Sample records for reservoir parameter estimation

  1. Estimation of anisotropy parameters in organic-rich shale: Rock physics forward modeling approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herawati, Ida, E-mail: ida.herawati@students.itb.ac.id; Winardhi, Sonny; Priyono, Awali

    Anisotropy analysis becomes an important step in processing and interpretation of seismic data. One of the most important things in anisotropy analysis is anisotropy parameter estimation which can be estimated using well data, core data or seismic data. In seismic data, anisotropy parameter calculation is generally based on velocity moveout analysis. However, the accuracy depends on data quality, available offset, and velocity moveout picking. Anisotropy estimation using seismic data is needed to obtain wide coverage of particular layer anisotropy. In anisotropic reservoir, analysis of anisotropy parameters also helps us to better understand the reservoir characteristics. Anisotropy parameters, especially ε, aremore » related to rock property and lithology determination. Current research aims to estimate anisotropy parameter from seismic data and integrate well data with case study in potential shale gas reservoir. Due to complexity in organic-rich shale reservoir, extensive study from different disciplines is needed to understand the reservoir. Shale itself has intrinsic anisotropy caused by lamination of their formed minerals. In order to link rock physic with seismic response, it is necessary to build forward modeling in organic-rich shale. This paper focuses on studying relationship between reservoir properties such as clay content, porosity and total organic content with anisotropy. Organic content which defines prospectivity of shale gas can be considered as solid background or solid inclusion or both. From the forward modeling result, it is shown that organic matter presence increases anisotropy in shale. The relationships between total organic content and other seismic properties such as acoustic impedance and Vp/Vs are also presented.« less

  2. Estimation of discontinuous coefficients in parabolic systems: Applications to reservoir simulation

    NASA Technical Reports Server (NTRS)

    Lamm, P. D.

    1984-01-01

    Spline based techniques for estimating spatially varying parameters that appear in parabolic distributed systems (typical of those found in reservoir simulation problems) are presented. The problem of determining discontinuous coefficients, estimating both the functional shape and points of discontinuity for such parameters is discussed. Convergence results and a summary of numerical performance of the resulting algorithms are given.

  3. The time-lapse AVO difference inversion for changes in reservoir parameters

    NASA Astrophysics Data System (ADS)

    Longxiao, Zhi; Hanming, Gu; Yan, Li

    2016-12-01

    The result of conventional time-lapse seismic processing is the difference between the amplitude and the post-stack seismic data. Although stack processing can improve the signal-to-noise ratio (SNR) of seismic data, it also causes a considerable loss of important information about the amplitude changes and only gives the qualitative interpretation. To predict the changes in reservoir fluid more precisely and accurately, we also need the quantitative information of the reservoir. To achieve this aim, we develop the method of time-lapse AVO (amplitude versus offset) difference inversion. For the inversion of reservoir changes in elastic parameters, we apply the Gardner equation as the constraint and convert the three-parameter inversion of elastic parameter changes into a two-parameter inversion to make the inversion more stable. For the inversion of variations in the reservoir parameters, we infer the relation between the difference of the reflection coefficient and variations in the reservoir parameters, and then invert reservoir parameter changes directly. The results of the theoretical modeling computation and practical application show that our method can estimate the relative variations in reservoir density, P-wave and S-wave velocity, calculate reservoir changes in water saturation and effective pressure accurately, and then provide reference for the rational exploitation of the reservoir.

  4. Permeability Estimation of Rock Reservoir Based on PCA and Elman Neural Networks

    NASA Astrophysics Data System (ADS)

    Shi, Ying; Jian, Shaoyong

    2018-03-01

    an intelligent method which based on fuzzy neural networks with PCA algorithm, is proposed to estimate the permeability of rock reservoir. First, the dimensionality reduction process is utilized for these parameters by principal component analysis method. Further, the mapping relationship between rock slice characteristic parameters and permeability had been found through fuzzy neural networks. The estimation validity and reliability for this method were tested with practical data from Yan’an region in Ordos Basin. The result showed that the average relative errors of permeability estimation for this method is 6.25%, and this method had the better convergence speed and more accuracy than other. Therefore, by using the cheap rock slice related information, the permeability of rock reservoir can be estimated efficiently and accurately, and it is of high reliability, practicability and application prospect.

  5. MeProRisk - a Joint Venture for Minimizing Risk in Geothermal Reservoir Development

    NASA Astrophysics Data System (ADS)

    Clauser, C.; Marquart, G.

    2009-12-01

    Exploration and development of geothermal reservoirs for the generation of electric energy involves high engineering and economic risks due to the need for 3-D geophysical surface surveys and deep boreholes. The MeProRisk project provides a strategy guideline for reducing these risks by combining cross-disciplinary information from different specialists: Scientists from three German universities and two private companies contribute with new methods in seismic modeling and interpretation, numerical reservoir simulation, estimation of petrophysical parameters, and 3-D visualization. The approach chosen in MeProRisk consists in considering prospecting and developing of geothermal reservoirs as an iterative process. A first conceptual model for fluid flow and heat transport simulation can be developed based on limited available initial information on geology and rock properties. In the next step, additional data is incorporated which is based on (a) new seismic interpretation methods designed for delineating fracture systems, (b) statistical studies on large numbers of rock samples for estimating reliable rock parameters, (c) in situ estimates of the hydraulic conductivity tensor. This results in a continuous refinement of the reservoir model where inverse modelling of fluid flow and heat transport allows infering the uncertainty and resolution of the model at each iteration step. This finally yields a calibrated reservoir model which may be used to direct further exploration by optimizing additional borehole locations, estimate the uncertainty of key operational and economic parameters, and optimize the long-term operation of a geothermal resrvoir.

  6. HIV Model Parameter Estimates from Interruption Trial Data including Drug Efficacy and Reservoir Dynamics

    PubMed Central

    Luo, Rutao; Piovoso, Michael J.; Martinez-Picado, Javier; Zurakowski, Ryan

    2012-01-01

    Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used for prediction only if the model parameters are identifiable from clinical data. Most previous parameter identification studies for HIV have used sparsely sampled data from the decay phase following the introduction of therapy. In this paper, model parameters are identified from frequently sampled viral-load data taken from ten patients enrolled in the previously published AutoVac HAART interruption study, providing between 69 and 114 viral load measurements from 3–5 phases of viral decay and rebound for each patient. This dataset is considerably larger than those used in previously published parameter estimation studies. Furthermore, the measurements come from two separate experimental conditions, which allows for the direct estimation of drug efficacy and reservoir contribution rates, two parameters that cannot be identified from decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the model parameter values, with initial estimates obtained using nonlinear least-squares methods. The posterior distributions of the parameter estimates are reported and compared for all patients. PMID:22815727

  7. Use of LANDSAT 8 images for depth and water quality assessment of El Guájaro reservoir, Colombia

    NASA Astrophysics Data System (ADS)

    González-Márquez, Luis Carlos; Torres-Bejarano, Franklin M.; Torregroza-Espinosa, Ana Carolina; Hansen-Rodríguez, Ivette Renée; Rodríguez-Gallegos, Hugo B.

    2018-03-01

    The aim of this study was to evaluate the viability of using Landsat 8 spectral images to estimate water quality parameters and depth in El Guájaro Reservoir. On February and March 2015, two samplings were carried out in the reservoir, coinciding with the Landsat 8 images. Turbidity, dissolved oxygen, electrical conductivity, pH and depth were evaluated. Through multiple regression analysis between measured water quality parameters and the reflectance of the pixels corresponding to the sampling stations, statistical models with determination coefficients between 0.6249 and 0.9300 were generated. Results indicate that from a small number of measured parameters we can generate reliable models to estimate the spatial variation of turbidity, dissolved oxygen, pH and depth, as well the temporal variation of electrical conductivity, so models generated from Landsat 8 can be used as a tool to facilitate the environmental, economic and social management of the reservoir.

  8. A new method for calculation of water saturation in shale gas reservoirs using V P -to-V S ratio and porosity

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Sun, Jianmeng; Zhang, Hongpan; Liu, Haitao; Chen, Xiangyang

    2018-02-01

    Total water saturation is an important parameter for calculating the free gas content of shale gas reservoirs. Owing to the limitations of the Archie formula and its extended solutions in zones rich in organic or conductive minerals, a new method was proposed to estimate total water saturation according to the relationship between total water saturation, V P -to-V S ratio and total porosity. Firstly, the ranges of the relevant parameters in the viscoelastic BISQ model in shale gas reservoirs were estimated. Then, the effects of relevant parameters on the V P -to-V S ratio were simulated based on the partially saturated viscoelastic BISQ model. These parameters were total water saturation, total porosity, permeability, characteristic squirt-flow length, fluid viscosity and sonic frequency. The simulation results showed that the main factors influencing V P -to-V S ratio were total porosity and total water saturation. When the permeability and the characteristic squirt-flow length changed slightly for a particular shale gas reservoir, their influences could be neglected. Then an empirical equation for total water saturation with respect to total porosity and V P -to-V S ratio was obtained according to the experimental data. Finally, the new method was successfully applied to estimate total water saturation in a sequence formation of shale gas reservoirs. Practical applications have shown good agreement with the results calculated by the Archie model.

  9. 77 FR 4806 - Dominion Transmission, Inc.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... the physical parameters, including total natural gas inventory, reservoir pressure, reservoir and... the construction and operation of wells TW-210 and TW-211. Dominion estimates that the proposed wells...

  10. LakeVOC; A Deterministic Model to Estimate Volatile Organic Compound Concentrations in Reservoirs and Lakes

    USGS Publications Warehouse

    Bender, David A.; Asher, William E.; Zogorski, John S.

    2003-01-01

    This report documents LakeVOC, a model to estimate volatile organic compound (VOC) concentrations in lakes and reservoirs. LakeVOC represents the lake or reservoir as a two-layer system and estimates VOC concentrations in both the epilimnion and hypolimnion. The air-water flux of a VOC is characterized in LakeVOC in terms of the two-film model of air-water exchange. LakeVOC solves the system of coupled differential equations for the VOC concentration in the epilimnion, the VOC concentration in the hypolimnion, the total mass of the VOC in the lake, the volume of the epilimnion, and the volume of the hypolimnion. A series of nine simulations were conducted to verify LakeVOC representation of mixing, dilution, and gas exchange characteristics in a hypothetical lake, and two additional estimates of lake volume and MTBE concentrations were done in an actual reservoir under environmental conditions. These 11 simulations showed that LakeVOC correctly handled mixing, dilution, and gas exchange. The model also adequately estimated VOC concentrations within the epilimnion in an actual reservoir with daily input parameters. As the parameter-input time scale increased (from daily to weekly to monthly, for example), the differences between the measured-averaged concentrations and the model-estimated concentrations generally increased, especially for the hypolimnion. This may be because as the time scale is increased from daily to weekly to monthly, the averaging of model inputs may cause a loss of detail in the model estimates.

  11. Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields: Stochastic inversion of AVA and CSEM data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.; Hoversten, G.M.

    2011-09-15

    Joint inversion of seismic AVA and CSEM data requires rock-physics relationships to link seismic attributes to electrical properties. Ideally, we can connect them through reservoir parameters (e.g., porosity and water saturation) by developing physical-based models, such as Gassmann’s equations and Archie’s law, using nearby borehole logs. This could be difficult in the exploration stage because information available is typically insufficient for choosing suitable rock-physics models and for subsequently obtaining reliable estimates of the associated parameters. The use of improper rock-physics models and the inaccuracy of the estimates of model parameters may cause misleading inversion results. Conversely, it is easy tomore » derive statistical relationships among seismic and electrical attributes and reservoir parameters from distant borehole logs. In this study, we develop a Bayesian model to jointly invert seismic AVA and CSEM data for reservoir parameter estimation using statistical rock-physics models; the spatial dependence of geophysical and reservoir parameters are carried out by lithotypes through Markov random fields. We apply the developed model to a synthetic case, which simulates a CO{sub 2} monitoring application. We derive statistical rock-physics relations from borehole logs at one location and estimate seismic P- and S-wave velocity ratio, acoustic impedance, density, electrical resistivity, lithotypes, porosity, and water saturation at three different locations by conditioning to seismic AVA and CSEM data. Comparison of the inversion results with their corresponding true values shows that the correlation-based statistical rock-physics models provide significant information for improving the joint inversion results.« less

  12. Fracture characterization by hybrid enumerative search and Gauss-Newton least-squares inversion methods

    NASA Astrophysics Data System (ADS)

    Alkharji, Mohammed N.

    Most fracture characterization methods provide a general description of the fracture parameters as part of the reservoirs parameters; the fracture interaction and geometry within the reservoir is given less attention. T-Matrix and Linear Slip effective medium fracture models are implemented to invert the elastic tensor for the parameters and geometries of the fractures within the reservoir. The fracture inverse problem has an ill-posed, overdetermined, underconstrained rank-deficit system of equations. Least-squares inverse methods are used to solve the problem. A good starting initial model for the parameters is a key factor in the reliability of the inversion. Most methods assume that the starting parameters are close to the solution to avoid inaccurate local minimum solutions. The prior knowledge of the fracture parameters and their geometry is not available. We develop a hybrid, enumerative and Gauss-Newton, method that estimates the fracture parameters and geometry from the elastic tensor with no prior knowledge of the initial parameter values. The fracture parameters are separated into two groups. The first group contains the fracture parameters with no prior information, and the second group contains the parameters with known prior information. Different models are generated from the first group parameters by sampling the solution space over a predefined range of possible solutions for each parameter. Each model generated by the first group is fixed and used as a starting model to invert for the second group of parameters using the Gauss-Newton method. The least-squares residual between the observed elastic tensor and the estimated elastic tensor is calculated for each model. The model parameters that yield the least-squares residual corresponds to the correct fracture reservoir parameters and geometry. Two synthetic examples of fractured reservoirs with oil and gas saturations were inverted with no prior information about the fracture properties. The results showed that the hybrid algorithm successfully predicted the fracture parametrization, geometry, and the fluid content within the modeled reservoir. The method was also applied on an elastic tensor extracted from the Weyburn field in Saskatchewan, Canada. The solution suggested no presence of fractures but only a VTI system caused by the shale layering in the targeted reservoir, this interpretation is supported by other Weyburn field data.

  13. Acoustic parameters inversion and sediment properties in the Yellow River reservoir

    NASA Astrophysics Data System (ADS)

    Li, Chang-Zheng; Yang, Yong; Wang, Rui; Yan, Xiao-Fei

    2018-03-01

    The physical properties of silt in river reservoirs are important to river dynamics. Unfortunately, traditional techniques yield insufficient data. Based on porous media acoustic theory, we invert the acoustic parameters for the top river-bottom sediments. An explicit form of the acoustic reflection coefficient at the water-sediment interface is derived based on Biot's theory. The choice of parameters in the Biot model is discussed and the relation between acoustic and geological parameters is studied, including that between the reflection coefficient and porosity and the attenuation coefficient and permeability. The attenuation coefficient of the sound wave in the sediments is obtained by analyzing the shift of the signal frequency. The acoustic reflection coefficient at the water-sediment interface is extracted from the sonar signal. Thus, an inversion method of the physical parameters of the riverbottom surface sediments is proposed. The results of an experiment at the Sanmenxia reservoir suggest that the estimated grain size is close to the actual data. This demonstrates the ability of the proposed method to determine the physical parameters of sediments and estimate the grain size.

  14. Exploring the effects of data quality, data worth, and redundancy of CO2 gas pressure and saturation data on reservoir characterization through PEST Inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhufeng; Hou, Zhangshuan; Lin, Guang

    2014-04-01

    This study examined the impacts of reservoir properties on CO2 migration after subsurface injection and evaluated the possibility of characterizing reservoir properties using CO2 monitoring data such as saturation distribution. The injection reservoir was assumed to be located 1400-1500 m below the ground surface such that CO2 remained in the supercritical state. The reservoir was assumed to contain layers with alternating conductive and resistive properties, which is analogous to actual geological formations such as the Mount Simon Sandstone unit. The CO2 injection simulation used a cylindrical grid setting in which the injection well was situated at the center of themore » domain, which extended up to 8000 m from the injection well. The CO2 migration was simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). We adopted a nonlinear parameter estimation and optimization modeling software package, PEST, for automated reservoir parameter estimation. We explored the effects of data quality, data worth, and data redundancy on the detectability of reservoir parameters using CO2 saturation monitoring data, by comparing PEST inversion results using data with different levels of noises, various numbers of monitoring wells and locations, and different data collection spacing and temporal sampling intervals. This study yielded insight into the use of CO2 saturation monitoring data for reservoir characterization and how to design the monitoring system to optimize data worth and reduce data redundancy.« less

  15. The impact of lake and reservoir parameterization on global streamflow simulation.

    PubMed

    Zajac, Zuzanna; Revilla-Romero, Beatriz; Salamon, Peter; Burek, Peter; Hirpa, Feyera A; Beck, Hylke

    2017-05-01

    Lakes and reservoirs affect the timing and magnitude of streamflow, and are therefore essential hydrological model components, especially in the context of global flood forecasting. However, the parameterization of lake and reservoir routines on a global scale is subject to considerable uncertainty due to lack of information on lake hydrographic characteristics and reservoir operating rules. In this study we estimated the effect of lakes and reservoirs on global daily streamflow simulations of a spatially-distributed LISFLOOD hydrological model. We applied state-of-the-art global sensitivity and uncertainty analyses for selected catchments to examine the effect of uncertain lake and reservoir parameterization on model performance. Streamflow observations from 390 catchments around the globe and multiple performance measures were used to assess model performance. Results indicate a considerable geographical variability in the lake and reservoir effects on the streamflow simulation. Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE) metrics improved for 65% and 38% of catchments respectively, with median skill score values of 0.16 and 0.2 while scores deteriorated for 28% and 52% of the catchments, with median values -0.09 and -0.16, respectively. The effect of reservoirs on extreme high flows was substantial and widespread in the global domain, while the effect of lakes was spatially limited to a few catchments. As indicated by global sensitivity analysis, parameter uncertainty substantially affected uncertainty of model performance. Reservoir parameters often contributed to this uncertainty, although the effect varied widely among catchments. The effect of reservoir parameters on model performance diminished with distance downstream of reservoirs in favor of other parameters, notably groundwater-related parameters and channel Manning's roughness coefficient. This study underscores the importance of accounting for lakes and, especially, reservoirs and using appropriate parameterization in large-scale hydrological simulations.

  16. Relaxation limit of a compressible gas-liquid model with well-reservoir interaction

    NASA Astrophysics Data System (ADS)

    Solem, Susanne; Evje, Steinar

    2017-02-01

    This paper deals with the relaxation limit of a two-phase compressible gas-liquid model which contains a pressure-dependent well-reservoir interaction term of the form q (P_r - P) where q>0 is the rate of the pressure-dependent influx/efflux of gas, P is the (unknown) wellbore pressure, and P_r is the (known) surrounding reservoir pressure. The model can be used to study gas-kick flow scenarios relevant for various wellbore operations. One extreme case is when the wellbore pressure P is largely dictated by the surrounding reservoir pressure P_r. Formally, this model is obtained by deriving the limiting system as the relaxation parameter q in the full model tends to infinity. The main purpose of this work is to understand to what extent this case can be represented by a well-defined mathematical model for a fixed global time T>0. Well-posedness of the full model has been obtained in Evje (SIAM J Math Anal 45(2):518-546, 2013). However, as the estimates for the full model are dependent on the relaxation parameter q, new estimates must be obtained for the equilibrium model to ensure existence of solutions. By means of appropriate a priori assumptions and some restrictions on the model parameters, necessary estimates (low order and higher order) are obtained. These estimates that depend on the global time T together with smallness assumptions on the initial data are then used to obtain existence of solutions in suitable Sobolev spaces.

  17. Determination techniques of Archie’s parameters: a, m and n in heterogeneous reservoirs

    NASA Astrophysics Data System (ADS)

    Mohamad, A. M.; Hamada, G. M.

    2017-12-01

    The determination of water saturation in a heterogeneous reservoir is becoming more challenging, as Archie’s equation is only suitable for clean homogeneous formation and Archie’s parameters are highly dependent on the properties of the rock. This study focuses on the measurement of Archie’s parameters in carbonate and sandstone core samples around Malaysian heterogeneous carbonate and sandstone reservoirs. Three techniques for the determination of Archie’s parameters a, m and n will be implemented: the conventional technique, core Archie parameter estimation (CAPE) and the three-dimensional regression technique (3D). By using the results obtained by the three different techniques, water saturation graphs were produced to observe the symbolic difference of Archie’s parameter and its relevant impact on water saturation values. The difference in water saturation values can be primarily attributed to showing the uncertainty level of Archie’s parameters, mainly in carbonate and sandstone rock samples. It is obvious that the accuracy of Archie’s parameters has a profound impact on the calculated water saturation values in carbonate sandstone reservoirs due to regions of high stress reducing electrical conduction resulting from the raised electrical heterogeneity of the heterogeneous carbonate core samples. Due to the unrealistic assumptions involved in the conventional method, it is better to use either the CAPE or 3D method to accurately determine Archie’s parameters in heterogeneous as well as homogeneous reservoirs.

  18. Artificial Neural Networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data

    NASA Astrophysics Data System (ADS)

    Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2014-08-01

    Permeability and porosity are two fundamental reservoir properties which relate to the amount of fluid contained in a reservoir and its ability to flow. The intrinsic attenuation is another important parameter since it is related to porosity, permeability, oil and gas saturation and these parameters significantly affect the seismic signature of a reservoir. We apply Artificial Neural Network (ANN) models to predict permeability (k) and porosity (ϕ) for a carbonate aquifer in southeastern Florida and to predict intrinsic attenuation (1/Q) for a sand-shale oil reservoir in northeast Texas. In this study, the Gamma test (a revolutionary estimator of the noise in a data set) has been used as a mathematically non-parametric nonlinear smooth modeling tool to choose the best input combination of seismic attributes to estimate k and ϕ, and the best combination of well-logs to estimate 1/Q. This saves time during the construction and training of ANN models and also sets a lower bound for the mean squared error to prevent over-training. The Neural Network method successfully delineates a highly permeable zone that corresponds to a high water production in the aquifer. The Gamma test found nonlinear relations that were not visible to linear regression allowing us to generalize the ANN estimations of k, ϕ and 1/Q for their respective sets of patterns that were not used during the learning phase.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spycher, Nicolas; Peiffer, Loic; Finsterle, Stefan

    GeoT implements the multicomponent geothermometry method developed by Reed and Spycher (1984, Geochim. Cosmichim. Acta 46 513–528) into a stand-alone computer program, to ease the application of this method and to improve the prediction of geothermal reservoir temperatures using full and integrated chemical analyses of geothermal fluids. Reservoir temperatures are estimated from statistical analyses of mineral saturation indices computed as a function of temperature. The reconstruction of the deep geothermal fluid compositions, and geothermometry computations, are all implemented into the same computer program, allowing unknown or poorly constrained input parameters to be estimated by numerical optimization using existing parameter estimationmore » software, such as iTOUGH2, PEST, or UCODE. This integrated geothermometry approach presents advantages over classical geothermometers for fluids that have not fully equilibrated with reservoir minerals and/or that have been subject to processes such as dilution and gas loss.« less

  20. Assessing the Benefits Provided by SWOT Data Towards Estimating Reservoir Residence Time in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Bonnema, M.; Hossain, F.

    2016-12-01

    The Mekong River Basin is undergoing rapid hydropower development. Nine dams are planned on the main stem of the Mekong and many more on its extensive tributaries. Understanding the effects that current and future dams have on the river system and water cycle as a whole is vital for the millions of people living in the basin. reservoir residence time, the amount of time water spends stored in a reservoir, is a key parameter in investigating these impacts. The forthcoming Surface Water and Ocean Topography (SWOT) mission is poised to provide an unprecedented amount of surface water observations. SWOT, when augmented by current satellite missions, will provide the necessary information to estimate the residence time of reservoirs across the entire basin in a more comprehensive way than ever before. In this study, we first combine observations from current satellite missions (altimetry, spectral imaging, precipitation) to estimate the residence times of existing reservoirs. We then use this information to project how future reservoirs will increase the residence time of the river system. Next, we explore how SWOT observations can be used to improve residence time estimation by examining the accuracy of reservoir surface area and elevation observations as well as the accuracy of river discharge observations.

  1. The nonlinear oil-water two-phase flow behavior for a horizontal well in triple media carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Tao, Zhengwu; Chen, Liang; Ma, Xin

    2017-10-01

    Carbonate reservoir is one of the important reservoirs in the world. Because of the characteristics of carbonate reservoir, horizontal well has become a key technology for efficiently developing carbonate reservoir. Establishing corresponding mathematical models and analyzing transient pressure behaviors of this type of well-reservoir configuration can provide a better understanding of fluid flow patterns in formation as well as estimations of important parameters. A mathematical model for a oil-water two-phase flow horizontal well in triple media carbonate reservoir by conceptualizing vugs as spherical shapes are presented in this article. A semi-analytical solution is obtained in the Laplace domain using source function theory, Laplace transformation, and superposition principle. Analysis of transient pressure responses indicates that seven characteristic flow periods of horizontal well in triple media carbonate reservoir can be identified. Parametric analysis shows that water saturation of matrix, vug and fracture system, horizontal section length, and horizontal well position can significantly influence the transient pressure responses of horizontal well in triple media carbonate reservoir. The model presented in this article can be applied to obtain important parameters pertinent to reservoir by type curve matching.

  2. A Semi-Analytical Method for Rapid Estimation of Near-Well Saturation, Temperature, Pressure and Stress in Non-Isothermal CO2 Injection

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2015-12-01

    Reservoir cooling near the wellbore is expected when fluids are injected into a reservoir or aquifer in CO2 storage, enhanced oil or gas recovery, enhanced geothermal systems, and water injection for disposal. Ignoring thermal effects near the well can lead to under-prediction of changes in reservoir pressure and stress due to competition between increased pressure and contraction of the rock in the cooled near-well region. In this work a previously developed semi-analytical model for immiscible, nonisothermal fluid injection is generalised to include partitioning of components between two phases. Advection-dominated radial flow is assumed so that the coupled two-phase flow and thermal conservation laws can be solved analytically. The temperature and saturation profiles are used to find the increase in reservoir pressure, tangential, and radial stress near the wellbore in a semi-analytical, forward-coupled model. Saturation, temperature, pressure, and stress profiles are found for parameters representative of several CO2 storage demonstration projects around the world. General results on maximum injection rates vs depth for common reservoir parameters are also presented. Prior to drilling an injection well there is often little information about the properties that will determine the injection rate that can be achieved without exceeding fracture pressure, yet injection rate and pressure are key parameters in well design and placement decisions. Analytical solutions to simplified models such as these can quickly provide order of magnitude estimates for flow and stress near the well based on a range of likely parameters.

  3. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms.

    PubMed

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2018-01-01

    Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs' production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture parameters are more sensitive compared with reservoir parameters. And reservoirs parameters mainly affect the later production period. However, the hydraulic fracture parameters have a significant effect on gas production from the early period. The results of this study can be used to improve the efficiency of history matching process. Also, it can contribute to the design and optimization of hydraulic fracture treatment design in unconventional SGRs.

  4. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms

    PubMed Central

    Wei, Mingzhen; Liu, Hong

    2018-01-01

    Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs’ production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture parameters are more sensitive compared with reservoir parameters. And reservoirs parameters mainly affect the later production period. However, the hydraulic fracture parameters have a significant effect on gas production from the early period. The results of this study can be used to improve the efficiency of history matching process. Also, it can contribute to the design and optimization of hydraulic fracture treatment design in unconventional SGRs. PMID:29320489

  5. Monitoring Earth's reservoir and lake dynamics from space

    NASA Astrophysics Data System (ADS)

    Donchyts, G.; Eilander, D.; Schellekens, J.; Winsemius, H.; Gorelick, N.; Erickson, T.; Van De Giesen, N.

    2016-12-01

    Reservoirs and lakes constitute about 90% of the Earth's fresh surface water. They play a major role in the water cycle and are critical for the ever increasing demands of the world's growing population. Water from reservoirs is used for agricultural, industrial, domestic, and other purposes. Current digital databases of lakes and reservoirs are scarce, mainly providing only descriptive and static properties of the reservoirs. The Global Reservoir and Dam (GRanD) database contains almost 7000 entries while OpenStreetMap counts more than 500 000 entries tagged as a reservoir. In the last decade several research efforts already focused on accurate estimates of surface water dynamics, mainly using satellite altimetry, However, currently they are limited only to less than 1000 (mostly large) water bodies. Our approach is based on three main components. Firstly, a novel method, allowing automated and accurate estimation of surface area from (partially) cloud-free optical multispectral or radar satellite imagery. The algorithm uses satellite imagery measured by Landsat, Sentinel and MODIS missions. Secondly, a database to store reservoir static and dynamic parameters. Thirdly, a web-based tool, built on top of Google Earth Engine infrastructure. The tool allows estimation of surface area for lakes and reservoirs at planetary-scale at high spatial and temporal resolution. A prototype version of the method, database, and tool will be presented as well as validation using in-situ measurements.

  6. A Parallel Stochastic Framework for Reservoir Characterization and History Matching

    DOE PAGES

    Thomas, Sunil G.; Klie, Hector M.; Rodriguez, Adolfo A.; ...

    2011-01-01

    The spatial distribution of parameters that characterize the subsurface is never known to any reasonable level of accuracy required to solve the governing PDEs of multiphase flow or species transport through porous media. This paper presents a numerically cheap, yet efficient, accurate and parallel framework to estimate reservoir parameters, for example, medium permeability, using sensor information from measurements of the solution variables such as phase pressures, phase concentrations, fluxes, and seismic and well log data. Numerical results are presented to demonstrate the method.

  7. iGeoT v1.0: Automatic Parameter Estimation for Multicomponent Geothermometry, User's Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spycher, Nicolas; Finsterle, Stefan

    GeoT implements the multicomponent geothermometry method developed by Reed and Spycher [1984] into a stand-alone computer program to ease the application of this method and to improve the prediction of geothermal reservoir temperatures using full and integrated chemical analyses of geothermal fluids. Reservoir temperatures are estimated from statistical analyses of mineral saturation indices computed as a function of temperature. The reconstruction of the deep geothermal fluid compositions, and geothermometry computations, are all implemented into the same computer program, allowing unknown or poorly constrained input parameters to be estimated by numerical optimization. This integrated geothermometry approach presents advantages over classical geothermometersmore » for fluids that have not fully equilibrated with reservoir minerals and/or that have been subject to processes such as dilution and gas loss. This manual contains installation instructions for iGeoT, and briefly describes the input formats needed to run iGeoT in Automatic or Expert Mode. An example is also provided to demonstrate the use of iGeoT.« less

  8. A method for examining the geospatial distribution of CO2 storage resources applied to the Pre-Punta Gorda Composite and Dollar Bay reservoirs of the South Florida Basin, U.S.A

    USGS Publications Warehouse

    Roberts-Ashby, Tina; Brandon N. Ashby,

    2016-01-01

    This paper demonstrates geospatial modification of the USGS methodology for assessing geologic CO2 storage resources, and was applied to the Pre-Punta Gorda Composite and Dollar Bay reservoirs of the South Florida Basin. The study provides detailed evaluation of porous intervals within these reservoirs and utilizes GIS to evaluate the potential spatial distribution of reservoir parameters and volume of CO2 that can be stored. This study also shows that incorporating spatial variation of parameters using detailed and robust datasets may improve estimates of storage resources when compared to applying uniform values across the study area derived from small datasets, like many assessment methodologies. Geospatially derived estimates of storage resources presented here (Pre-Punta Gorda Composite = 105,570 MtCO2; Dollar Bay = 24,760 MtCO2) were greater than previous assessments, which was largely attributed to the fact that detailed evaluation of these reservoirs resulted in higher estimates of porosity and net-porous thickness, and areas of high porosity and thick net-porous intervals were incorporated into the model, likely increasing the calculated volume of storage space available for CO2 sequestration. The geospatial method for evaluating CO2 storage resources also provides the ability to identify areas that potentially contain higher volumes of storage resources, as well as areas that might be less favorable.

  9. Efficacy of using data from angler-caught Burbot to estimate population rate functions

    USGS Publications Warehouse

    Brauer, Tucker A.; Rhea, Darren T.; Walrath, John D.; Quist, Michael C.

    2018-01-01

    The effective management of a fish population depends on the collection of accurate demographic data from that population. Since demographic data are often expensive and difficult to obtain, developing cost‐effective and efficient collection methods is a high priority. This research evaluates the efficacy of using angler‐supplied data to monitor a nonnative population of Burbot Lota lota. Age and growth estimates were compared between Burbot collected by anglers and those collected in trammel nets from two Wyoming reservoirs. Collection methods produced different length‐frequency distributions, but no difference was observed in age‐frequency distributions. Mean back‐calculated lengths at age revealed that netted Burbot grew faster than angled Burbot in Fontenelle Reservoir. In contrast, angled Burbot grew slightly faster than netted Burbot in Flaming Gorge Reservoir. Von Bertalanffy growth models differed between collection methods, but differences in parameter estimates were minor. Estimates of total annual mortality (A) of Burbot in Fontenelle Reservoir were comparable between angled (A = 35.4%) and netted fish (33.9%); similar results were observed in Flaming Gorge Reservoir for angled (29.3%) and netted fish (30.5%). Beverton–Holt yield‐per‐recruit models were fit using data from both collection methods. Estimated yield differed by less than 15% between data sources and reservoir. Spawning potential ratios indicated that an exploitation rate of 20% would be required to induce recruitment overfishing in either reservoir, regardless of data source. Results of this study suggest that angler‐supplied data are useful for monitoring Burbot population dynamics in Wyoming and may be an option to efficiently monitor other fish populations in North America.

  10. Reservoir monitoring and characterization using satellite geodetic data: Interferometric Synthetic Aperture Radar observations from the Krechba field, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, D.W.; Ferretti, Alessandro; Novali, Fabrizio

    2008-05-01

    Deformation in the material overlying an active reservoir is used to monitor pressure change at depth. A sequence of pressure field estimates, eleven in all, allow us to construct a measure of diffusive travel time throughout the reservoir. The dense distribution of travel time values means that we can construct an exactly linear inverse problem for reservoir flow properties. Application to Interferometric Synthetic Aperture Radar (InSAR) data gathered over a CO{sub 2} injection in Algeria reveals pressure propagation along two northwest trending corridors. An inversion of the travel times indicates the existence of two northwest-trending high permeability zones. The highmore » permeability features trend in the same direction as the regional fault and fracture zones. Model parameter resolution estimates indicate that the features are well resolved.« less

  11. Unconventional Tight Reservoirs Characterization with Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Santiago, C. J. S.; Solatpour, R.; Kantzas, A.

    2017-12-01

    The increase in tight reservoir exploitation projects causes producing many papers each year on new, modern, and modified methods and techniques on estimating characteristics of these reservoirs. The most ambiguous of all basic reservoir property estimations deals with permeability. One of the logging methods that is advertised to predict permeability but is always met by skepticism is Nuclear Magnetic Resonance (NMR). The ability of NMR to differentiate between bound and movable fluids and providing porosity increased the capability of NMR as a permeability prediction technique. This leads to a multitude of publications and the motivation of a review paper on this subject by Babadagli et al. (2002). The first part of this presentation is dedicated to an extensive review of the existing correlation models for NMR based estimates of tight reservoir permeability to update this topic. On the second part, the collected literature information is used to analyze new experimental data. The data are collected from tight reservoirs from Canada, the Middle East, and China. A case study is created to apply NMR measurement in the prediction of reservoir characterization parameters such as porosity, permeability, cut-offs, irreducible saturations etc. Moreover, permeability correlations are utilized to predict permeability. NMR experiments were conducted on water saturated cores. NMR T2 relaxation times were measured. NMR porosity, the geometric mean relaxation time (T2gm), Irreducible Bulk Volume (BVI), and Movable Bulk Volume (BVM) were calculated. The correlation coefficients were computed based on multiple regression analysis. Results are cross plots of NMR permeability versus the independently measured Klinkenberg corrected permeability. More complicated equations are discussed. Error analysis of models is presented and compared. This presentation is beneficial in understanding existing tight reservoir permeability models. The results can be used as a guide for choosing the best permeability estimation model for tight reservoirs data.

  12. General introduction and recovery factors

    USGS Publications Warehouse

    Verma, Mahendra K.

    2017-07-17

    IntroductionThe U.S. Geological Survey (USGS) compared methods for estimating an incremental recovery factor (RF) for the carbon dioxide enhanced oil recovery (CO2-EOR) process involving the injection of CO2 into oil reservoirs. This chapter first provides some basic information on the RF, including its dependence on various reservoir and operational parameters, and then discusses the three development phases of oil recovery—primary, second­ary, and tertiary (EOR). It ends with a brief discussion of the three approaches for estimating recovery factors, which are detailed in subsequent chapters.

  13. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan

    In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic amplitude versus angle (AVA) and controlled source electromagnetic (CSEM) data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo (MCMC) sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis (DREAM) and Adaptive Metropolis (AM) samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and CSEM data. The multi-chain MCMC is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration,more » the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic AVA and CSEM joint inversion provides better estimation of reservoir saturations than the seismic AVA-only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated – reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  14. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    NASA Astrophysics Data System (ADS)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura

    2017-12-01

    In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated - reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.

  15. A pragmatic method for estimating seepage losses for small reservoirs with application in rural India

    NASA Astrophysics Data System (ADS)

    Oblinger, Jennifer A.; Moysey, Stephen M. J.; Ravindrinath, Rangoori; Guha, Chiranjit

    2010-05-01

    SummaryThe informal construction of small dams to capture runoff and artificially recharge ground water is a widespread strategy for dealing with water scarcity. A lack of technical capacity for the formal characterization of these systems, however, is often an impediment to the implementation of effective watershed management practices. Monitoring changes in reservoir storage provides a conceptually simple approach to quantify seepage, but does not account for the losses occurring when seepage is balanced by inflows to the reservoir and the stage remains approximately constant. To overcome this problem we evaluate whether a physically-based volume balance model that explicitly represents watershed processes, including reservoir inflows, can be constrained by a limited set of data readily collected by non-experts, specifically records of reservoir stage, rainfall, and evaporation. To assess the impact of parameter non-uniqueness associated with the calibration of the non-linear model, we perform a Monte Carlo analysis to quantify uncertainty in the total volume of water contributed to the subsurface by the 2007 monsoon for a dam located in the Deccan basalts near the village of Salri in Madhya Pradesh, India. The Monte Carlo analysis demonstrated that subsurface losses from the reservoir could be constrained with the available data, but additional measurements are required to constrain reservoir inflows. Our estimate of seepage from the reservoir (7.0 ± 0.6 × 10 4 m 3) is 3.5 times greater than the recharge volume estimated by considering reservoir volume changes alone. This result suggests that artificial recharge could be significantly underestimated when reservoir inflows are not explicitly included in models. Our seepage estimate also accounts for about 11% of rainfall occurring upstream of the dam and is comparable in magnitude to natural ground water recharge, thereby indicating that the reservoir plays a significant role in the hydrology of this small watershed.

  16. Parameter identifiability and regional calibration for reservoir inflow prediction

    NASA Astrophysics Data System (ADS)

    Kolberg, Sjur; Engeland, Kolbjørn; Tøfte, Lena S.; Bruland, Oddbjørn

    2013-04-01

    The large hydropower producer Statkraft is currently testing regional, distributed models for operational reservoir inflow prediction. The need for simultaneous forecasts and consistent updating in a large number of catchments supports the shift from catchment-oriented to regional models. Low-quality naturalized inflow series in the reservoir catchments further encourages the use of donor catchments and regional simulation for calibration purposes. MCMC based parameter estimation (the Dream algorithm; Vrugt et al, 2009) is adapted to regional parameter estimation, and implemented within the open source ENKI framework. The likelihood is based on the concept of effectively independent number of observations, spatially as well as in time. Marginal and conditional (around an optimum) parameter distributions for each catchment may be extracted, even though the MCMC algorithm itself is guided only by the regional likelihood surface. Early results indicate that the average performance loss associated with regional calibration (difference in Nash-Sutcliffe R2 between regionally and locally optimal parameters) is in the range of 0.06. The importance of the seasonal snow storage and melt in Norwegian mountain catchments probably contributes to the high degree of similarity among catchments. The evaluation continues for several regions, focusing on posterior parameter uncertainty and identifiability. Vrugt, J. A., C. J. F. ter Braak, C. G. H. Diks, B. A. Robinson, J. M. Hyman and D. Higdon: Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling. Int. J. of nonlinear sciences and numerical simulation 10, 3, 273-290, 2009.

  17. History matching by spline approximation and regularization in single-phase areal reservoirs

    NASA Technical Reports Server (NTRS)

    Lee, T. Y.; Kravaris, C.; Seinfeld, J.

    1986-01-01

    An automatic history matching algorithm is developed based on bi-cubic spline approximations of permeability and porosity distributions and on the theory of regularization to estimate permeability or porosity in a single-phase, two-dimensional real reservoir from well pressure data. The regularization feature of the algorithm is used to convert the ill-posed history matching problem into a well-posed problem. The algorithm employs the conjugate gradient method as its core minimization method. A number of numerical experiments are carried out to evaluate the performance of the algorithm. Comparisons with conventional (non-regularized) automatic history matching algorithms indicate the superiority of the new algorithm with respect to the parameter estimates obtained. A quasioptimal regularization parameter is determined without requiring a priori information on the statistical properties of the observations.

  18. The Description of Shale Reservoir Pore Structure Based on Method of Moments Estimation

    PubMed Central

    Li, Wenjie; Wang, Changcheng; Shi, Zejin; Wei, Yi; Zhou, Huailai; Deng, Kun

    2016-01-01

    Shale has been considered as good gas reservoir due to its abundant interior nanoscale pores. Thus, the study of the pore structure of shale is of great significance for the evaluation and development of shale oil and gas. To date, the most widely used approaches for studying the shale pore structure include image analysis, radiation and fluid invasion methods. The detailed pore structures can be studied intuitively by image analysis and radiation methods, but the results obtained are quite sensitive to sample preparation, equipment performance and experimental operation. In contrast, the fluid invasion method can be used to obtain information on pore size distribution and pore structure, but the relative simple parameters derived cannot be used to evaluate the pore structure of shale comprehensively and quantitatively. To characterize the nanoscale pore structure of shale reservoir more effectively and expand the current research techniques, we proposed a new method based on gas adsorption experimental data and the method of moments to describe the pore structure parameters of shale reservoir. Combined with the geological mixture empirical distribution and the method of moments estimation principle, the new method calculates the characteristic parameters of shale, including the mean pore size (x¯), standard deviation (σ), skewness (Sk) and variation coefficient (c). These values are found by reconstructing the grouping intervals of observation values and optimizing algorithms for eigenvalues. This approach assures a more effective description of the characteristics of nanoscale pore structures. Finally, the new method has been applied to analyze the Yanchang shale in the Ordos Basin (China) and Longmaxi shale from the Sichuan Basin (China). The results obtained well reveal the pore characteristics of shale, indicating the feasibility of this new method in the study of the pore structure of shale reservoir. PMID:26992168

  19. The Description of Shale Reservoir Pore Structure Based on Method of Moments Estimation.

    PubMed

    Li, Wenjie; Wang, Changcheng; Shi, Zejin; Wei, Yi; Zhou, Huailai; Deng, Kun

    2016-01-01

    Shale has been considered as good gas reservoir due to its abundant interior nanoscale pores. Thus, the study of the pore structure of shale is of great significance for the evaluation and development of shale oil and gas. To date, the most widely used approaches for studying the shale pore structure include image analysis, radiation and fluid invasion methods. The detailed pore structures can be studied intuitively by image analysis and radiation methods, but the results obtained are quite sensitive to sample preparation, equipment performance and experimental operation. In contrast, the fluid invasion method can be used to obtain information on pore size distribution and pore structure, but the relative simple parameters derived cannot be used to evaluate the pore structure of shale comprehensively and quantitatively. To characterize the nanoscale pore structure of shale reservoir more effectively and expand the current research techniques, we proposed a new method based on gas adsorption experimental data and the method of moments to describe the pore structure parameters of shale reservoir. Combined with the geological mixture empirical distribution and the method of moments estimation principle, the new method calculates the characteristic parameters of shale, including the mean pore size (mean), standard deviation (σ), skewness (Sk) and variation coefficient (c). These values are found by reconstructing the grouping intervals of observation values and optimizing algorithms for eigenvalues. This approach assures a more effective description of the characteristics of nanoscale pore structures. Finally, the new method has been applied to analyze the Yanchang shale in the Ordos Basin (China) and Longmaxi shale from the Sichuan Basin (China). The results obtained well reveal the pore characteristics of shale, indicating the feasibility of this new method in the study of the pore structure of shale reservoir.

  20. Investigation on trophic state index by artificial neural networks (case study: Dez Dam of Iran)

    NASA Astrophysics Data System (ADS)

    Saghi, H.; Karimi, L.; Javid, A. H.

    2015-06-01

    Dam construction and surface runoff control is one of the most common approaches for water-needs supply of human societies. However, the increasing development of social activities and hence the subsequent increase in environmental pollutants leads to deterioration of water quality in dam reservoirs and eutrophication process could be intensified. So, the water quality of reservoirs is now one of the key factors in operation and water quality management of reservoirs. Hence, maintaining the quality of the stored water and identification and examination of changes along time has been a constant concern of humans that involves the water authorities. Traditionally, empirical trophic state indices of dam reservoirs often defined based on changes in concentration of effective factors (nutrients) and its consequences (increase in chlorophyll a), have been used as an efficient tool in the definition of dam reservoirs quality. In recent years, modeling techniques such as artificial neural networks have enhanced the prediction capability and the accuracy of these studies. In this study, artificial neural networks have been applied to analyze eutrophication process in the Dez Dam reservoir in Iran. In this paper, feed forward neural network with one input layer, one hidden layer and one output layer was applied using MATLAB neural network toolbox for trophic state index (TSI) analysis in the Dez Dam reservoir. The input data of this network are effective parameters in the eutrophication: nitrogen cycle parameters and phosphorous cycle parameters and parameters that will be changed by eutrophication: Chl a, SD, DO and the output data is TSI. Based on the results from estimation of modified Carlson trophic state index, Dez Dam reservoir is considered to be eutrophic in the early July to mid-November and would be mesotrophic with decrease in temperature. Therefore, a decrease in water quality of the dam reservoir during the warm seasons is expectable. The results indicated that artificial neural network (ANN) is a suitable tool for quality modeling of reservoir of dam and increment and decrement of nutrients in trend of eutrophication. Therefore, ANN is a suitable tool for quality modeling of reservoir of dam.

  1. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE PAGES

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; ...

    2017-10-17

    In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  2. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan

    In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  3. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data

    NASA Astrophysics Data System (ADS)

    Pathak, Jaideep; Lu, Zhixin; Hunt, Brian R.; Girvan, Michelle; Ott, Edward

    2017-12-01

    We use recent advances in the machine learning area known as "reservoir computing" to formulate a method for model-free estimation from data of the Lyapunov exponents of a chaotic process. The technique uses a limited time series of measurements as input to a high-dimensional dynamical system called a "reservoir." After the reservoir's response to the data is recorded, linear regression is used to learn a large set of parameters, called the "output weights." The learned output weights are then used to form a modified autonomous reservoir designed to be capable of producing an arbitrarily long time series whose ergodic properties approximate those of the input signal. When successful, we say that the autonomous reservoir reproduces the attractor's "climate." Since the reservoir equations and output weights are known, we can compute the derivatives needed to determine the Lyapunov exponents of the autonomous reservoir, which we then use as estimates of the Lyapunov exponents for the original input generating system. We illustrate the effectiveness of our technique with two examples, the Lorenz system and the Kuramoto-Sivashinsky (KS) equation. In the case of the KS equation, we note that the high dimensional nature of the system and the large number of Lyapunov exponents yield a challenging test of our method, which we find the method successfully passes.

  4. Use of EO-1 Advanced Land Imager (ALI) multispectral image data and real-time field sampling for water quality mapping in the Hirfanlı Dam Lake, Turkey.

    PubMed

    Kavurmacı, Murat; Ekercin, Semih; Altaş, Levent; Kurmaç, Yakup

    2013-08-01

    This paper focuses on the evaluation of water quality variations in Hirfanlı Water Reservoir, which is one of the most important water resources in Turkey, through EO-1 (Earth Observing-1) Advanced Land Imager (ALI) multispectral data and real-time field sampling. The study was materialized in 20 different sampling points during the overpass of the EO-1 ALI sensor over the study area. A multi-linear regression technique was used to explore the relationships between radiometrically corrected EO-1 ALI image data and water quality parameters: chlorophyll a, turbidity, and suspended solids. The retrieved and verified results show that the measured and estimated values of water quality parameters are in good agreement (R (2) >0.93). The resulting thematic maps derived from EO-1 multispectral data for chlorophyll a, turbidity, and suspended solids show the spatial distribution of the water quality parameters. The results indicate that the reservoir has average nutrient values. Furthermore, chlorophyll a, turbidity, and suspended solids values increased at the upstream reservoir and shallow coast of the Hirfanlı Water Reservoir.

  5. Epizootiologic Parameters for Plague in Kazakhstan

    PubMed Central

    Klassovskiy, Nikolay; Ageyev, Vladimir; Suleimenov, Bakhtiar; Atshabar, Bakhyt; Bennett, Malcolm

    2006-01-01

    Reliable estimates are lacking of key epizootiologic parameters for plague caused by Yersinia pestis infection in its natural reservoirs. We report results of a 3-year longitudinal study of plague dynamics in populations of a maintenance host, the great gerbil (Rhombomys opimus), in 2 populations in Kazakhstan. Serologic results suggest a mid-summer peak in the abundance of infectious hosts and possible transmission from the reservoir to humans. Decrease in antibody titer to an undetectable level showed no seasonal pattern. Our findings did not support the use of the nitroblue-tetrazolium test characterization of plague-infected hosts. Y. pestis infection reduced survival of otherwise asymptomatic hosts. PMID:16494753

  6. Cost Implications of Uncertainty in CO{sub 2} Storage Resource Estimates: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Steven T., E-mail: sanderson@usgs.gov

    Carbon capture from stationary sources and geologic storage of carbon dioxide (CO{sub 2}) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO{sub 2} storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference,more » and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO{sub 2}, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO{sub 2} storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO{sub 2} injection will be mitigated by reservoir pressure management, estimates of the costs of CO{sub 2} storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO{sub 2} storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO{sub 2} storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the scarcity of (data from) long-term commercial-scale CO{sub 2} storage projects, decision makers may experience considerable difficulty in ascertaining the realistic potential, the likely costs, and the most beneficial pattern of deployment of CCS as an option to reduce CO{sub 2} concentrations in the atmosphere.« less

  7. Cost implications of uncertainty in CO2 storage resource estimates: A review

    USGS Publications Warehouse

    Anderson, Steven T.

    2017-01-01

    Carbon capture from stationary sources and geologic storage of carbon dioxide (CO2) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO2 storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference, and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO2, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO2 storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO2 injection will be mitigated by reservoir pressure management, estimates of the costs of CO2 storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO2 storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO2 storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the scarcity of (data from) long-term commercial-scale CO2 storage projects, decision makers may experience considerable difficulty in ascertaining the realistic potential, the likely costs, and the most beneficial pattern of deployment of CCS as an option to reduce CO2 concentrations in the atmosphere.

  8. Population dynamics of the Concho water snake in rivers and reservoirs

    USGS Publications Warehouse

    Whiting, M.J.; Dixon, J.R.; Greene, B.D.; Mueller, J.M.; Thornton, O.W.; Hatfield, J.S.; Nichols, J.D.; Hines, J.E.

    2008-01-01

    The Concho Water Snake (Nerodia harteri paucimaculata) is confined to the Concho–Colorado River valley of central Texas, thereby occupying one of the smallest geographic ranges of any North American snake. In 1986, N. h. paucimaculata was designated as a federally threatened species, in large part because of reservoir projects that were perceived to adversely affect the amount of habitat available to the snake. During a ten-year period (1987–1996), we conducted capture–recapture field studies to assess dynamics of five subpopulations of snakes in both natural (river) and man-made (reservoir) habitats. Because of differential sampling of subpopulations, we present separate results for all five subpopulations combined (including large reservoirs) and three of the five subpopulations (excluding large reservoirs). We used multistate capture–recapture models to deal with stochastic transitions between pre-reproductive and reproductive size classes and to allow for the possibility of different survival and capture probabilities for the two classes. We also estimated both the finite rate of increase (λ) for a deterministic, stage-based, female-only matrix model using the average litter size, and the average rate of adult population change, λ ˆ, which describes changes in numbers of adult snakes, using a direct capture–recapture approach to estimation. Average annual adult survival was about 0.23 and similar for males and females. Average annual survival for subadults was about 0.14. The parameter estimates from the stage-based projection matrix analysis all yielded asymptotic values of λ < 1, suggesting populations that are not viable. However, the direct estimates of average adult λ for the three subpopulations excluding major reservoirs were λ ˆ  =  1.26, SE ˆ(λ ˆ)  =  0.18 and λ ˆ  =  0.99, SE ˆ(λ ˆ)  =  0.79, based on two different models. Thus, the direct estimation approach did not provide strong evidence of population declines of the riverine subpopulations, but the estimates are characterized by substantial uncertainty.

  9. Hydraulic fracture propagation modeling and data-based fracture identification

    NASA Astrophysics Data System (ADS)

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the parameters used in the reservoir flow simulator have large uncertainty. Those biased and uncertain parameters will result in misleading oil and gas recovery predictions. The Ensemble Kalman Filter is used to estimate and update both the state variables (pressure and saturations) and uncertain reservoir parameters (permeability). In order to directly incorporate spatial information such as fracture location and formation heterogeneity into the algorithm, a new covariance matrix method is proposed. This new method has been applied to a simplified single-phase reservoir and a complex black oil reservoir with complex structures to prove its capability in calibrating the reservoir parameters.

  10. Uncertainty quantification and risk analyses of CO2 leakage in heterogeneous geological formations

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Murray, C. J.; Rockhold, M. L.

    2012-12-01

    A stochastic sensitivity analysis framework is adopted to evaluate the impact of spatial heterogeneity in permeability on CO2 leakage risk. The leakage is defined as the total mass of CO2 moving into the overburden through the caprock-overburden interface, in both gaseous and liquid (dissolved) phases. The entropy-based framework has the ability to quantify the uncertainty associated with the input parameters in the form of prior pdfs (probability density functions). Effective sampling of the prior pdfs enables us to fully explore the parameter space and systematically evaluate the individual and combined effects of the parameters of interest on CO2 leakage risk. The parameters that are considered in the study include: mean, variance, and horizontal to vertical spatial anisotropy ratio for caprock permeability, and those same parameters for reservoir permeability. Given the sampled spatial variogram parameters, multiple realizations of permeability fields were generated using GSLIB subroutines. For each permeability field, a numerical simulator, STOMP, (in the water-salt-CO2-energy operational mode) is used to simulate the CO2 migration within the reservoir and caprock up to 50 years after injection. Due to intensive computational demand, we run both a scalable version simulator eSTOMP and serial STOMP on various supercomputers. We then perform statistical analyses and summarize the relationships between the parameters of interest (mean/variance/anisotropy ratio of caprock and reservoir permeability) and CO2 leakage ratio. We also present the effects of those parameters on CO2 plume radius and reservoir injectivity. The statistical analysis provides a reduced order model that can be used to estimate the impact of heterogeneity on caprock leakage.

  11. Validating predictions of evolving porosity and permeability in carbonate reservoir rocks exposed to CO2-brine

    NASA Astrophysics Data System (ADS)

    Smith, M. M.; Hao, Y.; Carroll, S.

    2017-12-01

    Improving our ability to better forecast the extent and impact of changes in porosity and permeability due to CO2-brine-carbonate reservoir interactions should lower uncertainty in long-term geologic CO2 storage capacity estimates. We have developed a continuum-scale reactive transport model that simulates spatial and temporal changes to porosity, permeability, mineralogy, and fluid composition within carbonate rocks exposed to CO2 and brine at storage reservoir conditions. The model relies on two primary parameters to simulate brine-CO2-carbonate mineral reaction: kinetic rate constant(s), kmineral, for carbonate dissolution; and an exponential parameter, n, relating porosity change to resulting permeability. Experimental data collected from fifteen core-flooding experiments conducted on samples from the Weyburn (Saskatchewan, Canada) and Arbuckle (Kansas, USA) carbonate reservoirs were used to calibrate the reactive-transport model and constrain the useful range of k and n values. Here we present the results of our current efforts to validate this model and the use of these parameter values, by comparing predictions of extent and location of dissolution and the evolution of fluid permeability against our results from new core-flood experiments conducted on samples from the Duperow Formation (Montana, USA). Agreement between model predictions and experimental data increase our confidence that these parameter ranges need not be considered site-specific but may be applied (within reason) at various locations and reservoirs. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Improved analysis of transient temperature data from permanent down-hole gauges (PDGs)

    NASA Astrophysics Data System (ADS)

    Zhang, Yiqun; Zheng, Shiyi; Wang, Qi

    2017-08-01

    With the installation of permanent down-hole gauges (PDGs) during oil field development, large volumes of high resolution and continuous down-hole information are obtainable. The interpretation of these real-time temperature and pressure data can optimize well performance, provide information about the reservoir and continuously calibrate the reservoir model. Although the dynamic temperature data have been interpreted in practice to predict flow profiling and provide characteristic information of the reservoir, almost all of the approaches rely on established non-isothermal models which depend on thermodynamic parameters. Another problem comes from the temperature transient analysis (TTA), which is underutilized compared with pressure transient analysis (PTA). In this study, several model-independent methods of TTA were performed. The entire set of PDG data consists of many flow events. By utilizing the wavelet transform, the exact points of flow-rate changes can be located. The flow regime changes, for example, from early time linear flow to later time pseudo-radial flow, among every transient period with constant flow-rate. For the early time region (ETR) that is caused by flow-rate change operations, the TTA, along with the PTA can greatly reduce the uncertainties in flow regime diagnosis. Then, the temperature variations during ETR were examined to infer the true reservoir temperature history, and the relationships between the wavelet detailed coefficients and the flow-rate changes were analysed. For the scenarios with constant reservoir-well parameters, the detailed flow-rate history can be generated by calculating the coefficient of relationship in advance. For later times, the flow regime changes to pseudo-radial flow. An analytical solution was introduced to describe the sand-face temperature. The formation parameters, such as permeability and skin factor, were estimated with the previously calculated flow-rate. It is necessary to analyse temperature variation to overcome data limitation problems when information from other down-hole tools (e.g. expensive but unstable flow meters) is insufficient. This study shows the success in wellbore storage regime diagnosis, flow-rate history reconstruction, and formation parameters estimation using transient temperature data.

  13. Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems.

    PubMed

    Pandey, S N; Vishal, Vikram

    2017-12-06

    3-D modeling of coupled thermo-hydro-mechanical (THM) processes in enhanced geothermal systems using the control volume finite element code was done. In a first, a comparative analysis on the effects of coupled processes, operational parameters and reservoir parameters on heat extraction was conducted. We found that significant temperature drop and fluid overpressure occurred inside the reservoirs/fracture that affected the transport behavior of the fracture. The spatio-temporal variations of fracture aperture greatly impacted the thermal drawdown and consequently the net energy output. The results showed that maximum aperture evolution occurred near the injection zone instead of the production zone. Opening of the fracture reduced the injection pressure required to circulate a fixed mass of water. The thermal breakthrough and heat extraction strongly depend on the injection mass flow rate, well distances, reservoir permeability and geothermal gradients. High permeability caused higher water loss, leading to reduced heat extraction. From the results of TH vs THM process simulations, we conclude that appropriate coupling is vital and can impact the estimates of net heat extraction. This study can help in identifying the critical operational parameters, and process optimization for enhanced energy extraction from a geothermal system.

  14. Growth, mortality and reproduction of the blue tilapia Oreochromis aureus (Perciformes: Cichlidae) in the Aguamilpa Reservoir, Mexico.

    PubMed

    Peña Messina, Emilio; Tapia Varela, Raul; Velázquez Abunader, José Iván; Orbe Mendoza, Alma Araceli; Velazco Arce, Javier Marcial de Jesús Ruiz

    2010-12-01

    Tilapia production has increased in Aguamilpa Reservoir, in Nayarit, Mexico, in the last few years and represents a good economic activity for rural communities and the country. We determined growth parameters, mortality and reproductive aspects for 2413 specimens of blue tilapia Oreochromis aureus in this reservoir. Samples were taken monthly from July 2000 through June 2001, of which 1 371 were males and 1 042 were females. Standard length (SL) and total weight (TW) were measured in each organism. The SL/TW relationships through power models for sexes were determined. The growth parameters L infinity k, and t0 of the von Bertalanffy equation were estimated using frequency distribution of length through ELEFAN-I computer program. Finally the reproductive cycle and size of first maturity were established using morph chromatic maturity scale. The results suggested that the males and females had negative allometric growth (b < 3). Significant differences were found between SL/TW model for the sexes, suggesting separate models for males and females. Results indicate that there are no differences in growth rates between sexes; the proposed parameters were L infinity = 43.33 cm standard length, k = 0.36/year and t0 = -0.43 years. Natural and fishing mortality coefficients were 0.83/year and 1.10/year, respectively. The estimated exploitation rate (0.57/year) suggested that during the study period the fishery showed signs of overfishing. Blue tilapia reproduces year-round; the highest activity occurs from January through May and size of first maturity was 23 cm SL. We conclude that it is necessary to establish a minimum catch size in this reservoir based on the reproductive behavior of this species.

  15. Lake Number, a quantitative indicator of mixing used to estimate changes in dissolved oxygen

    USGS Publications Warehouse

    Robertson, Dale M.; Imberger, Jorg

    1994-01-01

    Lake Number, LN, values are shown to be quantitative indicators of deep mixing in lakes and reservoirs that can be used to estimate changes in deep water dissolved oxygen (DO) concentrations. LN is a dimensionless parameter defined as the ratio of the moments about the center of volume of the water body, of the stabilizing force of gravity associated with density stratification to the destabilizing forces supplied by wind, cooling, inflow, outflow, and other artificial mixing devices. To demonstrate the universality of this parameter, LN values are used to describe the extent of deep mixing and are compared with changes in DO concentrations in three reservoirs in Australia and four lakes in the U.S.A., which vary in productivity and mixing regimes. A simple model is developed which relates changes in LN values, i.e., the extent of mixing, to changes in near bottom DO concentrations. After calibrating the model for a specific system, it is possible to use real-time LN values, calculated using water temperature profiles and surface wind velocities, to estimate changes in DO concentrations (assuming unchanged trophic conditions).

  16. Fluid pressure arrival time tomography: Estimation and assessment in the presence of inequality constraints, with an application to a producing gas field at Krechba, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rucci, A.; Vasco, D.W.; Novali, F.

    2010-04-01

    Deformation in the overburden proves useful in deducing spatial and temporal changes in the volume of a producing reservoir. Based upon these changes we estimate diffusive travel times associated with the transient flow due to production, and then, as the solution of a linear inverse problem, the effective permeability of the reservoir. An advantage an approach based upon travel times, as opposed to one based upon the amplitude of surface deformation, is that it is much less sensitive to the exact geomechanical properties of the reservoir and overburden. Inequalities constrain the inversion, under the assumption that the fluid production onlymore » results in pore volume decreases within the reservoir. We apply the formulation to satellite-based estimates of deformation in the material overlying a thin gas production zone at the Krechba field in Algeria. The peak displacement after three years of gas production is approximately 0.5 cm, overlying the eastern margin of the anticlinal structure defining the gas field. Using data from 15 irregularly-spaced images of range change, we calculate the diffusive travel times associated with the startup of a gas production well. The inequality constraints are incorporated into the estimates of model parameter resolution and covariance, improving the resolution by roughly 30 to 40%.« less

  17. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.

    2009-01-01

    During the Indian National Gas Hydrate Program Expedition 01 (NGHP-Ol), one of the richest marine gas hydrate accumulations was discovered at Site NGHP-01-10 in the Krishna-Godavari Basin. The occurrence of concentrated gas hydrate at this site is primarily controlled by the presence of fractures. Assuming the resistivity of gas hydratebearing sediments is isotropic, th?? conventional Archie analysis using the logging while drilling resistivity log yields gas hydrate saturations greater than 50% (as high as ???80%) of the pore space for the depth interval between ???25 and ???160 m below seafloor. On the other hand, gas hydrate saturations estimated from pressure cores from nearby wells were less than ???26% of the pore space. Although intrasite variability may contribute to the difference, the primary cause of the saturation difference is attributed to the anisotropic nature of the reservoir due to gas hydrate in high-angle fractures. Archie's law can be used to estimate gas hydrate saturations in anisotropic reservoir, with additional information such as elastic velocities to constrain Archie cementation parameters m and the saturation exponent n. Theory indicates that m and n depend on the direction of the measurement relative to fracture orientation, as well as depending on gas hydrate saturation. By using higher values of m and n in the resistivity analysis for fractured reservoirs, the difference between saturation estimates is significantly reduced, although a sizable difference remains. To better understand the nature of fractured reservoirs, wireline P and S wave velocities were also incorporated into the analysis.

  18. Inverse Theory for Petroleum Reservoir Characterization and History Matching

    NASA Astrophysics Data System (ADS)

    Oliver, Dean S.; Reynolds, Albert C.; Liu, Ning

    This book is a guide to the use of inverse theory for estimation and conditional simulation of flow and transport parameters in porous media. It describes the theory and practice of estimating properties of underground petroleum reservoirs from measurements of flow in wells, and it explains how to characterize the uncertainty in such estimates. Early chapters present the reader with the necessary background in inverse theory, probability and spatial statistics. The book demonstrates how to calculate sensitivity coefficients and the linearized relationship between models and production data. It also shows how to develop iterative methods for generating estimates and conditional realizations. The text is written for researchers and graduates in petroleum engineering and groundwater hydrology and can be used as a textbook for advanced courses on inverse theory in petroleum engineering. It includes many worked examples to demonstrate the methodologies and a selection of exercises.

  19. Modeling phytoplankton community in reservoirs. A comparison between taxonomic and functional groups-based models.

    PubMed

    Di Maggio, Jimena; Fernández, Carolina; Parodi, Elisa R; Diaz, M Soledad; Estrada, Vanina

    2016-01-01

    In this paper we address the formulation of two mechanistic water quality models that differ in the way the phytoplankton community is described. We carry out parameter estimation subject to differential-algebraic constraints and validation for each model and comparison between models performance. The first approach aggregates phytoplankton species based on their phylogenetic characteristics (Taxonomic group model) and the second one, on their morpho-functional properties following Reynolds' classification (Functional group model). The latter approach takes into account tolerance and sensitivity to environmental conditions. The constrained parameter estimation problems are formulated within an equation oriented framework, with a maximum likelihood objective function. The study site is Paso de las Piedras Reservoir (Argentina), which supplies water for consumption for 450,000 population. Numerical results show that phytoplankton morpho-functional groups more closely represent each species growth requirements within the group. Each model performance is quantitatively assessed by three diagnostic measures. Parameter estimation results for seasonal dynamics of the phytoplankton community and main biogeochemical variables for a one-year time horizon are presented and compared for both models, showing the functional group model enhanced performance. Finally, we explore increasing nutrient loading scenarios and predict their effect on phytoplankton dynamics throughout a one-year time horizon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Parameter Prediction of Hydraulic Fracture for Tight Reservoir Based on Micro-Seismic and History Matching

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Ma, Xiaopeng; Li, Yanlai; Wu, Haiyang; Cui, Chenyu; Zhang, Xiaoming; Zhang, Hao; Yao, Jun

    Hydraulic fracturing is an important measure for the development of tight reservoirs. In order to describe the distribution of hydraulic fractures, micro-seismic diagnostic was introduced into petroleum fields. Micro-seismic events may reveal important information about static characteristics of hydraulic fracturing. However, this method is limited to reflect the distribution area of the hydraulic fractures and fails to provide specific parameters. Therefore, micro-seismic technology is integrated with history matching to predict the hydraulic fracture parameters in this paper. Micro-seismic source location is used to describe the basic shape of hydraulic fractures. After that, secondary modeling is considered to calibrate the parameters information of hydraulic fractures by using DFM (discrete fracture model) and history matching method. In consideration of fractal feature of hydraulic fracture, fractal fracture network model is established to evaluate this method in numerical experiment. The results clearly show the effectiveness of the proposed approach to estimate the parameters of hydraulic fractures.

  1. Predicting bulk permeability using outcrop fracture attributes: The benefits of a Maximum Likelihood Estimator

    NASA Astrophysics Data System (ADS)

    Rizzo, R. E.; Healy, D.; De Siena, L.

    2015-12-01

    The success of any model prediction is largely dependent on the accuracy with which its parameters are known. In characterising fracture networks in naturally fractured rocks, the main issues are related with the difficulties in accurately up- and down-scaling the parameters governing the distribution of fracture attributes. Optimal characterisation and analysis of fracture attributes (fracture lengths, apertures, orientations and densities) represents a fundamental step which can aid the estimation of permeability and fluid flow, which are of primary importance in a number of contexts ranging from hydrocarbon production in fractured reservoirs and reservoir stimulation by hydrofracturing, to geothermal energy extraction and deeper Earth systems, such as earthquakes and ocean floor hydrothermal venting. This work focuses on linking fracture data collected directly from outcrops to permeability estimation and fracture network modelling. Outcrop studies can supplement the limited data inherent to natural fractured systems in the subsurface. The study area is a highly fractured upper Miocene biosiliceous mudstone formation cropping out along the coastline north of Santa Cruz (California, USA). These unique outcrops exposes a recently active bitumen-bearing formation representing a geological analogue of a fractured top seal. In order to validate field observations as useful analogues of subsurface reservoirs, we describe a methodology of statistical analysis for more accurate probability distribution of fracture attributes, using Maximum Likelihood Estimators. These procedures aim to understand whether the average permeability of a fracture network can be predicted reducing its uncertainties, and if outcrop measurements of fracture attributes can be used directly to generate statistically identical fracture network models.

