Ghosh, Sibasish
2018-06-01
We show that non-Markovian effects of the reservoirs can be used as a resource to extract work from an Otto cycle. The state transformation under non-Markovian dynamics is achieved via a two-step process, namely an isothermal process using a Markovian reservoir followed by an adiabatic process. From second law of thermodynamics, we show that the maximum amount of extractable work from the state prepared under the non-Markovian dynamics quantifies a lower bound of non-Markovianity. We illustrate our ideas with an explicit example of non-Markovian evolution.
Thermodynamic limits for solar energy conversion by a quantum-thermal hybrid system
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.
1981-01-01
The limits are presented fo air mass 1.5 conditions. A maximum conversion efficiency of 74 percent is thermodynamically achievable for the quantum device operating at 3500 K and the heat engine in contact with a reservoir at 0 K. The efficiency drops to 56 percent for a cold reservoir at approximately room temperature conditions. Hybrid system efficiencies exceed 50 percent over receiver temperatures ranging from 1400 K to 4000 K, suggesting little benefit is gained in operating the system above 1400 K. The results are applied to a system consisting of a photovoltaic solar cell in series with a heat engine.
Economics of wind energy for irrigation pumping
NASA Astrophysics Data System (ADS)
Lansford, R. R.; Supalla, R. J.; Gilley, J. R.; Martin, D. L.
1980-07-01
The economic questions associated with wind power as an energy source for irrigation under different situations with seven regions of the nation were studied. Target investment costs for wind turbines used for irrigation pumping and policy makers with bases for adjusting taxes to make alternative sources of energy investments more attractive are analyzed. Three types of wind systems are considered for each of the seven regions. The three types of wind powered irrigation systems evaluated for each region are: (1) wind assist combustion engines (diesel, natural gas, propane panel); (2) wind assist electric engines, with or without sale of surplus electricity; and (3) stand alone reservoir systems with gravity flow reservoirs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyrak-Nolte, Laura J.
Carbonate reservoirs pose a scientific and engineering challenge to geophysical prediction and monitoring of fluid flow in the subsurface. Difficulties in interpreting hydrological, reservoir and other exploration data arise because carbonates are composed of a hierarchy of geological structures, constituents and processes that span a wide spectrum of length and time scales. What makes this problem particularly challenging is that length scales associated with physical structure and processes are often not discrete, but overlap, preventing the definition of discrete elements at one scale to become the building blocks of the next scale. This is particularly true for carbonates where complicatedmore » depositional environments, subsequent post-deposition diagenesis and geochemical interactions result in pores that vary in scale from submicron to centimeters to fractures, variation in fabric composition with fossils, minerals and cement, as well as variations in structural features (e.g., oriented inter- and intra layered - interlaced bedding and/or discontinuous rock units). In addition, this complexity is altered by natural and anthropogenic processes such as changes in stress, fluid content, reactive fluid flow, etc. Thus an accurate geophysical assessment of the flow behavior of carbonate reservoirs requires a fundamental understanding of the interplay of textural and structural features subjected to physical processes that affect and occur on various length and time scales. To address this complexity related to carbonates, a Hedberg conference on “Fundamental Controls on Flow in Carbonates” was held July 8 to 13, 2012, to bring together industry and academic scientists to stimulate innovative ideas that can accelerate research advances related to flow prediction and recovery in carbonate reservoirs. Participants included scientist and engineers from multiple disciplines (such as hydrology, structural geology, geochemistry, reservoir engineering, geophysics, geomechanics, numerical modeling, physical experiments, sedimentology, well-testing, statistics, mathematics, visualization, etc.) who encompass experience as well as the latest advances in these multi-faceted fields. One of the goals was to include early career scientists and engineers (post-doctoral fellows, assistant professors, etc.). With this grant 10 early career scientists and engineers were supported to attend the conference. This reports contains a brief overview of the conference and the list of support participants supported by this grant. Full details of the outcomes of the conference are given in the publication found in the Attachment section of this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead
2003-04-01
A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Informationmore » System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.« less
Processes occurring in reservoirs receiving biogenic and polluting substances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasil'ev, Yu.S.; Rolle, N.N.
1988-04-01
Various aspects of biogenic pollution on the water quality of reservoirs and its effect on ichthyofauna were analyzed. The effects of fertilizer runoffs and other pollutant pathways, such as the decay of flooded vegetation, into reservoirs were addressed. The dependence of fish survival times on nitrite concentrations was charted. On the basis of an optimization model for the economic development of drainage basins with ecological limitations, the Leningrad Polytechnic Institute developed instructions for calculating the removal of biogenic elements and selecting water protection measures which were tested on a number of streams of the Lake Ladoga Basin and other areasmore » and which provide engineering means for evaluating and controlling the eutrophication of reservoirs.« less
8. Wayne Chandler, Photographer, May 2000 Photographic copy of engineering ...
8. Wayne Chandler, Photographer, May 2000 Photographic copy of engineering drawings, dated 1911, by U.S. Army Corps of Engineers. Drawings in possession of U.S. Army Corps of Engineers, Sault Ste. Marie, Michigan. General plan of hydraulic accumulator, exhaust reservoir, and pressure pumps. - St. Mary's Falls Canal, Soo Locks, Davis Lock Subcomplex, Southwest Operating Shelter, St. Mary's River at Falls, Sault Ste. Marie, Chippewa County, MI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heckman, Tracy; Schechter, David S.
2000-04-11
The overall goal of this project was to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective was accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the fourth year of the five-year project for each of the four areas including a status report of field activities leading upmore » to injection of CO{sub 2}.« less
Reservoir transport and poroelastic properties from oscillating pore pressure experiments
NASA Astrophysics Data System (ADS)
Hasanov, Azar K.
Hydraulic transport properties of reservoir rocks, permeability and storage capacity are traditionally defined as rock properties, responsible for the passage of fluids through the porous rock sample, as well as their storage. The evaluation of both is an important part of any reservoir characterization workflow. Moreover, permeability and storage capacity are main inputs into any reservoir simulation study, routinely performed by reservoir engineers on almost any major oil and gas field in the world. An accurate reservoir simulation is essential for production forecast and economic analysis, hence the transport properties directly control the profitability of the petroleum reservoir and their estimation is vital for oil and gas industry. This thesis is devoted to an integrated study of reservoir rocks' hydraulic, streaming potential and poroelastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressure method is traditionally used to measure hydraulic transport properties. We modified the method and built an experimental setup, capable of measuring all aforementioned rock properties simultaneously. The measurements were carried out for four conventional reservoir-rock quality samples at a range of oscillation frequencies and effective stresses. An apparent frequency dependence of permeability and streaming potential coupling coefficient was observed. Measured frequency dispersion of drained poroelastic properties indicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demonstrated the best fit to the experimental dispersion data. Pore collapse and grain crushing effects took place during hydrostatic loading of the dolomitic sample and were observed in permeability, coupling coefficient and poroelastic measurements simultaneously. I established that hydraulically-measured storage capacities are overestimated by almost one order of magnitude when compared to elastically-derived ones. The fact that the values of storage capacities as estimated from the hydraulic component of the oscillating pore pressure experiment are unreliable was also demonstrated by comparing poroelastic Biot and Skempton coefficients. These coefficients were estimated both from hydraulic and strain measurements and the comparison of two datasets points out ambiguity of hydraulic measurements. I also introduce a novel method, which allowed us to estimate the permeability from the full range of acquired frequency data by utilizing a nonlinear least-squares regression. I additionally performed numerical simulation of oscillatory fluid flow. The simulated frequency-dependent results displayed an excellent agreement with both analytical solution and experimental data. This agreement proves that numerical simulation is a powerful tool in predicting frequency response of a porous rock sample to harmonic pore pressure excitations.
Characterization of Nipah Virus from Naturally Infected Pteropus vampyrus Bats, Malaysia
Hassan, Sharifah S.; Olival, Kevin J.; Mohamed, Maizan; Chang, Li-Yen; Hassan, Latiffah; Saad, Norsharina M.; Shohaimi, Syamsiah A.; Mamat, Zaini C.; Naim, M.S.; Epstein, Jonathan H.; Suri, Arshad S.; Field, Hume E.; Daszak, Peter
2010-01-01
We isolated and characterized Nipah virus (NiV) from Pteropus vampyrus bats, the putative reservoir for the 1998 outbreak in Malaysia, and provide evidence of viral recrudescence. This isolate is monophyletic with previous NiVs in combined analysis, and the nucleocapsid gene phylogeny suggests that similar strains of NiV are co-circulating in sympatric reservoir species. PMID:21122240
NASA Astrophysics Data System (ADS)
Ampomah, W.; Balch, R. S.; Cather, M.; Dai, Z.
2017-12-01
We present a performance assessment methodology and storage potential for CO2 enhanced oil recovery (EOR) in partially depleted reservoirs. A three dimensional heterogeneous reservoir model was developed based on geological, geophysics and engineering data from Farnsworth field Unit (FWU). The model aided in improved characterization of prominent rock properties within the Pennsylvanian aged Morrow sandstone reservoir. Seismic attributes illuminated previously unknown faults and structural elements within the field. A laboratory fluid analysis was tuned to an equation of state and subsequently used to predict the thermodynamic minimum miscible pressure (MMP). Datasets including net-to-gross ratio, volume of shale, permeability, and burial history were used to model initial fault transmissibility based on Sperivick model. An improved history match of primary and secondary recovery was performed to set the basis for a CO2 flood study. The performance of the current CO2 miscible flood patterns was subsequently calibrated to historical production and injection data. Several prediction models were constructed to study the effect of recycling, addition of wells and /or new patterns, water alternating gas (WAG) cycles and optimum amount of CO2 purchase on incremental oil production and CO2 storage in the FWU. The history matching study successfully validated the presence of the previously undetected faults within FWU that were seen in the seismic survey. The analysis of the various prediction scenarios showed that recycling a high percentage of produced gas, addition of new wells and a gradual reduction in CO2 purchase after several years of operation would be the best approach to ensure a high percentage of recoverable incremental oil and sequestration of anthropogenic CO2 within the Morrow reservoir. Larger percentage of stored CO2 were dissolved in residual oil and less amount existed as supercritical free CO2. The geomechanical analysis on the caprock proved to an excellent seal to ensure long-term security of injected CO2.
Engineering and Design: Reservoir Water Quality Analysis
1987-06-30
Production of Phytoplankton and Decomposition Organic Matter in the Kuybyshen Reservoir,” Hydrobiological Journal, VOI 10, pp 49-52. of Johnson, M. C...developed. Much of the material in this manual is a product of this program and of field experience from Corps district and division offices. FOR THE...Relationships. . . . . . . . . . . . . . . . . . . . . 2-3 Nutrient Demand:Supply Ratios During Nonproductive and Productive Seasons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earl D Mattson; Ghanashyam Neupane; Mitchell Plummer
Long-term sustainability of fracture conductivity is critical for commercial success of engineered geothermal system (EGS) and hydrogeothermal field sites. The injection of proppants has been suggested as a means to enhance the conductivity in these systems. Several studies have examined the chemical behavior of proppants that are not at chemical equilibrium with the reservoir rock and water. These studies have suggested that in geothermal systems, geochemical reactions can lead to enhance proppant dissolution and deposition alteration minerals. We hypothesize that proppant dissolution will decrease the strength of the proppant and can potentially reduce the conductivity of the fracture. To examinemore » the geomechanical strength of proppants, we have performed modified crushing tests of proppants and reservoir rock material that was subjected to geothermal reservoir temperature conditions. The batch reactor experiments heated crushed quartz monzonite rock material, proppants (either quartz sand, sintered bauxite or kryptospheres) with Raft River geothermal water to 250 ºC for a period of 2 months. Solid and liquid samples were shipped to University of Utah for chemical characterization with ICP-OES, ICP-MS, and SEM. A separate portion of the rock/proppant material was subjected to a modified American Petroleum Institute ISO 13503-2 proppant crushing test. This test is typically used to determine the maximum stress level that can be applied to a proppant pack without the occurrence of unacceptable proppant crushing. We will use the test results to examine potential changes in proppant/reservoir rock geomechanical properties as compared to samples that have not been subjected to geothermal conditions. These preliminary results will be used to screen the proppants for long term use in EGS and hot hydrogeothermal systems.« less
NASA Astrophysics Data System (ADS)
Talbot, C. A.; Ralph, M.; Jasperse, J.; Forbis, J.
2017-12-01
Lessons learned from the multi-agency Forecast-Informed Reservoir Operations (FIRO) effort demonstrate how research and observations can inform operations and policy decisions at Federal, State and Local water management agencies with the collaborative engagement and support of researchers, engineers, operators and stakeholders. The FIRO steering committee consists of scientists, engineers and operators from research and operational elements of the National Oceanographic and Atmospheric Administration and the US Army Corps of Engineers, researchers from the US Geological Survey and the US Bureau of Reclamation, the state climatologist from the California Department of Water Resources, the chief engineer from the Sonoma County Water Agency, and the director of the Scripps Institution of Oceanography's Center for Western Weather and Water Extremes at the University of California-San Diego. The FIRO framework also provides a means of testing and demonstrating the benefits of next-generation water cycle observations, understanding and models in water resources operations.
NASA Astrophysics Data System (ADS)
Maity, Debotyam
This study is aimed at an improved understanding of unconventional reservoirs which include tight reservoirs (such as shale oil and gas plays), geothermal developments, etc. We provide a framework for improved fracture zone identification and mapping of the subsurface for a geothermal system by integrating data from different sources. The proposed ideas and methods were tested primarily on data obtained from North Brawley geothermal field and the Geysers geothermal field apart from synthetic datasets which were used to test new algorithms before actual application on the real datasets. The study has resulted in novel or improved algorithms for use at specific stages of data acquisition and analysis including improved phase detection technique for passive seismic (and teleseismic) data as well as optimization of passive seismic surveys for best possible processing results. The proposed workflow makes use of novel integration methods as a means of making best use of the available geophysical data for fracture characterization. The methodology incorporates soft computing tools such as hybrid neural networks (neuro-evolutionary algorithms) as well as geostatistical simulation techniques to improve the property estimates as well as overall characterization efficacy. The basic elements of the proposed characterization workflow involves using seismic and microseismic data to characterize structural and geomechanical features within the subsurface. We use passive seismic data to model geomechanical properties which are combined with other properties evaluated from seismic and well logs to derive both qualitative and quantitative fracture zone identifiers. The study has resulted in a broad framework highlighting a new technique for utilizing geophysical data (seismic and microseismic) for unconventional reservoir characterization. It provides an opportunity to optimally develop the resources in question by incorporating data from different sources and using their temporal and spatial variability as a means to better understand the reservoir behavior. As part of this study, we have developed the following elements which are discussed in the subsequent chapters: 1. An integrated characterization framework for unconventional settings with adaptable workflows for all stages of data processing, interpretation and analysis. 2. A novel autopicking workflow for noisy passive seismic data used for improved accuracy in event picking as well as for improved velocity model building. 3. Improved passive seismic survey design optimization framework for better data collection and improved property estimation. 4. Extensive post-stack seismic attribute studies incorporating robust schemes applicable in complex reservoir settings. 5. Uncertainty quantification and analysis to better quantify property estimates over and above the qualitative interpretations made and to validate observations independently with quantified uncertainties to prevent erroneous interpretations. 6. Property mapping from microseismic data including stress and anisotropic weakness estimates for integrated reservoir characterization and analysis. 7. Integration of results (seismic, microseismic and well logs) from analysis of individual data sets for integrated interpretation using predefined integration framework and soft computing tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allan, M.E.; Wilson, M.L.; Wightman, J.
1996-12-31
The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity & permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based onmore » marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic & petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allan, M.E.; Wilson, M.L.; Wightman, J.
1996-01-01
The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on markermore » correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.« less
Hulvey, Matthew K; Martin, R. Scott
2010-01-01
This paper describes the fabrication and characterization of a microfluidic device that utilizes a reservoir-based approach for endothelial cell immobilization and integrated embedded carbon ink microelectrodes for the amperometric detection of extracellular nitric oxide (NO) release. The design utilizes a buffer channel to continuously introduce buffer or a plug of stimulant to the reservoir as well as a separate sampling channel that constantly withdraws buffer from the reservoir and over the microelectrode. A steel pin is used for both the fluidic connection to the sampling channel and to provide a quasi-reference electrode for the carbon ink microelectrode. Characterization of the device was performed using NO standards produced from a NONOate salt. Finally, NO release from a layer of immobilized endothelial cells was monitored and quantified using the system. This system holds promise as a means to electrochemically detect extracellular NO release from endothelial cells in either an array of reservoirs or concurrently with fluorescence-based intracellular NO measurements. PMID:18989663
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safley, I.E.; Thomas, J.B.
1996-09-01
The East Randolph Field, located in Randolph Township, Portage County, Ohio, produces oil and gas from the Cambrian Rose Run sandstone unit, a member of the Knox Supergroup. Field development and infill drilling opportunities illustrate the need for improved reservoir characterization of the hydrocarbon productive intervals. This reservoir study is conducted under the Department of Energy`s Reservoir Management Program with professionals from BDM-Oklahoma and Belden & Blake Corporation. Well log and core analyses were conducted to determine the reservoir distribution, the heterogeneity of the hydrocarbon producing intervals, and the effects of faulting and fracturing on well productivity. The Rose Runmore » sandstones and interbedded dolomites were subdivided into three productive intervals. Cross sections were constructed for correlation of individual layers and identification of localized faulting. The geologic data was input into GeoGraphix software for construction of structure, net pay, production, and gas- and water-oil ratio maps.« less
The Researches on Reasonable Well Spacing of Gas Wells in Deep and low Permeability Gas Reservoirs
NASA Astrophysics Data System (ADS)
Bei, Yu Bei; Hui, Li; Lin, Li Dong
2018-06-01
This Gs64 gas reservoir is a condensate gas reservoir which is relatively integrated with low porosity and low permeability found in Dagang Oilfield in recent years. The condensate content is as high as 610g/m3. At present, there are few reports about the well spacing of similar gas reservoirs at home and abroad. Therefore, determining the reasonable well spacing of the gas reservoir is important for ensuring the optimal development effect and economic benefit of the gas field development. This paper discusses the reasonable well spacing of the deep and low permeability gas reservoir from the aspects of percolation mechanics, gas reservoir engineering and numerical simulation. considering there exist the start-up pressure gradient in percolation process of low permeability gas reservoir, this paper combined with productivity equation under starting pressure gradient, established the formula of gas well spacing with the formation pressure and start-up pressure gradient. The calculation formula of starting pressure gradient and well spacing of gas wells. Adopting various methods to calculate values of gas reservoir spacing are close to well testing' radius, so the calculation method is reliable, which is very important for the determination of reasonable well spacing in low permeability gas reservoirs.
A monitoring approach combining wet chemistry and high frequency (HF) water quality sensors has been employed to improve our understanding of the ecology of an inland reservoir with a history of cyanoHAB events. Lake Harsha is a multi-use reservoir managed by the USACE in southwe...
Donahue, W; Bongiorni, P; Hearn, R; Rodgers, J; Nath, R; Chen, Z
2012-06-01
To develop and characterize a novel thermal reservoir for consistent and accurate annealing of high-sensitivity thermoluminescence dosimeters (TLD-100H) for dosimetry of brachytherapy sources. The sensitivity of TLD-100H is about 18 times that of TLD-100 which has clear advantages in for interstitial brachytherapy sources. However, the TLD-100H requires a short high temperature annealing cycle (15 min.) and opening and closing the oven door causes significant temperature fluctuations leading to unreliable measurements. A new thermal reservoir made of aluminum alloy was developed to provide stable temperature environment in a standard hot air oven. The thermal reservoir consisted of a 20 cm × 20 cm × 8 cm Al block with a machine-milled chamber in the middle to house the aluminum TLD holding tray. The thermal reservoir was placed inside the oven until it reaches thermal equilibrium with oven chamber. The temperatures of the oven chamber, heat reservoir, and TLD holding tray were monitored by two independent thermo-couples which interfaced digitally to a control computer. A LabView interface was written for monitoring and recording the temperatures in TLD holding tray, the thermal reservoir, and oven chamber. The temperature profiles were measured as a function of oven-door open duration. The settings for oven chamber temperature and oven door open-close duration were optimized to achieve a stable temperature of 240 0C in the TLD holding tray. Complete temperature profiles of the TLD annealing tray over the entire annealing process were obtained. A LabView interface was written for monitoring and recording the temperatures in TLD holding The use of the thermal reservoir has significantly reduced the temperature fluctuations caused by the opening of oven door when inserting the TLD holding tray into the oven chamber. It has enabled consistent annealing of high-sensitivity TLDs. A comprehensive characterization of a custom-built novel thermal reservoir for annealing high-sensitivity TLD has been carried out. It enabled consistent and accurate annealing of high- sensitivity TLDs which could significantly improve the efficiency of brachytherapy source characterizations. Supported in part by NIH grant R01-CA134627. © 2012 American Association of Physicists in Medicine.
Characterization of a penny-shaped reservoir in a hot dry rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekine, H.; Mura, T.
1980-07-10
The mechanical stability of a penny-shaped revervoir is characterized by fracture mechanics including thermoelastic effects in connection with research into the extraction of geothermal energy from hot dry rocks. The condition for stability of a reservoir, which is not changing radius by propagating or closing, requires 0m/sub 0/>m/sub asterisk/; and case 3; m/sub 0/=m/sub asterisk/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacific Operators Offshore, Inc.
The intent of this project was to increase production and extend the economic life of this mature field through the application of advanced reservoir characterization and drilling technology, demonstrating the efficacy of these technologies to other small operators of aging fields. Two study periods were proposed; the first to include data assimilation and reservoir characterization and the second to drill the demonstration well. The initial study period showed that a single tri-lateral well would not be economically efficient in redevelopment of Carpinteria's multiple deep water turbidite sand reservoirs, and the study was amended to include the drilling of a seriesmore » of horizontal redrills from existing surplus well bores on Pacific Operators' Platform Hogan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sippel, M.A.; Cammon, T.J.
1995-09-30
The objective of this project is to increase production from the Cretaceous ``D`` Sand in the Denver-Julesburg (D-J) Basin through geologically targeted infill drilling and improved reservoir management of waterflood operations. This project involves multi-disciplinary reservoir characterization using high-density 3-D seismic, detailed stratigraphy and reservoir simulation studies. Infill drilling, water-injection conversion and recompleting some wells to add short-radius laterals will be based on the results of the reservoir characterization studies. Production response will be evaluated using reservoir simulation and production tests. Technology transfer will utilize workshops, presentations and technical papers which will emphasize the economic advantages of implementing the demonstratedmore » technologies. The success of this project and effective technology transfer should prompt-re-appraisal of older waterflood projects and implementation of new projects in oil provinces such as the D-J Basin. Three wells have been drilled by the project based on 3-D seismic and integrated reservoir characterization study. Oil production has increased in September to 54.0 m{sup 3}/D (340 bopd) after the completion of the SU 21-16-9. Combination-attribute maps from 3-D seismic data closely predicted the net-pay thickness of the new well. Inter-well tracer tests with sodium bromide indicate a high-permeability channel between two wells. An oral presentation was made at the Rocky Mountain AAPG meeting in Reno, NV.« less
The Cumberland River Flood of 2010 and Corps Reservoir Operations
NASA Astrophysics Data System (ADS)
Charley, W.; Hanbali, F.; Rohrbach, B.
2010-12-01
On Saturday, May 1, 2010, heavy rain began falling in the Cumberland River Valley and continued through the following day. 13.5 inches was measured at Nashville, an unprecedented amount that doubled the previous 2-day record, and exceeded the May monthly total record of 11 inches. Elsewhere in the valley, amounts of over 19 inches were measured. The frequency of this storm was estimated to exceed the one-thousand year event. This historic rainfall brought large scale flooding to the Cumberland-Ohio-Tennessee River Valleys, and caused over 2 billion dollars in damages, despite the numerous flood control projects in the area, including eight U.S. Army Corps of Engineers projects. The vast majority of rainfall occurred in drainage areas that are uncontrolled by Corps flood control projects, which lead to the wide area flooding. However, preliminary analysis indicates that operations of the Corps projects reduced the Cumberland River flood crest in Nashville by approximately five feet. With funding from the American Recovery and Reinvestment Act (ARRA) of 2009, hydrologic, hydraulic and reservoir simulation models have just been completed for the Cumberland-Ohio-Tennessee River Valleys. These models are being implemented in the Corps Water Management System (CWMS), a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. The CWMS modeling component uses observed rainfall and forecasted rainfall to compute forecasts of river flows into and downstream of reservoirs, using HEC-HMS. Simulation of reservoir operations, utilizing either the HEC-ResSim or CADSWES RiverWare program, uses these flow scenarios to provide operational decision information for the engineer. The river hydraulics program, HEC-RAS, computes river stages and water surface profiles for these scenarios. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. The economic impacts of the different inundation depths are computed by HEC-FIA. The user-configurable sequence of modeling software allows engineers to evaluate operational decisions for reservoirs and other control structures, and view and compare hydraulic and economic impacts for various “what if?” scenarios. This paper reviews the Cumberland River May 2010 event, the impact of Corps reservoirs and reservoir operations and the expected future benefits and effects of the ARRA funded models and CWMS on future events for this area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cipolla, C.L.; Mayerhofer, M.
The paper details the acquisition of detailed core and pressure data and the subsequent reservoir modeling in the Ozona Gas Field, Crockett County, Texas. The Canyon formation is the focus of the study and consists of complex turbidite sands characterized by numerous lenticular gas bearing members. The sands cannot be characterized using indirect measurements (logs) and no reliable porosity-permeability relationship could be developed. The reservoir simulation results illustrate the problems associated with interpreting typical pressure and production data in tight gas sands and details procedures to identify incremental reserves. Reservoir layering was represented by five model layers and layer permeabilitiesmore » were estimated based on statistical distributions from core measurements.« less
NASA Astrophysics Data System (ADS)
Rajesh, Asam; Bandyopadhyay, Malay; Jayannavar, Arun M.
2017-12-01
In this work, we consider two different techniques based on reservoir engineering process and quantum Zeno control method to analyze the decoherence control mechanism of a charged magneto-oscillator in contact with different type of environment. Our analysis reveals that both the control mechanisms are very much sensitive on the details of different environmental spectrum (J (ω)), and also on different system and reservoir parameters, e.g., external magnetic field (rc), confinement length (r0), temperature (T), cut-off frequency of reservoir spectrum (ωcut), and measurement interval (τ). We also demonstrate the manipulation scheme of the continuous passage from decay suppression to decay acceleration by tuning the above mentioned system or reservoir parameters, e.g., rc, r0, T and τ.
Reservoir Sedimentation: Impact, Extent, and Mitigation
NASA Astrophysics Data System (ADS)
Hadley, Richard F.
Storage reservoirs play an important role in water resources development throughout the world. The one problem with reservoirs that is universal is the continual reduction in usable capacity caused by siltation. This book reviews the world picture of erosion and sediment yield, the large variations that exist, and the physical phenomena related to reservoir siltation. The book is in the Technical Paper series of The World Bank (Technical Paper 71) and is not a formal publication. Rather, it is intended to be circulated to encourage discussion and comment and to communicate results quickly. The book is reproduced from typescript, but this does not detract from the value of the contents as a useful text for hydrologrsts, engineers, and soil conservationists in developing countries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seyler, Beverly; Grube, John; Huff, Bryan
Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) ismore » estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses were used to better understand porosity and permeability trends in the region and to characterize barriers and define flow units. Diagenetic alterations that impact porosity and permeability include development of quartz overgrowths, sutured quartz grains, dissolution of feldspar grains, formation of clay mineral coatings on grains, and calcite cementation. Many of these alterations are controlled by facies. Mapping efforts identified distinct flow units in the northern part of the field showing that the Pennsylvanian Bridgeport consists of a series of thick incised channel fill sequences. The sandstones are about 75-150 feet thick and typically consist of medium grained and poorly sorted fluvial to distributary channel fill deposits at the base. The sandstones become indistinctly bedded distributary channel deposits in the main part of the reservoir before fining upwards and becoming more tidally influenced near their top. These channel deposits have core permeabilities ranging from 20 md to well over 1000 md. The tidally influenced deposits are more compartmentalized compared to the thicker and more continuous basal fluvial deposits. Fine grained sandstones that are laterally equivalent to the thicker channel type deposits have permeabilities rarely reaching above 250 md. Most of the unrecovered oil in Lawrence Field is contained in Pennsylvanian Age Bridgeport sandstones and Mississippian Age Cypress sandstones. These reservoirs are highly complex and compartmentalized. Detailed reservoir characterization including the development of 3-D geologic and geocellular models of target areas in the field were completed to identify areas with the best potential to recover remaining reserves including unswept and by-passed oil. This project consisted of tasks designed to compile, interpret, and analyze the data required to conduct reservoir characterization for the Bridgeport and Cypress sandstones in pilot areas in anticipation of expanded implementation of ASP flooding in Lawrence Field. Geologic and geocellular modeling needed for reservoir characterization and reservoir simulation were completed as prerequisites for design of efficient ASP flood patterns. Characterizing the complex reservoir geology that identifies the geologic conditions that will optimize oil recoveries for expansion of the ASP pilots in the Bridgeport and Cypress sandstones to other areas of Lawrence Field is the primary objective of this project. It will permit evaluation of efficiency of oil recovery from Bridgeport and Cypress sandstone reservoirs using ASP technology. Additionally evaluation of similar Pennsylvanian and Chesterian reservoirs shows that it is likely that ASP flood technology can be successfully applied to similar reservoirs in the Illinois Basin as well as to other U.S. reservoirs. Chemical flooding was introduced in stages with the first flood initiated in 2010 and a second offset pilot project initiated during 2011. Rex Energy Corporation is reporting a positive response on its ASP Middagh pilot project in the Pennsylvanian Bridgeport B reservoir, Lawrence Field. Oil response in the 15 acre flood has continued to show an increase in oil cut from 1% to 12%. Total pattern production increased from 16 BOPD and stabilized at a range of 65-75 BOPD in the last three months of 2011. Peak production rose to 100 + BOPD. Oil cut in the pilot increased for 1.0% to ~ 12.0% with an individual well showing oil cuts greater than 20%. A second, 58 acre pilot (Perkins-Smith) adjacent to and likely in communication with the Middagh pilot has been initiated. Preliminary brine injection has been implemented and ASP injection was initiated in mid-2012. Response is expected by mid-2013 with peak recovery expected by late 2013. Rex Energy is projecting full scale expansion with the next step of development being a 351 acre project scheduled to begin in mid-2013. Preliminary development has been initiated in this Delta Unit area located in the south half of section 32, T4N, R12W.« less
Memory alloy heat engine and method of operation
Johnson, Alfred Davis
1977-01-01
A heat engine and method of operation employing an alloy having a shape memory effect. A memory alloy element such as one or more wire loops are cyclically moved through a heat source, along a path toward a heat sink, through the heat sink and then along another path in counter-flow heat exchange relationship with the wire in the first path. The portion of the wire along the first path is caused to elongate to its trained length under minimum tension as it is cooled. The portion of the wire along the second path is caused to contract under maximum tension as it is heated. The resultant tension differential between the wires in the two paths is applied as a force through a distance to produce mechanical work. In one embodiment a first set of endless memory alloy wires are reeved in non-slip engagement between a pair of pulleys which are mounted for conjoint rotation within respective hot and cold reservoirs. Another set of endless memory alloy wires are reeved in non-slip engagement about another pair of pulleys which are mounted in the respective hot and cold reservoirs. The pulleys in the cold reservoir are of a larger diameter than those in the hot reservoir and the opposite reaches of the wires between the two sets of pulleys extend in closely spaced-apart relationship in counter-flow heat regenerator zones. The pulleys are turned to move the two sets of wires in opposite directions. The wires are stretched as they are cooled upon movement through the heat regenerator toward the cold reservoirs, and the wires contract as they are heated upon movement through the regenerator zones toward the hot reservoir. This contraction of wires exerts a larger torque on the greater diameter pulleys for turning the pulleys and supplying mechanical power. Means is provided for applying a variable tension to the wires. Phase change means is provided for controlling the angular phase of the pulleys of each set for purposes of start up procedure as well as for optimizing engine operation under varying conditions of load, speed and temperatures.
1981-01-01
Inoduction I.. WHITE RIVER BASIN Bover Whilte LRD AR 66 1120,0 1130,0 1652 300 5 Table Rock White LRD AR/MO 58 915.0 931.0 2702 760 526 Bull Shoals...Benbrook Trinity 391 Big Hill Arkansas 120 Birch Arkansas 151 Blue Mountain Arkansas 266 Broken Bow Red 331 Bull Shoals White 15 Canton Arkansas 234 Canyon...RELAT IONS fPqnC FRCcn :324-M24) AT DAM SITE OCTOBER~ FLOWS (PER~ TIpO C REVZR CC?45-1T7NS U.. MY ENGINEER DISTRICT. FORT WORTH TO RCCCMDR4Y tNSTR~qr
Dhar, Niha; Razdan, Sumeer; Rana, Satiander; Bhat, Wajid W.; Vishwakarma, Ram; Lattoo, Surrinder K.
2015-01-01
Withania somnifera, a multipurpose medicinal plant is a rich reservoir of pharmaceutically active triterpenoids that are steroidal lactones known as withanolides. Though the plant has been well-characterized in terms of phytochemical profiles as well as pharmaceutical activities, limited attempts have been made to decipher the biosynthetic route and identification of key regulatory genes involved in withanolide biosynthesis. This scenario limits biotechnological interventions for enhanced production of bioactive compounds. Nevertheless, recent emergent trends vis-à-vis, the exploration of genomic, transcriptomic, proteomic, metabolomics, and in vitro studies have opened new vistas regarding pathway engineering of withanolide production. During recent years, various strategic pathway genes have been characterized with significant amount of regulatory studies which allude toward development of molecular circuitries for production of key intermediates or end products in heterologous hosts. Another pivotal aspect covering redirection of metabolic flux for channelizing the precursor pool toward enhanced withanolide production has also been attained by deciphering decisive branch point(s) as robust targets for pathway modulation. With these perspectives, the current review provides a detailed overview of various studies undertaken by the authors and collated literature related to molecular and in vitro approaches employed in W. somnifera for understanding various molecular network interactions in entirety. PMID:26640469
1988-02-01
Anthony Falls Water Company, who deeded 1995 acres of land at Gull Lake for the purpose (Kane, 1966: 159). Despite the unique nature of the reservoir system...dwelling, laborers’ quarters, engineers’ quarters, a dining hall, an office building, an officer’s ho.se, a wood shed, a chicken coop, a barn, a...a barn, carpenter and blacksmith shops, two warehouses, a wood shed and a chicken coop (Figure 42). The "new" dwelling was destroyed by another fire
The Impact of Corps Flood Control Reservoirs in the June 2008 Upper Mississippi Flood
NASA Astrophysics Data System (ADS)
Charley, W. J.; Stiman, J. A.
2008-12-01
The US Army Corps of Engineers is responsible for a multitude of flood control project on the Mississippi River and its tributaries, including levees that protect land from flooding, and dams to help regulate river flows. The first six months of 2008 were the wettest on record in the upper Mississippi Basin. During the first 2 weeks of June, rainfall over the Midwest ranged from 6 to as much as 16 inches, overwhelming the flood protection system, causing massive flooding and damage. Most severely impacted were the States of Iowa, Illinois, Indiana, Missouri, and Wisconsin. In Iowa, flooding occurred on almost every river in the state. On the Iowa River, record flooding occurred from Marshalltown, Iowa, downstream to its confluence with the Mississippi River. At several locations, flooding exceeded the 500-year event. The flooding affected agriculture, transportation, and infrastructure, including homes, businesses, levees, and other water-control structures. It has been estimated that there was at least 7 billion dollars in damages. While the flooding in Iowa was extraordinary, Corps of Engineers flood control reservoirs helped limit damage and prevent loss of life, even though some reservoirs were filled beyond their design capacity. Coralville Reservoir on the Iowa River, for example, filled to 135% of its design flood storage capacity, with stage a record five feet over the crest of the spillway. In spite of this, the maximum reservoir release was limited to 39,500 cfs, while a peak inflow of 57,000 cfs was observed. CWMS, the Corps Water Management System, is used to help regulate Corps reservoirs, as well as track and evaluate flooding and flooding potential. CWMS is a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. It encompasses data collection, validation and transformation, data storage, visualization, real time model simulation for decision-making support, and data dissemination. The system uses precipitation and flow data, collected in real-time, along with forecasted flow from the National Weather Service to model and optimize reservoir operations and forecast downstream flows and stages, providing communities accurate and timely information to aid their flood-fighting. This involves integrating several simulation modeling programs, including HEC-HMS to forecast flows, HEC-ResSim to model reservoir operations and HEC-RAS to compute forecasted stage hydrographs. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. By varying future precipitation and releases, engineers can evaluate different "What if?" scenarios. The effectiveness of this tool and Corps reservoirs are examined.
Optimal protocol for maximum work extraction in a feedback process with a time-varying potential
NASA Astrophysics Data System (ADS)
Kwon, Chulan
2017-12-01
The nonequilibrium nature of information thermodynamics is characterized by the inequality or non-negativity of the total entropy change of the system, memory, and reservoir. Mutual information change plays a crucial role in the inequality, in particular if work is extracted and the paradox of Maxwell's demon is raised. We consider the Brownian information engine where the protocol set of the harmonic potential is initially chosen by the measurement and varies in time. We confirm the inequality of the total entropy change by calculating, in detail, the entropic terms including the mutual information change. We rigorously find the optimal values of the time-dependent protocol for maximum extraction of work both for the finite-time and the quasi-static process.
CO2 Push-Pull Single Fault Injection Simulations
Borgia, Andrea; Oldenburg, Curtis (ORCID:0000000201326016); Zhang, Rui; Pan, Lehua; Daley, Thomas M.; Finsterle, Stefan; Ramakrishnan, T.S.; Doughty, Christine; Jung, Yoojin; Lee, Kyung Jae; Altundas, Bilgin; Chugunov, Nikita
2017-09-21
ASCII text files containing grid-block name, X-Y-Z location, and multiple parameters from TOUGH2 simulation output of CO2 injection into an idealized single fault representing a dipping normal fault at the Desert Peak geothermal field (readable by GMS). The fault is composed of a damage zone, a fault gouge and a slip plane. The runs are described in detail in the following: Borgia A., Oldenburg C.M., Zhang R., Jung Y., Lee K.J., Doughty C., Daley T.M., Chugunov N., Altundas B, Ramakrishnan T.S., 2017. Carbon Dioxide Injection for Enhanced Characterization of Faults and Fractures in Geothermal Systems. Proceedings of the 42st Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 13-17.
Quarterly Technical Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mary K. Banken
This project has identified all FDD oil reservoirs in Oklahoma; grouped those reservoirs into plays that have similar depositional origins; collected, organized, and analyzed all available data; conducted characterization and simulation studies on selected reservoirs in each plays; and implemented a technology transfer program targeted to the operators of FDD reservoirs. By fulfilling these objectives, the FDD project has had the goal of helping to sustain the life expectancy of existing wells and provide incentive for development and exploratory wells with the ultimate objective of increasing oil recovery.
Reservoir computing with a single time-delay autonomous Boolean node
NASA Astrophysics Data System (ADS)
Haynes, Nicholas D.; Soriano, Miguel C.; Rosin, David P.; Fischer, Ingo; Gauthier, Daniel J.
2015-02-01
We demonstrate reservoir computing with a physical system using a single autonomous Boolean logic element with time-delay feedback. The system generates a chaotic transient with a window of consistency lasting between 30 and 300 ns, which we show is sufficient for reservoir computing. We then characterize the dependence of computational performance on system parameters to find the best operating point of the reservoir. When the best parameters are chosen, the reservoir is able to classify short input patterns with performance that decreases over time. In particular, we show that four distinct input patterns can be classified for 70 ns, even though the inputs are only provided to the reservoir for 7.5 ns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deo, M.D.; Morgan, C.D.
1999-04-28
The objective of the project is to increase oil production and reserves by the use of improved reservoir characterization and completion techniques in the Uinta Basin, Utah. To accomplish this objective, a two-year geologic and engineering characterization of the Bluebell field was conducted. The study evaluated surface and subsurface data, currently used completion techniques, and common production problems. It was determined that advanced case- and open-hole logs could be effective in determining productive beds and that stage-interval (about 500 ft [150 m] per stage) and bed-scale isolation completion techniques could result in improved well performance. In the first demonstration wellmore » (Michelle Ute well discussed in the previous technical report), dipole shear anisotropy (anisotropy) and dual-burst thermal decay time (TDT) logs were run before and isotope tracer log was run after the treatment. The logs were very helpful in characterizing the remaining hydrocarbon potential in the well. But, mechanical failure resulted in a poor recompletion and did not result in a significant improvement in the oil production from the well.« less
Finley, R.J.; Greenberg, S.E.; Frailey, S.M.; Krapac, I.G.; Leetaru, H.E.; Marsteller, S.
2011-01-01
The development of the Illinois Basin-Decatur USA test site for a 1 million tonne injection of CO2 into the Mount Simon Sandstone saline reservoir beginning in 2011 has been a multiphase process requiring a wide array of personnel and resources that began in 2003. The process of regional characterization took two years as part of a Phase I effort focused on the entire Illinois Basin, located in Illinois, Indiana, and Kentucky, USA. Seeking the cooperation of an industrial source of CO2 and site selection within the Basin took place during Phase II while most of the concurrent research emphasis was on a set of small-scale tests of Enhanced Oil Recovery (EOR) and CO2 injection into a coal seam. Phase III began the commitment to the 1 million-tonne test site development through the collaboration of the Archer Daniels Midland Company (ADM) who is providing a site, the CO2, and developing a compression facility, of Schlumberger Carbon Services who is providing expertise for operations, drilling, geophysics, risk assessment, and reservoir modelling, and of the Illinois State Geological Survey (ISGS) whose geologists and engineers lead the Midwest Geological Sequestration Consortium (MGSC). Communications and outreach has been a collaborative effort of ADM, ISGS and Schlumberger Carbon Services. The Consortium is one of the seven Regional Carbon Sequestration Partnerships, a carbon sequestration research program supported by the National Energy Technology Laboratory of the U.S. Department of Energy. ?? 2011 Published by Elsevier Ltd.
Strain-dependent partial slip on rock fractures under seismic-frequency torsion
NASA Astrophysics Data System (ADS)
Saltiel, Seth; Bonner, Brian P.; Ajo-Franklin, Jonathan B.
2017-05-01
Measurements of nonlinear modulus and attenuation of fractures provide the opportunity to probe their mechanical state. We have adapted a low-frequency torsional apparatus to explore the seismic signature of fractures under low normal stress, simulating low effective stress environments such as shallow or high pore pressure reservoirs. We report strain-dependent modulus and attenuation for fractured samples of Duperow dolomite (a carbon sequestration target reservoir in Montana), Blue Canyon Dome rhyolite (a geothermal analog reservoir in New Mexico), and Montello granite (a deep basement disposal analog from Wisconsin). We use a simple single effective asperity partial slip model to fit our measured stress-strain curves and solve for the friction coefficient, contact radius, and full slip condition. These observations have the potential to develop into new field techniques for measuring differences in frictional properties during reservoir engineering manipulations and estimate the stress conditions where reservoir fractures and faults begin to fully slip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankin, C.J.; Banken, M.K.
The Oklahoma Geological Survey (OGS), the Geological Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaging in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all ofmore » Oklahoma`s oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs.« less
Laser engines operating by resonance absorption. [thermodynamic feasibility study
NASA Technical Reports Server (NTRS)
Garbuny, M.; Pechersky, M. J.
1976-01-01
Basic tutorial article on the thermodynamic feasibility of laser engines at the present state of the art. Three main options are considered: (1) laser power applied externally to a heat reservoir (boiler approach); (2) internal heating of working fluid by resonance absorption; and (3) direct conversion of selective excitation into work. Only (2) is considered practically feasible at present. Basic concepts and variants, efficiency relations, upper temperature limits of laser engines, selection of absorbing gases, engine walls, bleaching, thermodynamic cycles of optimized laser engines, laser-powered turbines, laser heat pumps are discussed. Photon engines and laser dissociation engines are also considered.
Estimating Western U.S. Reservoir Sedimentation
NASA Astrophysics Data System (ADS)
Bensching, L.; Livneh, B.; Greimann, B. P.
2017-12-01
Reservoir sedimentation is a long-term problem for water management across the Western U.S. Observations of sedimentation are limited to reservoir surveys that are costly and infrequent, with many reservoirs having only two or fewer surveys. This work aims to apply a recently developed ensemble of sediment algorithms to estimate reservoir sedimentation over several western U.S. reservoirs. The sediment algorithms include empirical, conceptual, stochastic, and processes based approaches and are coupled with a hydrologic modeling framework. Preliminary results showed that the more complex and processed based algorithms performed better in predicting high sediment flux values and in a basin transferability experiment. However, more testing and validation is required to confirm sediment model skill. This work is carried out in partnership with the Bureau of Reclamation with the goal of evaluating the viability of reservoir sediment yield prediction across the western U.S. using a multi-algorithm approach. Simulations of streamflow and sediment fluxes are validated against observed discharges, as well as a Reservoir Sedimentation Information database that is being developed by the US Army Corps of Engineers. Specific goals of this research include (i) quantifying whether inter-algorithm differences consistently capture observational variability; (ii) identifying whether certain categories of models consistently produce the best results, (iii) assessing the expected sedimentation life-span of several western U.S. reservoirs through long-term simulations.
Well log characterization of natural gas-hydrates
Collett, Timothy S.; Lee, Myung W.
2012-01-01
In the last 25 years there have been significant advancements in the use of well-logging tools to acquire detailed information on the occurrence of gas hydrates in nature: whereas wireline electrical resistivity and acoustic logs were formerly used to identify gas-hydrate occurrences in wells drilled in Arctic permafrost environments, more advanced wireline and logging-while-drilling (LWD) tools are now routinely used to examine the petrophysical nature of gas-hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Resistivity- and acoustic-logging tools are the most widely used for estimating the gas-hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. Recent integrated sediment coring and well-log studies have confirmed that electrical-resistivity and acoustic-velocity data can yield accurate gas-hydrate saturations in sediment grain-supported (isotropic) systems such as sand reservoirs, but more advanced log-analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. New well-logging tools designed to make directionally oriented acoustic and propagation-resistivity log measurements provide the data needed to analyze the acoustic and electrical anisotropic properties of both highly interbedded and fracture-dominated gas-hydrate reservoirs. Advancements in nuclear magnetic resonance (NMR) logging and wireline formation testing (WFT) also allow for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids(i.e., free water along with clay- and capillary-bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas-hydrate reservoir properties (i.e., porosities and permeabilities) needed to accurately predict gas production rates for various gas-hydrate production schemes.
NASA Astrophysics Data System (ADS)
Harryandi, Sheila
The Niobrara/Codell unconventional tight reservoir play at Wattenberg Field, Colorado has potentially two billion barrels of oil equivalent requiring hundreds of wells to access this resource. The Reservoir Characterization Project (RCP), in conjunction with Anadarko Petroleum Corporation (APC), began reservoir characterization research to determine how to increase reservoir recovery while maximizing operational efficiency. Past research results indicate that targeting the highest rock quality within the reservoir section for hydraulic fracturing is optimal for improving horizontal well stimulation through multi-stage hydraulic fracturing. The reservoir is highly heterogeneous, consisting of alternating chalks and marls. Modeling the facies within the reservoir is very important to be able to capture the heterogeneity at the well-bore scale; this heterogeneity is then upscaled from the borehole scale to the seismic scale to distribute the heterogeneity in the inter-well space. I performed facies clustering analysis to create several facies defining the reservoir interval in the RCP Wattenberg Field study area. Each facies can be expressed in terms of a range of rock property values from wells obtained by cluster analysis. I used the facies classification from the wells to guide the pre-stack seismic inversion and multi-attribute transform. The seismic data extended the facies information and rock quality information from the wells. By obtaining this information from the 3D facies model, I generated a facies volume capturing the reservoir heterogeneity throughout a ten square mile study-area within the field area. Recommendations are made based on the facies modeling, which include the location for future hydraulic fracturing/re-fracturing treatments to improve recovery from the reservoir, and potential deeper intervals for future exploration drilling targets.
Fractual interrelationships in field and seismic data. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-01-07
Fractals provide a description of physical patterns over a range of scales in both time and space. Studies presented herein examine the fractal characteristics of various geological variables such as deformed bed-lengths, fold relief, seismic reflection arrival time variations, drainage and topographic patterns, and fracture systems. The studies are also extended to consider the possibility that the fractal characteristics of these variables are interrelated. Fractal interrelationships observed in these studies provide a method for relating variations in the fractal characteristics of seismic reflection events from reservoir intervals to the fractal characteristics of reservoir fracture systems, faults, and fold distributions. Themore » work is motivated by current exploration and development interests to detect fractured reservoirs and to accurately predict flow rates and flow patterns within the fractured reservoir. Accurate prediction requires an understanding of several reservoir properties including the fractal geometry of the reservoir fracture network. Results of these studies provide a method to remotely assess the fractal characteristics of a fractured reservoir, and help guide field development activities. The most significant outgrowth of this research is that the fractal properties of structural relief inferred from seismic data and structural cross sections provide a quantitative means to characterize and compare complex structural patterns. Production from fractured reservoirs is the result of complex structural and stratigraphic controls; hence, the import of fractal characterization to the assessment of fractured reservoirs lies in its potential to quantitatively define interrelationships between subtle structural variation and production. The potential uses are illustrated using seismic data from the Granny Creek oil field in the Appalachian Plateau.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopaska-Merkel, D.C.; Mann, S.D.; Tew, B.H.
1992-06-01
This is the draft topical report on Subtasks 2 and 3 of DOE contract number DE-FG22-89BC14425, entitled ``Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity.`` This volume constitutes the final report on Subtask 3, which had as its primary goal the geological modeling of reservoir heterogeneity in Smackover reservoirs of southwest Alabama. This goal was interpreted to include a thorough analysis of Smackover reservoirs, which was required for an understanding of Smackover reservoir heterogeneity. This report is divided into six sections (including this brief introduction). Section two, entitled ``Geologicmore » setting,`` presents a concise summary of Jurassic paleogeography, structural setting, and stratigraphy in southwest Alabama. This section also includes a brief review of sedimentologic characteristics and stratigraphic framework of the Smackover, and a summary of the diagenetic processes that strongly affected Smackover reservoirs in Alabama. Section three, entitled ``Analytical methods,`` summarizes all nonroutine aspects of the analytical procedures used in this project. The major topics are thin-section description, analysis of commercial porosity and permeability data, capillary-pressure analysis, and field characterization. ``Smackover reservoir characteristics`` are described in section four, which begins with a general summary of the petrographic characteristics of porous and permeable Smackover strata. This is followed by a more-detailed petrophysical description of Smackover reservoirs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patchen, D.G.; Hohn, M.E.; Aminian, K.
1993-04-01
The purpose of this research is to develop techniques to measure and predict heterogeneities in oil reservoirs that are the products of complex deposystems. The unit chosen for study is the Lower Mississippian Big Injun sandstone, a prolific oil producer (nearly 60 fields) in West Virginia. This research effort has been designed and is being implemented as an integrated effort involving stratigraphy, structural geology, petrology, seismic study, petroleum engineering, modeling and geostatistics. Sandstone bodies are being mapped within their regional depositional systems, and then sandstone bodies are being classified in a scheme of relative heterogeneity to determine heterogeneity across depositionalmore » systems. Facies changes are being mapped within given reservoirs, and the environments of deposition responsible for each facies are being interpreted to predict the inherent relative heterogeneity of each facies. Structural variations will be correlated both with production, where the availability of production data will permit, and with variations in geologic and engineering parameters that affect production. A reliable seismic model of the Big Injun reservoirs in Granny Creek field is being developed to help interpret physical heterogeneity in that field. Pore types are being described and related to permeability, fluid flow and diagenesis, and petrographic data are being integrated with facies and depositional environments to develop a technique to use diagenesis as a predictive tool in future reservoir development. Another objective in the Big Injun study is to determine the effect of heterogeneity on fluid flow and efficient hydrocarbon recovery in order to improve reservoir management. Graphical methods will be applied to Big Injun production data and new geostatistical methods will be developed to detect regional trends in heterogeneity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patchen, D.G.; Hohn, M.E.; Aminian, K.
1993-04-01
The purpose of this research is to develop techniques to measure and predict heterogeneities in oil reservoirs that are the products of complex deposystems. The unit chosen for study is the Lower Mississippian Big Injun sandstone, a prolific oil producer (nearly 60 fields) in West Virginia. This research effort has been designed and is being implemented as an integrated effort involving stratigraphy, structural geology, petrology, seismic study, petroleum engineering, modeling and geostatistics. Sandstone bodies are being mapped within their regional depositional systems, and then sandstone bodies are being classified in a scheme of relative heterogeneity to determine heterogeneity across depositionalmore » systems. Facies changes are being mapped within given reservoirs, and the environments of deposition responsible for each facies are being interpreted to predict the inherent relative heterogeneity of each facies. Structural variations will be correlated both with production, where the availability of production data will permit, and with variations in geologic and engineering parameters that affect production. A reliable seismic model of the Big Injun reservoirs in Granny Creek field is being developed to help interpret physical heterogeneity in that field. Pore types are being described and related to permeability, fluid flow and diagenesis, and petrographic data are being integrated with facies and depositional environments to develop a technique to use diagenesis as a predictive tool in future reservoir development. Another objective in the Big Injun study is to determine the effect of heterogeneity on fluid flow and efficient hydrocarbon recovery in order to improve reservoir management. Graphical methods will be applied to Big Injun production data and new geostatistical methods will be developed to detect regional trends in heterogeneity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler,David M.; Miller, William A.; Wilson, Travis C.
2002-03-11
The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order tomore » improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.« less
1981-04-01
community studies 56 Angler survey 63 Fishery Resources -- Discussion of Planning Input 73 SUMARY 81 BIBLIOGRAPHY OF SOURCE REFERENCE MATERIAL 88 - ii...necessary and Identify by block number) Fishery resources Wildlife resources Planning recommendation Pre-impoundment prediction Planning evaluation Post...impoundment occurrences Beltzville Wildlife communities \\ Pennsylvania Fish communities 20. AISSrRACT (Camtflue rm *r e.fth f nrceweary awd Idertify by
NASA Astrophysics Data System (ADS)
Profit, Matthew; Dutko, Martin; Yu, Jianguo; Cole, Sarah; Angus, Doug; Baird, Alan
2016-04-01
This paper presents a novel approach to predict the propagation of hydraulic fractures in tight shale reservoirs. Many hydraulic fracture modelling schemes assume that the fracture direction is pre-seeded in the problem domain discretisation. This is a severe limitation as the reservoir often contains large numbers of pre-existing fractures that strongly influence the direction of the propagating fracture. To circumvent these shortcomings, a new fracture modelling treatment is proposed where the introduction of discrete fracture surfaces is based on new and dynamically updated geometrical entities rather than the topology of the underlying spatial discretisation. Hydraulic fracturing is an inherently coupled engineering problem with interactions between fluid flow and fracturing when the stress state of the reservoir rock attains a failure criterion. This work follows a staggered hydro-mechanical coupled finite/discrete element approach to capture the key interplay between fluid pressure and fracture growth. In field practice, the fracture growth is hidden from the design engineer and microseismicity is often used to infer hydraulic fracture lengths and directions. Microseismic output can also be computed from changes of the effective stress in the geomechanical model and compared against field microseismicity. A number of hydraulic fracture numerical examples are presented to illustrate the new technology.
Heavy oil reservoirs recoverable by thermal technology
NASA Astrophysics Data System (ADS)
Kujawa, P.
1981-02-01
Reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25(0) API gravity range and are susceptible to recovery by in situ combustion and steam drive are presented. The reservoirs for steam recovery are less than 2500 feet deep to comply with state of the art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collected from three source types: hands-on, once removed, and twice removed. In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. A complete listing of operators and projects is included as well as a bibliography of source material.
Hydraulic Fracture Extending into Network in Shale: Reviewing Influence Factors and Their Mechanism
Ren, Lan; Zhao, Jinzhou; Hu, Yongquan
2014-01-01
Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design. PMID:25032240
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklin, S.P.; Livingston, J.E.; Fitzmorris, R.E.
Infill drilling based on integrated reservoir characterization and flow simulation is increasing recoverable reserves by 20 MMBO, in lagifu-Hedinia Field (IHF). Stratigraphically-zoned models are input to window and full-field flow simulations, and results of the flow simulations target deviated and horizontal wells. Logging and pressure surveys facilitate detailed reservoir management. Flooding surfaces are the dominant control on differential depletion within and between reservoirs. The primary reservoir is the basal Cretaceous Toro Sandstone. Within the IHF, Toro is a 100 m quartz sandstone composed of stacked, coarsening-upward parasequences within a wave-dominated deltaic complex. Flooding surfaces are used to form a hydraulicmore » zonation. The zonation is refined using discontinuities in RIFT pressure gradients and logs from development wells. For flow simulation, models use 3D geostatistical techniques. First, variograms defining spatial correlation are developed. The variograms are used to construct 3D porosity and permeability models which reflect the stratigraphic facies models. Structure models are built using dipmeter, biostratigraphic, and surface data. Deviated wells often cross axial surfaces and geometry is predicted from dip domain and SCAT. Faults are identified using pressure transient data and dipmeter. The Toro reservoir is subnormally pressured and fluid contacts are hydrodynamically tilted. The hydrodynamic flow and tilted contacts are modeled by flow simulation and constrained by maps of the potentiometric surface.« less
Reservoir heterogeneity in Carboniferous sandstone of the Black Warrior basin. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kugler, R.L.; Pashin, J.C.; Carroll, R.E.
1994-04-01
Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes themore » geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.« less
NASA Astrophysics Data System (ADS)
Yin, Yanshu; Feng, Wenjie
2017-12-01
In this paper, a location-based multiple point statistics method is developed to model a non-stationary reservoir. The proposed method characterizes the relationship between the sedimentary pattern and the deposit location using the relative central position distance function, which alleviates the requirement that the training image and the simulated grids have the same dimension. The weights in every direction of the distance function can be changed to characterize the reservoir heterogeneity in various directions. The local integral replacements of data events, structured random path, distance tolerance and multi-grid strategy are applied to reproduce the sedimentary patterns and obtain a more realistic result. This method is compared with the traditional Snesim method using a synthesized 3-D training image of Poyang Lake and a reservoir model of Shengli Oilfield in China. The results indicate that the new method can reproduce the non-stationary characteristics better than the traditional method and is more suitable for simulation of delta-front deposits. These results show that the new method is a powerful tool for modelling a reservoir with non-stationary characteristics.
NASA Astrophysics Data System (ADS)
Haruzi, Peleg; Halisch, Matthias; Katsman, Regina; Waldmann, Nicolas
2016-04-01
Lower Cretaceous sandstone serves as hydrocarbon reservoir in some places over the world, and potentially in Hatira formation in the Golan Heights, northern Israel. The purpose of the current research is to characterize the petrophysical properties of these sandstone units. The study is carried out by two alternative methods: using conventional macroscopic lab measurements, and using CT-scanning, image processing and subsequent fluid mechanics simulations at a microscale, followed by upscaling to the conventional macroscopic rock parameters (porosity and permeability). Comparison between the upscaled and measured in the lab properties will be conducted. The best way to upscale the microscopic rock characteristics will be analyzed based the models suggested in the literature. Proper characterization of the potential reservoir will provide necessary analytical parameters for the future experimenting and modeling of the macroscopic fluid flow behavior in the Lower Cretaceous sandstone.
Kong, Dongxian; Miao, Chiyuan; Wu, Jingwen; Borthwick, Alistair G L; Duan, Qingyun; Zhang, Xiaoming
2017-02-01
The Yellow River is the most hyperconcentrated sediment-laden river in the world. Throughout recorded history, the Lower Yellow River (LYR) experienced many catastrophic flood and drought events. To regulate the LYR, a reservoir was constructed at Xiaolangdi that became operational in the early 2000s. An annual water-sediment regulation scheme (WSRS) was then implemented, aimed at flood control, sediment reduction, regulated water supply, and power generation. This study examines the eco-environmental and socioenvironmental impacts of Xiaolangdi Reservoir. In retrospect, it is found that the reservoir construction phase incurred huge financial cost and required large-scale human resettlement. Subsequent reservoir operations affected the local geological environment, downstream riverbed erosion, evolution of the Yellow River delta, water quality, and aquatic biodiversity. Lessons from the impact assessment of the Xiaolangdi Reservoir are summarized as follows: (1) The construction of large reservoirs is not merely an engineering challenge but must also be viewed in terms of resource exploitation, environmental protection, and social development; (2) long-term systems for monitoring large reservoirs should be established, and decision makers involved at national policy and planning levels must be prepared to react quickly to the changing impact of large reservoirs; and (3) the key to solving sedimentation in the LYR is not Xiaolangdi Reservoir but instead soil conservation in the middle reaches of the Yellow River basin. Proper assessment of the impacts of large reservoirs will help promote development strategies that enhance the long-term sustainability of dam projects.
NASA Astrophysics Data System (ADS)
Ivakhnenko, Aleksandr; Aimukhan, Adina; Kenshimova, Aida; Mullagaliyev, Fandus; Akbarov, Erlan; Mullagaliyeva, Lylia; Kabirova, Svetlana; Almukhametov, Azamat
2017-04-01
Coalbed methane from Karaganda coal basin is considered to be an unconventional source of energy for the Central and Eastern parts of Kazakhstan. These regions are situated far away from the main traditional sources of oil and gas related to Precaspian petroleum basin. Coalbed methane fields in Karaganda coal basin are characterized by geological and structural complexity. Majority of production zones were characterized by high methane content and extremely low coal permeability. The coal reservoirs also contained a considerable natural system of primary, secondary, and tertiary fractures that were usually capable to accommodate passing fluid during hydraulic fracturing process. However, after closing was often observed coal formation damage including the loss of fluids, migration of fines and higher pressures required to treat formation than were expected. Unusual or less expected reservoir characteristics and values of properties of the coal reservoir might be the cause of the unusual occurred patterns in obtained fracturing, such as lithological peculiarities, rock mechanical properties and previous natural fracture systems in the coals. Based on these properties we found that during the drilling and fracturing of the coal-induced fractures have great sensitivity to complex reservoir lithology and stress profiles, as well as changes of those stresses. In order to have a successful program of hydraulic fracturing and avoid unnecessary fracturing anomalies we applied integrated reservoir characterization to monitor key parameters. In addition to logging data, core sample analysis was applied for coalbed methane reservoirs to observe dependence tiny lithological variations through the magnetic susceptibility values and their relation to permeability together with expected principal stress. The values of magnetic susceptibility were measured by the core logging sensor, which is equipped with the probe that provides volume magnetic susceptibility parameters. Permeability was measured by air permeameter. Results confirmed that there is a correspondence between the high permeability and the low magnetic susceptibility values of production zones. Importantly also were found relation of the coal envelope type between only shales coal framing or only sandstone coal framing that most likely led to different stress profiles. In addition, we briefly describe potential of other types of unconventional resources in Kazakhstan, such as shale oil, tight gas and shale gas, where this integrated approach could be useful to apply in the future.
USDA-ARS?s Scientific Manuscript database
Feral populations of cultivated crops have the potential to function as bridges and reservoirs that contribute to the unwanted movement of novel genetically engineered (GE) traits. Recognizing that feral alfalfa has the potential to lower genetic purity in alfalfa seed production fields when it is g...
Investigation on the Inertance Tubes of Pulse Tube Cryocooler Without Reservoir
NASA Astrophysics Data System (ADS)
Liu, Y. J.; Yang, L. W.; Liang, J. T.; Hong, G. T.
2010-04-01
Phase angle is of vital importance for high-efficiency pulse tube cryocoolers (PTCs). Inertance tube as the main phase shifter is useful for the PTCs to obtain appropriate phase angle. Experiments of inertance tube without reservoir under variable frequency, variable length and diameter of inertance tube and variable pressure amplitude are investigated respectively. In addition, the authors used DeltaEC, a computer program to predict the performance of low-amplitude thermoacoustic engines, to simulate the effects of inertance tube without reservoir. According to the comparison of experiments and theoretical simulations, DeltaEC method is feasible and effective to direct and improve the design of inertance tubes.
NASA Astrophysics Data System (ADS)
Osman, Mutsim; Abdullatif, Osman
2017-04-01
The Permian to Triassic Khuff carbonate reservoirs (and equivalents) in the Middle East are estimated to contain about 38.4% of the world's natural gas reserves. Excellent exposed outcrops in central Saudi Arabia provide good outcrop equivalents to subsurface Khuff reservoirs. This study conduct high resolution outcrop scale investigations on an analog reservoir for upper Khartam of Khuff Formation. The main objective is to reconstruct litho- and chemo- stratigraphic outcrop analog model that may serve to characterize reservoir high resolution (interwell) heterogeneity, continuity and architecture. Given the fact of the limitation of subsurface data and toolsin capturing interwell reservoir heterogeneity, which in turn increases the value of this study.The methods applied integrate sedimentological, stratigraphic petrographic, petrophysical data and chemical analyses for major, trace and rare earth elements. In addition, laser scanning survey (LIDAR) was also utilized in this study. The results of the stratigraphic investigations revealed that the lithofacies range from mudstone, wackestone, packestone and grainstone. These lithofacies represent environments ranging from supratidal, intertidal, subtidal and shoal complex. Several meter-scale and less high resolution sequences and composite sequences within 4th and 5th order cycles were also recognized in the outcrop analog. The lithofacies and architectural analysis revealed several vertically and laterally stacked sequences at the outcrop as revealed from the stratigraphic sections and the lidar scan. Chemostratigraphy is effective in identifying lithofacies and sequences within the outcrop analog. Moreover, different chemical signatures were also recognized and allowed establishing and correlating high resolution lithofacies, reservoir zones, layers and surfaces bounding reservoirs and non-reservoir zones at scale of meters or less. The results of this high resolution outcrop analog study might help to understand and evaluate Khuff reservoir heterogeneity, quality and architecture. It might also help to fill the gap in knowledge in reservoir characterization models based on low resolution subsurface data alone.
Reservoir Models for Gas Hydrate Numerical Simulation
NASA Astrophysics Data System (ADS)
Boswell, R.
2016-12-01
Scientific and industrial drilling programs have now providing detailed information on gas hydrate systems that will increasingly be the subject of field experiments. The need to carefully plan these programs requires reliable prediction of reservoir response to hydrate dissociation. Currently, a major emphasis in gas hydrate modeling is the integration of thermodynamic/hydrologic phenomena with geomechanical response for both reservoir and bounding strata. However, also critical to the ultimate success of these efforts is the appropriate development of input geologic models, including several emerging issues, including (1) reservoir heterogeneity, (2) understanding of the initial petrophysical characteristics of the system (reservoirs and seals), the dynamic evolution of those characteristics during active dissociation, and the interdependency of petrophysical parameters and (3) the nature of reservoir boundaries. Heterogeneity is ubiquitous aspect of every natural reservoir, and appropriate characterization is vital. However, heterogeneity is not random. Vertical variation can be evaluated with core and well log data; however, core data often are challenged by incomplete recovery. Well logs also provide interpretation challenges, particularly where reservoirs are thinly-bedded due to limitation in vertical resolution. This imprecision will extend to any petrophysical measurements that are derived from evaluation of log data. Extrapolation of log data laterally is also complex, and should be supported by geologic mapping. Key petrophysical parameters include porosity, permeability and it many aspects, and water saturation. Field data collected to date suggest that the degree of hydrate saturation is strongly controlled by/dependant upon reservoir quality and that the ratio of free to bound water in the remaining pore space is likely also controlled by reservoir quality. Further, those parameters will also evolve during dissociation, and not necessary in a simple/linear way. Significant progress has also occurred in recent years with regard to the geologic characterization of reservoir boundaries. Vertical boundaries with overlying clay-rich "seals" are now widely-appreciated to have non-zero permeability, and lateral boundaries are sources of potential lateral fluid flow.
NASA Astrophysics Data System (ADS)
Haar, K. K.; Balch, R. S.; Lee, S. Y.
2017-12-01
The CarbonSAFE Rocky Mountain project team is in the initial phase of investigating the regulatory, financial and technical feasibility of commercial-scale CO2 capture and storage from two coal-fired power plants in the northwest region of the San Rafael Swell, Utah. The reservoir interval is the Jurassic Navajo Sandstone, an eolian dune deposit that at present serves as the salt water disposal reservoir for Ferron Sandstone coal-bed methane production in the Drunkards Wash field and Buzzard Bench area of central Utah. In the study area the Navajo sandstone is approximately 525 feet thick and is at an average depth of about 7000 feet below the surface. If sufficient porosity and permeability exist, reservoir depth and thickness would provide storage for up to 100,000 metric tonnes of CO2 per square mile, based on preliminary estimates. This reservoir has the potential to meet the DOE's requirement of having the ability to store at least 50 million metric tons of CO2 and fulfills the DOE's initiative to develop protocols for commercially sequestering carbon sourced from coal-fired power plants. A successful carbon storage project requires thorough structural and stratigraphic characterization of the reservoir, seal and faults, thereby allowing the creation of a comprehensive geologic model with subsequent simulations to evaluate CO2/brine migration and long-term effects. Target formation lithofacies and subfacies data gathered from outcrop mapping and laboratory analysis of core samples were developed into a geologic model. Synthetic seismic was modeled from this, allowing us to seismically characterize the lithofacies of the target formation. This seismic characterization data was then employed in the interpretation of 2D legacy lines which provided stratigraphic and structural control for more accurate model development of the northwest region of the San Rafael Swell. Developing baseline interpretations such as this are crucial toward long-term carbon storage monitoring.
Spatial Variation in the Invertebrate Macrobenthos of Three Large Missouri River Reservoirs
Benthic macroinvertebrates assemblages are useful indicators of ecological condition for aquatic systems. This study was conducted to characterize benthic communities of three large reservoirs on the Missouri River. The information collected on abundance, distribution and varia...
Advancing reservoir operation description in physically based hydrological models
NASA Astrophysics Data System (ADS)
Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo
2016-04-01
Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir operating strategies.
Unconventional Tight Reservoirs Characterization with Nuclear Magnetic Resonance
NASA Astrophysics Data System (ADS)
Santiago, C. J. S.; Solatpour, R.; Kantzas, A.
2017-12-01
The increase in tight reservoir exploitation projects causes producing many papers each year on new, modern, and modified methods and techniques on estimating characteristics of these reservoirs. The most ambiguous of all basic reservoir property estimations deals with permeability. One of the logging methods that is advertised to predict permeability but is always met by skepticism is Nuclear Magnetic Resonance (NMR). The ability of NMR to differentiate between bound and movable fluids and providing porosity increased the capability of NMR as a permeability prediction technique. This leads to a multitude of publications and the motivation of a review paper on this subject by Babadagli et al. (2002). The first part of this presentation is dedicated to an extensive review of the existing correlation models for NMR based estimates of tight reservoir permeability to update this topic. On the second part, the collected literature information is used to analyze new experimental data. The data are collected from tight reservoirs from Canada, the Middle East, and China. A case study is created to apply NMR measurement in the prediction of reservoir characterization parameters such as porosity, permeability, cut-offs, irreducible saturations etc. Moreover, permeability correlations are utilized to predict permeability. NMR experiments were conducted on water saturated cores. NMR T2 relaxation times were measured. NMR porosity, the geometric mean relaxation time (T2gm), Irreducible Bulk Volume (BVI), and Movable Bulk Volume (BVM) were calculated. The correlation coefficients were computed based on multiple regression analysis. Results are cross plots of NMR permeability versus the independently measured Klinkenberg corrected permeability. More complicated equations are discussed. Error analysis of models is presented and compared. This presentation is beneficial in understanding existing tight reservoir permeability models. The results can be used as a guide for choosing the best permeability estimation model for tight reservoirs data.
NASA Astrophysics Data System (ADS)
Ren, Xiangyu; Yang, Kai; Che, Yue; Wang, Mingwei; Zhou, Lili; Chen, Liqiao
2016-09-01
For decades, the main threat to the water security of a metropolis, such as the city of Shanghai, has been the rapidly growing demand for water and at the same time, the decrease in water quality, including eutrophication. Therefore Shanghai shifted the preferred freshwater source to the Yangtze Estuary and constructed the Qingcaosha Reservoir, which is subject to less eutrophic water from the Yangtze River. To assess the population of phytoplankton for the first time in the newly built reservoir, this study improved an integrated method to assess the phytoplankton pattern in large-water-area reservoirs and lakes, using partial triadic analysis and Geographic Information Systems. Monthly sampling and monitoring from 10 stations in the reservoir from July 2010 to December 2011 were conducted. The study examined the common pattern of the phytoplankton population structure and determined the differences in the specific composition of the phytoplankton community during the transition period of the reservoir. The results suggest that in all but three sampling stations in the upper parts of Qingcaosha Reservoir, there was a strong common compromise in 2011. The two most important periods occurred from late summer to autumn and from winter to early spring. The former was characterized by the dominance of cyanobacteria, whereas the latter was characterized by the dominance of both chlorophyta and diatoms. Cyanobacteria ( Microcystis spp. as the main genus) were the monopolistic dominant species in the summer after reservoir operation. The statistical analysis also indicated the necessity for regular monitoring to focus on the stations in the lower parts of the reservoir and on several limited species.
Bhattacharya, S.; Doveton, J.H.; Carr, T.R.; Guy, W.R.; Gerlach, P.M.
2005-01-01
Small independent operators produce most of the Mississippian carbonate fields in the United States mid-continent, where a lack of integrated characterization studies precludes maximization of hydrocarbon recovery. This study uses integrative techniques to leverage extant data in an Osagian and Meramecian (Mississippian) cherty carbonate reservoir in Kansas. Available data include petrophysical logs of varying vintages, limited number of cores, and production histories from each well. A consistent set of assumptions were used to extract well-level porosity and initial saturations, from logs of different types and vintages, to build a geomodel. Lacking regularly recorded well shut-in pressures, an iterative technique, based on material balance formulations, was used to estimate average reservoir-pressure decline that matched available drillstem test data and validated log-analysis assumptions. Core plugs representing the principal reservoir petrofacies provide critical inputs for characterization and simulation studies. However, assigning plugs among multiple reservoir petrofacies is difficult in complex (carbonate) reservoirs. In a bottom-up approach, raw capillary pressure (Pc) data were plotted on the Super-Pickett plot, and log- and core-derived saturation-height distributions were reconciled to group plugs by facies, to identify core plugs representative of the principal reservoir facies, and to discriminate facies in the logged interval. Pc data from representative core plugs were used for effective pay evaluation to estimate water cut from completions, in infill and producing wells, and guide-selective perforations for economic exploitation of mature fields. The results from this study were used to drill 22 infill wells. Techniques demonstrated here can be applied in other fields and reservoirs. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.