  2. A two-stage method of quantitative flood risk analysis for reservoir real-time operation using ensemble-based hydrologic forecasts

    NASA Astrophysics Data System (ADS)

    Liu, P.

    2013-12-01

    Quantitative analysis of the risk for reservoir real-time operation is a hard task owing to the difficulty of accurate description of inflow uncertainties. The ensemble-based hydrologic forecasts directly depict the inflows not only the marginal distributions but also their persistence via scenarios. This motivates us to analyze the reservoir real-time operating risk with ensemble-based hydrologic forecasts as inputs. A method is developed by using the forecast horizon point to divide the future time into two stages, the forecast lead-time and the unpredicted time. The risk within the forecast lead-time is computed based on counting the failure number of forecast scenarios, and the risk in the unpredicted time is estimated using reservoir routing with the design floods and the reservoir water levels of forecast horizon point. As a result, a two-stage risk analysis method is set up to quantify the entire flood risks by defining the ratio of the number of scenarios that excessive the critical value to the total number of scenarios. The China's Three Gorges Reservoir (TGR) is selected as a case study, where the parameter and precipitation uncertainties are implemented to produce ensemble-based hydrologic forecasts. The Bayesian inference, Markov Chain Monte Carlo, is used to account for the parameter uncertainty. Two reservoir operation schemes, the real operated and scenario optimization, are evaluated for the flood risks and hydropower profits analysis. With the 2010 flood, it is found that the improvement of the hydrologic forecast accuracy is unnecessary to decrease the reservoir real-time operation risk, and most risks are from the forecast lead-time. It is therefore valuable to decrease the avarice of ensemble-based hydrologic forecasts with less bias for a reservoir operational purpose.

  3. Geodetic imaging: Reservoir monitoring using satellite interferometry

    USGS Publications Warehouse

    Vasco, D.W.; Wicks, C.; Karasaki, K.; Marques, O.

    2002-01-01

    Fluid fluxes within subsurface reservoirs give rise to surface displacements, particularly over periods of a year or more. Observations of such deformation provide a powerful tool for mapping fluid migration within the Earth, providing new insights into reservoir dynamics. In this paper we use Interferometric Synthetic Aperture Radar (InSAR) range changes to infer subsurface fluid volume strain at the Coso geothermal field. Furthermore, we conduct a complete model assessment, using an iterative approach to compute model parameter resolution and covariance matrices. The method is a generalization of a Lanczos-based technique which allows us to include fairly general regularization, such as roughness penalties. We find that we can resolve quite detailed lateral variations in volume strain both within the reservoir depth range (0.4-2.5 km) and below the geothermal production zone (2.5-5.0 km). The fractional volume change in all three layers of the model exceeds the estimated model parameter uncertainly by a factor of two or more. In the reservoir depth interval (0.4-2.5 km), the predominant volume change is associated with northerly and westerly oriented faults and their intersections. However, below the geothermal production zone proper [the depth range 2.5-5.0 km], there is the suggestion that both north- and northeast-trending faults may act as conduits for fluid flow.

  4. Temperature distribution in the Cerro Prieto geothermal field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo B, F.; Bermejo M, F.J.; Domiguez A, B.

    1981-01-01

    A series of temperature and pressure logs and flow rate measurements was compiled for each of the geothermal wells drilled to different reservoir depths between October 1979 and December 1980. Based on the valuable information obtained, a series of graphs showing the thermal characteristics of the reservoir were prepared. These graphs clearly show the temperature distribution resulting from the movement of fluids from the deep regions toward the higher zones of the reservoir, thus establishing more reliable parameters for locating new wells with better production zones. Updated information based on data from new deep wells drilled in the geothermal fieldmore » is presented here. This new information does not differ much from earlier estimates and theories. However, the influence of faulting and fracturing on the hydrothermal recharge of the geothermal reservoir is seen more clearly.« less

  5. Elastic full-waveform inversion and parameterization analysis applied to walk-away vertical seismic profile data for unconventional (heavy oil) reservoir characterization

    NASA Astrophysics Data System (ADS)

    Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu

    2018-03-01

    Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^'), and velocity-impedance-II (α″, β″ and I_S^'). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density profile can be over-estimated, under-estimated or spatially distorted. Among the six cases, only the velocity-density parameterization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. The heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson's ratios, can be identified clearly with the inverted isotropic-elastic parameters.

  6. Elastic full-waveform inversion and parameterization analysis applied to walk-away vertical seismic profile data for unconventional (heavy oil) reservoir characterization

    DOE PAGES

    Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu

    2018-03-06

    We report seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismicmore » profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ'), modulus-density (κ, μ and ρ), Lamé-density (λ, μ' and ρ'''), impedance-density (IP, IS and ρ''), velocity-impedance-I (α', β' and I' P), and velocity-impedance-II (α'', β'' and I'S). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density profile can be over-estimated, under-estimated or spatially distorted. Among the six cases, only the velocity-density parameterization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. Finally, the heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson’s ratios, can be identified clearly with the inverted isotropic-elastic parameters.« less

  7. Elastic full-waveform inversion and parameterization analysis applied to walk-away vertical seismic profile data for unconventional (heavy oil) reservoir characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu

    We report seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismicmore » profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ'), modulus-density (κ, μ and ρ), Lamé-density (λ, μ' and ρ'''), impedance-density (IP, IS and ρ''), velocity-impedance-I (α', β' and I' P), and velocity-impedance-II (α'', β'' and I'S). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density profile can be over-estimated, under-estimated or spatially distorted. Among the six cases, only the velocity-density parameterization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. Finally, the heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson’s ratios, can be identified clearly with the inverted isotropic-elastic parameters.« less

  8. An interpretation of core and wireline logs for the Petrophysical evaluation of Upper Shallow Marine sandstone reservoirs of the Bredasdorp Basin, offshore South Africa

    NASA Astrophysics Data System (ADS)

    Magoba, Moses; Opuwari, Mimonitu

    2017-04-01

    This paper embodies a study carried out to assess the Petrophysical evaluation of upper shallow marine sandstone reservoir of 10 selected wells in the Bredasdorp basin, offshore, South Africa. The studied wells were selected randomly across the upper shallow marine formation with the purpose of conducting a regional study to assess the difference in reservoir properties across the formation. The data sets used in this study were geophysical wireline logs, Conventional core analysis and geological well completion report. The physical rock properties, for example, lithology, fluid type, and hydrocarbon bearing zone were qualitatively characterized while different parameters such as volume of clay, porosity, permeability, water saturation ,hydrocarbon saturation, storage and flow capacity were quantitatively estimated. The quantitative results were calibrated with the core data. The upper shallow marine reservoirs were penetrated at different depth ranging from shallow depth of about 2442m to 3715m. The average volume of clay, average effective porosity, average water saturation, hydrocarbon saturation and permeability range from 8.6%- 43%, 9%- 16%, 12%- 68% , 32%- 87.8% and 0.093mD -151.8mD respectively. The estimated rock properties indicate a good reservoir quality. Storage and flow capacity results presented a fair to good distribution of hydrocarbon flow.

  9. Model for economic evaluation of high energy gas fracturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engi, D.

    1984-05-01

    The HEGF/NPV model has been developed and adapted for interactive microcomputer calculations of the economic consequences of reservoir stimulation by high energy gas fracturing (HEGF) in naturally fractured formations. This model makes use of three individual models: a model of the stimulated reservoir, a model of the gas flow in this reservoir, and a model of the discounted expected net cash flow (net present value, or NPV) associated with the enhanced gas production. Nominal values of the input parameters, based on observed data and reasonable estimates, are used to calculate the initial expected increase in the average daily rate ofmore » production resulting from the Meigs County HEGF stimulation experiment. Agreement with the observed initial increase in rate is good. On the basis of this calculation, production from the Meigs County Well is not expected to be profitable, but the HEGF/NPV model probably provides conservative results. Furthermore, analyses of the sensitivity of the expected NPV to variations in the values of certain reservoir parameters suggest that the use of HEGF stimulation in somewhat more favorable formations is potentially profitable. 6 references, 4 figures, 3 tables.« less

  10. Azimuthal Seismic Amplitude Variation with Offset and Azimuth Inversion in Weakly Anisotropic Media with Orthorhombic Symmetry

    NASA Astrophysics Data System (ADS)

    Pan, Xinpeng; Zhang, Guangzhi; Yin, Xingyao

    2018-01-01

    Seismic amplitude variation with offset and azimuth (AVOaz) inversion is well known as a popular and pragmatic tool utilized to estimate fracture parameters. A single set of vertical fractures aligned along a preferred horizontal direction embedded in a horizontally layered medium can be considered as an effective long-wavelength orthorhombic medium. Estimation of Thomsen's weak-anisotropy (WA) parameters and fracture weaknesses plays an important role in characterizing the orthorhombic anisotropy in a weakly anisotropic medium. Our goal is to demonstrate an orthorhombic anisotropic AVOaz inversion approach to describe the orthorhombic anisotropy utilizing the observable wide-azimuth seismic reflection data in a fractured reservoir with the assumption of orthorhombic symmetry. Combining Thomsen's WA theory and linear-slip model, we first derive a perturbation in stiffness matrix of a weakly anisotropic medium with orthorhombic symmetry under the assumption of small WA parameters and fracture weaknesses. Using the perturbation matrix and scattering function, we then derive an expression for linearized PP-wave reflection coefficient in terms of P- and S-wave moduli, density, Thomsen's WA parameters, and fracture weaknesses in such an orthorhombic medium, which avoids the complicated nonlinear relationship between the orthorhombic anisotropy and azimuthal seismic reflection data. Incorporating azimuthal seismic data and Bayesian inversion theory, the maximum a posteriori solutions of Thomsen's WA parameters and fracture weaknesses in a weakly anisotropic medium with orthorhombic symmetry are reasonably estimated with the constraints of Cauchy a priori probability distribution and smooth initial models of model parameters to enhance the inversion resolution and the nonlinear iteratively reweighted least squares strategy. The synthetic examples containing a moderate noise demonstrate the feasibility of the derived orthorhombic anisotropic AVOaz inversion method, and the real data illustrate the inversion stabilities of orthorhombic anisotropy in a fractured reservoir.

  11. Estimating Effective Seismic Anisotropy Of Coal Seam Gas Reservoirs from Sonic Log Data Using Orthorhombic Buckus-style Upscaling

    NASA Astrophysics Data System (ADS)

    Gross, Lutz; Tyson, Stephen

    2015-04-01

    Fracture density and orientation are key parameters controlling productivity of coal seam gas reservoirs. Seismic anisotropy can help to identify and quantify fracture characteristics. In particular, wide offset and dense azimuthal coverage land seismic recordings offers the opportunity for recovery of anisotropy parameters. In many coal seam gas reservoirs (eg. Walloon Subgroup in the Surat Basin, Queensland, Australia (Esterle et al. 2013)) the thickness of coal-beds and interbeds (e.g mud-stone) are well below the seismic wave length (0.3-1m versus 5-15m). In these situations, the observed seismic anisotropy parameters represent effective elastic properties of the composite media formed of fractured, anisotropic coal and isotropic interbed. As a consequence observed seismic anisotropy cannot directly be linked to fracture characteristics but requires a more careful interpretation. In the paper we will discuss techniques to estimate effective seismic anisotropy parameters from well log data with the objective to improve the interpretation for the case of layered thin coal beds. In the first step we use sonic log data to reconstruct the elasticity parameters as function of depth (at the resolution of the sonic log). It is assumed that within a sample fractures are sparse, of the same size and orientation, penny-shaped and equally spaced. Following classical fracture model this can be modeled as an elastic horizontally transversely isotropic (HTI) media (Schoenberg & Sayers 1995). Under the additional assumption of dry fractures, normal and tangential fracture weakness is estimated from slow and fast shear wave velocities of the sonic log. In the second step we apply Backus-style upscaling to construct effective anisotropy parameters on an appropriate length scale. In order to honor the HTI anisotropy present at each layer we have developed a new extension of the classical Backus averaging for layered isotropic media (Backus 1962) . Our new method assumes layered HTI media with constant anisotropy orientation as recovered in the first step. It leads to an effective horizontal orthorhombic elastic model. From this model Thomsen-style anisotropy parameters are calculated to derive azimuth-dependent normal move out (NMO) velocities (see Grechka & Tsvankin 1998). In our presentation we will show results of our approach from sonic well logs in the Surat Basin to investigate the potential of reconstructing S-wave velocity anisotropy and fracture density from azimuth dependent NMO velocities profiles.

  12. Continuous-variable quantum probes for structured environments

    NASA Astrophysics Data System (ADS)

    Bina, Matteo; Grasselli, Federico; Paris, Matteo G. A.

    2018-01-01

    We address parameter estimation for structured environments and suggest an effective estimation scheme based on continuous-variables quantum probes. In particular, we investigate the use of a single bosonic mode as a probe for Ohmic reservoirs, and obtain the ultimate quantum limits to the precise estimation of their cutoff frequency. We assume the probe prepared in a Gaussian state and determine the optimal working regime, i.e., the conditions for the maximization of the quantum Fisher information in terms of the initial preparation, the reservoir temperature, and the interaction time. Upon investigating the Fisher information of feasible measurements, we arrive at a remarkable simple result: homodyne detection of canonical variables allows one to achieve the ultimate quantum limit to precision under suitable, mild, conditions. Finally, upon exploiting a perturbative approach, we find the invariant sweet spots of the (tunable) characteristic frequency of the probe, able to drive the probe towards the optimal working regime.

  13. Enhanced Assimilation of InSAR Displacement and Well Data for Groundwater Monitoring

    NASA Astrophysics Data System (ADS)

    Abdullin, A.; Jonsson, S.

    2016-12-01

    Ground deformation related to aquifer exploitation can cause damage to buildings and infrastructure leading to major economic losses and sometimes even loss of human lives. Understanding reservoir behavior helps in assessing possible future ground movement and water depletion hazard of a region under study. We have developed an InSAR-based data assimilation framework for groundwater reservoirs that efficiently incorporates InSAR data for improved reservoir management and forecasts. InSAR displacement data are integrated with the groundwater modeling software MODFLOW using ensemble-based assimilation approaches. We have examined several Ensemble Methods for updating model parameters such as hydraulic conductivity and model variables like pressure head while simultaneously providing an estimate of the uncertainty. A realistic three-dimensional aquifer model was built to demonstrate the capability of the Ensemble Methods incorporating InSAR-derived displacement measurements. We find from these numerical tests that including both ground deformation and well water level data as observations improves the RMSE of the hydraulic conductivity estimate by up to 20% comparing to using only one type of observations. The RMSE estimation of this property after the final time step is similar for Ensemble Kalman Filter (EnKF), Ensemble Smoother (ES) and ES with multiple data assimilation (ES-MDA) methods. The results suggest that the high spatial and temporal resolution subsidence observations from InSAR are very helpful for accurately quantifying hydraulic parameters. We have tested the framework on several different examples and have found good performance in improving aquifer properties estimation, which should prove useful for groundwater management. Our ongoing work focuses on assimilating real InSAR-derived time series and hydraulic head data for calibrating and predicting aquifer properties of basin-wide groundwater systems.

  14. Managing geological uncertainty in CO2-EOR reservoir assessments

    NASA Astrophysics Data System (ADS)

    Welkenhuysen, Kris; Piessens, Kris

    2014-05-01

    Recently the European Parliament has agreed that an atlas for the storage potential of CO2 is of high importance to have a successful commercial introduction of CCS (CO2 capture and geological storage) technology in Europe. CO2-enhanced oil recovery (CO2-EOR) is often proposed as a promising business case for CCS, and likely has a high potential in the North Sea region. Traditional economic assessments for CO2-EOR largely neglect the geological reality of reservoir uncertainties because these are difficult to introduce realistically in such calculations. There is indeed a gap between the outcome of a reservoir simulation and the input values for e.g. cost-benefit evaluations, especially where it concerns uncertainty. The approach outlined here is to turn the procedure around, and to start from which geological data is typically (or minimally) requested for an economic assessment. Thereafter it is evaluated how this data can realistically be provided by geologists and reservoir engineers. For the storage of CO2 these parameters are total and yearly CO2 injection capacity, and containment or potential on leakage. Specifically for the EOR operation, two additional parameters can be defined: the EOR ratio, or the ratio of recovered oil over injected CO2, and the CO2 recycling ratio of CO2 that is reproduced after breakthrough at the production well. A critical but typically estimated parameter for CO2-EOR projects is the EOR ratio, taken in this brief outline as an example. The EOR ratio depends mainly on local geology (e.g. injection per well), field design (e.g. number of wells), and time. Costs related to engineering can be estimated fairly good, given some uncertainty range. The problem is usually to reliably estimate the geological parameters that define the EOR ratio. Reliable data is only available from (onshore) CO2-EOR projects in the US. Published studies for the North Sea generally refer to these data in a simplified form, without uncertainty ranges, and are therefore not suited for cost-benefit analysis. They likely result in too optimistic results because onshore configurations are cheaper and different. We propose to translate the detailed US data to the North Sea, retaining their uncertainty ranges. In a first step, a general cost correction can be applied to account for costs specific to the EU and the offshore setting. In a second step site-specific data, including laboratory tests and reservoir modelling, are used to further adapt the EOR ratio values taking into account all available geological reservoir-specific knowledge. And lastly, an evaluation of the field configuration will have an influence on both the cost and local geology dimension, because e.g. horizontal drilling is needed (cost) to improve injectivity (geology). As such, a dataset of the EOR field is obtained which contains all aspects and their uncertainty ranges. With these, a geologically realistic basis is obtained for further cost-benefit analysis of a specific field, where the uncertainties are accounted for using a stochastic evaluation. Such ad-hoc evaluation of geological parameters will provide a better assessment of the CO2-EOR potential of the North Sea oil fields.

  15. Improving real-time inflow forecasting into hydropower reservoirs through a complementary modelling framework

    NASA Astrophysics Data System (ADS)

    Gragne, A. S.; Sharma, A.; Mehrotra, R.; Alfredsen, K.

    2015-08-01

    Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water resources and benefits gained through hydropower generation. Improving hourly reservoir inflow forecasts over a 24 h lead time is considered within the day-ahead (Elspot) market of the Nordic exchange market. A complementary modelling framework presents an approach for improving real-time forecasting without needing to modify the pre-existing forecasting model, but instead formulating an independent additive or complementary model that captures the structure the existing operational model may be missing. We present here the application of this principle for issuing improved hourly inflow forecasts into hydropower reservoirs over extended lead times, and the parameter estimation procedure reformulated to deal with bias, persistence and heteroscedasticity. The procedure presented comprises an error model added on top of an unalterable constant parameter conceptual model. This procedure is applied in the 207 km2 Krinsvatn catchment in central Norway. The structure of the error model is established based on attributes of the residual time series from the conceptual model. Besides improving forecast skills of operational models, the approach estimates the uncertainty in the complementary model structure and produces probabilistic inflow forecasts that entrain suitable information for reducing uncertainty in the decision-making processes in hydropower systems operation. Deterministic and probabilistic evaluations revealed an overall significant improvement in forecast accuracy for lead times up to 17 h. Evaluation of the percentage of observations bracketed in the forecasted 95 % confidence interval indicated that the degree of success in containing 95 % of the observations varies across seasons and hydrologic years.

  16. Data Assimilation of InSAR Surface Deformation Measurements for the Estimation of Reservoir Geomechanical Parameters in the Upper Adriatic Sedimentary Basin, Italy

    NASA Astrophysics Data System (ADS)

    Bau, D. A.; Alzraiee, A.; Ferronato, M.; Gambolati, G.; Teatini, P.

    2012-12-01

    In the last decades, extensive work has been conducted to estimate land subsidence due the development of deep gas reservoirs situated in the Upper Adriatic sedimentary basin, Italy. These modeling efforts have stemmed from the development finite-element (FE) coupled reservoir-geomechanical models that can simulate the deformation due to the change in pore pressure induced by hydrocarbon production from the geological formations. However, the application of these numerical models has often been limited by the uncertainty in the hydrogeological and poro-mechanical input parameters that are necessary to simulate the impact on ground surface levels of past and/or future gas-field development scenarios. Resolving these uncertainties is of paramount importance, particularly the Northern Adriatic region, given the low elevation above the mean sea level observed along most of the coastline and in the areas surrounding the Venice Lagoon. In this work, we present a state-of-the-art data assimilation (DA) framework to incorporate measurements of displacement of the land surface obtained using Satellite Interferometric Synthetic Aperture Radar (InSAR) techniques into the response of geomechanical simulation models. In Northern Italy, InSAR measurement campaigns have been carried out over a depleted gas reservoir, referred to as "Lombardia", located at a depth of about 1200 m in the sedimentary basin of the Po River plain. In the last years, this reservoir has been used for underground gas storage and recovery (GSR). Because of the pore pressure periodical alternation produced by GSR, reservoir formations have undergone loading/unloading cycles, experiencing effective stress changes that have induced periodical variation of ground surface levels. Over the Lombardia reservoir, the pattern, magnitude and timing of time-laps land displacements both in the vertical and in the East-West directions have been acquired from 2003 until 2008. The availability of these data opens new pathways towards the improvement of current land subsidence modeling efforts. The DA framework presented here allows for merging, within an automated process, InSAR data into coupled reservoir-geomechanical model results. The framework relies upon Bayesian-based ensemble smoothing algorithms and has the potential to significantly reduce the uncertainty associated with compressibility vs. effective stress constitutive laws, as well as key geomechanical parameters characterizing the orthotropic behavior of the reservoir porous media and their spatial distribution. The DA framework is here applied using InSAR data collected over the "Lombardia" reservoir. The flexibility of smoothing algorithms is such that spatially distributed and possibly correlated measurement errors are accounted for in a relatively straightforward fashion, so that surface deformation data that are considered more reliable can be assigned a larger weight within the model calibration. A series of numerical simulation results are presented in order to assess the capabilities of the DA framework, its effectiveness, advantages and limitations.

  17. Recycling of Clay Sediments for Geopolymer Binder Production. A New Perspective for Reservoir Management in the Framework of Italian Legislation: The Occhito Reservoir Case Study

    PubMed Central

    Molino, Bruno; De Vincenzo, Annamaria; Ferone, Claudio; Messina, Francesco; Colangelo, Francesco; Cioffi, Raffaele

    2014-01-01

    Reservoir silting is an unavoidable issue. It is estimated that in Italy, the potential rate of silting-up in large reservoirs ranges from 0.1% to 1% in the presence of wooded river basins and intensive agricultural land use, respectively. In medium and small-sized reservoirs, these values vary between 0.3% and 2%. Considering both the types of reservoirs, the annual average loss of storage capacity would be of about 1.59%. In this paper, a management strategy aimed at sediment productive reuse is presented. Particularly, the main engineering outcomes of an extensive experimental program on geopolymer binder synthesis is reported. The case study deals with Occhito reservoir, located in Southern Italy. Clay sediments coming from this silted-up artificial lake were characterized, calcined and activated, by means of a wide set of alkaline activating solutions. The results showed the feasibility of this recovery process, optimizing a few chemical parameters. The possible reuse in building material production (binders, precast concrete, bricks, etc.) represents a relevant sustainable alternative to landfill and other more consolidated practices. PMID:28788149

  18. Recycling of Clay Sediments for Geopolymer Binder Production. A New Perspective for Reservoir Management in the Framework of Italian Legislation: The Occhito Reservoir Case Study.

    PubMed

    Molino, Bruno; De Vincenzo, Annamaria; Ferone, Claudio; Messina, Francesco; Colangelo, Francesco; Cioffi, Raffaele

    2014-07-31

    Reservoir silting is an unavoidable issue. It is estimated that in Italy, the potential rate of silting-up in large reservoirs ranges from 0.1% to 1% in the presence of wooded river basins and intensive agricultural land use, respectively. In medium and small-sized reservoirs, these values vary between 0.3% and 2%. Considering both the types of reservoirs, the annual average loss of storage capacity would be of about 1.59%. In this paper, a management strategy aimed at sediment productive reuse is presented. Particularly, the main engineering outcomes of an extensive experimental program on geopolymer binder synthesis is reported. The case study deals with Occhito reservoir, located in Southern Italy. Clay sediments coming from this silted-up artificial lake were characterized, calcined and activated, by means of a wide set of alkaline activating solutions. The results showed the feasibility of this recovery process, optimizing a few chemical parameters. The possible reuse in building material production (binders, precast concrete, bricks, etc. ) represents a relevant sustainable alternative to landfill and other more consolidated practices.

  19. Sparse representation-based volumetric super-resolution algorithm for 3D CT images of reservoir rocks

    NASA Astrophysics Data System (ADS)

    Li, Zhengji; Teng, Qizhi; He, Xiaohai; Yue, Guihua; Wang, Zhengyong

    2017-09-01

    The parameter evaluation of reservoir rocks can help us to identify components and calculate the permeability and other parameters, and it plays an important role in the petroleum industry. Until now, computed tomography (CT) has remained an irreplaceable way to acquire the microstructure of reservoir rocks. During the evaluation and analysis, large samples and high-resolution images are required in order to obtain accurate results. Owing to the inherent limitations of CT, however, a large field of view results in low-resolution images, and high-resolution images entail a smaller field of view. Our method is a promising solution to these data collection limitations. In this study, a framework for sparse representation-based 3D volumetric super-resolution is proposed to enhance the resolution of 3D voxel images of reservoirs scanned with CT. A single reservoir structure and its downgraded model are divided into a large number of 3D cubes of voxel pairs and these cube pairs are used to calculate two overcomplete dictionaries and the sparse-representation coefficients in order to estimate the high frequency component. Future more, to better result, a new feature extract method with combine BM4D together with Laplacian filter are introduced. In addition, we conducted a visual evaluation of the method, and used the PSNR and FSIM to evaluate it qualitatively.

  20. Seismic Modeling Of Reservoir Heterogeneity Scales: An Application To Gas Hydrate Reservoirs

    NASA Astrophysics Data System (ADS)

    Huang, J.; Bellefleur, G.; Milkereit, B.

    2008-12-01

    Natural gas hydrates, a type of inclusion compound or clathrate, are composed of gas molecules trapped within a cage of water molecules. The occurrence of gas hydrates in permafrost regions has been confirmed by core samples recovered from the Mallik gas hydrate research wells located within Mackenzie Delta in Northwest Territories of Canada. Strong vertical variations of compressional and shear sonic velocities and weak surface seismic expressions of gas hydrates indicate that lithological heterogeneities control the distribution of hydrates. Seismic scattering studies predict that typical scales and strong physical contrasts due to gas hydrate concentration will generate strong forward scattering, leaving only weak energy captured by surface receivers. In order to understand the distribution of hydrates and the seismic scattering effects, an algorithm was developed to construct heterogeneous petrophysical reservoir models. The algorithm was based on well logs showing power law features and Gaussian or Non-Gaussian probability density distribution, and was designed to honor the whole statistical features of well logs such as the characteristic scales and the correlation among rock parameters. Multi-dimensional and multi-variable heterogeneous models representing the same statistical properties were constructed and applied to the heterogeneity analysis of gas hydrate reservoirs. The petrophysical models provide the platform to estimate rock physics properties as well as to study the impact of seismic scattering, wave mode conversion, and their integration on wave behavior in heterogeneous reservoirs. Using the Biot-Gassmann theory, the statistical parameters obtained from Mallik 5L-38, and the correlation length estimated from acoustic impedance inversion, gas hydrate volume fraction in Mallik area was estimated to be 1.8%, approximately 2x108 m3 natural gas stored in a hydrate bearing interval within 0.25 km2 lateral extension and between 889 m and 1115 m depth. With parallel 3-D viscoelastic Finite Difference (FD) software, we conducted a 3D numerical experiment of near offset Vertical Seismic Profile. The synthetic results implied that the strong attenuation observed in the field data might be caused by the scattering.

  1. Optimal structure of metaplasticity for adaptive learning

    PubMed Central

    2017-01-01

    Learning from reward feedback in a changing environment requires a high degree of adaptability, yet the precise estimation of reward information demands slow updates. In the framework of estimating reward probability, here we investigated how this tradeoff between adaptability and precision can be mitigated via metaplasticity, i.e. synaptic changes that do not always alter synaptic efficacy. Using the mean-field and Monte Carlo simulations we identified ‘superior’ metaplastic models that can substantially overcome the adaptability-precision tradeoff. These models can achieve both adaptability and precision by forming two separate sets of meta-states: reservoirs and buffers. Synapses in reservoir meta-states do not change their efficacy upon reward feedback, whereas those in buffer meta-states can change their efficacy. Rapid changes in efficacy are limited to synapses occupying buffers, creating a bottleneck that reduces noise without significantly decreasing adaptability. In contrast, more-populated reservoirs can generate a strong signal without manifesting any observable plasticity. By comparing the behavior of our model and a few competing models during a dynamic probability estimation task, we found that superior metaplastic models perform close to optimally for a wider range of model parameters. Finally, we found that metaplastic models are robust to changes in model parameters and that metaplastic transitions are crucial for adaptive learning since replacing them with graded plastic transitions (transitions that change synaptic efficacy) reduces the ability to overcome the adaptability-precision tradeoff. Overall, our results suggest that ubiquitous unreliability of synaptic changes evinces metaplasticity that can provide a robust mechanism for mitigating the tradeoff between adaptability and precision and thus adaptive learning. PMID:28658247

  2. Prospect evaluation of shallow I-35 reservoir of NE Malay Basin offshore, Terengganu, Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janjua, Osama Akhtar, E-mail: janjua945@hotmail.com; Wahid, Ali, E-mail: ali.wahid@live.com; Salim, Ahmed Mohamed Ahmed, E-mail: mohamed.salim@petronas.com.my

    2016-02-01

    A potential accumulation of hydrocarbon that describes significant and conceivable drilling target is related to prospect. Possibility of success estimation, assuming discovery of hydrocarbons and the potential recoverable quantities range under a commercial development program are the basis of Prospect evaluation activities. The objective was to find the new shallow prospects in reservoir sandstone of I –Formation in Malay basin. The prospects in the study area are mostly consisting of faulted structures and stratigraphic channels. The methodology follows seismic interpretation and mapping, attribute analysis, evaluation of nearby well data i.e., based on well – log correlation. The petrophysical parameters analoguemore » to nearby wells was used as an input parameter for volumetric assessment. Based on analysis of presence and effectiveness, the prospect has a complete petroleum system. Two wells have been proposed to be drilled near the major fault and stratigraphic channel in I-35 reservoir that is O-1 and O-2 prospects respectively. The probability of geological success of prospect O-1 is at 35% while for O-2 is 24%. Finally, for hydrocarbon in place volumes were calculated which concluded the best estimate volume for oil in O-1 prospect is 4.99 MMSTB and O-2 prospect is 28.70 MMSTB while for gas is 29.27 BSCF and 25.59 BSCF respectively.« less

  3. Understanding Satellite-based Monthly-to-Seasonal Reservoir Outflow Estimation as a function of Hydrologic Controls

    NASA Astrophysics Data System (ADS)

    Bonnema, M.; Sikder, M. S.; Hossain, F.; Chen, X.; Miao, Y.; Lee, H.

    2015-12-01

    Growing population and increased demand for water in developing nations is causing an increase in dam construction in these regions. Entities and stakeholders downstream of dams experience drastically altered river flows. When rivers cross international boundaries, these downstream stakeholders often have little knowledge of upstream reservoir operation practices. Satellite remote sensing in the form of radar altimetry and multi-sensor precipitation products can be used as a way to provide downstream stakeholders with the upstream information needed to make important water management decisions. This study uses a mass balance between three hydraulic controls, precipitation induced inflow, evaporation, and reservoir storage change, to estimate reservoir outflow at a monthly time scale. Two reservoirs were examined in differing regions of the world, the Hungry Horse Reservoir in a mountainous region in northwest U.S. and the Kaptai Reservoir in a low-lying, forested region of Bangladesh. It was found that this mass balance method estimated the outflow of Kaptai Reservoir with reasonable skill when compared with observed flows. The estimation of outflow from Hungry Horse Reservoir was similarly skillful for outflows in winter and fall months, but summer and spring outflow estimates had high errors due to snowmelt effects. Furthermore, it was found that the important hydrologic controls for reservoir outflow estimation at the monthly time scale differs between the two reservoirs, with precipitation induced inflow being the most important control for the Kaptai Reservoir and storage change being the most important for Hungry Horse Reservoir. In both cases, a standard energy balance approach of evaporation estimation appeared to have little effect on the accuracy of outflow estimation.

  4. Estimates of reservoir methane emissions based on a spatially balanced probabilistic-survey

    EPA Science Inventory

    Global estimates of methane (CH4) emissions from reservoirs are poorly constrained, partly due to the challenges of accounting for intra-reservoir spatial variability. Reservoir-scale emission rates are often estimated by extrapolating from measurement made at a few locations; h...

  5. Long-term agroecosystem research in the Central Mississippi River Basin: hyperspectral remote sensing of reservoir water quality

    USDA-ARS?s Scientific Manuscript database

    In-situ methods for estimating water quality parameters would facilitate efforts in spatial and temporal monitoring, and optical reflectance sensing has shown potential in this regard, particularly for chlorophyll, suspended sediment and turbidity. The objective of this research was to develop and e...

  6. Bayesian linearized amplitude-versus-frequency inversion for quality factor and its application

    NASA Astrophysics Data System (ADS)

    Yang, Xinchao; Teng, Long; Li, Jingnan; Cheng, Jiubing

    2018-06-01

    We propose a straightforward attenuation inversion method by utilizing the amplitude-versus-frequency (AVF) characteristics of seismic data. A new linearized approximation equation of the angle and frequency dependent reflectivity in viscoelastic media is derived. We then use the presented equation to implement the Bayesian linear AVF inversion. The inversion result includes not only P-wave and S-wave velocities, and densities, but also P-wave and S-wave quality factors. Synthetic tests show that the AVF inversion surpasses the AVA inversion for quality factor estimation. However, a higher signal noise ratio (SNR) of data is necessary for the AVF inversion. To show its feasibility, we apply both the new Bayesian AVF inversion and conventional AVA inversion to a tight gas reservoir data in Sichuan Basin in China. Considering the SNR of the field data, a combination of AVF inversion for attenuation parameters and AVA inversion for elastic parameters is recommended. The result reveals that attenuation estimations could serve as a useful complement in combination with the AVA inversion results for the detection of tight gas reservoirs.

  7. Brittleness estimation from seismic measurements in unconventional reservoirs: Application to the Barnett shale

    NASA Astrophysics Data System (ADS)

    Perez Altimar, Roderick

    Brittleness is a key characteristic for effective reservoir stimulation and is mainly controlled by mineralogy in unconventional reservoirs. Unfortunately, there is no universally accepted means of predicting brittleness from measures made in wells or from surface seismic data. Brittleness indices (BI) are based on mineralogy, while brittleness average estimations are based on Young's modulus and Poisson's ratio. I evaluate two of the more popular brittleness estimation techniques and apply them to a Barnett Shale seismic survey in order to estimate its geomechanical properties. Using specialized logging tools such as elemental capture tool, density, and P- and S wave sonic logs calibrated to previous core descriptions and laboratory measurements, I create a survey-specific BI template in Young's modulus versus Poisson's ratio or alternatively lambdarho versus murho space. I use this template to predict BI from elastic parameters computed from surface seismic data, providing a continuous estimate of BI estimate in the Barnett Shale survey. Extracting lambdarho-murho values from microseismic event locations, I compute brittleness index from the template and find that most microsemic events occur in the more brittle part of the reservoir. My template is validated through a suite of microseismic experiments that shows most events occurring in brittle zones, fewer events in the ductile shale, and fewer events still in the limestone fracture barriers. Estimated ultimate recovery (EUR) is an estimate of the expected total production of oil and/or gas for the economic life of a well and is widely used in the evaluation of resource play reserves. In the literature it is possible to find several approaches for forecasting purposes and economic analyses. However, the extension to newer infill wells is somewhat challenging because production forecasts in unconventional reservoirs are a function of both completion effectiveness and reservoir quality. For shale gas reservoirs, completion effectiveness is a function not only of the length of the horizontal wells, but also of the number and size of the hydraulic fracture treatments in a multistage completion. These considerations also include the volume of proppant placed, proppant concentration, total perforation length, and number of clusters, while reservoir quality is dependent on properties such as the spatial variations in permeability, porosity, stress, and mechanical properties. I evaluate parametric methods such as multi-linear regression, and compare it to a non-parameteric ACE to better correlate production to engineering attributes for two datasets in the Haynesville Shale play and the Barnett Shale. I find that the parametric methods are useful for an exploratory analysis of the relationship among several variables and are useful to guide the selection of a more sophisticated parametric functional form, when the underlying functional relationship is unknown. Non-parametric regression, on the other hand, is entirely data-driven and does not rely on a pre-specified functional forms. The transformations generated by the ACE algorithm facilitate the identification of appropriate, and possibly meaningful, functional forms.

  8. Model design for predicting extreme precipitation event impacts on water quality in a water supply reservoir

    NASA Astrophysics Data System (ADS)

    Hagemann, M.; Jeznach, L. C.; Park, M. H.; Tobiason, J. E.

    2016-12-01

    Extreme precipitation events such as tropical storms and hurricanes are by their nature rare, yet have disproportionate and adverse effects on surface water quality. In the context of drinking water reservoirs, common concerns of such events include increased erosion and sediment transport and influx of natural organic matter and nutrients. As part of an effort to model the effects of an extreme precipitation event on water quality at the reservoir intake of a major municipal water system, this study sought to estimate extreme-event watershed responses including streamflow and exports of nutrients and organic matter for use as inputs to a 2-D hydrodynamic and water quality reservoir model. Since extreme-event watershed exports are highly uncertain, we characterized and propagated predictive uncertainty using a quasi-Monte Carlo approach to generate reservoir model inputs. Three storm precipitation depths—corresponding to recurrence intervals of 5, 50, and 100 years—were converted to streamflow in each of 9 tributaries by volumetrically scaling 2 storm hydrographs from the historical record. Rating-curve models for concentratoin, calibrated using 10 years of data for each of 5 constituents, were then used to estimate the parameters of a multivariate lognormal probability model of constituent concentrations, conditional on each scenario's storm date and streamflow. A quasi-random Halton sequence (n = 100) was drawn from the conditional distribution for each event scenario, and used to generate input files to a calibrated CE-QUAL-W2 reservoir model. The resulting simulated concentrations at the reservoir's drinking water intake constitute a low-discrepancy sample from the estimated uncertainty space of extreme-event source water-quality. Limiting factors to the suitability of this approach include poorly constrained relationships between hydrology and constituent concentrations, a high-dimensional space from which to generate inputs, and relatively long run-time for the reservoir model. This approach proved useful in probing a water supply's resilience to extreme events, and to inform management responses, particularly in a region such as the American Northeast where climate change is expected to bring such events with higher frequency and intensity than have occurred in the past.

  9. Understanding satellite-based monthly-to-seasonal reservoir outflow estimation as a function of hydrologic controls

    NASA Astrophysics Data System (ADS)

    Bonnema, Matthew; Sikder, Safat; Miao, Yabin; Chen, Xiaodong; Hossain, Faisal; Ara Pervin, Ismat; Mahbubur Rahman, S. M.; Lee, Hyongki

    2016-05-01

    Growing population and increased demand for water is causing an increase in dam and reservoir construction in developing nations. When rivers cross international boundaries, the downstream stakeholders often have little knowledge of upstream reservoir operation practices. Satellite remote sensing in the form of radar altimetry and multisensor precipitation products can be used as a practical way to provide downstream stakeholders with the fundamentally elusive upstream information on reservoir outflow needed to make important and proactive water management decisions. This study uses a mass balance approach of three hydrologic controls to estimate reservoir outflow from satellite data at monthly and annual time scales: precipitation-induced inflow, evaporation, and reservoir storage change. Furthermore, this study explores the importance of each of these hydrologic controls to the accuracy of outflow estimation. The hydrologic controls found to be unimportant could potentially be neglected from similar future studies. Two reservoirs were examined in contrasting regions of the world, the Hungry Horse Reservoir in a mountainous region in northwest U.S. and the Kaptai Reservoir in a low-lying, forested region of Bangladesh. It was found that this mass balance method estimated the annual outflow of both reservoirs with reasonable skill. The estimation of monthly outflow from both reservoirs was however less accurate. The Kaptai basin exhibited a shift in basin behavior resulting in variable accuracy across the 9 year study period. Monthly outflow estimation from Hungry Horse Reservoir was compounded by snow accumulation and melt processes, reflected by relatively low accuracy in summer and fall, when snow processes control runoff. Furthermore, it was found that the important hydrologic controls for reservoir outflow estimation at the monthly time scale differs between the two reservoirs, with precipitation-induced inflow being the most important control for the Kaptai Reservoir and storage change being the most important for Hungry Horse Reservoir.

  10. Greenhouse gases concentrations and fluxes from subtropical small reservoirs in relation with watershed urbanization

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; He, Yixin; Yuan, Xingzhong; Chen, Huai; Peng, Changhui; Yue, Junsheng; Zhang, Qiaoyong; Diao, Yuanbin; Liu, Shuangshuang

    2017-04-01

    Greenhouse gas (GHG) emissions from reservoirs and global urbanization have gained widespread attention, yet the response of GHG emissions to the watershed urbanization is poorly understood. Meanwhile, there are millions of small reservoirs worldwide that receive and accumulate high loads of anthropogenic carbon and nitrogen due to watershed urbanization and can therefore be hotspots of GHG emissions. In this study, we assessed the GHG concentrations and fluxes in sixteen small reservoirs draining urban, agricultural and forested watersheds over a period of one year. The concentrations of pCO2, CH4 and N2O in sampled urban reservoirs that received more sewage input were higher than those in agricultural reservoirs, and were 3, 7 and 10 times higher than those in reservoirs draining in forested areas, respectively. Accordingly, urban reservoirs had the highest estimated GHG flux rate. Regression analysis indicated that dissolved total phosphorus, dissolved organic carbon (DOC) and chlorophyll-a (Chl-a) had great effect on CO2 production, while the nitrogen (N) and phosphorus (P) content of surface water were closely related to CH4 and N2O production. Therefore, these parameters can act as good predictors of GHG emissions in urban watersheds. Given the rapid progress of global urbanization, small urban reservoirs play a crucial role in accounting for regional GHG emissions and cannot be ignored.

  11. Geochemical modeling of magma mixing and magma reservoir volumes during early episodes of Kīlauea Volcano's Pu`u `Ō`ō eruption

    NASA Astrophysics Data System (ADS)

    Shamberger, Patrick J.; Garcia, Michael O.

    2007-02-01

    Geochemical modeling of magma mixing allows for evaluation of volumes of magma storage reservoirs and magma plumbing configurations. A new analytical expression is derived for a simple two-component box-mixing model describing the proportions of mixing components in erupted lavas as a function of time. Four versions of this model are applied to a mixing trend spanning episodes 3 31 of Kilauea Volcano’s Puu Oo eruption, each testing different constraints on magma reservoir input and output fluxes. Unknown parameters (e.g., magma reservoir influx rate, initial reservoir volume) are optimized for each model using a non-linear least squares technique to fit model trends to geochemical time-series data. The modeled mixing trend closely reproduces the observed compositional trend. The two models that match measured lava effusion rates have constant magma input and output fluxes and suggest a large pre-mixing magma reservoir (46±2 and 49±1 million m3), with little or no volume change over time. This volume is much larger than a previous estimate for the shallow, dike-shaped magma reservoir under the Puu Oo vent, which grew from ˜3 to ˜10 12 million m3. These volumetric differences are interpreted as indicating that mixing occurred first in a larger, deeper reservoir before the magma was injected into the overlying smaller reservoir.

  12. a Fractal Analysis for Net Present Value of Multi-Stage Hydraulic Fractured Horizontal Well

    NASA Astrophysics Data System (ADS)

    Lu, Hong-Lin; Zhang, Ji-Jun; Tan, Xiao-Hua; Li, Xiao-Ping; Zhao, Jia-Hui

    Because of the low permeability, multi-stage hydraulic fractured horizontal wells (MHFHWs) occupy a dominant position among production wells in tight gas reservoir. However, net present value (NPV) estimation method for MHFHW in tight gas reservoirs often ignores the effect of heterogeneity in microscopic pore structure. Apart from that, a new fractal model is presented for NPV of MHFHW, based on the fractal expressions of formation parameters. First, with the aid of apparent permeability model, a pseudo pressure expression considering both reservoir fractal features and slippage effect is derived, contributing to establish the productivity model. Secondly, economic assessment method is built based on the fractal productivity model, in order to obtain the NPV of MHFHW. Thirdly, the type curves are illustrated and the influences of different fractal parameters are discussed. The pore fractal dimensions Df and the capillary tortuosity fractal dimensions DT have significant effects on the NPV of an MHFHW. Finally, the proposed model in this paper provides a new methodology for analyzing and predicting the NPV of an MHFHW and may be conducive to a better understanding of the optimal design of MHFHW.

  13. Reduced-Order Model for Leakage Through an Open Wellbore from the Reservoir due to Carbon Dioxide Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Lehua; Oldenburg, Curtis M.

    Potential CO 2 leakage through existing open wellbores is one of the most significant hazards that need to be addressed in geologic carbon sequestration (GCS) projects. In the framework of the National Risk Assessment Partnership (NRAP) which requires fast computations for uncertainty analysis, rigorous simulation of the coupled wellbore-reservoir system is not practical. We have developed a 7,200-point look-up table reduced-order model (ROM) for estimating the potential leakage rate up open wellbores in response to CO 2 injection nearby. The ROM is based on coupled simulations using T2Well/ECO2H which was run repeatedly for representative conditions relevant to NRAP to createmore » a look-up table response-surface ROM. The ROM applies to a wellbore that fully penetrates a 20-m thick reservoir that is used for CO 2 storage. The radially symmetric reservoir is assumed to have initially uniform pressure, temperature, gas saturation, and brine salinity, and it is assumed these conditions are held constant at the far-field boundary (100 m away from the wellbore). In such a system, the leakage can quickly reach quasi-steady state. The ROM table can be used to estimate both the free-phase CO 2 and brine leakage rates through an open well as a function of wellbore and reservoir conditions. Results show that injection-induced pressure and reservoir gas saturation play important roles in controlling leakage. Caution must be used in the application of this ROM because well leakage is formally transient and the ROM lookup table was populated using quasi-steady simulation output after 1000 time steps which may correspond to different physical times for the various parameter combinations of the coupled wellbore-reservoir system.« less

  14. Rainfall-Runoff and Water-Balance Models for Management of the Fena Valley Reservoir, Guam

    USGS Publications Warehouse

    Yeung, Chiu W.

    2005-01-01

    The U.S. Geological Survey's Precipitation-Runoff Modeling System (PRMS) and a generalized water-balance model were calibrated and verified for use in estimating future availability of water in the Fena Valley Reservoir in response to various combinations of water withdrawal rates and rainfall conditions. Application of PRMS provides a physically based method for estimating runoff from the Fena Valley Watershed during the annual dry season, which extends from January through May. Runoff estimates from the PRMS are used as input to the water-balance model to estimate change in water levels and storage in the reservoir. A previously published model was calibrated for the Maulap and Imong River watersheds using rainfall data collected outside of the watershed. That model was applied to the Almagosa River watershed by transferring calibrated parameters and coefficients because information on daily diversions at the Almagosa Springs upstream of the gaging station was not available at the time. Runoff from the ungaged land area was not modeled. For this study, the availability of Almagosa Springs diversion data allowed the calibration of PRMS for the Almagosa River watershed. Rainfall data collected at the Almagosa rain gage since 1992 also provided better estimates of rainfall distribution in the watershed. In addition, the discontinuation of pan-evaporation data collection in 1998 required a change in the evapotranspiration estimation method used in the PRMS model. These reasons prompted the update of the PRMS for the Fena Valley Watershed. Simulated runoff volume from the PRMS compared reasonably with measured values for gaging stations on Maulap, Almagosa, and Imong Rivers, tributaries to the Fena Valley Reservoir. On the basis of monthly runoff simulation for the dry seasons included in the entire simulation period (1992-2001), the total volume of runoff can be predicted within -3.66 percent at Maulap River, within 5.37 percent at Almagosa River, and within 10.74 percent at Imong River. Month-end reservoir volumes simulated by the reservoir water-balance model for both calibration and verification periods compared closely with measured reservoir volumes. Errors for the calibration periods ranged from 4.51 percent [208.7 acre-feet (acre-ft) or 68.0 million gallons (Mgal)] to -5.90 percent (-317.8 acre-ft or -103.6 Mgal). For the verification periods, errors ranged from 1.69 percent (103.5 acre-ft or 33.7 Mgal) to -4.60 percent (-178.7 acre-ft or -58.2 Mgal). Monthly simulation bias ranged from -0.19 percent for the calibration period to -0.98 percent for the verification period; relative error ranged from -0.37 to -1.12 percent, respectively. Relatively small bias indicated that the model did not consistently overestimate or underestimate reservoir volume.

  15. Hydraulic Fracturing Treatment Controls on Induced Microseismicity Attributes

    NASA Astrophysics Data System (ADS)

    Reyes-Montes, J. M.; Kelly, C.; Huang, J.; Zhao, X.; Young, R. P.

    2014-12-01

    Hydraulic fracturing imposes stress changes in the treated rock through the injection of a mix of fluid and proppant at variable rates and can result in stimulated microseismicity (induced or triggered) with a wide range of magnitudes associated to the opening of new cracks or the mobilisation of pre-existing fractures. Optimizing the treatment is vital for the economic and sustainable development of hydrocarbon reservoir and for the minimization of potential environmental impacts. The analysis of the induced seismicity and of event parameters provide an estimate of the effect of the treatment and the extent of the changes in the rock reservoir properties affecting fluid conductivity. This gives critical feedback for the optimization of the treatment, especially during real-time monitoring. In this study, we correlate microseismic attributes such as the fracture dimensions, event distribution and b-values with the fluid treatment parameters such as the pumping pressure and the slurry rate across different reservoir treatments. Although the microseismic attributes are influenced by many different factors such as the reservoir elastic properties, the stress regime and in-situ fracturing, we consistently observed positive correlations between the slurry rate, plateau treatment pressure and the fracture dimensions. In addition, the variation and systematic deviation of b-value from the natural average of 1.0 gives an insight into the geomechanical behavior of the reservoir. Similar to b-value, another fractal dimension, D-value, indicates the fracture spatial propagation from linear advancement (D=1.0) to planar distribution (D=2.0) to full space occurrence (D=3.0). By merging microseismic events from multiple treatment stages, we statistically analyzed magnitude distribution and spatial and temporal structure of the microseismic cloud induced during the stimulation of a range of different reservoirs with a total population of ~20,000 MS events. Analysis on multiple treatment projects can provide a first order guidance on selecting optimal treatment parameters.

  16. Probabilistic inversion of AVO seismic data for reservoir properties and related uncertainty estimation

    NASA Astrophysics Data System (ADS)

    Zunino, Andrea; Mosegaard, Klaus

    2017-04-01

    Sought-after reservoir properties of interest are linked only indirectly to the observable geophysical data which are recorded at the earth's surface. In this framework, seismic data represent one of the most reliable tool to study the structure and properties of the subsurface for natural resources. Nonetheless, seismic analysis is not an end in itself, as physical properties such as porosity are often of more interest for reservoir characterization. As such, inference of those properties implies taking into account also rock physics models linking porosity and other physical properties to elastic parameters. In the framework of seismic reflection data, we address this challenge for a reservoir target zone employing a probabilistic method characterized by a multi-step complex nonlinear forward modeling that combines: 1) a rock physics model with 2) the solution of full Zoeppritz equations and 3) a convolutional seismic forward modeling. The target property of this work is porosity, which is inferred using a Monte Carlo approach where porosity models, i.e., solutions to the inverse problem, are directly sampled from the posterior distribution. From a theoretical point of view, the Monte Carlo strategy can be particularly useful in the presence of nonlinear forward models, which is often the case when employing sophisticated rock physics models and full Zoeppritz equations and to estimate related uncertainty. However, the resulting computational challenge is huge. We propose to alleviate this computational burden by assuming some smoothness of the subsurface parameters and consequently parameterizing the model in terms of spline bases. This allows us a certain flexibility in that the number of spline bases and hence the resolution in each spatial direction can be controlled. The method is tested on a 3-D synthetic case and on a 2-D real data set.

  17. Inverse Modeling of the Thermal Hydrodynamic and Chemical Processes During Exploitation of the Mutnovsky Geothermal Field (Kamchatka, Russia)

    NASA Astrophysics Data System (ADS)

    Kiryukhin, A. V.

    2012-12-01

    A TOUGH2-EOS1 3D rectangular numerical model of the Mutnovsky geothermal field (Kiryukhin, 1996) was re-calibrated using natural state and history exploitation data during the time period 1984-2006 years. Recalibration using iTOUGH2-EOS1+tracer inversion modeling capabilities, was useful to remove outliers from calibration data, identify sets of the estimated parameters of the model, and perform estimations. Chloride ion was used as a "tracer" in this modeling. Thermal hydrodynamic observational data which were used for model recalibration are as follows: 37 temperature and 1 pressure calibration points - for natural state, 13 production wells with monthly averaged enthalpies (650 values during the time period 1983-1987, 2000-2006 years) and 1 transient pressure monitoring wells (57 values during 2003-2006 years) - for exploitation history match. Chemical observational data includes transient mass chloride concentrations from 10 production wells and chloride hot spring sampling data (149 values during 1999-2006 years). The following features of Mutnovsky geothermal reservoir based on integrated inverse modeling analysis of natural state and exploitation data were estimated and better understood: 1. Reservoir permeability was found to be one order more comparable to model-1996, especially the lower part coinciding with intrusion contact zone (600-800 mD at -750 - -1250 masl); 2. Local meteoric inflow in the central part of the field accounting for 45 - 80 kg/s since year 2002; 3. Reinjection rates were estimated significantly lower, than officially reported as 100% of total fluid withdrawal; 4. Upflow fluid flows were estimated hotter (314oC) and the rates are larger (+50%), than assumed before; 5. Global double porosity parameters estimates are: fracture spacing - 5 - 10 m, void fraction N 10-3; 6. Main upflow zone chloride mass concentration estimate is 150 ppm. Conversion of the calibrated TOUGH2-EOS1+tracer model into electrical resistivity model using TOUGH2-EOS9 (L. Magnusdottir, 2012) may significantly improve efficiency of Electrical Resistivity Tomography (ETR) applications to detect spatial features of infiltration downflows and chloride enriched reinjected flows during reservoir exploitation.

  18. Uncertainty Quantification for CO2-Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Middleton, R.; Bauman, J.; Viswanathan, H.; Fessenden-Rahn, J.; Pawar, R.; Lee, S.

    2013-12-01

    CO2-Enhanced Oil Recovery (EOR) is currently an option for permanently sequestering CO2 in oil reservoirs while increasing oil/gas productions economically. In this study we have developed a framework for understanding CO2 storage potential within an EOR-sequestration environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. By coupling a EOR tool--SENSOR (CEI, 2011) with a uncertainty quantification tool PSUADE (Tong, 2011), we conduct an integrated Monte Carlo simulation of water, oil/gas components and CO2 flow and reactive transport in the heterogeneous Morrow formation to identify the key controlling processes and optimal parameters for CO2 sequestration and EOR. A global sensitivity and response surface analysis are conducted with PSUADE to build numerically the relationship among CO2 injectivity, oil/gas production, reservoir parameters and distance between injection and production wells. The results indicate that the reservoir permeability and porosity are the key parameters to control the CO2 injection, oil and gas (CH4) recovery rates. The distance between the injection and production wells has large impact on oil and gas recovery and net CO2 injection rates. The CO2 injectivity increases with the increasing reservoir permeability and porosity. The distance between injection and production wells is the key parameter for designing an EOR pattern (such as a five (or nine)-spot pattern). The optimal distance for a five-spot-pattern EOR in this site is estimated from the response surface analysis to be around 400 meters. Next, we are building the machinery into our risk assessment framework CO2-PENS to utilize these response surfaces and evaluate the operation risk for CO2 sequestration and EOR at this site.

  19. Identification and determination of trapping parameters as key site parameters for CO2 storage for the active CO2 storage site in Ketzin (Germany) - Comparison of different experimental approaches and analysis of field data

    NASA Astrophysics Data System (ADS)

    Zemke, Kornelia; Liebscher, Axel

    2015-04-01

    Petrophysical properties like porosity and permeability are key parameters for a safe long-term storage of CO2 but also for the injection operation itself. The accurate quantification of residual trapping is difficult, but very important for both storage containment security and storage capacity; it is also an important parameter for dynamic simulation. The German CO2 pilot storage in Ketzin is a Triassic saline aquifer with initial conditions of the target sandstone horizon of 33.5 ° C/6.1 MPa at 630 m. One injection and two observation wells were drilled in 2007 and nearly 200 m of core material was recovered for site characterization. From June 2008 to September 2013, slightly more than 67 kt food-grade CO2 has been injected and continuously monitored. A fourth observation well has been drilled after 61 kt injected CO2 in summer 2012 at only 25 m distance to the injection well and new core material was recovered that allow study CO2 induced changes in petrophysical properties. The observed only minor differences between pre-injection and post-injection petrophysical parameters of the heterogeneous formation have no severe consequences on reservoir and cap rock integrity or on the injection behavior. Residual brine saturation for the Ketzin reservoir core material was estimated by different methods. Brine-CO2 flooding experiments for two reservoir samples resulted in 36% and 55% residual brine saturation (Kiessling, 2011). Centrifuge capillary pressure measurements (pc = 0.22 MPa) yielded the smallest residual brine saturation values with ~20% for the lower part of the reservoir sandstone and ~28% for the upper part (Fleury, 2010). The method by Cerepi (2002), which calculates the residual mercury saturation after pressure release on the imbibition path as trapped porosity and the retracted mercury volume as free porosity, yielded unrealistic low free porosity values of only a few percent, because over 80% of the penetrated mercury remained in the samples after pressure release to atmospheric pressure. The results from the centrifuge capillary pressure measurements were then used for calibrating the cutoff time of NMR T2 relaxation (average value 8 ms) to differentiate between the mobile and immobile water fraction (standard for clean sandstone 33 ms). Following Norden (2010) a cutoff time of 10 ms was applied to estimate the residual saturation as Bound Fluid Volume for the Ketzin core materials and to estimate NMR permeability after Timur-Coates. This adapted cutoff value is also consistent with results from RST logging after injection. The maximum measured CO2 saturation corresponds to the effective porosity for the upper most CO2 filled sandstone horizon. The directly measured values and the estimated residual brine saturations from NMR measurements with the adapted cutoff time of 10 ms are within the expected range compared to the literature data with a mean residual brine saturation of 53%. A. Cerepi et al., 2002, Journal of Petroleum Science and Engineering 35. M. Fleury et al., 2011, SCA2010-06. D. Kiessling et al., 2010, International Journal of Greenhouse Gas Control 4. B. Norden et al. 2010, SPE Reservoir Evaluation & Engineering 13. .

  20. Tagging methods for estimating population size and mortality rates of inland striped bass populations

    USGS Publications Warehouse

    Hightower, Joseph E.; Pollock, Kenneth H.

    2013-01-01

    Striped bass Morone saxatilis in inland reservoirs play an important role ecologically and in supporting recreational fishing. To manage these populations, biologists need information about abundance and mortality. Abundance estimates can be used to assess the effectiveness of stocking programs that maintain most reservoir striped bass populations. Mortality estimates can indicate the relative impact of fishing versus natural mortality and the need for harvest regulation. The purpose of this chapter is to evaluate tagging studies as a way of obtaining information about abundance and mortality. These approaches can be grouped into three broad categories: tag recapture, tag return, and telemetry. Tag-recapture methods are typically used to estimate population size and other demographic parameters but are often difficult to apply in large systems. A fishing tournament can be an effective way of generating tagging or recapture effort in large systems, compared to using research sampling only. Tag-return methods that rely on angler harvest and catch and release can be used to estimate fishing (F) and natural (M) mortality rates and are a practical approach in large reservoirs. The key to success in tag-return studies is to build in auxiliary studies to estimate short-term tagging mortality, short- and longterm tag loss, reporting rate, and mortality associated with catch and release. F and M can also be estimated using telemetry tags. Advantages of this approach are that angler nonreporting does not bias estimates and fish with transmitters provide useful ecological data. Cost can be a disadvantage of telemetry studies; thus, combining telemetry tags with conventional tag returns in an integrated analysis is often the optimal approach. In summary, tagging methods can be a powerful tool for assessing the effectiveness of inland striped bass stocking programs and the relative impact of fishing versus natural mortality

  1. Estimation of Dry Fracture Weakness, Porosity, and Fluid Modulus Using Observable Seismic Reflection Data in a Gas-Bearing Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Huaizhen; Zhang, Guangzhi

    2017-05-01

    Fracture detection and fluid identification are important tasks for a fractured reservoir characterization. Our goal is to demonstrate a direct approach to utilize azimuthal seismic data to estimate fluid bulk modulus, porosity, and dry fracture weaknesses, which decreases the uncertainty of fluid identification. Combining Gassmann's (Vier. der Natur. Gesellschaft Zürich 96:1-23, 1951) equations and linear-slip model, we first establish new simplified expressions of stiffness parameters for a gas-bearing saturated fractured rock with low porosity and small fracture density, and then we derive a novel PP-wave reflection coefficient in terms of dry background rock properties (P-wave and S-wave moduli, and density), fracture (dry fracture weaknesses), porosity, and fluid (fluid bulk modulus). A Bayesian Markov chain Monte Carlo nonlinear inversion method is proposed to estimate fluid bulk modulus, porosity, and fracture weaknesses directly from azimuthal seismic data. The inversion method yields reasonable estimates in the case of synthetic data containing a moderate noise and stable results on real data.

  2. Optimal nonlinear information processing capacity in delay-based reservoir computers

    NASA Astrophysics Data System (ADS)

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2015-09-01

    Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.

  3. Optimal nonlinear information processing capacity in delay-based reservoir computers.

    PubMed

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2015-09-11

    Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.

  4. Optimal nonlinear information processing capacity in delay-based reservoir computers

    PubMed Central

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2015-01-01

    Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature. PMID:26358528

  5. Bootstrap position analysis for forecasting low flow frequency

    USGS Publications Warehouse

    Tasker, Gary D.; Dunne, P.

    1997-01-01

    A method of random resampling of residuals from stochastic models is used to generate a large number of 12-month-long traces of natural monthly runoff to be used in a position analysis model for a water-supply storage and delivery system. Position analysis uses the traces to forecast the likelihood of specified outcomes such as reservoir levels falling below a specified level or streamflows falling below statutory passing flows conditioned on the current reservoir levels and streamflows. The advantages of this resampling scheme, called bootstrap position analysis, are that it does not rely on the unverifiable assumption of normality, fewer parameters need to be estimated directly from the data, and accounting for parameter uncertainty is easily done. For a given set of operating rules and water-use requirements for a system, water managers can use such a model as a decision-making tool to evaluate different operating rules. ?? ASCE,.

  6. Application of Fractal Geometry in Evaluation of Effective Stimulated Reservoir Volume in Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Sheng, Guanglong; Su, Yuliang; Wang, Wendong; Javadpour, Farzam; Tang, Meirong

    According to hydraulic-fracturing practices conducted in shale reservoirs, effective stimulated reservoir volume (ESRV) significantly affects the production of hydraulic fractured well. Therefore, estimating ESRV is an important prerequisite for confirming the success of hydraulic fracturing and predicting the production of hydraulic fracturing wells in shale reservoirs. However, ESRV calculation remains a longstanding challenge in hydraulic-fracturing operation. In considering fractal characteristics of the fracture network in stimulated reservoir volume (SRV), this paper introduces a fractal random-fracture-network algorithm for converting the microseismic data into fractal geometry. Five key parameters, including bifurcation direction, generating length (d), deviation angle (α), iteration times (N) and generating rules, are proposed to quantitatively characterize fracture geometry. Furthermore, we introduce an orthogonal-fractures coupled dual-porosity-media representation elementary volume (REV) flow model to predict the volumetric flux of gas in shale reservoirs. On the basis of the migration of adsorbed gas in porous kerogen of REV with different fracture spaces, an ESRV criterion for shale reservoirs with SRV is proposed. Eventually, combining the ESRV criterion and fractal characteristic of a fracture network, we propose a new approach for evaluating ESRV in shale reservoirs. The approach has been used in the Eagle Ford shale gas reservoir, and results show that the fracture space has a measurable influence on migration of adsorbed gas. The fracture network can contribute to enhancement of the absorbed gas recovery ratio when the fracture space is less than 0.2 m. ESRV is evaluated in this paper, and results indicate that the ESRV accounts for 27.87% of the total SRV in shale gas reservoirs. This work is important and timely for evaluating fracturing effect and predicting production of hydraulic fracturing wells in shale reservoirs.

  7. Petrophysical characterization of first ever drilled core samples from an active CO2 storage site, the German Ketzin Pilot Site - Comparison with long term experiments

    NASA Astrophysics Data System (ADS)

    Zemke, Kornelia; Liebscher, Axel

    2014-05-01

    Petrophysical properties like porosity and permeability are key parameters for a safe long-term storage of CO2 but also for the injection operation itself. These parameters may change during and/or after the CO2 injection due to geochemical reactions in the reservoir system that are triggered by the injected CO2. Here we present petrophysical data of first ever drilled cores from a newly drilled well at the active CO2 storage site - the Ketzin pilot site in the Federal State of Brandenburg, Germany. By comparison with pre-injection baseline data from core samples recovered prior to injection, the new samples provide the unique opportunity to evaluate the impact of CO2 on pore size related properties of reservoir and cap rocks at a real injection site under in-situ reservoir conditions. After injection of 61 000 tons CO2, an additional well was drilled and new rock cores were recovered. In total 100 core samples from the reservoir and the overlaying caprock were investigated by NMR relaxation. Permeability of 20 core samples was estimated by nitrogen and porosity by helium pycnometry. The determined data are comparable between pre-injection and post-injection core samples. The lower part of the reservoir sandstone is unaffected by the injected CO2. The upper part of the reservoir sandstone shows consistently slightly lower NMR porosity and permeability values in the post-injection samples when compared to the pre-injection data. This upper sandstone part is above the fluid level and CO2 present as a free gas phase and a possible residual gas saturation of the cores distorted the NMR results. The potash-containing drilling fluid can also influence these results: NMR investigation of twin samples from inner and outer parts of the cores show a reduced fraction of larger pores for the outer core samples together with lower porosities and T2 times. The drill mud penetration depth can be controlled by the added fluorescent tracer. Due to the heterogeneous character of the Stuttgart Formation it is difficult to estimate definite CO2 induced changes from petrophysical measurements. The observed changes are only minor. Several batch experiments on Ketzin samples drilled prior injection confirm the results from investigation of the in-situ rock cores. Core samples of the pre-injection wells were exposed to CO2 and brine in autoclaves over various time periods. Samples were characterized prior to and after the experiments by NMR and Mercury Injection Porosimetry (MIP). The results are consistent with the logging data and show only minor change. Unfortunately, also in these experiments observed mineralogical and petrophysical changes were within the natural heterogeneity of the Ketzin reservoir and precluded unequivocal conclusions. However, given the only minor differences between post-injection well and pre-injection well, it is reasonable to assume that the potential dissolution-precipitation processes appear to have no severe consequences on reservoir and cap rock integrity or on the injection behaviour. This is also in line with the continuously recorded injection operation parameter. These do not point to any changes in reservoir injectivity.|

  8. Role of fish distribution on estimates of standing crop in a cooling reservoir

    USGS Publications Warehouse

    Barwick, D. Hugh

    1984-01-01

    Estimates of fish standing crop from coves in Keowee Reservoir, South Carolina, were obtained in May and August for 3 consecutive years. Estimates were significantly higher in May than in August for most of the major species of fish collected, suggesting that considerable numbers of fish had migrated from the coves by August. This change in fish distribution may have resulted from the operation of a 2,580-megawatt nuclear power plant which altered reservoir stratification. Because fish distribution is sensitive to conditions of reservoir stratification, and because power plants often alter reservoir stratification, annual cove sampling in August may not be sufficient to produce comparable estimates of fish standing crop on which to assess the impact of power plant operations on fish populations. Comparable estimates of fish standing crop can probably be obtained from cooling reservoirs by collecting annual samples at similar water temperatures and concentrations of dissolved oxygen.

  9. Bayesian Markov Chain Monte Carlo inversion for weak anisotropy parameters and fracture weaknesses using azimuthal elastic impedance

    NASA Astrophysics Data System (ADS)

    Chen, Huaizhen; Pan, Xinpeng; Ji, Yuxin; Zhang, Guangzhi

    2017-08-01

    A system of aligned vertical fractures and fine horizontal shale layers combine to form equivalent orthorhombic media. Weak anisotropy parameters and fracture weaknesses play an important role in the description of orthorhombic anisotropy (OA). We propose a novel approach of utilizing seismic reflection amplitudes to estimate weak anisotropy parameters and fracture weaknesses from observed seismic data, based on azimuthal elastic impedance (EI). We first propose perturbation in stiffness matrix in terms of weak anisotropy parameters and fracture weaknesses, and using the perturbation and scattering function, we derive PP-wave reflection coefficient and azimuthal EI for the case of an interface separating two OA media. Then we demonstrate an approach to first use a model constrained damped least-squares algorithm to estimate azimuthal EI from partially incidence-phase-angle-stack seismic reflection data at different azimuths, and then extract weak anisotropy parameters and fracture weaknesses from the estimated azimuthal EI using a Bayesian Markov Chain Monte Carlo inversion method. In addition, a new procedure to construct rock physics effective model is presented to estimate weak anisotropy parameters and fracture weaknesses from well log interpretation results (minerals and their volumes, porosity, saturation, fracture density, etc.). Tests on synthetic and real data indicate that unknown parameters including elastic properties (P- and S-wave impedances and density), weak anisotropy parameters and fracture weaknesses can be estimated stably in the case of seismic data containing a moderate noise, and our approach can make a reasonable estimation of anisotropy in a fractured shale reservoir.