Suggested Best Practice for seismic monitoring and characterization of non-conventional reservoirs
NASA Astrophysics Data System (ADS)
Malin, P. E.; Bohnhoff, M.; terHeege, J. H.; Deflandre, J. P.; Sicking, C.
2017-12-01
High rates of induced seismicity and gas leakage in non-conventional production have become a growing issue of public concern. It has resulted in calls for independent monitoring before, during and after reservoir production. To date no uniform practice for it exists and few reservoirs are locally monitored at all. Nonetheless, local seismic monitoring is a pre-requisite for detecting small earthquakes, increases of which can foreshadow damaging ones and indicate gas leaks. Appropriately designed networks, including seismic reflection studies, can be used to collect these and Seismic Emission Tomography (SET) data, the latter significantly helping reservoir characterization and exploitation. We suggest a Step-by-Step procedure for implementing such networks. We describe various field kits, installations, and workflows, all aimed at avoiding damaging seismicity, as indicators of well stability, and improving reservoir exploitation. In Step 1, a single downhole seismograph is recommended for establishing baseline seismicity before development. Subsequent Steps are used to decide cost-effective ways of monitoring treatments, production, and abandonment. We include suggestions for monitoring of disposal and underground storage. We also describe how repeated SET observations improve reservoir management as well as regulatory monitoring. Moreover, SET acquisition can be included at incremental cost in active surveys or temporary passive deployments.
CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayne D. Pennington; Horacio Acevedo; Aaron Green
2002-10-01
The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation ormore » printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.« less
2005 Tri-Service Infrastructure Systems Conference and Exhibition
2005-08-04
Reclamation Irrigation/Flood Control Reservoirs • Bonny • Swanson • Enders • Harry Strunk • Hugh Butler • Keith Sebelius • Lovewell US Army Corps of...Water Quality – Mentor, Topeka, DeSoto • Irrigation – Waconda, Harlan County, Lovewell • Navigation Support – Milford, Tuttle Creek, Perry • Endangered...1977 LOVL ( Lovewell Reservoir): January 1, 1980 MILD (Milford Lake) August 24, 1964 Kansas City District US Army Corps of Engineers PRECIPATATION GAGES
A reservoir optimization study--El Bunduq Field, Abu Dhabi, Qatar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blashbush, J.L.; Nagai, R.B.; Ogimoto, T.
El Bunduq reservoir is located in the offshore area of Abu Dhabi and Qatar. The field was shut-in in July 1979 due to production with high gas-oil ratios. Pressure differences of 200-400 psi between the flanks and the central part of the reservoir were still present almost four years after the field was shut-in. A comprehensive reservoir engineering study determined that the reasons for this behavior were the deteriorating qualities of the reservoir rock downstructure and the presence of a tar mat around the field. After the field behavior was history matched, model studies of a representative sector of themore » field indicated that peripheral waterflooding would recover less than 15 percent of the OOIP in a period of 30 years. However, pattern injection recoveries were calculated to be at least twice as high. Several full field alternatives were investigated to optimize the development of the reservoir under a pattern waterflood. This paper summarizes the various studies that led to the acceptance of the idea of pattern development over peripheral injection, as a result of the unique characteristics of this field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartshorn, K.G.
The Castilla and Chichimene NE fields, operated by Chevron, are located in the southern Llanos basin of Colombia. The Castilla field, with an estimated 2.3 billion BBLS OOIP, produces heavy 14{prime} API oil, while the Chichimene NE field with an estimated 480 MMBBLS OOIP, produces a lighter 20{prime} API oil. Production is from multiple sandstone reservoirs of the Tertiary San Fernando and the Cretaceous Guadalupe Formations, and from massive non-marine sands of the Cretaceous Une Formation. Early problems with water coning and high water cuts led to detailed geologic study and engineering simulation to determine the most effective methods ofmore » reservoir management. The fresh nature of the connate water made evaluation more complicated, but results of RST (Reservoir Saturation Tool) logging runs on producing wells support the conclusions of the simulation studies regarding the potential for vertical drainage of the reservoir. As a result, the massive sands of the Une Formation can be perforated in the upper portion of the reservoir only, still enabling effective drainage of the lower reservoir while reducing water production and coning problems.« less
Novel Geothermal Development of Deep Sedimentary Systems in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Joseph; Allis, Rick
Economic and reservoir engineering models show that stratigraphic reservoirs have the potential to contribute significant geothermal power in the U.S. If the reservoir temperature exceeds about 150 – 200 °C at 2 – 4 km depth, respectively, and there is good permeability, then these resources can generate power with a levelized cost of electricity (LCOE) of close to 10 ¢/kWh (without subsidies) on a 100 MW power plant scale. There is considerable evidence from both groundwater geology and petroleum reservoir geology that relatively clean carbonates and sandstones have, and can sustain, the required high permeability to depths of at leastmore » 5 km. This paper identifies four attractive stratigraphic reservoir prospects which are all located in the eastern Great Basin, and have temperatures of 160 – 230 °C at 3 – 3.5 km depth. They are the Elko basins (Nevada), North Steptoe Valley (Nevada), Pavant Butte (Utah), and the Idaho Thrust Belt. The reservoir lithologies are Paleozoic carbonates in the first three, and Jurassic sandstone and carbonate in the Idaho Thrust Belt. All reservoir lithologies are known to have high permeability characteristics. At North Steptoe Valley and Pavant Butte, nearby transmission line options allow interconnection to the California power market. Modern techniques for drilling and developing tight oil and gas reservoirs are expected to have application to geothermal development of these reservoirs.« less
Monitoring Earth's reservoir and lake dynamics from space
NASA Astrophysics Data System (ADS)
Donchyts, G.; Eilander, D.; Schellekens, J.; Winsemius, H.; Gorelick, N.; Erickson, T.; Van De Giesen, N.
2016-12-01
Reservoirs and lakes constitute about 90% of the Earth's fresh surface water. They play a major role in the water cycle and are critical for the ever increasing demands of the world's growing population. Water from reservoirs is used for agricultural, industrial, domestic, and other purposes. Current digital databases of lakes and reservoirs are scarce, mainly providing only descriptive and static properties of the reservoirs. The Global Reservoir and Dam (GRanD) database contains almost 7000 entries while OpenStreetMap counts more than 500 000 entries tagged as a reservoir. In the last decade several research efforts already focused on accurate estimates of surface water dynamics, mainly using satellite altimetry, However, currently they are limited only to less than 1000 (mostly large) water bodies. Our approach is based on three main components. Firstly, a novel method, allowing automated and accurate estimation of surface area from (partially) cloud-free optical multispectral or radar satellite imagery. The algorithm uses satellite imagery measured by Landsat, Sentinel and MODIS missions. Secondly, a database to store reservoir static and dynamic parameters. Thirdly, a web-based tool, built on top of Google Earth Engine infrastructure. The tool allows estimation of surface area for lakes and reservoirs at planetary-scale at high spatial and temporal resolution. A prototype version of the method, database, and tool will be presented as well as validation using in-situ measurements.
NASA Astrophysics Data System (ADS)
Rahmani, V.; Kastens, J.; deNoyelles, F.; Huggins, D.; Martinko, E.
2015-12-01
Dam construction has multiple environmental and hydrological consequences including impacts on upstream and downstream ecosystems, water chemistry, and streamflow. Behind the dam the reservoir can trap sediment from the stream and fill over time. With increasing population and drinking and irrigation water demands, particularly in the areas that have highly variable weather and extended drought periods such as the United States Great Plains, reservoir sedimentation escalates water management concerns. Under nearly all projected climate change scenarios we expect that reservoir water storage and management will come under intense scrutiny because of the extensive use of interstate river compacts in the Great Plains. In the state of Kansas, located in the Great Plains, bathymetric surveys have been completed during the last decade for many major lakes by the Kansas Biological Survey, Kansas Water Office, and the U.S. Army Corps of Engineers. In this paper, we studied the spatial and temporal changes of reservoir characteristics including sedimentation yield, depletion rate, and storage capacity loss for 24 federally-operated reservoirs in Kansas. These reservoirs have an average age of about 50 years and collectively have lost approximately 15% of their original capacity, with the highest annual observed single-reservoir depletion rate of 0.84% and sedimentation yield of 1,685 m3 km-2 yr-1.
Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Peter Eugene
2013-04-15
This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved,more » however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team contributed to the Desert Peak project, focusing largely on a geomechanical investigation of the Desert Peak reservoir, tracer testing between injectors 21-2 and 22-22 and the field's main producers, and the chemical stimulation of target well 27-15.« less
Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Peter Eugene
This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved,more » however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team contributed to the Desert Peak project, focusing largely on a geomechanical investigation of the Desert Peak reservoir, tracer testing between injectors 21-2 and 22-22 and the field's main producers, and the chemical stimulation of target well 27-15.« less
NASA Astrophysics Data System (ADS)
Auduson, Aaron E.
2018-07-01
One of the most common problems in the North Sea is the occurrence of salt (solid) in the pores of Triassic sandstones. Many wells have failed due to interpretation errors based conventional substitution as described by the Gassmann equation. A way forward is to device a means to model and characterize the salt-plugging scenarios. Modelling the effects of fluid and solids on rock velocity and density will ascertain the influence of pore material types on seismic data. In this study, two different rock physics modelling approaches are adopted in solid-fluid substitution, namely the extended Gassmann theory and multi-mineral mixing modelling. Using the modified new Gassmann equation, solid-and-fluid substitutions were performed from gas or water filling in the hydrocarbon reservoirs to salt materials being the pore-filling. Inverse substitutions were also performed from salt-filled case to gas- and water-filled scenarios. The modelling results show very consistent results - Salt-plugged wells clearly showing different elastic parameters when compared with gas- and water-bearing wells. While the Gassmann equation-based modelling was used to discretely compute effective bulk and shear moduli of the salt plugs, the algorithm based on the mineral-mixing (Hashin-Shtrikman) can only predict elastic moduli in a narrow range. Thus, inasmuch as both of these methods can be used to model elastic parameters and characterize pore-fill scenarios, the New Gassmann-based algorithm, which is capable of precisely predicting the elastic parameters, is recommended for use in forward seismic modelling and characterization of this reservoir and other reservoir types. This will significantly help in reducing seismic interpretation errors.
Which therapeutic strategy will achieve a cure for HIV-1?
Cillo, Anthony R; Mellors, John W
2016-06-01
Strategies to achieve a cure for HIV-1 infection can be broadly classified into three categories: eradication cure (elimination of all viral reservoirs), functional cure (immune control without reservoir eradication), or a hybrid cure (reservoir reduction with improved immune control). The many HIV-1 cure strategies being investigated include modification of host cells to resist HIV-1, engineered T cells to eliminate HIV-infected cells, broadly HIV-1 neutralizing monoclonal antibodies, and therapeutic vaccination, but the 'kick and kill' strategy to expose latent HIV-1 with latency reversing agents (LRAs) and kill the exposed cells through immune effector functions is currently the most actively pursued. It is unknown, however, whether LRAs can deplete viral reservoirs in vivo or whether current LRAs are sufficiently safe for clinical use. Copyright © 2016. Published by Elsevier B.V.
Research on three-dimensional visualization based on virtual reality and Internet
NASA Astrophysics Data System (ADS)
Wang, Zongmin; Yang, Haibo; Zhao, Hongling; Li, Jiren; Zhu, Qiang; Zhang, Xiaohong; Sun, Kai
2007-06-01
To disclose and display water information, a three-dimensional visualization system based on Virtual Reality (VR) and Internet is researched for demonstrating "digital water conservancy" application and also for routine management of reservoir. To explore and mine in-depth information, after completion of modeling high resolution DEM with reliable quality, topographical analysis, visibility analysis and reservoir volume computation are studied. And also, some parameters including slope, water level and NDVI are selected to classify easy-landslide zone in water-level-fluctuating zone of reservoir area. To establish virtual reservoir scene, two kinds of methods are used respectively for experiencing immersion, interaction and imagination (3I). First virtual scene contains more detailed textures to increase reality on graphical workstation with virtual reality engine Open Scene Graph (OSG). Second virtual scene is for internet users with fewer details for assuring fluent speed.
Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampton, Jesse; Gutierrez, Marte; Matzar, Luis
Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and information concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs frommore » several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of understanding the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. Lastly, it was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.« less
Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests
Hampton, Jesse; Gutierrez, Marte; Matzar, Luis; ...
2018-06-11
Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and information concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs frommore » several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of understanding the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. Lastly, it was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.« less
Saltiel, Seth; Bonner, Brian P.; Ajo-Franklin, Jonathan B.
2017-05-05
Measurements of nonlinear modulus and attenuation of fractures provide the opportunity to probe their mechanical state. We have adapted a low-frequency torsional apparatus to explore the seismic signature of fractures under low normal stress, simulating low effective stress environments such as shallow or high pore pressure reservoirs. We report strain-dependent modulus and attenuation for fractured samples of Duperow dolomite (a carbon sequestration target reservoir in Montana), Blue Canyon Dome rhyolite (a geothermal analog reservoir in New Mexico), and Montello granite (a deep basement disposal analog from Wisconsin). We use a simple single effective asperity partial slip model to fit ourmore » measured stress-strain curves, and solve for the friction coefficient, contact radius, and full slip condition. These observations have the potential to develop into new field techniques for measuring differences in frictional properties during reservoir engineering manipulations and estimate the stress conditions where reservoir fractures and faults begin to fully slip.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saltiel, Seth; Bonner, Brian P.; Ajo-Franklin, Jonathan B.
Measurements of nonlinear modulus and attenuation of fractures provide the opportunity to probe their mechanical state. We have adapted a low-frequency torsional apparatus to explore the seismic signature of fractures under low normal stress, simulating low effective stress environments such as shallow or high pore pressure reservoirs. We report strain-dependent modulus and attenuation for fractured samples of Duperow dolomite (a carbon sequestration target reservoir in Montana), Blue Canyon Dome rhyolite (a geothermal analog reservoir in New Mexico), and Montello granite (a deep basement disposal analog from Wisconsin). We use a simple single effective asperity partial slip model to fit ourmore » measured stress-strain curves, and solve for the friction coefficient, contact radius, and full slip condition. These observations have the potential to develop into new field techniques for measuring differences in frictional properties during reservoir engineering manipulations and estimate the stress conditions where reservoir fractures and faults begin to fully slip.« less
NASA Astrophysics Data System (ADS)
Aminzadeh, Fred; Tafti, Tayeb A.; Maity, Debotyam
2013-04-01
Geothermal and unconventional hydrocarbon reservoirs are often characterized by low permeability and porosity. So, they are difficult to produce and require stimulation techniques, such as thermal shear deactivation and hydraulic fracturing. Fractures provide porosity for fluid storage and permeability for fluid movement and play an important role in production from this kind of reservoirs. Hence, characterization of fractures has become a vitally important consideration in every aspect of exploration, development and production so as to provide additional energy resources for the world. During the injection or production of fluid, induced seismicity (micro-seismic events) can be caused by reactivated shears created fractures or the natural fractures in shear zones and faults. Monitoring these events can help visualize fracture growth during injection stimulation. Although the locations of microseismic events can be a useful characterization tool and have been used by many authors, we go beyond these locations to characterize fractures more reliably. Tomographic inversion, fuzzy clustering, and shear wave splitting are three methods that can be applied to microseismic data to obtain reliable characteristics about fractured areas. In this article, we show how each method can help us in the characterization process. In addition, we demonstrate how they can be integrated with each other or with other data for a more holistic approach. The knowledge gained might be used to optimize drilling targets or stimulation jobs to reduce costs and maximize production. Some of the concepts discussed in this paper are general in nature, and may be more applicable to unconventional hydrocarbon reservoirs than the metamorphic and igneous reservoir rocks at The Geysers geothermal field.
NASA Astrophysics Data System (ADS)
Ohl, Derek; Raef, Abdelmoneam
2014-04-01
Higher resolution rock formation characterization is of paramount priority, amid growing interest in injecting carbon dioxide, CO2, into subsurface rock formations of depeleting/depleted hydrocarbon reservoirs or saline aquifers in order to reduce emissions of greenhouse gases. In this paper, we present a case study for a Mississippian carbonate characterization integrating post-stack seismic attributes, well log porosities, and seismic petrophysical facies classification. We evaluated changes in petrophysical lithofacies and reveal structural facies-controls in the study area. Three cross-plot clusters in a plot of well log porosity and acoustic impedance corroborated a Neural Network petrophysical facies classification, which was based on training and validation utilizing three petrophysically-different wells and three volume seismic attributes, extracted from a time window including the wavelet of the reservoir-top reflection. Reworked lithofacies along small-throw faults has been revealed based on comparing coherency and seismic petrophysical facies. The main objective of this study is to put an emphasis on reservoir characterization that is both optimized for and subsequently benefiting from pilot tertiary CO2 carbon geosequestration in a depleting reservoir and also in the deeper saline aquifer of the Arbuckle Group, south central Kansas. The 3D seismic coherency attribute, we calculated from a window embracing the Mississippian top reflection event, indicated anomalous features that can be interpreted as a change in lithofacies or faulting effect. An Artificial Neural Network (ANN) lithofacies modeling has been used to better understand these subtle features, and also provide petrophysical classes, which will benefit flow-simulation modeling and/or time-lapse seismic monitoring feasibility analysis. This paper emphasizes the need of paying greater attention to small-scale features when embarking upon characterization of a reservoir or saline-aquifer for CO2 based carbon geosequestration.
Flocks, James; Kelso, Kyle; Fosness, Ryan; Welcker, Chris
2014-01-01
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center, in cooperation with the USGS Idaho Water Science Center and the Idaho Power Company, collected high-resolution seismic reflection data in the Brownlee and Hells Canyon Reservoirs, in March of 2013.These reservoirs are located along the Snake River, and were constructed in 1958 (Brownlee) and 1967 (Hells Canyon). The purpose of the survey was to gain a better understanding of sediment accumulation within the reservoirs since their construction. The chirp system used in the survey was an EdgeTech Geo-Star Full Spectrum Sub-Bottom (FSSB) system coupled with an SB-424 towfish with a frequency range of 4 to 24 kHz. Approximately 325 kilometers of chirp data were collected, with water depths ranging from 0-90 meters. These reservoirs are characterized by very steep rock valley walls, very low flow rates, and minimal sediment input into the system. Sediments deposited in the reservoirs are characterized as highly fluid clays. Since the acoustic signal was not able to penetrate the rock substrate, only the thin veneer of these recent deposits were imaged. Results from the seismic survey indicate that throughout both of the Brownlee and Hells Canyon reservoirs the accumulation of sediments ranged from 0 to 2.5 m, with an average of 0.5 m. Areas of above average sediment accumulation may be related to lower slope, longer flooding history, and proximity to fluvial sources.
McLaughlin, J.F.; Frost, C.D.; Sharma, Shruti
2011-01-01
Coalbed natural gas (CBNG) production typically requires the extraction of large volumes of water from target formations, thereby influencing any associated reservoir systems. We describe isotopic tracers that provide immediate data on the presence or absence of biogenic natural gas and the identify methane-containing reservoirs are hydrologically confined. Isotopes of dissolved inorganic carbon and strontium, along with water quality data, were used to characterize the CBNG reservoirs and hydrogeologic systems of Wyoming's Atlantic Rim. Water was analyzed from a stream, springs, and CBNG wells. Strontium isotopic composition and major ion geochemistry identify two groups of surface water samples. Muddy Creek and Mesaverde Group spring samples are Ca-Mg-S04-type water with higher 87Sr/86Sr, reflecting relatively young groundwater recharged from precipitation in the Sierra Madre. Groundwaters emitted from the Lewis Shale springs are Na-HCO3-type waters with lower 87Sr/86Sr, reflecting sulfate reduction and more extensive water-rock interaction. To distinguish coalbed waters, methanogenically enriched ??13CDIC wasused from other natural waters. Enriched ??13CDIC, between -3.6 and +13.3???, identified spring water that likely originates from Mesaverde coalbed reservoirs. Strongly positive ??13CDIC, between +12.6 and +22.8???, identified those coalbed reservoirs that are confined, whereas lower ??13CDIC, between +0.0 and +9.9???, identified wells within unconfined reservoir systems. Copyright ?? 2011. The American Association of Petroleum Geologists. All rights reserved.
Interfacing 3D micro/nanochannels with a branch-shaped reservoir enhances fluid and mass transport
NASA Astrophysics Data System (ADS)
Kumar, Prasoon; Gandhi, Prasanna S.; Majumder, Mainak
2017-01-01
Three-dimensional (3D) micro/nanofluidic devices can accelerate progress in numerous fields such as tissue engineering, drug delivery, self-healing and cooling devices. However, efficient connections between networks of micro/nanochannels and external fluidic ports are key to successful applications of 3D micro/nanofluidic devices. Therefore, in this work, the extent of the role of reservoir geometry in interfacing with vascular (micro/nanochannel) networks, and in the enabling of connections with external fluidic ports while maintaining the compactness of devices, has been experimentally and theoretically investigated. A statistical modelling suggested that a branch-shaped reservoir demonstrates enhanced interfacing with vascular networks when compared to other regular geometries of reservoirs. Time-lapse dye flow experiments by capillary action through fabricated 3D micro/nanofluidic devices confirmed the connectivity of branch-shaped reservoirs with micro/nanochannel networks in fluidic devices. This demonstrated a ~2.2-fold enhancement of the volumetric flow rate in micro/nanofluidic networks when interfaced to branch-shaped reservoirs over rectangular reservoirs. The enhancement is due to a ~2.8-fold increase in the perimeter of the reservoirs. In addition, the mass transfer experiments exhibited a ~1.7-fold enhancement in solute flux across 3D micro/nanofluidic devices that interfaced with branch-shaped reservoirs when compared to rectangular reservoirs. The fabrication of 3D micro/nanofluidic devices and their efficient interfacing through branch-shaped reservoirs to an external fluidic port can potentially enable their use in complex applications, in which enhanced surface-to-volume interactions are desirable.
Integrating a reservoir regulation scheme into a spatially distributed hydrological model
Zhao, Gang; Gao, Huili; Naz, Bibi S; ...
2016-10-14
During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal/industrial water supplies, and hydropower generation. Consequently, timing and magnitude of natural streamflows have been altered significantly by reservoir operations. In addition, the hydrological cycle can be modified by land-use/land-cover and climate changes. To understand the fine-scale feedback between hydrological processes and water management decisions, a distributed hydrological model embedded with a reservoir component is desired. In this study, a multi-purpose reservoir module with predefined complex operational rules was integrated into the Distributed Hydrology Soil Vegetation Modelmore » (DHSVM). Conditional operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The performance of the integrated model was tested over the upper Brazos River Basin in Texas, where two U.S. Army Corps of Engineers reservoirs, Lake Whitney and Aquilla Lake, are located. The integrated DHSVM was calibrated and validated using observed reservoir inflow, outflow, and storage data. The error statistics were summarized for both reservoirs on a daily, weekly, and monthly basis. Using the weekly reservoir storage for Lake Whitney as an example, the coefficient of determination (R 2) and the Nash-Sutcliff Efficiency (NSE) were 0.85 and 0.75, respectively. These results suggest that this reservoir module holds promise for use in sub-monthly hydrological simulations. Furthermore, with the new reservoir component, the DHSVM provides a platform to support adaptive water resources management under the impacts of evolving anthropogenic activities and substantial environmental changes.« less
Integrating a reservoir regulation scheme into a spatially distributed hydrological model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Gang; Gao, Huili; Naz, Bibi S
During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal/industrial water supplies, and hydropower generation. Consequently, timing and magnitude of natural streamflows have been altered significantly by reservoir operations. In addition, the hydrological cycle can be modified by land-use/land-cover and climate changes. To understand the fine-scale feedback between hydrological processes and water management decisions, a distributed hydrological model embedded with a reservoir component is desired. In this study, a multi-purpose reservoir module with predefined complex operational rules was integrated into the Distributed Hydrology Soil Vegetation Modelmore » (DHSVM). Conditional operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The performance of the integrated model was tested over the upper Brazos River Basin in Texas, where two U.S. Army Corps of Engineers reservoirs, Lake Whitney and Aquilla Lake, are located. The integrated DHSVM was calibrated and validated using observed reservoir inflow, outflow, and storage data. The error statistics were summarized for both reservoirs on a daily, weekly, and monthly basis. Using the weekly reservoir storage for Lake Whitney as an example, the coefficient of determination (R 2) and the Nash-Sutcliff Efficiency (NSE) were 0.85 and 0.75, respectively. These results suggest that this reservoir module holds promise for use in sub-monthly hydrological simulations. Furthermore, with the new reservoir component, the DHSVM provides a platform to support adaptive water resources management under the impacts of evolving anthropogenic activities and substantial environmental changes.« less
NASA Astrophysics Data System (ADS)
Aochi, Hideo; Burnol, André
2018-05-01
The source mechanism of the M L 4.0 25 April 2016 Lacq earthquake (Aquitaine Basin, South-West France) is analyzed from the available public data and discussed with respect to the geometry of the nearby Lacq gas field. It is one of the biggest earthquakes in the area in the past few decades of gas extraction and the biggest after the end of gas exploitation in 2013. The routinely obtained location shows its hypocenter position inside the gas reservoir. We first analyze its focal mechanism through regional broad-band seismograms recorded in a radius of about 50 km epicentral distances and obtain EW running normal faulting above the reservoir. While the solution is stable using regional data only, we observe a large discrepancy between the recorded data on nearby station URDF and the forward modeling up to 1 Hz. We then look for the best epicenter position through performing wave propagation simulations and constraining the potential source area by the peak ground velocity (PGV). The resulting epicentral position is a few to several km away to the north or south direction with respect to station URDF such that the simulated particle motions are consistent with the observation. The initial motion of the seismograms shows that the epicenter position in the north from URDF is preferable, indicating the north-east of the Lacq reservoir. This study is an application of full waveform simulations and characterization of near-field ground motion in terms of an engineering factor such as PGV. The finally obtained solution gives a moment magnitude of M w 3.9 and the best focal depth of 4 km, which corresponds to the crust above the reservoir rather than its interior. This position is consistent with the tendency of Coulomb stress change due to a compaction at 5 km depth in the crust. Therefore, this earthquake can be interpreted as a relaxation of the shallow crust due to a deeper gas reservoir compaction so that the occurrence of similar events cannot be excluded in the near future. It would be necessary to continue monitoring such local induced seismicity in order to better understand the reservoir/overburden behavior and better assess the local seismic hazard even after the end of gas exploitation.
Mili, Sami; Ennouri, Rym; Dhib, Amel; Laouar, Houcine; Missaoui, Hechmi; Aleya, Lotfi
2016-06-01
To monitor and assess the state of Tunisian freshwater fisheries, two surveys were undertaken at Ghezala and Lahjar reservoirs. Samples were taken in April and May 2013, a period when the fish catchability is high. The selected reservoirs have different surface areas and bathymetries. Using multi-mesh gill nets (EN 14575 amended) designed for sampling fish in lakes, standard fishing methods were applied to estimate species composition, abundance, biomass, and size distribution. Four species were caught in the two reservoirs: barbel, mullet, pike-perch, and roach. Fish abundance showed significant change according to sampling sites, depth strata, and the different mesh sizes used. From the reservoir to the tributary, it was concluded that fish biomass distribution was governed by depth and was most abundant in the upper water layers. Species size distribution differed significantly between the two reservoirs, exceeding the length at first maturity. Species composition and abundance were greater in Lahjar reservoir than in Ghezala. Both reservoirs require support actions to improve fish productivity.
NASA Astrophysics Data System (ADS)
Petrie, E. S.; Evans, J. P.; Richey, D.; Flores, S.; Barton, C.; Mozley, P.
2015-12-01
Sedimentary rocks in the San Rafael Swell, Utah, were deformed by Laramide compression and subsequent Neogene extension. We evaluate the effect of fault damage zone morphology as a function of structural position, and changes in mechanical stratigraphy on the distribution of secondary minerals across the reservoir-seal pair of the Navajo Sandstone and overlying Carmel Formation. We decipher paleo-fluid migration and examine the effect faults and fractures have on reservoir permeability and efficacy of top seal for a range of geo-engineering applications. Map-scale faults have an increased probability of allowing upward migration of fluids along the fault plane and within the damage zone, potentially bypassing the top seal. Field mapping, mesoscopic structural analyses, petrography, and geochemical observations demonstrate that fault zone thickness increases at structural intersections, fault relay zones, fault-related folds, and fault tips. Higher densities of faults with meters of slip and dense fracture populations are present in relay zones relative to single, discrete faults. Curvature analysis of the San Rafael monocline and fracture density data show that fracture density is highest where curvature is highest in the syncline hinge and near faults. Fractures cross the reservoir-seal interface where fracture density is highest and structural diagensis includes mineralization events and bleaching and calcite and gypsum mineralization. The link between fracture distributions and structural setting implys that transmissive fractures have predictable orientations and density distributions. At the m- to cm- scale, deformation-band faults and joints in the Navajo Sandstone penetrate the reservoir-seal interface and transition into open-mode fractures in the caprock seal. Scanline analysis and petrography of veins provide evidence for subsurface mineralization and fracture reactivation, suggesting that the fractures act as loci for fluid flow through time. Heterolithic caprock seals with variable fracture distributions and morphology highlight the strong link between the variation in material properties and the response to changing stress conditions. The variable connectivity of fractures and the changes in fracture density plays a critical role in subsurface fluid flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, J.P.; Fortmann, R.G.
1994-12-01
Badger Basin Field, discovered in 1931, produces at stripper rates from low-permeability fractured sandstones of the Upper Cretaceous Frontier Formation. Only 15% of the estimated 25 million barrels of oil originally in-place will be produced from the twenty-two attempted vertical completions. This project will increase recoverable reserves through a better understanding of the reservoir and factors which control production. Characterization of the reservoir has been accomplished through an integrated engineering, geological and geophysical approach. Production data, drilling and completion techniques, and relative location of wells on the anticline were reviewed and related to productivity. Literature was reviewed for interpretations onmore » preferred flow directions on anticlinal structures. A structure map of the producing Frontier reservoir was constructed. Porosity development and its relationship to fracture networks was examined petrographically. Fractures in core were described and oriented using paleomagnetic techniques. Azimuths of fractures in outcrop were compared to fracture azimuths measured in the core. A 17 square-mile 3D seismic survey was designed, acquired and processed. Interpretation is being performed on a Sun workstation using Landmark Graphics software. Time-structure and amplitude-distribution maps will be constructed on three Frontier horizons. A location for a high-angle well will be chosen. The slant/horizontal test will be drilled and completed to increase recovery of reserves. Transfer of successful technologies will be accomplished by technical publications and presentations, and access to project materials, data, and field facilities.« less
Bathymetry of Totten Reservoir, Montezuma County, Colorado, 2011
Kohn, Michael S.
2012-01-01
In order to better characterize the water supply capacity of Totten Reservoir, Montezuma County, Colorado, the U.S. Geological Survey, in cooperation with the Dolores Water Conservancy District, conducted a bathymetric survey of Totten Reservoir. The study was performed in June 2011 using a man-operated boat-mounted multibeam echo sounder integrated with a global positioning system and a terrestrial real-time kinematic global positioning system. The two collected datasets were merged and imported into geographic information system software. A bathymetric map of the reservoir was generated in addition to plots for the stage-area and the stage-volume relations.
Bathymetry of Groundhog Reservoir, Dolores County, Colorado, 2011
Kohn, Michael S.
2012-01-01
In order to better characterize the water supply capacity of Groundhog Reservoir, Dolores County, Colorado, the U.S. Geological Survey, in cooperation with the Dolores Water Conservancy District, conducted a bathymetric survey of Groundhog Reservoir. The study was performed in June 2011 using a man-operated boat-mounted multibeam echo sounder integrated with a global positioning system and a terrestrial real-time kinematic global positioning system. The two collected datasets were merged and imported into geographic information system software. A bathymetric map of the reservoir was generated in addition to plots for the stage-area and the stage-volume relations.
Modular reservoir concept for MEMS-based transdermal drug delivery systems
NASA Astrophysics Data System (ADS)
Cantwell, Cara T.; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P.
2014-11-01
While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management.
Schenk, C.J.; Schmoker, J.W.; Scheffler, J.M.
1986-01-01
Upper Minnelusa sandstones form a complex group of reservoirs because of variations in regional setting, sedimentology, and diagenetic alteration. Structural lineaments separate the reservoirs into northern and southern zones. Production in the north is from a single pay sand, and in the south from multi-pay sands due to differential erosion on top of the Upper Minnelusa. The intercalation of eolian dune, interdune, and sabkha sandstones with marine sandstones, carbonates, and anhydrites results in significant reservoir heterogeneity. Diagenetic alterations further enhance heterogeneity, because the degree of cementation and dissolution is partly facies-related.
Attanasi, E.D.; Schuenemeyer, J.H.
2002-01-01
Exploration ventures in frontier areas have high risks. Before committing to them, firms prepare regional resource assessments to evaluate the potential payoffs. With no historical basis for directly estimating size distribution of undiscovered accumulations, reservoir attribute probability distributions can be assessed subjectively and used to project undiscovered accumulation sizes. Three questions considered here are: (1) what distributions should be used to characterize the subjective assessments of reservoir attributes, (2) how parsimonious can the analyst be when eliciting subjective information from the assessment geologist, and (3) what are consequences of ignoring dependencies among reservoir attributes? The standard or norm used for comparing outcomes is the computed cost function describing costs of finding, developing, and producing undiscovered oil accumulations. These questions are examined in the context of the US Geological Survey's recently published regional assessment of the 1002 Area of the Arctic National Wildlife Refuge, Alaska. We study effects of using the various common distributions to characterize the geologist's subjective distributions representing reservoir attributes. Specific findings show that triangular distributions result in substantial bias in economic forecasts when used to characterize skewed distributions. Moreover, some forms of the lognormal distribution also result in biased economic inferences. Alternatively, we generally determined four fractiles (100, 50, 5, 0) to be sufficient to capture essential economic characteristics of the underlying attribute distributions. Ignoring actual dependencies among reservoir attributes biases the economic evaluation. ?? 2002 International Association for Mathematical Geology.
NASA Astrophysics Data System (ADS)
Houatmia, Faten; Khomsi, Sami; Bédir, Mourad
2015-11-01
The Sisseb El Alem-Enfidha basin is located in the northeastern Tunisia, It is borded by Nadhour - Saouaf syncline to the north, Kairouan plain to the south, the Mediterranean Sea to the east and Tunisian Atlassic "dorsale" to the west. Oligocene and Miocene deltaic deposits present the main potential deep aquifers in this basin with high porosity (25%-30%). The interpretation of twenty seismic reflection profiles, calibrated by wire line logging data of twelve oil wells, hydraulic wells and geologic field sections highlighted the impact of tectonics on the structuring geometry of Oligo-Miocene sandstones reservoirs and their distribution in raised structures and subsurface depressions. Miocene seismostratigraphy analysis from Ain Ghrab Formation (Langhian) to the Segui Formation (Quaternary) showed five third-order seismic sequence deposits and nine extended lenticular sandy bodies reservoirs limited by toplap and downlap surfaces unconformities, Oligocene deposits presented also five third- order seismic sequences with five extended lenticular sandy bodies reservoirs. The Depth and the thickness maps of these sequence reservoir packages exhibited the structuring of this basin in sub-basins characterized by important lateral and vertical geometric and thichness variations. Petroleum wells wire line logging correlation with clay volume calculation showed an heterogeneous multilayer reservoirs of Oligocene and Miocene formed by the arrangement of fourteen sandstone bodies being able to be good reservoirs, separated by impermeable clay packages and affected by faults. Reservoirs levels correspond mainly to the lower system tract (LST) of sequences. Intensive fracturing by deep seated faults bounding the different sub-basins play a great role for water surface recharge and inter-layer circulations between affected reservoirs. The total pore volume of the Oligo-Miocene reservoir sandy bodies in the study area, is estimated to about 4 × 1012 m3 and equivalent to 4 × 109 m3 of deep water reserves.
A Parallel Stochastic Framework for Reservoir Characterization and History Matching
Thomas, Sunil G.; Klie, Hector M.; Rodriguez, Adolfo A.; ...
2011-01-01
The spatial distribution of parameters that characterize the subsurface is never known to any reasonable level of accuracy required to solve the governing PDEs of multiphase flow or species transport through porous media. This paper presents a numerically cheap, yet efficient, accurate and parallel framework to estimate reservoir parameters, for example, medium permeability, using sensor information from measurements of the solution variables such as phase pressures, phase concentrations, fluxes, and seismic and well log data. Numerical results are presented to demonstrate the method.
Stochastic thermodynamics for Ising chain and symmetric exclusion process.
Toral, R; Van den Broeck, C; Escaff, D; Lindenberg, Katja
2017-03-01
We verify the finite-time fluctuation theorem for a linear Ising chain in contact with heat reservoirs at its ends. Analytic results are derived for a chain consisting of two spins. The system can be mapped onto a model for particle transport, namely, the symmetric exclusion process in contact with thermal and particle reservoirs. We modify the symmetric exclusion process to represent a thermal engine and reproduce universal features of the efficiency at maximum power.
Army Corps of Engineers, Southwestern Division, Reservoir Control Center Annual Report 1988
1989-01-01
water control data system. This system includes the equipment and software used for the acquisition, transmission and processing of real-time hydrologic... transmission . The SWD system was installed at the Federal Center in Fort Worth, Texas, in September 1983. This is a Synergetics Model 10C direct Readout Ground...reservoir projects under control of the Department of the Army in the area comprising all of Arkansas and Louisiana and portions of Missouri, Kansas
1982-11-01
populations suffered damage due to the elimination of bottomland hard- wood , and the loss of habitat and edge have adversely affected rabbit popula...Dowell and Teresa Herrin provided many helpful documents. Tom Nash and Bruce Stebbings, U.S. Fish and Wildlife Service’s Ecological Services Division...Environment and Ecological Services, respect- ively, were reviewed at the Kansas City, Missouri Area Office and the Regional Office in Denver, Colorado. These
1982-09-01
Eufaula Lake, the largest body of water in Oklahoma, extends into McIntosh, Haskell, Pittsburg and Olwiulgee counties , Oklahoma. Construction of the...TABLES iv LIST OF FIGURES vii PROJECT PERSONNEL viii INTRODUCTION 1 Location I Authorization 1 Physical Features 3 Area Description 4 WILDLIFE RESULTS AND...TableLa I Eufaula Lake Project. Summary of pertinent physical 4 characteristics. 2 Eufaula Project. Comparison of terrestrial habitat 9 affected by
Annual Report of the Chief of Engineers, U.S. Army, on Civil Works Activities 1966. Volume 1
1966-01-01
Pines ), Cypress Creek, Tex. 4,336,000 Clark Hill Reservoir, Savannah River, S.C. & Ga. -------- 4,264,000 Lake Cumberland (Wolf Creek Dam), Cumberland... Plymouth Harbor, Mass ......... Rollison Channel, N.C - Texas City Channel, Tex. (40- foot)----------- Wallisville Reservoir_ Schedul Date started fiscal...Project Pat Mayse, Tex - Perry, Kans__ Perry County, Mo- Pine Creek, Okla _ Pine Flat, Calif_ Fiscal year started 1965 1964 1937 1963 1947 Proctor, Tex_
1982-09-01
hunters presently reside within known drawing dis- tance of the project area. To this number ay be added approximately 64,000 unlicensed children and...approximately 770,000 licensed fishermen and about 260,000 unlicensed children and retired adults who fish. Depending upon the quality of the project...Allegheny National Forest, USFS, porn . Comm., 1981). Average annual warnuater angling man-day use on Allegheny Lake was esti- mated at approximately 166,700
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, C.D.
1997-02-01
The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of themore » project results will be an ongoing component of the project. The recompletion of the Michelle Ute 7-1 well commenced and is the first step in the three-well demonstration. As part of the recompletion, the gross productive interval was logged, additional beds were perforated, and the entire interval was stimulated with a three-stage acid treatment. The operator attempted to stimulate the well at high pressure (about 10,000 pounds per square inch (psi) [68,950 kPa]) at three separate packer locations. But at each location the pressure would not hold. As a result, all three stages were pumped at a lower pressure (6500 psi maximum [44,820 kPa]) from one packer location. As of December 31, 1996, the operator was tripping in the hole with the production packer and tubing to begin swab testing the well.« less
The integration of nutrients, cyanobacterial biomass and ...
This presentation is an integrated evaluation of cyanobacterial growth and toxin production, from a reservoir through drinking water treatment - where biomass and toxin removal are achieved. Data is generated by a variety of methods: online instrumentation for chlorophyll, dissolved oxygen, temperature and pH; enzyme linked immune substrate (ELISA) and liquid chromatography/mass spectrometric (LC/MS) methods for toxin analysis; microscopic methods for species identification; quantitative PCR methods for species identification; and bench-scale engineering studies for removal of toxins and biomass through drinking water treatment. This presentation is an integrated evaluation of cyanobacterial growth and toxin production, from a reservoir through drinking water treatment. The content will be useful for EPA regional office staff, state primacy personnel, state and local health personnel, drinking water treatment managers and consulting engineers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, G.D.
1993-09-01
The Alaskan North Slope comprises one of the Nation`s and the world`s most prolific oil province. Original oil in place (OOIP) is estimated at nearly 70 BBL (Kamath and Sharma, 1986). Generalized reservoir descriptions have been completed by the University of Alaska`s Petroleum Development Laboratory over North Slope`s major fields. These fields include West Sak (20 BBL OOIP), Ugnu (15 BBL OOIP), Prudhoe Bay (23 BBL OOIP), Kuparuk (5.5 BBL OOIP), Milne Point (3 BBL OOIP), and Endicott (1 BBL OOIP). Reservoir description has included the acquisition of open hole log data from the Alaska Oil and Gas Conservation Commissionmore » (AOGCC), computerized well log analysis using state-of-the-art computers, and integration of geologic and logging data. The studies pertaining to fluid characterization described in this report include: experimental study of asphaltene precipitation for enriched gases, CO{sup 2} and West Sak crude system, modeling of asphaltene equilibria including homogeneous as well as polydispersed thermodynamic models, effect of asphaltene deposition on rock-fluid properties, fluid properties of some Alaskan north slope reservoirs. Finally, the last chapter summarizes the reservoir heterogeneity classification system for TORIS and TORIS database.« less
Bathymetry of Clear Creek Reservoir, Chaffee County, Colorado, 2016
Kohn, Michael S.; Kinzel, Paul J.; Mohrmann, Jacob S.
2017-03-06
To better characterize the water supply capacity of Clear Creek Reservoir, Chaffee County, Colorado, the U.S. Geological Survey, in cooperation with the Pueblo Board of Water Works and Colorado Mountain College, carried out a bathymetry survey of Clear Creek Reservoir. A bathymetry map of the reservoir is presented here with the elevation-surface area and the elevation-volume relations. The bathymetry survey was carried out June 6–9, 2016, using a man-operated boat-mounted, multibeam echo sounder integrated with a Global Positioning System and a terrestrial survey using real-time kinematic Global Navigation Satellite Systems. The two collected datasets were merged and imported into geographic information system software. The equipment and methods used in this study allowed water-resource managers to maintain typical reservoir operations, eliminating the need to empty the reservoir to carry out the survey.
Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com; Rock Fluid Imaging Lab., Bandung; Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com
2015-04-16
Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied aboutmore » the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.« less
CIR Combustion Chamber Fuel Reservoir Ops
2009-09-26
ISS020-E-042198 (26 Sept. 2009) --- NASA astronaut Nicole Stott, Expedition 20 flight engineer, works with the Combustion Integrated Rack (CIR) in the Destiny laboratory of the International Space Station.
CIR Combustion Chamber Fuel Reservoir Ops
2009-09-26
ISS020-E-042207 (26 Sept. 2009) --- NASA astronaut Nicole Stott, Expedition 20 flight engineer, works with the Combustion Integrated Rack (CIR) in the Destiny laboratory of the International Space Station.
CIR Combustion Chamber Fuel Reservoir Ops
2009-09-26
ISS020-E-042203 (26 Sept. 2009) --- NASA astronaut Nicole Stott, Expedition 20 flight engineer, works with the Combustion Integrated Rack (CIR) in the Destiny laboratory of the International Space Station.
Decision scenario analysis for addressing sediment accumulation in Lago Lucchetti, Puerto Rico
A Bayesian belief network (BBN) was used to characterize the effects of sediment accumulation on water storage capacity of a reservoir (Lago Lucchetti) in southwest Puerto Rico and the potential of different management options to increase reservoir life expectancy. Water and sedi...
NASA Astrophysics Data System (ADS)
Islam, Amina; Chevalier, Sylvie; Sassi, Mohamed
2018-04-01
With advances in imaging techniques and computational power, Digital Rock Physics (DRP) is becoming an increasingly popular tool to characterize reservoir samples and determine their internal structure and flow properties. In this work, we present the details for imaging, segmentation, as well as numerical simulation of single-phase flow through a standard homogenous Silurian dolomite core plug sample as well as a heterogeneous sample from a carbonate reservoir. We develop a procedure that integrates experimental results into the segmentation step to calibrate the porosity. We also look into using two different numerical tools for the simulation; namely Avizo Fire Xlab Hydro that solves the Stokes' equations via the finite volume method and Palabos that solves the same equations using the Lattice Boltzmann Method. Representative Elementary Volume (REV) and isotropy studies are conducted on the two samples and we show how DRP can be a useful tool to characterize rock properties that are time consuming and costly to obtain experimentally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, N.C.; Lancaster, D.E.
1995-07-01
The objective of this work was to learn more about the reservoir characteristics in the Barnett Shale. Specifically, from an analysis of pressure, production, interference, and fracture treatment data in three Mitchell Energy Corporation Cough area wells, the authors can infer the relationship between the induced hydraulic fractures and the natural fracture system in the reservoir. The authors are learning something about drainage area size, shape, and orientation.
NASA Astrophysics Data System (ADS)
Mondal, Samit; Yadav, Ashok; Chatterjee, Rima
2018-01-01
Rock physical crossplots from different geological setup along eastern continental margin of India (ECMI) represent diversified signatures. To characterize the reservoirs in rock physics domain (velocity/modulus versus porosity) and then connecting the interpretation with geological model has been the objectives of the present study. Petrophysical logs (total porosity and volume of shale) from five wells located at sedimentary basins of ECMI have been analyzed to quantify the types of shale such as: laminated, dispersed and structural in reservoir. Presence of various shale types belonging to different depositional environments is coupled to define distinct rock physical crossplot trends for different geological setup. Wells from three different basins in East Coast of India have been used to capture diversity in depositional environments. Contact model theory has been applied to the crossplot to examine the change in rock velocity with change in reservoir properties like porosity and volume of shale. The depositional and diagenetic trends have been shown in the crossplot to showcase the prime controlling factor which reduces the reservoir porosity. Apart from that, the effect of geological factors like effective stress, sorting, packing, grain size uniformity on reservoir properties have also been focused. The rock physical signatures for distinct depositional environments, effect of crucial geological factors on crossplot trends coupled with established sedimentological models in drilled area are investigated to reduce the uncertainties in reservoir characterization for undrilled potentials.
Three types of gas hydrate reservoirs in the Gulf of Mexico identified in LWD data
Lee, Myung Woong; Collett, Timothy S.
2011-01-01
High quality logging-while-drilling (LWD) well logs were acquired in seven wells drilled during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II in the spring of 2009. These data help to identify three distinct types of gas hydrate reservoirs: isotropic reservoirs in sands, vertical fractured reservoirs in shale, and horizontally layered reservoirs in silty shale. In general, most gas hydratebearing sand reservoirs exhibit isotropic elastic velocities and formation resistivities, and gas hydrate saturations estimated from the P-wave velocity agree well with those from the resistivity. However, in highly gas hydrate-saturated sands, resistivity-derived gas hydrate-saturation estimates appear to be systematically higher by about 5% over those estimated by P-wave velocity, possibly because of the uncertainty associated with the consolidation state of gas hydrate-bearing sands. Small quantities of gas hydrate were observed in vertical fractures in shale. These occurrences are characterized by high formation resistivities with P-wave velocities close to those of water-saturated sediment. Because the formation factor varies significantly with respect to the gas hydrate saturation for vertical fractures at low saturations, an isotropic analysis of formation factor highly overestimates the gas hydrate saturation. Small quantities of gas hydrate in horizontal layers in shale are characterized by moderate increase in P-wave velocities and formation resistivities and either measurement can be used to estimate gas hydrate saturations.
NASA Astrophysics Data System (ADS)
Chen, Jiliang; Jiang, Fangming
2016-02-01
With a previously developed numerical model, we perform a detailed study of the heat extraction process in enhanced or engineered geothermal system (EGS). This model takes the EGS subsurface heat reservoir as an equivalent porous medium while it considers local thermal non-equilibrium between the rock matrix and the fluid flowing in the fractured rock mass. The application of local thermal non-equilibrium model highlights the temperature-difference heat exchange process occurring in EGS reservoirs, enabling a better understanding of the involved heat extraction process. The simulation results unravel the mechanism of preferential flow or short-circuit flow forming in homogeneously fractured reservoirs of different permeability values. EGS performance, e.g. production temperature and lifetime, is found to be tightly related to the flow pattern in the reservoir. Thermal compensation from rocks surrounding the reservoir contributes little heat to the heat transmission fluid if the operation time of an EGS is shorter than 15 years. We find as well the local thermal equilibrium model generally overestimates EGS performance and for an EGS with better heat exchange conditions in the heat reservoir, the heat extraction process acts more like the local thermal equilibrium process.
Relations between work and entropy production for general information-driven, finite-state engines
NASA Astrophysics Data System (ADS)
Merhav, Neri
2017-02-01
We consider a system model of a general finite-state machine (ratchet) that simultaneously interacts with three kinds of reservoirs: a heat reservoir, a work reservoir, and an information reservoir, the latter being taken to be a running digital tape whose symbols interact sequentially with the machine. As has been shown in earlier work, this finite-state machine can act as a demon (with memory), which creates a net flow of energy from the heat reservoir into the work reservoir (thus extracting useful work) at the price of increasing the entropy of the information reservoir. Under very few assumptions, we propose a simple derivation of a family of inequalities that relate the work extraction with the entropy production. These inequalities can be seen as either upper bounds on the extractable work or as lower bounds on the entropy production, depending on the point of view. Many of these bounds are relatively easy to calculate and they are tight in the sense that equality can be approached arbitrarily closely. In their basic forms, these inequalities are applicable to any finite number of cycles (and not only asymptotically), and for a general input information sequence (possibly correlated), which is not necessarily assumed even stationary. Several known results are obtained as special cases.
Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong
2015-01-01
Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.
Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong
2015-01-01
Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing. PMID:25966285
NASA Astrophysics Data System (ADS)
Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi
2016-12-01
Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process.
Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi
2016-01-01
Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process. PMID:27976746
NASA Astrophysics Data System (ADS)
Rainaud, Jean-François; Clochard, Vincent; Delépine, Nicolas; Crabié, Thomas; Poudret, Mathieu; Perrin, Michel; Klein, Emmanuel
2018-07-01
Accurate reservoir characterization is needed all along the development of an oil and gas field study. It helps building 3D numerical reservoir simulation models for estimating the original oil and gas volumes in place and for simulating fluid flow behaviors. At a later stage of the field development, reservoir characterization can also help deciding which recovery techniques need to be used for fluids extraction. In complex media, such as faulted reservoirs, flow behavior predictions within volumes close to faults can be a very challenging issue. During the development plan, it is necessary to determine which types of communication exist between faults or which potential barriers exist for fluid flows. The solving of these issues rests on accurate fault characterization. In most cases, faults are not preserved along reservoir characterization workflows. The memory of the interpreted faults from seismic is not kept during seismic inversion and further interpretation of the result. The goal of our study is at first to integrate a 3D fault network as a priori information into a model-based stratigraphic inversion procedure. Secondly, we apply our methodology on a well-known oil and gas case study over a typical North Sea field (UK Northern North Sea) in order to demonstrate its added value for determining reservoir properties. More precisely, the a priori model is composed of several geological units populated by physical attributes, they are extrapolated from well log data following the deposition mode, but usually a priori model building methods respect neither the 3D fault geometry nor the stratification dips on the fault sides. We address this difficulty by applying an efficient flattening method for each stratigraphic unit in our workflow. Even before seismic inversion, the obtained stratigraphic model has been directly used to model synthetic seismic on our case study. Comparisons between synthetic seismic obtained from our 3D fault network model give much lower residuals than with a "basic" stratigraphic model. Finally, we apply our model-based inversion considering both faulted and non-faulted a priori models. By comparing the rock impedances results obtain in the two cases, we can see a better delineation of the Brent-reservoir compartments by using the 3D faulted a priori model built with our method.
Storage capacity of the Fena Valley Reservoir, Guam, Mariana Islands, 2014
Marineau, Mathieu D.; Wright, Scott A.
2015-01-01
Analyses of the bathymetric data indicate that the reservoir currently has 6,915 acre-feet of storage capacity. The engineering drawings of record show that the total reservoir capacity in 1951 was estimated to be 8,365 acre-feet. Thus, between 1951 and 2014, the total storage capacity decreased by 1,450 acre-feet (a loss of 17 percent of the original total storage capacity). The remaining live-storage capacity, or the volume of storage above the lowest-level reservoir outlet elevation, was calculated to be 5,511 acre-feet in 2014, indicating a decrease of 372 acre-feet (or 6 percent) of the original 5,883 acre-feet of live-storage capacity. The remaining dead-storage capacity, or volume of storage below the lowest-level outlet, was 1,404 acre-feet in 2014, indicating a decrease of 1,078 acre-feet (or 43 percent) of the original 2,482 acre-feet of dead-storage capacity.
Decommissioning strategy for liquid low-level radioactive waste surface storage water reservoir.
Utkin, S S; Linge, I I
2016-11-22
The Techa Cascade of water reservoirs (TCR) is one of the most environmentally challenging facilities resulted from FSUE "PA "Mayak" operations. Its reservoirs hold over 360 mln m 3 of liquid radioactive waste with a total activity of some 5 × 10 15 Bq. A set of actions implemented under a special State program involving the development of a strategic plan aimed at complete elimination of TCR challenges (Strategic Master-Plan for the Techa Cascade of water reservoirs) resulted in considerable reduction of potential hazards associated with this facility. The paper summarizes the key elements of this master-plan: defining TCR final state, feasibility study of the main strategies aimed at its attainment, evaluation of relevant long-term decommissioning strategy, development of computational tools enabling the long-term forecast of TCR behavior depending on various engineering solutions and different weather conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohan Kelkar
2002-03-31
The West Carney Field in Lincoln County, Oklahoma is one of few newly discovered oil fields in Oklahoma. Although profitable, the field exhibits several unusual characteristics. These include decreasing water-oil ratios, decreasing gas-oil ratios, decreasing bottomhole pressures during shut-ins in some wells, and transient behavior for water production in many wells. This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. We propose a geological history that explains the presence of mobile water and oil in the reservoir. The combination of matrix and fractures in the reservoir explains the reservoir's flow behavior. Wemore » confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.« less
Frameworks for amending reservoir water management
Mower, Ethan; Miranda, Leandro E.
2013-01-01
Managing water storage and withdrawals in many reservoirs requires establishing seasonal targets for water levels (i.e., rule curves) that are influenced by regional precipitation and diverse water demands. Rule curves are established as an attempt to balance various water needs such as flood control, irrigation, and environmental benefits such as fish and wildlife management. The processes and challenges associated with amending rule curves to balance multiuse needs are complicated and mostly unfamiliar to non-US Army Corps of Engineers (USACE) natural resource managers and to the public. To inform natural resource managers and the public we describe the policies and process involved in amending rule curves in USACE reservoirs, including 3 frameworks: a general investigation, a continuing authority program, and the water control plan. Our review suggests that water management in reservoirs can be amended, but generally a multitude of constraints and competing demands must be addressed before such a change can be realized.
PLUG STORAGE BUILDING, TRA611, AWAITS SHIELDING SOIL TO BE PLACED ...
PLUG STORAGE BUILDING, TRA-611, AWAITS SHIELDING SOIL TO BE PLACED OVER PLUG STORAGE TUBES. WING WALLS WILL SUPPORT EARTH FILL. MTR, PROCESS WATER BUILDING, AND WORKING RESERVOIR IN VIEW BEYOND PLUG STORAGE. CAMERA FACES NORTHEAST. INL NEGATIVE NO. 2949. Unknown Photographer, 7/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Nonconservative Forces via Quantum Reservoir Engineering
NASA Astrophysics Data System (ADS)
Vuglar, Shanon L.; Zhdanov, Dmitry V.; Cabrera, Renan; Seideman, Tamar; Jarzynski, Christopher; Bondar, Denys I.
2018-06-01
A systematic approach is given for engineering dissipative environments that steer quantum wave packets along desired trajectories. The methodology is demonstrated with several illustrative examples: environment-assisted tunneling, trapping, effective mass assignment, and pseudorelativistic behavior. Nonconservative stochastic forces do not inevitably lead to decoherence—we show that purity can be well preserved. These findings highlight the flexibility offered by nonequilibrium open quantum dynamics.
NASA Astrophysics Data System (ADS)
Macdonald, I.; Blunt, M. J.; Maitland, G. C.
2017-12-01
Carbonate reservoirs hold the majority of CO2 sequestration potential, however, they are also more complicated than sandstone reservoirs in terms of heterogeneity and potential reactivity impact on operations. There are both significant carbonate reservoir CO2 sinks and CO2 point sources around Qatar making carbon capture and storage a potential decarbonisation pathway. The Qatar Carbonates and Carbon Storage Research Centre (QCCSRC) was formed in 2009 to address the gaps in our current knowledge of both local carbonate reservoir platforms and how CO2 would behave post sequestration. Our work spans 35 graduated PhD students, 10 still studying, 29 post-doctoral researchers, 18 faculty members all aided by 5 support staff and more than 100 MSc and summer students from 30 different countries, the centre has published over 150 papers in over 40 different journals. Our research is based within the Department of Chemical Engineering and the Department of Earth Science and Engineering. Our team annually attends over 20 conferences world-wide to disseminate our findings and activity engage in outreach events (UNFCCC, science festivals, social media, science bars, school visits, etc.). QCCSRC is a research framework agreement over 10 years and valued at $70 million between Qatar Petroleum, Shell, the Qatar Science and Technology Park and Imperial College London bringing together each organisation's unique capabilities. This novel quadruple helix management structure is responsible for the largest single industrially funded research programme conducted at Imperial College London. Our research has focused on data to create and/or improve predictive models for CO2 storage in carbonate reservoirs. Our three broad thematic areas include: Rocks : Rock-fluid interactions : Fluid-fluid interactions and are supported by 5 laboratories. Overall this unique programme is an example of how to approach grand challenges in the energy-carbon dilemma through long-term and multidisciplinary cooperative research.
Niobrara Discrete Fracture Network: From Outcrop Surveys to Subsurface Reservoir Models
NASA Astrophysics Data System (ADS)
Grechishnikova, Alena
Heterogeneity of an unconventional reservoir is one of the main factors affecting production. Well performance depends on the size and efficiency of the interconnected fracture "plumbing system", as influenced by multistage hydraulic fracturing. A complex, interconnected natural fracture network can significantly increase the size of stimulated reservoir volume, provide additional surface area contact and enhance permeability. In 2013 the Reservoir Characterization Project (RCP) at the Colorado School of Mines began Phase XV to study Niobrara shale reservoir management. Anadarko Petroleum Corporation and RCP jointly acquired time-lapse multicomponent seismic data in Wattenberg Field, Denver Basin. Anadarko also provided RCP with a regional 3D seismic survey and a rich well dataset. The purpose of this study is to characterize the natural fracture patterns occurring in the unconventional Niobrara reservoir and to determine the drivers that influenced fracture trends and distributions. The findings are integrated into a reservoir model though DFN (Discrete Fracture Network) for further prediction of reservoir performance using reservoir simulations. Aiming to better understand the complexity of the natural fracture system I began my fracture analysis work at an active mine site that provides a Niobrara exposure. Access to a "fresh" outcrop surface created a perfect natural laboratory. Ground-based LIDAR and photogrammetry facilitated construction of a geological model and a DFN model for the mine site. The work was carried into subsurface where the information gained served to improve reservoir characterization at a sub-seismic scale and can be used in well planning. I then embarked on a challenging yet essential task of outcrop-to-subsurface data calibration and application to RCP's Wattenberg Field study site. In this research the surface data was proven to be valid for comparative use in the subsurface. The subsurface fracture information was derived from image logs run within the horizontal wellbores and augmented with microseismic data. Limitations of these datasets included the potential to induce biased interpretations; but the data collected during the outcrop study aided in removing the bias. All four fracture sets observed at the quarry were also interpreted in the subsurface; however there was a limitation on statistical validity for one of the four sets due to a low frequency of observed occurrence potentially caused by wellbore orientation. Microseismic data was used for identification of one of the reactivated natural fracture sets. An interesting phenomenon observed in the microseismic data trends was the low frequency of event occurrence within dense populations of open natural fracture swarms suggesting that zones of higher natural fracture intensities are capable of absorbing and transmitting energy resulting in lower levels of microseismicity. Thus currently open natural fractures could be challenging to detect using microseismic. Through this study I identified a significant variability in fracture intensity at a localized scale due to lithological composition and structural features. The complex faulting styles observed at the outcrop were utilized as an analog and verified by horizontal well log data and seismic volume interpretations creating a high resolution structural model for the subsurface. A lithofacies model was developed based on the well log, core, and seismic inversion analysis. These models combined served to accurately distribute fracture intensity information within the geological model for further use in DFN. As a product of this study, a workflow was developed to aid in fracture network model creation allowing for more intelligent decisions to be made during well planning and completion optimization aiming to improve recovery. A high resolution integrated discrete fracture network model serves to advance dynamic reservoir characterization in the subsurface at a sub-seismic scale resulting in improved reservoir characterization.
Fracturing And Liquid CONvection
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-02-29
FALCON has been developed to enable simulation of the tightly coupled fluid-rock behavior in hydrothermal and engineered geothermal system (EGS) reservoirs, targeting the dynamics of fracture stimulation, fluid flow, rock deformation, and heat transport in a single integrated code, with the ultimate goal of providing a tool that can be used to test the viability of EGS in the United States and worldwide. Reliable reservoir performance predictions of EGS systems require accurate and robust modeling for the coupled thermalhydrologicalmechanical processes.
1981-01-01
entered the low flow pipe, cloggea the control valve, and died. Although the Kansas Fish and Game Commission felt the loss of the fish was not...Guadalupe River above Canyon Lake in March *1980. The equipment installed was a Handar data collection platform (dcp) with an emergency transmission channel...continued high evaporation losses resulted in * the lakes averaging about 72 percent full conservation storage. Most projects, * except those with
1990-09-01
It was viewed as leading to the public expenditure of funds which contributed mainly to the benefit of private landowners whose properties abutted...to the water’s edge. Thus, a new and rather unique "public" benefitted by Corps projects evolved. Facilities, including private boat houses...afforded by Reclamation reservoirs were initially incidental benefits , but the growing popularity of Reclamation’s reservoirs soon resulted in project
Finding No Significant Impact: Aircraft Weather Shelter at Laughlin AFB, TX
2004-06-01
surface water flow is southeast into the Ro Grande and down toward the Gulf of Mexico. Lake Amistad reservoir, located approximately 12 miles northwest...characterized Lake Amistad reservoir as having excellent water quality (USAF, 1997). Laughlin AFB contains a total of 19 acres of surface water
USDA-ARS?s Scientific Manuscript database
Although pathogen strains that cause disease outbreaks are often well characterized, relatively little is known about the reservoir populations from which they emerge. Genomic comparison of outbreak strains with isolates of reservoir populations can give new insight into mechanisms of disease emerge...
INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenneth D. Luff
2002-06-30
Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less
INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenneth D. Luff
2002-09-30
Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less
Geoscience technology application to optimize field development, Seligi Field, Malay Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, M.S.; Wiggins, B.D.
1994-07-01
Integration of well log, core, 3-D seismic, and engineering data within a sequence stratigraphic framework, has enabled prediction of reservoir distribution and optimum development of Seligi field. Seligi is the largest field in the Malay Basin, with half of the reserves within lower Miocene Group J reservoirs. These reservoirs consist of shallow marine sandstones and estuarine sandstones predominantly within an incised valley. Variation in reservoir quality has been a major challenge in developing Seligi. Recognizing and mapping four sequences within the Group J incised valley fill has resulted in a geologic model for predicting the distribution of good quality estuarinemore » reservoir units and intercalated low-permeability sand/shale units deposited during marine transgressions. These low-permeability units segregate the reservoir fluids, causing differential contact movement in response to production thus impacting completion strategy and well placement. Seismic calibration shows that a large impedance contrast exists between the low-permeability rock and adjacent good quality oil sand. Application of sequence stratigraphic/facies analysis coupled with the ability to identify the low-permeability units seismically is enabling optimum development of each of the four sequences at Seligi.« less
Integrating a reservoir regulation scheme into a spatially distributed hydrological model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Gang; Gao, Huilin; Naz, Bibi S.
2016-12-01
During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal/industrial water supplies, and hydropower generation. Consequently, natural streamflow timing and magnitude have been altered significantly by reservoir operations. In addition, the hydrological cycle can be modified by land use/land cover and climate changes. To understand the fine scale feedback between hydrological processes and water management decisions, a distributed hydrological model embedded with a reservoir component is of desire. In this study, a multi-purpose reservoir module with predefined complex operational rules was integrated into the Distributed Hydrologymore » Soil Vegetation Model (DHSVM). Conditional operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The performance of the integrated model was tested over the upper Brazos River Basin in Texas, where two U.S. Army Corps of Engineers reservoirs, Lake Whitney and Aquilla Lake, are located. The integrated DHSVM model was calibrated and validated using observed reservoir inflow, outflow, and storage data. The error statistics were summarized for both reservoirs on a daily, weekly, and monthly basis. Using the weekly reservoir storage for Lake Whitney as an example, the coefficients of determination (R2) and the Nash-Sutcliff Efficiency (NSE) are 0.85 and 0.75, respectively. These results suggest that this reservoir module has promise for use in sub-monthly hydrological simulations. Enabled with the new reservoir component, the DHSVM model provides a platform to support adaptive water resources management under the impacts of evolving anthropogenic activities and substantial environmental changes.« less
NASA Astrophysics Data System (ADS)
Turnbull, S. J.
2017-12-01
Within the US Army Corps of Engineers (USACE), reservoirs are typically operated according to a rule curve that specifies target water levels based on the time of year. The rule curve is intended to maximize flood protection by specifying releases of water before the dominant rainfall period for a region. While some operating allowances are permissible, generally the rule curve elevations must be maintained. While this operational approach provides for the required flood control purpose, it may not result in optimal reservoir operations for multi-use impoundments. In the Russian River Valley of California a multi-agency research effort called Forecast-Informed Reservoir Operations (FIRO) is assessing the application of forecast weather and streamflow predictions to potentially enhance the operation of reservoirs in the watershed. The focus of the study has been on Lake Mendocino, a USACE project important for flood control, water supply, power generation and ecological flows. As part of this effort the Engineer Research and Development Center is assessing the ability of utilizing the physics based, distributed watershed model Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to simulate stream flows, reservoir stages, and discharges while being driven by weather forecast products. A key question in this application is the effect of watershed model resolution on forecasted stream flows. To help resolve this question, GSSHA models of multiple grid resolutions, 30, 50, and 270m, were developed for the upper Russian River, which includes Lake Mendocino. The models were derived from common inputs: DEM, soils, land use, stream network, reservoir characteristics, and specified inflows and discharges. All the models were calibrated in both event and continuous simulation mode using measured precipitation gages and then driven with the West-WRF atmospheric model in prediction mode to assess the ability of the model to function in short term, less than one week, forecasting mode. In this presentation we will discuss the effect the grid resolution has model development, parameter assignment, streamflow prediction and forecasting capability utilizing the West-WRF forecast hydro-meteorology.
NASA Astrophysics Data System (ADS)
Castillo Vincentelli, Maria Gabriela; Favoreto, Julia; Roemers-Oliveira, Eduardo
2018-02-01
An integrated geophysical and geological analysis of a carbonate reservoir can offer an effective method to better understand the paleogeographical evolution and distribution of a geological reservoir and non-reservoir facies. Therefore, we propose a better method for obtaining geological facies from geophysical facies, helping to characterize the permo-porous system of this kind of play. The goal is to determine the main geological phases from a specific hydrocarbon producer (Albian Campos Basin, Brazil). The applied method includes the use of a petrographic and qualitative description from the integrated reservoir with seismic interpretation of an attribute map (energy, root mean square, mean amplitude, maximum negative amplitude, etc), all calculated at the Albian level for each of the five identified phases. The studied carbonate reservoir is approximately 6 km long with a main direction of NE-SW, and it was sub-divided as follows (from bottom to top): (1) the first depositional sequence of the bank was composed mainly of packstone, indicating that the local structure adjacent to the main bank is protected from environmental conditions; (2) characterized by the presence of grainstone developed at the higher structure; (3) the main sequence of the peloidal packstone with mudstones oncoids; (4) corresponds to the oil production of carbonate reservoirs formed by oolitic grainstone deposited at the top of the carbonate bank; at this phase, rising sea levels formed channels that connected the open sea shelf with the restricted circulation shelf; and (5) mudstone and wackestone represent the system’s flooding phase.
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Sausen, T. M.
1981-01-01
The land use and types of vegetation in the region of the upper Sao Francisco River, Brazil, are identified. This region comprises the supply basin of the Tres Marias reservoir. Imagery from channels 5 and 7 of the LANDSAT multispectral band scanner during wet and rainy seasons and ground truth data were employed to characterize and map the vegetation, land use, and sedimentary discharges from the reservoir. Agricultural and reforested lands, meadows, and forests are identified. Changes in land use due to human activity are demonstrated.
Reversible Quantum Brownian Heat Engines for Electrons
NASA Astrophysics Data System (ADS)
Humphrey, T. E.; Newbury, R.; Taylor, R. P.; Linke, H.
2002-08-01
Brownian heat engines use local temperature gradients in asymmetric potentials to move particles against an external force. The energy efficiency of such machines is generally limited by irreversible heat flow carried by particles that make contact with different heat baths. Here we show that, by using a suitably chosen energy filter, electrons can be transferred reversibly between reservoirs that have different temperatures and electrochemical potentials. We apply this result to propose heat engines based on mesoscopic semiconductor ratchets, which can quasistatically operate arbitrarily close to Carnot efficiency.
Reversible quantum heat engines for electrons
NASA Astrophysics Data System (ADS)
Linke, Heiner; Humphrey, Tammy E.; Newbury, Richard; Taylor, Richard P.
2002-03-01
Brownian heat engines use local temperature gradients in asymmetric potentials to move particles against an external force. The energy efficiency of such machines is generally limited by irreversible heat flow carried by particles that make contact with different heat baths. Here we show that, by using a suitably chosen energy filter, electrons can be transferred reversibly between reservoirs that have different temperatures and electrochemical potentials. We apply this result to propose heat engines based on quantum ratchets, which can quasistatically operate at Carnot efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsworth, Derek; Im, Kyungjae; Guglielmi, Yves
2016-11-14
We explore the utility of combining active downhole experimentation with borehole and surface geodesy to determine both the characteristics and evolving state of EGS reservoirs during stimulation through production. The study is divided into two parts. We demonstrate the feasibility of determining in situ reservoir characteristics of reservoir size, strain and fracture permeability and their dependence on feedbacks of stress and temperature using surface and borehole geodetic measurements (Part I). We then define the opportunity to apply the unique hydraulic pulse protocol (HPP) borehole tool to evaluate reservoir state. This can be accomplished by monitoring and co-inverting measured reservoir characteristicsmore » (from the HPP tool) with surface geodetic measurements of deformation, tilt and strain with continuous measurements of borehole-wall strain (via optical fiber and fiber Bragg gratings) and measured flow rates (Part II).« less
Laboratory characterization of shale pores
NASA Astrophysics Data System (ADS)
Nur Listiyowati, Lina
2018-02-01
To estimate the potential of shale gas reservoir, one needs to understand the characteristics of pore structures. Characterization of shale gas reservoir microstructure is still a challenge due to ultra-fine grained micro-fabric and micro level heterogeneity of these sedimentary rocks. The sample used in the analysis is a small portion of any reservoir. Thus, each measurement technique has a different result. It raises the question which methods are suitable for characterizing pore shale. The goal of this paper is to summarize some of the microstructure analysis tools of shale rock to get near-real results. The two analyzing pore structure methods are indirect measurement (MIP, He, NMR, LTNA) and direct observation (SEM, TEM, Xray CT). Shale rocks have a high heterogeneity; thus, it needs multiscale quantification techniques to understand their pore structures. To describe the complex pore system of shale, several measurement techniques are needed to characterize the surface area and pore size distribution (LTNA, MIP), shapes, size and distribution of pore (FIB-SEM, TEM, Xray CT), and total porosity (He pycnometer, NMR). The choice of techniques and methods should take into account the purpose of the analysis and also the time and budget.
Nonreciprocal quantum interactions and devices via autonomous feedforward
NASA Astrophysics Data System (ADS)
Metelmann, A.; Clerk, A. A.
2017-01-01
In a recent work [A. Metelmann and A. A. Clerk, Phys. Rev. X 5, 021025 (2015), 10.1103/PhysRevX.5.021025], a general reservoir engineering approach for generating nonreciprocal quantum interactions and devices was described. We show here how in many cases this general recipe can be viewed as an example of autonomous feedforward: the full dissipative evolution is identical to the unconditional evolution in a setup where an observer performs an ideal quantum measurement of one system, and then uses the results to drive a second system. We also extend the application of this approach to nonreciprocal quantum amplifiers, showing the added functionality possible when using two engineered reservoirs. In particular, we demonstrate how to construct an ideal phase-preserving cavity-based amplifier which is fully nonreciprocal, quantum limited, and free of any fundamental gain-bandwidth constraint.
Reservoir-engineered entanglement in a hybrid modulated three-mode optomechanical system
NASA Astrophysics Data System (ADS)
Liao, Chang-Geng; Chen, Rong-Xin; Xie, Hong; Lin, Xiu-Min
2018-04-01
We propose an effective approach for generating highly pure and strong cavity-mechanical entanglement (or optical-microwave entanglement) in a hybrid modulated three-mode optomechanical system. By applying two-tone driving to the cavity and modulating the coupling strength between two mechanical oscillators (or between a mechanical oscillator and a transmission line resonator), we obtain an effective Hamiltonian where an intermediate mechanical mode acting as an engineered reservoir cools the Bogoliubov modes of two target system modes via beam-splitter-like interactions. In this way, the two target modes are driven to two-mode squeezed states in the stationary limit. In particular, we discuss the effects of cavity-driving detuning on the entanglement and the purity. It is found that the cavity-driving detuning plays a critical role in the goal of acquiring highly pure and strongly entangled steady states.