  10. Quantitative Analysis of Existing Conditions and Production Strategies for the Baca Geothermal System, New Mexico

    NASA Astrophysics Data System (ADS)

    Faust, Charles R.; Mercer, James W.; Thomas, Stephen D.; Balleau, W. Pete

    1984-05-01

    The Baca geothermal reservoir and adjacent aquifers in the Jemez Mountains of New Mexico comprise an integrated hydrogeologic system. Analysis of the geothermal reservoir either under natural conditions or subject to proposed development should account for the mass (water) and energy (heat) balances of adjacent aquifers as well as the reservoir itself. A three-dimensional model based on finite difference approximations is applied to this integrated system. The model simulates heat transport associated with the flow of steam and water through an equivalent porous medium. The Baca geothermal reservoir is dominated by flow in fractures and distinct strata, but at the scale of application the equivalent porous media concept is appropriate. The geothermal reservoir and adjacent aquifers are simulated under both natural conditions and proposed production strategies. Simulation of natural conditions compares favorably with observed pressure, temperature, and thermal discharge data. The history matching simulations show that the results used for comparison are most sensitive to vertical permeability and the area of an assumed high-permeability zone connecting the reservoir to a deep hydrothermal source. Simulations using proposed production strategies and optimistic estimates of certain hydrologic parameters and reservoir extent indicate that a 50-MW power plant could be maintained for a period greater than 30 years. This production, however, will result in significant decreases in the total water discharge to the Jemez River.

  11. An evaluation of seepage gains and losses in Indian Creek Reservoir, Ada County, Idaho, April 2010–November 2011

    USGS Publications Warehouse

    Williams, Marshall L.; Etheridge, Alexandra B.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources, conducted an investigation on Indian Creek Reservoir, a small impoundment in east Ada County, Idaho, to quantify groundwater seepage into and out of the reservoir. Data from the study will assist the Idaho Water Resources Department’s Comprehensive Aquifer Management Planning effort to estimate available water resources in Ada County. Three independent methods were utilized to estimate groundwater seepage: (1) the water-budget method; (2) the seepage-meter method; and (3) the segmented Darcy method. Reservoir seepage was quantified during the periods of April through August 2010 and February through November 2011. With the water-budget method, all measureable sources of inflow to and outflow from the reservoir were quantified, with the exception of groundwater; the water-budget equation was solved for groundwater inflow to or outflow from the reservoir. The seepage-meter method relies on the placement of seepage meters into the bottom sediments of the reservoir for the direct measurement of water flux across the sediment-water interface. The segmented-Darcy method utilizes a combination of water-level measurements in the reservoir and in adjacent near-shore wells to calculate water-table gradients between the wells and the reservoir within defined segments of the reservoir shoreline. The Darcy equation was used to calculate groundwater inflow to and outflow from the reservoir. Water-budget results provided continuous, daily estimates of seepage over the full period of data collection, while the seepage-meter and segmented Darcy methods provided instantaneous estimates of seepage. As a result of these and other difference in methodologies, comparisons of seepage estimates provided by the three methods are considered semi-quantitative. The results of the water-budget derived estimates of seepage indicate seepage to be seasonally variable in terms of the direction and magnitude of flow. The reservoir tended to gain water from seepage of groundwater in the early spring months (March–May), while seepage losses to groundwater from the reservoir occurred in the drier months (June–October). Net monthly seepage rates, as computed by the water-budget method, varied greatly. Reservoir gains from seepage ranged from 0.2 to 59.4 acre-feet per month, while reservoir losses to seepage ranged from 1.6 and 26.8 acre-feet per month. An analysis of seepage meter estimates and segmented-Darcy estimates qualitatively supports the seasonal patterns in seepage provided by the water-budget calculations, except that they tended to be much smaller in magnitude. This suggests that actual seepage might be smaller than those estimates made by the water-budget method. Although the results of all three methods indicate that there is some water loss from the reservoir to groundwater, the seepage losses may be due to rewetting of unsaturated near-shore soils, possible replenishment of a perched aquifer, or both, rather than through percolation to the local aquifer that lies 130 feet below the reservoir. A lithologic log from an adjacent well indicates the existence of a clay lithology that is well correlated to the original reservoir’s base elevation. If the clay lithologic unit extends beneath the reservoir basin underlying the fine-grain reservoir bed sediments, the clay layer should act as an effective barrier to reservoir seepage to the local aquifer, which would explain the low seepage loss estimates calculated in this study.

  12. Model Parameterization and P-wave AVA Direct Inversion for Young's Impedance

    NASA Astrophysics Data System (ADS)

    Zong, Zhaoyun; Yin, Xingyao

    2017-05-01

    AVA inversion is an important tool for elastic parameters estimation to guide the lithology prediction and "sweet spot" identification of hydrocarbon reservoirs. The product of the Young's modulus and density (named as Young's impedance in this study) is known as an effective lithology and brittleness indicator of unconventional hydrocarbon reservoirs. Density is difficult to predict from seismic data, which renders the estimation of the Young's impedance inaccurate in conventional approaches. In this study, a pragmatic seismic AVA inversion approach with only P-wave pre-stack seismic data is proposed to estimate the Young's impedance to avoid the uncertainty brought by density. First, based on the linearized P-wave approximate reflectivity equation in terms of P-wave and S-wave moduli, the P-wave approximate reflectivity equation in terms of the Young's impedance is derived according to the relationship between P-wave modulus, S-wave modulus, Young's modulus and Poisson ratio. This equation is further compared to the exact Zoeppritz equation and the linearized P-wave approximate reflectivity equation in terms of P- and S-wave velocities and density, which illustrates that this equation is accurate enough to be used for AVA inversion when the incident angle is within the critical angle. Parameter sensitivity analysis illustrates that the high correlation between the Young's impedance and density render the estimation of the Young's impedance difficult. Therefore, a de-correlation scheme is used in the pragmatic AVA inversion with Bayesian inference to estimate Young's impedance only with pre-stack P-wave seismic data. Synthetic examples demonstrate that the proposed approach is able to predict the Young's impedance stably even with moderate noise and the field data examples verify the effectiveness of the proposed approach in Young's impedance estimation and "sweet spots" evaluation.

  13. Sedimentation and the Economics of Selecting an Optimum Reservoir Size

    NASA Astrophysics Data System (ADS)

    Miltz, David; White, David C.

    1987-08-01

    This paper attempts to develop an easily reproducible methodology for the economic selection of an optimal reservoir size given an annual sedimentation rate. The optimal capacity is that at which the marginal cost of constructing additional storage capacity is equal to the dredging costs avoided by having that additional capacity available to store sediment. The cost implications of misestimating dredging costs, construction costs, and sediment delivery rates are investigated. In general, it is shown that oversizing is a rational response to uncertainty in the estimation of parameters. The sensitivity of the results to alternative discount rates is also discussed. The theoretical discussion is illustrated with a case study drawn from Highland Silver Lake in southwestern Illinois.

  14. Play-level distributions of estimates of recovery factors for a miscible carbon dioxide enhanced oil recovery method used in oil reservoirs in the conterminous United States

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2016-03-02

    The retention factor is the percentage of injected CO2 that is naturally retained in the reservoir. Retention factors were also estimated in this study. For clastic reservoirs, 90 percent of the estimated retention factors were between 21.7 and 32.1 percent, and for carbonate reservoirs, 90 percent were between 23.7 and 38.2 percent. The respective median values were 22.9 for clastic reservoirs and 26.1 for carbonate reservoirs. Both distributions were right skewed. The recovery and retention factors that were calculated are consistent with the corresponding factors reported in the literature.

  15. Simulation of water-energy fluxes through small-scale reservoir systems under limited data availability

    NASA Astrophysics Data System (ADS)

    Papoulakos, Konstantinos; Pollakis, Giorgos; Moustakis, Yiannis; Markopoulos, Apostolis; Iliopoulou, Theano; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2017-04-01

    Small islands are regarded as promising areas for developing hybrid water-energy systems that combine multiple sources of renewable energy with pumped-storage facilities. Essential element of such systems is the water storage component (reservoir), which implements both flow and energy regulations. Apparently, the representation of the overall water-energy management problem requires the simulation of the operation of the reservoir system, which in turn requires a faithful estimation of water inflows and demands of water and energy. Yet, in small-scale reservoir systems, this task in far from straightforward, since both the availability and accuracy of associated information is generally very poor. For, in contrast to large-scale reservoir systems, for which it is quite easy to find systematic and reliable hydrological data, in the case of small systems such data may be minor or even totally missing. The stochastic approach is the unique means to account for input data uncertainties within the combined water-energy management problem. Using as example the Livadi reservoir, which is the pumped storage component of the small Aegean island of Astypalaia, Greece, we provide a simulation framework, comprising: (a) a stochastic model for generating synthetic rainfall and temperature time series; (b) a stochastic rainfall-runoff model, whose parameters cannot be inferred through calibration and, thus, they are represented as correlated random variables; (c) a stochastic model for estimating water supply and irrigation demands, based on simulated temperature and soil moisture, and (d) a daily operation model of the reservoir system, providing stochastic forecasts of water and energy outflows. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  16. Crustal-scale magmatism and its control on the longevity of magmatic systems

    NASA Astrophysics Data System (ADS)

    Karakas, Ozge; Degruyter, Wim; Bachmann, Olivier; Dufek, Josef

    2017-04-01

    Constraining the duration and evolution of crustal magma reservoirs is crucial to our understanding of the eruptive potential of magmatic systems, as well as the volcanic:plutonic ratios in the crust, but estimates of such parameters vary widely in the current literature. Although no consensus has been reached on the lifetime of magma reservoirs, recent studies have revealed about the presence, location, and melt fraction of multi-level (polybaric) storage zones in the crust. If magma accumulates at different crustal levels, it must redistribute significant enthalpy within the crustal column and therefore must influence the lifetime of magma plumbing systems. However, an evaluation of the mass and heat budget of the entire crustal column is lacking. Here, we use a two-dimensional thermal model to determine the thermal conditions under which both lower and upper crustal magma bodies form. We find that large lower crustal mush zones supply heat to the upper crust and reduce the amount of thermal energy necessary to form subvolcanic reservoirs. This indicates that the crust is thermally viable to sustain partially molten magma reservoirs over long timescales (>10^5-106 yr) for a range of magma fluxes (10^-4 to 10^-2 km^3/yr). Our results reconcile physical models of crustal magma evolution and field-based estimates of intrusion rates in numerous magmatic provinces (which include both volcanic and plutonic lithologies). We also show that young magmatic provinces (< 105 yr old) are unlikely to support large upper crustal reservoirs, whereas longer-lived systems (> 106 yr) can accumulate magma and build reservoirs capable of triggering supereruptions, even with intrusion rates as low as ≤10^-2 km^3/yr. Hence, the total duration of magmatism is critical in determining the size of the magma reservoirs, and should be combined with the magma intrusions rates to assess the capability of volcanic systems to form the largest eruptions on Earth.

  17. Application of experimental design in geothermal resources assessment of Ciwidey-Patuha, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Ashat, Ali; Pratama, Heru Berian

    2017-12-01

    The successful Ciwidey-Patuha geothermal field size assessment required integration data analysis of all aspects to determined optimum capacity to be installed. Resources assessment involve significant uncertainty of subsurface information and multiple development scenarios from these field. Therefore, this paper applied the application of experimental design approach to the geothermal numerical simulation of Ciwidey-Patuha to generate probabilistic resource assessment result. This process assesses the impact of evaluated parameters affecting resources and interacting between these parameters. This methodology have been successfully estimated the maximum resources with polynomial function covering the entire range of possible values of important reservoir parameters.

  18. Estimation of evaporation from open water - A review of selected studies, summary of U.S. Army Corps of Engineers data collection and methods, and evaluation of two methods for estimation of evaporation from five reservoirs in Texas

    USGS Publications Warehouse

    Harwell, Glenn R.

    2012-01-01

    Organizations responsible for the management of water resources, such as the U.S. Army Corps of Engineers (USACE), are tasked with estimation of evaporation for water-budgeting and planning purposes. The USACE has historically used Class A pan evaporation data (pan data) to estimate evaporation from reservoirs but many USACE Districts have been experimenting with other techniques for an alternative to collecting pan data. The energy-budget method generally is considered the preferred method for accurate estimation of open-water evaporation from lakes and reservoirs. Complex equations to estimate evaporation, such as the Penman, DeBruin-Keijman, and Priestley-Taylor, perform well when compared with energy-budget method estimates when all of the important energy terms are included in the equations and ideal data are collected. However, sometimes nonideal data are collected and energy terms, such as the change in the amount of stored energy and advected energy, are not included in the equations. When this is done, the corresponding errors in evaporation estimates are not quantifiable. Much simpler methods, such as the Hamon method and a method developed by the U.S. Weather Bureau (USWB) (renamed the National Weather Service in 1970), have been shown to provide reasonable estimates of evaporation when compared to energy-budget method estimates. Data requirements for the Hamon and USWB methods are minimal and sometimes perform well with remotely collected data. The Hamon method requires average daily air temperature, and the USWB method requires daily averages of air temperature, relative humidity, wind speed, and solar radiation. Estimates of annual lake evaporation from pan data are frequently within 20 percent of energy-budget method estimates. Results of evaporation estimates from the Hamon method and the USWB method were compared against historical pan data at five selected reservoirs in Texas (Benbrook Lake, Canyon Lake, Granger Lake, Hords Creek Lake, and Sam Rayburn Lake) to evaluate their performance and to develop coefficients to minimize bias for the purpose of estimating reservoir evaporation with accuracies similar to estimates of evaporation obtained from pan data. The modified Hamon method estimates of reservoir evaporation were similar to estimates of reservoir evaporation from pan data for daily, monthly, and annual time periods. The modified Hamon method estimates of annual reservoir evaporation were always within 20 percent of annual reservoir evaporation from pan data. Unmodified and modified USWB method estimates of annual reservoir evaporation were within 20 percent of annual reservoir evaporation from pan data for about 91 percent of the years compared. Average daily differences between modified USWB method estimates and estimates from pan data as a percentage of the average amount of daily evaporation from pan data were within 20 percent for 98 percent of the months. Without any modification to the USWB method, average daily differences as a percentage of the average amount of daily evaporation from pan data were within 20 percent for 73 percent of the months. Use of the unmodified USWB method is appealing because it means estimates of average daily reservoir evaporation can be made from air temperature, relative humidity, wind speed, and solar radiation data collected from remote weather stations without the need to develop site-specific coefficients from historical pan data. Site-specific coefficients would need to be developed for the modified version of the Hamon method.

  19. Discrimination between induced, triggered, and natural earthquakes close to hydrocarbon reservoirs: A probabilistic approach based on the modeling of depletion-induced stress changes and seismological source parameters

    NASA Astrophysics Data System (ADS)

    Dahm, Torsten; Cesca, Simone; Hainzl, Sebastian; Braun, Thomas; Krüger, Frank

    2015-04-01

    Earthquakes occurring close to hydrocarbon fields under production are often under critical view of being induced or triggered. However, clear and testable rules to discriminate the different events have rarely been developed and tested. The unresolved scientific problem may lead to lengthy public disputes with unpredictable impact on the local acceptance of the exploitation and field operations. We propose a quantitative approach to discriminate induced, triggered, and natural earthquakes, which is based on testable input parameters. Maxima of occurrence probabilities are compared for the cases under question, and a single probability of being triggered or induced is reported. The uncertainties of earthquake location and other input parameters are considered in terms of the integration over probability density functions. The probability that events have been human triggered/induced is derived from the modeling of Coulomb stress changes and a rate and state-dependent seismicity model. In our case a 3-D boundary element method has been adapted for the nuclei of strain approach to estimate the stress changes outside the reservoir, which are related to pore pressure changes in the field formation. The predicted rate of natural earthquakes is either derived from the background seismicity or, in case of rare events, from an estimate of the tectonic stress rate. Instrumentally derived seismological information on the event location, source mechanism, and the size of the rupture plane is of advantage for the method. If the rupture plane has been estimated, the discrimination between induced or only triggered events is theoretically possible if probability functions are convolved with a rupture fault filter. We apply the approach to three recent main shock events: (1) the Mw 4.3 Ekofisk 2001, North Sea, earthquake close to the Ekofisk oil field; (2) the Mw 4.4 Rotenburg 2004, Northern Germany, earthquake in the vicinity of the Söhlingen gas field; and (3) the Mw 6.1 Emilia 2012, Northern Italy, earthquake in the vicinity of a hydrocarbon reservoir. The three test cases cover the complete range of possible causes: clearly "human induced," "not even human triggered," and a third case in between both extremes.

  20. Estimation of reservoir inflow in data scarce region by using Sacramento rainfall runoff model - A case study for Sittaung River Basin, Myanmar

    NASA Astrophysics Data System (ADS)

    Myo Lin, Nay; Rutten, Martine

    2017-04-01

    The Sittaung River is one of four major rivers in Myanmar. This river basin is developing fast and facing problems with flood, sedimentation, river bank erosion and salt intrusion. At present, more than 20 numbers of reservoirs have already been constructed for multiple purposes such as irrigation, domestic water supply, hydro-power generation, and flood control. The rainfall runoff models are required for the operational management of this reservoir system. In this study, the river basin is divided into (64) sub-catchments and the Sacramento Soil Moisture Accounting (SAC-SMA) models are developed by using satellite rainfall and Geographic Information System (GIS) data. The SAC-SMA model has sixteen calibration parameters, and also uses a unit hydrograph for surface flow routing. The Sobek software package is used for SAC-SMA modelling and simulation of river system. The models are calibrated and tested by using observed discharge and water level data. The statistical results show that the model is applicable to use for data scarce region. Keywords: Sacramento, Sobek, rainfall runoff, reservoir

  1. Measurement of damping and temperature: Precision bounds in Gaussian dissipative channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monras, Alex; Illuminati, Fabrizio

    2011-01-15

    We present a comprehensive analysis of the performance of different classes of Gaussian states in the estimation of Gaussian phase-insensitive dissipative channels. In particular, we investigate the optimal estimation of the damping constant and reservoir temperature. We show that, for two-mode squeezed vacuum probe states, the quantum-limited accuracy of both parameters can be achieved simultaneously. Moreover, we show that for both parameters two-mode squeezed vacuum states are more efficient than coherent, thermal, or single-mode squeezed states. This suggests that at high-energy regimes, two-mode squeezed vacuum states are optimal within the Gaussian setup. This optimality result indicates a stronger form ofmore » compatibility for the estimation of the two parameters. Indeed, not only the minimum variance can be achieved at fixed probe states, but also the optimal state is common to both parameters. Additionally, we explore numerically the performance of non-Gaussian states for particular parameter values to find that maximally entangled states within d-dimensional cutoff subspaces (d{<=}6) perform better than any randomly sampled states with similar energy. However, we also find that states with very similar performance and energy exist with much less entanglement than the maximally entangled ones.« less

  2. Study on reservoir time-varying design flood of inflow based on Poisson process with time-dependent parameters

    NASA Astrophysics Data System (ADS)

    Li, Jiqing; Huang, Jing; Li, Jianchang

    2018-06-01

    The time-varying design flood can make full use of the measured data, which can provide the reservoir with the basis of both flood control and operation scheduling. This paper adopts peak over threshold method for flood sampling in unit periods and Poisson process with time-dependent parameters model for simulation of reservoirs time-varying design flood. Considering the relationship between the model parameters and hypothesis, this paper presents the over-threshold intensity, the fitting degree of Poisson distribution and the design flood parameters are the time-varying design flood unit period and threshold discriminant basis, deduced Longyangxia reservoir time-varying design flood process at 9 kinds of design frequencies. The time-varying design flood of inflow is closer to the reservoir actual inflow conditions, which can be used to adjust the operating water level in flood season and make plans for resource utilization of flood in the basin.

  3. Sediment yield estimation in mountain catchments of the Camastra reservoir, southern Italy: a comparison among different empirical methods

    NASA Astrophysics Data System (ADS)

    Lazzari, Maurizio; Danese, Maria; Gioia, Dario; Piccarreta, Marco

    2013-04-01

    Sedimentary budget estimation is an important topic for both scientific and social community, because it is crucial to understand both dynamics of orogenic belts and many practical problems, such as soil conservation and sediment accumulation in reservoir. Estimations of sediment yield or denudation rates in southern-central Italy are generally obtained by simple empirical relationships based on statistical regression between geomorphic parameters of the drainage network and the measured suspended sediment yield at the outlet of several drainage basins or through the use of models based on sediment delivery ratio or on soil loss equations. In this work, we perform a study of catchment dynamics and an estimation of sedimentary yield for several mountain catchments of the central-western sector of the Basilicata region, southern Italy. Sediment yield estimation has been obtained through both an indirect estimation of suspended sediment yield based on the Tu index (mean annual suspension sediment yield, Ciccacci et al., 1980) and the application of the Rusle (Renard et al., 1997) and the USPED (Mitasova et al., 1996) empirical methods. The preliminary results indicate a reliable difference between the RUSLE and USPED methods and the estimation based on the Tu index; a critical data analysis of results has been carried out considering also the present-day spatial distribution of erosion, transport and depositional processes in relation to the maps obtained from the application of those different empirical methods. The studied catchments drain an artificial reservoir (i.e. the Camastra dam), where a detailed evaluation of the amount of historical sediment storage has been collected. Sediment yield estimation obtained by means of the empirical methods have been compared and checked with historical data of sediment accumulation measured in the artificial reservoir of the Camastra dam. The validation of such estimations of sediment yield at the scale of large catchments using sediment storage in reservoirs provides a good opportunity: i) to test the reliability of the empirical methods used to estimate the sediment yield; ii) to investigate the catchment dynamics and its spatial and temporal evolution in terms of erosion, transport and deposition. References Ciccacci S., Fredi F., Lupia Palmieri E., Pugliese F., 1980. Contributo dell'analisi geomorfica quantitativa alla valutazione dell'entita dell'erosione nei bacini fluviali. Bollettino della Società Geologica Italiana 99: 455-516. Mitasova H, Hofierka J, Zlocha M, Iverson LR. 1996. Modeling topographic potential for erosion and deposition using GIS. International Journal of Geographical Information Systems 10: 629-641. Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yoder D.C., 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), USDA-ARS, Agricultural Handbook No. 703.

  4. Estimating the impacts of reservoir elevation changes on kokanee emergence in flaming Gorge Reservoir, Wyoming-Utah

    USGS Publications Warehouse

    Modde, T.; Jeric, R.J.; Hubert, W.A.; Gipson, R.D.

    1997-01-01

    Flaming Gorge Reservoir, like many western North American reservoirs, is managed to release water during the winter months to allow for water storage associated with melting snow and rain during spring. Decreases in reservoir elevation during winter can cause mortalities of kokanee Oncorhynchus nerka spawned along the shoreline the previous fall. This study compared data on depth distribution of embryos and depth-adjusted survival to estimate the relative survival of emergent kokanee at different depths and the effect of winter drawdown on the proportion of deposited eggs that survive to emergence. Estimates of decreases in kokanee survival to emergence were 8.3% and 38.1% for reservoir elevation reductions of 1.0 m and 5.0 m, respectively.

  5. Evaluation of the return periods of water crises and evaporation in Monte Cotugno reservoir (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Copertino, Vito; Lo Vecchio, Giuseppina; Marotta, Lucia; Pastore, Vittoria; Ponzio, Giuseppe; Scavone, Giuseppina; Telesca, Vito; Vita, Michele

    2010-05-01

    In the past water resources management has been dealt and solved increasing water availabilities; today such opportunities have been considerably reduced and the technical-scientific perspectives are addressed above all to improve water system effectiveness and to promote an use of water resources that holds account of the droughts frequency and based on a correct estimate of the hydrologic balance. In this work a study on the water stored in Monte Cotugno reservoir in Sinni river - Basilicata (Southern Italy) - is proposed, estimating water crises return periods and reservoir evaporation. For such purpose the runs method was applied, based on the comparison between the temporal series of the "water volume" hydrological variable and a threshold representative of the "normal" conditions regarding which the availability in excess or defect was estimated. This allowed to individualize the beginning and the end of a water crisis event and to characterize the droughts in terms of duration, sum deficit and intensity. Therefore the return period was evaluated by means of the methodology proposed by Shiau and Shen in 2001, turned out equal approximately to 6 years. Such value was then verified with a frequency analysis of the "water volume" random variable, using the Weibull's distribution. Subsequently, the Fourier's analysis in the last twenty years was carried out, obtaining the same result of the previous methods. Moreover, in proximity of the Monte Cotugno reservoir the weather station of Senise is located, managed by ALSIA (Agenzia Lucana di Sviluppo e Innovazione in Agricultura), that provides in continuous measurements of air temperature and humidity, wind speed and direction, and global solar radiation since 2000. Such parameters allowed to apply five methods for reservoir evaporation estimate selected from those proposed in the literature, of which the first three, the Jensen-Haise's method, Makkink's method and Stephens-Stewart's one are based on solar radiation and temperature, while the Blaney-Criddle's method is based on temperature and duration of the day, and the Thornthwaite's method is based only on air temperature measurement.

  6. Silurian "Clinton" Sandstone Reservoir Characterization for Evaluation of CO2-EOR Potential in the East Canton Oil Field, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Ronald; Wicks, John; Perry, Christopher

    The purpose of this study was to evaluate the efficacy of using CO2-enhanced oil recovery (EOR) in the East Canton oil field (ECOF). Discovered in 1947, the ECOF in northeastern Ohio has produced approximately 95 million barrels (MMbbl) of oil from the Silurian “Clinton” sandstone. The original oil-in-place (OOIP) for this field was approximately 1.5 billion bbl and this study estimates by modeling known reservoir parameters, that between 76 and 279 MMbbl of additional oil could be produced through secondary recovery in this field, depending on the fluid and formation response to CO2 injection. A CO2 cyclic test (“Huff-n-Puff”) wasmore » conducted on a well in Stark County to test the injectivity in a “Clinton”-producing oil well in the ECOF and estimate the dispersion or potential breakthrough of the CO2 to surrounding wells. Eighty-one tons of CO2 (1.39 MMCF) were injected over a 20-hour period, after which the well was shut in for a 32-day “soak” period before production was resumed. Results demonstrated injection rates of 1.67 MMCF of gas per day, which was much higher than anticipated and no CO2 was detected in gas samples taken from eight immediately offsetting observation wells. All data collected during this test was analyzed, interpreted, and incorporated into the reservoir characterization study and used to develop the geologic model. The geologic model was used as input into a reservoir simulation performed by Fekete Associates, Inc., to estimate the behavior of reservoir fluids when large quantities of CO2 are injected into the “Clinton” sandstone. Results strongly suggest that the majority of the injected CO2 entered the matrix porosity of the reservoir pay zones, where it diffused into the oil. Evidence includes: (A) the volume of injected CO2 greatly exceeded the estimated capacity of the hydraulic fracture and natural fractures; (B) there was a gradual injection and pressure rate build-up during the test; (C) there was a subsequent, gradual flashout of the CO2 within the reservoir during the ensuing monitored production period; and (D) a large amount of CO2 continually off-gassed from wellhead oil samples collected as late as 3½ months after injection. After the test well was returned to production, it produced 174 bbl of oil during a 60-day period (September 22 to November 21, 2008), which represents an estimated 58 percent increase in incremental oil production over preinjection estimates of production under normal, conditions. The geologic model was used in a reservoir simulation model for a 700-acre model area and to design a pilot to test the model. The model was designed to achieve a 1-year response time and a five-year simulation period. The reservoir simulation modeling indicated that the injection wells could enhance oil production and lead to an additional 20 percent recovery in the pilot area over a five-year period. The base case estimated that by injecting 500 MCF per day of CO2 into each of the four corner wells, 26,000 STBO would be produced by the central producer over the five-year period. This would compare to 3,000 STBO if a new well were drilled without the benefit of CO2 injection. This study has added significant knowledge to the reservoir characterization of the “Clinton” in the ECOF and succeeded in identifying a range on CO2-EOR potential. However, additional data on fluid properties (PVT and swelling test), fractures (oriented core and microseis), and reservoir characteristics (relative permeability, capillary pressure, and wet ability) are needed to further narrow the uncertainties and refine the reservoir model and simulation. After collection of this data and refinement of the model and simulation, it is recommended that a larger scale cyclic- CO2 injection test be conducted to better determine the efficacy of CO2-EOR in the “Clinton” reservoir in the ECOF.« less

  7. Silurian "Clinton" Sandstone Reservoir Characterization for Evaluation of CO2-EOR Potential in the East Canton Oil Field, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronald Riley; John Wicks; Christopher Perry

    The purpose of this study was to evaluate the efficacy of using CO2-enhanced oil recovery (EOR) in the East Canton oil field (ECOF). Discovered in 1947, the ECOF in northeastern Ohio has produced approximately 95 million barrels (MMbbl) of oil from the Silurian 'Clinton' sandstone. The original oil-in-place (OOIP) for this field was approximately 1.5 billion bbl and this study estimates by modeling known reservoir parameters, that between 76 and 279 MMbbl of additional oil could be produced through secondary recovery in this field, depending on the fluid and formation response to CO2 injection. A CO2 cyclic test ('Huff-n-Puff') wasmore » conducted on a well in Stark County to test the injectivity in a 'Clinton'-producing oil well in the ECOF and estimate the dispersion or potential breakthrough of the CO2 to surrounding wells. Eighty-one tons of CO2 (1.39 MMCF) were injected over a 20-hour period, after which the well was shut in for a 32-day 'soak' period before production was resumed. Results demonstrated injection rates of 1.67 MMCF of gas per day, which was much higher than anticipated and no CO2 was detected in gas samples taken from eight immediately offsetting observation wells. All data collected during this test was analyzed, interpreted, and incorporated into the reservoir characterization study and used to develop the geologic model. The geologic model was used as input into a reservoir simulation performed by Fekete Associates, Inc., to estimate the behavior of reservoir fluids when large quantities of CO2 are injected into the 'Clinton' sandstone. Results strongly suggest that the majority of the injected CO2 entered the matrix porosity of the reservoir pay zones, where it diffused into the oil. Evidence includes: (A) the volume of injected CO2 greatly exceeded the estimated capacity of the hydraulic fracture and natural fractures; (B) there was a gradual injection and pressure rate build-up during the test; (C) there was a subsequent, gradual flashout of the CO2 within the reservoir during the ensuing monitored production period; and (D) a large amount of CO2 continually off-gassed from wellhead oil samples collected as late as 3 1/2 months after injection. After the test well was returned to production, it produced 174 bbl of oil during a 60-day period (September 22 to November 21, 2008), which represents an estimated 58 percent increase in incremental oil production over preinjection estimates of production under normal, conditions. The geologic model was used in a reservoir simulation model for a 700-acre model area and to design a pilot to test the model. The model was designed to achieve a 1-year response time and a five-year simulation period. The reservoir simulation modeling indicated that the injection wells could enhance oil production and lead to an additional 20 percent recovery in the pilot area over a five-year period. The base case estimated that by injecting 500 MCF per day of CO2 into each of the four corner wells, 26,000 STBO would be produced by the central producer over the five-year period. This would compare to 3,000 STBO if a new well were drilled without the benefit of CO2 injection. This study has added significant knowledge to the reservoir characterization of the 'Clinton' in the ECOF and succeeded in identifying a range on CO2-EOR potential. However, additional data on fluid properties (PVT and swelling test), fractures (oriented core and microseis), and reservoir characteristics (relative permeability, capillary pressure, and wet ability) are needed to further narrow the uncertainties and refine the reservoir model and simulation. After collection of this data and refinement of the model and simulation, it is recommended that a larger scale cyclic-CO2 injection test be conducted to better determine the efficacy of CO2-EOR in the 'Clinton' reservoir in the ECOF.« less

  8. The Efficacy and Potential of Renewable Energy from Carbon Dioxide that is Sequestered in Sedimentary Basin Geothermal Resources

    NASA Astrophysics Data System (ADS)

    Bielicki, J. M.; Adams, B. M.; Choi, H.; Saar, M. O.; Taff, S. J.; Jamiyansuren, B.; Buscheck, T. A.; Ogland-Hand, J.

    2015-12-01

    Mitigating climate change requires increasing the amount of electricity that is generated from renewable energy technologies and while simultaneously reducing the amount of carbon dioxide (CO2) that is emitted to the atmosphere from present energy and industrial facilities. We investigated the efficacy of generating electricity using renewable geothermal heat that is extracted by CO2 that is sequestered in sedimentary basins. To determine the efficacy of CO2-Geothermal power production in the United States, we conducted a geospatial resource assessment of the combination of subsurface CO2 storage capacity and heat flow in sedimentary basins and developed an integrated systems model that combines reservoir modeling with power plant modeling and economic costs. The geospatial resource assessment estimates the potential resource base for CO2-Geothermal power plants, and the integrated systems model estimates the physical (e.g., net power) and economic (e.g., levelized cost of electricity, capital cost) performance of an individual CO2-Geothermal power plant for a range of reservoir characteristics (permeability, depth, geothermal temperature gradient). Using coupled inverted five-spot injection patterns that are common in CO2-enhanced oil recovery operations, we determined the well pattern size that best leveraged physical and economic economies of scale for the integrated system. Our results indicate that CO2-Geothermal plants can be cost-effectively deployed in a much larger region of the United States than typical approaches to geothermal electricity production. These cost-effective CO2-Geothermal electricity facilities can also be capacity-competitive with many existing baseload and renewable energy technologies over a range of reservoir parameters. For example, our results suggest that, given the right combination of reservoir parameters, LCOEs can be as low as $25/MWh and capacities can be as high as a few hundred MW.

  9. Reservoir characterization and seal integrity of Jemir field in Niger Delta, Nigeria

    NASA Astrophysics Data System (ADS)

    Adagunodo, Theophilus Aanuoluwa; Sunmonu, Lukman Ayobami; Adabanija, Moruffdeen Adedapo

    2017-05-01

    Ignoring fault seal and depending solely on reservoir parameters and estimated hydrocarbon contacts can lead to extremely unequal division of reserves especially in oil fields dominated by structural traps where faults play an important role in trapping of hydrocarbons. These faults may be sealing or as conduit to fluid flow. In this study; three-dimensional seismic and well log data has been used to characterize the reservoirs and investigate the seal integrity of fault plane trending NW-SE and dip towards south in Jemir field, Niger-Delta for enhanced oil recovery. The petrophysical and volumetric analysis of the six reservoirs that were mapped as well as structural interpretation of the faults were done both qualitatively and quantitatively. In order to know the sealing potential of individual hydrocarbon bearing sand, horizon-fault intersection was done, volume of shale was determined, thickness of individual bed was estimated, and quality control involving throw analysis was done. Shale Gouge Ratio (SGR) and Hydrocarbon Column Height (HCH) (supportable and structure-supported) were also determined to assess the seal integrity of the faults in Jemir field. The petrophysical analysis indicated the porosity of traps on Jemir field ranged from 0.20 to 0.29 and the volumetric analyses showed that the Stock Tank Original Oil in Place varied between 5.5 and 173.4 Mbbl. The SGR ranged from leaking (<20%) to sealing (>60%) fault plane suggesting poor to moderate sealing. The supportable HCH of Jemir field ranged from 98.3 to 446.2 m while its Structure-supported HCH ranged from 12.1 to 101.7 m. The porosities of Jemir field are good enough for hydrocarbon production as exemplified by its oil reserve estimates. However, improper sealing of the fault plane might enhance hydrocarbon leakage.

  10. Evaluating Bangestan reservoirs and targeting productive zones in Dezful embayment of Iran

    NASA Astrophysics Data System (ADS)

    Nasseri, Aynur; Jafar Mohammadzadeh, Mohammad; HashemTabatabaee, Seyyed

    2016-12-01

    A progressive stepwise procedure was adopted to evaluate the main reservoirs of the Bangestan group in a southwestern oil field of Iran. In order to identify productive zones, the results of lithofacies and well tops correlation were assessed using well log and core data. Accordingly the resulting zonation based on lithofacies revealed inaccurate results. Therefore, in order to limit the uncertainty of zonation, well tops correlations were considered. For this purpose, boundaries of reservoirs were precisely defined and well logs correlation was carried out based on geological information and full set logs. The resulting well tops correlation indicates the presence of several reservoirs such as Ilam and Sarvak formations, and each of these has several zones. Among them, the Ilam formation is recognized as the best reservoir in the field and the Sarvak formation in the second priority for oil production. Due to changes in the facies trend of the Sarvak formation, more than Ilam, the Sarvak formation was mostly considered in this study. Subsequently the Ilam formation was divided into four zones, among them (Ilam-Upper, Ilam- Main, Ilam-Poor) were identified as the oil reservoir units. Similarly, the Sarvak formation was also divided into 11 units, where the Sarvak-L2b unit was identified as the oil-bearing reservoir in the formation. Furthermore, in order to contribute for better analysis of the depositional environment and to improve the understanding of its lateral and vertical variations, 3D modeling of reservoir units was established, which lead to limit the uncertainty in evaluation. Based on the well correlation results, deep and thickness maps, porosity, water saturation and the hydrocarbon column assessments were prepared, in addition the distribution of petrophysical parameters was also evaluated. Finally, an oil reserve estimation was carried out based on volumetric estimation and its corresponding distribution maps in different reservoir units of the formation were presented. This study indicates that the consecutive sequential approach to the problem, by self controlling the process, lead to the detection of the Sarvak-L2b unit as one of the productive zones in the field. This zone also indicates favorable conditions for high productivity in central areas of the field where the reservoir has a high quality for production.

  11. Using CO2 Prophet to estimate recovery factors for carbon dioxide enhanced oil recovery

    USGS Publications Warehouse

    Attanasi, Emil D.

    2017-07-17

    IntroductionThe Oil and Gas Journal’s enhanced oil recovery (EOR) survey for 2014 (Koottungal, 2014) showed that gas injection is the most frequently applied method of EOR in the United States and that carbon dioxide (CO2 ) is the most commonly used injection fluid for miscible operations. The CO2-EOR process typically follows primary and secondary (waterflood) phases of oil reservoir development. The common objective of implementing a CO2-EOR program is to produce oil that remains after the economic limit of waterflood recovery is reached. Under conditions of miscibility or multicontact miscibility, the injected CO2 partitions between the gas and liquid CO2 phases, swells the oil, and reduces the viscosity of the residual oil so that the lighter fractions of the oil vaporize and mix with the CO2 gas phase (Teletzke and others, 2005). Miscibility occurs when the reservoir pressure is at least at the minimum miscibility pressure (MMP). The MMP depends, in turn, on oil composition, impurities of the CO2 injection stream, and reservoir temperature. At pressures below the MMP, component partitioning, oil swelling, and viscosity reduction occur, but the efficiency is increasingly reduced as the pressure falls farther below the MMP. CO2-EOR processes are applied at the reservoir level, where a reservoir is defined as an underground formation containing an individual and separate pool of producible hydrocarbons that is confined by impermeable rock or water barriers and is characterized by a single natural pressure system. A field may consist of a single reservoir or multiple reservoirs that are not in communication but which may be associated with or related to a single structural or stratigraphic feature (U.S. Energy Information Administration [EIA], 2000). The purpose of modeling the CO2-EOR process is discussed along with the potential CO2-EOR predictive models. The data demands of models and the scope of the assessments require tradeoffs between reservoir-specific data that can be assembled and simplifying assumptions that allow assignment of default values for some reservoir parameters. These issues are discussed in the context of the CO2 Prophet EOR model, and their resolution is demonstrated with the computation of recovery-factor estimates for CO2-EOR of 143 reservoirs in the Powder River Basin Province in southeastern Montana and northeastern Wyoming.

  12. Estimates of reservoir methane emissions based on a spatially ...

    EPA Pesticide Factsheets

    Global estimates of methane (CH4) emissions from reservoirs are poorly constrained, partly due to the challenges of accounting for intra-reservoir spatial variability. Reservoir-scale emission rates are often estimated by extrapolating from measurement made at a few locations; however, error and bias associated with this approach can be large and difficult to quantify. Here we use a generalized random tessellation survey (GRTS) design to generate estimates of central tendency and variance at multiple spatial scales in a reservoir. GRTS survey designs are probabilistic and spatially balanced which eliminates bias associated with expert judgment in site selection. GRTS surveys also allow for variance estimates that account for spatial pattern in emission rates. Total CH4 emission rates (i.e. sum of ebullition and diffusive emissions) were 4.8 (±2.1), 33.0 (±10.7), and 8.3 (±2.2) mg CH4 m-2 h-1 in open-waters, tributary associated areas, and the entire reservoir for the period in August 2014 during which 115 sites were sampled across an 7.98 km2 reservoir in Southwestern, Ohio, USA. Tributary areas occupy 12% of the reservoir surface, but were the source of 41% of total CH4 emissions, highlighting the importance of riverine-lacustrine transition zones. Ebullition accounted for >90% of CH4 emission at all spatial scales. Confidence interval estimates that incorporated spatial pattern in CH4 emissions were up to 29% narrower than when spatial independence

  13. Reservoir characterization of the Upper Jurassic geothermal target formations (Molasse Basin, Germany): role of thermofacies as exploration tool

    NASA Astrophysics Data System (ADS)

    Homuth, S.; Götz, A. E.; Sass, I.

    2015-06-01

    The Upper Jurassic carbonates of the southern German Molasse Basin are the target of numerous geothermal combined heat and power production projects since the year 2000. A production-orientated reservoir characterization is therefore of high economic interest. Outcrop analogue studies enable reservoir property prediction by determination and correlation of lithofacies-related thermo- and petrophysical parameters. A thermofacies classification of the carbonate formations serves to identify heterogeneities and production zones. The hydraulic conductivity is mainly controlled by tectonic structures and karstification, whilst the type and grade of karstification is facies related. The rock permeability has only a minor effect on the reservoir's sustainability. Physical parameters determined on oven-dried samples have to be corrected, applying reservoir transfer models to water-saturated reservoir conditions. To validate these calculated parameters, a Thermo-Triaxial-Cell simulating the temperature and pressure conditions of the reservoir is used and calorimetric and thermal conductivity measurements under elevated temperature conditions are performed. Additionally, core and cutting material from a 1600 m deep research drilling and a 4850 m (total vertical depth, measured depth: 6020 m) deep well is used to validate the reservoir property predictions. Under reservoir conditions a decrease in permeability of 2-3 magnitudes is observed due to the thermal expansion of the rock matrix. For tight carbonates the matrix permeability is temperature-controlled; the thermophysical matrix parameters are density-controlled. Density increases typically with depth and especially with higher dolomite content. Therefore, thermal conductivity increases; however the dominant factor temperature also decreases the thermal conductivity. Specific heat capacity typically increases with increasing depth and temperature. The lithofacies-related characterization and prediction of reservoir properties based on outcrop and drilling data demonstrates that this approach is a powerful tool for exploration and operation of geothermal reservoirs.

  14. Precision of four otolith techniques for estimating age of white perch from a thermally altered reservoir

    USGS Publications Warehouse

    Snow, Richard A.; Porta, Michael J.; Long, James M.

    2018-01-01

    The White Perch Morone americana is an invasive species in many Midwestern states and is widely distributed in reservoir systems, yet little is known about the species' age structure and population dynamics. White Perch were first observed in Sooner Reservoir, a thermally altered cooling reservoir in Oklahoma, by the Oklahoma Department of Wildlife Conservation in 2006. It is unknown how thermally altered systems like Sooner Reservoir may affect the precision of White Perch age estimates. Previous studies have found that age structures from Largemouth Bass Micropterus salmoides and Bluegills Lepomis macrochirus from thermally altered reservoirs had false annuli, which increased error when estimating ages. Our objective was to quantify the precision of White Perch age estimates using four sagittal otolith preparation techniques (whole, broken, browned, and stained). Because Sooner Reservoir is thermally altered, we also wanted to identify the best month to collect a White Perch age sample based on aging precision. Ages of 569 White Perch (20–308 mm TL) were estimated using the four techniques. Age estimates from broken, stained, and browned otoliths ranged from 0 to 8 years; whole‐view otolith age estimates ranged from 0 to 7 years. The lowest mean coefficient of variation (CV) was obtained using broken otoliths, whereas the highest CV was observed using browned otoliths. July was the most precise month (lowest mean CV) for estimating age of White Perch, whereas April was the least precise month (highest mean CV). These results underscore the importance of knowing the best method to prepare otoliths for achieving the most precise age estimates and the best time of year to obtain those samples, as these factors may affect other estimates of population dynamics.

  15. Foliar uptake of cesium from the water column by aquatic macrophytes.

    PubMed

    Pinder, J E; Hinton, T G; Whicker, F W

    2006-01-01

    The probable occurrence and rate of foliar absorption of stable cesium (133Cs) from the water column by aquatic macrophyte species was analyzed following the addition of 133Cs into a small reservoir near Aiken, South Carolina, USA. An uptake parameter u (10(3)Lkg(-1)d(-1)) and a loss rate parameter k (d(-1)) were estimated for each species using time series of 133Cs concentrations in the water and plant tissues. Foliar uptake, as indicated by rapid increases in plant concentrations following the 133Cs addition, occurred in two floating-leaf species, Brasenia schreberi and Nymphaea odorata, and two submerged species, Myriophyllum spicatum and Utricularia inflata. These species had values of u> or =0.75 x 10(3)Lkg(-1)d(-1). Less evidence for foliar uptake was observed in three emergent species, including Typha latifolia. Ratios of u to k for B. schreberi, M. spicatum, N. odorata and U. inflata can be used to estimate concentration ratios (CR) at equilibrium, and these estimates were generally within a factor of 2 of the CR for 137Cs for these species in the same reservoir. This correspondence suggests that foliar uptake of Cs was the principal absorption mechanism for these species. Assessments of: (1) the prevalence of foliar uptake of potassium, rubidium and Cs isotopes by aquatic macrophytes and (2) the possible importance of foliar uptake of Cs in other lentic systems are made from a review of foliar uptake studies and estimation of comparable u and k values from lake studies involving Cs releases.

  16. Deriving adaptive operating rules of hydropower reservoirs using time-varying parameters generated by the EnKF

    NASA Astrophysics Data System (ADS)

    Feng, Maoyuan; Liu, Pan; Guo, Shenglian; Shi, Liangsheng; Deng, Chao; Ming, Bo

    2017-08-01

    Operating rules have been used widely to decide reservoir operations because of their capacity for coping with uncertain inflow. However, stationary operating rules lack adaptability; thus, under changing environmental conditions, they cause inefficient reservoir operation. This paper derives adaptive operating rules based on time-varying parameters generated using the ensemble Kalman filter (EnKF). A deterministic optimization model is established to obtain optimal water releases, which are further taken as observations of the reservoir simulation model. The EnKF is formulated to update the operating rules sequentially, providing a series of time-varying parameters. To identify the index that dominates the variations of the operating rules, three hydrologic factors are selected: the reservoir inflow, ratio of future inflow to current available water, and available water. Finally, adaptive operating rules are derived by fitting the time-varying parameters with the identified dominant hydrologic factor. China's Three Gorges Reservoir was selected as a case study. Results show that (1) the EnKF has the capability of capturing the variations of the operating rules, (2) reservoir inflow is the factor that dominates the variations of the operating rules, and (3) the derived adaptive operating rules are effective in improving hydropower benefits compared with stationary operating rules. The insightful findings of this study could be used to help adapt reservoir operations to mitigate the effects of changing environmental conditions.

  17. Study of Carrying Capacity Assesment for Natural Fisheries in Jatibarang Reservoir In Semarang City

    NASA Astrophysics Data System (ADS)

    Sujono, Bambang; Anggoro, Sutrisno

    2018-02-01

    Jatibarang reservoir serves as water supply in dry season and controlling flood in Semarang City. This reservoir is stem Kreo River which cathment areas of 54 km2, pool of area 110 ha and volume is 20 billion m3. This reservoir is potential to develop as natural fisheries area. The goals of this research were to explore existing condition of physical, biological as well as chemical parameter; carrying capacity assessment for natural fisheries; determining appropriate fish species to be developed in Jatibarang reservoir. This research was done in descriptive explorative scheme. Field survey and laboratory analyses were conducted to identify physical, chemical and biological parameters of the water. Physical parameters measured were temperature and water brightness. Chemical parameters measured were pH, DO, phosphate, Ammonia, nitrites and nitrate, while biological parameter measured were chlorophyll-a concentration. Carrying capacity analyses was done referred to the Government Regulation Number 82, 2001 that regulate the management of water quality and water pollution control. Based on the research, it showed that the existing condition of physical, chemical and biological parameters were still good to be used for natural fisheries. Based on TSI index, it classified as eutrofic water. Furthermore, tilapia fish (Oreochromis mossambicus), nile tilapia (Oreochromis niloticus) tawes (Barbonymus gonionotus) and carper fish (Cyprinus carpio) were considered as best species for natural fisheries in Jatibarang Reservoir.

  18. Estimating Water Levels with Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Lucero, E.; Russo, T. A.; Zentner, M.; May, J.; Nguy-Robertson, A. L.

    2016-12-01

    Reservoirs serve multiple functions and are vital for storage, electricity generation, and flood control. For many areas, traditional ground-based reservoir measurements may not be available or data dissemination may be problematic. Consistent monitoring of reservoir levels in data-poor areas can be achieved through remote sensing, providing information to researchers and the international community. Estimates of trends and relative reservoir volume can be used to identify water supply vulnerability, anticipate low power generation, and predict flood risk. Image processing with automated cloud computing provides opportunities to study multiple geographic areas in near real-time. We demonstrate the prediction capability of a cloud environment for identifying water trends at reservoirs in the US, and then apply the method to data-poor areas in North Korea, Iran, Azerbaijan, Zambia, and India. The Google Earth Engine cloud platform hosts remote sensing data and can be used to automate reservoir level estimation with multispectral imagery. We combine automated cloud-based analysis from Landsat image classification to identify reservoir surface area trends and radar altimetry to identify reservoir level trends. The study estimates water level trends using three years of data from four domestic reservoirs to validate the remote sensing method, and five foreign reservoirs to demonstrate the method application. We report correlations between ground-based reservoir level measurements in the US and our remote sensing methods, and correlations between the cloud analysis and altimetry data for reservoirs in data-poor areas. The availability of regular satellite imagery and an automated, near real-time application method provides the necessary datasets for further temporal analysis, reservoir modeling, and flood forecasting. All statements of fact, analysis, or opinion are those of the author and do not reflect the official policy or position of the Department of Defense or any of its components or the U.S. Government

  19. Surface manifestations of internal waves investigated by a subsurface buoyant jet: 3. Surface manifestations of internal waves

    NASA Astrophysics Data System (ADS)

    Bondur, V. G.; Grebenyuk, Yu. V.; Ezhova, E. V.; Kazakov, V. I.; Sergeev, D. A.; Soustova, I. A.; Troitskaya, Yu. I.

    2010-08-01

    In a large test reservoir at the Institute of Applied Physics, Russian Academy of Sciences, a series of experiments were performed to investigate the surface manifestations of internal waves radiated by a subsurface buoyant jet. The field of currents on the water surface of the reservoir was studied through the distribution of temperature with shallow thermocline. Using Particle Tracking Velocimetry (PTV), the velocity field of surface currents was measured. A theoretical model was developed to calculate the rates of disturbances on the surface. A comparison with experimental data indicated that the calculated data of the surface rate value are overestimated. This discrepancy was explained by the presence of a film of surface-active substances (SASs) with experimentally obtained parameters. Using scale modeling coefficients, we estimated the parameters of internal waves radiated by the subsurface wastewater system and the values of their surface manifestations in field conditions. We estimated the hydrodynamic contrasts in the field of surface waves, which can be caused by these inhomogeneous currents on the surface. For a wind velocity of 5 m/s, the magnitude of the contrast in the field of short waves can reach up to 10-25%, which is detected with confidence by remote-sensing methods.

  20. Using the nonlinear aquifer storage-discharge relationship to simulate the base flow of glacier- and snowmelt-dominated basins in northwest China

    NASA Astrophysics Data System (ADS)

    Gan, R.; Luo, Y.

    2013-09-01

    Base flow is an important component in hydrological modeling. This process is usually modeled by using the linear aquifer storage-discharge relation approach, although the outflow from groundwater aquifers is nonlinear. To identify the accuracy of base flow estimates in rivers dominated by snowmelt and/or glacier melt in arid and cold northwestern China, a nonlinear storage-discharge relationship for use in SWAT (Soil Water Assessment Tool) modeling was developed and applied to the Manas River basin in the Tian Shan Mountains. Linear reservoir models and a digital filter program were used for comparisons. Meanwhile, numerical analysis of recession curves from 78 river gauge stations revealed variation in the parameters of the nonlinear relationship. It was found that the nonlinear reservoir model can improve the streamflow simulation, especially for low-flow period. The higher Nash-Sutcliffe efficiency, logarithmic efficiency, and volumetric efficiency, and lower percent bias were obtained when compared to the one-linear reservoir approach. The parameter b of the aquifer storage-discharge function varied mostly between 0.0 and 0.1, which is much smaller than the suggested value of 0.5. The coefficient a of the function is related to catchment properties, primarily the basin and glacier areas.

  1. Applications of the SWOT Mission to Reservoirs in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Bonnema, M.; Hossain, F.

    2017-12-01

    The forthcoming Surface Water and Ocean Topography (SWOT) mission has the potential to significantly improve our ability to observe artificial reservoirs globally from a remote sensing perspective. By providing simultaneous estimates of reservoir water surface extent and elevation with near global coverage, reservoir storage changes can be estimated. Knowing how reservoir storage changes over time is critical for understanding reservoir impacts on river systems. In data limited regions, remote sensing is often the only viable method of retrieving such information about reservoir operations. When SWOT launches in 2021, it will join an array of satellite sensors with long histories of reservoir observation and monitoring capabilities. There are many potential synergies in the complimentary use of future SWOT observations with observations from current satellite sensors. The work presented here explores the potential benefits of utilizing SWOT observations over 20 reservoirs in the Mekong River Basin. The SWOT hydrologic simulator, developed by NASA Jet Propulsion Laboratory, is used to generate realistic SWOT observations, which are then inserted into a previously established remote sensing modeling framework of the 20 Mekong Basin reservoirs. This framework currently combines data from Landsat missions, Jason radar altimeters, and the Shuttle Radar and Topography Mission (SRTM), to provide monthly estimates of reservoir storage change. The incorporation of SWOT derived reservoir surface area and elevation into the model is explored in an effort to improve both accuracy and temporal resolution of observed reservoir operations.

  2. Reservoir computing with a single time-delay autonomous Boolean node

    NASA Astrophysics Data System (ADS)

    Haynes, Nicholas D.; Soriano, Miguel C.; Rosin, David P.; Fischer, Ingo; Gauthier, Daniel J.

    2015-02-01

    We demonstrate reservoir computing with a physical system using a single autonomous Boolean logic element with time-delay feedback. The system generates a chaotic transient with a window of consistency lasting between 30 and 300 ns, which we show is sufficient for reservoir computing. We then characterize the dependence of computational performance on system parameters to find the best operating point of the reservoir. When the best parameters are chosen, the reservoir is able to classify short input patterns with performance that decreases over time. In particular, we show that four distinct input patterns can be classified for 70 ns, even though the inputs are only provided to the reservoir for 7.5 ns.

  3. Source, composition, and environmental implication of neutral carbohydrates in sediment cores of subtropical reservoirs, South China

    NASA Astrophysics Data System (ADS)

    Duan, Dandan; Zhang, Dainan; Yang, Yu; Wang, Jingfu; Chen, Jing'an; Ran, Yong

    2017-09-01

    Neutral monosaccharides, algal organic matter (AOM), and carbon stable isotope ratios in three sediment cores of various trophic reservoirs in South China were determined by high-performance anion-exchange chromatography, Rock-Eval pyrolysis, and Finnigan Delta Plus XL mass spectrometry, respectively. The carbon isotopic compositions were corrected for the Suess effect. The concentrations of total neutral carbohydrates (TCHO) range from 0.51 to 6.4 mg g-1 at mesotrophic reservoirs, and from 0.83 to 2.56 mg g-1 at an oligotrophic reservoir. Monosaccharide compositions and diagnostic parameters indicate a predominant contribution of phytoplankton in each of the three cores, which is consistent with the results inferred from the corrected carbon isotopic data and C/N ratios. The sedimentary neutral carbohydrates are likely to be structural polysaccharides and/or preserved in sediment minerals, which are resistant to degradation in the sediments. Moreover, the monosaccharide contents are highly related to the carbon isotopic data, algal productivity estimated from the hydrogen index, and increasing mean air temperature during the past 60 years. The nutrient input, however, is not a key factor affecting the primary productivity in the three reservoirs. The above evidence demonstrates that some of the resistant monosaccharides have been significantly elevated by climate change, even in low-latitude regions.

  4. Sedimentation and occurrence and trends of selected chemical constituents in bottom sediment of 10 small reservoirs, Eastern Kansas

    USGS Publications Warehouse

    Juracek, Kyle E.

    2004-01-01

    Many municipalities in Kansas rely on small reservoirs as a source of drinking water and for recreational activities. Because of their significance to the community, management of the reservoirs and the associated basins is important to protect the reservoirs from degradation. Effective reservoir management requires information about water quality, sedimentation, and sediment quality. A combination of bathymetric surveying and bottom-sediment coring during 2002 and 2003 was used to investigate sediment deposition and the occurrence of selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 26 trace elements, 15 organochlorine compounds, and 1 radionuclide in the bottom sediment of 10 small reservoirs in eastern Kansas. Original reservoir water-storage capacities ranged from 23 to 5,845 acre-feet. The mostly agricultural reservoir basins range in area from 0.6 to 14 square miles. The mean annual net volume of deposited sediment, estimated separately for several of the reservoirs, ranged from about 43,600 to about 531,000 cubic feet. The estimated mean annual net mass of deposited sediment ranged from about 1,360,000 to about 23,300,000 pounds. The estimated mean annual net sediment yields from the reservoir basins ranged from about 964,000 to about 2,710,000 pounds per square mile. Compared to sediment yield estimates provided by a statewide study published in 1965, the estimates determined in this study differed substantially and were typically smaller. A statistically significant positive correlation was determined for the relation between sediment yield and mean annual precipitation. Nutrient concentrations in the bottom sediment varied substantially among the 10 reservoirs. Median total nitrogen concentrations ranged from 1,400 to 3,700 milligrams per kilogram. Median total phosphorus concentrations ranged from 550 to 1,300 milligrams per kilogram. A statistically significant positive trend (that is, nutrient concentration increased toward the top of the sediment core) was indicated in one reservoir for total nitrogen and in two reservoirs for total phosphorus. Also, a possible positive trend for total nitrogen was indicated in two other reservoirs. These trends in nutrient concentrations may be related to a statewide increase in fertilizer use. Alternatively, the trends may be indicative of diagenesis (that is, postdepositional changes in the sediment caused by various processes including decomposition). Nutrient loads and yields also varied substantially among the five reservoirs for which loads and yields were estimated. Estimated mean annual net loads of total nitrogen deposited in the bottom sediment ranged from 4,080 to 49,100 pounds. Estimated mean annual net loads of total phosphorus deposited in the bottom sediment ranged from 1,120 to 20,800 pounds. Estimated mean annual net yields of total nitrogen from the basins ranged from 2,210 to 6,800 pounds per square mile. Estimated mean annual net yields of total phosphorus from the basins ranged from 598 to 2,420 pounds per square mile. Compared to nonenforceable sediment-quality guidelines adopted by the U.S. Environmental Protection Agency, bottom-sediment concentrations of arsenic, chromium, copper, and nickel in samples from all 10 reservoirs typically exceeded the threshold-effects levels (TELs) but were less than the probable-effects levels (PELs). TELs represent the concentrations above which toxic biological effects occasionally occur in aquatic organisms, whereas PELs represent the concentrations above which toxic biological effects usually or frequently occur. Concentrations of cadmium, lead, and zinc exceeded the TELs but were less than the PELs in sediment samples from about one-half of the reservoirs and were less than the TELs in samples from the remaining reservoirs. Mercury concentrations were less than the TEL (information only available for four reservoirs). Silver was not detected in the bottom sediment fro

  5. Monitoring Reservoirs Using MERIS And LANDSAT Fused Images : A Case Study Of Polyfitos Reservoir - West Macedonia - Greece

    NASA Astrophysics Data System (ADS)

    Stefouli, M.; Charou, E.; Vasileiou, E.; Stathopoulos, N.; Perrakis, A.

    2012-04-01

    Research and monitoring is essential to assess baseline conditions in reservoirs and their watershed and provide necessary information to guide decision-makers. Erosion and degradation of mountainous areas can lead to gradual aggradation of reservoirs reducing their lifetime. Collected measurements and observations have to be communicated to the managers of the reservoirs so as to achieve a common / comprehensive management of a large watershed and reservoir system. At this point Remote Sensing could help as the remotely sensed data are repeatedly and readily available to the end users. Aliakmon is the longest river in Greece, it's length is about 297 km and the surface of the river basin is 9.210 km2.The flow of the river starts from Northwest of Greece and ends in Thermaikos Gulf. The riverbed is not natural throughout the entire route, because constructed dams restrict water and create artificial lakes, such as lake of Polyfitos, that prevent flooding. This lake is used as reservoir, for covering irrigational water needs and the water is used to produce energy from the hydroelectric plant of Public Power Corporation-PPC. The catchment basin of Polyfitos' reservoir covers an area of 847.76 km2. Soil erosion - degradation in the mountainous watershed of streams of Polyfitos reservoir is taking place. It has been estimated that an annual volume of sediments reaching the reservoir is of the order of 244 m3. Geomatic based techniques are used in processing multiple data of the study area. A data inventory was formulated after the acquisition of topographic maps, compilation of geological and hydro-geological maps, compilation of digital elevation model for the area of interest based on satellite data and available maps. It also includes the acquisition of various hydro-meteorological data when available. On the basis of available maps and satellite data, digital elevation models are used in order to delineate the basic sub-catchments of the Polyfytos basin as well as the irrigation network in the area We evaluate the possibility to merge two different resolution satellite data i.e. MERIS/ENVISAT and LANDSAT to facilitate the study of the Polyfitos reservoir. State of the art data fusion techniques, that preserve the best characteristics (spatial, temporal, spectral) of the two types of images are implemented and used to mining information concerning selected parameters. Summer 2011 Landsat and ENVISAT MERIS satellite images are used in order to extract lake water quality parameters such as water clarity -and sediment content. Assessment of the whole watershed of Polyfitos reservoir is carried out for the last 25 years. The methodology presented here can be used to support existing reservoir monitoring programs as it gives regular measurements for the whole of the watershed area of the reservoir. The results can be made available to end-users / reservoir managers, using web/GIS techniques. They can also support environmental awareness of the conditions of watershed of Polyfitos reservoir.

  6. Integrated petrophysical and reservoir characterization workflow to enhance permeability and water saturation prediction

    NASA Astrophysics Data System (ADS)

    Al-Amri, Meshal; Mahmoud, Mohamed; Elkatatny, Salaheldin; Al-Yousef, Hasan; Al-Ghamdi, Tariq

    2017-07-01

    Accurate estimation of permeability is essential in reservoir characterization and in determining fluid flow in porous media which greatly assists optimize the production of a field. Some of the permeability prediction techniques such as Porosity-Permeability transforms and recently artificial intelligence and neural networks are encouraging but still show moderate to good match to core data. This could be due to limitation to homogenous media while the knowledge about geology and heterogeneity is indirectly related or absent. The use of geological information from core description as in Lithofacies which includes digenetic information show a link to permeability when categorized into rock types exposed to similar depositional environment. The objective of this paper is to develop a robust combined workflow integrating geology and petrophysics and wireline logs in an extremely heterogeneous carbonate reservoir to accurately predict permeability. Permeability prediction is carried out using pattern recognition algorithm called multi-resolution graph-based clustering (MRGC). We will bench mark the prediction results with hard data from core and well test analysis. As a result, we showed how much better improvements are achieved in the permeability prediction when geology is integrated within the analysis. Finally, we use the predicted permeability as an input parameter in J-function and correct for uncertainties in saturation calculation produced by wireline logs using the classical Archie equation. Eventually, high level of confidence in hydrocarbon volumes estimation is reached when robust permeability and saturation height functions are estimated in presence of important geological details that are petrophysically meaningful.

  7. Profiles of Reservoir Properties of Oil-Bearing Plays for Selected Petroleum Provinces in the United States

    USGS Publications Warehouse

    Freeman, P.A.; Attanasi, E.D.

    2015-11-05

    Each province profile figure consists of five strip charts and a boxplot. The five strip charts display for individual plays the following reservoir-fluid and reservoir properties: A, oil density (American Petroleum Institute [API] gravity in degrees); B, computed pseudo-Dykstra-Parsons coefficient; C, reservoir porosity (in percent); D, reservoir permeability (in millidarcies); and E, estimates of the original oil in place (OOIP) per unit volume of reservoir rock (in barrels per acre-foot). The OOIP per unit volume of reservoir rock is an indicator of the relative richness of the oil reservoir and is derived from estimates in the CRD of OOIP, reservoir acreage, and net pay. The net pay is the interval of productive reservoir rock. The same data for OOIP per unit volume are graphed as a strip chart (E) and a boxplot (F).

  8. Inverse and forward modeling under uncertainty using MRE-based Bayesian approach

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Rubin, Y.

    2004-12-01

    A stochastic inverse approach for subsurface characterization is proposed and applied to shallow vadose zone at a winery field site in north California and to a gas reservoir at the Ormen Lange field site in the North Sea. The approach is formulated in a Bayesian-stochastic framework, whereby the unknown parameters are identified in terms of their statistical moments or their probabilities. Instead of the traditional single-valued estimation /prediction provided by deterministic methods, the approach gives a probability distribution for an unknown parameter. This allows calculating the mean, the mode, and the confidence interval, which is useful for a rational treatment of uncertainty and its consequences. The approach also allows incorporating data of various types and different error levels, including measurements of state variables as well as information such as bounds on or statistical moments of the unknown parameters, which may represent prior information. To obtain minimally subjective prior probabilities required for the Bayesian approach, the principle of Minimum Relative Entropy (MRE) is employed. The approach is tested in field sites for flow parameters identification and soil moisture estimation in the vadose zone and for gas saturation estimation at great depth below the ocean floor. Results indicate the potential of coupling various types of field data within a MRE-based Bayesian formalism for improving the estimation of the parameters of interest.

  9. Opportunities for increasing CO 2 storage in deep, saline formations by active reservoir management and treatment of extracted formation water: Case study at the GreenGen IGCC facility, Tianjin, PR China

    DOE PAGES

    Ziemkiewicz, Paul; Stauffer, Philip H.; Sullivan-Graham, Jeri; ...

    2016-08-04

    Carbon capture, utilization and storage (CCUS) seeks beneficial applications for CO 2 recovered from fossil fuel combustion. This study evaluated the potential for removing formation water to create additional storage capacity for CO 2, while simultaneously treating the produced water for beneficial use. Furthermore, the process would control pressures within the target formation, lessen the risk of caprock failure, and better control the movement of CO 2 within that formation. The project plans to highlight the method of using individual wells to produce formation water prior to injecting CO 2 as an efficient means of managing reservoir pressure. Because themore » pressure drawdown resulting from pre-injection formation water production will inversely correlate with pressure buildup resulting from CO 2 injection, it can be proactively used to estimate CO 2 storage capacity and to plan well-field operations. The project studied the GreenGen site in Tianjin, China where Huaneng Corporation is capturing CO 2 at a coal fired IGCC power plant. Known as the Tianjin Enhanced Water Recovery (EWR) project, local rock units were evaluated for CO 2 storage potential and produced water treatment options were then developed. Average treatment cost for produced water with a cooling water treatment goal ranged from 2.27 to 2.96 US$/m 3 (recovery 95.25%), and for a boiler water treatment goal ranged from 2.37 to 3.18 US$/m 3 (recovery 92.78%). Importance analysis indicated that water quality parameters and transportation are significant cost factors as the injection-extraction system is managed over time. Our study found that in a broad sense, active reservoir management in the context of CCUS/EWR is technically feasible. In addition, criteria for evaluating suitable vs. unsuitable reservoir properties, reservoir storage (caprock) integrity, a recommended injection/withdrawal strategy and cost estimates for water treatment and reservoir management are proposed.« less

  10. Opportunities for increasing CO 2 storage in deep, saline formations by active reservoir management and treatment of extracted formation water: Case study at the GreenGen IGCC facility, Tianjin, PR China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziemkiewicz, Paul; Stauffer, Philip H.; Sullivan-Graham, Jeri

    Carbon capture, utilization and storage (CCUS) seeks beneficial applications for CO 2 recovered from fossil fuel combustion. This study evaluated the potential for removing formation water to create additional storage capacity for CO 2, while simultaneously treating the produced water for beneficial use. Furthermore, the process would control pressures within the target formation, lessen the risk of caprock failure, and better control the movement of CO 2 within that formation. The project plans to highlight the method of using individual wells to produce formation water prior to injecting CO 2 as an efficient means of managing reservoir pressure. Because themore » pressure drawdown resulting from pre-injection formation water production will inversely correlate with pressure buildup resulting from CO 2 injection, it can be proactively used to estimate CO 2 storage capacity and to plan well-field operations. The project studied the GreenGen site in Tianjin, China where Huaneng Corporation is capturing CO 2 at a coal fired IGCC power plant. Known as the Tianjin Enhanced Water Recovery (EWR) project, local rock units were evaluated for CO 2 storage potential and produced water treatment options were then developed. Average treatment cost for produced water with a cooling water treatment goal ranged from 2.27 to 2.96 US$/m 3 (recovery 95.25%), and for a boiler water treatment goal ranged from 2.37 to 3.18 US$/m 3 (recovery 92.78%). Importance analysis indicated that water quality parameters and transportation are significant cost factors as the injection-extraction system is managed over time. Our study found that in a broad sense, active reservoir management in the context of CCUS/EWR is technically feasible. In addition, criteria for evaluating suitable vs. unsuitable reservoir properties, reservoir storage (caprock) integrity, a recommended injection/withdrawal strategy and cost estimates for water treatment and reservoir management are proposed.« less

  11. Nest success, cause-specific nest failure, and hatchability of aquatic birds at selenium-contaminated Kesterson Reservoir and a reference site

    USGS Publications Warehouse

    Ohlendorf, Harry M.; Hothem, Roger L.; Welsh, Daniel

    1989-01-01

    During 1983-1985, we studied the reproductive success of several species of aquatic birds (coots, ducks, shorebirds, and grebes) nesting at two sites in Merced County, California: a selenium-contaminated site (Kesterson Reservoir) and a nearby reference site (Volta Wildlife Area). We used a computer program (MICROMORT) developed for the analysis of radiotelemetry data (Heisey and Fuller 1985) to estimate nest success and cause-specific failure rates, and then compared these parameters and hatchability between sites and among years. Nest success and causes of failure varied by species, site, and year. The most important causes of nest failure were usually predation, desertion, and water-level changes. However, embryotoxicosis (mortality, deformity, and lack of embryonic development) was the most important cause of nest failure in Eared Grebes (Podiceps nigricollis) at Kesterson Reservoir. Embryotoxicosis also reduced the hatchability of eggs of all other species at Kesterson in one or more years; embryonic mortality occurred rarely at Volta, and abnormalities were not observed.

  12. Estimation of constitutive parameters for the Belridge Diatomite, South Belridge Diatomite Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fossum, A.F.; Fredrich, J.T.

    1998-06-01

    A cooperative national laboratory/industry research program was initiated in 1994 that improved understanding of the geomechanical processes causing well casing damage during oil production from weak, compactible formations. The program focused on the shallow diatomaceous oil reservoirs located in California`s San Joaquin Valley, and combined analyses of historical field data, experimental determination of rock mechanical behavior, and geomechanical simulation of the reservoir and overburden response to production and injection. Sandia National Laboratories` quasi-static, large-deformation structural mechanics finite element code JAS3D was used to perform the three-dimensional geomechanical simulations. One of the material models implemented in JAS3D to simulate the time-independentmore » inelastic (non-linear) deformation of geomaterials is a generalized version of the Sandler and Rubin cap plasticity model (Sandler and Rubin, 1979). This report documents the experimental rock mechanics data and material cap plasticity models that were derived to describe the Belridge Diatomite reservoir rock at the South Belridge Diatomite Field, Section 33.« less

  13. Factors Affecting Firm Yield and the Estimation of Firm Yield for Selected Streamflow-Dominated Drinking-Water-Supply Reservoirs in Massachusetts

    USGS Publications Warehouse

    Waldron, Marcus C.; Archfield, Stacey A.

    2006-01-01

    Factors affecting reservoir firm yield, as determined by application of the Massachusetts Department of Environmental Protection's Firm Yield Estimator (FYE) model, were evaluated, modified, and tested on 46 streamflow-dominated reservoirs representing 15 Massachusetts drinking-water supplies. The model uses a mass-balance approach to determine the maximum average daily withdrawal rate that can be sustained during a period of record that includes the 1960s drought-of-record. The FYE methodology to estimate streamflow to the reservoir at an ungaged site was tested by simulating streamflow at two streamflow-gaging stations in Massachusetts and comparing the simulated streamflow to the observed streamflow. In general, the FYE-simulated flows agreed well with observed flows. There were substantial deviations from the measured values for extreme high and low flows. A sensitivity analysis determined that the model's streamflow estimates are most sensitive to input values for average annual precipitation, reservoir drainage area, and the soil-retention number-a term that describes the amount of precipitation retained by the soil in the basin. The FYE model currently provides the option of using a 1,000-year synthetic record constructed by randomly sampling 2-year blocks of concurrent streamflow and precipitation records 500 times; however, the synthetic record has the potential to generate records of precipitation and streamflow that do not reflect the worst historical drought in Massachusetts. For reservoirs that do not have periods of drawdown greater than 2 years, the bootstrap does not offer any additional information about the firm yield of a reservoir than the historical record does. For some reservoirs, the use of a synthetic record to determine firm yield resulted in as much as a 30-percent difference between firm-yield values from one simulation to the next. Furthermore, the assumption that the synthetic traces of streamflow are statistically equivalent to the historical record is not valid. For multiple-reservoir systems, the firm-yield estimate was dependent on the reservoir system's configuration. The firm yield of a system is sensitive to how the water is transferred from one reservoir to another, the capacity of the connection between the reservoirs, and how seasonal variations in demand are represented in the FYE model. Firm yields for 25 (14 single-reservoir systems and 11 multiple-reservoir systems) reservoir systems were determined by using the historical records of streamflow and precipitation. Current water-use data indicate that, on average, 20 of the 25 reservoir systems in the study were operating below their estimated firm yield; during months with peak demands, withdrawals exceeded the firm yield for 8 reservoir systems.

  14. Benchmarking of vertically-integrated CO2 flow simulations at the Sleipner Field, North Sea

    NASA Astrophysics Data System (ADS)

    Cowton, L. R.; Neufeld, J. A.; White, N. J.; Bickle, M. J.; Williams, G. A.; White, J. C.; Chadwick, R. A.

    2018-06-01

    Numerical modeling plays an essential role in both identifying and assessing sub-surface reservoirs that might be suitable for future carbon capture and storage projects. Accuracy of flow simulations is tested by benchmarking against historic observations from on-going CO2 injection sites. At the Sleipner project located in the North Sea, a suite of time-lapse seismic reflection surveys enables the three-dimensional distribution of CO2 at the top of the reservoir to be determined as a function of time. Previous attempts have used Darcy flow simulators to model CO2 migration throughout this layer, given the volume of injection with time and the location of the injection point. Due primarily to computational limitations preventing adequate exploration of model parameter space, these simulations usually fail to match the observed distribution of CO2 as a function of space and time. To circumvent these limitations, we develop a vertically-integrated fluid flow simulator that is based upon the theory of topographically controlled, porous gravity currents. This computationally efficient scheme can be used to invert for the spatial distribution of reservoir permeability required to minimize differences between the observed and calculated CO2 distributions. When a uniform reservoir permeability is assumed, inverse modeling is unable to adequately match the migration of CO2 at the top of the reservoir. If, however, the width and permeability of a mapped channel deposit are allowed to independently vary, a satisfactory match between the observed and calculated CO2 distributions is obtained. Finally, the ability of this algorithm to forecast the flow of CO2 at the top of the reservoir is assessed. By dividing the complete set of seismic reflection surveys into training and validation subsets, we find that the spatial pattern of permeability required to match the training subset can successfully predict CO2 migration for the validation subset. This ability suggests that it might be feasible to forecast migration patterns into the future with a degree of confidence. Nevertheless, our analysis highlights the difficulty in estimating reservoir parameters away from the region swept by CO2 without additional observational constraints.

  15. Mercury and Methylmercury Related to Historical Mercury Mining in Three Major Tributaries to Lake Berryessa, Upper Putah Creek Watershed, California

    NASA Astrophysics Data System (ADS)

    Sparks, G. C.; Alpers, C. N.; Horner, T. C.; Cornwell, K.; Izzo, V.

    2016-12-01

    The relative contributions of total mercury (THg) and methylmercury (MeHg) from upstream historical mercury (Hg) mining districts were examined in the three largest tributaries to Lake Berryessa, a reservoir with water quality impaired by Hg. A fish consumption advisory has been issued for the reservoir; also, in a study of piscivorous birds at 25 California reservoirs, blood samples from Lake Berryessa grebes had the highest THg concentration state-wide. The third and fourth largest historical Hg-producing mining districts in California are within the study area. These mining districts are located within the Pope Creek, Upper Putah Creek, and Knoxville-Eticuera Creeks watersheds. Downstream of the reservoir, Lower Putah Creek drains into the Yolo Bypass, a major source of THg and MeHg to the Sacramento-San Joaquin Delta. Study objectives included: (1) determining if tributaries downstream of historical Hg mining districts and draining to the reservoir are continuing sources of THg and MeHg; (2) characterizing variability of water and streambed sediment parameters in upstream and downstream reaches of each creek; and (3) estimating loads of suspended sediment, THg, and MeHg entering the reservoir from each tributary. Water samples were collected from October 2012 to September 2014 during non-storm and storm events along each tributary and analyzed for general water quality field parameters; unfiltered THg and MeHg; total suspended solids; and total particulate matter. Discharge measurements were made at the time of sample collection; flow and concentration data were combined to compute daily loads. To determine spatial variability, 135 streambed sediment samples were analyzed for THg, organic content (loss on ignition), and grain-size distribution. All three tributaries contribute THg and MeHg to the reservoir. Some consistent spatial trends in THg (water) concentrations were observed over multiple sampling events; THg (water) decreased from upstream to downstream in all three tributaries. Tributary reaches with elevated THg in streambed sediment ("Hg hot spots") are near or downstream from historical Hg mines and Hg-enriched ore deposits. Future Hg load and cycling studies are needed to identify practical remediation approaches for decreasing THg and MeHg loads to Lake Berryessa.

  16. Evaluation of potential gas clogging associated with managed aquifer recharge from a spreading basin, southwestern Utah, U.S.A.

    USGS Publications Warehouse

    Heilweil, Victor M.; Marston, Thomas

    2013-01-01

    Sand Hollow Reservoir in southwestern Utah, USA, is operated for both surface-water storage and managed aquifer recharge via infiltration from surface basin spreading to the underlying Navajo Sandstone. The total volume of estimated recharge from 2002 through 2011 was 131 Mm3., resulting in groundwater levels rising as much as 40 m. Hydraulic and hydrochemical data from the reservoir and various monitoring wells in Sand Hollow were used to evaluate the timing and location or reservoir recharge moving through the aquifer, along either potential clogging from trapped gases in pore throats, siltation, or algal mats. Several hyrdochemical tracers indicated this recharge had arrived at four monitoring wells located within about 300 m of the reservoir by 2012. At these wells, peak total dissolved-gas pressures exceeded two atmospheres (>1,500 mm mercury) and dissolved oxygen approached three times atmospherically equilibrated concentrations (>25 mg/L). these field parameters indicate that large amounts of gas trapped in pore spaces beneath the water table have dissolved. Lesser but notable increases in these dissolved-gas parameters (without increases in other indicators such as chloride-to-bromide ratios) at monitoring wells farther away (>300 m) indicate moderate amounts of in-situ sir entrapment and dissolution caused by the rise in regional groundwater levels. This is confirmed by hydrochemical difference between these sites and wells closer to the reservoir where recharge had already arrived. As the reservoir was being filled by 2002, managed aquifer recharge rates were initially very high (1.5 x 10-4 cm/s) with the vadose zone becoming saturated beneath and surrounding the reservoir. These rates declined to less than 3.5 x 10-6 cm/s during 2008. The 2002-08 decrease was likely associated with a declining regional hydraulic gradient and clogging. Increasing recharge rates during mid-2009 through 2010 may have been partly caused by dissolution of air bubbles initially entrapped in the aquifer matrix. Theoretical gas dissolution rates, coupled with field evidence of a decline iin total dissolved-gas pressure and dissolved oxygen from nearby monitoring wells, support the timing of this gas dissipation.

  17. Effects of water-supply reservoirs on streamflow in Massachusetts

    USGS Publications Warehouse

    Levin, Sara B.

    2016-10-06

    State and local water-resource managers need modeling tools to help them manage and protect water-supply resources for both human consumption and ecological needs. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a decision-support tool to estimate the effects of reservoirs on natural streamflow. The Massachusetts Reservoir Simulation Tool is a model that simulates the daily water balance of a reservoir. The reservoir simulation tool provides estimates of daily outflows from reservoirs and compares the frequency, duration, and magnitude of the volume of outflows from reservoirs with estimates of the unaltered streamflow that would occur if no dam were present. This tool will help environmental managers understand the complex interactions and tradeoffs between water withdrawals, reservoir operational practices, and reservoir outflows needed for aquatic habitats.A sensitivity analysis of the daily water balance equation was performed to identify physical and operational features of reservoirs that could have the greatest effect on reservoir outflows. For the purpose of this report, uncontrolled releases of water (spills or spillage) over the reservoir spillway were considered to be a proxy for reservoir outflows directly below the dam. The ratio of average withdrawals to the average inflows had the largest effect on spillage patterns, with the highest withdrawals leading to the lowest spillage. The size of the surface area relative to the drainage area of the reservoir also had an effect on spillage; reservoirs with large surface areas have high evaporation rates during the summer, which can contribute to frequent and long periods without spillage, even in the absence of water withdrawals. Other reservoir characteristics, such as variability of inflows, groundwater interactions, and seasonal demand patterns, had low to moderate effects on the frequency, duration, and magnitude of spillage. The reservoir simulation tool was used to simulate 35 single- and multiple-reservoir systems in Massachusetts over a 44-year period (water years 1961 to 2004) under two water-use scenarios. The no-pumping scenario assumes no water withdrawal pumping, and the pumping scenario incorporates average annual pumping rates from 2000 to 2004. By comparing the results of the two scenarios, the total streamflow alteration can be parsed into the portion of streamflow alteration caused by the presence of a reservoir and the additional streamflow alteration caused by the level of water use of the system.For each reservoir system, the following metrics were computed to characterize the frequency, duration, and magnitude of reservoir outflow volumes compared with unaltered streamflow conditions: (1) the median number of days per year in which the reservoir did not spill, (2) the median duration of the longest consecutive period of no-spill days per year, and (3) the lowest annual flow duration exceedance probability at which the outflows are significantly different from estimated unaltered streamflow at the 95-percent confidence level. Most reservoirs in the study do not spill during the summer months even under no-pumping conditions. The median number of days during which there was no spillage was less than 365 for all reservoirs in the study, indicating that, even under reported pumping conditions, the reservoirs refill to full volume and spill at least once during nondrought years, typically in the spring.Thirteen multiple-reservoir systems consisting of two or three hydrologically connected reservoirs were included in the study. Because operating rules used to manage multiple-reservoir systems are not available, these systems were simulated under two pumping scenarios, one in which water transfers between reservoirs are minimal and one in which reservoirs continually transferred water to intermediate or terminal reservoirs. These two scenarios provided upper and lower estimates of spillage under average pumping conditions from 2000 to 2004.For sites with insufficient data to simulate daily water balances, a proxy method to estimate the three spillage metrics was developed. A series of 4,000 Monte Carlo simulations of the reservoir water balance were run. In each simulation, streamflow, physical reservoir characteristics, and daily climate inputs were randomly varied. Tobit regression equations that quantify the relation between streamflow alteration and physical and operational characteristics of reservoirs were developed from the results of the Monte Carlo simulations and can be used to estimate each of the three spillage metrics using only the withdrawal ratio and the ratio of the surface area to the drainage area, which are available statewide for all reservoirs.A graphical user-interface for the Massachusetts Reservoir Simulation Tool was developed in a Microsoft Access environment. The simulation tool contains information for 70 reservoirs in Massachusetts and allows for simulation of additional scenarios than the ones considered in this report, including controlled releases, dam seepage and leakage, demand management plans, and alternative water withdrawal and transfer rules.

  18. Flood characteristics of urban watersheds in the United States

    USGS Publications Warehouse

    Sauer, Vernon B.; Thomas, W.O.; Stricker, V.A.; Wilson, K.V.

    1983-01-01

    A nationwide study of flood magnitude and frequency in urban areas was made for the purpose of reviewing available literature, compiling an urban flood data base, and developing methods of estimating urban floodflow characteristics in ungaged areas. The literature review contains synopses of 128 recent publications related to urban floodflow. A data base of 269 gaged basins in 56 cities and 31 States, including Hawaii, contains a wide variety of topographic and climatic characteristics, land-use variables, indices of urbanization, and flood-frequency estimates. Three sets of regression equations were developed to estimate flood discharges for ungaged sites for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years. Two sets of regression equations are based on seven independent parameters and the third is based on three independent parameters. The only difference in the two sets of seven-parameter equations is the use of basin lag time in one and lake and reservoir storage in the other. Of primary importance in these equations is an independent estimate of the equivalent rural discharge for the ungaged basin. The equations adjust the equivalent rural discharge to an urban condition. The primary adjustment factor, or index of urbanization, is the basin development factor, a measure of the extent of development of the drainage system in the basin. This measure includes evaluations of storm drains (sewers), channel improvements, and curb-and-gutter streets. The basin development factor is statistically very significant and offers a simple and effective way of accounting for drainage development and runoff response in urban areas. Percentage of impervious area is also included in the seven-parameter equations as an additional measure of urbanization and apparently accounts for increased runoff volumes. This factor is not highly significant for large floods, which supports the generally held concept that imperviousness is not a dominant factor when soils become more saturated during large storms. Other parameters in the seven-parameter equations include drainage area size, channel slope, rainfall intensity, lake and reservoir storage, and basin lag time. These factors are all statistically significant and provide logical indices of basin conditions. The three-parameter equations include only the three most significant parameters: rural discharge, basin-development factor, and drainage area size. All three sets of regression equations provide unbiased estimates of urban flood frequency. The seven-parameter regression equations without basin lag time have average standard errors of regression varying from ? 37 percent for the 5-year flood to ? 44 percent for the 100-year flood and ? 49 percent for the 500-year flood. The other two sets of regression equations have similar accuracy. Several tests for bias, sensitivity, and hydrologic consistency are included which support the conclusion that the equations are useful throughout the United States. All estimating equations were developed from data collected on drainage basins where temporary in-channel storage, due to highway embankments, was not significant. Consequently, estimates made with these equations do not account for the reducing effect of this temporary detention storage.

  19. Sensitivity Analysis of Methane Hydrate Reservoirs: Effects of Reservoir Parameters on Gas Productivity and Economics

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.

    2008-12-01

    This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP) for natural gas is approximately 7/mcf and for warmer and deeper reservoirs the BEP can approach 5.33/mcf.

  20. Modelling of clay diagenesis using a combined approach of crystalchemistry and thermochemistry: a case study in the smectite illitization.

    NASA Astrophysics Data System (ADS)

    Geloni, Claudio; Previde Massara, Elisabetta; Di Paola, Eleonora; Ortenzi, Andrea; Gherardi, Fabrizio; Blanc, Philippe

    2017-04-01

    Diagenetic transformations occurring in clayey and arenaceous sediments is investigated in a number of hydrocarbon reservoirs with an integrated approach that combines mineralogical analysis, crystalchemistry, estimation of thermochemical parameters of clay minerals, and geochemical modelling. Because of the extremely variable crystalchemistry of clays, especially in the smectite - illite compositional range, the estimation of thermochemical parameters of site-specific clay-rich rocks is crucial to investigate water-rock equilibria and to predict mineralogical evolutionary patterns at the clay-sandstone interface. The task of estimating the thermochemical properties of clay minerals and predicting diagenetic reactions in natural reservoirs is accomplished through the implementation of an informatized, procedure (IP) that consists of: (i) laboratory analysis of smectite, illite and mixed layers (I/S) for the determination of their textural characteristics and chemical composition; (ii) estimation of the thermodynamic and structural parameters (enthalpy, entropy, and free energy of formation, thermal capacity, molar volume, molar weight) with a MS Excel tool (XLS) specifically developed at the French Bureau of Geological and Mining Researches (BRGM); (iii) usage of the SUPCRT (Johnson et al., 1992) software package (thereinafter, SSP) to derive log K values to be incorporated in thermodynamic databases of the standard geochemical codes; (iv) check of the consistency of the stability domains calculated with these log K values with relevant predominance diagrams; (v) final application of geochemical and reactive transport models to investigate the reactive mechanisms under different thermal conditions (40-150°C). All the simulations consider pore waters having roughly the same chemical composition of reservoir pore waters, and are performed with The Geochemist Workbench (Bethke and Yeakel, 2015), PHREEQC (Parkhurst, 1999) and TOUGHREACT (Xu, 2006). The overall procedure benefits from: (i) (minor) improvements of the I/O structure of the SSP; (ii) the development of a suite of python scripts to automate the steps needed to augment the thermodynamic database by integrating the external information provided by potential users with the XLS tool and the SSP; (iii) the creation of specific outputs to allow for more convenient handling and inspection of computed parameters of the thermodynamic database. A case study focused on non-isothermal smectite-illite transformation is presented to show the capability of our numerical models to account for clay compaction under 1D geometry conditions. This model considers fluid flow driven by the compaction of a clay layer, and chemistry-fluid flow mutual feedback with the underlying sandstone during the advancement of the diagenesis. Due to this complex interaction, as a result of the smectite-illite transformation in the clays, significant quartz cementation affects the sandstone adjacent to the compacting clay.

  1. Upward migration of Vesuvius magma chamber over the past 20,000 years.

    PubMed

    Scaillet, B; Pichavant, M; Cioni, R

    2008-09-11

    Forecasting future eruptions of Vesuvius is an important challenge for volcanologists, as its reawakening could threaten the lives of 700,000 people living near the volcano. Critical to the evaluation of hazards associated with the next eruption is the estimation of the depth of the magma reservoir, one of the main parameters controlling magma properties and eruptive style. Petrological studies have indicated that during past activity, magma chambers were at depths between 3 and 16 km (refs 3-7). Geophysical surveys have imaged some levels of seismic attenuation, the shallowest of which lies at 8-9 km depth, and these have been tentatively interpreted as levels of preferential magma accumulation. By using experimental phase equilibria, carried out on material from four main explosive events at Vesuvius, we show here that the reservoirs that fed the eruptive activity migrated from 7-8 km to 3-4 km depth between the ad 79 (Pompeii) and ad 472 (Pollena) events. If data from the Pomici di Base event 18.5 kyr ago and the 1944 Vesuvius eruption are included, the total upward migration of the reservoir amounts to 9-11 km. The change of preferential magma ponding levels in the upper crust can be attributed to differences in the volatile content and buoyancy of ascending magmas, as well as to changes in local stress field following either caldera formation or volcano spreading. Reservoir migration, and the possible influence on feeding rates, should be integrated into the parameters used for defining expected eruptive scenarios at Vesuvius.

  2. Constraints on Water Reservoir Lifetimes From Catchment-Wide 10Be Erosion Rates—A Case Study From Western Turkey

    NASA Astrophysics Data System (ADS)

    Heineke, Caroline; Hetzel, Ralf; Akal, Cüneyt; Christl, Marcus

    2017-11-01

    The functionality and retention capacity of water reservoirs is generally impaired by upstream erosion and reservoir sedimentation, making a reliable assessment of erosion indispensable to estimate reservoir lifetimes. Widely used river gauging methods may underestimate sediment yield, because they do not record rare, high-magnitude events and may underestimate bed load transport. Hence, reservoir lifetimes calculated from short-term erosion rates should be regarded as maximum values. We propose that erosion rates from cosmogenic 10Be, which commonly integrate over hundreds to thousands of years, are useful to complement short-term sediment yield estimates and should be employed to estimate minimum reservoir lifetimes. Here we present 10Be erosion rates for the drainage basins of six water reservoirs in Western Turkey, which are located in a tectonically active region with easily erodible bedrock. Our 10Be erosion rates for these catchments are high, ranging from ˜170 to ˜1,040 t/km2/yr. When linked to reservoir volumes, they yield minimum reservoir lifetimes between 25 ± 5 and 1,650 ± 360 years until complete filling, with four reservoirs having minimum lifespans of ≤110 years. In a neighboring region with more resistant bedrock and less tectonic activity, we obtain much lower catchment-wide 10Be erosion rates of ˜33 to ˜95 t/km2/yr, illustrating that differences in lithology and tectonic boundary conditions can cause substantial variations in erosion even at a spatial scale of only ˜50 km. In conclusion, we suggest that both short-term sediment yield estimates and 10Be erosion rates should be employed to predict the lifetimes of reservoirs.

  3. Monitoring Reservoir Storage in South Asia from Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Gao, H.; Naz, B.

    2013-12-01

    Realtime reservoir storage information is essential for accurate flood monitoring and prediction in South Asia, where the fatality rate (by area) due to floods is among the highest in the world. However, South Asia is dominated by international river basins where communications among neighboring countries about reservoir storage and management are extremely limited. In this study, we use a suite of NASA satellite observations to achieve high quality estimation of reservoir storage and storage variations at near realtime in South Asia. The monitoring approach employs vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) 16-day 250 m MOD13Q1 product and the surface elevation data from the Geoscience Laser Altimeter System (GLAS) on board the Ice, Cloud and land Elevation Satellite (ICESat). This approach contains four steps: 1) identifying the reservoirs with ICESat GLAS overpasses and extracting the elevation data for these locations; 2) using the K-means method for water classification from MODIS andapplying a novel post-classification algorithm to enhance water area estimation accuracy; 3) deriving the relationship between the MODIS water surface area and the ICESat elevation; and 4) estimating the storage of reservoirs over time based on the elevation-area relationship and the MODIS water area time series. For evaluation purposes, we compared the satellite-based reservoir storage with gauge observations for 16 reservoirs in South Asia. The storage estimates were highly correlated with observations (R = 0.92 to 0.98), with values for the normalized root mean square error (NRMSE) ranging from 8.7% to 25.2%. Using this approach, storage and storage variations were estimated for 16 South Asia reservoirs from 2000 to 2012.

  4. Engineering parameters used in geopressured geothermal Fairway evaluation and test-well site location, Frio formation, Texas Gulf Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, A.R.; Meriwether, J.

    1977-01-01

    Adequate deliverability of fluids from reservoirs with temperatures higher than 300/sup 0/F is a key factor in evaluating geopressured geothermal resources. In the Austin Bayou Prospect, Brazoria County, Texas, permeability is difficult to evaluate before wells are drilled and tested. However, this report discusses how reservoir pressure decline and high temperature reduce permeability. The history of gas-condensate production from geopressured reservoirs in the Chocolate Bayou field, located near the Austin Bayou Prospect, shows that deliverability of hydrocarbons is high in the early life of the reservoirs but drops sharply as pressure declines. Average geothermal gradient is 1.8/sup 0/F per hundredmore » feet and reservoir pressure gradients lie between 0.465 and 0.98 psia per foot for depths below 10,000 feet. Salinities vary from 40,000 to 80,000 ppM and methane content may range from 25 to 45 cubic feet per barrel for formation waters commonly found in the Chocolate Bayou field. The effective gas permeabilities determined from production flow tests are estimated to range from 1 to 6 millidarcys and absolute permeabilities lie between 2 and 10 millidarcys. More than 10 billion barrels of water inferred to occur in place in the prospective sandstone reservoirs of the Austin Bayou prospect contain potentially 1,733 MW-years of electrical energy and 400 billion cubic feet of methane in solution.« less

  5. Estimated cumulative sediment trapping in future hydropower reservoirs in Africa

    NASA Astrophysics Data System (ADS)

    Lucía, Ana; Berlekamp, Jürgen; Zarfl, Christiane

    2017-04-01

    Despite a rapid economic development in Sub-Saharan Africa, almost 70% of the human population in this area remain disconnected from electricity access (International Energy Agency 2011). Mitigating climate change and a search for renewable, "climate neutral" electricity resources are additional reasons why Africa will be one key centre for future hydropower dam building, with only 8% of the technically feasible hydropower potential actually exploited. About 300 major hydropower dams with a total capacity of 140 GW are currently under construction (11.4%) or planned (88.6%) (Zarfl et al. 2015). Despite the benefits of hydropower dams, fragmentation of the rivers changes the natural flow, temperature and sediment regime. This has consequences for a high number of people that directly depend on the primary sector linked to rivers and floodplains. But sediment trapping in the reservoir also affects dam operation and decreases its life span. Thus, the objective of this work is to quantify the dimension of sediment trapping by future hydropower dams in African river basins. Soil erosion is described with the universal soil loss equation (Wischmeier & Smith 1978) and combined with the connectivity index (Cavalli et al. 2013) to estimate the amount of eroded soil that reaches the fluvial network and finally ends up in the existing (Lehner et al. 2011) and future reservoirs (Zarfl et al. 2015) per year. Different scenarios assuming parameter values from the literature are developed to include model uncertainty. Estimations for existing dams will be compared with literature data to evaluate the applied estimation method and scenario assumptions. Based on estimations for the reservoir volume of the future dams we calculated the potential time-laps of the future reservoirs due to soil erosion and depending on their planned location. This approach could support sustainable decision making for the location of future hydropower dams. References Cavalli, M., Trevisani, S., Comiti, F., & Marchi, L. (2013). Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology, 188, 31-41. Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J.C., Rödel, R., Sindorf , N., & Wisser, D. (2011). High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment, 9(9), 494-502. Wischmeier, W. H. and D. D. Smith. (1978). Predicting rainfall erosion losses: guide to conservation planning. USDA, Agriculture Handbook 537. U.S. Government Printing Office, Washington, DC. Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., & Tockner, K. (2015). A global boom in hydropower dam construction. Aquatic Sciences, 77(1), 161-170.

  6. Simulation of Runoff and Reservoir Inflow for Use in a Flood-Analysis Model for the Delaware River, Pennsylvania, New Jersey, and New York, 2004-2006

    USGS Publications Warehouse

    Goode, Daniel J.; Koerkle, Edward H.; Hoffman, Scott A.; Regan, R. Steve; Hay, Lauren E.; Markstrom, Steven L.

    2010-01-01

    A model was developed to simulate inflow to reservoirs and watershed runoff to streams during three high-flow events between September 2004 and June 2006 for the main-stem subbasin of the Delaware River draining to Trenton, N.J. The model software is a modified version of the U.S. Geological Survey (USGS) Precipitation-Runoff Modeling System (PRMS), a modular, physically based, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on surface-water runoff and general basin hydrology. The PRMS model simulates time periods associated with main-stem flooding that occurred in September 2004, April 2005, and June 2006 and uses both daily and hourly time steps. Output from the PRMS model was formatted for use as inflows to a separately documented reservoir and riverrouting model, the HEC-ResSim model, developed by the U.S. Army Corps of Engineers Hydrologic Engineering Center to evaluate flooding. The models were integrated through a graphical user interface. The study area is the 6,780 square-mile watershed of the Delaware River in the states of Pennsylvania, New Jersey, and New York that drains to Trenton, N.J. A geospatial database was created for use with a geographic information system to assist model discretization, determine land-surface characterization, and estimate model parameters. The USGS National Elevation Dataset at 100-meter resolution, a Digital Elevation Model (DEM), was used for model discretization into streams and hydrologic response units. In addition, geospatial processing was used to estimate initial model parameters from the DEM and other data layers, including land use. The model discretization represents the study area using 869 hydrologic response units and 452 stream segments. The model climate data for point stations were obtained from multiple sources. These sources included daily data for 22 National Weather Service (NWS) Cooperative Climate Station network stations, hourly data for 15 stations from the National Climatic Data Center, hourly data for 1 station from the NWS Middle Atlantic River Forecast Center records, and daily and hourly data for 7 stations operated by the New York City Department of Environmental Protection. The NWS Multisensor Precipitation Estimate data set for 2001-2007 was used for computing daily precipitation for the model and for computing hourly precipitation for storm simulation periods. Calibration of the PRMS model included regression and optimization algorithms, as well as manual adjustments of model parameters. The general goal of the calibration procedure was to minimize the difference between discharge measured at USGS streamgages and the corresponding discharge simulated by the model. Daily streamflow data from 35 USGS streamgages were used in model calibration. The streamflow data represent areas draining from 20.2 to 6,780 square miles. The PRMS model simulates reservoir inflow and watershed runoff for use as input into HECResSim for the purpose of evaluating and comparing the effects of different watershed conditions on main-stem flooding in the Delaware River watershed draining to Trenton, N.J. The PRMS model is useful as a planning tool to simulate the effects of land-use changes and different antecedent conditions on local runoff and reservoir inflow and, as input to the HEC-ResSim model, on flood flows in the main stem of the Delaware River.

  7. Sedimentation, sediment quality, and upstream channel stability, John Redmond Reservoir, east-central Kansas, 1964-2009

    USGS Publications Warehouse

    Juracek, Kyle E.

    2010-01-01

    A combination of available bathymetric-survey information, bottom-sediment coring, and historical streamgage information was used to investigate sedimentation, sediment quality, and upstream channel stability for John Redmond Reservoir, east-central Kansas. Ongoing sedimentation is reducing the ability of the reservoir to serve several purposes including flood control, water supply, and recreation. The total estimated volume and mass of bottom sediment deposited between 1964 and 2009 in the conservation pool of the reservoir was 1.46 billion cubic feet and 55.8 billion pounds, respectively. The estimated sediment volume occupied about 41 percent of the conservation-pool, water-storage capacity of the reservoir. Water-storage capacity in the conservation pool has been lost to sedimentation at a rate of about 1 percent annually. Mean annual net sediment deposition since 1964 in the conservation pool of the reservoir was estimated to be 1.24 billion pounds per year. Mean annual net sediment yield from the reservoir basin was estimated to be 411,000 pounds per square mile per year Information from sediment cores shows that throughout the history of John Redmond Reservoir, total nitrogen concentrations in the deposited sediment generally were uniform indicating consistent nitrogen inputs to the reservoir. Total phosphorus concentrations in the deposited sediment were more variable than total nitrogen indicating the possibility of changing phosphorus inputs to the reservoir. As the principal limiting factor for primary production in most freshwater environments, phosphorus is of particular importance because increased inputs can contribute to accelerated reservoir eutrophication and the production of algal toxins and taste-and-odor compounds. The mean annual net loads of total nitrogen and total phosphorus deposited in the bottom sediment of the reservoir were estimated to be 2,350,000 pounds per year and 1,030,000 pounds per year, respectively. The estimated mean annual net yields of total nitrogen and total phosphorus from the reservoir basin were 779 pounds per square mile per year and 342 pounds per square mile per year, respectively. Trace element concentrations in the bottom sediment of John Redmond Reservoir generally were uniform over time. As is typical for eastern Kansas reservoirs, arsenic, chromium, and nickel concentrations typically exceeded the threshold-effects guidelines, which represent the concentrations above which toxic biological effects occasionally occur. Trace element concentrations did not exceed the probable-effects guidelines (available for eight trace elements), which represent the concentrations above which toxic biological effects usually or frequently occur. Organochlorine compounds either were not detected or were detected at concentrations that were less than the threshold-effects guidelines. Stream channel banks, compared to channel beds, likely are a more important source of sediment to John Redmond Reservoir from the upstream basin. Other sediment sources include surface-soil erosion in the basin and shoreline erosion in the reservoir.

  8. Osprey distribution, abundance, and status in western North America: II. The Oregon population

    USGS Publications Warehouse

    Henny, C.J.; Collins, J.A.; Deibert, W.J.

    1978-01-01

    An estimated 308 ? 23 pairs of Ospreys nested in the survey area in Oregon in 1976. Major concentration centers include Crane Prairie Reservoir and the adjacent Deschutes National Forest, the coastal lakes and reservoirs between Florence and North Bend, the Rogue River, the Lane County reservoirs, and the Umpqua River. An estimated 47 percent of the Oregon population is nesting at reservoirs. Limited information is available concerning the long-term status of the Oregon population; however, the ability of the species to pioneer newly created reservoirs emphasizes that the population is utilizing new habitats.

  9. Research on the Log Interpretation Method of Tuffaceous Sandstone Reservoirs of X Depression in Hailar-Tamtsag Basin

    NASA Astrophysics Data System (ADS)

    Liu, S.; Pan, B.

    2015-12-01

    The logging evaluation of tuffaceous sandstone reservoirs is always a difficult problem. Experiments show that the tuff and shale have different logging responses. Since the tuff content exerts an influence on the computation of shale content and the parameters of the reservoir, and the accuracy of saturation evaluation is reduced. Therefore, the effect of tuff on the calculation of saturation cannot be ignored. This study takes the tuffaceous sandstone reservoirs in the X depression of Hailar-Tamtsag basin as an example to analyze. And the electric conduction model of tuffaceous sandstone reservoirs is established. The method which combines bacterial foraging algorithm and particle swarm optimization algorithm is used to calculate the content of reservoir components in well logging for the first time, and the calculated content of tuff and shale corresponds to the results analysis of thin sections. The experiment on cation exchange capacity (CEC) proves that tuff has conductivity, and the conversion relationship between CEC and resistivity proposed by Toshinobu Iton has been improved. According to the rock electric experiment under simulated reservoir conditions, the rock-electro parameters (a, b, m and n) are determined. The improved relationship between CEC and resistivity and the rock-electro parameters are used in the calculation of saturation. Formula (1) shows the saturation equation of the tuffaceous reservoirs:According to the comparative analysis between irreducible water saturation and the calculated saturation, we find that the saturation equation used CEC data and rock-electro parameters has a better application effect at oil layer than Archie's formulas.

  10. Impact of physicochemical parameters on phytoplankton compositions and abundances in Selameko Manmade Reservoir, Debre Tabor, South Gondar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Wassie, Tilahun Adugna; Melese, Ayalew Wondie

    2017-07-01

    Impact of physicochemical parameters on 2 compositions and abundances in Selameko Reservoir, Debre Tabor, South Gondar from August 2009 to May 2010 was assessed. Water quality parameters, such as temperature, water transparency, water depth, dissolved oxygen, pH, total dissolved solids, phosphate, nitrate, and silicate were measured in situ from two sites (littoral and open water zone) of the reservoir. Phytoplankton compositions and abundances were analyzed in Tana fisheries and other aquatic organisms' research center. ANOVA result of the physicochemical parameters included chlorophyll-a showed the presence of significance difference among seasons and between sites ( P < 0.05). A total of seven families, 36 genera from three groups (Diatom, Blue green algae and Green algae) of phytoplankton were identified during the study period. From all groups, diatoms were the most abundant at both sites and Blue green algae were the least abundant. ANOVA of all phytoplankton showed highly significant difference among seasons and between sites ( P < 0.05). ANOVA of all phytoplankton showed highly significant difference among seasons and between sites ( P < 0.05). Based on the stepwise regression, a total number of phytoplanktons had positive correlation with some of the physicochemical parameters (R2 = 0.99, P < 0.001, N = 16). The study concluded that some of physicochemical parameters (NO3-N and PO4-P) indicated the presence of reservoir water pollution. This is supported by the presence of pollution-resistant phytoplankton species such as Melosira and Microcystis. The reservoir water was eutrophic (productive) throughout the year. To avoid such pollution, basin and reservoir management are recommended.

  11. A comparison of approaches for estimating bottom-sediment mass in large reservoirs

    USGS Publications Warehouse

    Juracek, Kyle E.

    2006-01-01

    Estimates of sediment and sediment-associated constituent loads and yields from drainage basins are necessary for the management of reservoir-basin systems to address important issues such as reservoir sedimentation and eutrophication. One method for the estimation of loads and yields requires a determination of the total mass of sediment deposited in a reservoir. This method involves a sediment volume-to-mass conversion using bulk-density information. A comparison of four computational approaches (partition, mean, midpoint, strategic) for using bulk-density information to estimate total bottom-sediment mass in four large reservoirs indicated that the differences among the approaches were not statistically significant. However, the lack of statistical significance may be a result of the small sample size. Compared to the partition approach, which was presumed to provide the most accurate estimates of bottom-sediment mass, the results achieved using the strategic, mean, and midpoint approaches differed by as much as ?4, ?20, and ?44 percent, respectively. It was concluded that the strategic approach may merit further investigation as a less time consuming and less costly alternative to the partition approach.

  12. Attenuation of coda waves in the Aswan Reservoir area, Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, H. H.; Mukhopadhyay, S.; Sharma, J.

    2010-09-01

    Coda attenuation characteristics of Aswan Reservoir area of Egypt were analyzed using data recorded by a local earthquake network operated around the reservoir. 330 waveforms obtained from 28 earthquakes recorded by a network of 13 stations were used for this analysis. Magnitude of these earthquakes varied between 1.4 and 2.5. The maximum epicentral distance and depth of focus of these earthquakes were 45 km and 16 km respectively. Single back-scattering method was used for estimation of coda Q ( Qc). The Q0 values ( Qc at 1 Hz) vary between 54 and 100 and frequency dependence parameter " n" values vary between 1 and 1.2 for lapse time varying between 15 s and 60 s. It is observed that coda Q ( Qc) and related parameters are similar at similar lapse times to those observed for those for Koyna, India, where reservoir induced seismicity is also observed. For both regions these parameters are also similar to those observed for tectonically active regions of the world, although Aswan is located in a moderately active region and Koyna is located in a tectonically stable region. However, Qc does not increase uniformly with increasing lapse time, as is observed for several parts of the world. Converting lapse time to depth/distance it is observed that Qc becomes lower or remains almost constant at around 70 to 90 km and 120 km depth/distance. This indicates presence of more attenuative material at those depth levels or distances compared to their immediate surroundings. It is proposed that this variation indicates presence of fluid filled fractures and/or partial melts at some depths/distance from the area of study. The Qc values are higher than those obtained for the Gulf of Suez and Al Dabbab region of Egypt at distances greater than 300 km from the study area by other workers. The turbidity decreases with depth in the study area.

  13. Rupture Dynamics and Scaling Behavior of Hydraulically Stimulated Micro-Earthquakes in a Shale Reservoir

    NASA Astrophysics Data System (ADS)

    Viegas, G. F.; Urbancic, T.; Baig, A. M.

    2014-12-01

    In hydraulic fracturing completion programs fluids are injected under pressure into fractured rock formations to open escape pathways for trapped hydrocarbons along pre-existing and newly generated fractures. To characterize the failure process, we estimate static and dynamic source and rupture parameters, such as dynamic and static stress drop, radiated energy, seismic efficiency, failure modes, failure plane orientations and dimensions, and rupture velocity to investigate the rupture dynamics and scaling relations of micro-earthquakes induced during a hydraulic fracturing shale completion program in NE British Columbia, Canada. The relationships between the different parameters combined with the in-situ stress field and rock properties provide valuable information on the rupture process giving insights into the generation and development of the fracture network. Approximately 30,000 micro-earthquakes were recorded using three multi-sensor arrays of high frequency geophones temporarily placed close to the treatment area at reservoir depth (~2km). On average the events have low radiated energy, low dynamic stress and low seismic efficiency, consistent with the obtained slow rupture velocities. Events fail in overshoot mode (slip weakening failure model), with fluids lubricating faults and decreasing friction resistance. Events occurring in deeper formations tend to have faster rupture velocities and are more efficient in radiating energy. Variations in rupture velocity tend to correlate with variation in depth, fault azimuth and elapsed time, reflecting a dominance of the local stress field over other factors. Several regions with different characteristic failure modes are identifiable based on coherent stress drop, seismic efficiency, rupture velocities and fracture orientations. Variations of source parameters with rock rheology and hydro-fracture fluids are also observed. Our results suggest that the spatial and temporal distribution of events with similar characteristic rupture behaviors can be used to determine reservoir geophysical properties, constrain reservoir geo-mechanical models, classify dynamic rupture processes for fracture models and improve fracture treatment designs.

  14. Greenhouse gas emissions from reservoir water surfaces: A ...

    EPA Pesticide Factsheets

    Collectively, reservoirs created by dams are thought to be an important source ofgreenhouse gases (GHGs) to the atmosphere. So far, efforts to quantify, model, andmanage these emissions have been limited by data availability and inconsistenciesin methodological approach. Here we synthesize worldwide reservoir methane,carbon dioxide, and nitrous oxide emission data with three main objectives: (1) togenerate a global estimate of GHG emissions from reservoirs, (2) to identify the bestpredictors of these emissions, and (3) to consider the effect of methodology onemission estimates. We estimate that GHG emission from reservoir water surfacesaccount for 0.8 (0.5-1.2) Pg CO2-equivalents per year, equal to ~1.3 % of allanthropogenic GHG emissions, with the majority (79%) of this forcing due tomethane. We also discuss the potential for several alternative pathways such as damdegassing and downstream emissions to contribute significantly to overall GHGemissions. Although prior studies have linked reservoir GHG emissions to systemage and latitude, we find that factors related to reservoir productivity are betterpredictors of emission. Finally, as methane contributed the most to total reservoirGHG emissions, it is important that future monitoring campaigns incorporatemethane emission pathways, especially ebullition. To inform the public.

  15. A Review of Methods Applied by the U.S. Geological Survey in the Assessment of Identified Geothermal Resources

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.

    2008-01-01

    The U. S. Geological Survey (USGS) is conducting an updated assessment of geothermal resources in the United States. The primary method applied in assessments of identified geothermal systems by the USGS and other organizations is the volume method, in which the recoverable heat is estimated from the thermal energy available in a reservoir. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. The new assessment will incorporate some changes in the models for temperature and depth ranges for electric power production, preferred chemical geothermometers for estimates of reservoir temperatures, estimates of reservoir volumes, and geothermal energy recovery factors. Monte Carlo simulations are used to characterize uncertainties in the estimates of electric power generation. These new models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of natural geothermal reservoirs.

  16. Reservoir area of influence and implications for fisheries management

    USGS Publications Warehouse

    Martin, Dustin R.; Chizinski, Christopher J.; Pope, Kevin L.

    2015-01-01

    Understanding the spatial area that a reservoir draws anglers from, defined as the reservoir's area of influence, and the potential overlap of that area of influence between reservoirs is important for fishery managers. Our objective was to define the area of influence for reservoirs of the Salt Valley regional fishery in southeastern Nebraska using kernel density estimation. We used angler survey data obtained from in-person interviews at 17 reservoirs during 2009–2012. The area of influence, defined by the 95% kernel density, for reservoirs within the Salt Valley regional fishery varied, indicating that anglers use reservoirs differently across the regional fishery. Areas of influence reveal angler preferences in a regional context, indicating preferred reservoirs with a greater area of influence. Further, differences in areas of influences across time and among reservoirs can be used as an assessment following management changes on an individual reservoir or within a regional fishery. Kernel density estimation provided a clear method for creating spatial maps of areas of influence and provided a two-dimensional view of angler travel, as opposed to the traditional mean travel distance assessment.

  17. Analysis and application of classification methods of complex carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Li, Xiongyan; Qin, Ruibao; Ping, Haitao; Wei, Dan; Liu, Xiaomei

    2018-06-01

    There are abundant carbonate reservoirs from the Cenozoic to Mesozoic era in the Middle East. Due to variation in sedimentary environment and diagenetic process of carbonate reservoirs, several porosity types coexist in carbonate reservoirs. As a result, because of the complex lithologies and pore types as well as the impact of microfractures, the pore structure is very complicated. Therefore, it is difficult to accurately calculate the reservoir parameters. In order to accurately evaluate carbonate reservoirs, based on the pore structure evaluation of carbonate reservoirs, the classification methods of carbonate reservoirs are analyzed based on capillary pressure curves and flow units. Based on the capillary pressure curves, although the carbonate reservoirs can be classified, the relationship between porosity and permeability after classification is not ideal. On the basis of the flow units, the high-precision functional relationship between porosity and permeability after classification can be established. Therefore, the carbonate reservoirs can be quantitatively evaluated based on the classification of flow units. In the dolomite reservoirs, the average absolute error of calculated permeability decreases from 15.13 to 7.44 mD. Similarly, the average absolute error of calculated permeability of limestone reservoirs is reduced from 20.33 to 7.37 mD. Only by accurately characterizing pore structures and classifying reservoir types, reservoir parameters could be calculated accurately. Therefore, characterizing pore structures and classifying reservoir types are very important to accurate evaluation of complex carbonate reservoirs in the Middle East.

  18. An analytical framework for extracting hydrological information from time series of small reservoirs in a semi-arid region

    NASA Astrophysics Data System (ADS)

    Annor, Frank; van de Giesen, Nick; Bogaard, Thom; Eilander, Dirk

    2013-04-01

    Small water reservoirs for water resources management have as important socio-economic advantage that they bring water close to villages and households. This proximity allows for many water uses in addition to irrigation, such as fisheries, household water, building materials (loam, reeds), tourism and recreation, and cattle watering. These positive aspects are offset by the relatively large evaporative losses in comparison to larger reservoirs, although, it is not exactly known how large these losses are. For decision makers, investors and donors, the decision to construct a small reservoir should be multifactored; and based on economic, socio-cultural and environmental factors. For the latter, getting the water balance and the energy budget of small reservoirs right is key for any environmental impact analyses. For Northern Ghana, the relation between volume of a small reservoir and its' surface area has been established in a robust equation as: Volume = 0.00857Area1.4367 with the surface area explaining more than 95% of the variation in water volume of the reservoirs. This allows the use of remote sensing observations for estimating water volume of small reservoirs in northern Ghana. Hydrological analyses of time series of small reservoir areas comprises estimates of evaporation fluxes and cumulative surface runoff curves. Once the reservoirs are full, spillage will occur and volumes and surface areas remain stable at their maximum extents. This implies that the time series of reservoir surface area contains information concerning the on-set of downstream surface runoff. This on-set does not coincide with the on-set of the rainy season but largely depends on the distribution of rainfall events and storage capacity in the subsurface. The main requirement for this analysis is that the reservoir has negligible seepage losses or water influx from the underlying subsurface. In our research, we carried out a time series analysis of surface area extent for about 45 small reservoirs in the Upper East Region of Ghana. Reservoirs without obvious large seepage losses (field survey) were selected. To verify this, stable water isotopic samples are collected from groundwater upstream and downstream from the reservoir. By looking at possible enrichment of downstream groundwater, a good estimate of seepage can be made in addition to estimates on evaporation. We estimated the evaporative losses and compared those with field measurements using eddy correlation measurements. Lastly, we determined the cumulative surface runoff curves for the small reservoirs .We will present this analytical framework for extracting hydrological information from time series of small reservoirs and show the first results for our study region of northern Ghana.

  19. Use of frequency analysis and the extended streamflow prediction procedure to estimate evacuation dates for the joint-use pool of Pueblo Reservoir, Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard; Nickless, R.C.

    1994-01-01

    Part of the storage space of Pueblo Reservoir consists of a 65,950 acre-foot joint-use pool (JUP) that can be used to provide additional conservation capacity from November 1 to April 14; however, the JUP must be evacuated by April 15 and used only for flood-control capacity until November 1. A study was completed to determine if the JUP possibly could be used for conservation storage for any number of days from April 15 through May 14 under certain hydrologic conditions. The methods of the study were: (1) Frequency analysis of recorded daily mean discharge data for streamflow-gaging stations upstream and downstream from Pueblo Reservoir, and (2) Implementation of the extended streamflow prediction (ESP) procedure for the Arkansas River basin upstream from the reservoir. The frequency analyses enabled estimation of daily discharges at selected exceedance probabilities (EP's), including the 0.01 EP that was used in design of the flood- storage capacity of Pueblo Reservoir. The ESP procedure enabled probabilistic forecasts of inflow volume to the reservoir for April 15 through May 14. Daily discharges derived from the frequency analyses were routed through Pueblo Reservoir to estimate evacuation dates of the JUP for different reservoir inflow volumes; the estimates indicated a relation between the inflow volume and the JUP evacuation date. To apply the study results, only a ESP forecast of the April 15-May 14 reservoir inflow volume is needed. Study results indicate the JUP possibly could be used as late as May 5 depending on the forecast inflow volume.

  20. Assessment of artificial recharge at Sand Hollow Reservoir, Washington County, Utah, Updated to Conditions through 2006

    USGS Publications Warehouse

    Heilweil, Victor M.; Susong, David D.

    2007-01-01

    Sand Hollow, Utah, is the site of a surface-water reservoir completed in March 2002 and operated by the Washington County Water Conservancy District (WCWCD) primarily as an aquifer storage and recovery project. The reservoir is an off-channel facility that receives water from the Virgin River, diverted near the town of Virgin, Utah. Hydrologic data collected are described and listed in this report, including ground-water levels, reservoir stage, reservoir-water temperature, meteorology, evaporation, and estimated ground-water recharge. Since the construction of the reservoir in 2002, diversions from the Virgin River have resulted in generally rising stage and surface area. Large spring run-off volumes during 2005-06 allowed the WCWCD to fill the reservoir to near capacity, with a surface area of about 1,300 acres in 2006. Reservoir stage reached a record altitude of about 3,060 feet in May 2006, resulting in a depth of nearly 90 feet and a reservoir storage of about 51,000 acre-feet. Water temperature in the reservoir shows large seasonal variation and has ranged from about 5 to 32?C. Estimated ground-water recharge rates have ranged from 0.01 to 0.43 feet per day. Estimated recharge volumes have ranged from about 200 to about 3,500 acre-feet per month. Total ground-water recharge from March 2002 through August 2006 is estimated to be about 51,000 acre-feet. Estimated evaporation rates have varied from 0.05 to 0.97 feet per month, resulting in evaporation losses of 20 to 1,200 acre-feet per month. Total evaporation from March 2002 through August 2006 is estimated to be about 17,000 acre-feet. The combination of generally declining recharge rates and increasing reservoir altitude and area explains the trend of an increasing ratio of evaporation to recharge volume over time, with the total volume of water lost through evaporation nearly as large as the volume of ground-water recharge during the first 8 months of 2006. With removal of the viscosity effects (caused by seasonal water temperature variations), the intrinsic permeability indicates a large seasonal variation in clogging, with large winter increases likely caused by a combination of both decreased biofilms and the reduced volume of trapped gas bubbles.

  1. Reservoir Identification: Parameter Characterization or Feature Classification

    NASA Astrophysics Data System (ADS)

    Cao, J.

    2017-12-01

    The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601

  2. Applying a probabilistic seismic-petrophysical inversion and two different rock-physics models for reservoir characterization in offshore Nile Delta

    NASA Astrophysics Data System (ADS)

    Aleardi, Mattia

    2018-01-01

    We apply a two-step probabilistic seismic-petrophysical inversion for the characterization of a clastic, gas-saturated, reservoir located in offshore Nile Delta. In particular, we discuss and compare the results obtained when two different rock-physics models (RPMs) are employed in the inversion. The first RPM is an empirical, linear model directly derived from the available well log data by means of an optimization procedure. The second RPM is a theoretical, non-linear model based on the Hertz-Mindlin contact theory. The first step of the inversion procedure is a Bayesian linearized amplitude versus angle (AVA) inversion in which the elastic properties, and the associated uncertainties, are inferred from pre-stack seismic data. The estimated elastic properties constitute the input to the second step that is a probabilistic petrophysical inversion in which we account for the noise contaminating the recorded seismic data and the uncertainties affecting both the derived rock-physics models and the estimated elastic parameters. In particular, a Gaussian mixture a-priori distribution is used to properly take into account the facies-dependent behavior of petrophysical properties, related to the different fluid and rock properties of the different litho-fluid classes. In the synthetic and in the field data tests, the very minor differences between the results obtained by employing the two RPMs, and the good match between the estimated properties and well log information, confirm the applicability of the inversion approach and the suitability of the two different RPMs for reservoir characterization in the investigated area.

  3. Estimation of Chlorophyll-a Concentration and the Trophic State of the Barra Bonita Hydroelectric Reservoir Using OLI/Landsat-8 Images

    PubMed Central

    Watanabe, Fernanda Sayuri Yoshino; Alcântara, Enner; Rodrigues, Thanan Walesza Pequeno; Imai, Nilton Nobuhiro; Barbosa, Cláudio Clemente Faria; Rotta, Luiz Henrique da Silva

    2015-01-01

    Reservoirs are artificial environments built by humans, and the impacts of these environments are not completely known. Retention time and high nutrient availability in the water increases the eutrophic level. Eutrophication is directly correlated to primary productivity by phytoplankton. These organisms have an important role in the environment. However, high concentrations of determined species can lead to public health problems. Species of cyanobacteria produce toxins that in determined concentrations can cause serious diseases in the liver and nervous system, which could lead to death. Phytoplankton has photoactive pigments that can be used to identify these toxins. Thus, remote sensing data is a viable alternative for mapping these pigments, and consequently, the trophic. Chlorophyll-a (Chl-a) is present in all phytoplankton species. Therefore, the aim of this work was to evaluate the performance of images of the sensor Operational Land Imager (OLI) onboard the Landsat-8 satellite in determining Chl-a concentrations and estimating the trophic level in a tropical reservoir. Empirical models were fitted using data from two field surveys conducted in May and October 2014 (Austral Autumn and Austral Spring, respectively). Models were applied in a temporal series of OLI images from May 2013 to October 2014. The estimated Chl-a concentration was used to classify the trophic level from a trophic state index that adopted the concentration of this pigment-like parameter. The models of Chl-a concentration showed reasonable results, but their performance was likely impaired by the atmospheric correction. Consequently, the trophic level classification also did not obtain better results. PMID:26322489

  4. Porosity Estimation By Artificial Neural Networks Inversion . Application to Algerian South Field

    NASA Astrophysics Data System (ADS)

    Eladj, Said; Aliouane, Leila; Ouadfeul, Sid-Ali

    2017-04-01

    One of the main geophysicist's current challenge is the discovery and the study of stratigraphic traps, this last is a difficult task and requires a very fine analysis of the seismic data. The seismic data inversion allows obtaining lithological and stratigraphic information for the reservoir characterization . However, when solving the inverse problem we encounter difficult problems such as: Non-existence and non-uniqueness of the solution add to this the instability of the processing algorithm. Therefore, uncertainties in the data and the non-linearity of the relationship between the data and the parameters must be taken seriously. In this case, the artificial intelligence techniques such as Artificial Neural Networks(ANN) is used to resolve this ambiguity, this can be done by integrating different physical properties data which requires a supervised learning methods. In this work, we invert the acoustic impedance 3D seismic cube using the colored inversion method, then, the introduction of the acoustic impedance volume resulting from the first step as an input of based model inversion method allows to calculate the Porosity volume using the Multilayer Perceptron Artificial Neural Network. Application to an Algerian South hydrocarbon field clearly demonstrate the power of the proposed processing technique to predict the porosity for seismic data, obtained results can be used for reserves estimation, permeability prediction, recovery factor and reservoir monitoring. Keywords: Artificial Neural Networks, inversion, non-uniqueness , nonlinear, 3D porosity volume, reservoir characterization .

  5. Estimated Loads of Suspended Sediment and Selected Trace Elements Transported through Milltown Reservoir in the Upper Clark Fork Basin, Montana, Water Years 2004-07

    USGS Publications Warehouse

    Lambing, John H.; Sando, Steven K.

    2008-01-01

    The purpose of this report is to present estimated daily and annual loads of suspended sediment and selected trace elements for water years 2004-07 at two sites upstream and one site downstream from Milltown Reservoir. Milltown Reservoir is a National Priorities List Superfund site in the upper Clark Fork basin of western Montana where sediments enriched in trace elements from historical mining and ore processing have been deposited since the construction of Milltown Dam in 1907. The estimated loads were used to quantify annual net gains and losses (mass balance) of suspended sediment and trace elements within Milltown Reservoir before and after June 1, 2006, which was the start of Stage 1 of a permanent drawdown of the reservoir in preparation for removal of Milltown Dam. This study was done in cooperation with the U.S. Environmental Protection Agency. Daily loads of suspended sediment were estimated for water years 2004-07 by using either high-frequency sampling as part of daily sediment monitoring or regression equations relating suspended-sediment discharge to streamflow. Daily loads of unfiltered-recoverable arsenic, cadmium, copper, iron, lead, manganese, and zinc were estimated by using regression equations relating trace-element discharge to suspended-sediment discharge. Regression equations were developed from data for eriodic water-quality samples collected during water years 2004-07. The equations were applied to daily records of either streamflow or suspended-sediment discharge to produce estimated daily loads. Variations in daily suspended-sediment and trace-element loads generally coincided with variations in streamflow. For most of the period before June 1, 2006, differences in daily loads transported to and from Milltown Reservoir were minor or indicated small amounts of deposition; however, losses of suspended sediment and trace elements from the reservoir occurred during temporary drawdowns in July-August 2004 and October-December 2005. After the start of Stage 1 of the permanent drawdown on June 1, 2006, losses of suspended sediment and trace elements from the reservoir persisted for all streamflow conditions during the entire interval of the Stage 1 drawdown (June 1, 2006-September 30, 2007) within the study period. Estimated daily loads of suspended sediment and trace elements were summed for each year to produce estimated annual loads used to determine the annual net gains (deposition) or losses (erosion) of each constituent within Milltown Reservoir during water years 2004-07. During water year 2004, there was an annual net gain of suspended sediment in the reservoir. The annual net gains and losses of trace elements were inconsistent in water year 2004, with gains occurring for arsenic ad iron, but losses occurring for cadmium, copper, lead, manganese, and zinc. In water year 2005, there were annual net gains of suspended sediment and all the trace elements within the reservoir. In water year 2006, there were annual net losses of all constituents from the reservoir, likely as the result of sediment erosion from the reservoir during both a temporary drawdown in October-December 2005 and Stage 1 of the permanent drawdown that continued after June 1, 2006. In water year 2007, when the Stage 1 drawdown was in effect for the entire year, there were large annual net losses of suspended sediment and trace elements from the reservoir. The annual net losses of constituents from Milltown Reservoir in water year 2007 were the largest of any year during the 2004-07 study period. In water year 2007, the annual net loss of suspended sediment from the reservoir was 130,000 tons, which was more than double (about 222 percent) the combined inflow to the reservoir. The largest annual net losses of trace elements in water year 2007, in percent of the combined inflow to the reservoir, occurred for cadmium, copper, lead, and zinc-about 190 percent for cadmium, 170 percent for copper, 150 percent for lead, and 238 p

  6. Improving groundwater management in rural India using simple modeling tools with minimal data requirements

    NASA Astrophysics Data System (ADS)

    Moysey, S. M.; Oblinger, J. A.; Ravindranath, R.; Guha, C.

    2008-12-01

    Water scarcity is a crisis in central India that impacts the health, productivity, and quality of life of millions of people. The use of water harvesting structures (WHS) to capture runoff and enhance groundwater recharge is widely seen as a viable solution to this problem. As a result, there has been an explosion of small dam construction to extend community access to groundwater in the dry season by government agencies, non- governmental organizations, and villagers. Local perceptions of increased groundwater availability resulting from WHS infiltration, however, may produce changes in patterns of water use that shift the delivery of WHS benefits from the community to individuals. The development of policy to prevent this shift of benefits is difficult to achieve, because limited resources prohibit the widespread use of watershed assessment and monitoring tools needed to quantify the impact of any given WHS on groundwater storage. Therefore, it is essential that easily implemented assessment tools with low data needs are made available to support science-based policy making from the village to state level. This study uses a simple approach for estimating WHS contributions to subsurface infiltration in a small watershed (2.6km2) near the village of Salri, Madhya Pradesh. The infiltration is estimated using an analytical mass balance model for the WHS reservoir calibrated with water level observations. The reservoir water level was selected as calibration data because it can be monitored easily and inexpensively with community-based monitoring programs or remote sensing. Fluxes to the reservoir considered in the model are surface runoff, groundwater inflows and outflows, evaporation, and villager withdrawals. Surface runoff and villager withdrawals must be estimated from independent data sources, but in this case were found to be of minor relevance; the calibrated model suggests that most runoff contributions to the reservoir are lost through the dam overflow shortly after the start of the monsoon and villager water use is small compared to the other fluxes. Groundwater fluxes were accounted for by conceptualizing the contributing areas upstream and downstream of the reservoir as one dimensional flow tubes. This description of the flow system allows for the definition of physically-based parameters making the model useful for investigating WHS infiltration under a variety of management scenarios. To address concerns regarding the uniqueness of the model parameters, 10,000 independent model calibrations were performed using randomly selected starting parameters. Based on this Monte Carlo analysis, it was found that the mean volume of water contributed by the WHS to infiltration over the study period (Sept.-Dec., 2007) was 48.1x103m3 with a 95% confidence interval of 43.7-53.7x103m3. This volume represents 17-21% of the total natural groundwater recharge contributed by the entire watershed, which was determined independently using a surface water balance. Despite the fact that the model is easy to use and requires minimal data, the results obtained provide a powerful quantitative starting point for managing groundwater withdrawals in the dry season.

  7. Water Quality Assessment of Danjiangkou Reservoir and its Tributaries in China

    NASA Astrophysics Data System (ADS)

    Liu, Linghua; Peng, Wenqi; Wu, Leixiang; Liu, Laisheng

    2018-01-01

    Danjiangkou Reservoir is an important water source for the middle route of the South to North Water Diversion Project in China, and water quality of Danjiangkou Reservoir and its tributaries is crucial for the project. The purpose of this study is to evaluate the water quality of Daniiangkou Reservoir and its tributaries based on Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI). 22 water quality parameters from 25 sampling sites were analyzed to calculate WQI. The results indicate that water quality in Danjiangkou Reservoir area, Hanjiang River and Danjiang River is excellent. And the seriously polluted tributary rivers were Shending River, Jianghe River, Sihe River, Tianhe River, Jianhe River and Jiangjun River. Water quality parameters that cannot meet the standard limit for drinking water source were fecal coliform bacteria, CODcr, CODMn, BOD5, NH3-N, TP, DO, anionic surfactant and petroleum. Fecal coliform bacteria, TP, ammonia nitrogen, CODMn were the most common parameters to fail.

  8. Estimation of velocity structure around a natural gas reservoir at Yufutsu, Japan, by microtremor survey

    NASA Astrophysics Data System (ADS)

    Shiraishi, H.; Asanuma, H.; Tezuka, K.

    2010-12-01

    Seismic reflection survey has been commonly used for exploration and time-lapse monitoring of oil/gas resources. Seismic reflection images typically have reasonable reliability and resolution for commercial production. However, cost consideration sometimes avoids deployment of widely distributed array or repeating survey in cases of time lapse monitoring or exploration of small-scale reservoir. Hence, technologies to estimate structures and physical properties around the reservoir with limited cost would be effectively used. Microtremor survey method (MSM) has an ability to realize long-term monitoring of reservoir with low cost, because this technique has a passive nature and minimum numbers of the monitoring station is four. MSM has been mainly used for earthquake disaster prevention, because velocity structure of S-wave is directly estimated from velocity dispersion of the Rayleigh wave. The authors experimentally investigated feasibility of the MSM survey for exploration of oil/gas reservoir. The field measurement was carried out around natural gas reservoir at Yufutsu, Hokkaido, Japan. Four types of arrays with array radii of 30m, 100m, 300m and 600m are deployed in each area. Dispersion curves of the velocity of Rayleigh wave were estimated from observed microtremors, and S-wave velocity structures were estimated by an inverse analysis of the dispersion curves with genetic algorism (GA). The estimated velocity structures showed good consistency with one dimensional velocity structure by previous reflection surveys up to 4-5 km. We also found from the field experiment that a data of 40min is effective to estimate the velocity structure even the seismometers are deployed along roads with heavy traffic.

  9. A remote sensing method for estimating regional reservoir area and evaporative loss

    DOE PAGES

    Zhang, Hua; Gorelick, Steven M.; Zimba, Paul V.; ...

    2017-10-07

    Evaporation from the water surface of a reservoir can significantly affect its function of ensuring the availability and temporal stability of water supply. Current estimations of reservoir evaporative loss are dependent on water area derived from a reservoir storage-area curve. Such curves are unavailable if the reservoir is located in a data-sparse region or questionable if long-term sedimentation has changed the original elevation-area relationship. In this paper, we propose a remote sensing framework to estimate reservoir evaporative loss at the regional scale. This framework uses a multispectral water index to extract reservoir area from Landsat imagery and estimate monthly evaporationmore » volume based on pan-derived evaporative rates. The optimal index threshold is determined based on local observations and extended to unobserved locations and periods. Built on the cloud computing capacity of the Google Earth Engine, this framework can efficiently analyze satellite images at large spatiotemporal scales, where such analysis is infeasible with a single computer. Our study involves 200 major reservoirs in Texas, captured in 17,811 Landsat images over a 32-year period. The results show that these reservoirs contribute to an annual evaporative loss of 8.0 billion cubic meters, equivalent to 20% of their total active storage or 53% of total annual water use in Texas. At five coastal basins, reservoir evaporative losses exceed the minimum freshwater inflows required to sustain ecosystem health and fishery productivity of the receiving estuaries. Reservoir evaporative loss can be significant enough to counterbalance the positive effects of impounding water and to offset the contribution of water conservation and reuse practices. Our results also reveal the spatially variable performance of the multispectral water index and indicate the limitation of using scene-level cloud cover to screen satellite images. Finally, this study demonstrates the advantage of combining satellite remote sensing and cloud computing to support regional water resources assessment.« less

  10. A remote sensing method for estimating regional reservoir area and evaporative loss

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Gorelick, Steven M.; Zimba, Paul V.; Zhang, Xiaodong

    2017-12-01

    Evaporation from the water surface of a reservoir can significantly affect its function of ensuring the availability and temporal stability of water supply. Current estimations of reservoir evaporative loss are dependent on water area derived from a reservoir storage-area curve. Such curves are unavailable if the reservoir is located in a data-sparse region or questionable if long-term sedimentation has changed the original elevation-area relationship. We propose a remote sensing framework to estimate reservoir evaporative loss at the regional scale. This framework uses a multispectral water index to extract reservoir area from Landsat imagery and estimate monthly evaporation volume based on pan-derived evaporative rates. The optimal index threshold is determined based on local observations and extended to unobserved locations and periods. Built on the cloud computing capacity of the Google Earth Engine, this framework can efficiently analyze satellite images at large spatiotemporal scales, where such analysis is infeasible with a single computer. Our study involves 200 major reservoirs in Texas, captured in 17,811 Landsat images over a 32-year period. The results show that these reservoirs contribute to an annual evaporative loss of 8.0 billion cubic meters, equivalent to 20% of their total active storage or 53% of total annual water use in Texas. At five coastal basins, reservoir evaporative losses exceed the minimum freshwater inflows required to sustain ecosystem health and fishery productivity of the receiving estuaries. Reservoir evaporative loss can be significant enough to counterbalance the positive effects of impounding water and to offset the contribution of water conservation and reuse practices. Our results also reveal the spatially variable performance of the multispectral water index and indicate the limitation of using scene-level cloud cover to screen satellite images. This study demonstrates the advantage of combining satellite remote sensing and cloud computing to support regional water resources assessment.

  11. A remote sensing method for estimating regional reservoir area and evaporative loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hua; Gorelick, Steven M.; Zimba, Paul V.