The growing importance of geo-scientists in the global oil field service industry
NASA Astrophysics Data System (ADS)
Schwartz, L.
2005-12-01
Schlumberger is often seen as a physics, chemistry and engineering company whose primary businesses are directional drilling, well logging, cementing, perforating and stimulation. However, in the future we see enormous potential for growth in the areas of seismic for reservoir monitoring, production services and project management. To succeed we will have to greatly strengthen our geo-technical workforce - geologists, geophysicists, drilling, reservoir and petroleum engineers. This will involve recruiting new graduates and developing their careers in addition to mid-career hiring. For the last 25 years, we have developed a culture of hiring in the countries where we work and of career development for employees of all nationalities. I will review our recruiting, training and university relations efforts and will discuss the adjustments we have made to effectively manage the growth of our geo-technical community.
Montgomery, S.L.; Morgan, C.D.
1998-01-01
Bluefield Field is the largest oil-producing area in the Unita basin of northern Utah. The field inclucdes over 300 wells and has produced 137 Mbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine and fluvial deposits of the Green River and Wasatch (Colton) formations. Oil and gas are produced at depths of 10 500-13 000 ft (3330-3940 m), with the most prolific reservoirs existing in over-pressured sandstones of the Colton Formation and the underlying Flagstaff Member of the lower Green River Formation. Despite a number of high-recovery wells (1-3 MMbbl), overall field recovery remains low, less than 10% original oil in place. This low recovery rate is interpreted to be at least partly a result of completion practices. Typically, 40-120 beds are perforated and stimulated with acid (no proppant) over intervals of up to 3000 ft (900 m). Little or no evaluation of individual beds is performed, preventing identification of good-quality reservoir zones, water-producing zones, and thief zones. As a result, detailed understanding of Bluebell reservoirs historically has been poor, inhibiting any improvements in recovery strategies. A recent project undertaken in Bluebell field as part of the U.S. Department of Energy's Class 1 (fluvial-deltaic reservoir) Oil Demonstration program has focused considerable effort on reservoir characterization. This effort has involved interdisciplinary analysis of core, log, fracture, geostatistical, production, and other data. Much valuable new information on reservoir character has resulted, with important implications for completion techniques and recovery expectations. Such data should have excellent applicability to other producing areas in the Uinta Basin withi reservoirs in similar lacustrine and related deposits.Bluebell field is the largest oil-producing area in the Uinta basin of northern Utah. The field includes over 300 wells and has produced 137 MMbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine and fluvial deposits of the Green River and Wasatch (Colton) formations. Oil and gas are produced at depths of 10,500-13,000 ft (3330-3940 m), with the most prolific reservoirs existing in over-pressured sandstones of the Colton Formation and the underlying Flagstaff Member of the lower Green River Formation. Despite a number of high-recovery wells (1-3 MMbbl), overall field recovery remains low, less than 10% original oil in place. This low recovery rate is interpreted to be at least partly a result of completion practices. Typically, 40-120 beds are perforated and stimulated with acid (no proppant) over intervals of up to 3000 ft (900 m). Little or no evaluation of individual beds is performed, preventing identification of good-quality reservoir zones, water-producing zones, and thief zones. As a result, detailed understanding of Bluebell reservoirs historically has been poor, inhibiting any improvements in recovery strategies. A recent project undertaken in Bluebell field as part of the U.S. Department of Energy's Class 1 (fluvial-deltaic reservoir) Oil Demonstration program has focused considerable effort on reservoir characterization. This effort has involved interdisciplinary analysis of core, log, fracture, geostatistical, production, and other data. Much valuable new information on reservoir character has resulted, with important implications for completion techniques and recovery expectations. Such data should have excellent applicability to other producing areas in the Uinta basin with reservoirs in similar lacustrine and related deposits.
Cooperative Learning in Reservoir Simulation Classes: Overcoming Disparate Entry Skills
NASA Astrophysics Data System (ADS)
Awang, Mariyamni
2006-10-01
Reservoir simulation is one of the core courses in the petroleum engineering curriculum and it requires knowledge and skills in three major disciplines, namely programming, numerical methods and reservoir engineering. However, there were often gaps in the students' readiness to undertake the course, even after completing the necessary requirements. The disparate levels of competency of the good and poor students made it difficult to target a certain level. Cooperative learning in the form of projects and peer teaching was designed to address the major concern of disparate entry skills, and at the same time the method used should also succeed in keeping students interest in class, developing communication skills and improving self-learning. Slower and weaker students were expected to benefit from being taught by good students, who were better prepared, and good students would gain deeper comprehension of the subject matter. From evaluations, the approach was considered successful since the overall passing rate was greater than 95% compared to previous years of around 70-80%. It had also succeeded in improving the learning environment in class. Future simulation classes will continue to use the cooperative approach with minor adjustments.
Geostatistics applied to gas reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meunier, G.; Coulomb, C.; Laille, J.P.
1989-09-01
The spatial distribution of many of the physical parameters connected with a gas reservoir is of primary interest to both engineers and geologists throughout the study, development, and operation of a field. It is therefore desirable for the distribution to be capable of statistical interpretation, to have a simple graphical representation, and to allow data to be entered from either two- or three-dimensional grids. To satisfy these needs while dealing with the geographical variables, new methods have been developed under the name geostatistics. This paper describes briefly the theory of geostatistics and its most recent improvements for the specific problemmore » of subsurface description. The external-drift technique has been emphasized in particular, and in addition, four case studies related to gas reservoirs are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, V.G.
1995-07-01
More than 170 delegates from 14 countries in Europe, North America, Africa, and Asia took part in a conference on the topic: Exploration and Production of Petroleum and Gas from Chalk Reservoirs Worldwide. The conference was held in Copenhagen, Denmark in September,1994, and was a joint meeting of the American Association of Petroleum Geologists (AAPG), and the European Association of Petroleum Geoscientists and Engineers (EAPG). In addition to the opening remarks, 25 oral and nine poster reports were presented. The topics included chalk deposits as reservoir rocks, the occurrence of chalk deposits worldwide, the North Sea oil and gas fields,more » and other related topics.« less
Gypsy Field project in reservoir characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castagna, John P.; Jr., O'Meara, Daniel J.
The overall objective of this project was to use extensive Gypsy Field Laboratory and data as a focus for developing and testing reservoir characterization methods that are targeted at improved recovery of conventional oil. This report describes progress since project report DOE/BC/14970-7 and covers the period June 1997-September 1998 and represents one year of funding originally allocated for the year 1996. During the course of the work previously performed, high resolution geophysical and outcrop data revealed the importance of fractures at the Gypsy site. In addition, personnel changes and alternative funding (OCAST and oil company support of various kinds) allowedmore » the authors to leverage DOE contributions and focus more on geophysical characterization.« less
Patino, Reynaldo; Dawson, D.; VanLandeghem, Matthew M.
2014-01-01
Toxic blooms of golden alga (GA, Prymnesium parvum) in Texas typically occur in winter or early spring. In North America, they were first reported in Texas in the 1980s, and a marked range expansion occurred in 2001. Although there is concern about the influence of climate change on the future distribution of GA, factors responsible for past dispersals remain uncertain. To better understand the factors that influence toxic bloom dispersal in reservoirs, this study characterized reservoir water quality associated with toxic GA blooms since 2001, and examined trends in water quality during a 20-year period bracketing the 2001 expansion. Archived data were analyzed for six impacted and six nonimpacted reservoirs from two major Texas basins: Brazos River and Colorado River. Data were simplified for analysis by pooling spatially (across sampling stations) and temporally (winter, December-February) within reservoirs and generating depth-corrected (1 m) monthly values. Classification tree analysis [period of record (POR), 2001-2010] using salinity-associated variables (specific conductance, chloride, sulfate), dissolved oxygen (DO), pH, temperature, total hardness, potassium, nitrate+nitrite, and total phosphorus indicated that salinity best predicts the toxic bloom occurrence. Minimum estimated salinities for toxic bloom formation were 0.59 and 1.02 psu in Brazos and Colorado River reservoirs, respectively. Principal component analysis (POR, 2001-2010) indicated that GA habitat is best defined by higher salinity relative to nonimpacted reservoirs, with winter DO and pH also being slightly higher and winter temperature slightly lower in impacted reservoirs. Trend analysis, however, did not reveal monotonic changes in winter water quality of GA-impacted reservoirs during the 20-year period (1991-2010) bracketing the 2001 dispersal. Therefore, whereas minimum levels of salinity are required for GA establishment and toxic blooms in Texas reservoirs, the lack of trends in water quality suggests that conditions favorable for toxic blooms pre-date the 2001 expansion. These observations are consistent with a climate change-independent scenario of past GA dispersals in Texas reservoirs driven by novel introductions into pre-existing favorable habitat. Reports of latent GA populations in certain nonimpacted reservoirs, however, provide a plausible scenario of future dispersals characterized by prolonged periods between colonization and toxic bloom development and driven by changes in water quality, natural, or anthropogenic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koestler, A.G.; Reksten, K.
1994-12-31
Quantitative descriptions of the 3D fracture networks in terms of connectivity, fracture types, fracture surface roughness and flow characteristics are necessary for reservoir evaluation, management, and enhanced oil recovery programs of fractured reservoirs. For a period of 2 years, a research project focused on an analogue to fractured chalk reservoirs excellently exposed near Laegerdorf, NW Germany. Upper Cretaceous chalk has been uplifted and deformed by an underlying salt diapir, and is now exploited for the cement industry. In the production wall of a quarry, the fracture network of the deformed chalk was characterized and mapped at different scales. The wallmore » was scraped off as chalk exploitation proceeded, continuously revealing new sections through the faulted and fractured chalk body. A 230 m long part of the 35m high production wall was investigated during its recess of 25m. The large amount of fracture data were analyzed with respect to parameters such as fracture density distribution, orientation- and length distribution, and in terms of the representativity of data sets collected from restricted rock volumes. This 3D description and analysis of a fracture network revealed quantitative generic parameters of importance for modeling chalk reservoirs with less data and lower data quality.« less
PROCESS WATER BUILDING, TRA605. FLASH EVAPORATORS ARE PLACED ON UPPER ...
PROCESS WATER BUILDING, TRA-605. FLASH EVAPORATORS ARE PLACED ON UPPER LEVEL OF EAST SIDE OF BUILDING. WALLS WILL BE FORMED AROUND THEM. WORKING RESERVOIR BEYOND. CAMERA FACING EASTERLY. EXHAUST AIR STACK IS UNDER CONSTRUCTION AT RIGHT OF VIEW. INL NEGATIVE NO. 2579. Unknown Photographer, 6/18/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Uncertainty Analysis of Simulated Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Chen, M.; Sun, Y.; Fu, P.; Carrigan, C. R.; Lu, Z.
2012-12-01
Artificial hydraulic fracturing is being used widely to stimulate production of oil, natural gas, and geothermal reservoirs with low natural permeability. Optimization of field design and operation is limited by the incomplete characterization of the reservoir, as well as the complexity of hydrological and geomechanical processes that control the fracturing. Thus, there are a variety of uncertainties associated with the pre-existing fracture distribution, rock mechanics, and hydraulic-fracture engineering that require evaluation of their impact on the optimized design. In this study, a multiple-stage scheme was employed to evaluate the uncertainty. We first define the ranges and distributions of 11 input parameters that characterize the natural fracture topology, in situ stress, geomechanical behavior of the rock matrix and joint interfaces, and pumping operation, to cover a wide spectrum of potential conditions expected for a natural reservoir. These parameters were then sampled 1,000 times in an 11-dimensional parameter space constrained by the specified ranges using the Latin-hypercube method. These 1,000 parameter sets were fed into the fracture simulators, and the outputs were used to construct three designed objective functions, i.e. fracture density, opened fracture length and area density. Using PSUADE, three response surfaces (11-dimensional) of the objective functions were developed and global sensitivity was analyzed to identify the most sensitive parameters for the objective functions representing fracture connectivity, which are critical for sweep efficiency of the recovery process. The second-stage high resolution response surfaces were constructed with dimension reduced to the number of the most sensitive parameters. An additional response surface with respect to the objective function of the fractal dimension for fracture distributions was constructed in this stage. Based on these response surfaces, comprehensive uncertainty analyses were conducted among input parameters and objective functions. In addition, reduced-order emulation models resulting from this analysis can be used for optimal control of hydraulic fracturing. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Fracture-network 3D characterization in a deformed chalk reservoir analogue -- the Laegerdorf case
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koestler, A.G.; Reksten, K.
1995-09-01
Quantitative descriptions of 3D fracture networks in terms of fracture characteristics and connectivity are necessary for reservoir evaluation, management, and EOR programs of fractured reservoirs. The author`s research has focused on an analogue to North Sea fractured chalk reservoirs that is excellently exposed near Laegerdorf, northwest Germany. An underlying salt diapir uplifted and deformed Upper Cretaceous chalk; the cement industry now exploits it. The fracture network in the production wall of the quarry was characterized and mapped at different scales, and 12 profiles of the 230-m wide and 35-m high production wall were investigated as the wall receded 25 m.more » In addition, three wells were drilled into the chalk volume. The wells were cored and the wellbores were imaged with both the resistivity formation micro scanner (FMS) and the sonic circumferential borehole image logger (CBIL). The large amount of fracture data was analyzed with respect to parameters, such as fracture density distribution, orientation, and length distribution, and in terms of the representativity and predictability of data sets collected from restricted rock volumes.« less
Sierra-Garcia, Isabel Natalia; Dellagnezze, Bruna M; Santos, Viviane P; Chaves B, Michel R; Capilla, Ramsés; Santos Neto, Eugenio V; Gray, Neil; Oliveira, Valeria M
2017-01-01
Microorganisms have shown their ability to colonize extreme environments including deep subsurface petroleum reservoirs. Physicochemical parameters may vary greatly among petroleum reservoirs worldwide and so do the microbial communities inhabiting these different environments. The present work aimed at the characterization of the microbiota in biodegraded and non-degraded petroleum samples from three Brazilian reservoirs and the comparison of microbial community diversity across oil reservoirs at local and global scales using 16S rRNA clone libraries. The analysis of 620 16S rRNA bacterial and archaeal sequences obtained from Brazilian oil samples revealed 42 bacterial OTUs and 21 archaeal OTUs. The bacterial community from the degraded oil was more diverse than the non-degraded samples. Non-degraded oil samples were overwhelmingly dominated by gammaproteobacterial sequences with a predominance of the genera Marinobacter and Marinobacterium. Comparisons of microbial diversity among oil reservoirs worldwide suggested an apparent correlation of prokaryotic communities with reservoir temperature and depth and no influence of geographic distance among reservoirs. The detailed analysis of the phylogenetic diversity across reservoirs allowed us to define a core microbiome encompassing three bacterial classes (Gammaproteobacteria, Clostridia, and Bacteroidia) and one archaeal class (Methanomicrobia) ubiquitous in petroleum reservoirs and presumably owning the abilities to sustain life in these environments.
NASA Astrophysics Data System (ADS)
Gholizadeh Doonechaly, N.; Rahman, S. S.
2012-05-01
Simulation of naturally fractured reservoirs offers significant challenges due to the lack of a methodology that can utilize field data. To date several methods have been proposed by authors to characterize naturally fractured reservoirs. Among them is the unfolding/folding method which offers some degree of accuracy in estimating the probability of the existence of fractures in a reservoir. Also there are statistical approaches which integrate all levels of field data to simulate the fracture network. This approach, however, is dependent on the availability of data sources, such as seismic attributes, core descriptions, well logs, etc. which often make it difficult to obtain field wide. In this study a hybrid tectono-stochastic simulation is proposed to characterize a naturally fractured reservoir. A finite element based model is used to simulate the tectonic event of folding and unfolding of a geological structure. A nested neuro-stochastic technique is used to develop the inter-relationship between the data and at the same time it utilizes the sequential Gaussian approach to analyze field data along with fracture probability data. This approach has the ability to overcome commonly experienced discontinuity of the data in both horizontal and vertical directions. This hybrid technique is used to generate a discrete fracture network of a specific Australian gas reservoir, Palm Valley in the Northern Territory. Results of this study have significant benefit in accurately describing fluid flow simulation and well placement for maximal hydrocarbon recovery.
One-dimensional simulation of stratification and dissolved oxygen in McCook Reservoir, Illinois
Robertson, Dale M.
2000-01-01
As part of the Chicagoland Underflow Plan/Tunnel and Reservoir Plan, the U.S. Army Corps of Engineers, Chicago District, plans to build McCook Reservoir.a flood-control reservoir to store combined stormwater and raw sewage (combined sewage). To prevent the combined sewage in the reservoir from becoming anoxic and producing hydrogen sulfide gas, a coarse-bubble aeration system will be designed and installed on the basis of results from CUP 0-D, a zero-dimensional model, and MAC3D, a three-dimensional model. Two inherent assumptions in the application of MAC3D are that density stratification in the simulated water body is minimal or not present and that surface heat transfers are unimportant and, therefore, may be neglected. To test these assumptions, the previously tested, one-dimensional Dynamic Lake Model (DLM) was used to simulate changes in temperature and dissolved oxygen in the reservoir after a 1-in-100-year event. Results from model simulations indicate that the assumptions made in MAC3D application are valid as long as the aeration system, with an air-flow rate of 1.2 cubic meters per second or more, is operated while the combined sewage is stored in the reservoir. Results also indicate that the high biochemical oxygen demand of the combined sewage will quickly consume the dissolved oxygen stored in the reservoir and the dissolved oxygen transferred through the surface of the reservoir; therefore, oxygen must be supplied by either the rising bubbles of the aeration system (a process not incorporated in DLM) or some other technique to prevent anoxia.
Water reservoir characteristics derivation from pubicly available global elevation data
NASA Astrophysics Data System (ADS)
Van De Giesen, N.; van Bemmelen, C.; Mann, M.; de Ridder, M.; Gupta, V.; Rutten, M.
2017-12-01
In order to assess human impact on the global hydrological cycle, it is imperative to characterize all major man made reservoirs. One important characteristic is the relationship between the surface area of a reservoir and its stored water volume. Surface areas can readily be determined through optical and radar satellite remote sensing. Once the relationship between the surface area of a reservoir and its stored water volume is known, one can determine the stored volumes over time using remotely sensed surface areas. It has been known for some time that this relationship between surface and stored volume shows a very high level of regional consistency [1]. This implies that if one knows this relationship in a certain region, one can predict the same for any nearby reservoir. We have tried to exploit this fact by examining whether one can build virtual dams in the neighborhood of an existing dam to determine the general relationship between surface area and stored volume. We examined twelve reservoirs around the world and found, generally, very good results. Especially in geomorphologically homogeneous areas, the relationships could reliable be extrapolated over space. Even in very heterogeneous areas, the final results were acceptable and much better than generic relationships used so far. Finally, we have examined to what extent it is possible to select virtual dam sites automatically. The first results for this are promising and show that it may be possible to characterize most major dams in the world according to this approach. It is likely that there will be the need for human detection for a reasonable percentage. For these relatively rare case, some human micro-tasking may be the way forward. It is expected, however, that >90% of the worldś dams can be characterized automatically [1] Liebe, J., N. Van De Giesen, and Marc Andreini. "Estimation of small reservoir storage capacities in a semi-arid environment: A case study in the Upper East Region of Ghana." Physics and Chemistry of the Earth, Parts A/B/C 30, no. 6 (2005): 448-454.
Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir.
Wang, Weifeng; Roulet, Nigel T; Kim, Youngil; Strachan, Ian B; Del Giorgio, Paul; Prairie, Yves T; Tremblay, Alain
2018-01-15
To quantify CO 2 emissions from water surface of a reservoir that was shaped by flooding the boreal landscape, we developed a daily time-step reservoir biogeochemistry model. We calibrated the model using the measured concentrations of dissolved organic and inorganic carbon (C) in a young boreal hydroelectric reservoir, Eastmain-1 (EM-1), in northern Quebec, Canada. We validated the model against observed CO 2 fluxes from an eddy covariance tower in the middle of EM-1. The model predicted the variability of CO 2 emissions reasonably well compared to the observations (root mean square error: 0.4-1.3gCm -2 day -1 , revised Willmott index: 0.16-0.55). In particular, we demonstrated that the annual reservoir surface effluxes were initially high, steeply declined in the first three years, and then steadily decreased to ~115gCm -2 yr -1 with increasing reservoir age over the estimated "engineering" reservoir lifetime (i.e., 100years). Sensitivity analyses revealed that increasing air temperature stimulated CO 2 emissions by enhancing CO 2 production in the water column and sediment, and extending the duration of open water period over which emissions occur. Increasing the amount of terrestrial organic C flooded can enhance benthic CO 2 fluxes and CO 2 emissions from the reservoir water surface, but the effects were not significant over the simulation period. The model is useful for the understanding of the mechanism of C dynamics in reservoirs and could be used to assist the hydro-power industry and others interested in the role of boreal hydroelectric reservoirs as sources of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdel-Fattah, Mohamed I.; Slatt, Roger M.
2013-12-01
Understanding sequence stratigraphy architecture in the incised-valley is a crucial step to understanding the effect of relative sea level changes on reservoir characterization and architecture. This paper presents a sequence stratigraphic framework of the incised-valley strata within the late Messinian Abu Madi Formation based on seismic and borehole data. Analysis of sand-body distribution reveals that fluvial channel sandstones in the Abu Madi Formation in the Baltim Fields, offshore Nile Delta, Egypt, are not randomly distributed but are predictable in their spatial and stratigraphic position. Elucidation of the distribution of sandstones in the Abu Madi incised-valley fill within a sequence stratigraphic framework allows a better understanding of their characterization and architecture during burial. Strata of the Abu Madi Formation are interpreted to comprise two sequences, which are the most complex stratigraphically; their deposits comprise a complex incised valley fill. The lower sequence (SQ1) consists of a thick incised valley-fill of a Lowstand Systems Tract (LST1)) overlain by a Transgressive Systems Tract (TST1) and Highstand Systems Tract (HST1). The upper sequence (SQ2) contains channel-fill and is interpreted as a LST2 which has a thin sandstone channel deposits. Above this, channel-fill sandstone and related strata with tidal influence delineates the base of TST2, which is overlain by a HST2. Gas reservoirs of the Abu Madi Formation (present-day depth ˜3552 m), the Baltim Fields, Egypt, consist of fluvial lowstand systems tract (LST) sandstones deposited in an incised valley. LST sandstones have a wide range of porosity (15 to 28%) and permeability (1 to 5080mD), which reflect both depositional facies and diagenetic controls. This work demonstrates the value of constraining and evaluating the impact of sequence stratigraphic distribution on reservoir characterization and architecture in incised-valley deposits, and thus has an important impact on reservoir quality evolution in hydrocarbon exploration in such settings.
NASA Astrophysics Data System (ADS)
Jin, G.
2016-12-01
Shales are important petroleum source rocks and reservoir seals. Recent developments in hydraulic fracturing technology have facilitated high gas production rates from shale and have had a strong impact on the U.S. gas supply and markets. Modeling of effective permeability for fractured shale reservoirs has been challenging because the presence of a fracture network significantly alters the reservoir hydrologic properties. Due to the frequent occurrence of fracture networks, it is of vital importance to characterize fracture networks and to investigate how these networks can be used to optimize the hydraulic fracturing. We have conducted basic research on 3-D fracture permeability characterization and compartmentization analyses for fractured shale formations, which takes the advantages of the discrete fracture networks (DFN). The DFN modeling is a stochastic modeling approach using the probabilistic density functions of fractures. Three common scenarios of DFN models have been studied for fracture permeability mapping using our previously proposed techniques. In DFN models with moderately to highly concentrated fractures, there exists a representative element volume (REV) for fracture permeability characterization, which indicates that the fractured reservoirs can be treated as anisotropic homogeneous media. Hydraulic fracturing will be most effective if the orientation of the hydraulic fracture is perpendicular to the mean direction of the fractures. A DFN model with randomized fracture orientations, on the other hand, lacks an REV for fracture characterization. Therefore, a fracture permeability tensor has to be computed from each element. Modeling of fracture interconnectivity indicates that there exists no preferred direction for hydraulic fracturing to be most effective oweing to the interconnected pathways of the fracture network. 3-D fracture permeability mapping has been applied to the Devonian Chattanooga Shale in Alabama and the results suggest that an REV exist for fluid flow and transport modeling at element sizes larger than 200 m. Fracture pathway analysis indicates that hydraulic fracturing can be equally effective for hydrocarbon fluid/gas exploration as long as its orientation is not aligned with that of the regional system fractures.
The thermal, chemical, and biological quality of water in rivers, lakes, reservoirs, and near coastal areas is inseparable from a consideration of hydraulic engineering principles: therefore, the term environmental hydraulics. In this chapter we discuss the basic principles of w...
Evaluating international development investments based on ecosystem services impact
NASA Astrophysics Data System (ADS)
Fremier, A. K.; Brauman, K. A.; Mulligan, M.; Chaplin-Kramer, R.; Gordon, L.; Luedeling, E.; Jones, S. K.; DeClerck, F.
2016-12-01
Engineered water-control structures to supply water for agriculture are frequently funded by international development to an effort to improve human wellbeing. Dams, reservoirs, and other forms of water control frequently have negative impacts on other water users; however, their sustainability in the face of climate change and evolving watershed processes have been called into question. Increasingly, planning for and evaluation of investments in water control require integration of these larger scale impacts and dependencies. Ecosystem service approaches can use local to regional scale knowledge to integrate a broader scope of project impacts by quantifying trade-offs in multiple services across proposed development interventions and future scenarios (economic, climate, demographic). Here, we illustrate the role an ecosystem service approach can play in investment decision making to evaluate the impact of small reservoirs on human wellbeing in the Upper Volta Basin of West Africa. Our project has four components: (1) design of a spatially explicit regional-level social-ecological characterization; (2) construction of future scenario analyses for rainfed and irrigated production system interventions; (3) co-design and co-development of benefit sharing mechanisms at the reservoir catchment level and enhancing institutional capacity to implement these mechanisms through training, professional development and targeting tools; and (4) intervention decision analysis to identify benefits, costs and risks associated with decision options. We illustrate how this approach highlights different outcomes than standard cost-benefit analysis focused narrowly on the single project. Anticipated outcomes are development of ecosystem services-based methods for more equitably and sustainably evaluating development interventions and identifying management approaches to water-impoundment structures that promote a range of ecosystem services to provide food security to a broader population.
The Geochemical Earth Reference Model (GERM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staudigel, H.; Albarede, F.; Shaw, H.
The Geochemical Earth Reference Model (GERM) initiative is a grass- roots effort with the goal of establishing a community consensus on a chemical characterization of the Earth, its major reservoirs, and the fluxes between them. Long term goal of GERM is a chemical reservoir characterization analogous to the geophysical effort of the Preliminary Reference Earth Model (PREM). Chemical fluxes between reservoirs are included into GERM to illuminate the long-term chemical evolution of the Earth and to characterize the Earth as a dynamic chemical system. In turn, these fluxes control geological processes and influence hydrosphere-atmosphere-climate dynamics. While these long-term goals aremore » clearly the focus of GERM, the process of establishing GERM itself is just as important as its ultimate goal. The GERM initiative is developed in an open community discussion on the World Wide Web (GERM home page is at http://www-ep.es.llnl. gov/germ/germ-home.html) that is mediated by a series of editors with responsibilities for distinct reservoirs and fluxes. Beginning with the original workshop in Lyons (March 1996) GERM is continued to be developed on the Internet, punctuated by workshops and special sessions at professional meetings. It is planned to complete the first model by mid-1997, followed by a call for papers for a February 1998 GERM conference in La Jolla, California.« less
Reservoir characterization of the Smackover Formation in southwest Alabama. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.
1993-02-01
The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- andmore » improved-recovery methods from the Smackover of Alabama.« less
Reservoir characterization of the Smackover Formation in southwest Alabama
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.
1993-02-01
The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- andmore » improved-recovery methods from the Smackover of Alabama.« less
NASA Astrophysics Data System (ADS)
Murat, M.
2017-12-01
Color-blended frequency decomposition is a seismic attribute that can be used to educe or draw out and visualize geomorphological features enabling a better understanding of reservoir architecture and connectivity for both exploration and field development planning. Color-blended frequency decomposition was applied to seismic data in several areas of interest in the Deepwater Gulf of Mexico. The objective was stratigraphic characterization to better define reservoir extent, highlight depositional features, identify thicker reservoir zones and examine potential connectivity issues due to stratigraphic variability. Frequency decomposition is a technique to analyze changes in seismic frequency caused by changes in the reservoir thickness, lithology and fluid content. This technique decomposes or separates the seismic frequency spectra into discrete bands of frequency limited seismic data using digital filters. The workflow consists of frequency (spectral) decomposition, RGB color blending of three frequency slices, and horizon or stratal slicing of the color blended frequency data for interpretation. Patterns were visualized and identified in the data that were not obvious on standard stacked seismic sections. These seismic patterns were interpreted and compared to known geomorphological patterns and their environment of deposition. From this we inferred the distribution of potential reservoir sand versus non-reservoir shale and even finer scale details such as the overall direction of the sediment transport and relative thickness. In exploratory areas, stratigraphic characterization from spectral decomposition is used for prospect risking and well planning. Where well control exists, we can validate the seismic observations and our interpretation and use the stratigraphic/geomorphological information to better inform decisions on the need for and placement of development wells.
Some Cenozoic hydrocarbon basins on the continental shelf of Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dien, P.T.
1994-07-01
The formation of the East Vietnam Sea basins was related to different geodynamic processes. The pre-Oligocene basement consists of igneous, metamorphic, and metasediment complexes. The Cretaceous-Eocene basement formations are formed by convergence of continents after destruction of the Tethys Ocean. Many Jurassic-Eocene fractured magmatic highs of the Cuulong basin basement constitute important reservoirs that are producing good crude oil. The Paleocene-Eocene formations are characterized by intramountain metamolasses, sometimes interbedded volcanic rocks. Interior structures of the Tertiary basins connect with rifted branches of the widened East Vietnam Sea. Bacbo (Song Hong) basin is predominated by alluvial-rhythmic clastics in high-constructive deltas, whichmore » developed on the rifting and sagging structures of the continental branch. Petroleum plays are constituted from Type III source rocks, clastic reservoirs, and local caprocks. Cuulong basin represents sagging structures and is predominated by fine clastics, with tidal-lagoonal fine sandstone and shalestone in high-destructive deltas that are rich in Type II source rocks. The association of the pre-Cenozoic fractured basement reservoirs and the Oligocene-Miocene clastic reservoir sequences with the Oligocene source rocks and the good caprocks is frequently met in petroleum plays of this basin. Nan Conson basin was formed from complicated structures that are related to spreading of the oceanic branch. This basin is characterized by Oligocene epicontinental fine clastics and Miocene marine carbonates that are rich in Types I, II, and III organic matter. There are both pre-Cenozoic fractured basement reservoirs, Miocene buildup carbonate reservoir rocks and Oligocene-Miocene clastic reservoir sequences, in this basin. Pliocene-Quaternary sediments are sand and mud carbonates in the shelf facies of the East Vietnam Sea back-arc basin. Their great thickness provides good conditions for maturation and trapping.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen A. Holditch; Emrys Jones
In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as buildingmore » and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.« less
Microbial Life in an Underground Gas Storage Reservoir
NASA Astrophysics Data System (ADS)
Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin
2015-04-01
While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In contrast, bacteria belonging to Enterobacteriaceae were the most frequently encountered species in the sample from the water production well. Furthermore, bacterial sequences belonging to thermophiles within the family Thermotogaceae were found in all samples investigated. Archaeal community analysis revealed the dominance of methanogens clustering with members of Methanosarcinaceae, Methanomicrobiaceae and Methanobacteriaceae in three reservoir samples and the sample from the water production well. Cultivations of water samples under an atmosphere of storage gas blended by hydrogen as electron source at in situ-like conditions (45°C, 92 bar, p(H2) = 6 bar) revealed that hydrogen was quickly consumed in all laboratory microcosms with reservoir samples. Quantitative PCR analysis of the gene encoding for methyl-coenzyme M reductase (mcrA) along with reaction educt and product analyses suggested that methanogenesis was primarily responsible for hydrogen consumption during the experiments. While it is currently in question whether or not the laboratory data can be upscaled to actual reservoir conditions, they may allude to fermenting and thermophilic bacteria playing an important role for the investigated reservoir microbiology and also indicate potential stimulation of hydrogenotrophic methanogens if hydrogen would be introduced into the reservoir.
Inverting seismic data for rock physical properties; Mathematical background and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfour, Mohammed; Yoon, Wang Jung; Kim, Jinmo
2016-06-08
The basic concept behind seismic inversion is that mathematical assumptions can be established to relate seismic to geological formation properties that caused their seismic responses. In this presentation we address some widely used seismic inversion method in hydrocarbon reservoirs identification and characterization. A successful use of the inversion in real example from gas sand reservoir in Boonsville field, Noth Central Texas is presented. Seismic data was not unambiguous indicator of reservoir facies distribution. The use of the inversion led to remove the ambiguity and reveal clear information about the target.
1984-01-01
D -11349 RICHARD 8 RUSSELL DAN AND RESERVOIR: POTENTIAL WATER li QUALITY EFFECTS OF 1-.(U) ARMY ENGNNEER WATERWAYS EXPERIMENT STATION VICKSBURG MS...ENVIR.. UNCLSSIFIED D GUNNISON ET AL. JAN 84 WES/MP/E-84-2 F/G 8/8 NL EllIIhlllhlll IIllllll L5.0 3m2 -w’ , R ,II__= _ MICROCOPY RESOLUTION TEST CHART...OFFICE NAME AND ADDRESS12REOTDE January 1984 Off ice, Chief of Engineers, U. S. Army 13. NUMBER OFPAGES Washington, D . C. 20314 66 lop 14. MONITORING
Ascent of neotropical migratory fish in the Itaipu Reservoir fish pass
Makrakis, S.; Miranda, L.E.; Gomes, L.C.; Makrakis, M.C.; Junior, H.M.F.
2011-01-01
The Piracema Canal is a complex 10-km fish pass system that climbs 120m to connect the Paran?? River to the Itaipu Reservoir along the Brazil-Paraguay border. The canal was constructed to allow migratory fishes to reach suitable habitats for reproduction and feeding in tributaries upstream from the reservoir. The Piracema Canal attracted 17 of the 19 long-distance migratory species that have been recorded in the Paran?? River Basin and Paraguay-Paran?? Basin. However, the incidence of migratory fish decreased from downstream to upstream, with the pattern of decrease depending on species. Overall, 0.5% of the migratory fish that entered the Piracema Canal and segment 1, eventually were able to reach segment 5 and potentially Itaipu Reservoir. Ascension rate was examined relative to various physical attributes of canal segments; maximum water velocity emerged as the most influential variable affecting fish passage. Water velocity may be manipulated by controlling water discharge, and by re-engineering critical sections of the canal. Because the Itaipu Reservoir flooded a set of falls that separated two distinct biogeographical regions, facilitating fish movements through the Piracema Canal into the Itaipu Reservoir presents a management dilemma that requires deliberation in the context of the fish assemblages rather than on selected migratory species. ?? 2010 John Wiley & Sons, Ltd.
3D modeling of carbonates petro-acoustic heterogeneities
NASA Astrophysics Data System (ADS)
Baden, Dawin; Guglielmi, Yves; Saracco, Ginette; Marié, Lionel; Viseur, Sophie
2015-04-01
Characterizing carbonate reservoirs heterogeneity is a challenging issue for Oil & Gas Industry, CO2 sequestration and all kinds of fluid manipulations in natural reservoirs, due to the significant impact of heterogeneities on fluid flow and storage within the reservoir. Although large scale (> meter) heterogeneities such as layers petrophysical contrasts are well addressed by computing facies-based models, low scale (< meter) heterogeneities are often poorly constrained because of the complexity in predicting their spatial arrangement. In this study, we conducted petro-acoustic measurements on cores of different size and diameter (Ø = 1", 1.5" and 5") in order to evaluate anisotropy or heterogeneity in carbonates at different laboratory scales. Different types of heterogeneities which generally occur in carbonate reservoir units (e.g. petrographic, diagenetic, and tectonic related) were sampled. Dry / wet samples were investigated with different ultrasonic apparatus and using different sensors allowing acoustic characterization through a bandwidth varying from 50 to 500 kHz. Comprehensive measurements realized on each samples allowed statistical analyses of petro-acoustic properties such as attenuation, shear and longitudinal wave velocity. The cores properties (geological and acoustic facies) were modeled in 3D using photogrammetry and GOCAD geo-modeler. This method successfully allowed detecting and imaging in three dimensions differential diagenesis effects characterized by the occurrence of decimeter-scale diagenetic horizons in samples assumed to be homogeneous and/or different diagenetic sequences between shells filling and the packing matrix. We then discuss how small interfaces such as cracks, stylolithes and laminations which are also imaged may have guided these differential effects, considering that understanding the processes may be taken as an analogue to actual fluid drainage complexity in deep carbonate reservoir.
30 CFR 250.298 - How long will MMS take to evaluate and make a decision on the CID?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE... economically producible reservoirs according to sound conservation, engineering, and economic practices. ...