    Evaporation from the water surface of a reservoir can significantly affect its function of ensuring the availability and temporal stability of water supply. Current estimations of reservoir evaporative loss are dependent on water area derived from a reservoir storage-area curve. Such curves are unavailable if the reservoir is located in a data-sparse region or questionable if long-term sedimentation has changed the original elevation-area relationship. In this paper, we propose a remote sensing framework to estimate reservoir evaporative loss at the regional scale. This framework uses a multispectral water index to extract reservoir area from Landsat imagery and estimate monthly evaporationmore » volume based on pan-derived evaporative rates. The optimal index threshold is determined based on local observations and extended to unobserved locations and periods. Built on the cloud computing capacity of the Google Earth Engine, this framework can efficiently analyze satellite images at large spatiotemporal scales, where such analysis is infeasible with a single computer. Our study involves 200 major reservoirs in Texas, captured in 17,811 Landsat images over a 32-year period. The results show that these reservoirs contribute to an annual evaporative loss of 8.0 billion cubic meters, equivalent to 20% of their total active storage or 53% of total annual water use in Texas. At five coastal basins, reservoir evaporative losses exceed the minimum freshwater inflows required to sustain ecosystem health and fishery productivity of the receiving estuaries. Reservoir evaporative loss can be significant enough to counterbalance the positive effects of impounding water and to offset the contribution of water conservation and reuse practices. Our results also reveal the spatially variable performance of the multispectral water index and indicate the limitation of using scene-level cloud cover to screen satellite images. Finally, this study demonstrates the advantage of combining satellite remote sensing and cloud computing to support regional water resources assessment.« less

  12. Estimation of Carbon Dioxide Storage Capacity for Depleted Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Lai, Yen Ting; Shen, Chien-Hao; Tseng, Chi-Chung; Fan, Chen-Hui; Hsieh, Bieng-Zih

    2015-04-01

    A depleted gas reservoir is one of the best options for CO2 storage for many reasons. First of all, the storage safety or the caprock integrity has been proven because the natural gas was trapped in the formation for a very long period of time. Also the formation properties and fluid flow characteristics for the reservoir have been well studied since the discovery of the gas reservoir. Finally the surface constructions and facilities are very useful and relatively easy to convert for the use of CO2 storage. The purpose of this study was to apply an analytical approach to estimate CO2 storage capacity in a depleted gas reservoir. The analytical method we used is the material balance equation (MBE), which have been widely used in natural gas storage. We proposed a modified MBE for CO2 storage in a depleted gas reservoir by introducing the z-factors of gas, CO2 and the mixture of the two. The MBE can be derived to a linear relationship between the ratio of pressure to gas z-factor (p/z) and the cumulative term (Gp-Ginj, where Gp is the cumulative gas production and Ginj is the cumulative CO2 injection). The CO2 storage capacity can be calculated when constraints of reservoir recovery pressure are adopted. The numerical simulation was also used for the validation of the theoretical estimation of CO2 storage capacity from the MBE. We found that the quantity of CO2 stored is more than that of gas produced when the reservoir pressure is recovered from the abandon pressure to the initial pressure. This result was basically from the fact that the gas- CO2 mixture z-factors are lower than the natural gas z-factors in reservoir conditions. We also established a useful p/z plot to easily observe the pressure behavior of CO2 storage and efficiently calculate the CO2 storage capacity. The application of the MBE we proposed was demonstrated by a case study of a depleted gas reservoir in northwestern Taiwan. The estimated CO2 storage capacities from conducting reservoir simulation and using analytical equation were very consistent. The validation results showed that the modified MBE we proposed in this study can be efficiently used for the estimation of CO2 storage capacity in a depleted gas reservoir.

  13. Organic carbon burial in global lakes and reservoirs

    USGS Publications Warehouse

    Mendonça, Raquel; Müller, Roger A.; Clow, David W.; Verpoorter, Charles; Raymond, Peter; Tranvik, Lars; Sobek, Sebastian

    2017-01-01

    Burial in sediments removes organic carbon (OC) from the short-term biosphere-atmosphere carbon (C) cycle, and therefore prevents greenhouse gas production in natural systems. Although OC burial in lakes and reservoirs is faster than in the ocean, the magnitude of inland water OC burial is not well constrained. Here we generate the first global-scale and regionally resolved estimate of modern OC burial in lakes and reservoirs, deriving from a comprehensive compilation of literature data. We coupled statistical models to inland water area inventories to estimate a yearly OC burial of 0.15 (range, 0.06–0.25) Pg C, of which ~40% is stored in reservoirs. Relatively higher OC burial rates are predicted for warm and dry regions. While we report lower burial than previously estimated, lake and reservoir OC burial corresponded to ~20% of their C emissions, making them an important C sink that is likely to increase with eutrophication and river damming.

  14. Historical trends in organochlorine compounds in river basins identified using sediment cores from reservoirs

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.; Fuller, C.C.

    1997-01-01

    This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high focusing factors distinguish reservoir sediment cores from cores collected in natural lakes. Temporal trends in concentrations of PCBs, total DDT (DDT + DDD + DDE), and chlordane reflect historical use and regulation of these compounds and differences in land use between reservoir drainages. PCB and total DDT core burdens, normalized for sediment focusing, greatly exceed reported cumulative regional atmospheric fallout of PCBs and total DDT estimated using cores from peat hogs and natural lakes, indicating the dominance of fluvial inputs of both groups of compounds to the reservoirs.This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high focusing factors distinguish reservoir sediment cores from cores collected in natural lakes. Temporal trends in concentrations of PCBs, total DOT (DDT+DDD+DDE), and chlordane reflect historical use and regulation of these compounds and differences in land use between reservoir drainages. PCB and total DDT core burdens, normalized for sediment focusing, greatly exceed reported cumulative regional atmospheric fallout of PCBs and total DDT estimated using cores from peat bogs and natural lakes, indicating the dominance of fluvial inputs of both groups of compounds to the reservoirs.

  15. Offshore Storage Resource Assessment - Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Bill; Ozgen, Chet

    The DOE developed volumetric equation for estimating Prospective Resources (CO 2 storage) in oil and gas reservoirs was utilized on each depleted field in the Federal GOM. This required assessment of the in-situ hydrocarbon fluid volumes for the fields under evaluation in order to apply the DOE equation. This project utilized public data from the U.S. Department of the Interior, Bureau of Ocean Energy Management (BOEM) Reserves database and from a well reputed, large database (250,000+ wells) of GOM well and production data marketed by IHS, Inc. IHS interpreted structure map files were also accessed for a limited number ofmore » fields. The databases were used along with geological and petrophysical software to identify depleted oil and gas fields in the Federal GOM region. BOEM arranged for access by the project team to proprietary reservoir level maps under an NDA. Review of the BOEM’s Reserves database as of December 31, 2013 indicated that 675 fields in the region were depleted. NITEC identified and rank these 675 fields containing 3,514 individual reservoirs based on BOEM’s estimated OOIP or OGIP values available in the Reserves database. The estimated BOEM OOIP or OGIP values for five fields were validated by an independent evaluation using available petrophysical, geologic and engineering data in the databases. Once this validation was successfully completed, the BOEM ranked list was used to calculate the estimated CO 2 storage volume for each field/reservoir using the DOE CO 2 Resource Estimate Equation. This calculation assumed a range for the CO 2 efficiency factor in the equation, as it was not known at that point in time. NITEC then utilize reservoir simulation to further enhance and refine the DOE equation estimated range of CO 2 storage volumes. NITEC used a purpose built, publically available, 4-component, compositional reservoir simulator developed under funding from DOE (DE-FE0006015) to assess CO 2-EOR and CO 2 storage in 73 fields/461 reservoirs. This simulator was fast and easy to utilize and provided a valuable enhanced assessment and refinement of the estimated CO 2 storage volume for each reservoir simulated. The user interface was expanded to allow for calculation of a probability based assessment of the CO 2 storage volume based on typical uncertainties in operating conditions and reservoir properties during the CO 2 injection period. This modeling of the CO 2 storage estimates for the simulated reservoirs resulted in definition of correlations applicable to all reservoir types (a refined DOE equation) which can be used for predictive purposes using available public data. Application of the correlations to the 675 depleted fields yielded a total CO 2 storage capacity of 4,748 MM tons. The CO 2 storage assessments were supplemented with simulation modeling of eleven (11) oil reservoirs that quantified the change in the stored CO 2 storage volume with the addition of CO 2-EOR (Enhanced Oil Recovery) production. Application of CO 2-EOR to oil reservoirs resulted in higher volumes of CO 2 storage.« less

  16. A Multi-scale Approach for CO2 Accounting and Risk Analysis in CO2 Enhanced Oil Recovery Sites

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Viswanathan, H. S.; Middleton, R. S.; Pan, F.; Ampomah, W.; Yang, C.; Jia, W.; Lee, S. Y.; McPherson, B. J. O. L.; Grigg, R.; White, M. D.

    2015-12-01

    Using carbon dioxide in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce carbon sequestration costs in the absence of greenhouse gas emissions policies that include incentives for carbon capture and storage. This study develops a multi-scale approach to perform CO2 accounting and risk analysis for understanding CO2 storage potential within an EOR environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and transport in the Marrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2 injection rate, CO2 first breakthrough time, CO2 production rate, cumulative net CO2 storage, cumulative oil and CH4 production, and water injection and production rates. A global sensitivity analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/CH4 recovery rates. The well spacing (the distance between the injection and production wells) and the sequence of alternating CO2 and water injection are the major operational parameters for designing an effective five-spot CO2-EOR pattern. The response surface analysis shows that net CO2 injection rate increases with the increasing reservoir thickness, permeability, and porosity. The oil/CH4 production rates are positively correlated to reservoir permeability, porosity and thickness, but negatively correlated to the initial water saturation. The mean and confidence intervals are estimated for quantifying the uncertainty ranges of the risk metrics. The results from this study provide useful insights for understanding the CO2 storage potential and the corresponding risks of commercial-scale CO2-EOR fields.

  17. Pharmacokinetic analysis of modified-release metoprolol formulations: An interspecies comparison.

    PubMed

    De Thaye, Elien; Vervaeck, Anouk; Marostica, Eleonora; Remon, Jean Paul; Van Bocxlaer, Jan; Vervaet, Chris; Vermeulen, An

    2017-01-15

    In the current study, we investigated the metoprolol absorption kinetics of an in-house produced oral sustained-release formulation, matrices manufactured via prilling, and two commercially available formulations, ZOK-ZID ® (reservoir) and Slow-Lopresor ® (matrix) in both New Zealand White rabbits and Beagle dogs, using a population pharmacokinetic analysis approach. The aim of this study was to compare the in vivo pharmacokinetic (PK) profiles of different formulations based on metoprolol, a selective adrenergic β 1 -receptor antagonist, in dogs and rabbits and to contrast the observed differences. To that end, metoprolol (50 to 200mg) was administered to 6 Beagle dogs and 6 New Zealand White rabbits as a single intravenous (IV) bolus injection and to 8 dogs and 6 rabbits as an oral modified release formulation. To derive pharmacokinetic parameters from the data, a non-linear mixed-effects model was developed using NONMEM ® where the contribution of observations below the limit of detection (BDL, below detection limit) to the parameter estimates was taken into account in the parameter estimation procedure. In both species and for the three modified release formulations, different absorption models were tested to describe the PK of metoprolol following oral dosing. In Beagle dogs, plasma concentration-time profiles were best described using a sequential zero- and first-order absorption model. In rabbits though, the absorption phase was best described using a first-order process only. In both species, the reservoir formulation ZOK-ZID ® was behaving quite similarly. In contrast, the absorption properties of both matrix formulations were rather different between species. This study indicates that the PK of the reservoir formulation is similar in both species, even after accounting for the almost completely missed absorption phase in rabbits. The insights gained further illustrate that rabbits are not very well suited to study the PK of the current matrix formulations in view of their less optimal prolonged release characteristics and the resulting fast decline in metoprolol plasma levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Form of prior for constrained thermodynamic processes with uncertainty

    NASA Astrophysics Data System (ADS)

    Aneja, Preety; Johal, Ramandeep S.

    2015-05-01

    We consider the quasi-static thermodynamic processes with constraints, but with additional uncertainty about the control parameters. Motivated by inductive reasoning, we assign prior distribution that provides a rational guess about likely values of the uncertain parameters. The priors are derived explicitly for both the entropy-conserving and the energy-conserving processes. The proposed form is useful when the constraint equation cannot be treated analytically. The inference is performed using spin-1/2 systems as models for heat reservoirs. Analytical results are derived in the high-temperatures limit. An agreement beyond linear response is found between the estimates of thermal quantities and their optimal values obtained from extremum principles. We also seek an intuitive interpretation for the prior and the estimated value of temperature obtained therefrom. We find that the prior over temperature becomes uniform over the quantity kept conserved in the process.

  19. Improved constraints on the estimated size and volatile content of the Mount St. Helens magma system from the 2004-2008 history of dome growth and deformation

    USGS Publications Warehouse

    Mastin, Larry G.; Lisowski, Mike; Roeloffs, Evelyn; Beeler, Nick

    2009-01-01

    The history of dome growth and geodetic deflation during the 2004-2008 Mount St. Helens eruption can be fit to theoretical curves with parameters such as reservoir volume, bubble content, initial overpressure, and magma rheology, here assumed to be Newtonian viscous, with or without a solid plug in the conduit center. Data from 2004-2008 are consistent with eruption from a 10-25 km3 reservoir containing 0.5-2% bubbles, an initial overpressure of 10-20 MPa, and no significant, sustained recharge. During the eruption we used curve fits to project the eruption's final duration and volume. Early projections predicted a final volume only about half of the actual value; but projections increased with each measurement, implying a temporal increase in reservoir volume or compressibility. A simple interpretation is that early effusion was driven by a 5-10 km3, integrated core of fluid magma. This core expanded with time through creep of semi-solid magma and host rock.

  20. Improved constraints on the estimated size and volatile content of the Mount St. Helens magma system from the 2004-2008 history of dome growth and deformation

    USGS Publications Warehouse

    Mastin, L.G.; Lisowski, M.; Roeloffs, E.; Beeler, N.

    2009-01-01

    The history of dome growth and geodetic deflation during the 2004-2008 Mount St. Helens eruption can be fit to theoretical curves with parameters such as reservoir volume, bubble content, initial overpressure, and magma rheology, here assumed to be Newtonian viscous, with or without a solid plug in the conduit center. Data from 2004-2008 are consistent with eruption from a 10-25 km3 reservoir containing 0.5-2% bubbles, an initial overpressure of 10-20 MPa, and no significant, sustained recharge. During the eruption we used curve fits to project the eruption's final duration and volume. Early projections predicted a final volume only about half of the actual value; but projections increased with each measurement, implying a temporal increase in reservoir volume or compressibility. A simple interpretation is that early effusion was driven by a 5-10 km3, integrated core of fluid magma. This core expanded with time through creep of semi-solid magma and host rock. Copyright 2009 by the American Geophysical Union.

  1. Estimating the number of recreational anglers for a given waterbody

    USGS Publications Warehouse

    Pope, Kevin L.; Powell, Larkin A.; Harmon, Brian S.; Pegg, Mark A.; Chizinski, Christopher J.

    2017-01-01

    Knowing how many anglers use a given body of water is paramount for understanding components of a fishery related to angling pressure and harvest, yet no study has attempted to provide an estimate of the population size of anglers for a given waterbody. Here, we use information from creel surveys in a removal-sampling framework to estimate total numbers of anglers using six reservoirs in Nebraska, USA, and we examine the influence of the duration of sampling period on those estimates. Population estimates (N ± SE) of unique anglers were 2050 ± 45 for Branched Oak Lake, 1992 ± 29 for Calamus Reservoir, 929 ± 10 for Harlan County Reservoir, 985 ± 24 for Lake McConaughy, 1277 ± 24 for Merritt Reservoir, and 916 ± 18 for Pawnee Lake during April–October 2015. Shortening the sampling period by one or more months generally resulted in a greater effect on estimates of precision than on estimates of overall abundance. No relationship existed between abundances of unique anglers and angling pressures across reservoirs and sampling duration, indicative of a decoupling of angler abundance and angling pressure. The approach outlined herein has potential to provide defendable answers to “how many are there?”, questions we ask when subjects cannot be marked, which should provide new insights about angler populations and subpopulations.

  2. Gray-box reservoir routing to compute flow propagation in operational forecasting and decision support systems

    NASA Astrophysics Data System (ADS)

    Russano, Euan; Schwanenberg, Dirk; Alvarado Montero, Rodolfo

    2017-04-01

    Operational forecasting and decision support systems for flood mitigation and the daily management of water resources require computationally efficient flow routing models. If backwater effects do not play an important role, a hydrological routing approach is often a pragmatic choice. It offers a reasonable accuracy at low computational costs in comparison to a more detailed hydraulic model. This work presents a nonlinear reservoir routing scheme as well as its implementation for the flow propagation between the hydro reservoir Três Marias and a downstream inundation-affected city Pirapora in Brazil. We refer to the model as a gray-box approach due to the identification of the parameter k by a data-driven approach for each reservoir of the cascade, instead of using estimates based on physical characteristics. The model reproduces the discharge at the gauge Pirapora, using 15 reservoirs in the cascade. The obtained results are compared with the ones obtained from the full-hydrodynamic model SOBEK. Results show a relatively good performance for the validation period, with a RMSE of 139.48 for the gray-box model, while the full-hydrodynamic model shows a RMSE of 136.67. The simulation time for a period of several years for the full-hydrodynamic took approximately 64s, while the gray-box model only required about 0.50s. This provides a significant speedup of the computation by only a little trade-off in accuracy, pointing at the potential of the simple approach in the context of time-critical, operational applications. Key-words: flow routing, reservoir routing, gray-box model

  3. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower.

    PubMed

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands.

  4. A Hydro-Economic Model for Water Level Fluctuations: Combining Limnology with Economics for Sustainable Development of Hydropower

    PubMed Central

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands. PMID:25526619

  5. Dealing with uncertainty in the probability of overtopping of a flood mitigation dam

    NASA Astrophysics Data System (ADS)

    Michailidi, Eleni Maria; Bacchi, Baldassare

    2017-05-01

    In recent years, copula multivariate functions were used to model, probabilistically, the most important variables of flood events: discharge peak, flood volume and duration. However, in most of the cases, the sampling uncertainty, from which small-sized samples suffer, is neglected. In this paper, considering a real reservoir controlled by a dam as a case study, we apply a structure-based approach to estimate the probability of reaching specific reservoir levels, taking into account the key components of an event (flood peak, volume, hydrograph shape) and of the reservoir (rating curve, volume-water depth relation). Additionally, we improve information about the peaks from historical data and reports through a Bayesian framework, allowing the incorporation of supplementary knowledge from different sources and its associated error. As it is seen here, the extra information can result in a very different inferred parameter set and consequently this is reflected as a strong variability of the reservoir level, associated with a given return period. Most importantly, the sampling uncertainty is accounted for in both cases (single-site and multi-site with historical information scenarios), and Monte Carlo confidence intervals for the maximum water level are calculated. It is shown that water levels of specific return periods in a lot of cases overlap, thus making risk assessment, without providing confidence intervals, deceiving.

  6. Wastewater injection and slip triggering: Results from a 3D coupled reservoir/rate-and-state model

    NASA Astrophysics Data System (ADS)

    Babazadeh, M.; Olson, J. E.; Schultz, R.

    2017-12-01

    Seismicity induced by fluid injection is controlled by parameters related to injection conditions, reservoir properties, and fault frictional behavior. We present results from a combined model that brings together injection physics, reservoir dynamics, and fault physics to better explain the primary controls on induced seismicity. We created a 3D fluid flow simulator using the embedded discrete fracture technique and then coupled it with a 3D displacement discontinuity model that uses rate and state friction to model slip events. The model is composed of three layers, including the top-seal, the injection reservoir, and the basement. Permeability is anisotropic (vertical vs horizontal) and along with porosity varies by layer. Injection control can be either rate or pressure. Fault properties include size, 2D permeability, and frictional properties. Several suites of simulations were run to evaluate the relative importance of each of the factors from all three parameter groups. We find that the injection parameters interact with the reservoir parameters in the context of the fault physics and these relations change for different reservoir and fault characteristics, leading to the need to examine the injection parameters only within the context of a particular faulted reservoir. For a reservoir with no flow boundaries, low permeability (5 md), and a fault with high fault-parallel permeability and critical stress, injection rate exerts the strongest control on magnitude and frequency of earthquakes. However, for a higher permeability reservoir (80 md), injection volume becomes the more important factor. Fault permeability structure is a key factor in inducing earthquakes in basement rocks below the injection reservoir. The initial failure state of the fault, which is challenging to assess, can have a big effect on the size and timing of events. For a fault 2 MPa below critical state, we were able to induce a slip event, but it occurred late in the injection history and was limited to a subset of the fault extent. A case starting at critical stress resulted in a rupture that propagated throughout the entire physical extent of the fault generated a larger magnitude earthquake. This physics-based model can contribute to assessing the risk associated with injection activities and providing guidelines for hazard mitigation.

  7. Ecological risk assessment in a large river-reservoir. 5: Aerial insectivorous wildlife

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baron, L.A.; Sample, B.E.; Suter, G.W. II

    Risks to aerial insectivores (e.g., rough-winged swallows, little brown bats, and endangered gray bats) were assessed for the remedial investigation of the Clinch River/Poplar Creek (CR/PC) system. Adult mayflies and sediment were collected from three locations and analyzed for contaminants. Sediment-to-mayfly contaminant uptake factors were generated from these data and used to estimate contaminant concentrations in mayflies from 13 additional locations. Contaminants of potential ecological concern (COPECs) were identified by comparing exposure estimates generated using point estimates of parameter values to NOAELs. To incorporate the variation in exposure parameters and to provide a better estimate of the potential exposure, themore » exposure model was recalculated using Monte Carlo methods. The potential for adverse effects was estimated based on the comparison of exposure distribution and the LOAEL. The results of this assessment suggested that population-level effects to rough-winged swallows and little brown bats are considered unlikely. However, because gray bats are endangered, effects on individuals may be significant from foraging in limited subreaches of the CR/PC system. This assessment illustrates the advantage of an iterative approach to ecological risk assessments, using fewer conservative assumptions and more realistic modeling of exposure.« less

  8. Forecasting the remaining reservoir capacity in the Laurentian Great Lakes watershed

    NASA Astrophysics Data System (ADS)

    Alighalehbabakhani, Fatemeh; Miller, Carol J.; Baskaran, Mark; Selegean, James P.; Barkach, John H.; Dahl, Travis; Abkenar, Seyed Mohsen Sadatiyan

    2017-12-01

    Sediment accumulation behind a dam is a significant factor in reservoir operation and watershed management. There are many dams located within the Laurentian Great Lakes watershed whose operations have been adversely affected by excessive reservoir sedimentation. Reservoir sedimentation effects include reduction of flood control capability and limitations to both water supply withdrawals and power generation due to reduced reservoir storage. In this research, the sediment accumulation rates of twelve reservoirs within the Great Lakes watershed were evaluated using the Soil and Water Assessment Tool (SWAT). The estimated sediment accumulation rates by SWAT were compared to estimates relying on radionuclide dating of sediment cores and bathymetric survey methods. Based on the sediment accumulation rate, the remaining reservoir capacity for each study site was estimated. Evaluation of the anthropogenic impacts including land use change and dam construction on the sediment yield were assessed in this research. The regression analysis was done on the current and pre-European settlement sediment yield for the modeled watersheds to predict the current and natural sediment yield in un-modeled watersheds. These eleven watersheds are in the state of Indiana, Michigan, Ohio, New York, and Wisconsin.

  9. The use of simple inflow- and storage-based heuristics equations to represent reservoir behavior in California for investigating human impacts on the water cycle

    NASA Astrophysics Data System (ADS)

    Solander, K.; David, C. H.; Reager, J. T.; Famiglietti, J. S.

    2013-12-01

    The ability to reasonably replicate reservoir behavior in terms of storage and outflow is important for studying the potential human impacts on the terrestrial water cycle. Developing a simple method for this purpose could facilitate subsequent integration in a land surface or global climate model. This study attempts to simulate monthly reservoir outflow and storage using a simple, temporally-varying set of heuristics equations with input consisting of in situ records of reservoir inflow and storage. Equations of increasing complexity relative to the number of parameters involved were tested. Only two parameters were employed in the final equations used to predict outflow and storage in an attempt to best mimic seasonal reservoir behavior while still preserving model parsimony. California reservoirs were selected for model development due to the high level of data availability and intensity of water resource management in this region relative to other areas. Calibration was achieved using observations from eight major reservoirs representing approximately 41% of the 107 largest reservoirs in the state. Parameter optimization was accomplished using the minimum RMSE between observed and modeled storage and outflow as the main objective function. Initial results obtained for a multi-reservoir average of the correlation coefficient between observed and modeled storage (resp. outflow) is of 0.78 (resp. 0.75). These results combined with the simplicity of the equations being used show promise for integration into a land surface or a global climate model. This would be invaluable for evaluations of reservoir management impacts on the flow regime and associated ecosystems as well as on the climate at both regional and global scales.

  10. Assessment of managed aquifer recharge at Sand Hollow Reservoir, Washington County, Utah, updated to conditions through 2007

    USGS Publications Warehouse

    Heilweil, Victor M.; Ortiz, Gema; Susong, David D.

    2009-01-01

    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily as an aquifer storage and recovery project by the Washington County Water Conservancy District (WCWCD). Since its inception in 2002 through 2007, surface-water diversions of about 126,000 acre-feet to Sand Hollow Reservoir have resulted in a generally rising reservoir stage and surface area. Large volumes of runoff during spring 2005-06 allowed the WCWCD to fill the reservoir to a total storage capacity of more than 50,000 acre-feet, with a corresponding surface area of about 1,300 acres and reservoir stage of about 3,060 feet during 2006. During 2007, reservoir stage generally decreased to about 3,040 feet with a surface-water storage volume of about 30,000 acre-feet. Water temperature in the reservoir shows large seasonal variation and has ranged from about 3 to 30 deg C from 2003 through 2007. Except for anomalously high recharge rates during the first year when the vadose zone beneath the reservoir was becoming saturated, estimated ground-water recharge rates have ranged from 0.01 to 0.09 feet per day. Estimated recharge volumes have ranged from about 200 to 3,500 acre-feet per month from March 2002 through December 2007. Total ground-water recharge during the same period is estimated to have been about 69,000 acre-feet. Estimated evaporation rates have varied from 0.04 to 0.97 feet per month, resulting in evaporation losses of 20 to 1,200 acre-feet per month. Total evaporation from March 2002 through December 2007 is estimated to have been about 25,000 acre-feet. Results of water-quality sampling at monitoring wells indicate that by 2007, managed aquifer recharge had arrived at sites 37 and 36, located 60 and 160 feet from the reservoir, respectively. However, different peak arrival dates for specific conductance, chloride, chloride/bromide ratios, dissolved oxygen, and total dissolved-gas pressures at each monitoring well indicate the complicated nature of interpreting the arrival of managed aquifer recharge water and estimating ground-water travel times. Additional tracers of managed aquifer recharge currently are being considered for further investigation.

  11. Constraining the Dynamic Rupture Properties with Moment Tensor Derived Vp/Vs Ratios.

    NASA Astrophysics Data System (ADS)

    Smith-Boughner, L.; Baig, A. M.; Urbancic, T.; Viegas, G. F.

    2014-12-01

    The goal of hydraulic fracturing is to increase the permeability of rocks to extract hydrocarbons from "tight" formations. This process stimulates fluid-driven fractures which induce microseismic events. Successfully treating the formations, stimulating large volumes of the reservoir, depends on targeting parts of the formation with more "brittleness", a property which is frequently characterized from the mechanical properties of the rock. Typically, these properties are constrained using well-logs, vertical seismic profiles and 3-D seismic surveys. Such tools provide a static view of the reservoir on very large or very small scales. While lithology controls the average rock strength within a unit, the content (gas or fluid filled), the shape of the pore space and the concentration of micro-fractures alters the mechanical properties of the reservoir. Seismic moment tensor inversion of the events generated during these stimulations reveals that they are significantly non-double-couple, and are described by a tensile angle and a Poisson's ratio (or, equivalently, ratio of shear to compressional velocities, Vp/Vs) of the rock-fracture system. Following Vavryčuk (2011), the mechanical properties of the reservoir (i.e. Vp/Vs ratio) are estimated as the hydraulic fracture progresses from an extensive catalog of microseismic events spanning magnitudes of -1.5 to 0.8 in the Horn-River Basin, Canada. Studying several fracture stages in the reservoir reveals temporal and spatial variations in the rock strength within a unit as hydraulic fracturing proceeds. Initially, the estimated values of Vp/Vs are quite close to those determined from 3-D seismic surveys. As the stage progresses, previously fractured regions have lower Vp/Vs values. At the onset of maximum treating pressure, regions have anomalously high Vp/Vs values, which could reflect short-term local concentrations of high pore pressures or other interactions of the treatment with the formation. The relationship between source parameters and variations in Vp/Vs are also examined. This technique has the potential to provide a unique and dynamic view of variations in the reservoir both spatially and temporally.

  12. Quantification of soil erosion and transport processes in the in the Myjava Hill Land

    NASA Astrophysics Data System (ADS)

    Hlavcová, Kamila; Kohnová, Silvia; Velisková, Yvetta; Studvová, Zuzana; Socuvka, Valentin; Németová, Zuzana; Duregová, Maria

    2017-04-01

    The aim of the study is a complex analysis of soil erosion processes and proposals for erosion control in the region of the Myjava Hill Land located in western Slovakia. The Myjava Hill Land is characteristic of quick runoff response, intensive soil erosion by water and related muddy floods, which are determined by both natural and socio-economic conditions. In this paper a case study in the Svacenický Creek catchment, with a focus on the quantification of soil loss from the agriculturally arable lands and sediment transport to the dry water reservoir (polder) of the Svacenický Creek is presented. Erosion, sediment transport, and the deposition of sediments in the water reservoir represent a significant impact on its operation, mainly with regard to reducing its accumulation volume. For the analysis of the soil loss and sediment transport from the Svacenický Creek catchment, the Universal Soil Loss Equation, the USLE 2D, and the Sediment Delivery Ratio (SDR) models were applied. Because the resulting values of the soil loss exceeded the values of the tolerated soil loss, erosion control measures by strip cropping were designed. Strip cropping is based on altering crop strips with protective (infiltration) strips. The effectiveness of the protective (infiltration) strips for reducing runoff from the basin by the SCS-CN method was estimated. Monitoring the morphological parameters of bottom sediments and their changes over time is crucial information in the field of water reservoir operations. In September 2015, the AUV EcoMapper was used to gather the data information on the Svacenický Creek reservoir. The data includes information about the sediment depths and parameters of the water quality. The results of the surveying are GIS datasets and maps, which provide a higher resolution of the bathymetric data and contours of the bottom reservoir. To display the relief of the bottom, the ArcMap 10.1. software was used. Based on the current status of the bottom bathymetry, the current status of the clogging of the reservoir was evaluated. After an evaluation of all the analyses, we can conclude that within five years of the acceptance run, 10,515 m3 of bottom sediments accumulated in the Svacenický Creek reservoir.

  13. Final Report: Optimal Model Complexity in Geological Carbon Sequestration: A Response Surface Uncertainty Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ye

    The critical component of a risk assessment study in evaluating GCS is an analysis of uncertainty in CO2 modeling. In such analyses, direct numerical simulation of CO2 flow and leakage requires many time-consuming model runs. Alternatively, analytical methods have been developed which allow fast and efficient estimation of CO2 storage and leakage, although restrictive assumptions on formation rock and fluid properties are employed. In this study, an intermediate approach is proposed based on the Design of Experiment and Response Surface methodology, which consists of using a limited number of numerical simulations to estimate a prediction outcome as a combination ofmore » the most influential uncertain site properties. The methodology can be implemented within a Monte Carlo framework to efficiently assess parameter and prediction uncertainty while honoring the accuracy of numerical simulations. The choice of the uncertain properties is flexible and can include geologic parameters that influence reservoir heterogeneity, engineering parameters that influence gas trapping and migration, and reactive parameters that influence the extent of fluid/rock reactions. The method was tested and verified on modeling long-term CO2 flow, non-isothermal heat transport, and CO2 dissolution storage by coupling two-phase flow with explicit miscibility calculation using an accurate equation of state that gives rise to convective mixing of formation brine variably saturated with CO2. All simulations were performed using three-dimensional high-resolution models including a target deep saline aquifer, overlying caprock, and a shallow aquifer. To evaluate the uncertainty in representing reservoir permeability, sediment hierarchy of a heterogeneous digital stratigraphy was mapped to create multiple irregularly shape stratigraphic models of decreasing geologic resolutions: heterogeneous (reference), lithofacies, depositional environment, and a (homogeneous) geologic formation. To ensure model equivalency, all the stratigraphic models were successfully upscaled from the reference heterogeneous model for bulk flow and transport predictions (Zhang & Zhang, 2015). GCS simulation was then simulated with all models, yielding insights into the level of parameterization complexity that is needed for the accurate simulation of reservoir pore pressure, CO2 storage, leakage, footprint, and dissolution over both short (i.e., injection) and longer (monitoring) time scales. Important uncertainty parameters that impact these key performance metrics were identified for the stratigraphic models as well as for the heterogeneous model, leading to the development of reduced/simplified models at lower characterization cost that can be used for the reservoir uncertainty analysis. All the CO2 modeling was conducted using PFLOTRAN – a massively parallel, multiphase, multi-component, and reactive transport simulator developed by a multi-laboratory DOE/SciDAC (Scientific Discovery through Advanced Computing) project (Zhang et al., 2017, in review). Within the uncertainty analysis framework, increasing reservoir depth were investigated to explore its effect on the uncertainty outcomes and the potential for developing gravity-stable injection with increased storage security (Dai et al., 20126; Dai et al., 2017, in review). Finally, to accurately model CO2 fluid-rock reactions and resulting long-term storage as secondary carbonate minerals, a modified kinetic rate law for general mineral dissolution and precipitation was proposed and verified that is invariant to a scale transformation of the mineral formula weight. This new formulation will lead to more accurate assessment of mineral storage over geologic time scales (Lichtner, 2016).« less

  14. Environmental parameters of the Tennessee River in Alabama. 2: Physical, chemical, and biological parameters. [biological and chemical effects of thermal pollution from nuclear power plants on water quality

    NASA Technical Reports Server (NTRS)

    Rosing, L. M.

    1976-01-01

    Physical, chemical and biological water quality data from five sites in the Tennessee River, two in Guntersville Reservoir and three in Wheeler Reservoir were correlated with climatological data for three annual cycles. Two of the annual cycles are for the years prior to the Browns Ferry Nuclear Power Plant operations and one is for the first 14 months of Plant operations. A comparison of the results of the annual cycles indicates that two distinct physical conditions in the reservoirs occur, one during the warm months when the reservoirs are at capacity and one during the colder winter months when the reservoirs have been drawn-down for water storage during the rainy months and for weed control. The wide variations of physical and chemical parameters to which the biological organisms are subjected on an annual basis control the biological organisms and their population levels. A comparison of the parameters of the site below the Power plant indicates that the heated effluent from the plant operating with two of the three reactors has not had any effect on the organisms at this site. Recommendations given include the development of prediction mathematical models (statistical analysis) for the physical and chemical parameters under specific climatological conditions which affect biological organisms. Tabulated data of chemical analysis of water and organism populations studied is given.

  15. Monitoring Lake and Reservoir Level: Satellite Observations, Modeling and Prediction

    NASA Astrophysics Data System (ADS)

    Ricko, M.; Birkett, C. M.; Adler, R. F.; Carton, J.

    2013-12-01

    Satellite measurements of lake and reservoir water levels complement in situ observations by providing stage information for un-gauged basins and by filling data gaps in gauge records. However, different satellite radar altimeter-derived continental water level products may differ significantly owing to choice of satellites and data processing methods. To explore the impacts of these differences, a direct comparison between three different altimeter-based surface water level estimates (USDA/NASA GRLM, LEGOS and ESA-DMU) will be presented and products validated with lake level gauge time series for lakes and reservoirs of a variety of sizes and conditions. The availability of satellite-based rainfall (i.e., TRMM and GPCP) and satellite-based lake/reservoir levels offers exciting opportunities to estimate and monitor the hydrologic properties of the lake systems. Here, a simple water balance model is utilized to relate net freshwater flux on a catchment basin to lake/reservoir level. Focused on tropical lakes and reservoirs it allows a comparison of the flux to altimetric lake level estimates. The combined use of model, satellite-based rainfall, evaporation information and reanalysis products, can be used to output water-level hindcasts and seasonal future forecasts. Such a tool is fundamental for understanding present-day and future variations in lake/reservoir levels and enabling a better understand of climatic variations on inter-annual to inter-decadal time-scales. New model-derived water level estimates of lakes and reservoirs, on regional to global scales, would assist communities with interests in climate studies focusing on extreme events, such as floods and droughts, and be important for water resources management.

  16. Multiparameter elastic full waveform inversion with facies-based constraints

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-dong; Alkhalifah, Tariq; Naeini, Ehsan Zabihi; Sun, Bingbing

    2018-06-01

    Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize FWI beyond improved acoustic imaging, like in reservoir delineation, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Some anisotropic parameters are insufficiently updated because of their minor contributions to the surface collected data. Adding rock physics constraints to the inversion helps mitigate such limited sensitivity, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a global constraint for the whole area. Since similar rock formations inside the Earth admit consistent elastic properties and relative values of elasticity and anisotropy parameters (this enables us to define them as a seismic facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel approach to use facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such facies using Bayesian theory and update them at each iteration of the inversion using both the inverted models and a priori information. We take the uncertainties of the estimated parameters (approximated by radiation patterns) into consideration and improve the quality of estimated facies maps. Four numerical examples corresponding to different acquisition, physical assumptions and model circumstances are used to verify the effectiveness of the proposed method.

  17. Carbon emission from global hydroelectric reservoirs revisited.

    PubMed

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs.

  18. Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin

    NASA Astrophysics Data System (ADS)

    Oosthuizen, Nadia; Hughes, Denis A.; Kapangaziwiri, Evison; Mwenge Kahinda, Jean-Marc; Mvandaba, Vuyelwa

    2018-05-01

    The demand for water resources is rapidly growing, placing more strain on access to water and its management. In order to appropriately manage water resources, there is a need to accurately quantify available water resources. Unfortunately, the data required for such assessment are frequently far from sufficient in terms of availability and quality, especially in southern Africa. In this study, the uncertainty related to the estimation of water resources of two sub-basins of the Limpopo River Basin - the Mogalakwena in South Africa and the Shashe shared between Botswana and Zimbabwe - is assessed. Input data (and model parameters) are significant sources of uncertainty that should be quantified. In southern Africa water use data are among the most unreliable sources of model input data because available databases generally consist of only licensed information and actual use is generally unknown. The study assesses how these uncertainties impact the estimation of surface water resources of the sub-basins. Data on farm reservoirs and irrigated areas from various sources were collected and used to run the model. Many farm dams and large irrigation areas are located in the upper parts of the Mogalakwena sub-basin. Results indicate that water use uncertainty is small. Nevertheless, the medium to low flows are clearly impacted. The simulated mean monthly flows at the outlet of the Mogalakwena sub-basin were between 22.62 and 24.68 Mm3 per month when incorporating only the uncertainty related to the main physical runoff generating parameters. The range of total predictive uncertainty of the model increased to between 22.15 and 24.99 Mm3 when water use data such as small farm and large reservoirs and irrigation were included. For the Shashe sub-basin incorporating only uncertainty related to the main runoff parameters resulted in mean monthly flows between 11.66 and 14.54 Mm3. The range of predictive uncertainty changed to between 11.66 and 17.72 Mm3 after the uncertainty in water use information was added.

  19. Estimation of In Situ Stress and Permeability from an Extended Leak-off Test

    NASA Astrophysics Data System (ADS)

    Nghiep Quach, Quoc; Jo, Yeonguk; Chang, Chandong; Song, Insun

    2016-04-01

    Among many parameters needed to analyze a variety of geomechanical problems related to subsurface CO2 storage projects, two important ones are in situ stress states and permeability of the storage reservoirs and cap rocks. In situ stress is needed for investigating potential risk of fault slip in the reservoir systems and permeability is needed for assessing reservoir flow characteristics and sealing capability of cap rocks. We used an extended leak-off test (XLOT), which is often routinely conducted to assess borehole/casing integrity as well as fracture gradient, to estimate both in situ least principal stress magnitude and in situ permeability in a CO2 storage test site, offshore southeast Korea. The XLOT was conducted at a casing shoe depth (700 m below seafloor) within the cap rock consisting of mudstone, approximately 50 m above the interface between cap rock and storage reservoir. The test depth was cement-grouted and remained for 4 days for curing. Then the hole was further drilled below the casing shoe to create a 4 m open-hole interval at the bottom. Water was injected using hydraulic pump at an approximately constant flowrate into the bottom interval through the casing, during which pressure and flowrate were recorded continuously at the surface. The interval pressure (P) was increased linearly with time (t) as water was injected. At some point, the slope of P-t curve deviated from the linear trend, which indicates leak-off. Pressure reached its peak upon formation breakdown, followed by a gradual pressure decrease. Soon after the formation breakdown, the hole was shut-in by pump shut-off, from which we determined the instantaneous shut-in pressure (ISIP). The ISIP was taken to be the magnitude of the in situ least principal stress (S3), which was determined to be 12.1 MPa. This value is lower than the lithostatic vertical stress, indicating that the S3 is the least horizontal principal stress. The determined S3 magnitude will be used to characterize the stress regime with the information of the maximum principal stress that will be estimated based on borehole breakout geometry analysis. To estimate the in situ permeability from the XLOT data, we derived a theoretical equation that relates the slope of pressure versus injected water volume (P-V) curve to permeability based on the Darcy's law. The equation is expressed in terms of permeability as a function of some key parameters such as open-hole dimensions, flowrate, porosity, pressure change and injected water volume. We applied this equation to the early stage of the P-V curves prior to the leak-off point to prevent the effect of induced fractures on permeability. The estimated in situ permeability was (3.1±0.4)×10-17m2, which turns out to be quite similar to the laboratory measurements in recovered cores.

  20. Trophic feasibility of reintroducing anadromous salmonids in three reservoirs on the north fork Lewis River, Washington: Prey supply and consumption demand of resident fishes

    USGS Publications Warehouse

    Sorel, Mark H.; Hansen, Adam G.; Connelly, Kristin A.; Beauchamp, David A.

    2016-01-01

    The reintroduction of anadromous salmonids in reservoirs is being proposed with increasing frequency, requiring baseline studies to evaluate feasibility and estimate the capacity of reservoir food webs to support reintroduced populations. Using three reservoirs on the north fork Lewis River as a case study, we demonstrate a method to determine juvenile salmonid smolt rearing capacities for lakes and reservoirs. To determine if the Lewis River reservoirs can support reintroduced populations of juvenile stream-type Chinook Salmon Oncorhynchus tshawytscha, we evaluated the monthly production of daphniaDaphnia spp. (the primary zooplankton consumed by resident salmonids in the system) and used bioenergetics to model the consumption demand of resident fishes in each reservoir. To estimate the surplus of Daphnia prey available for reintroduced salmonids, we assumed a maximum sustainable exploitation rate and accounted for the consumption demand of resident fishes. The number of smolts that could have been supported was estimated by dividing any surplus Daphnia production by the simulated consumption demand of an individual Chinook Salmon fry rearing in the reservoir to successful smolt size. In all three reservoirs, densities of Daphnia were highest in the epilimnion, but warm epilimnetic temperatures and the vertical distribution of planktivores suggested that access to abundant epilimnetic prey was limited. By comparing accessible prey supply and demand on a monthly basis, we were able to identify potential prey supply bottlenecks that could limit smolt production and growth. These results demonstrate that a bioenergetics approach can be a valuable method of examining constraints on lake and reservoir rearing capacity, such as thermal structure and temporal food supply. This method enables numerical estimation of rearing capacity, which is a useful metric for managers evaluating the feasibility of reintroducing Pacific salmon Oncorhynchus spp. in lentic systems.

  1. An Effective Reservoir Parameter for Seismic Characterization of Organic Shale Reservoir

    NASA Astrophysics Data System (ADS)

    Zhao, Luanxiao; Qin, Xuan; Zhang, Jinqiang; Liu, Xiwu; Han, De-hua; Geng, Jianhua; Xiong, Yineng

    2017-12-01

    Sweet spots identification for unconventional shale reservoirs involves detection of organic-rich zones with abundant porosity. However, commonly used elastic attributes, such as P- and S-impedances, often show poor correlations with porosity and organic matter content separately and thus make the seismic characterization of sweet spots challenging. Based on an extensive analysis of worldwide laboratory database of core measurements, we find that P- and S-impedances exhibit much improved linear correlations with the sum of volume fraction of organic matter and porosity than the single parameter of organic matter volume fraction or porosity. Importantly, from the geological perspective, porosity in conjunction with organic matter content is also directly indicative of the total hydrocarbon content of shale resources plays. Consequently, we propose an effective reservoir parameter (ERP), the sum of volume fraction of organic matter and porosity, to bridge the gap between hydrocarbon accumulation and seismic measurements in organic shale reservoirs. ERP acts as the first-order factor in controlling the elastic properties as well as characterizing the hydrocarbon storage capacity of organic shale reservoirs. We also use rock physics modeling to demonstrate why there exists an improved linear correlation between elastic impedances and ERP. A case study in a shale gas reservoir illustrates that seismic-derived ERP can be effectively used to characterize the total gas content in place, which is also confirmed by the production well.

  2. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    PubMed

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.

  3. Greenhouse Gas Emissions from Reservoir Water Surfaces: A ...

    EPA Pesticide Factsheets

    Collectively, reservoirs are an important anthropogenic source of greenhouse gases (GHGs) to the atmosphere. Attempts to model reservoir GHG fluxes, however, have been limited by inconsistencies in methodological approaches and data availability. An increase in the number of published reservoir GHG flux estimates during the last 15 years warrants a comprehensive analysis of the magnitude and potential controls on these fluxes. Here we synthesize worldwide reservoir CH4, CO2, and N2O emission data and estimate that GHG emissions from reservoirs account for 80.2 Tmol CO2 equivalents yr-1, thus constituting approximately 5% of anthropogenic radiative forcing. The majority (93%) of these emissions are from CH4, and mainly in the form of bubbles. While age and latitude have historically been linked to reservoir GHG emissions, we found that factors related to reservoir nutrient status and rainfall were better predictors. In particular, nutrient-rich eutrophic reservoirs were found to have an order of magnitude higher per-area CH4 fluxes, on average, than their nutrient-poor oligotrophic counterparts. Therefore, management measures to reduce reservoir eutrophication may result in an important co-benefit, the reduction of GHG emissions to the atmosphere. Greenhouse gas emissions (GHG)

  4. Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: a case study of the Xinfengjiang reservoir in southern China

    USGS Publications Warehouse

    Wu, Yiping; Chen, Ji

    2013-01-01

    The ever-increasing demand for water due to growth of population and socioeconomic development in the past several decades has posed a worldwide threat to water supply security and to the environmental health of rivers. This study aims to derive reservoir operating rules through establishing a multi-objective optimization model for the Xinfengjiang (XFJ) reservoir in the East River Basin in southern China to minimize water supply deficit and maximize hydropower generation. Additionally, to enhance the estimation of irrigation water demand from the downstream agricultural area of the XFJ reservoir, a conventional method for calculating crop water demand is improved using hydrological model simulation results. Although the optimal reservoir operating rules are derived for the XFJ reservoir with three priority scenarios (water supply only, hydropower generation only, and equal priority), the river environmental health is set as the basic demand no matter which scenario is adopted. The results show that the new rules derived under the three scenarios can improve the reservoir operation for both water supply and hydropower generation when comparing to the historical performance. Moreover, these alternative reservoir operating policies provide the flexibility for the reservoir authority to choose the most appropriate one. Although changing the current operating rules may influence its hydropower-oriented functions, the new rules can be significant to cope with the increasingly prominent water shortage and degradation in the aquatic environment. Overall, our results and methods (improved estimation of irrigation water demand and formulation of the reservoir optimization model) can be useful for local watershed managers and valuable for other researchers worldwide.

  5. High Resolution Map of Water Supply and Demand for North East United States

    NASA Astrophysics Data System (ADS)

    Ehsani, N.; Vorosmarty, C. J.; Fekete, B. M.

    2012-12-01

    Accurate estimates of water supply and demand are crucial elements in water resources management and modeling. As part of our NSF-funded EaSM effort to build a Northeast Regional Earth System Model (NE-RESM) as a framework to improve our understanding and capacity to forecast the implications of planning decisions on the region's environment, ecosystem services, energy and economic systems through the 21st century, we are producing a high resolution map (3' x 3' lat/long) of estimated water supply and use for the north east region of United States. Focusing on water demand, results from this study enables us to quantify how demand sources affect the hydrology and thermal-chemical water pollution across the region. In an attempt to generate this 3-minute resolution map in which each grid cell has a specific estimated monthly domestic, agriculture, thermoelectric and industrial water use. Estimated Use of Water in the United States in 2005 (Kenny et al., 2009) is being coupled to high resolution land cover and land use, irrigation, power plant and population data sets. In addition to water demands, we tried to improve estimates of water supply from the WBM model by improving the way it controls discharge from reservoirs. Reservoirs are key characteristics of the modern hydrologic system, with a particular impact on altering the natural stream flow, thermal characteristics, and biogeochemical fluxes of rivers. Depending on dam characteristics, watershed characteristics and the purpose of building a dam, each reservoir has a specific optimum operating rule. It means that literally 84,000 dams in the National Inventory of Dams potentially follow 84,000 different sets of rules for storing and releasing water which must somehow be accounted for in our modeling exercise. In reality, there is no comprehensive observational dataset depicting these operating rules. Thus, we will simulate these rules. Our perspective is not to find the optimum operating rule per se but to find composite behaviors that are consistent with the nominal use of each reservoir and their impacts on observed stream gage behaviors. We decided to use Artificial Neural Networks (ANN) in this context. We see as an important advantage of ANN, its ability to detect complex nonlinear relations between input and output data, which makes it a valuable tool for time series prediction and fitness approximation. High quality, measured parameters are available throughout the United States; thus, we are able to use measured data to train and test ANN and operate reservoirs in a way that simulates real world reservoirs' behavior more accurately. By using economics, population, land cover and climate change estimates for 21st century, we are seeking to forecast in a systematic manner all major facets of future water supply and use in north east United States which will enable us to identify locations prone to water stress due to urban and domestic or agriculture and irrigation water demand, quantify change in chemical and thermal pollution of rivers and availability of water for power generation.

  6. Carbon Dioxide Emissions from Reservoirs in the Lower Jordan Watershed

    PubMed Central

    Alshboul, Zeyad; Lorke, Andreas

    2015-01-01

    We have analyzed monthly hydrological, meteorological and water quality data from three irrigation and drinking water reservoirs in the lower Jordan River basin and estimated the atmospheric emission rates of CO2. The data were collected between 2006 and 2013 and show that the reservoirs, which differ in size and age, were net sources of CO2. The estimated surface fluxes were comparable in magnitude to those reported for hydroelectric reservoirs in the tropical and sub-tropical zones. Highest emission rates were observed for a newly established reservoir, which was initially filled during the sampling period. In the two older reservoirs, CO2 partial pressures and fluxes were significantly decreasing during the observation period, which could be related to simultaneously occurring temporal trends in water residence time and chemical composition of the water. The results indicate a strong influence of water and reservoir management (e.g. water consumption) on CO2 emission rates, which is affected by the increasing anthropogenic pressure on the limited water resources in the study area. The low wind speed and relatively high pH favored chemical enhancement of the CO2 gas exchange at the reservoir surfaces, which caused on average a four-fold enhancement of the fluxes. A sensitivity analysis indicates that the uncertainty of the estimated fluxes is, besides pH, mainly affected by the poorly resolved wind speed and resulting uncertainty of the chemical enhancement factor. PMID:26588241

  7. Carbon Dioxide Emissions from Reservoirs in the Lower Jordan Watershed.

    PubMed

    Alshboul, Zeyad; Lorke, Andreas

    2015-01-01

    We have analyzed monthly hydrological, meteorological and water quality data from three irrigation and drinking water reservoirs in the lower Jordan River basin and estimated the atmospheric emission rates of CO2. The data were collected between 2006 and 2013 and show that the reservoirs, which differ in size and age, were net sources of CO2. The estimated surface fluxes were comparable in magnitude to those reported for hydroelectric reservoirs in the tropical and sub-tropical zones. Highest emission rates were observed for a newly established reservoir, which was initially filled during the sampling period. In the two older reservoirs, CO2 partial pressures and fluxes were significantly decreasing during the observation period, which could be related to simultaneously occurring temporal trends in water residence time and chemical composition of the water. The results indicate a strong influence of water and reservoir management (e.g. water consumption) on CO2 emission rates, which is affected by the increasing anthropogenic pressure on the limited water resources in the study area. The low wind speed and relatively high pH favored chemical enhancement of the CO2 gas exchange at the reservoir surfaces, which caused on average a four-fold enhancement of the fluxes. A sensitivity analysis indicates that the uncertainty of the estimated fluxes is, besides pH, mainly affected by the poorly resolved wind speed and resulting uncertainty of the chemical enhancement factor.

  8. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs

    PubMed Central

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-01-01

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006–2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources. PMID:26492263

  9. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs.

    PubMed

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-10-20

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006-2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  10. Geothermometric evaluation of geothermal resources in southeastern Idaho

    NASA Astrophysics Data System (ADS)

    Neupane, G.; Mattson, E. D.; McLing, T. L.; Palmer, C. D.; Smith, R. W.; Wood, T. R.; Podgorney, R. K.

    2016-01-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water from oil and gas test wells that indicate a potential for geothermal development in the area. We have estimated reservoir temperatures from chemical composition of thermal waters in southeastern Idaho using an inverse geochemical modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. The temperature estimates in the region varied from moderately warm (59 °C) to over 175 °C. Specifically, hot springs near Preston, Idaho, resulted in the highest reservoir temperature estimates in the region.

  11. Reservoir Models for Gas Hydrate Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Boswell, R.

    2016-12-01

    Scientific and industrial drilling programs have now providing detailed information on gas hydrate systems that will increasingly be the subject of field experiments. The need to carefully plan these programs requires reliable prediction of reservoir response to hydrate dissociation. Currently, a major emphasis in gas hydrate modeling is the integration of thermodynamic/hydrologic phenomena with geomechanical response for both reservoir and bounding strata. However, also critical to the ultimate success of these efforts is the appropriate development of input geologic models, including several emerging issues, including (1) reservoir heterogeneity, (2) understanding of the initial petrophysical characteristics of the system (reservoirs and seals), the dynamic evolution of those characteristics during active dissociation, and the interdependency of petrophysical parameters and (3) the nature of reservoir boundaries. Heterogeneity is ubiquitous aspect of every natural reservoir, and appropriate characterization is vital. However, heterogeneity is not random. Vertical variation can be evaluated with core and well log data; however, core data often are challenged by incomplete recovery. Well logs also provide interpretation challenges, particularly where reservoirs are thinly-bedded due to limitation in vertical resolution. This imprecision will extend to any petrophysical measurements that are derived from evaluation of log data. Extrapolation of log data laterally is also complex, and should be supported by geologic mapping. Key petrophysical parameters include porosity, permeability and it many aspects, and water saturation. Field data collected to date suggest that the degree of hydrate saturation is strongly controlled by/dependant upon reservoir quality and that the ratio of free to bound water in the remaining pore space is likely also controlled by reservoir quality. Further, those parameters will also evolve during dissociation, and not necessary in a simple/linear way. Significant progress has also occurred in recent years with regard to the geologic characterization of reservoir boundaries. Vertical boundaries with overlying clay-rich "seals" are now widely-appreciated to have non-zero permeability, and lateral boundaries are sources of potential lateral fluid flow.

  12. Estimated loss of juvenile salmonids to predation by northern squawfish, walleyes, and smallmouth bass in John Day Reservoir, Columbia River

    USGS Publications Warehouse

    Rieman, Bruce E.; Beamesderfer, Raymond C.; Vigg, Steven; Poe, Thomas P.

    1991-01-01

    We estimated the loss of juvenile salmonids Oncorhynchus spp. to predation by northern squawfish Ptychocheilus oregonensis, walleyes Stizostedion vitreum, and smallmouth bass Micropterus dolomieu in John Day Reservoir during 1983–1986. Our estimates were based on measures of daily prey consumption, predator numbers, and numbers of juvenile salmonids entering the reservoir during the April–August period of migration. We estimated the mean annual loss was 2.7 million juvenile salmonids (95% confidence interval, 1.9–3.3 million). Northern squawfish were responsible for 78% of the total loss; walleyes accounted for 13% and smallmouth bass for 9%. Twenty-one percent of the loss occurred in a small area immediately below McNary Dam at the head of John Day Reservoir. We estimated that the three predator species consumed 14% (95% confidence interval, 9–19%) of all juvenile salmonids that entered the reservoir. Mortality changed by month and increased late in the migration season. Monthly mortality estimates ranged from 7% in June to 61% in August. Mortality from predation was highest for chinook salmon O. tshawytscha, which migrated in July and August. Despite uncertainties in the estimates, it is clear that predation by resident fish predators can easily account for previously unexplained mortality of out-migrating juvenile salmonids. Alteration of the Columbia River by dams and a decline in the number of salmonids could have increased the fraction of mortality caused by predation over what it was in the past.

  13. Predictive value of cerebrospinal fluid parameters in neonates with intraventricular drainage devices.

    PubMed

    Lenfestey, Robert W; Smith, P Brian; Moody, M Anthony; Clark, Reese H; Cotten, C Michael; Seed, Patrick C; Benjamin, Daniel K

    2007-09-01

    Infection is a common and potentially devastating complication following placement of ventriculoperitoneal (VP) shunts and cerebrospinal fluid (CSF) reservoirs in neonates. The goal of this study was to determine the normal ranges for cell count parameters in neonates with VP shunts and CSF reservoirs, as well as to determine the predictive value of CSF parameters as markers of infection. The authors evaluated neonates from 150 different neonatal intensive care units of the Pediatrix Medical Group who had undergone a lumbar puncture, VP shunt insertion, or CSF reservoir placement between 1997 and 2004. Data were collected from 9704 neonates with a mean birthweight of 2573 g and a mean gestational age of 35 weeks. Of these neonates, 181 had VP shunt insertions or CSF reservoir placements. In neonates with negative CSF cultures, significant differences were found between those with and without VP shunts or CSF reservoirs when comparing red blood cell (RBC) count (620/mm' compared with 155/mm3, p < 0.05), absolute eosinophil count (4/mm3 compared with 2/mm3, p < 0.001), protein levels (179 mg/dl compared with 115 mg/dl, p < 0.001), and glucose levels (27.5 mg/dl compared with 49 mg/dl, p < 0.001). No significant difference was found between white blood cell (WBC) counts in neonates with or without VP shunts who had negative CSF cultures. The sensitivity and specificity of a cutoff value of 20 WBCs/mm3 for diagnosing meningitis in neonates with positive cultures and intraventricular drainage devices were 67% and 62%, respectively. Although differences exist between CSF parameters found in neonates with or without VP shunts or CSF reservoirs, only the difference in RBC count is large enough to be clinically significant. The authors found that the utility of CSF parameters in neonates with VP shunts or CSF reservoirs was limited due to poor diagnostic sensitivity and specificity.

  14. Fecundity of the Chinese mystery snail in a Nebraska reservoir

    USGS Publications Warehouse

    Stephen, Bruce J.; Allen, Craig R.; Chaine, Noelle M.; Fricke, Kent A.; Haak, Danielle M.; Hellman, Michelle L.; Kill, Robert A.; Nemec, Kristine T.; Pope, Kevin L.; Smeenk, Nicholas A.; Uden, Daniel R.; Unstad, Kody M.; VanderHam, Ashley E.; Wong, Alec

    2013-01-01

    The Chinese mystery snail (Bellamya chinensis) is a non-indigenous, invasive species in freshwater ecosystems of North America. We provide fecundity estimates for a population of these snails in a Nebraska reservoir. We dissected 70 snails, of which 29 were females. Nearly all female snails contained developing young, with an average of 25 young per female. Annual fecundity was estimated at between 27.2 and 33.3 young per female per year. Based on an estimated adult population and the calculated fecundity, the annual production for this reservoir was between 2.2 and 3.7 million young.

  15. Optimizing for Large Planar Fractures in Multistage Horizontal Wells in Enhanced Geothermal Systems Using a Coupled Fluid and Geomechanics Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiexiaomen; Tutuncu, Azra; Eustes, Alfred

    Enhanced Geothermal Systems (EGS) could potentially use technological advancements in coupled implementation of horizontal drilling and multistage hydraulic fracturing techniques in tight oil and shale gas reservoirs along with improvements in reservoir simulation techniques to design and create EGS reservoirs. In this study, a commercial hydraulic fracture simulation package, Mangrove by Schlumberger, was used in an EGS model with largely distributed pre-existing natural fractures to model fracture propagation during the creation of a complex fracture network. The main goal of this study is to investigate optimum treatment parameters in creating multiple large, planar fractures to hydraulically connect a horizontal injectionmore » well and a horizontal production well that are 10,000 ft. deep and spaced 500 ft. apart from each other. A matrix of simulations for this study was carried out to determine the influence of reservoir and treatment parameters on preventing (or aiding) the creation of large planar fractures. The reservoir parameters investigated during the matrix simulations include the in-situ stress state and properties of the natural fracture set such as the primary and secondary fracture orientation, average fracture length, and average fracture spacing. The treatment parameters investigated during the simulations were fluid viscosity, proppant concentration, pump rate, and pump volume. A final simulation with optimized design parameters was performed. The optimized design simulation indicated that high fluid viscosity, high proppant concentration, large pump volume and pump rate tend to minimize the complexity of the created fracture network. Additionally, a reservoir with 'friendly' formation characteristics such as large stress anisotropy, natural fractures set parallel to the maximum horizontal principal stress (SHmax), and large natural fracture spacing also promote the creation of large planar fractures while minimizing fracture complexity.« less

  16. Smoothing-based compressed state Kalman filter for joint state-parameter estimation: Applications in reservoir characterization and CO2 storage monitoring

    NASA Astrophysics Data System (ADS)

    Li, Y. J.; Kokkinaki, Amalia; Darve, Eric F.; Kitanidis, Peter K.

    2017-08-01

    The operation of most engineered hydrogeological systems relies on simulating physical processes using numerical models with uncertain parameters and initial conditions. Predictions by such uncertain models can be greatly improved by Kalman-filter techniques that sequentially assimilate monitoring data. Each assimilation constitutes a nonlinear optimization, which is solved by linearizing an objective function about the model prediction and applying a linear correction to this prediction. However, if model parameters and initial conditions are uncertain, the optimization problem becomes strongly nonlinear and a linear correction may yield unphysical results. In this paper, we investigate the utility of one-step ahead smoothing, a variant of the traditional filtering process, to eliminate nonphysical results and reduce estimation artifacts caused by nonlinearities. We present the smoothing-based compressed state Kalman filter (sCSKF), an algorithm that combines one step ahead smoothing, in which current observations are used to correct the state and parameters one step back in time, with a nonensemble covariance compression scheme, that reduces the computational cost by efficiently exploring the high-dimensional state and parameter space. Numerical experiments show that when model parameters are uncertain and the states exhibit hyperbolic behavior with sharp fronts, as in CO2 storage applications, one-step ahead smoothing reduces overshooting errors and, by design, gives physically consistent state and parameter estimates. We compared sCSKF with commonly used data assimilation methods and showed that for the same computational cost, combining one step ahead smoothing and nonensemble compression is advantageous for real-time characterization and monitoring of large-scale hydrogeological systems with sharp moving fronts.

  17. Assessing Virulence and Transmission Rates of White Spot Syndrome Virus (WSSV) in Two Ecologically Important Palaemonid Shrimp

    NASA Astrophysics Data System (ADS)

    Bernard, C.; Keesee, B.; Philippoff, C.; Curran, S.; Lotz, J.; Powell, E.

    2016-02-01

    Investigators, including three REU interns, conducted an experiment to quantify parameters for an epidemiological model designed to estimate disease transmission in marine invertebrates. White spot syndrome virus (WSSV) is a highly pathogenic disease affecting commercially important penaeid shrimp fisheries worldwide. The virus devastates penaeid shrimp but other varieties of decapods may serve as reservoirs for disease by being less susceptible to WSSV or refractory to disease. Non-penaeid crustaceans are less susceptible to WSSV, and different species have variable resistance to the disease leading to different potential to serve as reservoirs for transmission of the disease to coastal penaeid fisheries. This study investigates virulence and transmission rates of WSSV in two palaemonid shrimp which are keystone members of coastal food webs, and effects of species interactions on transmission rates of WSSV are estimated in a laboratory setting as a proxy for natural habitats. Two species of grass shrimp were exposed to a Chinese strain of WSSV through feeding the test individuals with previously prepared, inoculated penaeid shrimp. Replicated tanks containing 30 animals were exposed to the virus in arenas containing one or both species for 24 hours, then isolated in 1 liter tanks and monitored. During the isolation period moribund individuals were preserved for later analysis. After 7 days all test individuals were analyzed using qPCR to determine WSSV presence and load in DNA. From these data transmission rates, mortality, and viral concentration were quantified and used as parameters in a simple epidemiological model.

  18. Left atrial strain predicts hemodynamic parameters in cardiovascular patients.

    PubMed

    Hewing, Bernd; Theres, Lena; Spethmann, Sebastian; Stangl, Karl; Dreger, Henryk; Knebel, Fabian

    2017-08-01

    We aimed to evaluate the predictive value of left atrial (LA) reservoir, conduit, and contractile function parameters as assessed by speckle tracking echocardiography (STE) for invasively measured hemodynamic parameters in a patient cohort with myocardial and valvular diseases. Sixty-nine patients undergoing invasive hemodynamic assessment were enrolled into the study. Invasive hemodynamic parameters were obtained by left and right heart catheterization. Transthoracic echocardiography assessment of LA reservoir, conduit, and contractile function was performed by STE. Forty-nine patients had sinus rhythm (SR) and 20 patients had permanent atrial fibrillation (AF). AF patients had significantly reduced LA reservoir function compared to SR patients. In patients with SR, LA reservoir, conduit, and contractile function inversely correlated with pulmonary capillary wedge pressure (PCWP), left ventricular end-diastolic pressure, and mean pulmonary artery pressure (PAP), and showed a moderate association with cardiac index. In AF patients, there were no significant correlations between LA reservoir function and invasively obtained hemodynamic parameters. In SR patients, LA contractile function with a cutoff value of 16.0% had the highest diagnostic accuracy (area under the curve, AUC: 0.895) to predict PCWP ≥18 mm Hg compared to the weaker diagnostic accuracy of average E/E' ratio with an AUC of 0.786 at a cutoff value of 14.3. In multivariate analysis, LA contractile function remained significantly associated with PCWP ≥18 mm Hg. In a cohort of patients with a broad spectrum of cardiovascular diseases LA strain shows a valuable prediction of hemodynamic parameters, specifically LV filling pressures, in the presence of SR. © 2017, Wiley Periodicals, Inc.

  19. Application of decline curve analysis to estimate recovery factors for carbon dioxide enhanced oil recovery

    USGS Publications Warehouse

    Jahediesfanjani, Hossein

    2017-07-17

    IntroductionIn the decline curve analysis (DCA) method of estimating recoverable hydrocarbon volumes, the analyst uses historical production data from a well, lease, group of wells (or pattern), or reservoir and plots production rates against time or cumu­lative production for the analysis. The DCA of an individual well is founded on the same basis as the fluid-flow principles that are used for pressure-transient analysis of a single well in a reservoir domain and therefore can provide scientifically reasonable and accurate results. However, when used for a group of wells, a lease, or a reservoir, the DCA becomes more of an empirical method. Plots from the DCA reflect the reservoir response to the oil withdrawal (or production) under the prevailing operating and reservoir conditions, and they continue to be good tools for estimating recoverable hydrocarbon volumes and future production rates. For predicting the total recov­erable hydrocarbon volume, the DCA results can help the analyst to evaluate the reservoir performance under any of the three phases of reservoir productive life—primary, secondary (waterflood), or tertiary (enhanced oil recovery) phases—so long as the historical production data are sufficient to establish decline trends at the end of the three phases.

  20. Comparative study on the water quality status of Andra reservoir and Denkada anicut constructed on Champavati River, Vizianagaram, India

    NASA Astrophysics Data System (ADS)

    Kumar, G. V. S. R. Pavan; Krishna, K. Rama

    2017-06-01

    The author's present study was carried out for a period of 3 years from 2010 to 2013 to itemize the various physico-chemical parameters, irrigation water quality parameters and heavy metals in Champavathi River waters at Andra reservoir and Denkada anicut. Water samples were collected from the chosen sampling stations of the two reservoirs for every 4 months and analyzed as per APHA standard methods. The results obtained were compared with IS 10500 standards and found to be well within the prescribed values. Though the obtained values were well within the prescribed standard values, it was found that the water quality index, concentration of certain parameters such as calcium, magnesium, sodium and potassium of the waters of Andra reservoir are higher than that of the Denkada anicut, and the concentration of nitrite was found to be higher in the water sample analyzed from Denkada anicut. Except silicon, all the other metals were found to be below the detection limits in the two reservoir waters. The reasons for the same were probed by the authors in the presented study. From the analysis reports, it was found that the water analyzed from the two reservoirs was fit for irrigation, agriculture, industrial and domestic purposes.

  1. Fluid identification based on P-wave anisotropy dispersion gradient inversion for fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Zhang, J. W.; Huang, H. D.; Zhu, B. H.; Liao, W.

    2017-10-01

    Fluid identification in fractured reservoirs is a challenging issue and has drawn increasing attentions. As aligned fractures in subsurface formations can induce anisotropy, we must choose parameters independent with azimuths to characterize fractures and fluid effects such as anisotropy parameters for fractured reservoirs. Anisotropy is often frequency dependent due to wave-induced fluid flow between pores and fractures. This property is conducive for identifying fluid type using azimuthal seismic data in fractured reservoirs. Through the numerical simulation based on Chapman model, we choose the P-wave anisotropy parameter dispersion gradient (PADG) as the new fluid factor. PADG is dependent both on average fracture radius and fluid type but independent on azimuths. When the aligned fractures in the reservoir are meter-scaled, gas-bearing layer could be accurately identified using PADG attribute. The reflection coefficient formula for horizontal transverse isotropy media by Rüger is reformulated and simplified according to frequency and the target function for inverting PADG based on frequency-dependent amplitude versus azimuth is derived. A spectral decomposition method combining Orthogonal Matching Pursuit and Wigner-Ville distribution is used to prepare the frequency-division data. Through application to synthetic data and real seismic data, the results suggest that the method is useful for gas identification in reservoirs with meter-scaled fractures using high-qualified seismic data.

  2. Population estimate of Chinese mystery snail (Bellamya chinensis) in a Nebraska reservoir

    USGS Publications Warehouse

    Chaine, Noelle M.; Allen, Craig R.; Fricke, Kent A.; Haak, Danielle M.; Hellman, Michelle L.; Kill, Robert A.; Nemec, Kristine T.; Pope, Kevin L.; Smeenk, Nicholas A.; Stephen, Bruce J.; Uden, Daniel R.; Unstad, Kody M.; VanderHam, Ashley E.

    2012-01-01

    The Chinese mystery snail (Bellamya chinensis) is an aquatic invasive species in North America. Little is known regarding this species' impacts on freshwater ecosystems. It is be lieved that population densities can be high, yet no population estimates have been reported. We utilized a mark-recapture approach to generate a population estimate for Chinese mystery snail in Wild Plum Lake, a 6.47-ha reservoir in southeast Nebraska. We calculated, using bias-adjusted Lincoln-Petersen estimation, that there were approximately 664 adult snails within a 127 m2 transect (5.2 snails/m2). If this density was consistent throughout the littoral zone (<3 m in depth) of the reservoir, then the total adult population in this impoundment is estimated to be 253,570 snails, and the total Chinese mystery snail wet biomass is estimated to be 3,119 kg (643 kg/ha). If this density is confined to the depth sampled in this study (1.46 m), then the adult population is estimated to be 169,400 snails, and wet biomass is estimated to be 2,084 kg (643 kg/ha). Additional research is warranted to further test the utility of mark-recapture methods for aquatic snails and to better understand Chinese mystery snail distributions within reservoirs.

  3. How much CO2 is trapped in carbonate minerals of a natural CO2 occurrence?

    NASA Astrophysics Data System (ADS)

    Király, Csilla; Szabó, Zsuzsanna; Szamosfalvi, Ágnes; Cseresznyés, Dóra; Király, Edit; Szabó, Csaba; Falus, György

    2017-04-01

    Carbon Capture and Storage (CCS) is a transitional technology to decrease CO2 emissions from human fossil fuel usage and, therefore, to mitigate climate change. The most important criteria of a CO2 geological storage reservoir is that it must hold the injected CO2 for geological time scales without its significant seepage. The injected CO2 undergoes physical and chemical reactions in the reservoir rocks such as structural-stratigraphic, residual, dissolution or mineral trapping mechanisms. Among these, the safest is the mineral trapping, when carbonate minerals such as calcite, ankerite, siderite, dolomite and dawsonite build the CO2 into their crystal structures. The study of natural CO2 occurrences may help to understand the processes in CO2 reservoirs on geological time scales. This is the reason why the selected, the Mihályi-Répcelak natural CO2 occurrence as our research area, which is able to provide particular and highly significant information for the future of CO2 storage. The area is one of the best known CO2 fields in Central Europe. The main aim of this study is to estimate the amount of CO2 trapped in the mineral phase at Mihályi-Répcelak CO2 reservoirs. For gaining the suitable data, we apply petrographic, major and trace element (microprobe and LA-ICP-MS) and stable isotope analysis (mass spectrometry) and thermodynamic and kinetic geochemical models coded in PHREEQC. Rock and pore water compositions of the same formation, representing the pre-CO2 flooding stages of the Mihályi-Répcelak natural CO2 reservoirs are used in the models. Kinetic rate parameters are derived from the USGS report of Palandri and Kharaka (2004). The results of petrographic analysis show that a significant amount of dawsonite (NaAlCO3(OH)2, max. 16 m/m%) precipitated in the rock due to its reactions with CO2 which flooded the reservoir. This carbonate mineral alone traps about 10-30 kg/m3 of the reservoir rock from the CO2 at Mihályi-Répcelak area, which is an unexpectedly high proportion of total amount of CO2. Further results enlightened that other carbonates, ankerite, calcite and siderite have precipitated in two generations, the first before and the second after the CO2 flooding. Further laboratory analysis and geochemical models allow us to estimate the ratio of these two generations and also to understand how far the reservoir rock is in the CO2 mineral trapping process.

  4. Fluvial reservoir characterization using topological descriptors based on spectral analysis of graphs

    NASA Astrophysics Data System (ADS)

    Viseur, Sophie; Chiaberge, Christophe; Rhomer, Jérémy; Audigane, Pascal

    2015-04-01

    Fluvial systems generate highly heterogeneous reservoir. These heterogeneities have major impact on fluid flow behaviors. However, the modelling of such reservoirs is mainly performed in under-constrained contexts as they include complex features, though only sparse and indirect data are available. Stochastic modeling is the common strategy to solve such problems. Multiple 3D models are generated from the available subsurface dataset. The generated models represent a sampling of plausible subsurface structure representations. From this model sampling, statistical analysis on targeted parameters (e.g.: reserve estimations, flow behaviors, etc.) and a posteriori uncertainties are performed to assess risks. However, on one hand, uncertainties may be huge, which requires many models to be generated for scanning the space of possibilities. On the other hand, some computations performed on the generated models are time consuming and cannot, in practice, be applied on all of them. This issue is particularly critical in: 1) geological modeling from outcrop data only, as these data types are generally sparse and mainly distributed in 2D at large scale but they may locally include high-resolution descriptions (e.g.: facies, strata local variability, etc.); 2) CO2 storage studies as many scales of investigations are required, from meter to regional ones, to estimate storage capacities and associated risks. Recent approaches propose to define distances between models to allow sophisticated multivariate statistics to be applied on the space of uncertainties so that only sub-samples, representative of initial set, are investigated for dynamic time-consuming studies. This work focuses on defining distances between models that characterize the topology of the reservoir rock network, i.e. its compactness or connectivity degree. The proposed strategy relies on the study of the reservoir rock skeleton. The skeleton of an object corresponds to its median feature. A skeleton is computed for each reservoir rock geobody and studied through a graph spectral analysis. To achieve this, the skeleton is converted into a graph structure. The spectral analysis applied on this graph structure allows a distance to be defined between pairs of graphs. Therefore, this distance is used as support for clustering analysis to gather models that share the same reservoir rock topology. To show the ability of the defined distances to discriminate different types of reservoir connectivity, a synthetic data set of fluvial models with different geological settings was generated and studied using the proposed approach. The results of the clustering analysis are shown and discussed.

  5. Estimation of small reservoir storage capacities in the São Francisco, Limpopo, Bandama and Volta river basins using remotely sensed surface areas

    NASA Astrophysics Data System (ADS)

    Rodrigues, Lineu; Senzanje, Aidan; Cecchi, Philippe; Liebe, Jens

    2010-05-01

    People living in areas with highly variable rainfall, experience droughts and floods and often have insecure livelihoods. Small multi-purpose reservoirs (SR) are a widely used form of infrastructures to provide people in such areas with water during the dry season, e.g. in the basins of São Francisco, Brazil, Limpopo, Zimbabwe, Bandama, Ivory Coast and Volta, Ghana. In these areas, the available natural flow in the streams is sometimes less than the flow required for water supply or irrigation, however water can be stored in times of surplus, for example, from a wet season to a dry season. Efficient water management and sound reservoir planning are hindered by the lack of information about the functioning of these reservoirs. Reservoirs in these regions were constructed in a series of projects funded by different agencies, at different times, with little or no coordination among the implementing partners. Poor record keeping and the lack of appropriate institutional support result in deficiencies of information on the capacity, operation, and maintenance of these structures. Estimating the storage capacity of dams is essential to the responsible management of water diversion. Most of SR in these basins have never been evaluated, possibly because the tools currently used for such measurement are labor-intensive, costly and time-consuming. The objective of this research was to develop methodology to estimate small reservoir capacities as a function of their remotely sensed surface areas in the São Francisco, Limpopo, Bandama and Volta basins, as a way to contribute to improve the water resource management in those catchments. Remote sensing was used to identify, localize and characterize small reservoirs. The surface area of each was calculated from satellite images. A sub-set of reservoirs was selected. For each reservoir in the sub-set, the surface area was estimated from field surveys, and storage capacity was estimated using information on reservoir surface area, depth and shape. Depth was measured using a stadia rod or a manual echosounder. For reservoirs in the sub-set, estimated surface area was used as an input into the triangulated irregular network model. With the surface area and depth, measured volume was calculated. Comparisons were made between estimates of surface area from field surveys and estimates of surface area from remote sensing. A linear regression analysis was carried out to establish the relationship between surface area and storage capacities. Within geomorphologically homogenous regions, one may expect a good correlation between the surface area, which may be determined through satellite observations, and the stored volume. Such a relation depends on the general shape of the slopes (convex, through straight, to concave). The power relationships between remotely sensed surface areas (m^2) and storage capacities of reservoirs (m^3) obtained were - Limpopo basin (Lower Mzingwane sub-catchment): Volume = 0.023083 x Area^1.3272 (R2 = 95%); Bandama basin (North of the basin in Ivory Coast): Volume = 0.00405 x Area^1.4953 (R2 = 88.9%); Volta basin (Upper East region of the Volta Basin in Ghana): Volume = 0.00857 × Area^1.43 (R2 = 97.5%); São Francisco basin (Preto river sub-catchment): Volume = 0.2643 x Area^1.1632 (R2 = 92.1%). Remote sensing was found to be a suitable means to detect small reservoirs and accurately measure their surface areas. The general relationship between measured reservoir volumes and their remotely sensed surface areas showed good accuracy for all four basins. Combining such relationships with periodical satellite-based reservoir area measurements may allow hydrologists and planners to have clear picture of water resource system in the Basins, especially in ungauged sub-basins.

  6. Discriminant function analysis as tool for subsurface geologist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesser, K.

    1987-05-01

    Sedimentary structures such as cross-bedding control porosity, permeability, and other petrophysical properties in sandstone reservoirs. Understanding the distribution of such structures in the subsurface not only aids in the prediction of reservoir properties but also provides information about depositional environments. Discriminant function analysis (DFA) is a simple yet powerful method incorporating petrophysical data from wireline logs, core analyses, or other sources into groups that have been previously defined through direct observation of sedimentary structures in cores. Once data have been classified into meaningful groups, the geologist can predict the distribution of specific sedimentary structures or important reservoir properties in areasmore » where cores are unavailable. DFA is efficient. Given several variables, DFA will choose the best combination to discriminate among groups. The initial classification function can be computed from relatively few observations, and additional data may be included as necessary. Furthermore, DFA provides quantitative goodness-of-fit estimates for each observation. Such estimates can be used as mapping parameters or to assess risk in petroleum ventures. Petrophysical data from the Skinner sandstone of Strauss field in southeastern Kansas tested the ability of DFA to discriminate between cross-bedded and ripple-bedded sandstones. Petroleum production in Strauss field is largely restricted to the more permeable cross-bedded sandstones. DFA based on permeability correctly placed 80% of samples into cross-bedded or ripple-bedded groups. Addition of formation factor to the discriminant function increased correct classifications to 83% - a small but statistically significant gain.« less

  7. Modeling the effects of vorinostat in vivo reveals both transient and delayed HIV transcriptional activation and minimal killing of latently infected cells

    DOE PAGES

    Ke, Ruian; Lewin, Sharon R.; Elliott, Julian H.; ...

    2015-10-23

    Recent efforts to cure human immunodeficiency virus type-1 (HIV-1) infection have focused on developing latency reversing agents as a first step to eradicate the latent reservoir. The histone deacetylase inhibitor, vorinostat, has been shown to activate HIV RNA transcription in CD4+ T-cells and alter host cell gene transcription in HIV-infected individuals on antiretroviral therapy. In order to understand how latently infected cells respond dynamically to vorinostat treatment and determine the impact of vorinostat on reservoir size in vivo, we have constructed viral dynamic models of latency that incorporate vorinostat treatment. We fitted these models to data collected from a recentmore » clinical trial in which vorinostat was administered daily for 14 days to HIV-infected individuals on suppressive ART. The results show that HIV transcription is increased transiently during the first few hours or days of treatment and that there is a delay before a sustained increase of HIV transcription, whose duration varies among study participants and may depend on the long term impact of vorinostat on host gene expression. Parameter estimation suggests that in latently infected cells, HIV transcription induced by vorinostat occurs at lower levels than in productively infected cells. Lastly, the estimated loss rate of transcriptionally induced cells remains close to baseline in most study participants, suggesting vorinostat treatment does not induce latently infected cell killing and thus reduce the latent reservoir in vivo.« less

  8. Modeling the effects of vorinostat in vivo reveals both transient and delayed HIV transcriptional activation and minimal killing of latently infected cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Ruian; Lewin, Sharon R.; Elliott, Julian H.

    Recent efforts to cure human immunodeficiency virus type-1 (HIV-1) infection have focused on developing latency reversing agents as a first step to eradicate the latent reservoir. The histone deacetylase inhibitor, vorinostat, has been shown to activate HIV RNA transcription in CD4+ T-cells and alter host cell gene transcription in HIV-infected individuals on antiretroviral therapy. In order to understand how latently infected cells respond dynamically to vorinostat treatment and determine the impact of vorinostat on reservoir size in vivo, we have constructed viral dynamic models of latency that incorporate vorinostat treatment. We fitted these models to data collected from a recentmore » clinical trial in which vorinostat was administered daily for 14 days to HIV-infected individuals on suppressive ART. The results show that HIV transcription is increased transiently during the first few hours or days of treatment and that there is a delay before a sustained increase of HIV transcription, whose duration varies among study participants and may depend on the long term impact of vorinostat on host gene expression. Parameter estimation suggests that in latently infected cells, HIV transcription induced by vorinostat occurs at lower levels than in productively infected cells. Lastly, the estimated loss rate of transcriptionally induced cells remains close to baseline in most study participants, suggesting vorinostat treatment does not induce latently infected cell killing and thus reduce the latent reservoir in vivo.« less

  9. Identification of diffusive transport properties of poly(vinyl alcohol) hydrogels from reservoir test.

    PubMed

    Kazimierska-Drobny, Katarzyna; Kaczmarek, Mariusz

    2013-12-01

    In this paper the identification of diffusion coefficient, retardation factor and surface distribution coefficient for selected salts in poly(vinyl alcohol) hydrogels is performed. The identification of the transport parameters is based on the previously developed inverse problem technique using experimental data from the reservoir test and the solution of the diffusive transport equation with linear equilibrium sorption. The estimated values of diffusion coefficient are: for physiological fluid (6.30±0.10)×10(-10) m(2)/s, for 1 M NaCl (6.42±0.39)×10(-10) m(2)/s, and for 1 M KCl (7.94±0.38)×10(-10) m(2)/s. The retardation factor for all tested materials and salts is equal or close to one. The average value of the effective surface distribution coefficient is equal to 0.5. © 2013 Elsevier B.V. All rights reserved.

  10. A novel algorithm for monitoring reservoirs under all-weather conditions at a high temporal resolution through passive microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Gao, Huilin

    2016-08-01

    Flood mitigation in developing countries has been hindered by a lack of near real-time reservoir storage information at high temporal resolution. By leveraging satellite passive microwave observations over a reservoir and its vicinity, we present a globally applicable new algorithm to estimate reservoir storage under all-weather conditions at a 4 day time step. A weighted horizontal ratio (WHR) based on the brightness temperatures at 36.5 GHz is introduced, with its coefficients calibrated against an area training data set over each reservoir. Using a predetermined area-elevation (A-H) relationship, these coefficients are then applied to the microwave data to calculate the storage. Validation results over four reservoirs in South Asia indicate that the microwave-based storage estimations (after noise reduction) perform well (with coefficients of determination ranging from 0.41 to 0.74). This is the first time that passive microwave observations are fused with other satellite data for quantifying the storage of individual reservoirs.

  11. Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mella, Michael

    The objective of this project was to develop and demonstrate an approach for tracking the evolution of circulation immediately following a hydraulic stimulation in an EGS reservoir. Series of high-resolution tracer tests using conservative and thermally reactive tracers were designed at recently created EGS reservoirs in order to track changes in fluid flow parameters such as reservoir pore volume, flow capacity, and effective reservoir temperature over time. Data obtained from the project would be available for the calibration of reservoir models that could serve to predict EGS performance following a hydraulic stimulation.

  12. Scale-dependent gas hydrate saturation estimates in sand reservoirs in the Ulleung Basin, East Sea of Korea

    USGS Publications Warehouse

    Lee, Myung Woong; Collett, Timothy S.

    2013-01-01

    Through the use of 2-D and 3-D seismic data, several gas hydrate prospects were identified in the Ulleung Basin, East Sea of Korea and thirteen drill sites were established and logging-while-drilling (LWD) data were acquired from each site in 2010. Sites UBGH2–6 and UBGH2–10 were selected to test a series of high amplitude seismic reflections, possibly from sand reservoirs. LWD logs from the UBGH2–6 well indicate that there are three significant sand reservoirs with varying thickness. Two upper sand reservoirs are water saturated and the lower thinly bedded sand reservoir contains gas hydrate with an average saturation of 13%, as estimated from the P-wave velocity. The well logs at the UBGH2–6 well clearly demonstrated the effect of scale-dependency on gas hydrate saturation estimates. Gas hydrate saturations estimated from the high resolution LWD acquired ring resistivity (vertical resolution of about 5–8 cm) reaches about 90% with an average saturation of 28%, whereas gas hydrate saturations estimated from the low resolution A40L resistivity (vertical resolution of about 120 cm) reaches about 25% with an average saturation of 11%. However, in the UBGH2–10 well, gas hydrate occupies a 5-m thick sand reservoir near 135 mbsf with a maximum saturation of about 60%. In the UBGH2–10 well, the average and a maximum saturation estimated from various well logging tools are comparable, because the bed thickness is larger than the vertical resolution of the various logging tools. High resolution wireline log data further document the role of scale-dependency on gas hydrate calculations.

  13. Three types of gas hydrate reservoirs in the Gulf of Mexico identified in LWD data

    USGS Publications Warehouse

    Lee, Myung Woong; Collett, Timothy S.

    2011-01-01

    High quality logging-while-drilling (LWD) well logs were acquired in seven wells drilled during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II in the spring of 2009. These data help to identify three distinct types of gas hydrate reservoirs: isotropic reservoirs in sands, vertical fractured reservoirs in shale, and horizontally layered reservoirs in silty shale. In general, most gas hydratebearing sand reservoirs exhibit isotropic elastic velocities and formation resistivities, and gas hydrate saturations estimated from the P-wave velocity agree well with those from the resistivity. However, in highly gas hydrate-saturated sands, resistivity-derived gas hydrate-saturation estimates appear to be systematically higher by about 5% over those estimated by P-wave velocity, possibly because of the uncertainty associated with the consolidation state of gas hydrate-bearing sands. Small quantities of gas hydrate were observed in vertical fractures in shale. These occurrences are characterized by high formation resistivities with P-wave velocities close to those of water-saturated sediment. Because the formation factor varies significantly with respect to the gas hydrate saturation for vertical fractures at low saturations, an isotropic analysis of formation factor highly overestimates the gas hydrate saturation. Small quantities of gas hydrate in horizontal layers in shale are characterized by moderate increase in P-wave velocities and formation resistivities and either measurement can be used to estimate gas hydrate saturations.

  14. Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Ghanashyam; Mattson, Earl D.; McLing, Travis L.

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 – 61 ºC/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for themore » possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 ºC) to over 175 ºC. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.« less

  15. Real-time envelope cross-correlation detector: application to induced seismicity in the Insheim and Landau deep geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Vasterling, Margarete; Wegler, Ulrich; Becker, Jan; Brüstle, Andrea; Bischoff, Monika

    2017-01-01

    We develop and test a real-time envelope cross-correlation detector for use in seismic response plans to mitigate hazard of induced seismicity. The incoming seismological data are cross-correlated in real-time with a set of previously recorded master events. For robustness against small changes in the earthquake source locations or in the focal mechanisms we cross-correlate the envelopes of the seismograms rather than the seismograms themselves. Two sequenced detection conditions are implemented: After passing a single trace cross-correlation condition, a network cross-correlation is calculated taking amplitude ratios between stations into account. Besides detecting the earthquake and assigning it to the respective reservoir, real-time magnitudes are important for seismic response plans. We estimate the magnitudes of induced microseismicity using the relative amplitudes between master event and detected event. The real-time detector is implemented as a SeisComP3 module. We carry out offline and online performance tests using seismic monitoring data of the Insheim and Landau geothermal power plants (Upper Rhine Graben, Germany), also including blasts from a nearby quarry. The comparison of the automatic real-time catalogue with a manually processed catalogue shows, that with the implemented parameters events are always correctly assigned to the respective reservoir (4 km distance between reservoirs) or the quarry (8 km and 10 km distance, respectively, from the reservoirs). The real-time catalogue achieves a magnitude of completeness around 0.0. Four per cent of the events assigned to the Insheim reservoir and zero per cent of the Landau events are misdetections. All wrong detections are local tectonic events, whereas none are caused by seismic noise.

  16. Assessing the potential of reservoir outflow management to reduce sedimentation using continuous turbidity monitoring and reservoir modelling

    USGS Publications Warehouse

    Lee, Casey; Foster, Guy

    2013-01-01

    In-stream sensors are increasingly deployed as part of ambient water quality-monitoring networks. Temporally dense data from these networks can be used to better understand the transport of constituents through streams, lakes or reservoirs. Data from existing, continuously recording in-stream flow and water quality monitoring stations were coupled with the two-dimensional hydrodynamic CE-QUAL-W2 model to assess the potential of altered reservoir outflow management to reduce sediment trapping in John Redmond Reservoir, located in east-central Kansas. Monitoring stations upstream and downstream from the reservoir were used to estimate 5.6 million metric tons of sediment transported to John Redmond Reservoir from 2007 through 2010, 88% of which was trapped within the reservoir. The two-dimensional model was used to estimate the residence time of 55 equal-volume releases from the reservoir; sediment trapping for these releases varied from 48% to 97%. Smaller trapping efficiencies were observed when the reservoir was maintained near the normal operating capacity (relative to higher flood pool levels) and when average residence times were relatively short. An idealized, alternative outflow management scenario was constructed, which minimized reservoir elevations and the length of time water was in the reservoir, while continuing to meet downstream flood control end points identified in the reservoir water control manual. The alternative scenario is projected to reduce sediment trapping in the reservoir by approximately 3%, preventing approximately 45 000 metric tons of sediment from being deposited within the reservoir annually. This article presents an approach to quantify the potential of reservoir management using existing in-stream data; actual management decisions need to consider the effects on other reservoir benefits, such as downstream flood control and aquatic life.

  17. Influence of lithofacies and diagensis on Norwegian North Sea chalk reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasher, J.E.; Vagle, K.R.

    1996-05-01

    The depositional mechanism of chalk is a key influence in the chalk`s ultimate reservoir quality. Classically, the depositional mechanism is interpreted from core descriptions. Where core data are lacking, dipmeter and borehole imagery logs have proven useful in making lithofacies assessments. Criteria for recognition of three chalk categories are established. Category III chalks correspond to those chalks that have been deposited by gravity flows or slumping and tend to have the best reservoir parameters. Category I chalks are most often affiliated with pelagic deposition and tend to have the poorest reservoir parameters. Category II chalks are intermediate between I andmore » III. Anomalously high primary porosities have been maintained in Norwegian North Sea chalks where the effects of mechanical and chemical compaction have been limited. The diagenetic pathway of a chalk reflects changes brought about by mechanical and chemical compaction. Five factors most heavily influence the diagenetic pathway: (1) burial depth, (2) chalk type, (3) overpressuring, (4) presence of hydrocarbons, and (5) original grain size. Assessments of the sedimentological model, diagenetic pathway, and resultant reservoir quality are provided in case studies of Edda, Tor, and Eldfisk fields. Because the distribution of chalk is largely independent of existing structures, most fields have a component of stratigraphic/diagenetic trapping. Each case study shows unique examples of how petrophysical and reservoir engineering data can be incorporated in assessments of chalk type and the diagenetic pathway and how they may affect reservoir parameters and productivity.« less

  18. ASUD2- decision support system on Dnieper reservoirs operations taking into account environmental priorities

    NASA Astrophysics Data System (ADS)

    Iritz, L.; Zheleznyak, M.; Dvorzhak, A.; Nesterov, A.; Zaslavsky, A.

    2003-04-01

    On the European continent the Dnieper is the third largest river basin (509000 sq.km). The Ukrainian part of the drainage basin is 291 400 sq.km. The cascade of 6 reservoirs, that have capacity from 2.5 to 18 cub.km comprises the entire reach of Dnieper River in Ukraine, redistributes the water regime in time. As a result, 17-18 cub. km water can be used, 50% for hydropower production, 30% for agriculture and up to 18% for municipal water supply. The water stress, the pollution load, the insufficient technical conditions require a lot of effort in the water management development. In order to achieve optimal use of water recourses in the Dnieper River basin, it is essential to develop strategies both for the long-term perspective (planning) as well as for the short-term perspective (operation). The Dnieper River basin must be seen as complex of the natural water resources, as well as the human system (water use, social and economic intercourse). In the frame of the project, supported by the Swedish International Development Cooperation Agency (SIDA) the software tool ASUD2 is developed to support reservoir operations provided by the State Committee of Ukraine on Water Management and by the Joint River Commission. ASUD2 includes multicriteria optimization engine that drives the reservoir water balamce models and box models of water quality. A system of supplementary (off-line) tools support more detailed analyses of the water quality parameters of largest reservoirs (Kachovka and Kremechug). The models AQUATOX and WASP ( in the developed 3-D version) are used for these purposes. The Integrated Database IDB-ASUD2 supplies the information such as state of the all reservoirs, hydrological observations and predictions, water demands, measured water quality parameters. ASUD2 is able to give the following information on an operational basis. : - recommended dynamics of the water elevation during the water allocation planning period in all reservoirs calculated on the basis of the different optimisation criteria minimum of the distance to the trajectory of the water level given by decision of the Joint River Commission, minimum value of the water contamination parameters (DO, nutrients, phosphorus), maximum energy production, taking into account limitations from fishery, water intakes of irrigation and transport channels etc; -water releases from the reservoirs to maintain the recommended dynamics in the whole Dnieper Cascade; -integrated water quality parameters for all reservoirs and distributed water quality parameters for the two largest reservoirs (Kremenchug and Kachovka). The analyses based on economical criteria provides the cost-benefit evaluation for different reservoir management alternatives. The assessment takes into account energy production, industry, agriculture as well as the costs associated with ecological damages.

  19. Decoherence control mechanisms of a charged magneto-oscillator in contact with different environments

    NASA Astrophysics Data System (ADS)

    Rajesh, Asam; Bandyopadhyay, Malay; Jayannavar, Arun M.

    2017-12-01

    In this work, we consider two different techniques based on reservoir engineering process and quantum Zeno control method to analyze the decoherence control mechanism of a charged magneto-oscillator in contact with different type of environment. Our analysis reveals that both the control mechanisms are very much sensitive on the details of different environmental spectrum (J (ω)), and also on different system and reservoir parameters, e.g., external magnetic field (rc), confinement length (r0), temperature (T), cut-off frequency of reservoir spectrum (ωcut), and measurement interval (τ). We also demonstrate the manipulation scheme of the continuous passage from decay suppression to decay acceleration by tuning the above mentioned system or reservoir parameters, e.g., rc, r0, T and τ.

  20. Online interactive U.S. Reservoir Sedimentation Survey Database

    USGS Publications Warehouse

    Gray, J.B.; Bernard, J.M.; Schwarz, G.E.; Stewart, D.W.; Ray, K.T.

    2009-01-01

    In April 2009, the U.S. Geological Survey and the Natural Resources Conservation Service (prior to 1994, the Soil Conservation Service) created the Reservoir Sedimentation Survey Database (RESSED) and Web site, the most comprehensive compilation of data from reservoir bathymetric and dry basin surveys in the United States. RESSED data can be useful for a number of purposes, including calculating changes in reservoir storage characteristics, quantifying rates of sediment delivery to reservoirs, and estimating erosion rates in a reservoir's watershed.

  1. Fuzzy classifier based support vector regression framework for Poisson ratio determination

    NASA Astrophysics Data System (ADS)

    Asoodeh, Mojtaba; Bagheripour, Parisa

    2013-09-01

    Poisson ratio is considered as one of the most important rock mechanical properties of hydrocarbon reservoirs. Determination of this parameter through laboratory measurement is time, cost, and labor intensive. Furthermore, laboratory measurements do not provide continuous data along the reservoir intervals. Hence, a fast, accurate, and inexpensive way of determining Poisson ratio which produces continuous data over the whole reservoir interval is desirable. For this purpose, support vector regression (SVR) method based on statistical learning theory (SLT) was employed as a supervised learning algorithm to estimate Poisson ratio from conventional well log data. SVR is capable of accurately extracting the implicit knowledge contained in conventional well logs and converting the gained knowledge into Poisson ratio data. Structural risk minimization (SRM) principle which is embedded in the SVR structure in addition to empirical risk minimization (EMR) principle provides a robust model for finding quantitative formulation between conventional well log data and Poisson ratio. Although satisfying results were obtained from an individual SVR model, it had flaws of overestimation in low Poisson ratios and underestimation in high Poisson ratios. These errors were eliminated through implementation of fuzzy classifier based SVR (FCBSVR). The FCBSVR significantly improved accuracy of the final prediction. This strategy was successfully applied to data from carbonate reservoir rocks of an Iranian Oil Field. Results indicated that SVR predicted Poisson ratio values are in good agreement with measured values.

  2. Transdermal permeation of trimetazidine from nerodilol-based HPMC gel drug reservoir system across rat epidermis.

    PubMed

    Krishnaiah, Yellela S; Al-Saidan, Saleh M

    2008-01-01

    To study the in vitro transdermal permeation of trimetazidine from hydroxypropylmethyl cellulose (HPMC) gel drug reservoir system using nerodilol as a penetration enhancer. An HPMC gel containing selected concentrations of nerodilol (0, 2, 4 or 5% w/v) and 2.5% w/v of trimetazidine was prepared, and subjected to in vitro permeation studies across rat epidermis. The amount of trimetazidine permeated at different time intervals (1, 2, 4, 8, 12, 18 and 24 h) was estimated, and the data were analyzed to calculate various permeation parameters. There was an increase in the amount of trimetazidine (8,719.7 +/- 153.3 microg/cm(2))permeated across the rat epidermis up to 24 h (Q(24)) with an increase in nerodilol concentration (5% w/v) in HPMC gel drug reservoir. However, no significant difference (p > 0.05) was observed in the amount of drug permeated (Q(24)) with 5% w/v of nerodilol when compared to that obtained with 4% w/v of nerodilol (8,484.5 +/- 165.8 microg/cm(2)). Nerodilol, at a concentration of 4% w/v enhanced the flux of trimetazidine across rat epidermis by about 1.96 times when compared to control. The HPMC gel drug reservoir containing 4% w/v of nerodilol showed optimal transdermal permeation of trimetazidine. (c) 2007 S. Karger AG, Basel.

  3. 40 CFR 63.804 - Compliance procedures and monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the coating in the reservoir, are being used; the viscosity of the coating in the reservoir is being... demonstrate that viscosity is an appropriate parameter for demonstrating compliance. (4) Owners or operators... the coating in the reservoir, using compliant thinners, maintaining a viscosity of the coating in the...

  4. 40 CFR 63.804 - Compliance procedures and monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the coating in the reservoir, are being used; the viscosity of the coating in the reservoir is being... demonstrate that viscosity is an appropriate parameter for demonstrating compliance. (4) Owners or operators... the coating in the reservoir, using compliant thinners, maintaining a viscosity of the coating in the...

  5. 40 CFR 63.804 - Compliance procedures and monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the coating in the reservoir, are being used; the viscosity of the coating in the reservoir is being... demonstrate that viscosity is an appropriate parameter for demonstrating compliance. (4) Owners or operators... the coating in the reservoir, using compliant thinners, maintaining a viscosity of the coating in the...

  6. 40 CFR 63.804 - Compliance procedures and monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the coating in the reservoir, are being used; the viscosity of the coating in the reservoir is being... demonstrate that viscosity is an appropriate parameter for demonstrating compliance. (4) Owners or operators... the coating in the reservoir, using compliant thinners, maintaining a viscosity of the coating in the...

  7. Approach for computing 1D fracture density: application to fracture corridor characterization

    NASA Astrophysics Data System (ADS)

    Viseur, Sophie; Chatelée, Sebastien; Akriche, Clement; Lamarche, Juliette

    2016-04-01

    Fracture density is an important parameter for characterizing fractured reservoirs. Many stochastic simulation algorithms that generate fracture networks indeed rely on the determination of a fracture density on volumes (P30) to populate the reservoir zones with individual fracture surfaces. However, only 1D fracture density (P10) are available from subsurface data and it is then important to be able to accurately estimate this entity. In this paper, a novel approach is proposed to estimate fracture density from scan-line or well data. This method relies on regression, hypothesis testing and clustering techniques. The objective of the proposed approach is to highlight zones where fracture density are statistically very different or similar. This technique has been applied on both synthetic and real case studies. These studies concern fracture corridors, which are particular tectonic features that are generally difficult to characterize from subsurface data. These tectonic features are still not well known and studies must be conducted to better understand their internal spatial organization and variability. The presented synthetic cases aim at showing the ability of the approach to extract known features. The real case study illustrates how this approach allows the internal spatial organization of fracture corridors to be characterized.

  8. Opportunities for increasing natural gas production in the near term. Volume VI. The East Cameron Block 271 Field. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-02-01

    This report examines the potential for increasing the rate of production of natural gas from the East Cameron Block 271 Field in the Gulf of Mexico Outer Continental Shelf. Proved reserves are estimated using all available reservoir data, including well logs and pressure tests, and cost parameters typical in the area. Alternative schedules for future production are devised, and net present values calculated from which the maximum production rate that also maximizes net present value is determined.

  9. Determination of geostatistically representative sampling locations in Porsuk Dam Reservoir (Turkey)

    NASA Astrophysics Data System (ADS)

    Aksoy, A.; Yenilmez, F.; Duzgun, S.

    2013-12-01

    Several factors such as wind action, bathymetry and shape of a lake/reservoir, inflows, outflows, point and diffuse pollution sources result in spatial and temporal variations in water quality of lakes and reservoirs. The guides by the United Nations Environment Programme and the World Health Organization to design and implement water quality monitoring programs suggest that even a single monitoring station near the center or at the deepest part of a lake will be sufficient to observe long-term trends if there is good horizontal mixing. In stratified water bodies, several samples can be required. According to the guide of sampling and analysis under the Turkish Water Pollution Control Regulation, a minimum of five sampling locations should be employed to characterize the water quality in a reservoir or a lake. The European Union Water Framework Directive (2000/60/EC) states to select a sufficient number of monitoring sites to assess the magnitude and impact of point and diffuse sources and hydromorphological pressures in designing a monitoring program. Although existing regulations and guidelines include frameworks for the determination of sampling locations in surface waters, most of them do not specify a procedure in establishment of monitoring aims with representative sampling locations in lakes and reservoirs. In this study, geostatistical tools are used to determine the representative sampling locations in the Porsuk Dam Reservoir (PDR). Kernel density estimation and kriging were used in combination to select the representative sampling locations. Dissolved oxygen and specific conductivity were measured at 81 points. Sixteen of them were used for validation. In selection of the representative sampling locations, care was given to keep similar spatial structure in distributions of measured parameters. A procedure was proposed for that purpose. Results indicated that spatial structure was lost under 30 sampling points. This was as a result of varying water quality in the reservoir due to inflows, point and diffuse inputs, and reservoir hydromorphology. Moreover, hot spots were determined based on kriging and standard error maps. Locations of minimum number of sampling points that represent the actual spatial structure of DO distribution in the Porsuk Dam Reservoir

  10. Improved reservoir characterisation using fuzzy logic platform: an integrated petrophysical, seismic structural and poststack inversion study

    NASA Astrophysics Data System (ADS)

    Jafri, Muhammad Kamran; Lashin, Aref; Ibrahim, El-Khedr Hassan; Hassanein, Kamal A.; Al Arifi, Nassir; Naeem, Muhammad

    2017-06-01

    There is a tendency for applying different integrated geophysical approaches for better hydrocarbon reservoir characterisation and interpretation. In this study, petrophysical properties, seismic structural and poststack seismic inversion results are integrated using the fuzzy logic AND operator to characterise the Tensleep Sandstone Formation (TSF) at Powder River Basin (PRB), Wyoming, USA. TSF is deposited in a coastal plain setting during the Pennsylvanian era, and contains cross-bedded sandstone of Aeolian origin as a major lithology with alternative sabkha dolomite/carbonates. Wireline logging datasets from 17 wells are used for the detailed petrophysical evaluation. Three units of the TSF (A-sandstone, B-dolomite and B-sandstone) are targeted and their major rock properties estimated (i.e. shale/clay volume, Vsh; porosity, φEff permeability, K; fluid saturations, Sw and SH; and bulk volume water, BVW). The B-sandstone zone, with its petrophysical properties of 5-20% effective porosity, 0.10-250 mD permeability and hydrocarbon potential up to 72%, is considered the best reservoir zone among the three studied units. Distributions of the most important petrophysical parameters of the B-sandstone reservoir (Vsh, φEff, K, Sw) are generated as GIS thematic layers. The two-dimensional (2D) and three-dimensional (3D) seismic structural interpretations revealed that the hydrocarbons are entrapped in an anticlinal structure bounded with fault closures at the west of the study area. Poststack acoustic impedance (PSAI) inversion is performed on 3D seismic data to extract the inverted acoustic impedance (AI) cube. Two attribute slices (inverted AI and seismic amplitude) were extracted at the top of the B-sandstone unit as GIS thematic layers. The reservoir properties and inverted seismic attributes were then integrated using fuzzy AND operator. Finally, a fuzzy reservoir quality map was produced, and a prospective reservoir area with best reservoir characteristics is proposed for future exploration. The current study showed that integration of petrophysical, seismic structural and poststack inversion under a fuzzy logic platform can be used as an effective tool for interpreting multiple reservoir zones.

  11. Forecasting monthly inflow discharge of the Iffezheim reservoir using data-driven models

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Aljoumani, Basem; Hillebrand, Gudrun; Hoffmann, Thomas; Hinkelmann, Reinhard

    2017-04-01

    River stream flow is an essential element in hydrology study fields, especially for reservoir management, since it defines input into reservoirs. Forecasting this stream flow plays an important role in short or long-term planning and management in the reservoir, e.g. optimized reservoir and hydroelectric operation or agricultural irrigation. Highly accurate flow forecasting can significantly reduce economic losses and is always pursued by reservoir operators. Therefore, hydrologic time series forecasting has received tremendous attention of researchers. Many models have been proposed to improve the hydrological forecasting. Due to the fact that most natural phenomena occurring in environmental systems appear to behave in random or probabilistic ways, different cases may need a different methods to forecast the inflow and even a unique treatment to improve the forecast accuracy. The purpose of this study is to determine an appropriate model for forecasting monthly inflow to the Iffezheim reservoir in Germany, which is the last of the barrages in the Upper Rhine. Monthly time series of discharges, measured from 1946 to 2001 at the Plittersdorf station, which is located 6 km downstream of the Iffezheim reservoir, were applied. The accuracies of the used stochastic models - Fiering model and Auto-Regressive Integrated Moving Average models (ARIMA) are compared with Artificial Intelligence (AI) models - single Artificial Neural Network (ANN) and Wavelet ANN models (WANN). The Fiering model is a linear stochastic model and used for generating synthetic monthly data. The basic idea in modeling time series using ARIMA is to identify a simple model with as few model parameters as possible in order to provide a good statistical fit to the data. To identify and fit the ARIMA models, four phase approaches were used: identification, parameter estimation, diagnostic checking, and forecasting. An automatic selection criterion, such as the Akaike information criterion, is utilized to enhance this flexible approach to set up the model. As distinct from both stochastic models, the ANN and its related conjunction methods Wavelet-ANN (WANN) models are effective to handle non-linear systems and have been developed with antecedent flows as inputs to forecast up to 12-months lead-time for the Iffezheim reservoir. In the ANN and WANN models, the Feed Forward Back Propagation method (FFBP) is applied. The sigmoid activity and linear functions were used with several different neurons for the hidden layers and for the output layer, respectively. To compare the accuracy of the different models and identify the most suitable model for reliable forecasting, four quantitative standard statistical performance evaluation measures, the root mean square error (RMSE), the mean bias error (MAE) and the determination correlation coefficient (DC), are employed. The results reveal that the ARIMA (2, 1, 2) performs better than Fiering, ANN and WANN models. Further, the WANN model is found to be slightly better than the ANN model for forecasting monthly inflow of the Iffezheim reservoir. As a result, by using the ARIMA model, the predicted and observed values agree reasonably well.

  12. Real Time Oil Reservoir Evaluation Using Nanotechnology

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Meyyappan, Meyya (Inventor)

    2011-01-01

    A method and system for evaluating status and response of a mineral-producing field (e.g., oil and/or gas) by monitoring selected chemical and physical properties in or adjacent to a wellsite headspace. Nanotechnology sensors and other sensors are provided for one or more underground (fluid) mineral-producing wellsites to determine presence/absence of each of two or more target molecules in the fluid, relative humidity, temperature and/or fluid pressure adjacent to the wellsite and flow direction and flow velocity for the fluid. A nanosensor measures an electrical parameter value and estimates a corresponding environmental parameter value, such as water content or hydrocarbon content. The system is small enough to be located down-hole in each mineral-producing horizon for the wellsite.

  13. Spatial and Temporal Correlates of Greenhouse Gas Diffusion from a Hydropower Reservoir in the Southern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, Jennifer; Fortner, Allison M.; Phillips, Jana Randolph

    Emissions of CO 2 and CH 4 from freshwater reservoirs constitute a globally significant source of atmospheric greenhouse gases (GHGs), but knowledge gaps remain with regard to spatiotemporal drivers of emissions. We document the spatial and seasonal variation in surface diffusion of CO 2 and CH 4 from Douglas Lake, a hydropower reservoir in Tennessee, USA. Monthly estimates across 13 reservoir sites from January to November 2010 indicated that surface diffusions ranged from 236 to 18,806 mg m -2 day -1 for CO 2 and 0 to 0.95 mg m -2 day -1 for CH 4. Next, we developed statisticalmore » models using spatial and physicochemical variables to predict surface diffusions of CO 2 and CH 4. Models explained 22.7 and 20.9% of the variation in CO 2 and CH4 diffusions, respectively, and identified pH, temperature, dissolved oxygen, and Julian day as the most informative important predictors. These findings provide baseline estimates of GHG emissions from a reservoir in eastern temperate North America a region for which estimates of reservoir GHGs emissions are limited. Our statistical models effectively characterized non-linear and threshold relationships between physicochemical predictors and GHG emissions. Further refinement of such models will aid in predicting current GHG emissions in unsampled reservoirs and forecasting future GHG emissions.« less

  14. Spatial and Temporal Correlates of Greenhouse Gas Diffusion from a Hydropower Reservoir in the Southern United States

    DOE PAGES

    Mosher, Jennifer; Fortner, Allison M.; Phillips, Jana Randolph; ...

    2015-10-29

    Emissions of CO 2 and CH 4 from freshwater reservoirs constitute a globally significant source of atmospheric greenhouse gases (GHGs), but knowledge gaps remain with regard to spatiotemporal drivers of emissions. We document the spatial and seasonal variation in surface diffusion of CO 2 and CH 4 from Douglas Lake, a hydropower reservoir in Tennessee, USA. Monthly estimates across 13 reservoir sites from January to November 2010 indicated that surface diffusions ranged from 236 to 18,806 mg m -2 day -1 for CO 2 and 0 to 0.95 mg m -2 day -1 for CH 4. Next, we developed statisticalmore » models using spatial and physicochemical variables to predict surface diffusions of CO 2 and CH 4. Models explained 22.7 and 20.9% of the variation in CO 2 and CH4 diffusions, respectively, and identified pH, temperature, dissolved oxygen, and Julian day as the most informative important predictors. These findings provide baseline estimates of GHG emissions from a reservoir in eastern temperate North America a region for which estimates of reservoir GHGs emissions are limited. Our statistical models effectively characterized non-linear and threshold relationships between physicochemical predictors and GHG emissions. Further refinement of such models will aid in predicting current GHG emissions in unsampled reservoirs and forecasting future GHG emissions.« less

  15. Estimation of Random Medium Parameters from 2D Post-Stack Seismic Data and Its Application in Seismic Inversion

    NASA Astrophysics Data System (ADS)

    Yang, X.; Zhu, P.; Gu, Y.; Xu, Z.

    2015-12-01

    Small scale heterogeneities of subsurface medium can be characterized conveniently and effectively using a few simple random medium parameters (RMP), such as autocorrelation length, angle and roughness factor, etc. The estimation of these parameters is significant in both oil reservoir prediction and metallic mine exploration. Poor accuracy and low stability existed in current estimation approaches limit the application of random medium theory in seismic exploration. This study focuses on improving the accuracy and stability of RMP estimation from post-stacked seismic data and its application in the seismic inversion. Experiment and theory analysis indicate that, although the autocorrelation of random medium is related to those of corresponding post-stacked seismic data, the relationship is obviously affected by the seismic dominant frequency, the autocorrelation length, roughness factor and so on. Also the error of calculation of autocorrelation in the case of finite and discrete model decreases the accuracy. In order to improve the precision of estimation of RMP, we design two improved approaches. Firstly, we apply region growing algorithm, which often used in image processing, to reduce the influence of noise in the autocorrelation calculated by the power spectrum method. Secondly, the orientation of autocorrelation is used as a new constraint in the estimation algorithm. The numerical experiments proved that it is feasible. In addition, in post-stack seismic inversion of random medium, the estimated RMP may be used to constrain inverse procedure and to construct the initial model. The experiment results indicate that taking inversed model as random medium and using relatively accurate estimated RMP to construct initial model can get better inversion result, which contained more details conformed to the actual underground medium.

  16. Review on applications of artificial intelligence methods for dam and reservoir-hydro-environment models.

    PubMed

    Allawi, Mohammed Falah; Jaafar, Othman; Mohamad Hamzah, Firdaus; Abdullah, Sharifah Mastura Syed; El-Shafie, Ahmed

    2018-05-01

    Efficacious operation for dam and reservoir system could guarantee not only a defenselessness policy against natural hazard but also identify rule to meet the water demand. Successful operation of dam and reservoir systems to ensure optimal use of water resources could be unattainable without accurate and reliable simulation models. According to the highly stochastic nature of hydrologic parameters, developing accurate predictive model that efficiently mimic such a complex pattern is an increasing domain of research. During the last two decades, artificial intelligence (AI) techniques have been significantly utilized for attaining a robust modeling to handle different stochastic hydrological parameters. AI techniques have also shown considerable progress in finding optimal rules for reservoir operation. This review research explores the history of developing AI in reservoir inflow forecasting and prediction of evaporation from a reservoir as the major components of the reservoir simulation. In addition, critical assessment of the advantages and disadvantages of integrated AI simulation methods with optimization methods has been reported. Future research on the potential of utilizing new innovative methods based AI techniques for reservoir simulation and optimization models have also been discussed. Finally, proposal for the new mathematical procedure to accomplish the realistic evaluation of the whole optimization model performance (reliability, resilience, and vulnerability indices) has been recommended.

  17. Efficient Data-Worth Analysis Using a Multilevel Monte Carlo Method Applied in Oil Reservoir Simulations

    NASA Astrophysics Data System (ADS)

    Lu, D.; Ricciuto, D. M.; Evans, K. J.

    2017-12-01

    Data-worth analysis plays an essential role in improving the understanding of the subsurface system, in developing and refining subsurface models, and in supporting rational water resources management. However, data-worth analysis is computationally expensive as it requires quantifying parameter uncertainty, prediction uncertainty, and both current and potential data uncertainties. Assessment of these uncertainties in large-scale stochastic subsurface simulations using standard Monte Carlo (MC) sampling or advanced surrogate modeling is extremely computationally intensive, sometimes even infeasible. In this work, we propose efficient Bayesian analysis of data-worth using a multilevel Monte Carlo (MLMC) method. Compared to the standard MC that requires a significantly large number of high-fidelity model executions to achieve a prescribed accuracy in estimating expectations, the MLMC can substantially reduce the computational cost with the use of multifidelity approximations. As the data-worth analysis involves a great deal of expectation estimations, the cost savings from MLMC in the assessment can be very outstanding. While the proposed MLMC-based data-worth analysis is broadly applicable, we use it to a highly heterogeneous oil reservoir simulation to select an optimal candidate data set that gives the largest uncertainty reduction in predicting mass flow rates at four production wells. The choices made by the MLMC estimation are validated by the actual measurements of the potential data, and consistent with the estimation obtained from the standard MC. But compared to the standard MC, the MLMC greatly reduces the computational costs in the uncertainty reduction estimation, with up to 600 days cost savings when one processor is used.

  18. Quantitative Risk Assessment (QRA) for an Underground Blowout Scenario in the Gulf of Mexico (GoM) Well

    NASA Astrophysics Data System (ADS)

    Tyagi, M.; Zulqarnain, M.

    2017-12-01

    Offshore oil and gas exploration and production operations, involve the use of some of the cutting edge and challenging technologies of the modern time. These technological complex operations involves the risk of major accidents as well, which have been demonstrated by disasters such as the explosion and fire on the UK production platform piper alpha, the Canadian semi-submersible drilling rig Ocean Ranger and the explosion and capsizing of Deepwater horizon rig in the Gulf of Mexico. By conducting Quantitative Risk Assessment (QRA), safety of various operations as well as their associated risks and significance during the entire life phase of an offshore project can be quantitatively estimated. In an underground blowout, the uncontrolled formation fluids from higher pressure formation may charge up shallower overlying low pressure formations or may migrate to sea floor. Consequences of such underground blowouts range from no visible damage at the surface to the complete loss of well, loss of drilling rig, seafloor subsidence or hydrocarbons discharged to the environment. These blowouts might go unnoticed until the over pressured sands, which are the result of charging from higher pressure reservoir due to an underground blowout. Further, engineering formulas used to estimate the fault permeability and thickness are very simple in nature and may add to uncertainty in the estimated parameters. In this study the potential of a deepwater underground blowout are assessed during drilling life phase of a well in Popeye-Genesis field reservoir in the Gulf of Mexico to estimate the time taken to charge a shallower zone to its leak-off test (LOT) value. Parametric simulation results for selected field case show that for relatively high permeability (k = 40mD) fault connecting a deep over-pressured zone to a shallower low-pressure zone of similar reservoir volumes, the time to recharge the shallower zone up to its threshold LOT value is about 135 years. If the ratio of the reservoir volumes for shallower to deeper zone is about 0.1, the recharging time significantly decreased to 24 years. Also, the hydrocarbons might possibly migrate through casing-wellbore annulus due to delamination fractures between cement interfaces with rock/casing and any other micro annulus gap not isolated by cement.

  19. Bathymetric surveys of Morse and Geist Reservoirs in central Indiana made with acoustic Doppler current profiler and global positioning system technology, 1996

    USGS Publications Warehouse

    Wilson, J.T.; Morlock, S.E.; Baker, N.T.

    1997-01-01

    Acoustic Doppler current profiler, global positioning system, and geographic information system technology were used to map the bathymetry of Morse and Geist Reservoirs, two artificial lakes used for public water supply in central Indiana. The project was a pilot study to evaluate the use of the technologies for bathymetric surveys. Bathymetric surveys were last conducted in 1978 on Morse Reservoir and in 1980 on Geist Reservoir; those surveys were done with conventional methods using networks of fathometer transects. The 1996 bathymetric surveys produced updated estimates of reservoir volumes that will serve as base-line data for future estimates of storage capacity and sedimentation rates.An acoustic Doppler current profiler and global positioning system receiver were used to collect water-depth and position data from April 1996 through October 1996. All water-depth and position data were imported to a geographic information system to create a data base. The geographic information system then was used to generate water-depth contour maps and to compute the volumes for each reservoir.The computed volume of Morse Reservoir was 22,820 acre-feet (7.44 billion gallons), with a surface area of 1,484 acres. The computed volume of Geist Reservoir was 19,280 acre-feet (6.29 billion gallons), with a surface area of 1,848 acres. The computed 1996 reservoir volumes are less than the design volumes and indicate that sedimentation has occurred in both reservoirs. Cross sections were constructed from the computer-generated surfaces for 1996 and compared to the fathometer profiles from the 1978 and 1980 surveys; analysis of these cross sections also indicates that some sedimentation has occurred in both reservoirs.The acoustic Doppler current profiler, global positioning system, and geographic information system technologies described in this report produced bathymetric maps and volume estimates more efficiently and with comparable or greater resolution than conventional bathymetry methods.

  20. Evaluation of Major Dike-Impounded Ground-Water Reservoirs, Island of Oahu

    USGS Publications Warehouse

    Takasaki, Kiyoshi J.; Mink, John Francis

    1985-01-01

    Ground-water reservoirs impounded by volcanic dikes receive a substantial part of the total recharge to ground water on the island of Oahu because they generally underlie the rainiest areas. These reservoirs accumulate the infiltration from rainfall, store it temporarily, and steadily leak it to abutting basal reservoirs or to streams cutting into them. The dike reservoirs have high hydraulic heads and are mostly isolated from saline water. The most important and productive of the dike-impounded reservoirs are in an area of about 135 square miles in the main fissure zone of the Koolau volcano where the top of the dike-impounded water reaches an altitude of at least 1,000 feet. Water is impounded and stored both above and below sea level. The water stored above sea level in the 135 square mile area has been roughly estimated at 560 billion gallons. In comparison, the water stored above sea level in reservoirs underlying a dike-intruded area of about 53 square miles in the Waianae Range has been roughly estimated at 100 billion gallons. Storage below sea level is indeterminable, owing to uncertainties about the ability of the rock to store water as dike density increases and porosity decreases. Tunnels, by breaching dike controls, have reduced the water stored above sea level by at least 50 billion gallons in the Koolau Range and by 5 1/2 billion gallons in the Waianae Range, only a small part of the total water stored. Total leakage from storage in the Koolau Range has been estimated at about 280 Mgal/d (million gallons per day). This estimated leakage from the dike-impounded reservoirs makes up a significant part of the ground-water yield of the Koolau Range, which has been estimated to range from 450 to 580 Mgal/d. The largest unused surface leakage is in the Kaneohe, Kahana, and Punaluu areas, and the largest unused underflow occurs in the Waialee, Hauula-Laie, Punaluu, and Kahana areas. The unused underflow leakage is small in areas near and east of Waialae, but it is an important supply because of the great need for augmenting water supplies there. Total leakage from storage in the Waianae Range has not been estimated because underflow is difficult to determine. Much of the surface leakage, about 4 Mgal/d in the upper parts of Waianae, Makaha, and Lualualei Valleys, has been diverted by tunnels. Hence, supplies available, other than surface leakage, cannot be estimated from the discharge end of the hydrologic cycle. Infiltration in the Waianae Range to dike-intruded reservoirs in the upper part of the valleys on the west (leeward) side has been estimated at about 20 Mgal/d, and on the east (windward) side, at about 10 Mgal/d. The available supply has been estimated at about 15 Mgal/d from the infiltration on the leeward side, of which about 4 Mgal/d is now being developed. No estimate has been made for the available supply on the windward side. Dike-intruded reservoirs at shallow depths west (lee side) of the crest are in upper Makaha, Waianae, and Lualualei Valleys. They are at moderate depths in upper Haleanu and in lower Kaukonahua Gulches on the east (windward) side. Flow hydraulics in dike tunnels is also discussed.

  1. Dynamics of limnological parameters in reservoirs: A case study in South Brazil using remote sensing and meteorological data.

    PubMed

    Breunig, Fábio Marcelo; Pereira Filho, Waterloo; Galvão, Lênio Soares; Wachholz, Flávio; Cardoso, Maria Angélica Gonçalves

    2017-01-01

    Reservoirs are important in Brazil for the production of hydroelectric power and human water consumption. The objective was to evaluate the variability of total suspended solids (TSS) and chlorophyll-a as well as the rainfall/temperature and land use impacts on these optically active constituents (OAC). The study area is the Passo Real reservoir in south Brazil. The methodology was divided in four steps. First, we used wavelet to detect anomalous periods of rainfall and temperature (2002-2014). Second, we carried out 12 field campaigns to obtain in situ measurements for limnological characterization (2009-2010). The third step was the analysis of Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra and Aqua satellites data corrected and non-corrected for bidirectional effects. Finally, we evaluated potential drivers of OAC changes over time using cross-correlation analysis. The results showed a decrease in the TSS and chlorophyll-a concentrations from the upper to the lower streams of the reservoir. The exponential regression between the MODIS red reflectance and TSS had an adjusted r 2 of 0.63. It decreased to 0.53 for the relationship between the green reflectance and chlorophyll-a. MODIS data corrected for bidirectional effects provided better OAC estimates than non-corrected data. The validation of MODIS TSS and chlorophyll-a estimates using a separate set of measurements showed a RMSE of 2.98mg/l and 2.33μg/l, respectively. MODIS estimates indicated a gradual transition in OAC from the upper to the lower streams in agreement with the patterns observed using field limnological data. The analysis of land use (greenness) showed two well-defined crop cycles per year. The highest seasonal concentrations of TSS and chlorophyll-a were observed in December and the lowest concentrations in April. Despite the interrelationships between both factors, our cross-correlation analysis indicated that the great concentrations of TSS and chlorophyll-a were primarily controlled by rainfall and secondarily by land use. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Net Greenhouse Gas Emissions at the Eastmain 1 Reservoir, Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Strachan, I. B.; Tremblay, A.; Bastien, J.; Bonneville, M.; Del Georgio, P.; Demarty, M.; Garneau, M.; Helie, J.; Pelletier, L.; Prairie, Y.; Roulet, N. T.; Teodoru, C. R.

    2010-12-01

    Canada has much potential to increase its already large use of hydroelectricity for energy production. However, hydroelectricity production in many cases requires the creation of reservoirs that inundate terrestrial ecosystems. While it has been reasonably well established that reservoirs emit GHGs, it has not been established what the net difference between the landscape scale exchange of GHGs would be before and after reservoir creation. Further, there is no indication of how that net difference may change over time from when the reservoir was first created to when it reaches a steady-state condition. A team of University and private sector researchers in partnership with Hydro-Québec has been studying net GHG emissions from the Eastmain 1 reservoir located in the boreal forest region of Québec, Canada. Net emissions are defined as those emitted following the creation of a reservoir minus those that would have been emitted or absorbed by the natural systems over a 100-year period in the absence of the reservoir. Sedimentation rates, emissions at the surface of the reservoir and natural water bodies, the degassing emissions downstream of the power house as well as the emissions/absorption of the natural ecosystems (forest, peatlands, lakes, streams and rivers) before and after the impoundment were measured using different techniques (Eddy covariance, floating chambers, automated systems, etc.). This project provides the first measurements of CO2 and CH4 between a new boreal reservoir and the atmosphere as the reservoir is being created, the development of the methodology to obtain these, and the first attempt at approaching the GHGs emissions from northern hydroelectric reservoirs as a land cover change issue. We will therefore provide: an estimate of the change in GHG source the atmosphere would see; an estimate of the net emissions that can be used for intercomparison of GHG contributions with other modes of power production; and a basis on which to develop biogeochemical sound, verifiable, and transparent estimates for GHG accounting. The results of the mass balance for this boreal reservoir from 2005 to 2009 as well as an extrapolation over 100 years will be presented.

  3. Monitoring compaction and compressibility changes in offshore chalk reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, G.; Hardy, R.; Eltvik, P.

    1994-03-01

    Some of the North Sea's largest and most important oil fields are in chalk reservoirs. In these fields, it is important to measure reservoir compaction and compressibility because compaction can result in platform subsidence. Also, compaction drive is a main drive mechanism in these fields, so an accurate reserves estimate cannot be made without first measuring compressibility. Estimating compaction and reserves is difficult because compressibility changes throughout field life. Installing of accurate, permanent downhole pressure gauges on offshore chalk fields makes it possible to use a new method to monitor compressibility -- measurement of reservoir pressure changes caused by themore » tide. This tidal-monitoring technique is an in-situ method that can greatly increase compressibility information. It can be used to estimate compressibility and to measure compressibility variation over time. This paper concentrates on application of the tidal-monitoring technique to North Sea chalk reservoirs. However, the method is applicable for any tidal offshore area and can be applied whenever necessary to monitor in-situ rock compressibility. One such application would be if platform subsidence was expected.« less

  4. Prediction of the flooding of a mining reservoir in NW Spain.

    PubMed

    Álvarez, R; Ordóñez, A; De Miguel, E; Loredo, C

    2016-12-15

    Abandoned and flooded mines constitute underground reservoirs which must be managed. When pumping is stopped in a closed mine, the process of flooding should be anticipated in order to avoid environmentally undesirable or unexpected mine water discharges at the surface, particularly in populated areas. The Candín-Fondón mining reservoir in Asturias (NW Spain) has an estimated void volume of 8 million m 3 and some urban areas are susceptible to be flooded if the water is freely released from the lowest mine adit/pithead. A conceptual model of this reservoir was undertaken and the flooding process was numerically modelled in order to estimate the time that the flooding would take. Additionally, the maximum safe height for the filling of the reservoir is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, D.S.

    The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should havemore » temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.« less

  6. Reservoir controls on the occurrence and production of gas hydrates in nature

    USGS Publications Warehouse

    Collett, Timothy Scott

    2014-01-01

    modeling has shown that concentrated gas hydrate occurrences in sand reservoirs are conducive to existing well-based production technologies. The resource potential of gas hydrate accumulations in sand-dominated reservoirs have been assessed for several polar terrestrial basins. In 1995, the U.S. Geological Survey (USGS) assigned an in-place resource of 16.7 trillion cubic meters of gas for hydrates in sand-dominated reservoirs on the Alaska North Slope. In a more recent assessment, the USGS indicated that there are about 2.42 trillion cubic meters of technically recoverable gas resources within concentrated, sand-dominated, gas hydrate accumulations in northern Alaska. Estimates of the amount of in-place gas in the sand dominated gas hydrate accumulations of the Mackenzie Delta Beaufort Sea region of the Canadian arctic range from 1.0 to 10 trillion cubic meters of gas. Another prospective gas hydrate resources are those of moderate-to-high concentrations within sandstone reservoirs in marine environments. In 2008, the Bureau of Ocean Energy Management estimated that the Gulf of Mexico contains about 190 trillion cubic meters of gas in highly concentrated hydrate accumulations within sand reservoirs. In 2008, the Japan Oil, Gas and Metals National Corporation reported on a resource assessment of gas hydrates in which they estimated that the volume of gas within the hydrates of the eastern Nankai Trough at about 1.1 trillion cubic meters, with about half concentrated in sand reservoirs. Because conventional production technologies favor sand-dominated gas hydrate reservoirs, sand reservoirs are considered to be the most viable economic target for gas hydrate production and will be the prime focus of most future gas hydrate exploration and development projects.

  7. The optimized log interpretation method and sweet-spot prediction of gas-bearing shale reservoirs

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Bai, Ze; Xu, Jingjing

    2017-04-01

    Shale gas is one of the most important unconventional oil and gas resources, and its lithology and reservoir type are both different from conventional reservoirs [1,2]. "Where are shale reservoirs" "How to determine the hydrocarbon potential" "How to evaluate the reservoir quality", these are some key problems in front of geophysicists. These are sweet spots prediction and quantitative evaluation. As we known, sweet spots of organic shale include geological sweet spot and engineering sweet spot. Geophysical well logging can provide a lot of in-site formation information along the borehole, and all parameters describing the sweet spots of organic shale are attained by geophysical log interpretation[2]. Based on geological and petrophysical characteristics of gas shale, the log response characteristics of gas shales are summarized. Geological sweet spot includes hydrocarbon potential, porosity, fracture, water saturation and total gas content, which can be calculated by using wireline logs[3]. Firstly, the based-logging hydrocarbon potential evaluation is carried out, and the RBF neural network method is developed to estimate the total organic carbon content (TOC), which was proved more effective and suitable than empirical formula and ΔlogR methods [4]. Next, the optimized log interpretation is achieved by using model-searching, and the mineral concentrations of kerogen, clay, feldspar and pyrite and porosity are calculated. On the other hand, engineering sweet spot of shale refers to the rock physical properties and rock mechanism parameters. Some elastic properties including volume module, shear modulus and Poisson's ratio are correspondingly determined from log interpretation, and the brittleness index (BI), effective stress and pore pressure are also estimated. BI is one of the most important engineering sweet spot parameters. A large number of instances show that the summarized log responses can accurately identify the gas-bearing shale, and the proposed RBF method for TOC prediction has more suitable and flexibility. The mineral contents and porosity from the optimized log interpretation are in good agreement with core XRD experiment and other core experiments. In some polite wells of Jiaoshiba area, china, some parameters in Wufeng-Longmaxi formation are calculated, and geological and engineering sweet spots are finally determined. For the best sweet spot, TOC is about 6%, the porosity is about 8%,the volume of kerogen is about 3%, total gas content is 8m3/t, and the brittleness index is about 90%, and the minimum and maximum horizon stress are about 30MPa and 45 MPa. Therefore, the optimized log interpretation provide an important support for sweet spots prediction and quantitative evaluation of shale gas. References: [1] Sondergeld CH, Ambrose RJ, Rai CS, Moncrieff J. Micro-structure studies of gas shales: in SPE 2012; 131771: 150-166. [2] Ellis D V, Singer J M. 2012. Well Logging for Earth Scientists (2rd edition): Springer Press. [3]Fertl W H, Chillngar G V. 1988. Total organic carbon content determined from well logs: SPE formation evaluation, 407-419. [4] Tan M J, Liu Q, and Zhang S. 2002. A dynamic adaptive radial basis function approach for total organic carbon content prediction in organic shale. Geophysics, 2013, 78(6): 445-459. Acknowledgments: This paper is sponsored by National Natural Science Foundation of China (U1403191, 41172130), the Fundamental Research Funds for the Central Universities (292015209), and National Major Projects "Development of Major Oil& Gas Fields and Coal Bed Methane" (2016ZX05014-001).

  8. Estimating Western U.S. Reservoir Sedimentation

    NASA Astrophysics Data System (ADS)

    Bensching, L.; Livneh, B.; Greimann, B. P.

    2017-12-01

    Reservoir sedimentation is a long-term problem for water management across the Western U.S. Observations of sedimentation are limited to reservoir surveys that are costly and infrequent, with many reservoirs having only two or fewer surveys. This work aims to apply a recently developed ensemble of sediment algorithms to estimate reservoir sedimentation over several western U.S. reservoirs. The sediment algorithms include empirical, conceptual, stochastic, and processes based approaches and are coupled with a hydrologic modeling framework. Preliminary results showed that the more complex and processed based algorithms performed better in predicting high sediment flux values and in a basin transferability experiment. However, more testing and validation is required to confirm sediment model skill. This work is carried out in partnership with the Bureau of Reclamation with the goal of evaluating the viability of reservoir sediment yield prediction across the western U.S. using a multi-algorithm approach. Simulations of streamflow and sediment fluxes are validated against observed discharges, as well as a Reservoir Sedimentation Information database that is being developed by the US Army Corps of Engineers. Specific goals of this research include (i) quantifying whether inter-algorithm differences consistently capture observational variability; (ii) identifying whether certain categories of models consistently produce the best results, (iii) assessing the expected sedimentation life-span of several western U.S. reservoirs through long-term simulations.

  9. EQUILGAS: Program to estimate temperatures and in situ two-phase conditions in geothermal reservoirs using three combined FT-HSH gas equilibria models

    NASA Astrophysics Data System (ADS)

    Barragán, Rosa María; Núñez, José; Arellano, Víctor Manuel; Nieva, David

    2016-03-01

    Exploration and exploitation of geothermal resources require the estimation of important physical characteristics of reservoirs including temperatures, pressures and in situ two-phase conditions, in order to evaluate possible uses and/or investigate changes due to exploitation. As at relatively high temperatures (>150 °C) reservoir fluids usually attain chemical equilibrium in contact with hot rocks, different models based on the chemistry of fluids have been developed that allow deep conditions to be estimated. Currently either in water-dominated or steam-dominated reservoirs the chemistry of steam has been useful for working out reservoir conditions. In this context, three methods based on the Fischer-Tropsch (FT) and combined H2S-H2 (HSH) mineral-gas reactions have been developed for estimating temperatures and the quality of the in situ two-phase mixture prevailing in the reservoir. For these methods the mineral buffers considered to be controlling H2S-H2 composition of fluids are as follows. The pyrite-magnetite buffer (FT-HSH1); the pyrite-hematite buffer (FT-HSH2) and the pyrite-pyrrhotite buffer (FT-HSH3). Currently from such models the estimations of both, temperature and steam fraction in the two-phase fluid are obtained graphically by using a blank diagram with a background theoretical solution as reference. Thus large errors are involved since the isotherms are highly nonlinear functions while reservoir steam fractions are taken from a logarithmic scale. In order to facilitate the use of the three FT-HSH methods and minimize visual interpolation errors, the EQUILGAS program that numerically solves the equations of the FT-HSH methods was developed. In this work the FT-HSH methods and the EQUILGAS program are described. Illustrative examples for Mexican fields are also given in order to help the users in deciding which method could be more suitable for every specific data set.