NASA Technical Reports Server (NTRS)
1980-01-01
Burns & McDonnell Engineering's environmental control study is assisted by NASA's Computer Software Management and Information Center's programs in environmental analyses. Company is engaged primarily in design of such facilities as electrical utilities, industrial plants, wastewater treatment systems, dams and reservoirs and aviation installations. Company also conducts environmental engineering analyses and advises clients as to the environmental considerations of a particular construction project. Company makes use of many COSMIC computer programs which have allowed substantial savings.
Environmental probabilistic quantitative assessment methodologies
Crovelli, R.A.
1995-01-01
In this paper, four petroleum resource assessment methodologies are presented as possible pollution assessment methodologies, even though petroleum as a resource is desirable, whereas pollution is undesirable. A methodology is defined in this paper to consist of a probability model and a probabilistic method, where the method is used to solve the model. The following four basic types of probability models are considered: 1) direct assessment, 2) accumulation size, 3) volumetric yield, and 4) reservoir engineering. Three of the four petroleum resource assessment methodologies were written as microcomputer systems, viz. TRIAGG for direct assessment, APRAS for accumulation size, and FASPU for reservoir engineering. A fourth microcomputer system termed PROBDIST supports the three assessment systems. The three assessment systems have different probability models but the same type of probabilistic method. The type of advantages of the analytic method are in computational speed and flexibility, making it ideal for a microcomputer. -from Author
Efficiency at maximum power output of quantum heat engines under finite-time operation.
Wang, Jianhui; He, Jizhou; Wu, Zhaoqi
2012-03-01
We study the efficiency at maximum power, η(m), of irreversible quantum Carnot engines (QCEs) that perform finite-time cycles between a hot and a cold reservoir at temperatures T(h) and T(c), respectively. For QCEs in the reversible limit (long cycle period, zero dissipation), η(m) becomes identical to the Carnot efficiency η(C)=1-T(c)/T(h). For QCE cycles in which nonadiabatic dissipation and the time spent on two adiabats are included, the efficiency η(m) at maximum power output is bounded from above by η(C)/(2-η(C)) and from below by η(C)/2. In the case of symmetric dissipation, the Curzon-Ahlborn efficiency η(CA)=1-√(T(c)/T(h)) is recovered under the condition that the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, J.S.
Several factors in the development of the East Wilmington oil field by THUMS Long Beach Co. are described. These include: critical path scheduling, complex stratigraphy, reservoir engineering, drilling program, production methods, pressure maintenance, crude oil processing, automation, transportation facilities, service lines, and electrical facilities. The complexity and closely scheduled operational events interwoven in the THUMS project demands a method for the carefully planned sequence of jobs to be done, beginning with island construction up through routine production and to the LACT system. These demanding requirements necessitated the use of a critical path scheduling program. It was decided to use themore » program evaluation technique. This technique is used to assign responsibilities for individual assignments to time assignments, and to keep the overall program on schedule. The stratigraphy of East Wilmington complicates all engineering functions associated with recovery methods and reservoir evaluation. At least 5 major faults are anticipated.« less
Predicting phase behavior of mixtures of reservoir fluids with carbon dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigg, R.B.; Lingane, P.J.
1983-01-01
The use of an equation of state to predict phase behavior during carbon dioxide flooding is well established. The characterization of the C/sub 7/ fraction and the selection of interaction parameters are the most important variables. Single-contact phase behavior is presented for mixtures of Ford Geraldine (Delaware), Maljamar (Grayburg), West Sussex (Shannon), and Reservoir D reservoir fluids, and of a synthetic oil with carbon dioxide. The phase behavior of these mixtures can be reproduced using 3 to 5 pseudo components and common interaction parameters. The critical properties of the pseudo components are calculated from detailed oil characterizations. Because the parametersmore » are not further adjusted, this approach reduces the empiricism in fitting phase data and may result in a more accurate representation of the system as the composition of the oil changes during the approach to miscibility. 21 references.« less
ERTS program of the US Army Corps of Engineers. [water resources
NASA Technical Reports Server (NTRS)
Jarman, J. W.
1974-01-01
The Army Corps of Engineers research and development efforts associated with the ERTS Program are confined to applications of investigation, design, construction, operation, and maintenance of water resource projects. Problems investigated covered: (1) resource inventory; (2) environmental impact; (3) pollution monitoring; (4) water circulation; (5) sediment transport; (6) data collection systems; (7) engineering; and (8) model verification. These problem areas were investigated in relation to bays, reservoirs, lakes, rivers, coasts, and regions. ERTS-1 imagery has been extremely valuable in developing techniques and is now being used in everyday applications.
NASA Astrophysics Data System (ADS)
Chang, C.; Sun, L.; Lin, C.; Chang, Y.; Tseng, P.
2013-12-01
The existence of fractures not only provides spaces for the residence of oils and gases reside, but it also creates pathways for migration. Characterizing a fractured reservoir thus becomes an important subject and has been widely studied by exploration geophysicists and drilling engineers. In seismic anisotropy, a reservoir of systematically aligned vertical fractures (SAVF) is often treated as a transversely isotropic medium (TIM) with a horizontal axis of symmetry (HTI). Subjecting to HTI, physical properties vary in azimuth. P-wave reflection amplitude, which is susceptible to vary in azimuth, is one of the most popular seismic attributes which is widely used to delineate the fracture strike of an SAVF reservoir. Instead of going further on analyzing P-wave signatures, in this study, we focused on evaluating the feasibility of orienting the fracture strike of an SAVF reservoir using converted (C-) wave amplitude. For a C-wave is initiated by a downward traveling P-wave that is converted on reflection to an upcoming S-wave; the behaviors of both P- and S-waves should be theoretically woven in a C-wave. In our laboratory work, finite offset reflection experiments were carried out on the azimuthal plane of a HTI model at two different offset intervals. To demonstrate the azimuthal variation of C-wave amplitude in a HTI model, reflections were acquired along the principal symmetry directions and the diagonal direction of the HTI model. Inheriting from phenomenon of S-wave splitting in a transversely isotropic medium (TIM), P-waves get converted into both the fast (S1) and slow (S2) shear modes at all azimuths outside the vertical symmetry planes, thus producing split PS-waves (PS1 and PS2). In our laboratory data, the converted PS1- (C1-) wave were observed and identified. As the azimuth varies from the strike direction to the strike normal, C1-wave amplitude exhibits itself in a way of weakening and can be view from the common-reflection-point (CRP) gathers. Therefore, in conjunction with the azimuthal velocity and the amplitude variations in the P-wave and the azimuthal polarization of the S-wave, the azimuthal variation of C-wave amplitude which is experimentally demonstrated could be considered as a valuable seismic attribute in orienting the fracture strike of a SAVF reservoir. (Key words: converted wave, transversely isotropic medium, physical modeling, amplitude, fracture)
NASA Astrophysics Data System (ADS)
He, Y.-X.; Angus, D. A.; Blanchard, T. D.; Wang, G.-L.; Yuan, S.-Y.; Garcia, A.
2016-04-01
Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and reservoir units. More importantly, the results from this study indicate that integrated seismic and hydromechanical modelling can help constrain time-lapse uncertainty and hence reduce risk due to fluid extraction and injection.
NASA Astrophysics Data System (ADS)
Zoccarato, C.; Baù, D.; Bottazzi, F.; Ferronato, M.; Gambolati, G.; Mantica, S.; Teatini, P.
2016-10-01
The geomechanical analysis of a highly compartmentalized reservoir is performed to simulate the seafloor subsidence due to gas production. The available observations over the hydrocarbon reservoir consist of bathymetric surveys carried out before and at the end of a 10-yr production life. The main goal is the calibration of the reservoir compressibility cM, that is, the main geomechanical parameter controlling the surface response. Two conceptual models are considered: in one (i) cM varies only with the depth and the vertical effective stress (heterogeneity due to lithostratigraphic variability); in another (ii) cM varies also in the horizontal plane, that is, it is spatially distributed within the reservoir stratigraphic units. The latter hypothesis accounts for a possible partitioning of the reservoir due to the presence of sealing faults and thrusts that suggests the idea of a block heterogeneous system with the number of reservoir blocks equal to the number of uncertain parameters. The method applied here relies on an ensemble-based data assimilation (DA) algorithm (i.e. the ensemble smoother, ES), which incorporates the information from the bathymetric measurements into the geomechanical model response to infer and reduce the uncertainty of the parameter cM. The outcome from conceptual model (i) indicates that DA is effective in reducing the cM uncertainty. However, the maximum settlement still remains underestimated, while the areal extent of the subsidence bowl is overestimated. We demonstrate that the selection of the heterogeneous conceptual model (ii) allows to reproduce much better the observations thus removing a clear bias of the model structure. DA allows significantly reducing the cM uncertainty in the five blocks (out of the seven) characterized by large volume and large pressure decline. Conversely, the assimilation of land displacements only partially constrains the prior cM uncertainty in the reservoir blocks marginally contributing to the cumulative seafloor subsidence, that is, blocks with low pressure.
An arctic fox rabies virus strain as the cause of human rabies in Russian Siberia.
Kuzmin, I V
1999-01-01
A case of human rabies in the arctic zone of Siberia is described. The victim was bitten by a wolf, but characterization of the isolate by monoclonal antibodies showed that it was an arctic fox virus strain. This discovery reaffirmed the value of strain typing rabies virus isolates in regions where this has not been done already: such characterization pertains to the identification of the reservoir host, to the natural history of the virus in the reservoir, and to future surveillance, post-exposure treatment, and public education in the region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oglesby, Kenneth; Finsterle, Stefan; Zhang, Yingqi
2014-03-12
This project had two major areas of research for Engineered/ Enhanced Geothermal System (EGS) development - 1) study the potential benefits from using microholes (i.e., bores with diameters less than 10.16 centimeters/ 4 inches) and 2) study FLASH ASJ to drill/ install those microbores between a well and a fracture system. This included the methods and benefits of drilling vertical microholes for exploring the EGS reservoir and for installing multiple (forming an array of) laterals/ directional microholes for creating the in-reservoir heat exchange flow paths. Significant benefit was found in utilizing small microbore sized connecting bores for EGS efficiency andmore » project life. FLASH ASJ was deemed too complicated to optimally work in such deep reservoirs at this time.« less
Controlling Catalyst Bulk Reservoir Effects for Monolayer Hexagonal Boron Nitride CVD.
Caneva, Sabina; Weatherup, Robert S; Bayer, Bernhard C; Blume, Raoul; Cabrero-Vilatela, Andrea; Braeuninger-Weimer, Philipp; Martin, Marie-Blandine; Wang, Ruizhi; Baehtz, Carsten; Schloegl, Robert; Meyer, Jannik C; Hofmann, Stephan
2016-02-10
Highly controlled Fe-catalyzed growth of monolayer hexagonal boron nitride (h-BN) films is demonstrated by the dissolution of nitrogen into the catalyst bulk via NH3 exposure prior to the actual growth step. This "pre-filling" of the catalyst bulk reservoir allows us to control and limit the uptake of B and N species during borazine exposure and thereby to control the incubation time and h-BN growth kinetics while also limiting the contribution of uncontrolled precipitation-driven h-BN growth during cooling. Using in situ X-ray diffraction and in situ X-ray photoelectron spectroscopy combined with systematic growth calibrations, we develop an understanding and framework for engineering the catalyst bulk reservoir to optimize the growth process, which is also relevant to other 2D materials and their heterostructures.
Hot Dry Rock Geothermal Energy Development Program: Annual report, fiscal year 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D.W.; Franke, P.R.; Smith, M.C.
1987-01-01
The primary objective for the Hot Dry Rock Program at the Los Alamos National Laboratory during fiscal year 1985 was to complete the Phase 2 reservoir connection and to begin flow testing the resulting reservoir. The connection was achieved through redrilling one well and additional fracturing operations, and progress was made toward developing a detailed understanding of the fractured region through a variety of reservoir interrogation methods. Other accomplishments during the fiscal year included improvement of the high-temperature, inflatable, open-hole packer used to isolate sections of the uncased wellbore in collaboration with the Baker Corporation and the design and fabricationmore » of a high-temperature borehole acoustic televiewer in a cooperative program with a research institute in West Germany. Progress was also made in techniques for the collection and analysis of microseismic data. Reservoir-engineering activities and geochemical studies, as well as the more routine support activities, continued in FY85. 18 refs., 15 figs.« less
Development of Ren Qiou fractured carbonate oil pools by water injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Z.; Li, G.
1982-01-01
This work gives a brief description on the geologic characteristics of Ren Qiou oil field and its development. Different methods have been used in its reservoir engineering study such as outcrop investigation, fracture and crevice description in tunnels, observation on core samples and their statistical data, thin section observation, casting section, fluorescence section, scanning electron microscope, mercury injection and withdrawal, down-hole television, and geophysical well logging. Physical modeling, 3-dimensional numeric simulation and reservoir performance analysis, and production profiles by production logging in an open hole, have been used to study mechanics of displacing oil by water and the movement ofmore » oil and water in reservoir pools production technologies with double-porosity. Pressure maintenance by bottomwater injection to keep producing wells flowing, acidization with emulsifying acid to penetrate deeply into the reservoir formation, and water plugging with chemical agent, have been used to maintain a consistent annual recovery rate. 11 references.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loucks, R.G.; Richmann, D.L.; Milliken, K.L.
1981-01-01
Variable intensity of diagenesis is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the upper and lower Texas coast. Detailed comparison of Frio sandstone from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. The regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production. However, in predictingmore » reservoir quality on a site-specific basis, locally variable factors such as relative proportions for porosity types, pore geometry as related to permeability, and local depositional environment must also be considered. Even in an area of regionally favorable reservoir quality, such local factors can significantly affect reservoir quality and, hence, the geothermal production potential of a specific sandstone unit.« less
Forecast on Water Locking Damage of Low Permeable Reservoir with Quantum Neural Network
NASA Astrophysics Data System (ADS)
Zhao, Jingyuan; Sun, Yuxue; Feng, Fuping; Zhao, Fulei; Sui, Dianjie; Xu, Jianjun
2018-01-01
It is of great importance in oil-gas reservoir protection to timely and correctly forecast the water locking damage, the greatest damage for low permeable reservoir. An analysis is conducted on the production mechanism and various influence factors of water locking damage, based on which a quantum neuron is constructed based on the information processing manner of a biological neuron and the principle of quantum neural algorithm, besides, the quantum neural network model forecasting the water locking of the reservoir is established and related software is also made to forecast the water locking damage of the gas reservoir. This method has overcome the defects of grey correlation analysis that requires evaluation matrix analysis and complicated operation. According to the practice in Longxi Area of Daqing Oilfield, this method is characterized by fast operation, few system parameters and high accuracy rate (the general incidence rate may reach 90%), which can provide reliable support for the protection technique of low permeable reservoir.
a Fractal Network Model for Fractured Porous Media
NASA Astrophysics Data System (ADS)
Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung
2016-04-01
The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.
NASA Astrophysics Data System (ADS)
Naillon, A.; Joseph, P.; Prat, M.
2018-01-01
The stress generation on pore walls due to the growth of a sodium chloride crystal in a confined aqueous solution is studied from evaporation experiments in microfluidic channels in conjunction with numerical computations of crystal growth. The study indicates that the stress buildup on the pore walls is a highly transient process taking place over a very short period of time (in less than 1 s in our experiments). The analysis makes clear that what matters for the stress generation is not the maximum supersaturation at the onset of the crystal growth but the supersaturation at the interface between the solution and the crystal when the latter is about to be confined between the pore walls. The stress generation is summarized in a simple stress diagram involving the pore aspect ratio and the Damkhöler number characterizing the competition between the precipitation reaction kinetics and the ion transport towards the growing crystal. This opens up the route for a better understanding of the damage of porous materials induced by salt crystallization, an important issue in Earth sciences, reservoir engineering, and civil engineering.
Space electric power design study. [laser energy conversion
NASA Technical Reports Server (NTRS)
Martini, W. R.
1976-01-01
The conversion of laser energy to electrical energy is discussed. Heat engines in which the laser heats the gas inside the engine through a window as well as heat engines in which the gas is heated by a thermal energy storage reservoir which has been heated by laser radiation are both evaluated, as well as the necessary energy storage, transmission and conversion components needed for a full system. Preliminary system concepts are presented and a recommended development program is outlined. It appears possible that a free displacer Stirling engine operating directly a linear electric generator can convert 65% of the incident laser energy into electricity.
Multiple volume compressor for hot gas engine
Stotts, Robert E.
1986-01-01
A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.
NASA Astrophysics Data System (ADS)
Delaney, C.; Hartman, R. K.; Mendoza, J.; Evans, K. M.; Evett, S.
2016-12-01
Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation or flow forecasts to inform the flood operations of reservoirs. Previous research and modeling for flood control reservoirs has shown that FIRO can reduce flood risk and increase water supply for many reservoirs. The risk-based method of FIRO presents a unique approach that incorporates flow forecasts made by NOAA's California-Nevada River Forecast Center (CNRFC) to model and assess risk of meeting or exceeding identified management targets or thresholds. Forecasted risk is evaluated against set risk tolerances to set reservoir flood releases. A water management model was developed for Lake Mendocino, a 116,500 acre-foot reservoir located near Ukiah, California. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United State Army Corps of Engineers and is operated by the Sonoma County Water Agency for water supply. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has been plagued with water supply reliability issues since 2007. FIRO is applied to Lake Mendocino by simulating daily hydrologic conditions from 1985 to 2010 in the Upper Russian River from Lake Mendocino to the City of Healdsburg approximately 50 miles downstream. The risk-based method is simulated using a 15-day, 61 member streamflow hindcast by the CNRFC. Model simulation results of risk-based flood operations demonstrate a 23% increase in average end of water year (September 30) storage levels over current operations. Model results show no increase in occurrence of flood damages for points downstream of Lake Mendocino. This investigation demonstrates that FIRO may be a viable flood control operations approach for Lake Mendocino and warrants further investigation through additional modeling and analysis.
Hydrographic and sedimentation survey of Kajakai Reservoir, Afghanistan
Perkins, Don C.; Culbertson, James K.
1970-01-01
A hydrographic and sedimentation survey of Band-e Kajakai (Kajakai Reservoir) on the Darya-ye Hirmand (Helmand River) was carried out during the period September through December 1968. Underwater mapping techniques were used to determine the reservoir capacity as of 1968. Sediment range lines were established and monumented to facilitate future sedimentation surveys. Afghanistan engineers and technicians were trained to carry out future reservoir surveys. Samples were obtained of the reservoir bed and in the river upstream from the reservoir. Virtually no sediments coarser than about 0.063 millimeter were found on the reservoir bed surface. The median diameter of sands being transported into the reservoir ranged from 0.040 to 0.110 millimeter. The average annual rate of sedimentation was 7,800 acre-feet. Assuming an average density of 50 pounds per cubic foot (800 kilograms per cubic meter), the estimated average sediment inflow to the reservoir was about 8,500,000 tons (7,700,000 metric tons) per year. The decrease in capacity at spillway elevation for the period 1953 to 1968 due to sediment deposition was 7.8 percent, or 117,700 acre-feet. Redefinition of several contours above the fill area resulted in an increase in capacity at spillway elevation of 13,600 acre-feet; thus, the net change in capacity was 7.0 percent, or 104,800 acre-feet. Based on current data and an estimated rate of compaction of deposited sediment, the assumption of no appreciable change in hydrologic conditions in the drainage area, the leading edge of the principal delta will reach the irrigation outlet in 40-45 years. It is recommended that a resurvey of sediment range lines be made during the period 1973-75.
A remote sensing method for estimating regional reservoir area and evaporative loss
Zhang, Hua; Gorelick, Steven M.; Zimba, Paul V.; ...
2017-10-07
Evaporation from the water surface of a reservoir can significantly affect its function of ensuring the availability and temporal stability of water supply. Current estimations of reservoir evaporative loss are dependent on water area derived from a reservoir storage-area curve. Such curves are unavailable if the reservoir is located in a data-sparse region or questionable if long-term sedimentation has changed the original elevation-area relationship. In this paper, we propose a remote sensing framework to estimate reservoir evaporative loss at the regional scale. This framework uses a multispectral water index to extract reservoir area from Landsat imagery and estimate monthly evaporationmore » volume based on pan-derived evaporative rates. The optimal index threshold is determined based on local observations and extended to unobserved locations and periods. Built on the cloud computing capacity of the Google Earth Engine, this framework can efficiently analyze satellite images at large spatiotemporal scales, where such analysis is infeasible with a single computer. Our study involves 200 major reservoirs in Texas, captured in 17,811 Landsat images over a 32-year period. The results show that these reservoirs contribute to an annual evaporative loss of 8.0 billion cubic meters, equivalent to 20% of their total active storage or 53% of total annual water use in Texas. At five coastal basins, reservoir evaporative losses exceed the minimum freshwater inflows required to sustain ecosystem health and fishery productivity of the receiving estuaries. Reservoir evaporative loss can be significant enough to counterbalance the positive effects of impounding water and to offset the contribution of water conservation and reuse practices. Our results also reveal the spatially variable performance of the multispectral water index and indicate the limitation of using scene-level cloud cover to screen satellite images. Finally, this study demonstrates the advantage of combining satellite remote sensing and cloud computing to support regional water resources assessment.« less
A remote sensing method for estimating regional reservoir area and evaporative loss
NASA Astrophysics Data System (ADS)
Zhang, Hua; Gorelick, Steven M.; Zimba, Paul V.; Zhang, Xiaodong
2017-12-01
Evaporation from the water surface of a reservoir can significantly affect its function of ensuring the availability and temporal stability of water supply. Current estimations of reservoir evaporative loss are dependent on water area derived from a reservoir storage-area curve. Such curves are unavailable if the reservoir is located in a data-sparse region or questionable if long-term sedimentation has changed the original elevation-area relationship. We propose a remote sensing framework to estimate reservoir evaporative loss at the regional scale. This framework uses a multispectral water index to extract reservoir area from Landsat imagery and estimate monthly evaporation volume based on pan-derived evaporative rates. The optimal index threshold is determined based on local observations and extended to unobserved locations and periods. Built on the cloud computing capacity of the Google Earth Engine, this framework can efficiently analyze satellite images at large spatiotemporal scales, where such analysis is infeasible with a single computer. Our study involves 200 major reservoirs in Texas, captured in 17,811 Landsat images over a 32-year period. The results show that these reservoirs contribute to an annual evaporative loss of 8.0 billion cubic meters, equivalent to 20% of their total active storage or 53% of total annual water use in Texas. At five coastal basins, reservoir evaporative losses exceed the minimum freshwater inflows required to sustain ecosystem health and fishery productivity of the receiving estuaries. Reservoir evaporative loss can be significant enough to counterbalance the positive effects of impounding water and to offset the contribution of water conservation and reuse practices. Our results also reveal the spatially variable performance of the multispectral water index and indicate the limitation of using scene-level cloud cover to screen satellite images. This study demonstrates the advantage of combining satellite remote sensing and cloud computing to support regional water resources assessment.
A remote sensing method for estimating regional reservoir area and evaporative loss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hua; Gorelick, Steven M.; Zimba, Paul V.
Evaporation from the water surface of a reservoir can significantly affect its function of ensuring the availability and temporal stability of water supply. Current estimations of reservoir evaporative loss are dependent on water area derived from a reservoir storage-area curve. Such curves are unavailable if the reservoir is located in a data-sparse region or questionable if long-term sedimentation has changed the original elevation-area relationship. In this paper, we propose a remote sensing framework to estimate reservoir evaporative loss at the regional scale. This framework uses a multispectral water index to extract reservoir area from Landsat imagery and estimate monthly evaporationmore » volume based on pan-derived evaporative rates. The optimal index threshold is determined based on local observations and extended to unobserved locations and periods. Built on the cloud computing capacity of the Google Earth Engine, this framework can efficiently analyze satellite images at large spatiotemporal scales, where such analysis is infeasible with a single computer. Our study involves 200 major reservoirs in Texas, captured in 17,811 Landsat images over a 32-year period. The results show that these reservoirs contribute to an annual evaporative loss of 8.0 billion cubic meters, equivalent to 20% of their total active storage or 53% of total annual water use in Texas. At five coastal basins, reservoir evaporative losses exceed the minimum freshwater inflows required to sustain ecosystem health and fishery productivity of the receiving estuaries. Reservoir evaporative loss can be significant enough to counterbalance the positive effects of impounding water and to offset the contribution of water conservation and reuse practices. Our results also reveal the spatially variable performance of the multispectral water index and indicate the limitation of using scene-level cloud cover to screen satellite images. Finally, this study demonstrates the advantage of combining satellite remote sensing and cloud computing to support regional water resources assessment.« less
NASA Astrophysics Data System (ADS)
Zatarain-Salazar, J.; Reed, P. M.; Quinn, J.
2017-12-01
This study characterizes how changes in reservoir operations can be used to better balance growing flood intensities and the conflicting multi-sectorial demands in the Lower Susequehanna River Basin (LSRB), USA. Tensions in the LSRB are increasing with urban population pressures, evolving energy demands, and growing flood-based infrastructure vulnerabilities. This study explores how re-operation of the Conowingo Reservoir, located in the LSRB, can improve the balance between competing demands for hydropower production, urban water supply to Chester, PA and Baltimore, MD, cooling water supply for the Peach Bottom Atomic Power Plant, recreation, federal environmental flow requirements and improved mitigation of growing flood hazards. The LSRB is also one of the most flood prone basins in the US, impacted by hurricanes and rain-on-snow induced flood events causing on average $100 million in economic losses and infrastructure damages to downstream settlements every year. The purpose of this study is to evaluate the consequences of mathematical formulation choices, uncertainty characterization and the value of information when defining the Conowingo reservoir's multi-purpose operations. This work seeks to strike a balance between the complexity and the efficacy of rival framings for the problem formulations used to discover effective operating policies. More broadly, the problem of intensifying urban floods in reservoir systems with complex multi-sectoral demands is broadly relevant to developed river basins globally.
NASA Astrophysics Data System (ADS)
Charley, W. J.; Luna, M.
2007-12-01
The U.S. Army Corps of Engineers Corps Water Management System (CWMS) is a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. It encompasses data collection, validation and transformation, data storage, visualization, real time model simulation for decision-making support, and data dissemination. CWMS uses an Oracle database and Sun Solaris workstations for data processes, storage and the execution of models, with a client application (the Control and Visualization Interface, or CAVI) that can run on a Windows PC. CWMS was used by the Lower Colorado River Authority (LCRA) to make hydrologic forecasts of flows on the Lower Colorado River and operate reservoirs during the June 2007 event in Texas. The LCRA receives real-time observed gridded spatial rainfall data from OneRain, Inc. that which is a result of adjusting NexRad rainfall data with precipitation gages. This data is used, along with future precipitation estimates, for hydrologic forecasting by the rainfall-runoff modeling program HEC-HMS. Forecasted flows from HEC-HMS and combined with observed flows and reservoir information to simulate LCRA's reservoir operations and help engineers make release decisions based on the results. The river hydraulics program, HEC-RAS, computes river stages and water surface profiles for the computed flow. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. By varying future precipitation and releases, engineers can evaluate different "What if?" scenarios. What was described as an "extraordinary cluster of thunderstorms" that stalled over Burnet and Llano counties in Texas on June 27, 2007, dropped 17 to 19 inches of rainfall over a 6-hour period. The storm was classified over a 500-year event and the resulting flow over some of the smaller tributaries as a 100-year or better. CWMS was used by LCRA for flood forecasting and reservoir operations. The models accurately forecasting the flows and allowed engineers to determine that only four floodgates needed to be opened for Mansfield dam, in the Chain of Highland lakes. CWMS also forecasted the peak of the flood well before it happened. Smaller rain storms continued for a period of weeks and CWMS was used throughout the event calculating lake levels, closing of gates along with a hydro-generation schedule.
Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS
Fernandez, Carlos A.
2013-09-25
EGS field projects have not sustained production at rates greater than ½ of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.
Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS
Carlos A. Fernandez
2014-09-15
EGS field projects have not sustained production at rates greater than ½ of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.
Schaben field, Kansas: Improving performance in a Mississippian shallow-shelf carbonate
Montgomery, S.L.; Franseen, E.K.; Bhattacharya, S.; Gerlach, P.; Byrnes, A.; Guy, W.; Carr, T.R.
2000-01-01
Schaben field (Kansas), located along the northeastern shelf of the Hugoton embayment, produces from Mississippian carbonates in erosional highs immediately beneath a regional unconformity. Production comes from depths of around 4400 ft (1342 m) in partially dolomitized shelf deposits. A detailed reservoir characterization/simulation study, recently performed as part of a Department of Energy Reservoir Class Oil Field Demonstration Project, has led to important revision in explanations for observed patterns of production. Cores recovered from three new data wells identify three main facies: Spicule-rich wackestone-packstone, echinoderm wackestone/packstone/grainstone, and dolomitic mudstone-wackestone. Reservoir quality is highest in spicule-rich wackestone/packstones but is subject to a very high degree of vertical heterogeneity due to facies interbedding, silification, and variable natural fracturing. The oil reservoir is underlain by an active aquifer, which helps maintain reservoir pressure but supports significant water production. Reservoir simulation, using public-domain, PC-based software, suggests that infill drilling is an efficient approach to enhanced recovery. Recent drilling directed by simulation results has shown considerable success in improving field production rates. Results from the Schaben field demonstration project are likely to have wide application for independent oil and exploration companies in western Kansas.Schaben field (Kansas), located along the northeastern shelf of the Hugoton embayment, produces from Mississippian carbonates in erosional highs immediately beneath a regional unconformity. Production comes from depths of around 4400 ft (1342 m) in partially dolomitized shelf deposits. A detailed reservoir characterization/simulation study, recently performed as part of a Department of Energy Reservoir Class Oil Field Demonstration Project, has led to important revision in explanations for observed patterns of production. Cores recovered from three new data wells identify three main facies: spicule-rich wackestone-packstone, echinoderm wackestone/packstone/grainstone, and dolomitic mudstone-wackestone. Reservoir quality is highest in spicule-rich wackestone/packstones but is subject to a very high degree of vertical heterogeneity due to facies interbedding, silification, and variable natural fracturing. The oil reservoir is underlain by an active aquifer, which helps maintain reservoir pressure but supports significant water production. Reservoir simulation, using public-domain, PC-based software, suggests that infill drilling is an efficient approach to enhanced recovery. Recent drilling directed by simulation results has shown considerable success in improving field production rates. Results from the Schaben field demonstration project are likely to have wide application for independent oil and exploration companies in western Kansas.
Ultraviolet laser-induced lateral photovoltaic response in anisotropic black shale
NASA Astrophysics Data System (ADS)
Miao, Xinyang; Zhu, Jing; Zhao, Kun; Yue, Wenzheng
2017-12-01
The anisotropy of shale has significant impact on oil and gas exploration and engineering. In this paper, a-248 nm ultraviolet laser was employed to assess the anisotropic lateral photovoltaic (LPV) response of shale. Anisotropic angle-depending voltage signals were observed with different peak amplitudes ( V p) and decay times. We employed exponential models to explain the charge carrier transport in horizontal and vertical directions. Dependences of the laser-induced LPV on the laser spot position were observed. Owing to the Dember effect and the layered structure of shale, V p shows an approximately linear dependence with the laser-irradiated position for the 0° shale sample but nonlinearity for the 45° and 90° ones. The results demonstrate that the laser-induced voltage method is very sensitive to the structure of materials, and thus has a great potential in oil and gas reservoir characterization.
Outstanding issues for new geothermal resource assessments
Williams, C.F.; Reed, M.J.
2005-01-01
A critical question for the future energy policy of the United States is the extent to which geothermal resources can contribute to an ever-increasing demand for electricity. Electric power production from geothermal sources exceeds that from wind and solar combined, yet the installed capacity falls far short of the geothermal resource base characterized in past assessments, even though the estimated size of the resource in six assessments completed in the past 35 years varies by thousands of Megawatts-electrical (MWe). The U. S. Geological Survey (USGS) is working closely with the Department of Energy's (DOE) Geothermal Research Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir permeability, limits to temperatures and depths for electric power production, and include the potential impact of evolving Enhanced (or Engineered) Geothermal Systems (EGS) technology.
Bridging the Gap between Chemical Flooding and Independent Oil Producers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stan McCool; Tony Walton; Paul Whillhite
2012-03-31
Ten Kanas oil reservoirs/leases were studied through geological and engineering analysis to assess the potential performance of chemical flooding to recover oil. Reservoirs/leases that have been efficiently waterflooded have the highest performance potential for chemical flooding. Laboratory work to identify efficient chemical systems and to test the oil recovery performance of the systems was the major effort of the project. Efficient chemical systems were identified for crude oils from nine of the reservoirs/leases. Oil recovery performance of the identified chemical systems in Berea sandstone rocks showed 90+ % recoveries of waterflood residual oil for seven crude oils. Oil recoveries increasedmore » with the amount of chemical injected. Recoveries were less in Indiana limestone cores. One formulation recovered 80% of the tertiary oil in the limestone rock. Geological studies for nine of the oil reservoirs are presented. Pleasant Prairie, Trembley, Vinland and Stewart Oilfields in Kansas were the most favorable of the studied reservoirs for a pilot chemical flood from geological considerations. Computer simulations of the performance of a laboratory coreflood were used to predict a field application of chemical flooding for the Trembley Oilfield. Estimates of field applications indicated chemical flooding is an economically viable technology for oil recovery.« less
Impact of Sedimentation hazard at Jor Reservoir, Batang Padang Hydroelectric Scheme in Malaysia
NASA Astrophysics Data System (ADS)
Luis, Jansen; Mohd Sidek, Lariyah; Jajarmizadeh, Milad
2016-03-01
Sedimentation in reservoir can be treated as a hazard because it affects the overall safety of the dam. It is a growing concern for reservoir operators throughout the world as it impacts the operability of the hydropower plant and its function as flood control. The objective of the study is to carry out reservoir bathymetric survey to determine the storage volume available at Jor reservoir. The paper intends to discuss the results of two successive surveys carried out in year 2007 and 2010 and comparison with historical data in1968 owing to analyse of sedimentation trend. The result showed that the total storage loss is approximately 43% with an estimated deposited sediment volume of 1.4 million m3 in year 2010. The sedimentation rate is estimated at 3.3% for the years surveyed which is greater than the world average of 0.93%. The findings from the survey are used to develop a revised elevation-storage curve which could be used by the operator and engineers to carry out future power generation planning and flood study predictions. The findings are also expected to be used to determine the optimum method for sediment management and hydro-mechanical protection.
Hoogestraat, Galen K.
2011-01-01
Extensive information about the construction of dams or potential downstream hazards in the event of a dam breach is not available for many small reservoirs within the Black Hills National Forest. In 2009, the U.S. Forest Service identified the need for reconnaissance-level dam-breach assessments for four of these reservoirs within the Black Hills National Forest (Iron Creek, Horsethief, Lakota, and Mitchell Lakes) with the potential to flood downstream structures. Flood hydrology and dam-breach hydraulic analyses for the four selected reservoirs were conducted by the U.S. Geological Survey in cooperation with the U.S. Forest service to estimate the areal extent of downstream inundation. Three high-flow breach scenarios were considered for cases when the dam is in place (overtopped) and when a dam break (failure) occurs: the 100-year recurrence 24-hour precipitation, 500-year recurrence peak flow, and the probable maximum precipitation. Inundation maps were developed that show the estimated extent of downstream floodwaters from simulated scenarios. Simulation results were used to determine the hazard classification of a dam break (high, significant, or low), based primarily on the potential for loss of life or property damage resulting from downstream inundation because of the flood surge.The inflow design floods resulting from the two simulated storm events (100-year 24-hour and probable maximum precipitation) were determined using the U.S. Army Corps of Engineers Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS). The inflow design flood for the 500-year recurrence peak flow was determined by using regional regression equations developed for streamflow-gaging stations with similar watershed characteristics. The step-backwater hydraulic analysis model, Hydrologic Engineering Center's River Analysis System (HEC-RAS), was used to determine water-surface profiles of in-place and dam-break scenarios for the three inflow design floods that were simulated. Inundation maps for in-place and dam-break scenarios were developed for the area downstream from the dam to the mouth of each stream.Dam-break scenarios for three of the four reservoirs assessed in this study were rated as low hazards owing to absence of permanent structures downstream from the dams. Iron Creek Lake's downstream channel to its mouth does not include any permanent structures within the inundation flood plains. For the two reservoirs with the largest watershed areas, Lakota and Mitchell Lake, the additional floodwater surge resulting from a dam break would be minor relative to the magnitude of the large flood streamflow into the reservoirs, based on the similar areal extent of inundation for the in-place and dam-break scenarios as indicated by the developed maps. A dam-break scenario at Horsethief Lake is rated as a significant hazard because of potential lives-in-jeopardy in downstream dwellings and appreciable economic loss.
Reservoir geology of Landslide field, southern San Joaquin basin, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, T.R.; Tucker, R.D.; Singleton, M.T.
1991-02-01
The Landslide field, which is located on the southern margin of the San Joaquin basin, was discovered in 1985 and consists of 13 producers and six injectors. Cumulative production as of mid-1990 was approximately 10 million bbl of oil with an average daily production of 4700 BOPD. Production is from a series of late Miocene turbidite sands (Stevens Sand) that were deposited as a small constructional submarine fan (less than 2 mi in diameter). Based on interpretation of wireline logs and engineering data, deposition of the fan and of individual lobes within the fan was strongly influenced by preexisting paleotopographymore » and small syndepositional slump features. Based on mapping of individual depositional units and stratigraphic dipmeter analysis, transport direction of the sand was to the north-north across these paleotopographic breaks in slope. Dipmeter data and pressure data from individual sands are especially useful for recognition and mapping of individual flow units between well bores. Detailed engineering, geophysical and geological studies have increased our understanding of the dimensions, continuity, geometry, and inherent reservoir properties of the individual flow units within the reservoir. Based on the results of these studies a series of water isolation workovers and extension wells were proposed and successfully undertaken. This work has increased recoverable reserves and arrested the rapid production decline.« less
Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica
NASA Astrophysics Data System (ADS)
Haukwa, C.; Bodvarsson, G. S.; Lippmann, M. J.; Mainieri, A.