  10. Near real-time estimation of the seismic source parameters in a compressed domain

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ismael A. Vera

    Seismic events can be characterized by its origin time, location and moment tensor. Fast estimations of these source parameters are important in areas of geophysics like earthquake seismology, and the monitoring of seismic activity produced by volcanoes, mining operations and hydraulic injections in geothermal and oil and gas reservoirs. Most available monitoring systems estimate the source parameters in a sequential procedure: first determining origin time and location (e.g., epicentre, hypocentre or centroid of the stress glut density), and then using this information to initialize the evaluation of the moment tensor. A more efficient estimation of the source parameters requires a concurrent evaluation of the three variables. The main objective of the present thesis is to address the simultaneous estimation of origin time, location and moment tensor of seismic events. The proposed method displays the benefits of being: 1) automatic, 2) continuous and, depending on the scale of application, 3) of providing results in real-time or near real-time. The inversion algorithm is based on theoretical results from sparse representation theory and compressive sensing. The feasibility of implementation is determined through the analysis of synthetic and real data examples. The numerical experiments focus on the microseismic monitoring of hydraulic fractures in oil and gas wells, however, an example using real earthquake data is also presented for validation. The thesis is complemented with a resolvability analysis of the moment tensor. The analysis targets common monitoring geometries employed in hydraulic fracturing in oil wells. Additionally, it is presented an application of sparse representation theory for the denoising of one-component and three-component microseismicity records, and an algorithm for improved automatic time-picking using non-linear inversion constraints.

  11. The Aplication of Landsat 8 OLI for Total Suspended Solid (TSS) Mapping in Gajahmungkur Reservoir Wonogiri Regency 2016

    NASA Astrophysics Data System (ADS)

    Yanti, Apriwida; Susilo, Bowo; Wicaksono, Pramaditya

    2016-11-01

    Gajahmungkur reservoir is administratively located in Wonogiri Regency, Central Java, with the main function as a flood control in the upstream of Bengawan Solo River. Other functions of the reservoir are as hydroelectric power plant (PLTA), water supply, irrigation, fisheries and tourism. Economic utilization of the reservoir is estimated until 100 years, but it is begun to be threatened by the silting of the reservoir. Eroded materials entering water body will be suspended and accumulated. Suspended Material or TSS (Total Suspended Solid) will increase the turbidity of water, which can affect the quality of water and silting the reservoir. Remote sensing technology can be used to determine the spatial distribution of TSS. The purposes of this study were to 1) utilize and compare the accuracy of single band Landsat 8 OLI for mapping the spatial distribution of TSS and 2) estimate the TSS on Gajahmungkur reservoir surface waters up to the depth of 30 cm. The method used for modelling the TSS spatial distribution is the empirical modelling that integrates image pixel values and field data using correlation analysis and regression analysis. The data used in the empirical modelling are single band of visible, NIR, and SWIR of Landsat 8 OLI, which was acquired on 8 May 2016, and field-measured TSS values based on the field data collection conducted on 12 April 2016. The results revealed that mapping the distribution and the estimated value of TSS in Reservoir Gajahmungkur can be performed more accurately using band 4 (red band). The determinant coefficient between TSS field and TSS value of image using band 4 is 0.5431. The Standard Error (SE) of the predicted TSS value is 16.16 mg/L. The results also showed that the estimated total TSS of May 2016 according to band 4 is 1.087,56 tons. The average estimation of TSS value in up to the depth of 30 cm is 61.61 mg/L. The highest TSS distribution is in the northern parts, which was dominated by eroded materials from Keduang River.

  12. Carbon stock estimation in the catchment of Kotli Bhel 1A hydroelectric reservoir, Uttarakhand, India.

    PubMed

    Kumar, Amit; Sharma, M P

    2016-12-01

    Constructions of dams/reservoirs all over the world are reported to emit significant amount of greenhouse gases (GHGs) and are considered as environmental polluters. Organic carbon is contributed by the forest in the catchment, part of soil organic carbon is transported through the runoffs to the reservoir and undergoes aerobic and anaerobic degradation with time to release GHGs to the atmosphere. Literature reveals that no work is available on the estimation of 'C' stock of trees of forest catchment for assessing/predicting the GHGs emissions from the reservoirs to atmosphere. To assess the GHGs emission potential of the reservoir, an attempt is made in the study to estimate the 'C' stock in the forest catchment of Kotli Bhel 1A hydroelectric reservoir located in Tehri Garhwal district of Uttarakhand, India. For this purpose, the selected area was categorized into the site-I, II and III along the Bhagirathi River based on type of forest available in the catchment. The total carbon density (TCD) of tree species of different forest types was calculated using diameter at breast height (dbh) and trees height. The results found that the TCD of forest catchment was found 76.96MgCha -1 as the highest at the site-II and 29.93MgCha -1 as lowest at site-I with mean of 51.50MgCha -1 . The estimated forest 'C' stock shall be used to know the amount of carbon present before and after construction of the dam and to predict net GHGs emissions. The results may be helpful to study the potential of a given reservoir to release GHG and its subsequent impacts on global warming/climate challenges. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Sedimentation Survey of Lago Icacos, Puerto Rico, March 2004

    USGS Publications Warehouse

    Soler-López, Luis R.

    2007-01-01

    The Lago Icacos, a small reservoir built in 1930 and owned by the Puerto Rico Electric Power Authority, is part of the Rio Blanco Hydroelectric Power System. The reservoir is located in Naguabo, within the Caribbean National Forest in eastern Puerto Rico. The original storage capacity of the reservoir was 19,119 cubic meters in 1930. The bathymetric survey conducted by the U.S. Geological Survey in March 2004 indicates a storage capacity of 7,435 cubic meters or 39 percent of the original storage capacity, and a maximum depth of 5.3 meters. The reservoir has been dredged several times to restore lost storage capacity caused by high sediment loads and the frequent landslides that occur upstream from the dam, which have partially or completely filled the Lago Icacos. Because sediment removal activities have not been documented, sedimentation rates could not be determined using storage volume comparisons. A reservoir sedimentation rate was calculated using the daily sediment load data gathered at the U.S. Geological Survey Rio Icacos streamflow station upstream of the reservoir, the estimated Lago Icacos sediment trapping efficiency, and the estimated sediment yield of the Lago Icacos basin extrapolated from the Rio Icacos sediment load data. Using these properties, the Lago Icacos sedimentation rate was estimated as 71 cubic meters per year, equivalent to about 1 percent of the original storage capacity per year. The Lago Icacos 7.47-square-kilometer drainage area sediment yield was estimated as 7,126 tonnes per year or about 954 tonnes per square kilometer per year. Based on the current estimated sedimentation rate of 71 cubic meters per year, Lago Icacos has a useful life of about 105 years or to year 2109.

  14. Reservoir evaluation of thin-bedded turbidites and hydrocarbon pore thickness estimation for an accurate quantification of resource

    NASA Astrophysics Data System (ADS)

    Omoniyi, Bayonle; Stow, Dorrik

    2016-04-01

    One of the major challenges in the assessment of and production from turbidite reservoirs is to take full account of thin and medium-bedded turbidites (<10cm and <30cm respectively). Although such thinner, low-pay sands may comprise a significant proportion of the reservoir succession, they can go unnoticed by conventional analysis and so negatively impact on reserve estimation, particularly in fields producing from prolific thick-bedded turbidite reservoirs. Field development plans often take little note of such thin beds, which are therefore bypassed by mainstream production. In fact, the trapped and bypassed fluids can be vital where maximising field value and optimising production are key business drivers. We have studied in detail, a succession of thin-bedded turbidites associated with thicker-bedded reservoir facies in the North Brae Field, UKCS, using a combination of conventional logs and cores to assess the significance of thin-bedded turbidites in computing hydrocarbon pore thickness (HPT). This quantity, being an indirect measure of thickness, is critical for an accurate estimation of original-oil-in-place (OOIP). By using a combination of conventional and unconventional logging analysis techniques, we obtain three different results for the reservoir intervals studied. These results include estimated net sand thickness, average sand thickness, and their distribution trend within a 3D structural grid. The net sand thickness varies from 205 to 380 ft, and HPT ranges from 21.53 to 39.90 ft. We observe that an integrated approach (neutron-density cross plots conditioned to cores) to HPT quantification reduces the associated uncertainties significantly, resulting in estimation of 96% of actual HPT. Further work will focus on assessing the 3D dynamic connectivity of the low-pay sands with the surrounding thick-bedded turbidite facies.

  15. Comparative precision of age estimates from two southern reservoir populations of paddlefish [Polyodon spathula (Walbaum, 1792)

    USGS Publications Warehouse

    Long, James M.; Nealis, Ashley

    2017-01-01

    The aim of the study was to determine whether location and sex affected the age precision estimates between two southern, reservoir populations of paddlefish [Polyodon spathula (Walbaum, 1792)]. From 589 paddlefish collected in Grand Lake and Keystone Lake, Oklahoma in 2011, ages from dentaries were estimated using three independent readers and precision was compared with coefficient of variation between locations and sexes. Ages were more precisely estimated from Grand Lake and from females.

  16. Reliability of reservoir firm yield determined from the historical drought of record

    USGS Publications Warehouse

    Archfield, S.A.; Vogel, R.M.

    2005-01-01

    The firm yield of a reservoir is typically defined as the maximum yield that could have been delivered without failure during the historical drought of record. In the future, reservoirs will experience droughts that are either more or less severe than the historical drought of record. The question addressed here is what the reliability of such systems will be when operated at the firm yield. To address this question, we examine the reliability of 25 hypothetical reservoirs sited across five locations in the central and western United States. These locations provided a continuous 756-month streamflow record spanning the same time interval. The firm yield of each reservoir was estimated from the historical drought of record at each location. To determine the steady-state monthly reliability of each firm-yield estimate, 12,000-month synthetic records were generated using the moving-blocks bootstrap method. Bootstrapping was repeated 100 times for each reservoir to obtain an average steady-state monthly reliability R, the number of months the reservoir did not fail divided by the total months. Values of R were greater than 0.99 for 60 percent of the study reservoirs; the other 40 percent ranged from 0.95 to 0.98. Estimates of R were highly correlated with both the level of development (ratio of firm yield to average streamflow) and average lag-1 monthly autocorrelation. Together these two predictors explained 92 percent of the variability in R, with the level of development alone explaining 85 percent of the variability. Copyright ASCE 2005.

  17. Geodetic measurements and numerical models of the Afar rifting sequence 2005-2010

    NASA Astrophysics Data System (ADS)

    Ali, T.; Feigl, K.; Calais, E.; Hamling, I. J.; Wright, T. J.

    2012-12-01

    Rifting episodes are characterized by magma migration and dike intrusions that perturb the stress field within the surrounding lithosphere, inducing viscous flow in the lower crust and upper mantle that leads to observable, transient surface deformation. The Manda Hararo-Dabbahu rifting episode that occurred in the Afar depression between 2005 and 2010 is the first such episode to unfold fully in the era of satellite geodesy, thus providing a unique opportunity to probe the rheology of lithosphere at a divergent plate boundary. GPS and SAR measurements over the region since 2005 show accelerated surface deformation rates during post-diking intervals [Wright et al., Nature Geosci., 2012]. Using these observations in combination with a numerical model, we estimate model parameters that best explain the deformation signal. Our model accounts for three distinct processes: (i) secular plate spreading between Nubian and Arabian plates, (ii) time dependent post-rifting viscoelastic relaxation following the 14 dike intrusions that occurred between 2005 and 2010, including the 60 km long mega dike intrusion of September 2005, and (iii) magma accumulation within crustal reservoirs that feed the dikes. To model the time dependent deformation field, we use the open-source unstructured finite element code, Defmod [Ali, 2011, http://defmod.googlecode.com/]. Using a gradient-based iterative scheme [Ali and Feigl, Geochem. Geophys. Geosyst., 2012], we optimize the fit between observed and modeled deformation to estimate parameters in the model, including the locking depth of the rift zone, geometry and depth of magma reservoirs and rheological properties of lower crust and upper mantle, along with their formal uncertainties.

  18. Estimation of Uncertainties in Stage-Discharge Curve for an Experimental Himalayan Watershed

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Sen, S.

    2016-12-01

    Various water resource projects developed on rivers originating from the Himalayan region, the "Water Tower of Asia", plays an important role on downstream development. Flow measurements at the desired river site are very critical for river engineers and hydrologists for water resources planning and management, flood forecasting, reservoir operation and flood inundation studies. However, an accurate discharge assessment of these mountainous rivers is costly, tedious and frequently dangerous to operators during flood events. Currently, in India, discharge estimation is linked to stage-discharge relationship known as rating curve. This relationship would be affected by a high degree of uncertainty. Estimating the uncertainty of rating curve remains a relevant challenge because it is not easy to parameterize. Main source of rating curve uncertainty are errors because of incorrect discharge measurement, variation in hydraulic conditions and depth measurement. In this study our objective is to obtain best parameters of rating curve that fit the limited record of observations and to estimate uncertainties at different depth obtained from rating curve. The rating curve parameters of standard power law are estimated for three different streams of Aglar watershed located in lesser Himalayas by maximum-likelihood estimator. Quantification of uncertainties in the developed rating curves is obtained from the estimate of variances and covariances of the rating curve parameters. Results showed that the uncertainties varied with catchment behavior with error varies between 0.006-1.831 m3/s. Discharge uncertainty in the Aglar watershed streams significantly depend on the extent of extrapolation outside the range of observed water levels. Extrapolation analysis confirmed that more than 15% for maximum discharges and 5% for minimum discharges are not strongly recommended for these mountainous gauging sites.

  19. Comparative analysis of hydroacoustic lakebed classification in three different Brazilian reservoirs

    NASA Astrophysics Data System (ADS)

    Hilgert, Stephan; Sotiri, Klajdi; Fuchs, Stephan

    2017-04-01

    Until today, the surface of artificial water bodies around the world reached an area of around 500,000 km2 equaling one third of the surface of natural water bodies. Most of the constructed waster bodies are reservoirs with a variety of usage purposes, reaching from drinking water supply, electricity production, flood protection to recreation. All reservoirs have in common, that they disrupt riverine systems and their biochemical cycles and promote the accumulation of sediments upstream of the dam. The accumulated sediments contain organic matter, nutrients and/or pollutants which have a direct influence on the water quality within the impoundment. Consequently, detailed knowledge about the amount and the quality of accumulated sediments is an essential information for reservoir management. In many cases the extensive areas covered by the impoundments make it difficult and expensive to assess sediment characteristics with a high spatial resolution. Spatial extrapolations and mass balances based on point information may suffer from strong deviations. We combined sediment point measurements (core and grab sampling) with hydroacoustic sediment classification in order to precisely map sediment parameters. Three different reservoirs (Vossoroca, Capivari, Passauna) in the south-east of Brazil were investigated between 2011 and 2015. A single beam echosounder (EA 400, Kongsberg) with two frequencies (200 & 38 kHz) was used for the hydroacoustic classification. Over 50 core samples and 30 grab samples were taken for physical and chemical analysis to serve as ground truthing of the hydroacoustic measurements. All three reservoirs were covered with dense measurement transects allowing for a lakebed classification of the entire sediment surface. Significant correlations of physical parameters like grain size distribution and density as well chemical parameters like organic carbon content and total phosphorous with a selection of hydroacoustic parameters were obtained. They enabled the derivation of empiric models used for the extrapolation of the sediment point information to the entire reservoir surface. With the obtained spatial information carbon and phosphorous budgets were calculated. Former stock calculations, which were based solely on point sampling, could be improved The results show that the method is transferable to different reservoirs with varying characteristics in regard of their catchments, morphology and trophic state.

  20. Estimating accumulation rates and physical properties of sediment behind a dam: Englebright Lake, Yuba River, northern California

    USGS Publications Warehouse

    Snyder, Noah P.; Rubin, David M.; Alpers, Charles N.; Childs, Jonathan R.; Curtis, Jennifer A.; Flint, Lorraine E.; Wright, Scott A.

    2004-01-01

    Studies of reservoir sedimentation are vital to understanding scientific and management issues related to watershed sediment budgets, depositional processes, reservoir operations, and dam decommissioning. Here we quantify the mass, organic content, and grain-size distribution of a reservoir deposit in northern California by two methods of extrapolating measurements of sediment physical properties from cores to the entire volume of impounded material. Englebright Dam, completed in 1940, is located on the Yuba River in the Sierra Nevada foothills. A research program is underway to assess the feasibility of introducing wild anadromous fish species to the river upstream of the dam. Possible management scenarios include removing or lowering the dam, which could cause downstream transport of stored sediment. In 2001 the volume of sediments deposited behind Englebright Dam occupied 25.5% of the original reservoir capacity. The physical properties of this deposit were calculated using data from a coring campaign that sampled the entire reservoir sediment thickness (6–32 m) at six locations in the downstream ∼3/4 of the reservoir. As a result, the sediment in the downstream part of the reservoir is well characterized, but in the coarse, upstream part of the reservoir, only surficial sediments were sampled, so calculations there are more uncertain. Extrapolation from one-dimensional vertical sections of sediment sampled in cores to entire three-dimensional volumes of the reservoir deposit is accomplished via two methods, using assumptions of variable and constant layer thickness. Overall, the two extrapolation methods yield nearly identical estimates of the mass of the reservoir deposit of ∼26 × 106 metric tons (t) of material, of which 64.7–68.5% is sand and gravel. Over the 61 year reservoir history this corresponds to a maximum basin-wide sediment yield of ∼340 t/km2/yr, assuming no contribution from upstream parts of the watershed impounded by other dams. The uncertainties and limitations of the estimates of overall sediment quantities are discussed. Implications for watershed management and future reservoir sedimentation studies are also presented.

  1. Hydraulic characterization of aquifers, reservoir rocks, and soils: A history of ideas

    NASA Astrophysics Data System (ADS)

    Narasimhan, T. N.

    1998-01-01

    Estimation of the hydraulic properties of aquifers, petroleum reservoir rocks, and soil systems is a fundamental task in many branches of Earth sciences and engineering. The transient diffusion equation proposed by Fourier early in the 19th century for heat conduction in solids constitutes the basis for inverting hydraulic test data collected in the field to estimate the two basic parameters of interest, namely, hydraulic conductivity and hydraulic capacitance. Combining developments in fluid mechanics, heat conduction, and potential theory, the civil engineers of the 19th century, such as Darcy, Dupuit, and Forchheimer, solved many useful problems of steady state seepage of water. Interest soon shifted towards the understanding of the transient flow process. The turn of the century saw Buckingham establish the role of capillary potential in governing moisture movement in partially water-saturated soils. The 1920s saw remarkable developments in several branches of the Earth sciences; Terzaghi's analysis of deformation of watersaturated earth materials, the invention of the tensiometer by Willard Gardner, Meinzer's work on the compressibility of elastic aquifers, and the study of the mechanics of oil and gas reservoirs by Muskat and others. In the 1930s these led to a systematic analysis of pressure transients from aquifers and petroleum reservoirs through the work of Theis and Hurst. The response of a subsurface flow system to a hydraulic perturbation is governed by its geometric attributes as well as its material properties. In inverting field data to estimate hydraulic parameters, one makes the fundamental assumption that the flow geometry is known a priori. This approach has generally served us well in matters relating to resource development primarily concerned with forecasting fluid pressure declines. Over the past two decades, Earth scientists have become increasingly concerned with environmental contamination problems. The resolution of these problems requires that hydraulic characterization be carried out at a much finer spatial scale, for which adequate information on geometric detail is not forthcoming. Traditional methods of interpretation of field data have relied heavily on analytic solutions to specific, highly idealized initial-value problems. The availability of efficient numerical models and versatile spreadsheets of personal computers offer promising opportunities to relax many unavoidable assumptions of analytical solutions and interpret field data much more generally and with fewer assumptions. Currently, a lot of interest is being devoted to the characterization of permeability. However, all groundwater systems are transient on appropriate timescales. The dynamics of groundwater systems cannot be understood without paying attention to capacitance. Much valuable insights about the dynamic attributes of groundwater systems could be gained by long-term passive monitoring of responses of groundwater systems to barometric changes, Earth tides, and ocean tides.

  2. Calibration of a turbidity meter for making estimates of total suspended solids concentrations and beam attenuation coefficients in field experiments

    NASA Technical Reports Server (NTRS)

    Usry, J. W.; Whitlock, C. H.

    1981-01-01

    Management of water resources such as a reservoir requires using analytical models which describe such parameters as the suspended sediment field. To select or develop an appropriate model requires making many measurements to describe the distribution of this parameter in the water column. One potential method for making those measurements expeditiously is to measure light transmission or turbidity and relate that parameter to total suspended solids concentrations. An instrument which may be used for this purpose was calibrated by generating curves of transmission measurements plotted against measured values of total suspended solids concentrations and beam attenuation coefficients. Results of these experiments indicate that field measurements made with this instrument using curves generated in this study should correlate with total suspended solids concentrations and beam attenuation coefficients in the water column within 20 percent.

  3. Value of Information Analysis for Time-lapse Seismic Data by Simulation-Regression

    NASA Astrophysics Data System (ADS)

    Dutta, G.; Mukerji, T.; Eidsvik, J.

    2016-12-01

    A novel method to estimate the Value of Information (VOI) of time-lapse seismic data in the context of reservoir development is proposed. VOI is a decision analytic metric quantifying the incremental value that would be created by collecting information prior to making a decision under uncertainty. The VOI has to be computed before collecting the information and can be used to justify its collection. Previous work on estimating the VOI of geophysical data has involved explicit approximation of the posterior distribution of reservoir properties given the data and then evaluating the prospect values for that posterior distribution of reservoir properties. Here, we propose to directly estimate the prospect values given the data by building a statistical relationship between them using regression. Various regression techniques such as Partial Least Squares Regression (PLSR), Multivariate Adaptive Regression Splines (MARS) and k-Nearest Neighbors (k-NN) are used to estimate the VOI, and the results compared. For a univariate Gaussian case, the VOI obtained from simulation-regression has been shown to be close to the analytical solution. Estimating VOI by simulation-regression is much less computationally expensive since the posterior distribution of reservoir properties given each possible dataset need not be modeled and the prospect values need not be evaluated for each such posterior distribution of reservoir properties. This method is flexible, since it does not require rigid model specification of posterior but rather fits conditional expectations non-parametrically from samples of values and data.

  4. Factors influencing the contents of metals and as in soils around the watershed of Guanting Reservoir, China.

    PubMed

    Xu, Li; Wang, Tieyu; Luo, Wei; Ni, Kun; Liu, Shijie; Wang, Lin; Li, Qiushuang; Lu, Yonglong

    2013-03-01

    Topsoil samples from 61 sites around the Guanting Reservoir, China, were measured for Cu, Zn, Cr, Ni, Cd, Pb and As concentrations. The mean concentrations of Cu, Zn, Cr, Ni, Cd, Pb and As were 16.8, 59.4, 37.8, 18.3, 0.32, 20.1 and 8.67 mg/kg dry weight, respectively. Factors that influence the dynamics of these metals in soils around the watersheds of Beijing reservoirs were examined. The influence of atmospheric deposition, land use, soil texture, soil type and soil chemical parameters on metal contents in soils was investigated. Atmospheric deposition, land use and soil texture were the important factors affecting heavy metal residues. Soil type and soil chemical parameters were also involved in heavy metal retention in soils. The data provided in this study are considered crucial for reservoir remediation, especially since the Guanting Reservoir will serve as one of the main drinking water sources for Beijing in the foreseeable future.

  5. Toward Automated Generation of Reservoir Water Elevation Changes From Satellite Radar Altimetry.

    NASA Astrophysics Data System (ADS)

    Okeowo, M. A.; Lee, H.; Hossain, F.

    2015-12-01

    Until now, processing satellite radar altimetry data over inland water bodies on a large scale has been a cumbersome task primarily due to contaminated measurements from their surrounding topography. It becomes more challenging if the size of the water body is small and thus the number of available high-rate measurements from the water surface is limited. A manual removal of outliers is time consuming which limits a global generation of reservoir elevation profiles. This has limited a global study of lakes and reservoir elevation profiles for monitoring storage changes and hydrologic modeling. We have proposed a new method to automatically generate a time-series information from raw satellite radar altimetry without user intervention. With this method, scientist with little knowledge of altimetry can now independently process radar altimetry for diverse purposes. The method is based on K-means clustering, backscatter coefficient and statistical analysis of the dataset for outlier detection. The result of this method will be validated using in-situ gauges from US, Indus and Bangladesh reservoirs. In addition, a sensitivity analysis will be done to ascertain the limitations of this algorithm based on the surrounding topography, and the length of altimetry track overlap with the lake/reservoir. ­­ Finally, a reservoir storage change will be estimated on the study sites using MODIS and Landsat water classification for estimating the area of reservoir and the height will be estimated using Jason-2 and SARAL/Altika satellites.

  6. Calculation of hydrocarbon-in-place in gas and gas-condensate reservoirs - Carbon dioxide sequestration

    USGS Publications Warehouse

    Verma, Mahendra K.

    2012-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2), requiring estimation of hydrocarbon-in-place volumes and formation volume factors for all the oil, gas, and gas-condensate reservoirs within the U.S. sedimentary basins. The procedures to calculate in-place volumes for oil and gas reservoirs have already been presented by Verma and Bird (2005) to help with the USGS assessment of the undiscovered resources in the National Petroleum Reserve, Alaska, but there is no straightforward procedure available for calculating in-place volumes for gas-condensate reservoirs for the carbon sequestration project. The objective of the present study is to propose a simple procedure for calculating the hydrocarbon-in-place volume of a condensate reservoir to help estimate the hydrocarbon pore volume for potential CO2 sequestration.

  7. Quick estimate of oil discovery from gas-condensate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarem, A.M.

    1966-10-24

    A quick method of estimating the depletion performance of gas-condensate reservoirs is presented by graphical representations. The method is based on correlations reported in the literature and expresses recoverable liquid as function of gas reserves, producing gas-oil ratio, and initial and final reservoir pressures. The amount of recoverable liquid reserves (RLR) under depletion conditions, is estimated from an equation which is given. Where the liquid-reserves are in stock-tank barrels the gas reserves are in Mcf, with the arbitrary constant, N calculated from one graphical representation by dividing fractional oil recovery by the initial gas-oil ratio and multiplying 10U6D for convenience.more » An equation is given for estimating the coefficient C. These factors (N and C) can be determined from the graphical representations. An example calculation is included.« less

  8. Risk assessment of drinking water in a reservoir contaminated by PAH's originated from road traffic.

    PubMed

    Ishimaru, T; Inouye, H; Morioka, T

    1990-04-01

    The loads of Polycyclic Aromatic Hydrocarbons (PAHs) originating from road traffic were measured and in units of per vehicle per meter was estimated as follows: 0.07 ng/veh.m for Benzo[a]pyrene, and 0.83 ng/veh.m for Dibenzanthracene and so on, and 5.77 ng/veh.m for total PAHs. This unit is applied to risk estimation of drinking water in a reservoir where it is planned to construct a new high way the near future, and the concentration in the reservoir water is estimated to be 3.3-101 ng/l for individual PAH's. Assuming standard oral exposure to PAHs in raw water for drinking water supply, the estimated lifetime risk of carcinogenesis was less than 1 in 10(6), which is not considered significant.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefeuvre, F.E.; Wrolstad, K.H.; Zou, Ke Shan

    Total and Unocal estimated sand-shale ratios in gas reservoirs from the upper Tertiary clastics of Myanmar. They separately used deterministic pre-stack and statistical post-stack seismic attribute analysis calibrated at two wells to objectively extrapolate the lithologies and reservoir properties several kilometers away from the wells. The two approaches were then integrated and lead to a unique distribution of the sands and shales in the reservoir which fit in the known regional geological model. For the sands, the fluid distributions (gas and brine) were also estimated as well as the porosity, water saturation, thickness and clay content of the sands. Thismore » was made possible by using precise elastic modeling based on the Biot-Gassmann equation in order to integrate the effects of reservoir properties on seismic signatures.« less

  10. Estimating probabilities of reservoir storage for the upper Delaware River basin

    USGS Publications Warehouse

    Hirsch, Robert M.

    1981-01-01

    A technique for estimating conditional probabilities of reservoir system storage is described and applied to the upper Delaware River Basin. The results indicate that there is a 73 percent probability that the three major New York City reservoirs (Pepacton, Cannonsville, and Neversink) would be full by June 1, 1981, and only a 9 percent probability that storage would return to the ' drought warning ' sector of the operations curve sometime in the next year. In contrast, if restrictions are lifted and there is an immediate return to normal operating policies, the probability of the reservoir system being full by June 1 is 37 percent and the probability that storage would return to the ' drought warning ' sector in the next year is 30 percent. (USGS)

  11. The reservoir model: a differential equation model of psychological regulation.

    PubMed

    Deboeck, Pascal R; Bergeman, C S

    2013-06-01

    Differential equation models can be used to describe the relationships between the current state of a system of constructs (e.g., stress) and how those constructs are changing (e.g., based on variable-like experiences). The following article describes a differential equation model based on the concept of a reservoir. With a physical reservoir, such as one for water, the level of the liquid in the reservoir at any time depends on the contributions to the reservoir (inputs) and the amount of liquid removed from the reservoir (outputs). This reservoir model might be useful for constructs such as stress, where events might "add up" over time (e.g., life stressors, inputs), but individuals simultaneously take action to "blow off steam" (e.g., engage coping resources, outputs). The reservoir model can provide descriptive statistics of the inputs that contribute to the "height" (level) of a construct and a parameter that describes a person's ability to dissipate the construct. After discussing the model, we describe a method of fitting the model as a structural equation model using latent differential equation modeling and latent distribution modeling. A simulation study is presented to examine recovery of the input distribution and output parameter. The model is then applied to the daily self-reports of negative affect and stress from a sample of older adults from the Notre Dame Longitudinal Study on Aging. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  12. The Reservoir Model: A Differential Equation Model of Psychological Regulation

    PubMed Central

    Deboeck, Pascal R.; Bergeman, C. S.

    2017-01-01

    Differential equation models can be used to describe the relationships between the current state of a system of constructs (e.g., stress) and how those constructs are changing (e.g., based on variable-like experiences). The following article describes a differential equation model based on the concept of a reservoir. With a physical reservoir, such as one for water, the level of the liquid in the reservoir at any time depends on the contributions to the reservoir (inputs) and the amount of liquid removed from the reservoir (outputs). This reservoir model might be useful for constructs such as stress, where events might “add up” over time (e.g., life stressors, inputs), but individuals simultaneously take action to “blow off steam” (e.g., engage coping resources, outputs). The reservoir model can provide descriptive statistics of the inputs that contribute to the “height” (level) of a construct and a parameter that describes a person's ability to dissipate the construct. After discussing the model, we describe a method of fitting the model as a structural equation model using latent differential equation modeling and latent distribution modeling. A simulation study is presented to examine recovery of the input distribution and output parameter. The model is then applied to the daily self-reports of negative affect and stress from a sample of older adults from the Notre Dame Longitudinal Study on Aging. PMID:23527605

  13. REGIONAL ASSESSMENT OF METHANE EMISSION RATES FROM RESERVOIRS IN THE MIDWESTERN UNITED STATES

    EPA Science Inventory

    Reservoirs are a globally significant source of methane (CH4) to the atmosphere, but regional and global emission estimates are poorly constrained due to high variability in emission rates among reservoirs and a lack of measurements in some areas geographic areas. Methane emissi...

  14. GLOBAL GREENHOUSE GAS EMISSIONS FROM RESERVOIRS: A MATTER OF METHANE

    EPA Science Inventory

    More than a decade ago, St. Louis et al. demonstrated that, collectively, manmade reservoirs play an important role in the global balance of greenhouse gases (GHGs). To update and build upon this important seminal work, we compiled reservoir CO2, CH4, and N2O flux estimates from...

  15. Three-dimensional audio-magnetotelluric sounding in monitoring coalbed methane reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Zhao, Shanshan; Hui, Jian; Qin, Qiming

    2017-03-01

    Audio-magnetotelluric (AMT) sounding is widely employed in rapid resistivity delineation of objective geometry in near surface exploration. According to reservoir patterns and electrical parameters obtained in Qinshui Basin, China, two-dimensional and three-dimensional synthetic "objective anomaly" models were designed and inverted with the availability of a modular system for electromagnetic inversion (ModEM). The results revealed that 3-D full impedance inversion yielded the subsurface models closest to synthetic models. One or more conductive targets were correctly recovered. Therefore, conductive aquifers in the study area, including hydrous coalbed methane (CBM) reservoirs, were suggested to be the interpretation signs for reservoir characterization. With the aim of dynamic monitoring of CBM reservoirs, the AMT surveys in continuous years (June 2013-May 2015) were carried out. 3-D inversion results demonstrated that conductive anomalies accumulated around the producing reservoirs at the corresponding depths if CBM reservoirs were in high water production rates. In contrast, smaller conductive anomalies were generally identical with rapid gas production or stopping production of reservoirs. These analyses were in accordance with actual production history of CBM wells. The dynamic traces of conductive anomalies revealed that reservoir water migrated deep or converged in axial parts and wings of folds, which contributed significantly to formations of CBM traps. Then the well spacing scenario was also evaluated based on the dynamic production analysis. Wells distributed near closed faults or flat folds, rather than open faults, had CBM production potential to ascertain stable gas production. Therefore, three-dimensional AMT sounding becomes an attractive option with the ability of dynamic monitoring of CBM reservoirs, and lays a solid foundation of quantitative evaluation of reservoir parameters.

  16. Escherichia coli Survival in, and Release from, White-Tailed Deer Feces

    PubMed Central

    Fry, Jessica; Ives, Rebecca L.; Rose, Joan B.

    2014-01-01

    White-tailed deer are an important reservoir for pathogens that can contribute a large portion of microbial pollution in fragmented agricultural and forest landscapes. The scarcity of experimental data on survival of microorganisms in and release from deer feces makes prediction of their fate and transport less reliable and development of efficient strategies for environment protection more difficult. The goal of this study was to estimate parameters for modeling Escherichia coli survival in and release from deer (Odocoileus virginianus) feces. Our objectives were as follows: (i) to measure survival of E. coli in deer pellets at different temperatures, (ii) to measure kinetics of E. coli release from deer pellets at different rainfall intensities, and (iii) to estimate parameters of models describing survival and release of microorganisms from deer feces. Laboratory experiments were conducted to study E. coli survival in deer pellets at three temperatures and to estimate parameters of Chick's exponential model with temperature correction based on the Arrhenius equation. Kinetics of E. coli release from deer pellets were measured at two rainfall intensities and used to derive the parameters of Bradford-Schijven model of bacterial release. The results showed that parameters of the survival and release models obtained for E. coli in this study substantially differed from those obtained by using other source materials, e.g., feces of domestic animals and manures. This emphasizes the necessity of comprehensive studies of survival of naturally occurring populations of microorganisms in and release from wildlife animal feces in order to achieve better predictions of microbial fate and transport in fragmented agricultural and forest landscapes. PMID:25480751

  17. Latitudinal comparisons of walleye growth in North America and factors influencing growth of walleyes in Kansas reservoirs

    USGS Publications Warehouse

    Quist, M.C.; Guy, C.S.; Schultz, R.D.; Stephen, J.L.

    2003-01-01

    We compared the growth of walleyes Stizostedion vitreum in Kansas to that of other populations throughout North America and determined the effects of the abundance of gizzard shad Dorosoma cepedianum and temperature on the growth of walleyes in Kansas reservoirs. Age was estimated from scales and otoliths collected from walleyes (N = 2,072) sampled with gill nets from eight Kansas reservoirs during fall in 1991-1999. Age-0 gizzard shad abundance was indexed based on summer seining information, and temperature data were obtained from the National Oceanic and Atmospheric Administration. Parameter estimates of von Bertalanffy growth models indicated that the growth of walleyes in Kansas was more similar to that of southern latitude populations (e.g., Mississippi and Texas) than to that of northern (e.g., Manitoba, Minnesota and South Dakota) or middle latitude (e.g., Colorado and Iowa) populations. Northern and middle latitude populations had lower mean back-calculated lengths at age 1, lower growth coefficients, and greater longevity than southern and Kansas populations. A relative growth index (RGI; [Lt/Ls ] ?? 100, where Lt is the observed length at age and Ls is the age-specific standard length derived from a pooled von Bertalanffy growth model) and standardized percentile values (percentile values of mean back-calculated lengths at age) indicated that the growth of walleyes in Kansas was above average compared with that of other populations in North America. The annual growth increments of Kansas walleyes were more variable among years than among reservoirs. The growth increments of age-0 and age-1 walleyes were positively related to the catch rates of gizzard shad smaller than 80 mm, whereas the growth of age-2 and age-3 walleyes was inversely related to mean summer air temperature. Our results provide a framework for comparing North American walleye populations, and our proposed RGI provides a simple, easily interpreted index of growth.

  18. Rock Physics and Petrographic Parameters Relationship Within Siliciclastic Rocks: Quartz Sandstone Outcrop Study Case

    NASA Astrophysics Data System (ADS)

    Syafriyono, S.; Caesario, D.; Swastika, A.; Adlan, Q.; Syafri, I.; Abdurrokhim, A.; Mardiana, U.; Mohamad, F.; Alfadli, M. K.; Sari, V. M.

    2018-03-01

    Rock physical parameters value (Vp and Vs) is one of fundamental aspects in reservoir characterization as a tool to detect rock heterogenity. Its response is depend on several reservoir conditions such as lithology, pressure and reservoir fluids. The value of Vp and Vs is controlled by grain contact and contact stiffness, a function of clay mineral content and porosity also affected by mineral composition. The study about Vp and Vs response within sandstone and its relationship with petrographic parameters has become important to define anisotrophy of reservoir characteristics distribution and could give a better understanding about local diagenesis that influence clastic reservoir properties. Petrographic analysis and Vp-Vs calculation was carried out to 12 core sample which is obtained by hand-drilling of the outcrop in Sukabumi area, West Java as a part of Bayah Formation. Data processing and interpretation of sedimentary vertical succession showing that this outcrop comprises of 3 major sandstone layers indicating fluvial depositional environment. As stated before, there are 4 petrographic parameters (sorting, roundness, clay mineral content, and grain contact) which are responsible to the differences of shear wave and compressional wave value in this outcrop. Lithology with poor-sorted and well- roundness has Vp value lower than well-sorted and poor-roundness (sub-angular) grain. For the sample with high clay content, Vp value is ranging from 1681 to 2000 m/s and could be getting high until 2190 to 2714 m/s in low clay content sample even though the presence of clay minerals cannot be defined neither as matrix nor cement. The whole sample have suture grain contact indicating telogenesis regime whereas facies has no relationship with Vp and Vs value because of the different type of facies show similar petrographic parameters after diagenesis.

  19. Intelligent reservoir operation system based on evolving artificial neural networks

    NASA Astrophysics Data System (ADS)

    Chaves, Paulo; Chang, Fi-John

    2008-06-01

    We propose a novel intelligent reservoir operation system based on an evolving artificial neural network (ANN). Evolving means the parameters of the ANN model are identified by the GA evolutionary optimization technique. Accordingly, the ANN model should represent the operational strategies of reservoir operation. The main advantages of the Evolving ANN Intelligent System (ENNIS) are as follows: (i) only a small number of parameters to be optimized even for long optimization horizons, (ii) easy to handle multiple decision variables, and (iii) the straightforward combination of the operation model with other prediction models. The developed intelligent system was applied to the operation of the Shihmen Reservoir in North Taiwan, to investigate its applicability and practicability. The proposed method is first built to a simple formulation for the operation of the Shihmen Reservoir, with single objective and single decision. Its results were compared to those obtained by dynamic programming. The constructed network proved to be a good operational strategy. The method was then built and applied to the reservoir with multiple (five) decision variables. The results demonstrated that the developed evolving neural networks improved the operation performance of the reservoir when compared to its current operational strategy. The system was capable of successfully simultaneously handling various decision variables and provided reasonable and suitable decisions.

  20. A Methodology for Calculating EGS Electricity Generation Potential Based on the Gringarten Model for Heat Extraction From Fractured Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, Chad

    Existing methodologies for estimating the electricity generation potential of Enhanced Geothermal Systems (EGS) assume thermal recovery factors of 5% or less, resulting in relatively low volumetric electricity generation potentials for EGS reservoirs. This study proposes and develops a methodology for calculating EGS electricity generation potential based on the Gringarten conceptual model and analytical solution for heat extraction from fractured rock. The electricity generation potential of a cubic kilometer of rock as a function of temperature is calculated assuming limits on the allowed produced water temperature decline and reservoir lifetime based on surface power plant constraints. The resulting estimates of EGSmore » electricity generation potential can be one to nearly two-orders of magnitude larger than those from existing methodologies. The flow per unit fracture surface area from the Gringarten solution is found to be a key term in describing the conceptual reservoir behavior. The methodology can be applied to aid in the design of EGS reservoirs by giving minimum reservoir volume, fracture spacing, number of fractures, and flow requirements for a target reservoir power output. Limitations of the idealized model compared to actual reservoir performance and the implications on reservoir design are discussed.« less

  1. Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations

    EPA Science Inventory

    We analyzed 10 established and 4 new satellite reflectance algorithms for estimating chlorophyll-a (Chl-a) in a temperate reservoir in southwest Ohio using coincident hyperspectral aircraft imagery and dense water truth collected within one hour of image acquisition to develop si...

  2. HYDRORECESSION: A toolbox for streamflow recession analysis

    NASA Astrophysics Data System (ADS)

    Arciniega, S.

    2015-12-01

    Streamflow recession curves are hydrological signatures allowing to study the relationship between groundwater storage and baseflow and/or low flows at the catchment scale. Recent studies have showed that streamflow recession analysis can be quite sensitive to the combination of different models, extraction techniques and parameter estimation methods. In order to better characterize streamflow recession curves, new methodologies combining multiple approaches have been recommended. The HYDRORECESSION toolbox, presented here, is a Matlab graphical user interface developed to analyse streamflow recession time series with the support of different tools allowing to parameterize linear and nonlinear storage-outflow relationships through four of the most useful recession models (Maillet, Boussinesq, Coutagne and Wittenberg). The toolbox includes four parameter-fitting techniques (linear regression, lower envelope, data binning and mean squared error) and three different methods to extract hydrograph recessions segments (Vogel, Brutsaert and Aksoy). In addition, the toolbox has a module that separates the baseflow component from the observed hydrograph using the inverse reservoir algorithm. Potential applications provided by HYDRORECESSION include model parameter analysis, hydrological regionalization and classification, baseflow index estimates, catchment-scale recharge and low-flows modelling, among others. HYDRORECESSION is freely available for non-commercial and academic purposes.

  3. Assessing the resolution-dependent utility of tomograms for geostatistics

    USGS Publications Warehouse

    Day-Lewis, F. D.; Lane, J.W.

    2004-01-01

    Geophysical tomograms are used increasingly as auxiliary data for geostatistical modeling of aquifer and reservoir properties. The correlation between tomographic estimates and hydrogeologic properties is commonly based on laboratory measurements, co-located measurements at boreholes, or petrophysical models. The inferred correlation is assumed uniform throughout the interwell region; however, tomographic resolution varies spatially due to acquisition geometry, regularization, data error, and the physics underlying the geophysical measurements. Blurring and inversion artifacts are expected in regions traversed by few or only low-angle raypaths. In the context of radar traveltime tomography, we derive analytical models for (1) the variance of tomographic estimates, (2) the spatially variable correlation with a hydrologic parameter of interest, and (3) the spatial covariance of tomographic estimates. Synthetic examples demonstrate that tomograms of qualitative value may have limited utility for geostatistics; moreover, the imprint of regularization may preclude inference of meaningful spatial statistics from tomograms.

  4. Evaluating changes to reservoir rule curves using historical water-level data

    USGS Publications Warehouse

    Mower, Ethan; Miranda, Leandro E.

    2013-01-01

    Flood control reservoirs are typically managed through rule curves (i.e. target water levels) which control the storage and release timing of flood waters. Changes to rule curves are often contemplated and requested by various user groups and management agencies with no information available about the actual flood risk of such requests. Methods of estimating flood risk in reservoirs are not easily available to those unfamiliar with hydrological models that track water movement through a river basin. We developed a quantile regression model that uses readily available daily water-level data to estimate risk of spilling. Our model provided a relatively simple process for estimating the maximum applicable water level under a specific flood risk for any day of the year. This water level represents an upper-limit umbrella under which water levels can be operated in a variety of ways. Our model allows the visualization of water-level management under a user-specified flood risk and provides a framework for incorporating the effect of a changing environment on water-level management in reservoirs, but is not designed to replace existing hydrological models. The model can improve communication and collaboration among agencies responsible for managing natural resources dependent on reservoir water levels.

  5. Application of Layered Perforation Profile Control Technique to Low Permeable Reservoir

    NASA Astrophysics Data System (ADS)

    Wei, Sun

    2018-01-01

    it is difficult to satisfy the demand of profile control of complex well section and multi-layer reservoir by adopting the conventional profile control technology, therefore, a research is conducted on adjusting the injection production profile with layered perforating parameters optimization. i.e. in the case of coproduction for multi-layer, water absorption of each layer is adjusted by adjusting the perforating parameters, thus to balance the injection production profile of the whole well section, and ultimately enhance the oil displacement efficiency of water flooding. By applying the relationship between oil-water phase percolation theory/perforating damage and capacity, a mathematic model of adjusting the injection production profile with layered perforating parameters optimization, besides, perforating parameters optimization software is programmed. Different types of optimization design work are carried out according to different geological conditions and construction purposes by using the perforating optimization design software; furthermore, an application test is done for low permeable reservoir, and the water injection profile tends to be balanced significantly after perforation with optimized parameters, thereby getting a good application effect on site.

  6. Temperature and population density determine reservoir regions of seasonal persistence in highland malaria.

    PubMed

    Siraj, Amir S; Bouma, Menno J; Santos-Vega, Mauricio; Yeshiwondim, Asnakew K; Rothman, Dale S; Yadeta, Damtew; Sutton, Paul C; Pascual, Mercedes

    2015-12-07

    A better understanding of malaria persistence in highly seasonal environments such as highlands and desert fringes requires identifying the factors behind the spatial reservoir of the pathogen in the low season. In these 'unstable' malaria regions, such reservoirs play a critical role by allowing persistence during the low transmission season and therefore, between seasonal outbreaks. In the highlands of East Africa, the most populated epidemic regions in Africa, temperature is expected to be intimately connected to where in space the disease is able to persist because of pronounced altitudinal gradients. Here, we explore other environmental and demographic factors that may contribute to malaria's highland reservoir. We use an extensive spatio-temporal dataset of confirmed monthly Plasmodium falciparum cases from 1995 to 2005 that finely resolves space in an Ethiopian highland. With a Bayesian approach for parameter estimation and a generalized linear mixed model that includes a spatially structured random effect, we demonstrate that population density is important to disease persistence during the low transmission season. This population effect is not accounted for in typical models for the transmission dynamics of the disease, but is consistent in part with a more complex functional form of the force of infection proposed by theory for vector-borne infections, only during the low season as we discuss. As malaria risk usually decreases in more urban environments with increased human densities, the opposite counterintuitive finding identifies novel control targets during the low transmission season in African highlands. © 2015 The Author(s).

  7. Temperature and population density determine reservoir regions of seasonal persistence in highland malaria

    PubMed Central

    Siraj, Amir S.; Bouma, Menno J.; Santos-Vega, Mauricio; Yeshiwondim, Asnakew K.; Rothman, Dale S.; Yadeta, Damtew; Sutton, Paul C.; Pascual, Mercedes

    2015-01-01

    A better understanding of malaria persistence in highly seasonal environments such as highlands and desert fringes requires identifying the factors behind the spatial reservoir of the pathogen in the low season. In these ‘unstable’ malaria regions, such reservoirs play a critical role by allowing persistence during the low transmission season and therefore, between seasonal outbreaks. In the highlands of East Africa, the most populated epidemic regions in Africa, temperature is expected to be intimately connected to where in space the disease is able to persist because of pronounced altitudinal gradients. Here, we explore other environmental and demographic factors that may contribute to malaria's highland reservoir. We use an extensive spatio-temporal dataset of confirmed monthly Plasmodium falciparum cases from 1995 to 2005 that finely resolves space in an Ethiopian highland. With a Bayesian approach for parameter estimation and a generalized linear mixed model that includes a spatially structured random effect, we demonstrate that population density is important to disease persistence during the low transmission season. This population effect is not accounted for in typical models for the transmission dynamics of the disease, but is consistent in part with a more complex functional form of the force of infection proposed by theory for vector-borne infections, only during the low season as we discuss. As malaria risk usually decreases in more urban environments with increased human densities, the opposite counterintuitive finding identifies novel control targets during the low transmission season in African highlands. PMID:26631558

  8. Improving inflow forecasting into hydropower reservoirs through a complementary modelling framework

    NASA Astrophysics Data System (ADS)

    Gragne, A. S.; Sharma, A.; Mehrotra, R.; Alfredsen, K.

    2014-10-01

    Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water resources and benefits gained through hydropower generation. Improving hourly reservoir inflow forecasts over a 24 h lead-time is considered within the day-ahead (Elspot) market of the Nordic exchange market. We present here a new approach for issuing hourly reservoir inflow forecasts that aims to improve on existing forecasting models that are in place operationally, without needing to modify the pre-existing approach, but instead formulating an additive or complementary model that is independent and captures the structure the existing model may be missing. Besides improving forecast skills of operational models, the approach estimates the uncertainty in the complementary model structure and produces probabilistic inflow forecasts that entrain suitable information for reducing uncertainty in the decision-making processes in hydropower systems operation. The procedure presented comprises an error model added on top of an un-alterable constant parameter conceptual model, the models being demonstrated with reference to the 207 km2 Krinsvatn catchment in central Norway. The structure of the error model is established based on attributes of the residual time series from the conceptual model. Deterministic and probabilistic evaluations revealed an overall significant improvement in forecast accuracy for lead-times up to 17 h. Season based evaluations indicated that the improvement in inflow forecasts varies across seasons and inflow forecasts in autumn and spring are less successful with the 95% prediction interval bracketing less than 95% of the observations for lead-times beyond 17 h.

  9. Analysis of methods to determine storage capacity of, and sedimentation in, Loch Lomond Reservoir, Santa Cruz County, California, 2009

    USGS Publications Warehouse

    McPherson, Kelly R.; Freeman, Lawrence A.; Flint, Lorraine E.

    2011-01-01

    In 2009, the U.S. Geological Survey, in cooperation with the City of Santa Cruz, conducted bathymetric and topographic surveys to determine the water storage capacity of, and the loss of capacity owing to sedimentation in, Loch Lomond Reservoir in Santa Cruz County, California. The topographic survey was done as a supplement to the bathymetric survey to obtain information about temporal changes in the upper reach of the reservoir where the water is shallow or the reservoir may be dry, as well as to obtain information about shoreline changes throughout the reservoir. Results of a combined bathymetric and topographic survey using a new, state-of-the-art method with advanced instrument technology indicate that the maximum storage capacity of the reservoir at the spillway altitude of 577.5 feet (National Geodetic Vertical Datum of 1929) was 8,646 ±85 acre-feet in March 2009, with a confidence level of 99 percent. This new method is a combination of bathymetric scanning using multibeam-sidescan sonar, and topographic surveying using laser scanning (LiDAR), which produced a 1.64-foot-resolution grid with altitudes to 0.3-foot resolution and an estimate of total water storage capacity at a 99-percent confidence level. Because the volume of sedimentation in a reservoir is considered equal to the decrease in water-storage capacity, sedimentation in Loch Lomond Reservoir was determined by estimating the change in storage capacity by comparing the reservoir bed surface defined in the March 2009 survey with a revision of the reservoir bed surface determined in a previous investigation in November 1998. This revised reservoir-bed surface was defined by combining altitude data from the 1998 survey with new data collected during the current (2009) investigation to fill gaps in the 1998 data. Limitations that determine the accuracy of estimates of changes in the volume of sedimentation from that estimated in each of the four previous investigations (1960, 1971, 1982, and 1998) are a result of the limitations of the survey equipment and data-processing methods used. Previously used and new methods were compared to determine the recent (1998-2009) change in storage capacity and the most accurate and cost-effective means to define the reservoir bed surface so that results can be easily replicated in future surveys. Results of this investigation indicate that the advanced method used in the 2009 survey accurately captures the features of the wetted reservoir surface as well as features along the shoreline that affect the storage capacity calculations. Because the bathymetric and topographic data are referenced to a datum, the results can be easily replicated or compared with future results. Comparison of the 2009 reservoir-bed surface with the surface defined in 1998 indicates that sedimentation is occurring throughout the reservoir. About 320 acre-feet of sedimentation has occurred since 1998, as determined by comparing the revised 1998 reservoir-bed surface, with an associated maximum reservoir storage capacity of 8,965 acre-feet, to the 2009 reservoir bed surface, with an associated maximum capacity of 8,646 acre-feet. This sedimentation is more than 3 percent of the total storage capacity that was calculated on the basis of the results of the 1998 bathymetric investigation.

  10. Temporal evolution of a seismic sequence induced by a gas injection in the Eastern coast of Spain.

    PubMed

    Ruiz-Barajas, S; Sharma, N; Convertito, V; Zollo, A; Benito, B

    2017-06-06

    Induced seismicity associated with energy production is becoming an increasingly important issue worldwide for the hazard it poses to the exposed population and structures. We analyze one of the rare cases of induced seismicity associated with the underwater gas storage operations observed in the Castor platform, located in the Valencia gulf, east Spain, near a complex and important geological structure. In September 2013, some gas injection operations started at Castor, producing a series of seismic events around the reservoir area. The larger magnitude events (up to 4.2) took place some days after the end of the injection, with EMS intensities in coastal towns up to degree III. In this work, the seismic sequence is analyzed with the aim of detecting changes in statistical parameters describing the earthquake occurrence before and after the injection and identifying possible proxies to be used for monitoring the sequence evolution. Moreover, we explore the potential predictability of these statistical parameters which can be used to control the field operations in injection/storage fluid reservoirs. We firstly perform a retrospective approach and next a perspective analysis. We use different techniques for estimating the value of the expected maximum magnitude that can occur due to antropogenic activities in Castor.

  11. How should epistemic uncertainty in modelling water resources management problems shape evaluations of their operations?

    NASA Astrophysics Data System (ADS)

    Dobson, B.; Pianosi, F.; Reed, P. M.; Wagener, T.

    2017-12-01

    In previous work, we have found that water supply companies are typically hesitant to use reservoir operation tools to inform their release decisions. We believe that this is, in part, due to a lack of faith in the fidelity of the optimization exercise with regards to its ability to represent the real world. In an attempt to quantify this, recent literature has studied the impact on performance from uncertainty arising in: forcing (e.g. reservoir inflows), parameters (e.g. parameters for the estimation of evaporation rate) and objectives (e.g. worst first percentile or worst case). We suggest that there is also epistemic uncertainty in the choices made during model creation, for example in the formulation of an evaporation model or aggregating regional storages. We create `rival framings' (a methodology originally developed to demonstrate the impact of uncertainty arising from alternate objective formulations), each with different modelling choices, and determine their performance impacts. We identify the Pareto approximate set of policies for several candidate formulations and then make them compete with one another in a large ensemble re-evaluation in each other's modelled spaces. This enables us to distinguish the impacts of different structural changes in the model used to evaluate system performance in an effort to generalize the validity of the optimized performance expectations.

  12. Assessing Water Level Changes in Lake, Reservoir, Wetland, and River Systems with Remote Sensing Tools and Hydrological Model

    NASA Astrophysics Data System (ADS)

    Ricko, M.; Birkett, C. M.; Beckley, B. D.

    2017-12-01

    The NASA/USDA Global Reservoir and Lake Monitor (G-REALM) offers multi-mission satellite radar altimetry derived surface water level products for a subset of large reservoirs, lakes, and wetlands. These products complement the in situ networks by providing stage information at un-gauged locations, and filling existing data gaps. The availability of both satellite-based rainfall (e.g., TRMM, GPCP) and surface water level products offers great opportunities to estimate and monitor additional hydrologic properties of the lake/reservoir systems. A simple water balance model relating the net freshwater flux over a catchment basin to the lake/reservoir level has been previously utilized (Ricko et al., 2011). The applicability of this approach enables the construction of a longer record of surface water level, i.e. improving the climate data record. As instrument technology and data availability evolve, this method can be used to estimate the water level of a greater number of water bodies, and a greater number of much smaller targets. In addition, such information can improve water balance estimation in different lake, reservoir, wetland, and river systems, and be very useful for assessment of improved prediction of surface water availability. Connections to climatic variations on inter-annual to inter-decadal time-scales are explored here, with a focus on a future ability to predict changes in storage volume for water resources or natural hazards concerns.

  13. Monte Carlo Analysis of Reservoir Models Using Seismic Data and Geostatistical Models

    NASA Astrophysics Data System (ADS)

    Zunino, A.; Mosegaard, K.; Lange, K.; Melnikova, Y.; Hansen, T. M.

    2013-12-01

    We present a study on the analysis of petroleum reservoir models consistent with seismic data and geostatistical constraints performed on a synthetic reservoir model. Our aim is to invert directly for structure and rock bulk properties of the target reservoir zone. To infer the rock facies, porosity and oil saturation seismology alone is not sufficient but a rock physics model must be taken into account, which links the unknown properties to the elastic parameters. We then combine a rock physics model with a simple convolutional approach for seismic waves to invert the "measured" seismograms. To solve this inverse problem, we employ a Markov chain Monte Carlo (MCMC) method, because it offers the possibility to handle non-linearity, complex and multi-step forward models and provides realistic estimates of uncertainties. However, for large data sets the MCMC method may be impractical because of a very high computational demand. To face this challenge one strategy is to feed the algorithm with realistic models, hence relying on proper prior information. To address this problem, we utilize an algorithm drawn from geostatistics to generate geologically plausible models which represent samples of the prior distribution. The geostatistical algorithm learns the multiple-point statistics from prototype models (in the form of training images), then generates thousands of different models which are accepted or rejected by a Metropolis sampler. To further reduce the computation time we parallelize the software and run it on multi-core machines. The solution of the inverse problem is then represented by a collection of reservoir models in terms of facies, porosity and oil saturation, which constitute samples of the posterior distribution. We are finally able to produce probability maps of the properties we are interested in by performing statistical analysis on the collection of solutions.

  14. Estimating Reservoir Inflow Using RADAR Forecasted Precipitation and Adaptive Neuro Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Yi, J.; Choi, C.

    2014-12-01

    Rainfall observation and forecasting using remote sensing such as RADAR(Radio Detection and Ranging) and satellite images are widely used to delineate the increased damage by rapid weather changeslike regional storm and flash flood. The flood runoff was calculated by using adaptive neuro-fuzzy inference system, the data driven models and MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as the input variables.The result of flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated by comparing it with the actual data.The Adaptive Neuro Fuzzy method was applied to the Chungju Reservoir basin in Korea. The six rainfall events during the flood seasons in 2010 and 2011 were used for the input data.The reservoir inflow estimation results were comparedaccording to the rainfall data used for training, checking and testing data in the model setup process. The results of the 15 models with the combination of the input variables were compared and analyzed. Using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation in this study.The model using the MAPLE forecasted precipitation data showed better result for inflow estimation in the Chungju Reservoir.

  15. Geothermal reservoir engineering research

    NASA Technical Reports Server (NTRS)

    Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.

    1974-01-01

    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.

  16. Healthcare Worker Occupation and Immune Response to Pneumocystis jirovecii

    PubMed Central

    Daly, Kieran R.; Jarlsberg, Leah G.; Koch, Judy V.; Swartzman, Alexandra; Roth, Brenna M.; Walzer, Peter D.; Huang, Laurence

    2009-01-01

    The reservoir and mode of transmission of Pneumocystis jirovecii remain uncertain. We conducted a cross-sectional study of 126 San Francisco General Hospital staff in clinical (n = 103) and nonclinical (n = 23) occupations to assess whether occupational exposure was associated with immune responses to P. jirovecii. We examined antibody levels by ELISA for 3 overlapping fragments that span the P. jirovecii major surface glycoprotein (Msg): MsgA, MsgB, and MsgC1. Clinical occupation participants had higher geometric mean antibody levels to MsgC1 than did nonclinical occupation participants (21.1 vs. 8.2, p = 0.004); clinical occupation was an independent predictor of higher MsgC1 antibody levels (parameter estimate = 0.89, 95% confidence interval 0.29–1.48, p = 0.003). In contrast, occupation was not significantly associated with antibody responses to either MsgA or MsgB. Healthcare workers may have occupational exposure to P. jirovecii. Humans may be a reservoir for P. jirovecii and may transmit it from person to person. PMID:19861050

  17. Spatial variability of methane production and methanogen communities within a eutrophic reservoir: evaluating the importance of organic matter source and quantity

    EPA Science Inventory

    Freshwater reservoirs are an important source of the greenhouse gas methane (CH4) to the atmosphere, but there is a wide range of estimates of global emissions, due in part to variability of methane emissions rates within reservoirs. While morphological characteristics, including...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartshorn, K.G.

    The Castilla and Chichimene NE fields, operated by Chevron, are located in the southern Llanos basin of Colombia. The Castilla field, with an estimated 2.3 billion BBLS OOIP, produces heavy 14{prime} API oil, while the Chichimene NE field with an estimated 480 MMBBLS OOIP, produces a lighter 20{prime} API oil. Production is from multiple sandstone reservoirs of the Tertiary San Fernando and the Cretaceous Guadalupe Formations, and from massive non-marine sands of the Cretaceous Une Formation. Early problems with water coning and high water cuts led to detailed geologic study and engineering simulation to determine the most effective methods ofmore » reservoir management. The fresh nature of the connate water made evaluation more complicated, but results of RST (Reservoir Saturation Tool) logging runs on producing wells support the conclusions of the simulation studies regarding the potential for vertical drainage of the reservoir. As a result, the massive sands of the Une Formation can be perforated in the upper portion of the reservoir only, still enabling effective drainage of the lower reservoir while reducing water production and coning problems.« less

  19. Survival Estimates for the Passage of Juvenile Chinook Salmon through Snake River Dams and Reservoirs, 1993 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwamoto, Robert N.; Sandford, Benjamin P.; McIntyre, Kenneth W.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at differentmore » areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers.« less

  20. On the importance of the heterogeneity assumption in the characterization of reservoir geomechanical properties

    NASA Astrophysics Data System (ADS)

    Zoccarato, C.; Baù, D.; Bottazzi, F.; Ferronato, M.; Gambolati, G.; Mantica, S.; Teatini, P.

    2016-10-01

    The geomechanical analysis of a highly compartmentalized reservoir is performed to simulate the seafloor subsidence due to gas production. The available observations over the hydrocarbon reservoir consist of bathymetric surveys carried out before and at the end of a 10-yr production life. The main goal is the calibration of the reservoir compressibility cM, that is, the main geomechanical parameter controlling the surface response. Two conceptual models are considered: in one (i) cM varies only with the depth and the vertical effective stress (heterogeneity due to lithostratigraphic variability); in another (ii) cM varies also in the horizontal plane, that is, it is spatially distributed within the reservoir stratigraphic units. The latter hypothesis accounts for a possible partitioning of the reservoir due to the presence of sealing faults and thrusts that suggests the idea of a block heterogeneous system with the number of reservoir blocks equal to the number of uncertain parameters. The method applied here relies on an ensemble-based data assimilation (DA) algorithm (i.e. the ensemble smoother, ES), which incorporates the information from the bathymetric measurements into the geomechanical model response to infer and reduce the uncertainty of the parameter cM. The outcome from conceptual model (i) indicates that DA is effective in reducing the cM uncertainty. However, the maximum settlement still remains underestimated, while the areal extent of the subsidence bowl is overestimated. We demonstrate that the selection of the heterogeneous conceptual model (ii) allows to reproduce much better the observations thus removing a clear bias of the model structure. DA allows significantly reducing the cM uncertainty in the five blocks (out of the seven) characterized by large volume and large pressure decline. Conversely, the assimilation of land displacements only partially constrains the prior cM uncertainty in the reservoir blocks marginally contributing to the cumulative seafloor subsidence, that is, blocks with low pressure.

  1. Suspended-sediment loads, reservoir sediment trap efficiency, and upstream and downstream channel stability for Kanopolis and Tuttle Creek Lakes, Kansas, 2008-10

    USGS Publications Warehouse

    Juracek, Kyle E.

    2011-01-01

    Continuous streamflow and turbidity data collected from October 1, 2008, to September 30, 2010, at streamgage sites upstream and downstream from Kanopolis and Tuttle Creek Lakes, Kansas, were used to compute the total suspended-sediment load delivered to and released from each reservoir as well as the sediment trap efficiency for each reservoir. Ongoing sedimentation is decreasing the ability of the reservoirs to serve several purposes including flood control, water supply, and recreation. River channel stability upstream and downstream from the reservoirs was assessed using historical streamgage information. For Kanopolis Lake, the total 2-year inflow suspended-sediment load was computed to be 600 million pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 31 million pounds. Sediment trap efficiency for the reservoir was estimated to be 95 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 129,000 pounds per square mile per year. No pronounced changes in channel width were evident at five streamgage sites located upstream from the reservoir. At the Ellsworth streamgage site, located upstream from the reservoir, long-term channel-bed aggradation was followed by a period of stability. Current (2010) conditions at five streamgages located upstream from the reservoir were typified by channel-bed stability. At the Langley streamgage site, located immediately downstream from the reservoir, the channel bed degraded 6.15 feet from 1948 to 2010. For Tuttle Creek Lake, the total 2-year inflow suspended-sediment load was computed to be 13.3 billion pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 327 million pounds. Sediment trap efficiency for the reservoir was estimated to be 98 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 691,000 pounds per square mile per year. In general, no pronounced changes in channel width were evident at six streamgage sites located upstream from the reservoir. At the Barnes and Marysville streamgage sites, located upstream from the reservoir, long-term channel-bed degradation followed by stability was indicated. At the Frankfort streamgage site, located upstream from the reservoir, channel-bed aggradation of 1.65 feet from 1969 to 1989 followed by channel-bed degradation of 2.4 feet from 1989 to 2010 was indicated and may represent the passage of a sediment pulse caused by historical disturbances (for example, channelization) in the upstream basin. With the exception of the Frankfort streamgage site, current (2010) conditions at four streamgages located upstream from the reservoir were typified by channel-bed stability. At the Manhattan streamgage site, located downstream from the reservoir, high-flow releases associated with the 1993 flood widened the channel about 60 feet (30 percent). The channel bed at this site degraded 4.2 feet from 1960 to 1998 and since has been relatively stable. For the purpose of computing suspended-sediment concentration and load, the use of turbidity data in a regression model can provide more reliable and reproducible estimates than a regression model that uses discharge as the sole independent variable. Moreover, the use of discharge only to compute suspended-sediment concentration and load may result in overprediction. Stream channel banks, compared to channel beds, likely are a more important source of sediment to Kanopolis and Tuttle Creek Lakes from the upstream basins. Other sediment sources include surface-soil erosion in the basins and shoreline erosion in the reservoirs.

  2. Investigation of uncertainty in CO 2 reservoir models: A sensitivity analysis of relative permeability parameter values

    DOE PAGES

    Yoshida, Nozomu; Levine, Jonathan S.; Stauffer, Philip H.

    2016-03-22

    Numerical reservoir models of CO 2 injection in saline formations rely on parameterization of laboratory-measured pore-scale processes. Here, we have performed a parameter sensitivity study and Monte Carlo simulations to determine the normalized change in total CO 2 injected using the finite element heat and mass-transfer code (FEHM) numerical reservoir simulator. Experimentally measured relative permeability parameter values were used to generate distribution functions for parameter sampling. The parameter sensitivity study analyzed five different levels for each of the relative permeability model parameters. All but one of the parameters changed the CO 2 injectivity by <10%, less than the geostatistical uncertainty that applies to all large subsurface systems due to natural geophysical variability and inherently small sample sizes. The exception was the end-point CO 2 relative permeability, kmore » $$0\\atop{r}$$ CO2, the maximum attainable effective CO 2 permeability during CO 2 invasion, which changed CO2 injectivity by as much as 80%. Similarly, Monte Carlo simulation using 1000 realizations of relative permeability parameters showed no relationship between CO 2 injectivity and any of the parameters but k$$0\\atop{r}$$ CO2, which had a very strong (R 2 = 0.9685) power law relationship with total CO 2 injected. Model sensitivity to k$$0\\atop{r}$$ CO2 points to the importance of accurate core flood and wettability measurements.« less

  3. Investigation of uncertainty in CO 2 reservoir models: A sensitivity analysis of relative permeability parameter values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Nozomu; Levine, Jonathan S.; Stauffer, Philip H.

    Numerical reservoir models of CO 2 injection in saline formations rely on parameterization of laboratory-measured pore-scale processes. Here, we have performed a parameter sensitivity study and Monte Carlo simulations to determine the normalized change in total CO 2 injected using the finite element heat and mass-transfer code (FEHM) numerical reservoir simulator. Experimentally measured relative permeability parameter values were used to generate distribution functions for parameter sampling. The parameter sensitivity study analyzed five different levels for each of the relative permeability model parameters. All but one of the parameters changed the CO 2 injectivity by <10%, less than the geostatistical uncertainty that applies to all large subsurface systems due to natural geophysical variability and inherently small sample sizes. The exception was the end-point CO 2 relative permeability, kmore » $$0\\atop{r}$$ CO2, the maximum attainable effective CO 2 permeability during CO 2 invasion, which changed CO2 injectivity by as much as 80%. Similarly, Monte Carlo simulation using 1000 realizations of relative permeability parameters showed no relationship between CO 2 injectivity and any of the parameters but k$$0\\atop{r}$$ CO2, which had a very strong (R 2 = 0.9685) power law relationship with total CO 2 injected. Model sensitivity to k$$0\\atop{r}$$ CO2 points to the importance of accurate core flood and wettability measurements.« less

  4. Estimating abundance of adult striped bass in reservoirs using mobile hydroacoustics

    USGS Publications Warehouse

    Hightower, Joseph E.; Taylor, J. Christopher; Degan, Donald J.