1992-01-01
The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells, a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260 C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt. On the basis of the natural-state model, a two-dimensional exploitation model was developed. The field has a production area of about 10 km(exp 2), with temperatures exceeding 220 C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.
Optimal performance of heat engines with a finite source or sink and inequalities between means.
Johal, Ramandeep S
2016-07-01
Given a system with a finite heat capacity and a heat reservoir, and two values of initial temperatures, T_{+} and T_{-}(
Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haukwa, C.; Bodvarsson, G.S. Lippmann, M.J.; Mainieri, A.
1992-01-01
The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260{degrees}C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt.more » On the basis of the natural-state model a two-dimensional exploitation model was develope. The field has a production area of about 10 km{sup 2}, with temperatures exceeding 220{degrees}C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.« less
Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haukwa, C.; Bodvarsson, G.S.; Lippmann, M.J.
1992-01-01
The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells, a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260 C) water recharge is 130 kg/s, corresponding to a thermal input of about 150more » MWt. On the basis of the natural-state model a two-dimensional exploitation model was developed. The field has a production area of about 10 km{sup 2}, with temperatures exceeding 220 C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.« less
Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haukwa, C.; Bodvarsson, G.S. Lippmann, M.J.; Mainieri, A.
1992-01-01
The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260[degrees]C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt.more » On the basis of the natural-state model a two-dimensional exploitation model was develope. The field has a production area of about 10 km[sup 2], with temperatures exceeding 220[degrees]C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.« less
NASA Astrophysics Data System (ADS)
Ayatollahy Tafti, Tayeb
We develop a new method for integrating information and data from different sources. We also construct a comprehensive workflow for characterizing and modeling a fracture network in unconventional reservoirs, using microseismic data. The methodology is based on combination of several mathematical and artificial intelligent techniques, including geostatistics, fractal analysis, fuzzy logic, and neural networks. The study contributes to scholarly knowledge base on the characterization and modeling fractured reservoirs in several ways; including a versatile workflow with a novel objective functions. Some the characteristics of the methods are listed below: 1. The new method is an effective fracture characterization procedure estimates different fracture properties. Unlike the existing methods, the new approach is not dependent on the location of events. It is able to integrate all multi-scaled and diverse fracture information from different methodologies. 2. It offers an improved procedure to create compressional and shear velocity models as a preamble for delineating anomalies and map structures of interest and to correlate velocity anomalies with fracture swarms and other reservoir properties of interest. 3. It offers an effective way to obtain the fractal dimension of microseismic events and identify the pattern complexity, connectivity, and mechanism of the created fracture network. 4. It offers an innovative method for monitoring the fracture movement in different stages of stimulation that can be used to optimize the process. 5. Our newly developed MDFN approach allows to create a discrete fracture network model using only microseismic data with potential cost reduction. It also imposes fractal dimension as a constraint on other fracture modeling approaches, which increases the visual similarity between the modeled networks and the real network over the simulated volume.
K.L. Hatcher; J.A. Jones
2013-01-01
Large river basins transfer the water signal from the atmosphere to the ocean. Climate change is widely expected to alter streamflow and potentially disrupt water management systems. We tested the ecological resilienceâcapacity of headwater ecosystems to sustain streamflow under climate changeâand the engineering resilienceâcapacity of dam and reservoir management to...
Expert System For Heat Exchanger
NASA Technical Reports Server (NTRS)
Bagby, D. Gordon; Cormier, Reginald A.
1991-01-01
Diagnosis simplified for non-engineers. Developmental expert-system computer program assists operator in controlling, monitoring operation, diagnosing malfunctions, and ordering repairs of heat-exchanger system dissipating heat generated by 20-kW radio transmitter. System includes not only heat exchanger but also pumps, fans, sensors, valves, reservoir, and associated plumbing. Program conceived to assist operator while avoiding cost of keeping engineer in full-time attendance. Similar programs developed for heating, ventilating, and air-conditioning systems.
Integration of an Inter Turbine Burner to a Jet Turbine Engine
2013-03-01
whether for electrical systems or increased thrust, improved engine efficiency must be found. An Ultra-Compact Combustor ( UCC ) is a proposed... UCC to be viable it is important to study the effects of feeding the core and circumferential flows from a common gas reservoir. This research...prediction of which flow split would produce the best results and testing of this prediction was initiated. A second important issue for UCC development
Columbia River System Analysis Model - Phase 1
1991-10-01
Reach reservoirs due to the impact of APPENDIX D 6 Wenatchee River flows and additional inflow downstream of Rocky Reach. An inflow link terminates at...AD-A246 639I 11 11111 till11 1 111 US Army Corps of Engineers Hydrologic Engineering Center Columbia River System Analysis Model - Phase I Libby...WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) Columbia River System Analysis - Phase I 12. PERSONAL AUTHOR(S
Influence of lithofacies and diagensis on Norwegian North Sea chalk reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brasher, J.E.; Vagle, K.R.
1996-05-01
The depositional mechanism of chalk is a key influence in the chalk`s ultimate reservoir quality. Classically, the depositional mechanism is interpreted from core descriptions. Where core data are lacking, dipmeter and borehole imagery logs have proven useful in making lithofacies assessments. Criteria for recognition of three chalk categories are established. Category III chalks correspond to those chalks that have been deposited by gravity flows or slumping and tend to have the best reservoir parameters. Category I chalks are most often affiliated with pelagic deposition and tend to have the poorest reservoir parameters. Category II chalks are intermediate between I andmore » III. Anomalously high primary porosities have been maintained in Norwegian North Sea chalks where the effects of mechanical and chemical compaction have been limited. The diagenetic pathway of a chalk reflects changes brought about by mechanical and chemical compaction. Five factors most heavily influence the diagenetic pathway: (1) burial depth, (2) chalk type, (3) overpressuring, (4) presence of hydrocarbons, and (5) original grain size. Assessments of the sedimentological model, diagenetic pathway, and resultant reservoir quality are provided in case studies of Edda, Tor, and Eldfisk fields. Because the distribution of chalk is largely independent of existing structures, most fields have a component of stratigraphic/diagenetic trapping. Each case study shows unique examples of how petrophysical and reservoir engineering data can be incorporated in assessments of chalk type and the diagenetic pathway and how they may affect reservoir parameters and productivity.« less
Menozzi, Benedito Donizete; de Novaes Oliveira, Rafael; Paiz, Laís Moraes; Richini-Pereira, Virgínia Bodelão; Langoni, Helio
2017-05-01
Bats have aroused growing attention in the public health sphere because they are considered the main reservoir of rabies virus (RABV) in the Americas, in places where canine rabies is under control. Antigenic and genetic studies of RABV isolates have been used to describe the epidemiological profile of rabies and to identify possible hosts/reservoirs for different epidemiological cycles. This study describes the antigenic and genotypic characterization of 19 RABV isolates from central nervous system samples of non-hematophagous bats (Mammalia: Chiroptera). These bats were diagnosed as RABV positive by direct fluorescent antibody and mouse inoculation tests. Antigenic characterization using a panel of eight monoclonal antibodies revealed that 7 of 19 RABV isolates from these bats belonged to variant 3, for which the hematophagous bat species Desmodus rotundus is the main reservoir, and 1 of 19 RABV isolates from an insectivorous bat belonged to variant 4, which is characteristic of these bats. The remaining 11 RABV samples were divided into six non-compatible profiles. The isolates were subjected to reverse transcription polymerase chain reaction for the N gene and partially sequenced. Genetic characterization of these isolates was performed by grouping the sequences obtained with known RABV lineages. The sequences were grouped in clusters by the phylogenetic inference neighbor-joining method, together with another 89 homologous sequences obtained from GenBank. This analysis grouped the isolates into four known lineages: Nyctinomops Brazil, Myotis Brazil, Eptesicus Brazil and D. rotundus Brazil, as well as another cluster that may define a RABV lineage not yet characterized, here named Myotis Brazil II, for which bats of the genus Myotis apparently act as reservoirs. This assumption of a new lineage is also based on the observation of amino acid substitutions, with an average intraspecific identity of 99.8%, varying from 99.6 to 100.0% for nucleotides and 100.0% for amino acids.
basement reservoir geometry and properties
NASA Astrophysics Data System (ADS)
Walter, bastien; Geraud, yves; Diraison, marc
2017-04-01
Basement reservoirs are nowadays frequently investigated for deep-seated fluid resources (e.g. geothermal energy, groundwater, hydrocarbons). The term 'basement' generally refers to crystalline and metamorphic formations, where matrix porosity is negligible in fresh basement rocks. Geothermal production of such unconventional reservoirs is controlled by brittle structures and altered rock matrix, resulting of a combination of different tectonic, hydrothermal or weathering phenomena. This work aims to characterize the petro-structural and petrophysical properties of two basement surface analogue case studies in geological extensive setting (the Albert Lake rift in Uganda; the Ifni proximal margin of the South West Morocco Atlantic coast). Different datasets, using field structural study, geophysical acquisition and laboratory petrophysical measurements, were integrated to describe the multi-scale geometry of the porous network of such fractured and weathered basement formations. This study points out the multi-scale distribution of all the features constituting the reservoir, over ten orders of magnitude from the pluri-kilometric scale of the major tectonics structures to the infra-millimetric scale of the secondary micro-porosity of fractured and weathered basements units. Major fault zones, with relatively thick and impermeable fault core structures, control the 'compartmentalization' of the reservoir by dividing it into several structural blocks. The analysis of these fault zones highlights the necessity for the basement reservoirs to be characterized by a highly connected fault and fracture system, where structure intersections represent the main fluid drainage areas between and within the reservoir's structural blocks. The suitable fluid storage areas in these reservoirs correspond to the damage zone of all the fault structures developed during the tectonic evolution of the basement and the weathered units of the basement roof developed during pre-rift exhumation phases. Macroscopic fracture density is highly dependent on the petrographic nature of the basement, with values up to 80 frac./m in fault damage zones of crystalline rocks. Dense micro-cracks associated to major fault structures can develop porosity and permeability up to 10% and 0.1 D. In some weathered horizons, alteration can develop matrix porosity up to 40% and the permeability reaches up to 1D. This study highlights therefore that basement reservoir properties are the result of the long geodynamic evolution of such formations, and the different fault zone compartments or weathering horizons have to be considered separately for reservoir understanding.
NASA Astrophysics Data System (ADS)
Lindquist, Sandra J.
1988-04-01
The Jurassic eolian Nugget Sandstone of the Utah-Wyoming thrust belt is a texturally heterogeneous formation with anisotropic reservoir inherited primarily from the depositional environment. Original reservoir quality has been reduced somewhat by cementation and slightly enhanced by dissolution. Low-permeability, gouge-filled micro-faults compartmentalize the formation, whereas intermittently open fractures provide effective permeability paths locally. Where productive, the Nugget Sandstone ranges from approximately 800 to 1050 ft (244-320 m) thick at subsurface depths of 7500 to 15,000 ft (2286-4572 m). Porosity ranges from several percent to 25%, and permeability covers five orders of magnitude from hundredths of milliDarcies to Darcies. Some Nugget reservoirs are fully charged with hydrocarbons. Different stratification types have unique depositional textures, primary and diagenetic mineralogies, and deformational fabrics resulting in characteristic porosity, permeability, permeability directionality, and pore geometry attributes. Such characteristics can be determined from core analysis, mercury injection, nuclear magnetic resonance, conventional log, dipmeter and production data. Nugget dune deposits (good reservoir facies) primarily consist of grainflow and wind-ripple cross-strata, the former of which have the better reservoir quality and the lesser heterogeneity in bedding texture. High-permeability facies are commonly affected by local quartz and nodular carbonate cementation, chlorite (and lesser illite) precipitation, and minor framework and cement dissolution. Gouge-filled micro-faults are the predominant deformational overprint. Interdune, sand-sheet, and other water-associated deposits (poor reservoir facies) are characterized by low-angle wind-ripple laminae and more irregular bedding, some of which is associated with damp or wet conditions. Water-associated Nugget stratification generally contains the finest grained depositional textures and has the poorest reservoir properties. These non-dune facies contain intergranular micritic carbonate and illite precipitates and are most affected by compaction and pressure solution phenomena. Open types of fractures are somewhat more likely in this lower permeability rock. Depositional models incorporating dune morphologies, facies distribution, permeability directionality, and theoretical concepts regarding dune migration through time are useful in delineating correlative intervals most likely to have continuity and potential communication of reservoir properties. Stratigraphic models can be adapted for reservoir simulation studies and also can be utilized in solving structural resolution problems if correlatable vertical sequences and relatively consistent cross-strata orientations exist.
NASA Astrophysics Data System (ADS)
Tamaki, M.; Komatsu, Y.; Suzuki, K.; Takayama, T.; Fujii, T.
2012-12-01
The eastern Nankai trough, which is located offshore of central Japan, is considered as an attractive potential resource field of methane hydrates. Japan Oil, Gas and Metals National Corporation is planning to conduct a production test in early 2013 at the AT1 site in the north slope of Daini-Atsumi Knoll in the eastern Nankai Trough. The depositional environment of methane hydrate-bearing sediments around the production test site is a deep submarine-fan turbidite system, and it is considered that the reservoir properties should show lateral as well as vertical heterogeneity. Since the variations in the reservoir heterogeneity have an impact on the methane hydrate dissociation and gas production performance, precise geological models describing reservoir heterogeneity would be required for the evaluation of reservoir potentials. In preparation for the production test, 3 wells; two monitoring boreholes (AT1-MC and AT1-MT1) and a coring well (AT1-C), were newly acquired in 2012. In addition to a geotechnical hole drilling survey in 2011 (AT1-GT), totally log data from 2 wells and core data from 2 wells were obtained around the production test site. In this study, we conducted well correlations between AT1 and A1 wells drilled in 2003 and then, 3D geological models were updated including AT1 well data in order to refine hydrate reservoir characterization around the production test site. The results of the well correlations show that turbidite sand layers are characterized by good lateral continuity, and give significant information for the distribution morphology of sand-rich channel fills. We also reviewed previously conducted 3D geological models which consist of facies distributions and petrophysical properties distributions constructed from integration of 3D seismic data and a well data (A1 site) adopting a geostatistical approach. In order to test the practical validity of the previously generated models, cross-validation was conducted using AT1 well data. The results show that geological modeling including AT1 well data is important to reduce the uncertainty of the reservoir properties around the production test site. The geological models including AT1 well data were constructed taking into account for the lateral continuity of turbidite formations based on the well correlations. The concepts of these models are considered to be much more effective for describing reservoir continuity and heterogeneity and predicting upcoming production tests.
MULTIPHASE FLOW AND TRANSPORT IN POROUS MEDIA
Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. n petroleum reservoir engineering efficient recovery of energy reserves is the principal goal. nfortuna...
NASA Astrophysics Data System (ADS)
Yamamoto, H.; Nakajima, K.; Zhang, K.; Nanai, S.
2015-12-01
Powerful numerical codes that are capable of modeling complex coupled processes of physics and chemistry have been developed for predicting the fate of CO2 in reservoirs as well as its potential impacts on groundwater and subsurface environments. However, they are often computationally demanding for solving highly non-linear models in sufficient spatial and temporal resolutions. Geological heterogeneity and uncertainties further increase the challenges in modeling works. Two-phase flow simulations in heterogeneous media usually require much longer computational time than that in homogeneous media. Uncertainties in reservoir properties may necessitate stochastic simulations with multiple realizations. Recently, massively parallel supercomputers with more than thousands of processors become available in scientific and engineering communities. Such supercomputers may attract attentions from geoscientist and reservoir engineers for solving the large and non-linear models in higher resolutions within a reasonable time. However, for making it a useful tool, it is essential to tackle several practical obstacles to utilize large number of processors effectively for general-purpose reservoir simulators. We have implemented massively-parallel versions of two TOUGH2 family codes (a multi-phase flow simulator TOUGH2 and a chemically reactive transport simulator TOUGHREACT) on two different types (vector- and scalar-type) of supercomputers with a thousand to tens of thousands of processors. After completing implementation and extensive tune-up on the supercomputers, the computational performance was measured for three simulations with multi-million grid models, including a simulation of the dissolution-diffusion-convection process that requires high spatial and temporal resolutions to simulate the growth of small convective fingers of CO2-dissolved water to larger ones in a reservoir scale. The performance measurement confirmed that the both simulators exhibit excellent scalabilities showing almost linear speedup against number of processors up to over ten thousand cores. Generally this allows us to perform coupled multi-physics (THC) simulations on high resolution geologic models with multi-million grid in a practical time (e.g., less than a second per time step).
Chemical data for bottom sediment in Mountain Creek Lake, Dallas, Texas, 1999-2000
Wilson, Jennifer T.
2002-01-01
Mountain Creek Lake is a reservoir adjacent to the Naval Weapons Industrial Reserve Plant and the former Naval Air Station in Dallas, Texas. The U.S. Geological Survey began studies of water, sediment, and biota in the reservoir in 1994 after a Resource Conservation and Recovery Act Facility Investigation detected concentrations of organic chemicals on both facilities. Additional reservoir bottom sediment samples were collected during December 1999–January 2000 at the request of the Southern Division Naval Facilities Engineering Command to further define the occurrence and distribution of selected constituents and to supplement available data. The U.S. Geological Survey National Water Quality Laboratory analyzed bottom-sediment samples from 16 box cores and 5 gravity cores for major and trace elements, organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, grain size, and cesium-137.
Williams, Cory A.; Richards, Rodney J.; Collins, Kent L.
2015-01-01
The U.S. Bureau of Reclamation (USBR) and local stakeholder groups are evaluating reservoir-management strategies within Paonia Reservoir. This small reservoir fills to capacity each spring and requires approximately half of the snowmelt-runoff volume from its sediment-laden source waters, Muddy Creek. The U.S. Geological Survey is currently conducting high-resolution (15-minute data-recording interval) sediment monitoring to characterize incoming and outgoing sediment flux during reservoir operations at two sites on Muddy Creek. The high-resolution monitoring is being used to establish current rates of reservoir sedimentation, support USBR sediment transport and storage models, and assess the viability of water-storage recovery in Paonia Reservoir. These sites are equipped with in situ, single-frequency, side-looking acoustic Doppler current meters in conjunction with turbidity sensors to monitor sediment flux. This project serves as a demonstration of the capability of using surrogate techniques to predict suspended-sediment concentrations in small streams (less than 20 meters in width and 2 meters in depth). These two sites provide the ability to report near real-time suspended-sediment concentrations through the U.S. Geological Survey National Water Information System (NWIS) web interface and National Real-Time Water Quality websites (NRTWQ) to aid in reservoir operations and assessments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchesini, P; Ajo-Franklin, JB; Daley, TM
2017-09-01
© 2017 Society of Exploration Geophysicists. The ability to characterize time-varying reservoir properties, such as the state of stress, has fundamental implications in subsurface engineering, relevant to geologic sequestration of CO2. Stress variation, here in the form of changes in pore fluid pressure, is one factor known to affect seismic velocity. Induced variations in velocity have been used in seismic studies to determine and monitor changes in the stress state. Previous studies conducted to determine velocity-stress sensitivity at reservoir conditions rely primarily on laboratory measurements of core samples or theoretical relationships. We have developed a novel field-scale experiment designed tomore » study the in situ relationship between pore-fluid pressure and seismic velocity using a crosswell continuous active-source seismic monitoring (CASSM) system. At the Cranfield, Mississippi, CO2 sequestration field site, we actively monitored seismic response for five days with a temporal resolution of 5 min; the target was a 26 m thick injection zone at approximately 3.2 km depth in a fluvial sandstone formation (lower Tuscaloosa Formation). The variation of pore fluid pressure was obtained during discrete events of fluid withdrawal from one of the two wells and monitored with downhole pressure sensors. The results indicate a correlation between decreasing CASSM time delay (i.e., velocity change for a raypath in the reservoir) and periods of reduced fluid pore pressure. The correlation is interpreted as the velocity-stress sensitivity measured in the reservoir. This observation is consistent with published laboratory studies documenting a velocity (V) increase with an effective stress increase. A traveltime change (dt) of 0.036 ms is measured as the consequence of a change in pressure of approximately 2.55 MPa (dPe). For T 1/4 13 ms total traveltime, the velocity-stress sensitivity is dV/V/dPe 1/4 dt/T/dPe 1/4 10.9 × 10-4/MPa. The overall results suggest that CASSM measurements represent a valid technique for in situ determination of velocity-stress sensitivity in field-scale monitoring studies.« less
Source Characterization and Seismic Hazard Considerations for Hydraulic Fracture Induced Seismicity
NASA Astrophysics Data System (ADS)
Bosman, K.; Viegas, G. F.; Baig, A. M.; Urbancic, T.
2015-12-01
Large microseismic events (M>0) have been shown to be generated during hydraulic fracture treatments relatively frequently. These events are a concern both from public safety and engineering viewpoints. Recent microseismic monitoring projects in the Horn River Basin have utilized both downhole and surface sensors to record events associated with hydraulic fracturing. The resulting hybrid monitoring system has produced a large dataset with two distinct groups of events: large events recorded by the surface network (0
Introduction to special section: China shale gas and shale oil plays
Jiang, Shu; Zeng, Hongliu; Zhang, Jinchuan; Fishman, Neil; Bai, Baojun; Xiao, Xianming; Zhang, Tongwei; Ellis, Geoffrey S.; Li, Xinjing; Richards-McClung, Bryony; Cai, Dongsheng; Ma, Yongsheng
2015-01-01
Even though China shale gas and shale oil exploration is still in an early stage, limited data are already available. We are pleased to have selected eight high-quality papers from fifteen submitted manuscripts for this timely section on the topic of China shale gas and shale oil plays. These selected papers discuss various subject areas including regional geology, resource potentials, integrated and multidisciplinary characterization of China shale reservoirs (geology, geophysics, geochemistry, and petrophysics) China shale property measurement using new techniques, case studies for marine, lacustrine, and transitional shale deposits in China, and hydraulic fracturing. One paper summarizes the regional geology and different tectonic and depositional settings of the major prospective shale oil and gas plays in China. Four papers concentrate on the geology, geochemistry, reservoir characterization, lithologic heterogeneity, and sweet spot identification in the Silurian Longmaxi marine shale in the Sichuan Basin in southwest China, which is currently the primary focus of shale gas exploration in China. One paper discusses the Ordovician Salgan Shale in the Tarim Basin in northwest China, and two papers focus on the reservoir characterization and hydraulic fracturing of Triassic lacustrine shale in the Ordos Basin in northern China. Each paper discusses a specific area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R.V.
This book reports on remedial measures for gas wells and new methods for calculating the position of the stabilized performance curves for gas wells as well as the heating value for natural gases from compositional analyses. In addition, the author includes problem solutions in an appendix and a section showing the relation between the conventional empirical equation and the theoretical performance equation of A.S. Odeh. The author successfully bridges the gap between the results of empirical testing and the theory of unsteady-state flow in porous media. It strengthens the bond between conventional reservoir engineering practices and understanding gas well behavior.more » Problems listed at the end of each chapter are excellent exercises for practitioners. This book provides information on: Natural Gas Engineering; Properties of natural gas; Application of gas laws to reservoir engineering; Gas measurement; Flow of natural gas in circular pipe and annular conductors; Flow of gas in porous media (a review); Gas well testing; Unsteady-state flow behavior of gas wells; Production forecasting for gas wells; Production decline curves for gas wells; Sizing flow strings for gas wells; Remedial measures for gas wells; Gas sales contracts; and appendices on Compressibility for natural gas, Gas measurement factors, SI metric conversion factors, and Solutions to problems.« less
Analysis of the Functionality of Refillable Propellant Management Devices (PMD)
NASA Astrophysics Data System (ADS)
Winkelmann, Yvonne; Gaulke, Diana; Dreyer, Michael E.
In order to restart a stage of a spacecraft it is necessary to position the liquid stable over the tank outlet. The gas-or vapor-free provision of the thrusters for the main engine start-up can be accomplished by the use of propellant management devices (PMDs). A propellant refillable reservoir (PRR) will supply the engine with the required amount of liquid propellant until the liquid outside the PRR has settled at the bottom of the tank. Hence, the reservoir will be refilled and the main engine can be restarted. This technique has been applied in case of storable propellants yet, e.g. in satellites or ATVs. For the application in a cryogenic upper stage demonstration and validation tests are still necessary. Ground experiments to simulate propulsed phases are evaluated. To demonstrate the functionality under propulsed conditions first filling, draining and draining with a constant fill level of the tank (refilling) are analyzed. Different inflows with respect to filling and varied outflow rates for the draining tests are investigated. Pressure losses in the LOX-PMD are measured during draining and compared to a previously accomplished estimation with an one-dimensional streamtube theory.
Steady Fluid Flow to a Radial System of Horizontal Wells
NASA Astrophysics Data System (ADS)
Morozov, P. E.
2018-03-01
A semi-analyticalmethod for determining the productivity of a radial system of horizontal wells in an anisotropic reservoir is proposed. Calculation results for the productivity and distribution of fluid flow along the length of the wellbores of the radial system of horizontal wells using the proposed method are compared with the data of experimental studies based on electrolytic simulation and engineering formulas. The effects of the number of wellbores, their location in the reservoir, and the hydraulic pressure loss on the distribution of the fluid flow along the length of horizontal wellbores are investigated.
An Analysis Model for Water Cone Subsidence in Bottom Water Drive Reservoirs
NASA Astrophysics Data System (ADS)
Wang, Jianjun; Xu, Hui; Wu, Shucheng; Yang, Chao; Kong, lingxiao; Zeng, Baoquan; Xu, Haixia; Qu, Tailai
2017-12-01
Water coning in bottom water drive reservoirs, which will result in earlier water breakthrough, rapid increase in water cut and low recovery level, has drawn tremendous attention in petroleum engineering field. As one simple and effective method to inhibit bottom water coning, shut-in coning control is usually preferred in oilfield to control the water cone and furthermore to enhance economic performance. However, most of the water coning researchers just have been done on investigation of the coning behavior as it grows up, the reported studies for water cone subsidence are very scarce. The goal of this work is to present an analytical model for water cone subsidence to analyze the subsidence of water cone when the well shut in. Based on Dupuit critical oil production rate formula, an analytical model is developed to estimate the initial water cone shape at the point of critical drawdown. Then, with the initial water cone shape equation, we propose an analysis model for water cone subsidence in bottom water reservoir reservoirs. Model analysis and several sensitivity studies are conducted. This work presents accurate and fast analytical model to perform the water cone subsidence in bottom water drive reservoirs. To consider the recent interests in development of bottom drive reservoirs, our approach provides a promising technique for better understanding the subsidence of water cone.
Late Pleistocene - Holocene ruptures of the Lima Reservoir fault, SW Montana
NASA Astrophysics Data System (ADS)
Anastasio, David J.; Majerowicz, Christina N.; Pazzaglia, Frank J.; Regalla, Christine A.
2010-12-01
Active tectonics within the northern Basin and Range province provide a natural laboratory for the study of normal fault growth, linkage, and interaction. Here, we present new geologic mapping and morphologic fault-scarp modeling within the Centennial Valley, Montana to characterize Pleistocene - Holocene ruptures of the young and active Lima Reservoir fault. Geologic relationships and rupture ages indicate Middle Pleistocene activity on the Henry Gulch (>50 ka and 23-10 ka), Trail Creek (>43 ka and ˜13 ka), and reservoir (˜23 ka) segments. Offset Quaternary deposits also record Holocene rupture of the reservoir segment (˜8 ka), but unfaulted modern streams show that no segments of the Lima Reservoir fault have experienced a large earthquake in at least several millennia. The clustered pattern of rupture ages on the Lima Reservoir fault segments suggests a seismogenic linkage though segment length and spacing make a physical connection at depth unlikely. Trail Creek and reservoir segment slip rates were non-steady and appear to be increasing. The fault helps accommodate differential horizontal surface velocity measured by GPS geodesy across the boundary between the northern Basin and Range province and the Snake River Plain.
High spatial variability of carbon dioxide and methane emission in three tropical reservoirs
NASA Astrophysics Data System (ADS)
Reinaldo Paranaiba, José; Barros, Nathan O.; Mendonça, Raquel F.; Linkhorst, Annika; Isidorova, Anastasija; Roland, Fabio; Sobek, Sebastian
2017-04-01
In the tropics, many new large hydropower dams are being built, in order to produce renewable energy for economic growth. Most inland waters, such as rivers, lakes and reservoirs, emit greenhouse gases to the atmosphere, and especially tropical reservoirs have been pointed out as strong sources of methane. However, present estimates of greenhouse gas emission from reservoirs are limited by the amount of available data. In particular, the spatial variability of greenhouse gas emission from reservoirs is insufficiently understood. In order to test the hypothesis that the diffusive emission of carbon dioxide (CO2) and methane (CH4) from tropical reservoirs is characterized by strong spatial variability and incorrectly represented by measurements at one site only, we studied three reservoirs situated in different tropical climates, during the dry period. We conducted spatially resolved measurements of surface water concentrations of dissolved carbon dioxide and methane using an on-line equilibration system, as well as of the gas exchange velocity using floating chambers. We found pronounced spatial variability of diffusive CO2 and CH4 emission in all three reservoirs. River inflow areas were more likely to have high concentrations of particularly CH4, but also CO2, than other areas in the reservoirs. Close to the dam, CH4 concentrations were comparatively low in each reservoir. The variability of CH4 concentration was linked to geographical position, which we ascribe to hot spots of methanogenesis at sites of high sediment deposition, such as river inflow areas. The variability of CO2 concentration seemed instead rather to be linked to in-situ metabolism. Also the gas exchange velocity varied pronouncedly in each reservoir, but without any detectable systematic patterns, calling for further studies. We conclude that accurate upscaling of reservoir greenhouse gas emissions requires accounting for within-reservoir spatial variability, and that the anthropogenic increase of sediment flux from catchments to downstream reservoirs may be linked to increased reservoir CH4 emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoirmore » characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.« less
NASA Astrophysics Data System (ADS)
Palazón, Leticia; Gaspar, Leticia; Latorre, Borja; Blake, Will; Navas, Ana
2014-05-01
Spanish Pyrenean reservoirs are under pressure from high sediment yields in contributing catchments. Sediment fingerprinting approaches offer potential to quantify the contribution of different sediment sources, evaluate catchment erosion dynamics and develop management plans to tackle the reservoir siltation problems. The drainage basin of the Barasona reservoir (1509 km2), located in the Central Spanish Pyrenees, is an alpine-prealpine agroforest basin supplying sediments to the reservoir at an annual rate of around 350 t km-2 with implications for reservoir longevity. The climate is mountain type, wet and cold, with both Atlantic and Mediterranean influences. Steep slopes and the presence of deep and narrow gorges favour rapid runoff and large floods. The ability of geochemical fingerprint properties to discriminate between the sediment sources was investigated by conducting the nonparametric Kruskal-Wallis H-test and a stepwise discriminant function analysis (minimization of Wilk's lambda). This standard procedure selects potential fingerprinting properties as optimum composite fingerprint to characterize and discriminate between sediment sources to the reservoir. Then the contribution of each potential sediment source was assessed by applying a Monte Carlo mixing model to obtain source proportions for the Barasona reservoir sediment samples. The Monte Carlo mixing model was written in C programming language and designed to deliver a user-defined number possible solutions. A Combinatorial Principals method was used to identify the most probable solution with associated uncertainty based on source variability. The unique solution for each sample was characterized by the mean value and the standard deviation of the generated solutions and the lower goodness of fit value applied. This method is argued to guarantee a similar set of representative solutions in all unmixing cases based on likelihood of occurrence. Soil samples for the different potential sediment sources of the drainage basin were compared with samples from the reservoir using a range of different fingerprinting properties (i.e. mass activities of environmental radionuclides, elemental composition and magnetic susceptibility) analyzed in the < 63 μm sediment fraction. In this case, the 100 best results from 106 generated iterations were selected obtaining a goodness of fit higher than 0.76. The preliminary results using this new data processing methodology for samples collected in the reservoir allowed us to identify cultivated fields and badlands as main potential sources of sediments to the reservoir. These findings support the appropriate use of the fingerprinting methodology in a Spanish Pyrenees basin, which will enable us to better understand the basin sediment production of the Barasona reservoir.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead
2004-05-01
The Permian Basin of west Texas and southeast New Mexico has produced >30 Bbbl (4.77 x 10{sup 9} m{sup 3}) of oil through 2000, most of it from 1,339 reservoirs having individual cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}). These significant-sized reservoirs are the focus of this report. Thirty-two Permian Basin oil plays were defined, and each of the 1,339 significant-sized reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. Associated reservoir information within linked data tables includes Railroad Commission of Texas reservoir number and districtmore » (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are <1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. This report contains a summary description of each play, including key reservoir characteristics and successful reservoir-management practices that have been used in the play. The CD accompanying the report contains a pdf version of the report, the GIS project, pdf maps of all plays, and digital data files. Oil production from the reservoirs in the Permian Basin having cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 from these significant-sized reservoirs was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl 5.25 x 10{sup 8} m{sup 3}), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]).« less
Application of HEC-6 to ephemeral rivers of Arizona
DOT National Transportation Integrated Search
1986-01-01
The U.S. Army Corps of Engineers, computer program HEC-6--"Scour and Deposition in Rivers and Reservoirs" was applied to three ephemeral rivers of Arizona--Agua Fria River, Salt River, and Rillito Creek. The input data development techniques and resu...
NASA Astrophysics Data System (ADS)
Sheng, Guanglong; Su, Yuliang; Wang, Wendong; Javadpour, Farzam; Tang, Meirong
According to hydraulic-fracturing practices conducted in shale reservoirs, effective stimulated reservoir volume (ESRV) significantly affects the production of hydraulic fractured well. Therefore, estimating ESRV is an important prerequisite for confirming the success of hydraulic fracturing and predicting the production of hydraulic fracturing wells in shale reservoirs. However, ESRV calculation remains a longstanding challenge in hydraulic-fracturing operation. In considering fractal characteristics of the fracture network in stimulated reservoir volume (SRV), this paper introduces a fractal random-fracture-network algorithm for converting the microseismic data into fractal geometry. Five key parameters, including bifurcation direction, generating length (d), deviation angle (α), iteration times (N) and generating rules, are proposed to quantitatively characterize fracture geometry. Furthermore, we introduce an orthogonal-fractures coupled dual-porosity-media representation elementary volume (REV) flow model to predict the volumetric flux of gas in shale reservoirs. On the basis of the migration of adsorbed gas in porous kerogen of REV with different fracture spaces, an ESRV criterion for shale reservoirs with SRV is proposed. Eventually, combining the ESRV criterion and fractal characteristic of a fracture network, we propose a new approach for evaluating ESRV in shale reservoirs. The approach has been used in the Eagle Ford shale gas reservoir, and results show that the fracture space has a measurable influence on migration of adsorbed gas. The fracture network can contribute to enhancement of the absorbed gas recovery ratio when the fracture space is less than 0.2 m. ESRV is evaluated in this paper, and results indicate that the ESRV accounts for 27.87% of the total SRV in shale gas reservoirs. This work is important and timely for evaluating fracturing effect and predicting production of hydraulic fracturing wells in shale reservoirs.
Well log characterization of natural gas hydrates
Collett, Timothy S.; Lee, Myung W.
2011-01-01
In the last 25 years we have seen significant advancements in the use of downhole well logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From an early start of using wireline electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells drilled in Arctic permafrost environments to today where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. The most established and well known use of downhole log data in gas hydrate research is the use of electrical resistivity and acoustic velocity data (both compressional- and shear-wave data) to make estimates of gas hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. New downhole logging tools designed to make directionally oriented acoustic and propagation resistivity log measurements have provided the data needed to analyze the acoustic and electrical anisotropic properties of both highly inter-bedded and fracture dominated gas hydrate reservoirs. Advancements in nuclear-magnetic-resonance (NMR) logging and wireline formation testing have also allowed for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids (i.e., free-water along with clay and capillary bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas hydrate reservoir properties (i.e., permeabilities) needed to accurately predict gas production rates for various gas hydrate production schemes.
Fault seal analysis of Okan and Meren fields, Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenberg, R.A.; Brenneman, R.J.; Adeogba, A.A.
The sealing capacity and the dynamic seal behavior of faults between juxtaposed reservoirs were analyzed for Okan and Meren fields, offshore Nigeria. In both fields correlations were found between reservoir performance, juxtaposed fluid types, oil geochemistry, interpreted fluid contact relationships, fault sealing/leaking condition, and calculated smear gouge ratios. Integration of these data has been invaluable in quantifying fault seal risk and may effect depletion strategies for fault-juxtaposed reservoirs within these fields. Fault plane sections defined reservoir juxtapositions and aided visualization of potential cross-fault spill points. Smear gouge ratios calculated from E-logs were used to estimate the composition of fault-gouge materialsmore » between the juxtaposed reservoirs. These tools augmented interpretation of seal/nonseal character based on fluid contact relationships in proved reservoirs and, in addition, were used to quantify fault seal risk of untested fault-dependent closures in Okan. The results of these analyses were then used to interpret production-induced fault seal breakdown within the G-sands and also to risk seal integrity of fault dependent closures within the untested O-sands in an adjacent, upthrown fault block. Within this fault block the presence of potential fault intersection leak points and large areas of sand/sand juxtaposition with high smear gouge ratios (low sealing potential) limits potential reserves within the O-sand package. In Meren Field the E- and G-sands are juxtaposed, on different pressure decline, geochemically distinct, and are characterized by low smear gouge ratios. In contrast, specific G- and H-sands, juxtaposed across the same fault, contain similar OOWCs and are characterized by high smear gouge ratios. The cross-sealing and/or cross-leaking nature of compartment boundaries at Meren is related to fault displacement variation and the composition of displaced stratigraphy.« less
2009-01-01
that have selective activity against harmful algal blooms (HAB). The U.S. Army Corps of Engineers is responsible for managing numerous large reservoirs...systems, some of the enzyme-inhibiting herbicides may be active against algal species responsible for harmful blooms. The U.S. Army Engineer Research...small-scale flask studies to determine if these new chemistries are active against organisms responsible for HAB and if they show potential for
[Eutrophication control in local area by physic-ecological engineering].
Li, Qiu-Hua; Xia, Pin-Hua; Wu, Hong; Lin, Tao; Zhang, You-Chun; Li, Cun-Xiong; Chen, Li-Li; Yang, Fan
2012-07-01
An integrated physical and ecological engineering experiment for ecological remediation was performed at the Maixi River bay in Baihua Reservoir Guizhou Province, China. The results show that eutrophic parameters, such as total nitrogen, total phosphorus, chlorophyll a and chemical oxygen demand from the experimental site (enclosed water) were significantly lower than those of the reference site. The largest differences between the sites were 0.61 mg x L(-1), 0.041 mg x L(-1), 23.06 microg x L(-1), 8.4 mg x L(-1) respectively; experimental site transparency was > 1.50 m which was significantly higher than that of the reference site. The eutrophic index of the experimental site was oligo-trophic and mid-trophic, while the control site was mid-trophic state and eutrophic state. Phytoplankton abundance was 2 125.5 x 10(4) cells x L(-1) in June, 2011 at the control site,but phytoplankton abundance was lower at the experimental site with 33 x 10(4) cells x L(-1). Cyanobacteria dominated phytoplankton biomass at both sites, however the experimental site consisted of a higher proportion of diatoms and dinoflagellates. After more than one year of operation, the ecological engineering technology effectively controlled the occurrence of algae blooms, changed phytoplankton community structure, and controlled the negative impacts of eutrophication. Integrating physical and ecological engineering technology could improve water quality for reservoirs on the Guizhou plateau.
NASA Technical Reports Server (NTRS)
Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.
1989-01-01
The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.
Little, John R.; Bauer, Daniel P.
1981-01-01
The need for a method for estimating flow characteristics of flood hydrographs between Portland, Colo., and John Martin Reservoir has been promoted with the construction of the Pueble Reservoir. To meet this need a procedure was developed for predicting floodflow peaks, traveltimes, and volumes at any point along the Arkansas River between Portland and John Martin Reservoir without considering the existing Pueble Reservoir detention effects. A streamflow-routing model was calibrated initially and then typical flood simulations were made for the 164.8-mile study reach. Simulations were completed for varying magnitudes of floods and antecedent streamflow conditions. Multiple regression techniques were then used with simulation results as input to provide predictive relationships for food peak, volume, and traveltime. Management practices that may be used to benefit water users in the area include providing methods for the distribution and allotment of the flood waters upstream of Portland to different downstream water users according to Colorado water law and also under the Arkansas River Compact. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godec, Michael
Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO 2) storage in these formations. The potential storage of CO 2 in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO 2 storage capacity in conventional reservoirs. The goal of this cooperativemore » research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO 2 storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO 2 injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO 2 injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO 2 injection; (5) Identify and evaluate potential constraints to economic CO 2 storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO 2 storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO 2 injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO 2 storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO 2 storage activities would commence consistent with the historical development practices. Alternative CO 2 injection/EGR scenarios were considered and compared to well production without CO 2 injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO 2 that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO 2 in the Marcellus, Utica, Antrim, and Devonian Ohio shales.« less
Geologic Controls on the Growth of Petroleum Reserves
Fishman, Neil S.; Turner, Christine E.; Peterson, Fred; Dyman, Thaddeus S.; Cook, Troy
2008-01-01
The geologic characteristics of selected siliciclastic (largely sandstone) and carbonate (limestone and dolomite) reservoirs in North America (largely the continental United States) were investigated to improve our understanding of the role of geology in the growth of petroleum reserves. Reservoirs studied were deposited in (1) eolian environments (Jurassic Norphlet Formation of the Gulf Coast and Pennsylvanian-Permian Minnelusa Formation of the Powder River Basin), (2) interconnected fluvial, deltaic, and shallow marine environments (Oligocene Frio Formation of the Gulf Coast and the Pennsylvanian Morrow Formation of the Anadarko and Denver Basins), (3) deeper marine environments (Mississippian Barnett Shale of the Fort Worth Basin and Devonian-Mississippian Bakken Formation of the Williston Basin), (4) marine carbonate environments (Ordovician Ellenburger Group of the Permian Basin and Jurassic Smackover Formation of the Gulf of Mexico Basin), (5) a submarine fan environment (Permian Spraberry Formation of the Midland Basin), and (6) a fluvial environment (Paleocene-Eocene Wasatch Formation of the Uinta-Piceance Basin). The connection between an oil reservoir's production history and geology was also evaluated by studying production histories of wells in disparate reservoir categories and wells in a single formation containing two reservoir categories. This effort was undertaken to determine, in general, if different reservoir production heterogeneities could be quantified on the basis of gross geologic differences. It appears that reserve growth in existing fields is most predictable for those in which reservoir heterogeneity is low and thus production differs little between wells, probably owing to relatively homogeneous fluid flow. In fields in which reservoirs are highly heterogeneous, prediction of future growth from infill drilling is notably more difficult. In any case, success at linking heterogeneity to reserve growth depends on factors in addition to geology, such as engineering and technological advances and political or cultural or economic influences.
Harwell, Glenn R.
2012-01-01
Organizations responsible for the management of water resources, such as the U.S. Army Corps of Engineers (USACE), are tasked with estimation of evaporation for water-budgeting and planning purposes. The USACE has historically used Class A pan evaporation data (pan data) to estimate evaporation from reservoirs but many USACE Districts have been experimenting with other techniques for an alternative to collecting pan data. The energy-budget method generally is considered the preferred method for accurate estimation of open-water evaporation from lakes and reservoirs. Complex equations to estimate evaporation, such as the Penman, DeBruin-Keijman, and Priestley-Taylor, perform well when compared with energy-budget method estimates when all of the important energy terms are included in the equations and ideal data are collected. However, sometimes nonideal data are collected and energy terms, such as the change in the amount of stored energy and advected energy, are not included in the equations. When this is done, the corresponding errors in evaporation estimates are not quantifiable. Much simpler methods, such as the Hamon method and a method developed by the U.S. Weather Bureau (USWB) (renamed the National Weather Service in 1970), have been shown to provide reasonable estimates of evaporation when compared to energy-budget method estimates. Data requirements for the Hamon and USWB methods are minimal and sometimes perform well with remotely collected data. The Hamon method requires average daily air temperature, and the USWB method requires daily averages of air temperature, relative humidity, wind speed, and solar radiation. Estimates of annual lake evaporation from pan data are frequently within 20 percent of energy-budget method estimates. Results of evaporation estimates from the Hamon method and the USWB method were compared against historical pan data at five selected reservoirs in Texas (Benbrook Lake, Canyon Lake, Granger Lake, Hords Creek Lake, and Sam Rayburn Lake) to evaluate their performance and to develop coefficients to minimize bias for the purpose of estimating reservoir evaporation with accuracies similar to estimates of evaporation obtained from pan data. The modified Hamon method estimates of reservoir evaporation were similar to estimates of reservoir evaporation from pan data for daily, monthly, and annual time periods. The modified Hamon method estimates of annual reservoir evaporation were always within 20 percent of annual reservoir evaporation from pan data. Unmodified and modified USWB method estimates of annual reservoir evaporation were within 20 percent of annual reservoir evaporation from pan data for about 91 percent of the years compared. Average daily differences between modified USWB method estimates and estimates from pan data as a percentage of the average amount of daily evaporation from pan data were within 20 percent for 98 percent of the months. Without any modification to the USWB method, average daily differences as a percentage of the average amount of daily evaporation from pan data were within 20 percent for 73 percent of the months. Use of the unmodified USWB method is appealing because it means estimates of average daily reservoir evaporation can be made from air temperature, relative humidity, wind speed, and solar radiation data collected from remote weather stations without the need to develop site-specific coefficients from historical pan data. Site-specific coefficients would need to be developed for the modified version of the Hamon method.
Analysis of passive surface-wave noise in surface microseismic data and its implications
Forghani-Arani, F.; Willis, M.; Haines, S.; Batzle, M.; Davidson, M.
2011-01-01
Tight gas reservoirs are projected to be a major portion of future energy resources. Because of their low permeability, hydraulic fracturing of these reservoirs is required to improve the permeability and reservoir productivity. Passive seismic monitoring is one of the few tools that can be used to characterize the changes in the reservoir due to hydraulic fracturing. Although the majority of the studies monitoring hydraulic fracturing exploit down hole microseismic data, surface microseismic monitoring is receiving increased attention because it is potentially much less expensive to acquire. Due to a broader receiver aperture and spatial coverage, surface microseismic data may be more advantageous than down hole microseismic data. The effectiveness of this monitoring technique, however, is strongly dependent on the signal-to-noise ratio of the data. Cultural and ambient noise can mask parts of the waveform that carry information about the subsurface, thereby decreasing the effectiveness of surface microseismic analysis in identifying and locating the microseismic events. Hence, time and spatially varying suppression of the surface-wave noise ground roll is a critical step in surface microseismic monitoring. Here, we study a surface passive dataset that was acquired over a Barnett Shale Formation reservoir during two weeks of hydraulic fracturing, in order to characterize and suppress the surface noise in this data. We apply techniques to identify the characteristics of the passive ground roll. Exploiting those characteristics, we can apply effective noise suppression techniques to the passive data. ?? 2011 Society of Exploration Geophysicists.
Eighteenth workshop on geothermal reservoir engineering: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.
1993-01-28
PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan.more » The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook« less
Low-btu gas in the US Midcontinent: A challenge for geologists and engineers
Newell, K. David; Bhattacharya, Saibal; Sears, M. Scott
2009-01-01
Several low-btu gas plays can be defined by mapping gas quality by geological horizon in the Midcontinent. Some of the more inviting plays include Permian strata west of the Central Kansas uplift and on the eastern flank of Hugoton field and Mississippi chat and other pays that subcrop beneath (and directly overlie) the basal Pennsylvanian angular unconformity at the southern end of the Central Kansas uplift. Successful development of these plays will require the cooperation of reservoir geologists and process engineers so that the gas can be economically upgraded and sold at a nominal pipeline quality of 950 btu/scf or greater. Nitrogen is the major noncombustible contaminant in these gas fields, and various processes can be utilized to separate it from the hydrocarbon gases. Helium, which is usually found in percentages corresponding to nitrogen, is a possible ancillary sales product in this region. Its separation from the nitrogen, of course, requires additional processing. The engineering solution for low-btu gas depends on the rates, volumes, and chemistry of the gas needing upgrading. Cryogenic methods of nitrogen removal are classically used for larger feed volumes, but smaller feed volumes characteristic of isolated, low-pressure gas fields can now be handled by available small-scale PSA technologies. Operations of these PSA plants are now downscaled for upgrading stripper well gas production. Any nitrogen separation process should be sized, within reason, to match the anticipated flow rate. If the reservoir rock surprises to the upside, the modularity of the upgrading units is critical, for they can be stacked to meet higher volumes. If a reservoir disappoints (and some will), modularity allows the asset to be moved to another site without breaking the bank.
AAO-based nanoreservoir arrays: A quick and easy support for TEM characterization
NASA Astrophysics Data System (ADS)
Mace, M.; Sahaf, H.; Moyen, E.; Bedu, F.; Masson, L.; Hanbücken, M.
2010-12-01
Large-scale arrays of calibrated, nanometer sized reservoirs are prepared by adapting the well-established electrochemical method used so far for the preparation of anodic aluminium oxide (AAO) membranes. The bottom plane of the assembly is prepared to be transparent for high-energy electrons, enabling their use as a universal sample support for transmission electron microscopy studies of nanoparticles. The nanoreservoir substrates can be cleaned under ultra-high-vacuum conditions and filled, by evaporating different materials. Filled nanoreservoirs can locally be sealed with a thin carbon layer using focused-ion-beam-induced deposition (FIBID). Nanoparticles, grow at various adsorption places on the walls and bottom planes inside the nanoreservoirs. They can be characterized by transmission electron microscopy (TEM) without further sample preparation in different crystallographic directions. Due to the dense array-arrangement of the reservoirs, very good statistics can already be obtained on one single sample. The controlled fabrication of the nanoreservoir array and first TEM results obtained on Au nanoparticles before and after sealing of the reservoirs, are presented.
NASA Astrophysics Data System (ADS)
Pawar, R.
2016-12-01
Risk assessment and risk management of engineered geologic CO2 storage systems is an area of active investigation. The potential geologic CO2 storage systems currently under consideration are inherently heterogeneous and have limited to no characterization data. Effective risk management decisions to ensure safe, long-term CO2 storage requires assessing and quantifying risks while taking into account the uncertainties in a storage site's characteristics. The key decisions are typically related to definition of area of review, effective monitoring strategy and monitoring duration, potential of leakage and associated impacts, etc. A quantitative methodology for predicting a sequestration site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale geologic storage projects where projects will require quantitative assessments of potential long-term liabilities. An integrated assessment modeling (IAM) paradigm which treats a geologic CO2 storage site as a system made up of various linked subsystems can be used to predict long-term performance. The subsystems include storage reservoir, seals, potential leakage pathways (such as wellbores, natural fractures/faults) and receptors (such as shallow groundwater aquifers). CO2 movement within each of the subsystems and resulting interactions are captured through reduced order models (ROMs). The ROMs capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. The computational efficiency allows for performing Monte Carlo simulations necessary for quantitative probabilistic risk assessment. We have used the IAM to predict long-term performance of geologic CO2 sequestration systems and to answer questions related to probability of leakage of CO2 through wellbores, impact of CO2/brine leakage into shallow aquifer, etc. Answers to such questions are critical in making key risk management decisions. A systematic uncertainty quantification approach can been used to understand how uncertain parameters associated with different subsystems (e.g., reservoir permeability, wellbore cement permeability, wellbore density, etc.) impact the overall site performance predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen, Brenda
The objective of this project was to expose and train multiple students in geological tools that are essential to reservoir characterization and geologic sequestration including but not limited to advanced petrological methods, mineralogical methods, and geochemical methods; core analysis, and geophysical well-log interpretation. These efforts have included training of multiple students through geologically based curriculum and research using advanced petrological, mineralogical, and geochemical methods. In whole, over the last 3+ years, this award has supported 5,828 hours of student research, supporting the work of several graduate and undergraduate students. They have all received training directly related to ongoing CO{sub 2}more » sequestration demonstrations. The students have all conducted original scientific research on topics related to understanding the importance of lithological, textural, and compositional variability in formations that are being targeted as CO{sub 2} sequestration reservoirs and seals. This research was linked to the Mount Simon Sandstone reservoir and overlying Eau Claire Formation seal in the Illinois Basin- a system where over one million tons of CO{sub 2} are actively being injected with the first large-scale demonstration of anthropogenic CO{sub 2} storage in the U.S. Student projects focused specifically on 1) reservoir porosity characterization and evaluation, 2) petrographic, mineralogical, and geochemical evidence of fluid-related diagenesis in the caprock, 3) textural changes in reservoir samples exposed to experimental CO{sub 2} + brine conditions, 4) controls on spatial heterogeneity in composition and texture in both the reservoir and seal, 5) the implications of small-scale fractures within the reservoir, and 6) petrographic and stable isotope analyses of carbonates in the seal to understand the burial history of the system. The student-led research associated with this project provided real-time and hands-on experience with a relevant CO{sub 2} system, provided relevant information to the regional partnerships who are working within these formations, and provides more broadly applicable understanding and method development for other carbon capture and storage systems.« less
Colloidal heat engines: a review.
Martínez, Ignacio A; Roldán, Édgar; Dinis, Luis; Rica, Raúl A
2016-12-21
Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the energy fluxes that occur at mesoscopic scales, and then discuss recent implementations of the colloidal equivalents to the macroscopic Stirling, Carnot and steam engines. These small-scale motors exhibit unique features in terms of power and efficiency fluctuations that have no equivalent in the macroscopic world. We also consider a second pathway for work extraction from colloidal engines operating between active bacterial reservoirs at different temperatures, which could significantly boost the performance of passive heat engines at the mesoscale. Finally, we provide some guidance on how the work extracted from colloidal heat engines can be used to generate net particle or energy currents, proposing a new generation of experiments with colloidal systems.
Electricity storage using a thermal storage scheme
NASA Astrophysics Data System (ADS)
White, Alexander
2015-01-01
The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on "sensible heat" storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round-trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.
Detecting the leakage source of a reservoir using isotopes.
Yi, Peng; Yang, Jing; Wang, Yongdong; Mugwanezal, Vincent de Paul; Chen, Li; Aldahan, Ala
2018-07-01
A good monitoring method is vital for understanding the sources of a water reservoir leakage and planning for effective restoring. Here we present a combination of several tracers ( 222 Rn, oxygen and hydrogen isotopes, anions and temperature) for identification of water leakage sources in the Pushihe pumped storage power station which is in the Liaoning province, China. The results show an average 222 Rn activity of 6843 Bq/m 3 in the leakage water, 3034 Bq/m 3 in the reservoir water, and 41,759 Bq/m 3 in the groundwater. Considering that 222 Rn activity in surface water is typically less than 5000 Bq/m 3 , the low level average 222 Rn activity in the leakage water suggests the reservoir water as the main source of water. Results of the oxygen and hydrogen isotopes show comparable ranges and values in the reservoir and the leakage water samples. However, important contribution of the groundwater (up to 36%) was present in some samples from the bottom and upper parts of the underground powerhouse, while the leakage water from some other parts indicate the reservoir water as the dominant source. The isotopic finding suggests that the reservoir water is the main source of the leakage water which is confirmed by the analysis of anions (nitrate, sulfate, and chloride) in the water samples. The combination of these tracer methods for studying dam water leakage improves the accuracy of identifying the source of leaks and provide a scientific reference for engineering solutions to ensure the dam safety. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankin, C.J.; Banken, M.K.
The Oklahoma Geological Survey (OGS), the Geological Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaged in a five-year program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection, evaluation, and distribution of information on all of Oklahoma`s FDD oil reservoirs and the recovery technologies that can be applied to those reservoirs with commercial success. Exhaustive literature searches are being conducted for these plays, both through published sources and through unpublished theses from regional universities. A bibliographic database hasmore » been developed to record these literature sources and their related plays. Trend maps are being developed to identify the FDD portions of the relevant reservoirs, through accessing current production databases and through compiling the literature results. A reservoir database system also has been developed, to record specific reservoir data elements that are identified through the literature, and through public and private data sources. Thus far, the initial demonstration for one has been completed, and second is nearly completed. All of the information gathered through these efforts will be transferred to the Oklahoma petroleum industry through a series of publications and workshops. Additionally, plans are being developed, and hardware and software resources are being acquired, in preparation for the opening of a publicly-accessible computer users laboratory, one component of the technology transfer program.« less
Haj, Adel E.; Christiansen, Daniel E.; Viger, Roland J.
2014-01-01
In 2011 the Missouri River Mainstem Reservoir System (Reservoir System) experienced the largest volume of flood waters since the initiation of record-keeping in the nineteenth century. The high levels of runoff from both snowpack and rainfall stressed the Reservoir System’s capacity to control flood waters and caused massive damage and disruption along the river. The flooding and resulting damage along the Missouri River brought increased public attention to the U.S. Army Corps of Engineers (USACE) operation of the Reservoir System. To help understand the effects of Reservoir System operation on the 2011 Missouri River flood flows, the U.S. Geological Survey Precipitation-Runoff Modeling System was used to construct a model of the Missouri River Basin to simulate flows at streamgages and dam locations with the effects of Reservoir System operation (regulation) on flow removed. Statistical tests indicate that the Missouri River Precipitation-Runoff Modeling System model is a good fit for high-flow monthly and annual stream flow estimation. A comparison of simulated unregulated flows and measured regulated flows show that regulation greatly reduced spring peak flow events, consolidated two summer peak flow events to one with a markedly decreased magnitude, and maintained higher than normal base flow beyond the end of water year 2011. Further comparison of results indicate that without regulation, flows greater than those measured would have occurred and been sustained for much longer, frequently in excess of 30 days, and flooding associated with high-flow events would have been more severe.
Earth Observations taken by the Expedition 23 Crew
2010-05-08
ISS023-E-035670 (8 May 2010) --- Mingachevir Reservoir, Azerbaijan is featured in this image photographed by an Expedition 23 crew member on the International Space Station. This detailed photograph highlights the southern Mingachevir Reservoir located in north-central Azerbaijan. The Mingachevir Reservoir occupies part of the Kura Basin, a topographic depression located between the Greater Caucasus Mountains to the northeast and the Lesser Caucasus Mountains to the southwest. According to scientists, folded layers of relatively young (less than 5.3 million years old) sedimentary rock, explosive volcanic products (ash and tuff), and unconsolidated sediments form the gray hills along the northern and southern shorelines of the reservoir (center and right). Afternoon sun highlights distinctive parallel patterns in the hills that are the result of water and wind erosion of different stratigraphic layers exposed at the surface. The nearby city of Mingachevir (left) is split by the Kur River after it passes through the dam and hydroelectric power station complex at top center. The current city was built in support of the hydroelectric power station constructed as part of the then Soviet Union?s energy infrastructure for the region. Today, Mingachevir is the fourth largest city in Azerbaijan (by population) and has become a cultural and economic center of the country. The reservoir held approximately 15 billion cubic meters of water at the time this image was taken, with a total engineered capacity of 16 billion cubic meters. The width of the reservoir illustrated here is approximately 8 kilometers; a jet flying over the reservoir and its contrail are visible midway between the opposing shorelines.
Geothermal Reservoir Well Stimulation Program: technology transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-05-01
Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)
ERIC Educational Resources Information Center
Decker, Robert L.
Designed for use in courses where students are expected to become proficient in the area of hydraulics, including diesel engine mechanic programs, this curriculum guide is comprised of fourteen units of instruction. Unit titles include (1) Introduction, (2) Fundamentals of Hydraulics, (3) Reservoirs, (4) Lines, Fittings, and Couplers, (5) Seals,…
NASA Technical Reports Server (NTRS)
Buist, R. J.
1977-01-01
The design and fabrication of a thermoelectric chiller for use in chilling a liquid reservoir is described. Acceptance test results establish the accuracy of the thermal model and predict the unit performance under various conditions required by the overall spacelab program.
Haines, Seth S.; Hart, Patrick E.; Collett, Timothy S.; Shedd, William; Frye, Matthew; Weimer, Paul; Boswell, Ray
2017-01-01
The Pliocene and Pleistocene sediments at lease block Green Canyon 955 (GC955) in the Gulf of Mexico include sand-rich strata with high saturations of gas hydrate; these gas hydrate accumulations and the associated geology have been characterized over the past decade using conventional industry three-dimensional (3D) seismic data and dedicated logging-while-drilling (LWD) borehole data. To improve structural and stratigraphic characterization and to address questions of gas flow and reservoir properties, in 2013 the U.S. Geological Survey acquired high-resolution two-dimensional (2D) seismic data at GC955. Combined analysis of all available data improves our understanding of the geological evolution of the study area, which includes basin-scale migration of the Mississippi River sediment influx as well as local-scale shifting of sedimentary channels at GC955 in response to salt-driven uplift, structural deformation associated with the salt uplift, and upward gas migration from deeper sediments that charges the main gas hydrate reservoir and shallower strata. The 2D data confirm that the sand-rich reservoir is composed principally of sediments deposited in a proximal levee setting and that episodes of channel scour, interspersed with levee deposition, have resulted in an assemblage of many individual proximal levee deposit “pods” each with horizontal extent up to several hundred meters. Joint analysis of the 2D and 3D data reveals new detail of a complex fault network that controls the fluid-flow system; large east-west trending normal faults allow fluid flow through the reservoir-sealing fine-grained unit, and smaller north-south oriented faults provide focused fluid-flow pathways (chimneys) through the shallower sediments. This system has enabled the flow of gas from the main reservoir to the seafloor throughout the recent history at GC955, and its intricacies help explain the distributed occurrences of gas hydrate in the intervening strata.
Reservoirs in the United States
Harbeck, G. Earl
1948-01-01
Man has engaged in the control of flowing water since history began. Among his early recorded efforts were reservoirs for muncipal water-supplies constructed near ancient Jerusalem to store water which was brought there in masonry conduits. 1/ Irrigation was practiced in Egypt as early as 2000 B. C. There the "basin system" was used from ancient times until the 19th century. The land was divided , into basins of approximately 40,000 acres, separated by earthen dikes. 2/ Flood waters of the Nile generally inundated the basins through canals, many of which were built by the Pharaohs. Even then the economic consequences of a deficient annual flood were recognized. Lake Maeris, which according to Herodotus was an ancient storage reservoir, is said to have had an area of 30,000 acres. In India, the British found at the time of their occupancy of the Presidency of Madras about 50,000 reservoirs for irrigation, many believed to be of ancient construction. 3/ During the period 115-130 A. D. reservoirs were built to improve the water-supply of Athens. Much has been written concerning the elaborate collection and distribution system built to supply Rome, and parts of it remain to this day as monuments to the engineering skill employed by the Romans in solving the problem of large-scale municipal water-supplies.
Simulation of rain floods on Willow Creek, Valley County, Montana
Parrett, Charles
1986-01-01
The Hydrologic Engineering Center-1 rainfall-runoff simulation model was used to assess the effects of a system of reservoirs and waterspreaders in the 550-sq mi Willow Creek Basin in northeastern Montana. For simulation purposes, the basin was subdivided into 100 subbasins containing 84 reservoirs and 14 waterspreaders. Precipitation input to the model was a 24-hr duration, 100-yr frequency synthetic rainstorm developed from National Weather Service data. Infiltration and detention losses were computed using the U.S. Soil Conservation Service Curve Number concept, and the dimensionless unit hydrograph developed by the U.S. Soil Conservation Service was used to compute runoff. Channel and reservoir flow routing was based on the modified Puls storage routing procedure. Waterspreaders were simulated by assuming that each dike in a spreader system functions as a reservoir, with only an emergency spillway discharging directly into the next dike. Waterspreader and reservoir volumes were calculated from surface areas measured on maps. The first simulation run was made with no structures in place, and resulted in a 100-yr frequency peak at the mouth of Willow Creek of 22,700 cu ft/sec. With all structures in place, the 100-yr frequency peak was decreased by 74% to 5,870 cu ft/sec. (USGS)
NASA Astrophysics Data System (ADS)
Broadhurst, T.; Mattson, E.
2017-12-01
Enhanced geothermal systems (EGS) are gaining in popularity as a technology that can be used to increase areas for geothermal resource procurement. One of the most important factors in the success of an EGS system is the success of the subsurface reservoir that is used for fluid flow and heat mining through advection. There are numerous challenges in stimulating a successful reservoir, including maintaining flow rates, minimizing leak off, preventing short-circuiting, and reducing the risk of microseismicity associated with subsurface activity. Understanding past examples of stimulation can be invaluable in addressing these challenges. This study provides an overview of stimulation methods that have been employed in EGS systems from 1974-2017. We include all geothermal reservoirs and demonstration projects that have experienced hydrofracturing, chemical stimulation, and induced thermal stress for a comprehensive list. We also examine different metrics and measures of success in geothermal reservoir stimulation to draw conclusions and provide recommendations for future projects. Multiple project characteristics are reported including geologic setting, stress conditions, reservoir temperature, injection specifics, resulting microseismicity, and overall project goals. Insight into optimal and unproductive stimulation methods is crucial to conserving mental capital, utilizing project funding, and ensuring EGS technology advances as efficiently as possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldburg, A.; Price, H.
The overall project objective is to build a solid engineering base upon which the Department of Energy (DOE) can improve and accelerate the application of micellar-polymer recovery technology to Mid-Continent and California sandstone reservoirs. The purpose of the work carried out under these two contracts is to significantly aid, both DOE and the private sector, in gaining the following Project Objectives: to select the better micellar-polymer prospects in the Mid-Continent and California regions; to assess all of the available field and laboratory data which has a bearing on recovering oil by micellar-polymer projects in order to help identify and resolvemore » both the technical and economic constraints relating thereto; and to design and analyze improved field pilots and tests and to develop a micellar-polymer applications matrix for use by the potential technology users; i.e., owner/operators. The report includes the following: executive summary and project objectives; development of a predictive model for economic evaluation of reservoirs; reservoir data bank for micellar-polymer recovery evaluation; PECON program for preliminary economic evaluation; ordering of candidate reservoirs for additional data acquisition; validation of predictive model by numerical simulation; and work forecast. Tables, figures and references are included.« less
Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.
2008-01-01
The U. S. Geological Survey (USGS) is conducting an updated assessment of geothermal resources in the United States. The primary method applied in assessments of identified geothermal systems by the USGS and other organizations is the volume method, in which the recoverable heat is estimated from the thermal energy available in a reservoir. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. The new assessment will incorporate some changes in the models for temperature and depth ranges for electric power production, preferred chemical geothermometers for estimates of reservoir temperatures, estimates of reservoir volumes, and geothermal energy recovery factors. Monte Carlo simulations are used to characterize uncertainties in the estimates of electric power generation. These new models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of natural geothermal reservoirs.
NASA Astrophysics Data System (ADS)
Lorenz, John C.; Warpinski, Norman R.; Teufel, Lawrence W.; Branagan, Paul T.; Sattler, Allan R.; Northrop, David A.
Hundreds of millions of cubic meters of natural gas are locked up in low-permeability, natural gas reservoirs. The Multiwell Experiment (MWX) was designed to characterize such reservoirs, typical of much of the western United States, and to assess and develop a technology for the production of this unconventional resource. Flow-rate tests of the MWX reservoirs indicate a system permeability that is several orders of magnitude higher than laboratory permeability measurements made on matrix-rock sandstones. This enhanced permeability is caused by natural fractures. The single set of fractures present in the reservoirs provides a significant permeability anisotropy that is aligned with the maximum in situ horizontal stress. Hydraulic fractures therefore form parallel to the natural fractures and are consequently an inefficient mechanism for stimulation. Successful stimulation may be possible by perturbing the local stress field with a large hydraulic fracture in one well so that a second hydraulic fracture in an offset well propagates transverse to the natural fracture permeability trend.
NASA Astrophysics Data System (ADS)
Jasperse, J.; Ralph, F. M.
2016-12-01
Forecast Informed Reservoir Operations (FIRO) is a management strategy that is gaining interest in the western United States as a means to improve the performance of reservoirs to provide more reliable water supply for municipal, agricultural, and environmental water needs as well as enhancing the flood protection capacity of reservoirs. Many surface water reservoirs were built decades ago and are operated in accordance with rules that were developed based on the best information at the time of construction. Over time there have been increasing stressors that impact effective reservoir operations including: increasing water demand; providing in-stream flows for habitat of aquatic species; and climate change. Few new reservoirs are being constructed, therefore there is motivation by water managers to more effectively operate existing reservoirs by optimizing operational rules under a decision framework that considers forecasting. The viability of FIRO is being investigated at Lake Mendocino in northern California. This facility is managed for flood protection by the U.S. Army Corps of Engineers (USACE) while the Sonoma County Water Agency (SCWA) is responsible for the management of the water supply pool. Reductions of reservoir inflow due to recent operational license conditions of an upstream hydroelectric facility coupled with highly variable precipitation (due to the significance of atmospheric rivers in the region) has led to difficulties in maintaining reservoir storage to meet stream flows for agricultural and municipal water users and to meet in-stream flow requirements for three salmonid species listed under the Endangered Species Act. The reduced water supply reliability of the reservoir has motivated water managers and scientists from local, state, and federal agencies to investigate whether FIRO could help address this challenge. This effort is led by a Steering Committee comprised of members from SCWA, Scripps-UC San Diego, USACE, NOAA, California Department of Water Resources, USGS, and Bureau of Reclamation. The partnership is involved with: conducting a preliminary viability assessment; evaluating operational strategies and decision support tools should FIRO be found to be viable; and coordinating research to support advances in new technology and improved forecasting skill.
Deposition and simulation of sediment transport in the Lower Susquehanna River reservoir system
Hainly, R.A.; Reed, L.A.; Flippo, H.N.; Barton, G.J.
1995-01-01
The Susquehanna River drains 27,510 square miles in New York, Pennsylvania, and Maryland and is the largest tributary to the Chesapeake Bay. Three large hydroelectric dams are located on the river, Safe Harbor (Lake Clarke) and Holtwood (Lake Aldred) in southern Pennsylvania, and Conowingo (Conowingo Reservoir) in northern Maryland. About 259 million tons of sediment have been deposited in the three reservoirs. Lake Clarke contains about 90.7 million tons of sediment, Lake Aldred contains about 13.6 million tons, and Conowingo Reservoir contains about 155 million tons. An estimated 64.8 million tons of sand, 19.7 million tons of coal, 112 million tons of silt, and 63.3 million tons of clay are deposited in the three reservoirs. Deposition in the reservoirs is variable and ranges from 0 to 30 feet. Chemical analyses of sediment core samples indicate that the three reservoirs combined contain about 814,000 tons of organic nitrogen, 98,900 tons of ammonia as nitrogen, 226,000 tons of phosphorus, 5,610,000 1tons of iron, 2,250,000 tons of aluminum, and about 409,000 tons of manganese. Historical data indicate that Lake Clarke and Lake Aldred have reached equilibrium, and that they no longer store sediment. A comparison of cross-sectional data from Lake Clarke and Lake Aldred with data from Conowingo Reservoir indicates that Conowingo Reservoir will reach equilibrium within the next 20 to 30 years. As the Conowingo Reservoir fills with sediment and approaches equilibrium, the amount of sediment transported to the Chesapeake Bay will increase. The most notable increases will take place when very high flows scour the deposited sediment. Sediment transport through the reservoir system was simulated with the U.S. Army Corps of Engineers' HEC-6 computer model. The model was calibrated with monthly sediment loads for calendar year 1987. Calibration runs with options set for maximum trap efficiency and a "natural" particle-size distribution resulted in an overall computed trap efficiency of 34 percent for 1987, much less than the measured efficiency of 71 percent.
Hydrochemical characterization of a mine water geothermal energy resource in NW Spain.
Loredo, C; Ordóñez, A; Garcia-Ordiales, E; Álvarez, R; Roqueñi, N; Cienfuegos, P; Peña, A; Burnside, N M
2017-01-15
Abandoned and flooded mine networks provide underground reservoirs of mine water that can be used as a renewable geothermal energy source. A complete hydrochemical characterization of mine water is required to optimally design the geothermal installation, understand the hydraulic behavior of the water in the reservoir and prevent undesired effects such as pipe clogging via mineral precipitation. Water pumped from the Barredo-Figaredo mining reservoir (Asturias, NW Spain), which is currently exploited for geothermal use, has been studied and compared to water from a separate, nearby mountain mine and a river that receives mine water discharge and partially infiltrates into the mine workings. Although the hydrochemistry was altered during the flooding process, the deep mine waters are currently near neutral, net alkaline, high metal waters of Na-HCO 3 type. Isotopic values suggest that mine waters are closely related to modern meteoric water, and likely correspond to rapid infiltration. Suspended and dissolved solids, and particularly iron content, of mine water results in some scaling and partial clogging of heat exchangers, but water temperature is stable (22°C) and increases with depth, so, considering the available flow (>100Ls -1 ), the Barredo-Figaredo mining reservoir represents a sustainable, long-term resource for geothermal use. Copyright © 2016 Elsevier B.V. All rights reserved.
Montgomery, S.L.; Chidsey, T.C.; Eby, D.E.; Lorenz, D.M.; Culham, W.E.
1999-01-01
Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer precipitous declines. An important new study focused on the detailed characterization of five separate reservoirs has resulted in significant information relevant to their future redevelopment. Completed assessment of Anasazi field suggests that phylloid algal mounds, the major productive buildup type in this area, consist of ten separate lithotypes and can be described in terms of a two-level reservoir system with an underlying high-permeability mound-core interval overlain by a lower permeability but volumetrically larger supramound (mound capping) interval. Reservoir simulations and related performance predictions indicate that CO2 flooding of these reservoirs should have considerable success in recovering remaining oil reserves.Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer precipitous declines. An important new study focused on the detailed characterization of five separate reservoirs has resulted in significant information relevant to their future redevelopment. Completed assessment of Anasazi field suggests that phylloid algal mounds, the major productive buildup type in this area, consist of ten separate lithotypes and can be described in terms of a two-level reservoir system with an underlying high-permeability mound-core interval overlain by a lower permeability but volumetrically larger supramound (mound capping) interval. Reservoir simulations and related performance predictions indicate that CO2 flooding of these reservoirs should have considerable success in recovering remaining oil reserves.