    2013-01-01

    Hydroacoustic surveys have proven valuable for estimating reservoir forage fish abundance but are more challenging for adult predators such as striped bass Morone saxatilis. Difficulties in assessing striped bass in reservoirs include their low density and the inability to distinguish species with hydroacoustic data alone. Despite these difficulties, mobile hydroacoustic surveys have potential to provide useful data for management because of the large sample volume compared to traditional methods such as gill netting and the ability to target specific areas where striped bass are aggregated. Hydroacoustic estimates of reservoir striped bass have been made using mobile surveys, with data analysis using a threshold for target strength in order to focus on striped bass-sized targets, and auxiliary sampling with nets to obtain species composition. We provide recommendations regarding survey design, based in part on simulations that provide insight on the level of effort that would be required to achieve reasonable estimates of abundance. Future surveys may be able to incorporate telemetry or other sonar techniques such as side-scan or multibeam in order to focus survey efforts on productive habitats (within lake and vertically). However, species apportionment will likely remain the main source of error, and we see no hydroacoustic system on the horizon that will identify fish by species at the spatial and temporal scale required for most reservoir surveys. In situations where species composition can be reliably assessed using traditional gears, abundance estimates from hydroacoustic methods should be useful to fishery managers interested in developing harvest regulations, assessing survival of stocked juveniles, identifying seasonal aggregations, and examining predator–prey balance.

  5. Estimation of the geothermal potential of the Caldara di Manziana site in the Mts Sabatini Volcanic District (Central Italy) by integrating geochemical data and 3D-GIS modelling.

    NASA Astrophysics Data System (ADS)

    Ranaldi, Massimo; Lelli, Matteo; Tarchini, Luca; Carapezza, Maria Luisa; Patera, Antonio

    2016-04-01

    High-enthalpy geothermal fields of Central Italy are hosted in deeply fractured carbonate reservoirs occurring in thermally anomalous and seismically active zones. However, the Mts. Sabatini volcanic district, located north of Rome, has an interesting deep temperatures (T), but it is characterized by low to very low seismicity and permeability in the reservoir rocks (mostly because of hydrothermal self-sealing processes). Low PCO2 facilitates the complete sealing of the reservoir fractures, preventing hot fluids rising and, determining a low CO2 flux at the surface. Conversely, high CO2 flux generally reflects a high pressure of CO2, suggesting that an active geothermal reservoir is present at depth. In Mts. Sabatini district, the Caldara of Manziana (CM) is the only zone characterized by a very high CO2 flux (188 tons/day) from a surface of 0.15 km2) considering both the diffuse and viscous CO2 emission. This suggests the likely presence of an actively degassing geothermal reservoir at depth. Emitted gas is dominated by CO2 (>97 vol.%). Triangular irregular networks (TINs) have been used to represent the morphology of the bottom of the surficial volcanic deposits, the thickness of the impervious formation and the top of the geothermal reservoir. The TINs, integrated by T-gradient and deep well data, allowed to estimate the depth and the temperature of the top of the geothermal reservoir, respectively to ~-1000 m from the surface and to ~130°C. These estimations are fairly in agreement with those obtained by gas chemistry (818

  6. Distributed snow data as a tool to inform water management decisions: Using Airborne Snow Observatory (ASO) at the Hetch Hetchy Reservoir in Yosemite National Park, City and County of San Francisco.

    NASA Astrophysics Data System (ADS)

    Graham, C. B.

    2016-12-01

    The timing and magnitude of spring snowmelt and runoff is critical in managing reservoirs in the Western United States. The Hetch Hetchy Reservoir in Yosemite National Park provides drinking water for 2.6 million customers in over 30 communities in the San Francisco Bay Area. Power generation from Hetch Hetchy meets the municipal load of the City and County of San Francisco. Water from the Hetch Hetchy Reservoir is also released in the Tuolumne River, supporting critical ecosystems in Yosemite National Park and the Stanislaus National Forest. Better predictions of long (seasonal) and short (weekly) term streamflow allow for more secure water resource planning, earlier power generation and ecologically beneficial releases from the Reservoir. Hetch Hetchy Reservoir is fed by snow dominated watersheds in the Sierra Mountains. Better knowledge of snowpack conditions allow for better predictions of inflows, both at the seasonal and at the weekly time scales. The ASO project has provided the managers of Hetch Hetchy Reservoir with high resolution estimates of total snowpack and snowpack distribution in the 460 mi2 Hetch Hetchy. We show that there is a tight correlation between snowpack estimates and future streamflow, allowing earlier, more confident operational decisions. We also show how distributed SWE estimates were used to develop and test a hydrologic model of the system (PRMS). This model, calibrated directly to snowpack conditions, is shown to correctly simulate snowpack volume and distribution, as well as streamflow patterns.

  7. Inverse geothermal modelling applied to Danish sedimentary basins

    NASA Astrophysics Data System (ADS)

    Poulsen, Søren E.; Balling, Niels; Bording, Thue S.; Mathiesen, Anders; Nielsen, Søren B.

    2017-10-01

    This paper presents a numerical procedure for predicting subsurface temperatures and heat-flow distribution in 3-D using inverse calibration methodology. The procedure is based on a modified version of the groundwater code MODFLOW by taking advantage of the mathematical similarity between confined groundwater flow (Darcy's law) and heat conduction (Fourier's law). Thermal conductivity, heat production and exponential porosity-depth relations are specified separately for the individual geological units of the model domain. The steady-state temperature model includes a model-based transient correction for the long-term palaeoclimatic thermal disturbance of the subsurface temperature regime. Variable model parameters are estimated by inversion of measured borehole temperatures with uncertainties reflecting their quality. The procedure facilitates uncertainty estimation for temperature predictions. The modelling procedure is applied to Danish onshore areas containing deep sedimentary basins. A 3-D voxel-based model, with 14 lithological units from surface to 5000 m depth, was built from digital geological maps derived from combined analyses of reflection seismic lines and borehole information. Matrix thermal conductivity of model lithologies was estimated by inversion of all available deep borehole temperature data and applied together with prescribed background heat flow to derive the 3-D subsurface temperature distribution. Modelled temperatures are found to agree very well with observations. The numerical model was utilized for predicting and contouring temperatures at 2000 and 3000 m depths and for two main geothermal reservoir units, the Gassum (Lower Jurassic-Upper Triassic) and Bunter/Skagerrak (Triassic) reservoirs, both currently utilized for geothermal energy production. Temperature gradients to depths of 2000-3000 m are generally around 25-30 °C km-1, locally up to about 35 °C km-1. Large regions have geothermal reservoirs with characteristic temperatures ranging from ca. 40-50 °C, at 1000-1500 m depth, to ca. 80-110 °C, at 2500-3500 m, however, at the deeper parts, most likely, with too low permeability for non-stimulated production.

  8. An improved peak frequency shift method for Q estimation based on generalized seismic wavelet function

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Gao, Jinghuai

    2018-02-01

    As a powerful tool for hydrocarbon detection and reservoir characterization, the quality factor, Q, provides useful information in seismic data processing and interpretation. In this paper, we propose a novel method for Q estimation. The generalized seismic wavelet (GSW) function was introduced to fit the amplitude spectrum of seismic waveforms with two parameters: fractional value and reference frequency. Then we derive an analytical relation between the GSW function and the Q factor of the medium. When a seismic wave propagates through a viscoelastic medium, the GSW function can be employed to fit the amplitude spectrum of the source and attenuated wavelets, then the fractional values and reference frequencies can be evaluated numerically from the discrete Fourier spectrum. After calculating the peak frequency based on the obtained fractional value and reference frequency, the relationship between the GSW function and the Q factor can be built by the conventional peak frequency shift method. Synthetic tests indicate that our method can achieve higher accuracy and be more robust to random noise compared with existing methods. Furthermore, the proposed method is applicable to different types of source wavelet. Field data application also demonstrates the effectiveness of our method in seismic attenuation and the potential in the reservoir characteristic.

  9. A fast complex domain-matching pursuit algorithm and its application to deep-water gas reservoir detection

    NASA Astrophysics Data System (ADS)

    Zeng, Jing; Huang, Handong; Li, Huijie; Miao, Yuxin; Wen, Junxiang; Zhou, Fei

    2017-12-01

    The main emphasis of exploration and development is shifting from simple structural reservoirs to complex reservoirs, which all have the characteristics of complex structure, thin reservoir thickness and large buried depth. Faced with these complex geological features, hydrocarbon detection technology is a direct indication of changes in hydrocarbon reservoirs and a good approach for delimiting the distribution of underground reservoirs. It is common to utilize the time-frequency (TF) features of seismic data in detecting hydrocarbon reservoirs. Therefore, we research the complex domain-matching pursuit (CDMP) method and propose some improvements. First is the introduction of a scale parameter, which corrects the defect that atomic waveforms only change with the frequency parameter. Its introduction not only decomposes seismic signal with high accuracy and high efficiency but also reduces iterations. We also integrate jumping search with ergodic search to improve computational efficiency while maintaining the reasonable accuracy. Then we combine the improved CDMP with the Wigner-Ville distribution to obtain a high-resolution TF spectrum. A one-dimensional modeling experiment has proved the validity of our method. Basing on the low-frequency domain reflection coefficient in fluid-saturated porous media, we finally get an approximation formula for the mobility attributes of reservoir fluid. This approximation formula is used as a hydrocarbon identification factor to predict deep-water gas-bearing sand of the M oil field in the South China Sea. The results are consistent with the actual well test results and our method can help inform the future exploration of deep-water gas reservoirs.

  10. 3D Reservoir Modeling of Semutang Gas Field: A lonely Gas field in Chittagong-Tripura Fold Belt, with Integrated Well Log, 2D Seismic Reflectivity and Attributes.

    NASA Astrophysics Data System (ADS)

    Salehin, Z.; Woobaidullah, A. S. M.; Snigdha, S. S.

    2015-12-01

    Bengal Basin with its prolific gas rich province provides needed energy to Bangladesh. Present energy situation demands more Hydrocarbon explorations. Only 'Semutang' is discovered in the high amplitude structures, where rest of are in the gentle to moderate structures of western part of Chittagong-Tripura Fold Belt. But it has some major thrust faults which have strongly breached the reservoir zone. The major objectives of this research are interpretation of gas horizons and faults, then to perform velocity model, structural and property modeling to obtain reservoir properties. It is needed to properly identify the faults and reservoir heterogeneities. 3D modeling is widely used to reveal the subsurface structure in faulted zone where planning and development drilling is major challenge. Thirteen 2D seismic and six well logs have been used to identify six gas bearing horizons and a network of faults and to map the structure at reservoir level. Variance attributes were used to identify faults. Velocity model is performed for domain conversion. Synthetics were prepared from two wells where sonic and density logs are available. Well to seismic tie at reservoir zone shows good match with Direct Hydrocarbon Indicator on seismic section. Vsh, porosity, water saturation and permeability have been calculated and various cross plots among porosity logs have been shown. Structural modeling is used to make zone and layering accordance with minimum sand thickness. Fault model shows the possible fault network, those liable for several dry wells. Facies model have been constrained with Sequential Indicator Simulation method to show the facies distribution along the depth surfaces. Petrophysical models have been prepared with Sequential Gaussian Simulation to estimate petrophysical parameters away from the existing wells to other parts of the field and to observe heterogeneities in reservoir. Average porosity map for each gas zone were constructed. The outcomes of the research are an improved subsurface image of the seismic data (model), a porosity prediction for the reservoir, a reservoir quality map and also a fault map. The result shows a complex geologic model which may contribute to the economic potential of the field. For better understanding, 3D seismic survey, uncertainty and attributes analysis are necessary.

  11. Estimating reservoir permeability from gravity current modeling of CO2 flow at Sleipner storage project, North Sea

    NASA Astrophysics Data System (ADS)

    Cowton, L. R.; Neufeld, J. A.; Bickle, M.; White, N.; White, J.; Chadwick, A.

    2017-12-01

    Vertically-integrated gravity current models enable computationally efficient simulations of CO2 flow in sub-surface reservoirs. These simulations can be used to investigate the properties of reservoirs by minimizing differences between observed and modeled CO2 distributions. At the Sleipner project, about 1 Mt yr-1 of supercritical CO2 is injected at a depth of 1 km into a pristine saline aquifer with a thick shale caprock. Analysis of time-lapse seismic reflection surveys shows that CO2 is distributed within 9 discrete layers. The trapping mechanism comprises a stacked series of 1 m thick, impermeable shale horizons that are spaced at 30 m intervals through the reservoir. Within the stratigraphically highest reservoir layer, Layer 9, a submarine channel deposit has been mapped on the pre-injection seismic survey. Detailed measurements of the three-dimensional CO2 distribution within Layer 9 have been made using seven time-lapse surveys, providing a useful benchmark against which numerical flow simulations can be tested. Previous simulations have, in general, been largely unsuccessful in matching the migration rate of CO2 in this layer. Here, CO2 flow within Layer 9 is modeled as a vertically-integrated gravity current that spreads beneath a structurally complex caprock using a two-dimensional grid, considerably increasing computational efficiency compared to conventional three-dimensional simulators. This flow model is inverted to find the optimal reservoir permeability in Layer 9 by minimizing the difference between observed and predicted distributions of CO2 as a function of space and time. A three parameter inverse model, comprising reservoir permeability, channel permeability and channel width, is investigated by grid search. The best-fitting reservoir permeability is 3 Darcys, which is consistent with measurements made on core material from the reservoir. Best-fitting channel permeability is 26 Darcys. Finally, the ability of this simplified numerical model to forecast CO2 flow within Layer 9 is tested. Permeability recovered by modeling a suite of early seismic surveys is used to predict the CO2 distribution for a suite of later seismic surveys with a considerable degree of success. Forecasts have also been carried out that can be tested using future seismic surveys.

  12. Goodenough Spring, Texas, USA: Discharge and water chemistry of a large spring deeply submerged under the binational Amistad Reservoir

    NASA Astrophysics Data System (ADS)

    Kamps, Ray H.; Tatum, Gregg S.; Gault, Mike; Groeger, Alan W.

    2009-06-01

    Goodenough Spring (Texas, USA) is a large spring near the border of the American state of Texas and the Mexican state of Coahuila, discharging into the international Amistad Reservoir on the river Rio Grande (Rio Bravo). Discharge was routinely measured from 1928 until 1968 to partition the flow of the river between the two countries in accordance with water-use treaties. Samples were analyzed for water-quality parameters in 1967-1968 prior to inundation under 45 m of Amistad Reservoir in 1968. Subsequently, discharge has been estimated indirectly by the International Boundary and Water Commission (IBWC). For the first direct measurements of the spring in 37 years, velocity and cross-sectional measurements were made and water samples collected in the summer of 2005 using advanced self-contained underwater breathing apparatus (SCUBA) techniques. Spring discharge was calculated at 2.03 m3 s-1, approximately one-half of the historical mean of 3.94 m3 s-1. In situ and laboratory analyses of samples for temperature, pH, dissolved oxygen, specific conductance, alkalinity, nitrate-nitrogen, dissolved solids, chloride, sulfate, fluoride, phosphorus, calcium, sodium, potassium, magnesium, and iron showed the water quality to be very good for human consumption and crop irrigation. Measurement values are relatively unchanged from those reported 37 years prior.

  13. Distribution and arrest of vertical through-going joints in a seismic-scale carbonate platform exposure (Sorrento peninsula, Italy): insights from integrating field survey and digital outcrop model

    NASA Astrophysics Data System (ADS)

    Corradetti, A.; Tavani, S.; Parente, M.; Iannace, A.; Vinci, F.; Pirmez, C.; Torrieri, S.; Giorgioni, M.; Pignalosa, A.; Mazzoli, S.

    2018-03-01

    Through-going joints cutting across beds are often invoked to match large-scale permeability patterns in tight carbonate reservoirs. However, despite the importance of these structures for fluid flow, only few field studies focused on the understanding and estimation of through-going joint dimensional parameters, including spacing and vertical extent in relation to stratigraphy. Recent improvements in the construction of digital models of outcrops can greatly help to overcome many logistic issues, favouring the evaluation of relationships between jointing and stratigraphy at the reservoir scale. In this study, we present the results obtained from integrating field measurements with a digital outcrop model of a carbonate platform reservoir analogue in the Sorrento peninsula (Italy). The outcrop consists of a nearly vertical cliff exposing a monocline of alternating gently-dipping shallow-water limestones and dolostones, crossed by several vertical joints of different size. This study allowed us to define how major through-going joints pass across thick beds (bed thickness > 30 cm), while they arrest against packages made of thinly stratified layers. In essence, through-going joints arrest on "weak" levels, consisting of thinly bedded layers interposed between packages made of thick beds, in the same manner as bed-confined joints arrest on less competent interlayers.

  14. Reservoir Simulations of Low-Temperature Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Bedre, Madhur Ganesh

    The eastern United States generally has lower temperature gradients than the western United States. However, West Virginia, in particular, has higher temperature gradients compared to other eastern states. A recent study at Southern Methodist University by Blackwell et al. has shown the presence of a hot spot in the eastern part of West Virginia with temperatures reaching 150°C at a depth of between 4.5 and 5 km. This thesis work examines similar reservoirs at a depth of around 5 km resembling the geology of West Virginia, USA. The temperature gradients used are in accordance with the SMU study. In order to assess the effects of geothermal reservoir conditions on the lifetime of a low-temperature geothermal system, a sensitivity analysis study was performed on following seven natural and human-controlled parameters within a geothermal reservoir: reservoir temperature, injection fluid temperature, injection flow rate, porosity, rock thermal conductivity, water loss (%) and well spacing. This sensitivity analysis is completed by using ‘One factor at a time method (OFAT)’ and ‘Plackett-Burman design’ methods. The data used for this study was obtained by carrying out the reservoir simulations using TOUGH2 simulator. The second part of this work is to create a database of thermal potential and time-dependant reservoir conditions for low-temperature geothermal reservoirs by studying a number of possible scenarios. Variations in the parameters identified in sensitivity analysis study are used to expand the scope of database. Main results include the thermal potential of reservoir, pressure and temperature profile of the reservoir over its operational life (30 years for this study), the plant capacity and required pumping power. The results of this database will help the supply curves calculations for low-temperature geothermal reservoirs in the United States, which is the long term goal of the work being done by the geothermal research group under Dr. Anderson at West Virginia University.

  15. Innovative techniques for the description of reservoir heterogeneity using tracers. Second technical annual progress report, October 1991--September 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G.A.; Sepehrnoori, K.

    1992-12-31

    This second annual report on innovative uses of tracers for reservoir characterization contains four sections each describing a novel use of oilfield tracers. The first section describes and illustrates the use of a new single-well tracer test to estimate wettability. This test consists of the injection of brine containing tracers followed by oil containing tracers, a shut-in period to allow some of the tracers to react, and then production of the tracers. The inclusion of the oil injection slug with tracers is unique to this test, and this is what makes the test work. We adapted our chemical simulator, UTCHEM,more » to enable us to study this tracer method and made an extensive simulation study to evaluate the effects of wettability based upon characteristic curves for relative permeability and capillary pressure for differing wetting states typical of oil reservoirs. The second section of this report describes a new method for analyzing interwell tracer data based upon a type-curve approach. Theoretical frequency response functions were used to build type curves of ``transfer function`` and ``phase spectrum`` that have dimensionless heterogeneity index as a parameter to characterize a stochastic permeability field. We illustrate this method by analyzing field tracer data. The third section of this report describes a new theory for interpreting interwell tracer data in terms of channeling and dispersive behavior for reservoirs. Once again, a stochastic approach to reservoir description is taken. The fourth section of this report describes our simulation of perfluorocarbon gas tracers. This new tracer technology developed at Brookhaven National Laboratory is being tested at the Elk Hills Naval Petroleum Reserve No. 1 in California. We report preliminary simulations made of these tracers in one of the oil reservoirs under evaluation with these tracers in this field. Our compostional simulator (UTCOMP) was used for this simulation study.« less

  16. Refinement and evaluation of the Massachusetts firm-yield estimator model version 2.0

    USGS Publications Warehouse

    Levin, Sara B.; Archfield, Stacey A.; Massey, Andrew J.

    2011-01-01

    The firm yield is the maximum average daily withdrawal that can be extracted from a reservoir without risk of failure during an extended drought period. Previously developed procedures for determining the firm yield of a reservoir were refined and applied to 38 reservoir systems in Massachusetts, including 25 single- and multiple-reservoir systems that were examined during previous studies and 13 additional reservoir systems. Changes to the firm-yield model include refinements to the simulation methods and input data, as well as the addition of several scenario-testing capabilities. The simulation procedure was adapted to run at a daily time step over a 44-year simulation period, and daily streamflow and meteorological data were compiled for all the reservoirs for input to the model. Another change to the model-simulation methods is the adjustment of the scaling factor used in estimating groundwater contributions to the reservoir. The scaling factor is used to convert the daily groundwater-flow rate into a volume by multiplying the rate by the length of reservoir shoreline that is hydrologically connected to the aquifer. Previous firm-yield analyses used a constant scaling factor that was estimated from the reservoir surface area at full pool. The use of a constant scaling factor caused groundwater flows during periods when the reservoir stage was very low to be overestimated. The constant groundwater scaling factor used in previous analyses was replaced with a variable scaling factor that is based on daily reservoir stage. This change reduced instability in the groundwater-flow algorithms and produced more realistic groundwater-flow contributions during periods of low storage. Uncertainty in the firm-yield model arises from many sources, including errors in input data. The sensitivity of the model to uncertainty in streamflow input data and uncertainty in the stage-storage relation was examined. A series of Monte Carlo simulations were performed on 22 reservoirs to assess the sensitivity of firm-yield estimates to errors in daily-streamflow input data. Results of the Monte Carlo simulations indicate that underestimation in the lowest stream inflows can cause firm yields to be underestimated by an average of 1 to 10 percent. Errors in the stage-storage relation can arise when the point density of bathymetric survey measurements is too low. Existing bathymetric surfaces were resampled using hypothetical transects of varying patterns and point densities in order to quantify the uncertainty in stage-storage relations. Reservoir-volume calculations and resulting firm yields were accurate to within 5 percent when point densities were greater than 20 points per acre of reservoir surface. Methods for incorporating summer water-demand-reduction scenarios into the firm-yield model were developed as well as the ability to relax the no-fail reliability criterion. Although the original firm-yield model allowed monthly reservoir releases to be specified, there have been no previous studies examining the feasibility of controlled releases for downstream flows from Massachusetts reservoirs. Two controlled-release scenarios were tested—with and without a summer water-demand-reduction scenario—for a scenario with a no-fail criterion and a scenario that allows for a 1-percent failure rate over the entire simulation period. Based on these scenarios, about one-third of the reservoir systems were able to support the flow-release scenarios at their 2000–2004 usage rates. Reservoirs with higher storage ratios (reservoir storage capacity to mean annual streamflow) and lower demand ratios (mean annual water demand to annual firm yield) were capable of higher downstream release rates. For the purposes of this research, all reservoir systems were assumed to have structures which enable controlled releases, although this assumption may not be true for many of the reservoirs studied.

  17. Experimental analysis of green roof substrate detention characteristics.

    PubMed

    Yio, Marcus H N; Stovin, Virginia; Werdin, Jörg; Vesuviano, Gianni

    2013-01-01

    Green roofs may make an important contribution to urban stormwater management. Rainfall-runoff models are required to evaluate green roof responses to specific rainfall inputs. The roof's hydrological response is a function of its configuration, with the substrate - or growing media - providing both retention and detention of rainfall. The objective of the research described here is to quantify the detention effects due to green roof substrates, and to propose a suitable hydrological modelling approach. Laboratory results from experimental detention tests on green roof substrates are presented. It is shown that detention increases with substrate depth and as a result of increasing substrate organic content. Model structures based on reservoir routing are evaluated, and it is found that a one-parameter reservoir routing model coupled with a parameter that describes the delay to start of runoff best fits the observed data. Preliminary findings support the hypothesis that the reservoir routing parameter values can be defined from the substrate's physical characteristics.

  18. Hydrologic considerations for estimation of storage-capacity requirements of impounding and side-channel reservoirs for water supply in Ohio

    USGS Publications Warehouse

    Koltun, G.F.

    2001-01-01

    This report provides data and methods to aid in the hydrologic design or evaluation of impounding reservoirs and side-channel reservoirs used for water supply in Ohio. Data from 117 streamflow-gaging stations throughout Ohio were analyzed by means of nonsequential-mass-curve-analysis techniques to develop relations between storage requirements, water demand, duration, and frequency. Information also is provided on minimum runoff for selected durations and frequencies. Systematic record lengths for the streamflow-gaging stations ranged from about 10 to 75 years; however, in many cases, additional streamflow record was synthesized. For impounding reservoirs, families of curves are provided to facilitate the estimation of storage requirements as a function of demand and the ratio of the 7-day, 2-year low flow to the mean annual flow. Information is provided with which to evaluate separately the effects of evaporation on storage requirements. Comparisons of storage requirements for impounding reservoirs determined by nonsequential-mass-curve-analysis techniques with storage requirements determined by annual-mass-curve techniques that employ probability routing to account for carryover-storage requirements indicate that large differences in computed required storages can result from the two methods, particularly for conditions where demand cannot be met from within-year storage. For side-channel reservoirs, tables of demand-storage-frequency information are provided for a primary pump relation consisting of one variable-speed pump with a pumping capacity that ranges from 0.1 to 20 times demand. Tables of adjustment ratios are provided to facilitate determination of storage requirements for 19 other pump sets consisting of assorted combinations of fixed-speed pumps or variable-speed pumps with aggregate pumping capacities smaller than or equal to the primary pump relation. The effects of evaporation on side-channel reservoir storage requirements are incorporated into the storage-requirement estimates. The effects of an instream-flow requirement equal to the 80-percent-duration flow are also incorporated into the storage-requirement estimates.

  19. Evaluation of the mussel fishery in Wheeler Reservoir, Tennessee River

    USGS Publications Warehouse

    Bowen, Zack H.; Malvestuto, S. P.; Davies, W. D.; Crance, J. H.

    1994-01-01

    We evaluated the freshwater mussel fishery on Wheeler Reservoir, a 27,155-hectare mainstream impoundment of the Tennessee River in Alabama. During July 1991 through June 1992, we used a roving creel survey to conduct 285 interviews over 57 weekdays and 12 weekend days. Total harvest during the 12-month survey period was estimated to be 570 metric tons, and included 15 mussel species. The most frequently harvested species were the washboard Megalonaias nervosa. Ohio pigtoe Pleurobema cordatum, and butterfly Ellipsaria lineolata. Harvest peaked in June at 290,414 mussels. Among collection techniques, total estimated effort was highest for divers (71,160 musseler-hours). The total estimated value of the 12-month mussel harvest (in terms of money paid to harvesters) from Wheeler Reservoir was US$2,119,921.

  20. Impact of Reservoir Operation to the Inflow Flood - a Case Study of Xinfengjiang Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, L.

    2017-12-01

    Building of reservoir shall impact the runoff production and routing characteristics, and changes the flood formation. This impact, called as reservoir flood effect, could be divided into three parts, including routing effect, volume effect and peak flow effect, and must be evaluated in a whole by using hydrological model. After analyzing the reservoir flood formation, the Liuxihe Model for reservoir flood forecasting is proposed. The Xinfengjiang Reservoir is studied as a case. Results show that the routing effect makes peak flow appear 4 to 6 hours in advance, volume effect is bigger for large flood than small one, and when rainfall focus on the reservoir area, this effect also increases peak flow largely, peak flow effect makes peak flow increase 6.63% to 8.95%. Reservoir flood effect is obvious, which have significant impact to reservoir flood. If this effect is not considered in the flood forecasting model, the flood could not be forecasted accurately, particularly the peak flow. Liuxihe Model proposed for Xinfengjiang Reservoir flood forecasting has a good performance, and could be used for real-time flood forecasting of Xinfengjiang Reservoir.Key words: Reservoir flood effect, reservoir flood forecasting, physically based distributed hydrological model, Liuxihe Model, parameter optimization

  1. Characterization of Suspended-Sediment Loading to and from John Redmond Reservoir, East-Central Kansas, 2007-2008

    USGS Publications Warehouse

    Lee, Casey J.; Rasmussen, Patrick P.; Ziegler, Andrew C.

    2008-01-01

    Storage capacity in John Redmond Reservoir is being lost to sedimentation more rapidly than in other federal impoundments in Kansas. The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, initiated a study to characterize suspended-sediment loading to and from John Redmond Reservoir from February 21, 2007, through February 21, 2008. Turbidity sensors were installed at two U.S. Geological Survey stream gages upstream (Neosho River near Americus and the Cottonwood River near Plymouth) and one stream gage downstream (Neosho River at Burlington) from the reservoir to compute continuous, real-time (15-minute) measurements of suspended-sediment concentration and loading. About 1,120,000 tons of suspended-sediment were transported to, and 100,700 tons were transported from John Redmond Reservoir during the study period. Dependent on the bulk density of sediment stored in the reservoir, 5.0 to 1.4 percent of the storage in the John Redmond conservation pool was lost during the study period, with an average deposition of 3.4 to 1.0 inches. Nearly all (98-99 percent) of the incoming sediment load was transported during 9 storms which occurred 25 to 27 percent of the time. The largest storm during the study period (peak-flow recurrence interval of about 4.6-4.9 years) transported about 37 percent of the sediment load to the reservoir. Suspended-sediment yield from the unregulated drainage area upstream from the Neosho River near Americus was 530 tons per square mile, compared to 400 tons per square mile upstream from the Cottonwood River near Plymouth. Comparison of historical (1964-78) to current (2007) sediment loading estimates indicate statistically insignificant (99 percent) decrease in sediment loading at the Neosho River at Burlington. Ninety-percent confidence intervals of streamflow-derived estimates of total sediment load were 7 to 21 times larger than turbidity-derived estimates. Results from this study can be used by natural resource managers to calibrate sediment models and estimate the ability of John Redmond Reservoir to support designated uses into the future.

  2. [Water environmental capacity calculation model for the rivers in drinking water source conservation area].

    PubMed

    Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming

    2008-09-01

    Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.

  3. Flood Nowcasting With Linear Catchment Models, Radar and Kalman Filters

    NASA Astrophysics Data System (ADS)

    Pegram, Geoff; Sinclair, Scott

    A pilot study using real time rainfall data as input to a parsimonious linear distributed flood forecasting model is presented. The aim of the study is to deliver an operational system capable of producing flood forecasts, in real time, for the Mgeni and Mlazi catchments near the city of Durban in South Africa. The forecasts can be made at time steps which are of the order of a fraction of the catchment response time. To this end, the model is formulated in Finite Difference form in an equation similar to an Auto Regressive Moving Average (ARMA) model; it is this formulation which provides the required computational efficiency. The ARMA equation is a discretely coincident form of the State-Space equations that govern the response of an arrangement of linear reservoirs. This results in a functional relationship between the reservoir response con- stants and the ARMA coefficients, which guarantees stationarity of the ARMA model. Input to the model is a combined "Best Estimate" spatial rainfall field, derived from a combination of weather RADAR and Satellite rainfield estimates with point rain- fall given by a network of telemetering raingauges. Several strategies are employed to overcome the uncertainties associated with forecasting. Principle among these are the use of optimal (double Kalman) filtering techniques to update the model states and parameters in response to current streamflow observations and the application of short term forecasting techniques to provide future estimates of the rainfield as input to the model.

  4. U.S. DOE NETL methodology for estimating the prospective CO 2 storage resource of shales at the national and regional scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Jonathan S.; Fukai, Isis; Soeder, Daniel J.

    While the majority of shale formations will serve as reservoir seals for stored anthropogenic carbon dioxide (CO2), hydrocarbon-bearing shale formations may be potential geologic sinks after depletion through primary production. Here in this paper we present the United States-Department of Energy-National Energy Technology Laboratory (US-DOE-NETL) methodology for screening-level assessment of prospective CO 2 storage resources in shale using a volumetric equation. Volumetric resource estimates are produced from the bulk volume, porosity, and sorptivity of the shale and storage efficiency factors based on formation-scale properties and petrophysical limitations on fluid transport. Prospective shale formations require: (1) prior hydrocarbon production using horizontalmore » drilling and stimulation via staged, high-volume hydraulic fracturing, (2) depths sufficient to maintain CO 2 in a supercritical state, generally >800 m, and (3) an overlying seal. The US-DOE-NETL methodology accounts for storage of CO 2 in shale as a free fluid phase within fractures and matrix pores and as an sorbed phase on organic matter and clays. Uncertainties include but are not limited to poorly-constrained geologic variability in formation thickness, porosity, existing fluid content, organic richness, and mineralogy. Knowledge of how these parameters may be linked to depositional environments, facies, and diagenetic history of the shale will improve the understanding of pore-to-reservoir scale behavior, and provide improved estimates of prospective CO 2 storage.« less

  5. U.S. DOE NETL methodology for estimating the prospective CO 2 storage resource of shales at the national and regional scale

    DOE PAGES

    Levine, Jonathan S.; Fukai, Isis; Soeder, Daniel J.; ...

    2016-05-31

    While the majority of shale formations will serve as reservoir seals for stored anthropogenic carbon dioxide (CO2), hydrocarbon-bearing shale formations may be potential geologic sinks after depletion through primary production. Here in this paper we present the United States-Department of Energy-National Energy Technology Laboratory (US-DOE-NETL) methodology for screening-level assessment of prospective CO 2 storage resources in shale using a volumetric equation. Volumetric resource estimates are produced from the bulk volume, porosity, and sorptivity of the shale and storage efficiency factors based on formation-scale properties and petrophysical limitations on fluid transport. Prospective shale formations require: (1) prior hydrocarbon production using horizontalmore » drilling and stimulation via staged, high-volume hydraulic fracturing, (2) depths sufficient to maintain CO 2 in a supercritical state, generally >800 m, and (3) an overlying seal. The US-DOE-NETL methodology accounts for storage of CO 2 in shale as a free fluid phase within fractures and matrix pores and as an sorbed phase on organic matter and clays. Uncertainties include but are not limited to poorly-constrained geologic variability in formation thickness, porosity, existing fluid content, organic richness, and mineralogy. Knowledge of how these parameters may be linked to depositional environments, facies, and diagenetic history of the shale will improve the understanding of pore-to-reservoir scale behavior, and provide improved estimates of prospective CO 2 storage.« less

  6. Potential evaluation of CO2 storage and enhanced oil recovery of tight oil reservoir in the Ordos Basin, China.

    PubMed

    Tian, Xiaofeng; Cheng, Linsong; Cao, Renyi; Zhang, Miaoyi; Guo, Qiang; Wang, Yimin; Zhang, Jian; Cui, Yu

    2015-07-01

    Carbon -di-oxide (CO2) is regarded as the most important greenhouse gas to accelerate climate change and ocean acidification. The Chinese government is seeking methods to reduce anthropogenic CO2 gas emission. CO2 capture and geological storage is one of the main methods. In addition, injecting CO2 is also an effective method to replenish formation energy in developing tight oil reservoirs. However, exiting methods to estimate CO2 storage capacity are all based on the material balance theory. This was absolutely correct for normal reservoirs. However, as natural fractures widely exist in tight oil reservoirs and majority of them are vertical ones, tight oil reservoirs are not close. Therefore, material balance theory is not adaptive. In the present study, a new method to calculate CO2 storage capacity is presented. The CO2 effective storage capacity, in this new method, consisted of free CO2, CO2 dissolved in oil and CO2 dissolved in water. Case studies of tight oil reservoir from Ordos Basin was conducted and it was found that due to far lower viscosity of CO2 and larger solubility in oil, CO2 could flow in tight oil reservoirs more easily. As a result, injecting CO2 in tight oil reservoirs could obviously enhance sweep efficiency by 24.5% and oil recovery efficiency by 7.5%. CO2 effective storage capacity of Chang 7 tight oil reservoir in Longdong area was 1.88 x 10(7) t. The Chang 7 tight oil reservoir in Ordos Basin was estimated to be 6.38 x 10(11) t. As tight oil reservoirs were widely distributed in Songliao Basin, Sichuan Basin and so on, geological storage capacity of CO2 in China is potential.

  7. All-optical reservoir computer based on saturation of absorption.

    PubMed

    Dejonckheere, Antoine; Duport, François; Smerieri, Anteo; Fang, Li; Oudar, Jean-Louis; Haelterman, Marc; Massar, Serge

    2014-05-05

    Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

  8. Quantum Discord Preservation for Two Quantum-Correlated Qubits in Two Independent Reserviors

    NASA Astrophysics Data System (ADS)

    Xu, Lan

    2018-03-01

    We investigate the dynamics of quantum discord using an exactly solvable model where two qubits coupled to independent thermal environments. The quantum discord is employed as a non-classical correlation quantifier. By studying the quantum discord of a class of initial states, we find discord remains preserve for a finite time. The effects of the temperature, initial-state parameter, system-reservoir coupling constant and temperature difference parameter of the two independent reserviors are also investigated. We discover that the quantum nature loses faster in high temperature, however, one can extend the time of quantum nature by choosing smaller system-reservoir coupling constant, larger certain initial-state parameter and larger temperature difference parameter.

  9. Optimal experimental design for placement of boreholes

    NASA Astrophysics Data System (ADS)

    Padalkina, Kateryna; Bücker, H. Martin; Seidler, Ralf; Rath, Volker; Marquart, Gabriele; Niederau, Jan; Herty, Michael

    2014-05-01

    Drilling for deep resources is an expensive endeavor. Among the many problems finding the optimal drilling location for boreholes is one of the challenging questions. We contribute to this discussion by using a simulation based assessment of possible future borehole locations. We study the problem of finding a new borehole location in a given geothermal reservoir in terms of a numerical optimization problem. In a geothermal reservoir the temporal and spatial distribution of temperature and hydraulic pressure may be simulated using the coupled differential equations for heat transport and mass and momentum conservation for Darcy flow. Within this model the permeability and thermal conductivity are dependent on the geological layers present in the subsurface model of the reservoir. In general, those values involve some uncertainty making it difficult to predict actual heat source in the ground. Within optimal experimental the question is which location and to which depth to drill the borehole in order to estimate conductivity and permeability with minimal uncertainty. We introduce a measure for computing the uncertainty based on simulations of the coupled differential equations. The measure is based on the Fisher information matrix of temperature data obtained through the simulations. We assume that the temperature data is available within the full borehole. A minimization of the measure representing the uncertainty in the unknown permeability and conductivity parameters is performed to determine the optimal borehole location. We present the theoretical framework as well as numerical results for several 2d subsurface models including up to six geological layers. Also, the effect of unknown layers on the introduced measure is studied. Finally, to obtain a more realistic estimate of optimal borehole locations, we couple the optimization to a cost model for deep drilling problems.

  10. Tomographic Image of a Seismically Active Volcano: Mammoth Mountain, California

    NASA Astrophysics Data System (ADS)

    Dawson, P. B.; Chouet, B. A.; Pitt, A. M.

    2015-12-01

    High-resolution tomographic P wave, S wave, and VP /VS velocity structure models are derived for Mammoth Mountain, California using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (˜50 km3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ˜2 km below sea level. We infer that the reduction in seismic wave velocities is primarily due to the presence of CO2 distributed in oblate-spheroid pores with mean aspect ratio α ˜8 x 10-4 (crack-like pores) and gas volume fraction φ ˜4 x 10-4. The pore density parameter κ = 3φ / (4πα) = na3 = 0.12, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to range up to ˜1.6 x 1010 kg if the pores exclusively contain CO2, although he presence of an aqueous phase may lower this estimate by up to one order of magnitude. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 5 x 105 kg day-1, the reservoir could supply the emission of CO2 for ˜8 to ˜90 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  11. Landslide-Generated Waves in a Dam Reservoir: The Effects of Landslide Rheology and Initial Submergence

    NASA Astrophysics Data System (ADS)

    Yavari Ramsheh, S.; Ataie-Ashtiani, B.

    2017-12-01

    Recent studies revealed that landslide-generated waves (LGWs) impose the largest tsunami hazard to our shorelines although earthquake-generated waves (EGWs) occur more often. Also, EGWs are commonly followed by a large number of landslide hazards. Dam reservoirs are more vulnerable to landslide events due to being located in mountainous areas. Accurate estimation of such hazards and their destructive consequences help authorities to reduce their risks by constructive measures. In this regard, a two-layer two-phase Coulomb mixture flow (2LCMFlow) model is applied to investigate the effects of landslide characteristics on LGWs for a real-sized simplification of the Maku dam reservoir, located in the North of Iran. A sensitivity analysis is performed on the role of landslide rheological and constitutive parameters and its initial submergence in LGW characteristics and formation patterns. The numerical results show that for a subaerial (SAL), a semi-submerged (SSL), and a submarine landslide (SML) with the same initial geometry, the SSLs can create the largest wave crest, up to 60% larger than SALs, for dense material. However, SMLs generally create the largest wave troughs and SALs travel the maximum runout distances beneath the water. Regarding the two-phase (solid-liquid) nature of the landslide, when interestial water is isolated from the water layer along the water/landslide interface, a LGW with up to 30% higher wave crest can be created. In this condition, increasing the pore water pressure within the granular layer results in up to 35% higher wave trough and 40% lower wave crest at the same time. These results signify the importance of appropriate description of two-phase nature and rheological behavior of landslides in accurate estimation of LGWs which demands further numerical, physical, and field studies about such phenomena.

  12. Hydroacoustic Estimates of Fish Density Distributions in Cougar Reservoir, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Zimmerman, Shon A.; Hennen, Matthew J.

    2012-09-01

    Day and night mobile hydroacoustic surveys were conducted once each month from April through December 2011 to quantify the horizontal and vertical distributions of fish throughout Cougar Reservoir, Lane County, Oregon.

  13. Fuzzy inference system for identification of geological stratigraphy off Prydz Bay, East Antarctica

    NASA Astrophysics Data System (ADS)

    Singh, Upendra K.

    2011-12-01

    The analysis of well logging data plays key role in the exploration and development of hydrocarbon reservoirs. Various well log parameters such as porosity, gamma ray, density, transit time and resistivity, help in classification of strata and estimation of the physical, electrical and acoustical properties of the subsurface lithology. Strong and conspicuous changes in some of the log parameters associated with any particular geological stratigraphy formation are function of its composition, physical properties that help in classification. However some substrata show moderate values in respective log parameters and make difficult to identify the kind of strata, if we go by the standard variability ranges of any log parameters and visual inspection. The complexity increases further with more number of sensors involved. An attempt is made to identify the kinds of stratigraphy from well logs over Prydz bay basin, East Antarctica using fuzzy inference system. A model is built based on few data sets of known stratigraphy and further the network model is used as test model to infer the lithology of a borehole from their geophysical logs, not used in simulation. Initially the fuzzy based algorithm is trained, validated and tested on well log data and finally identifies the formation lithology of a hydrocarbon reservoir system of study area. The effectiveness of this technique is demonstrated by the analysis of the results for actual lithologs and coring data of ODP Leg 188. The fuzzy results show that the training performance equals to 82.95% while the prediction ability is 87.69%. The fuzzy results are very encouraging and the model is able to decipher even thin layer seams and other strata from geophysical logs. The result provides the significant sand formation of depth range 316.0- 341.0 m, where core recovery is incomplete.

  14. Time-variable magma pressure at Kīlauea Volcano yields constraint on the volume and volatile content of shallow magma storage

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.; Patrick, M. R.; Poland, M. P.; Miklius, A.

    2015-12-01

    Episodic depressurization-pressurization cycles of Kīlauea Volcano's shallow magma system cause variations in ground deformation, eruption rate, and surface height of the active summit lava lake. The mechanism responsible for these pressure-change cycles remains enigmatic, but associated monitoring signals often show a quasi-exponential temporal history that is consistent with a temporary reduction (or blockage) of supply to Kīlauea's shallow magma storage area. Regardless of their cause, the diverse signals produced by these deflation-inflation (DI) cycles offer an unrivaled opportunity to constrain properties of an active volcano's shallow magma reservoir and relation to its eruptive vents. We model transient behavior at Kīlauea Volcano using a simple mathematical model of an elastic reservoir that is coupled to magma flux through Kīlauea's East Rift Zone (ERZ) at a rate proportional to the difference in pressure between the summit reservoir and the ERZ eruptive vent (Newtonian flow). In this model, summit deflations and ERZ flux reductions are caused by a blockage in supply to the reservoir, while re-inflations occur as the system returns to a steady-state flux condition. The model naturally produces exponential variations in pressure and eruption rate which reasonably, albeit imperfectly, match observations during many of the transient events at Kīlauea. We constrain the model using a diverse range of observations including time-varying summit lava lake surface height and volume change, the temporal evolution of summit ground tilt, time-averaged eruption rate derived from TanDEM-X radar data, and height difference between the summit lava lake and the ERZ eruptive vent during brief eruptive pauses (Patrick et al., 2015). Formulating a Bayesian inverse and including independent prior constraint on magma density, host rock strength, and other properties of the system, we are able to place probabilistic constraints on the volume and volatile content of shallow magma storage, as well as properties of the ERZ conduit and influx of magma into Kīlauea's shallow magma reservoir. Reservoir influx parameters cannot in general be uniquely resolved, but reservoir volume and exsolved volatile content are well constrained; ERZ conduit radius may also be estimated given some simplifying assumptions.

  15. A Fractal Permeability Model for Shale Oil Reservoir

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Dong, Mingzhe; Li, Yajun

    2018-01-01

    In this work, a fractal analytical model is proposed to predict the permeability of shale reservoir. The proposed model explicitly relates the permeability to the micro-structural parameters (tortuosity, pore area fractal dimensions, porosity and slip velocity coefficient) of shale.

  16. Escherichia coli survival in, and release from, white-tailed deer feces.

    PubMed

    Guber, Andrey K; Fry, Jessica; Ives, Rebecca L; Rose, Joan B

    2015-02-01

    White-tailed deer are an important reservoir for pathogens that can contribute a large portion of microbial pollution in fragmented agricultural and forest landscapes. The scarcity of experimental data on survival of microorganisms in and release from deer feces makes prediction of their fate and transport less reliable and development of efficient strategies for environment protection more difficult. The goal of this study was to estimate parameters for modeling Escherichia coli survival in and release from deer (Odocoileus virginianus) feces. Our objectives were as follows: (i) to measure survival of E. coli in deer pellets at different temperatures, (ii) to measure kinetics of E. coli release from deer pellets at different rainfall intensities, and (iii) to estimate parameters of models describing survival and release of microorganisms from deer feces. Laboratory experiments were conducted to study E. coli survival in deer pellets at three temperatures and to estimate parameters of Chick's exponential model with temperature correction based on the Arrhenius equation. Kinetics of E. coli release from deer pellets were measured at two rainfall intensities and used to derive the parameters of Bradford-Schijven model of bacterial release. The results showed that parameters of the survival and release models obtained for E. coli in this study substantially differed from those obtained by using other source materials, e.g., feces of domestic animals and manures. This emphasizes the necessity of comprehensive studies of survival of naturally occurring populations of microorganisms in and release from wildlife animal feces in order to achieve better predictions of microbial fate and transport in fragmented agricultural and forest landscapes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Numerical simulation of the SAGD process coupled with geomechanical behavior

    NASA Astrophysics Data System (ADS)

    Li, Pingke

    Canada has vast oil sand resources. While a large portion of this resource can be recovered by surface mining techniques, a majority is located at depths requiring the application of in situ recovery technologies. Although a number of in situ recovery technologies exist, the steam assisted gravity drainage (SAGD) process has emerged as one of the most promising technologies to develop the in situ oil sands resources. During the SAGD operations, saturated steam is continuously injected into the oil sands reservoir, which induces pore pressure and stress variations. As a result, reservoir parameters and processes may also vary, particularly when tensile and shear failure occur. This geomechanical effect is obvious for oil sands material because oil sands have the in situ interlocked fabric. The conventional reservoir simulation generally does not take this coupled mechanism into consideration. Therefore, this research is to improve the reservoir simulation techniques of the SAGD process applied in the development of oil sands and heavy oil reservoirs. The analyses of the decoupled reservoir geomechanical simulation results show that the geomechanical behavior in SAGD has obvious impact on reservoir parameters, such as absolute permeability. The issues with the coupled reservoir geomechanical simulations of the SAGD process have been clarified and the permeability variations due to geomechanical behaviors in the SAGD process investigated. A methodology of sequentially coupled reservoir geomechanical simulation technique was developed based on the reservoir simulator, EXOTHERM, and the geomechanical simulator, FLAC. In addition, a representative geomechanical model of oil sands material was summarized in this research. Finally, this reservoir geomechanical simulation methodology was verified with the UTF Phase A SAGD project and applied in a SAGD operation with gas-over-bitumen geometry. Based on this methodology, the geomechanical effect on the SAGD production performance can be quantified. This research program involves the analyses of laboratory testing results obtained from literatures. However, no laboratory testing was conducted in the process of this research.

  18. An integrated approach to model the biomagnification of organic pollutants in aquatic food webs of the Yangtze Three Gorges Reservoir ecosystem using adapted pollution scenarios.

    PubMed

    Scholz-Starke, Björn; Ottermanns, Richard; Rings, Ursula; Floehr, Tilman; Hollert, Henner; Hou, Junli; Li, Bo; Wu, Ling Ling; Yuan, Xingzhong; Strauch, Katrin; Wei, Hu; Norra, Stefan; Holbach, Andreas; Westrich, Bernhard; Schäffer, Andreas; Roß-Nickoll, Martina

    2013-10-01

    The impounding of the Three Gorges Reservoir (TGR) at the Yangtze River caused large flooding of urban, industrial, and agricultural areas, and profound land use changes took place. Consequently, substantial amounts of organic and inorganic pollutants were released into the reservoir. Additionally, contaminants and nutrients are entering the reservoir by drift, drainage, and runoff from adjacent agricultural areas as well as from sewage of industry, aquacultures, and households. The main aim of the presented research project is a deeper understanding of the processes that determines the bioaccumulation and biomagnification of organic pollutants, i.e., mainly pesticides, in aquatic food webs under the newly developing conditions of the TGR. The project is part of the Yangtze-Hydro environmental program, financed by the German Ministry of Education and Science. In order to test combinations of environmental factors like nutrients and pollution, we use an integrated modeling approach to study the potential accumulation and biomagnification. We describe the integrative modeling approach and the consecutive adaption of the AQUATOX model, used as modeling framework for ecological risk assessment. As a starting point, pre-calibrated simulations were adapted to Yangtze-specific conditions (regionalization). Two exemplary food webs were developed by a thorough review of the pertinent literature. The first typical for the flowing conditions of the original Yangtze River and the Daning River near the city of Wushan, and the second for the stagnant reservoir characteristics of the aforementioned region that is marked by an intermediate between lake and large river communities of aquatic organisms. In close cooperation with German and Chinese partners of the Yangtze-Hydro Research Association, other site-specific parameters were estimated. The MINIBAT project contributed to the calibration of physicochemical and bathymetric parameters, and the TRANSMIC project delivered hydrodynamic models for water volume and flow velocity conditions. The research questions were firstly focused on the definition of scenarios that could depict representative situations regarding food webs, pollution, and flow conditions in the TGR. The food webs and the abiotic site conditions in the main study area near the city of Wushan that determine the environmental preconditions for the organisms were defined. In our conceptual approach, we used the pesticide propanil as a model substance.

  19. The use of novel DNA nanotracers to determine groundwater flow paths - a test study at the Grimsel Deep Underground Geothermal (DUG) Laboratory in Switzerland

    NASA Astrophysics Data System (ADS)

    Kittilä, Anniina; Evans, Keith; Puddu, Michela; Mikutis, Gediminas; Grass, Robert N.; Deuber, Claudia; Saar, Martin O.

    2016-04-01

    Groundwater flow in fractured media is heterogeneous and takes place in structures with complex geometry and scale effects, which make the characterization and modeling of the groundwater flow technically challenging. Surface geophysical surveys have limited resolution of permeable structures, and often provide ambiguous results, whereas the interpretation of borehole flow logs to infer hydraulic flow paths within fractured reservoirs is usually non-unique. Nonetheless, knowledge of the hydraulic properties of individual fractures and the role they play in determining the larger-scale flow within the fracture network (i.e. the overall flow conditions) is required in many hydrogeological and geo-engineering situations, such as in geothermal reservoir studies. Tracer tests can overcome some of the aforementioned limitations by providing strong constraints on the geometry and characteristics of flow paths linking boreholes within both porous media and fracture-dominated types of reservoirs. In the case of geothermal reservoirs, tracer tests are often used to provide estimates of the pore/fracture volume swept by flow between injection and production wells. This in turn places constraints on the swept surface area, a parameter that is key for estimating the commercial longevity of the geothermal system. A problem with conventional tracer tests is that the solute species used as the tracer tend to persist in detectable quantities within the reservoir for a long time, thereby impeding repeat tracer tests. DNA nanotracers do not suffer from this problem as they can be designed with a unique signature for each test. DNA nanotracers are environmentally friendly, sub-micron sized silica particles encapsulating small fragments of synthetic DNA which can be fabricated to have a specified, uniquely detectable configuration. For this reason, repeat tracer tests conducted with a differently-encoded DNA fragment to that used in the original will not suffer interference from the earlier test. In this study, we present the results of tests of applying novel DNA nanotracers to characterize groundwater flow properties and the flow pathways in a fracture-dominated reservoir in the Deep Underground Geothermal (DUG) Laboratory at the Grimsel Test Site in the Swiss Alps. This study is motivated by subsequent comparisons of similar characterizations of fractured rock masses after hydraulic stimulation. These will take place at the DUG Lab at the end of 2016. The results of the flow-path characterization are also compared with those obtained from classical solute tracer tests.

  20. Summary of the analyses for recovery factors

    USGS Publications Warehouse

    Verma, Mahendra K.

    2017-07-17

    IntroductionIn order to determine the hydrocarbon potential of oil reservoirs within the U.S. sedimentary basins for which the carbon dioxide enhanced oil recovery (CO2-EOR) process has been considered suitable, the CO2 Prophet model was chosen by the U.S. Geological Survey (USGS) to be the primary source for estimating recovery-factor values for individual reservoirs. The choice was made because of the model’s reliability and the ease with which it can be used to assess a large number of reservoirs. The other two approaches—the empirical decline curve analysis (DCA) method and a review of published literature on CO2-EOR projects—were deployed to verify the results of the CO2 Prophet model. This chapter discusses the results from CO2 Prophet (chapter B, by Emil D. Attanasi, this report) and compares them with results from decline curve analysis (chapter C, by Hossein Jahediesfanjani) and those reported in the literature for selected reservoirs with adequate data for analyses (chapter D, by Ricardo A. Olea).To estimate the technically recoverable hydrocarbon potential for oil reservoirs where CO2-EOR has been applied, two of the three approaches—CO2 Prophet modeling and DCA—do not include analysis of economic factors, while the third approach—review of published literature—implicitly includes economics. For selected reservoirs, DCA has provided estimates of the technically recoverable hydrocarbon volumes, which, in combination with calculated amounts of original oil in place (OOIP), helped establish incremental CO2-EOR recovery factors for individual reservoirs.The review of published technical papers and reports has provided substantial information on recovery factors for 70 CO2-EOR projects that are either commercially profitable or classified as pilot tests. When comparing the results, it is important to bear in mind the differences and limitations of these three approaches.

  1. Equations for estimating synthetic unit-hydrograph parameter values for small watersheds in Lake County, Illinois

    USGS Publications Warehouse

    Melching, C.S.; Marquardt, J.S.

    1997-01-01

    Design hydrographs computed from design storms, simple models of abstractions (interception, depression storage, and infiltration), and synthetic unit hydrographs provide vital information for stormwater, flood-plain, and water-resources management throughout the United States. Rainfall and runoff data for small watersheds in Lake County collected between 1990 and 1995 were studied to develop equations for estimation of synthetic unit-hydrograph parameters on the basis of watershed and storm characteristics. The synthetic unit-hydrograph parameters of interest were the time of concentration (TC) and watershed-storage coefficient (R) for the Clark unit-hydrograph method, the unit-graph lag (UL) for the Soil Conservation Service (now known as the Natural Resources Conservation Service) dimensionless unit hydrograph, and the hydrograph-time lag (TL) for the linear-reservoir method for unit-hydrograph estimation. Data from 66 storms with effective-precipitation depths greater than 0.4 inches on 9 small watersheds (areas between 0.06 and 37 square miles (mi2)) were utilized to develop the estimation equations, and data from 11 storms on 8 of these watersheds were utilized to verify (test) the estimation equations. The synthetic unit-hydrograph parameters were determined by calibration using the U.S. Army Corps of Engineers Flood Hydrograph Package HEC-1 (TC, R, and UL) or by manual analysis of the rainfall and run-off data (TL). The relation between synthetic unit-hydrograph parameters, and watershed and storm characteristics was determined by multiple linear regression of the logarithms of the parameters and characteristics. Separate sets of equations were developed with watershed area and main channel length as the starting parameters. Percentage of impervious cover, main channel slope, and depth of effective precipitation also were identified as important characteristics for estimation of synthetic unit-hydrograph parameters. The estimation equations utilizing area had multiple correlation coefficients of 0.873, 0.961, 0.968, and 0.963 for TC, R, UL, and TL, respectively, and the estimation equations utilizing main channel length had multiple correlation coefficients of 0.845, 0.957, 0.961, and 0.963 for TC, R, UL, and TL, respectively. Simulation of the measured hydrographs for the verification storms utilizing TC and R obtained from the estimation equations yielded good results without calibration. The peak discharge for 8 of the 11 storms was estimated within 25 percent and the time-to-peak discharge for 10 of the 11 storms was estimated within 20 percent. Thus, application of the estimation equations to determine synthetic unit-hydrograph parameters for design-storm simulation may result in reliable design hydrographs; as long as the physical characteristics of the watersheds under consideration are within the range of those for the watersheds in this study (area: 0.06-37 mi2, main channel length: 0.33-16.6 miles, main channel slope: 3.13-55.3 feet per mile, and percentage of impervious cover: 7.32-40.6 percent). The estimation equations are most reliable when applied to watersheds with areas less than 25 mi2.

  2. The Research on Borehole Stability in Depleted Reservoir and Caprock: Using the Geophysics Logging Data

    PubMed Central

    Deng, Jingen; Luo, Yong; Guo, Shisheng; Zhang, Haishan; Tan, Qiang; Zhao, Kai; Hu, Lianbo

    2013-01-01

    Long-term oil and gas exploitation in reservoir will lead to pore pressure depletion. The pore pressure depletion will result in changes of horizontal in-situ stresses both in reservoirs and caprock formations. Using the geophysics logging data, the magnitude and orientation changes of horizontal stresses in caprock and reservoir are studied. Furthermore, the borehole stability can be affected by in-situ stresses changes. To address this issue, the dehydration from caprock to reservoir and roof effect of caprock are performed. Based on that, the influence scope and magnitude of horizontal stresses reduction in caprock above the depleted reservoirs are estimated. The effects of development on borehole stability in both reservoir and caprock are studied step by step with the above geomechanical model. PMID:24228021

  3. From point-wise stress data to a continuous description of the 3D crustal in situ stress state

    NASA Astrophysics Data System (ADS)

    Heidbach, O.; Ziegler, M.; Reiter, K.; Hergert, T.

    2017-12-01

    The in situ stress is a key parameter for the safe and sustainable management of geo-reservoirs or storage of waste and energy in deep geological repositories. It is also an essential initial condition for thermo-hydro-mechanical (THM) models that investigate man-made induced processes e.g. seismicity due to fluid injection/extraction, reservoir depletion or storage of heat producing high-level radioactive waste. Without a reasonable assumption on the initial stress condition it is not possible to assess if a man-made process is pushing the system into a critical state or not. However, modelling the initial 3D stress state on reservoir scale is challenging since data are hardly available before drilling in the area of interest. This is in particular the case for the stress magnitude data which are a prerequisite for a reliable model calibration. Here, we present a multi-stage 3D geomechani­cal-numerical model approach to estimate for a reservoir-scale volume the 3D in situ stress state. First, we set up a large-scale model which is calibrated by stress data and use the modelled stress field subsequently to calibrate a small-scale model located within the large-scale model. The local model contains a significantly higher resolution representation of the subsurface geometry around boreholes of a projected geothermal power plant. This approach incorporates two models and is an alternative to the required trade-off between resolution, computational cost and calibration data which is inevitable for a single model; an extension to a three-stage approach would be straight forward. We exemplify the two-stage approach for the area around Munich in the German Molasse Basin. The results of the reservoir-scale model are presented in terms of values for slip tendency as a measure for the criticality of fault reactivation. The model results show that variations due to uncertainties in the input data are mainly introduced by the uncertain material properties and missing estimates for the magnitude of the maximum horizontal stress SHmax, needed for a more reliable model calibration. This leads to the conclusion that at this stage the model's reliability depends only on the amount and quality of input data records such as available stress information rather than on the modelling technique itself.

  4. Development of a study design and implementation plan to estimate juvenile salmon survival in Lookout Point Reservoir and other reservoirs of the Willamette Project, western Oregon

    USGS Publications Warehouse

    Kock, Tobias J.; Perry, Russell W.; Monzyk, Fred R.; Pope, Adam C.; Plumb, John M.

    2016-12-23

    Survival estimates for juvenile salmon and steelhead fry in reservoirs impounded by high head dams are coveted data by resource managers.  However, this information is difficult to obtain because these fish are too small for tagging using conventional methods such as passive-integrated transponders or radio or acoustic transmitters.  We developed a study design and implementation plan to conduct a pilot evaluation that would assess the performance of two models for estimating fry survival in a field setting.  The first model is a staggered-release recovery model that was described by Skalski and others (2009) and Skalski (2016).  The second model is a parentage-based tagging N-mixture model that was developed and described in this document.  Both models are conceptually and statistically sound, but neither has been evaluated in the field.  In this document we provide an overview of a proposed study for 2017 in Lookout Point Reservoir, Oregon, that will evaluate survival of Chinook salmon fry using both models.  This approach will allow us to test each model and compare survival estimates, to determine model performance and better understand these study designs using field-collected data.

  5. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China

    NASA Astrophysics Data System (ADS)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2007-10-01

    The Yangbajing geothermal field with the highest reservoir temperature in China is located about 90 km northwest to Lhasa City, capital of Tibet, where high temperature geothermal fluids occur both in shallow and deep reservoirs. The geophysical survey by the INDEPTH (International Deep Profiling of Tibet and the Himalayas) project group proved the existence of magmatic heat source at Yangbajing. In the study area, the hydrochemistry of cold surface waters and groundwaters and that of thermal groundwaters from both reservoirs are distinctively different. However, analysis of the relationship between enthalpy values and Cl concentrations of cold groundwaters and geothermal fluids indicates that the geothermal fluids from the shallow reservoir were formed as a result of mixing of cold groundwaters with geothermal fluids from the deep reservoir. In other words, the geothermal fluids from the deep reservoir flowed upwards into the shallow reservoir where it was diluted by the shallow cold groundwaters to form the shallow geothermal fluids with much lower temperature. A binary mixing model with two endmembers (the cold groundwaters and the deep geothermal fluids) was proposed and the mixing ratios for the geothermal fluid from each shallow well were estimated. Using the mixing ratios, the concentrations of some constituents in shallow geothermal fluids, such as As, B, SiO 2, SO 42- and F, were calculated and their differences with the actual concentrations were estimated. The results show that the differences between estimated and actual concentrations of As and B are small (the average absolute values being only 1.9% and 7.9%, respectively), whereas those of SiO 2, SO 42- and F are much bigger, indicating that other hydrogeochemical processes are responsible for the concentrations of these constituents. It is postulated that SiO 2 precipitation due to water temperature decrease, H 2S oxidation and ion exchange between OH - in geothermal waters and exchangeable F - in fluoride bearing silicate minerals during the geothermal fluid upflow might be the causes for the observed concentration differences.

  6. Survival Estimates for the Passage of Juvenile Salmonids through Snake River Dams and Reservoirs, 1994 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, William D.

    1995-02-01

    In 1994, the National Marine Fisheries Service and the University of Washington completed the second year of a multi-year study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through the dams and reservoirs of the Snake River. Actively migrating smolts were collected at selected locations above, at, and below Lower Granite Dam, tagged with passive integrated transponder (PIT) tags, and released to continue their downstream migration. Survival estimates were calculated using the Single-Release, Modified Single-Release, and Paired-Release Models.

  7. Wood decomposition in Amazonian hydropower reservoirs: An additional source of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Abril, Gwenaël; Parize, Marcelo; Pérez, Marcela A. P.; Filizola, Naziano

    2013-07-01

    Amazonian hydroelectric reservoirs produce abundant carbon dioxide and methane from large quantities of flooded biomass that decompose anaerobically underwater. Emissions are extreme the first years after impounding and progressively decrease with time. To date, only water-to-air fluxes have been considered in these estimates. Here, we investigate in two Amazonian reservoirs (Balbina and Petit Saut) the fate of above water standing dead trees, by combining a qualitative analysis of wood state and density through time and a quantitative analysis of the biomass initially flooded. Dead wood was much more decomposed in the Balbina reservoir 23 years after flooding than in the Petit Saut reservoir 10 years after flooding. Termites apparently played a major role in wood decomposition, occurring mainly above water, and resulting in a complete conversion of this carbon biomass into CO2 and CH4 at a timescale much shorter than reservoir operation. The analysis of pre-impounding wood biomass reveals that above-water decomposition in Amazonian reservoirs is a large, previously unrecognized source of carbon emissions to the atmosphere, representing 26-45% of the total reservoir flux integrated over 100 years. Accounting for both below- and above-water fluxes, we could estimate that each km2 of Amazonian forest converted to reservoir would emit over 140 Gg CO2-eq in 100 years. Hydropower plants in the Amazon should thus generate 0.25-0.4 MW h per km2 flooded area to produce lower greenhouse gas emissions than gas power plants. They also have the disadvantage to emit most of their greenhouse gases the earliest years of operation.

  8. The identification of multi-cave combinations in carbonate reservoirs based on sparsity constraint inverse spectral decomposition

    NASA Astrophysics Data System (ADS)

    Li, Qian; Di, Bangrang; Wei, Jianxin; Yuan, Sanyi; Si, Wenpeng

    2016-12-01

    Sparsity constraint inverse spectral decomposition (SCISD) is a time-frequency analysis method based on the convolution model, in which minimizing the l1 norm of the time-frequency spectrum of the seismic signal is adopted as a sparsity constraint term. The SCISD method has higher time-frequency resolution and more concentrated time-frequency distribution than the conventional spectral decomposition methods, such as short-time Fourier transformation (STFT), continuous-wavelet transform (CWT) and S-transform. Due to these good features, the SCISD method has gradually been used in low-frequency anomaly detection, horizon identification and random noise reduction for sandstone and shale reservoirs. However, it has not yet been used in carbonate reservoir prediction. The carbonate fractured-vuggy reservoir is the major hydrocarbon reservoir in the Halahatang area of the Tarim Basin, north-west China. If reasonable predictions for the type of multi-cave combinations are not made, it may lead to an incorrect explanation for seismic responses of the multi-cave combinations. Furthermore, it will result in large errors in reserves estimation of the carbonate reservoir. In this paper, the energy and phase spectra of the SCISD are applied to identify the multi-cave combinations in carbonate reservoirs. The examples of physical model data and real seismic data illustrate that the SCISD method can detect the combination types and the number of caves of multi-cave combinations and can provide a favourable basis for the subsequent reservoir prediction and quantitative estimation of the cave-type carbonate reservoir volume.

  9. Geo-Engineering through Internet Informatics (GEMINI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W. Lynn; Doveton, John H.; Victorine, John R.

    GEMINI will resolve reservoir parameters that control well performance; characterize subtle reservoir properties important in understanding and modeling hydrocarbon pore volume and fluid flow; expedite recognition of bypassed, subtle, and complex oil and gas reservoirs at regional and local scale; differentiate commingled reservoirs; build integrated geologic and engineering model based on real-time, iterate solutions to evaluate reservoir management options for improved recovery; provide practical tools to assist the geoscientist, engineer, and petroleum operator in making their tasks more efficient and effective; enable evaluations to be made at different scales, ranging from individual well, through lease, field, to play and regionmore » (scalable information infrastructure); and provide training and technology transfer to evaluate capabilities of the client.« less

  10. Rapid reservoir erosion, hyperconcentrated flow, and downstream deposition triggered by breaching of 38 m tall Condit Dam, White Salmon River, Washington

    USGS Publications Warehouse

    Wilcox, Andrew C.; O'Connor, James E.; Major, Jon J.

    2014-01-01

    Condit Dam on the White Salmon River, Washington, a 38 m high dam impounding a large volume (1.8 million m3) of fine-grained sediment (60% sand, 35% silt and clay, and 5% gravel), was rapidly breached in October 2011. This unique dam decommissioning produced dramatic upstream and downstream geomorphic responses in the hours and weeks following breaching. Blasting a 5 m wide hole into the base of the dam resulted in rapid reservoir drawdown, abruptly releasing ~1.6 million m3 of reservoir water, exposing reservoir sediment to erosion, and triggering mass failures of the thickly accumulated reservoir sediment. Within 90 min of breaching, the reservoir's water and ~10% of its sediment had evacuated. At a gauging station 2.3 km downstream, flow increased briefly by 400 m3 s−1during passage of the initial pulse of released reservoir water, followed by a highly concentrated flow phase—up to 32% sediment by volume—as landslide-generated slurries from the reservoir moved downstream. This hyperconcentrated flow, analogous to those following volcanic eruptions or large landslides, draped the downstream river with predominantly fine sand. During the ensuing weeks, suspended-sediment concentration declined and sand and gravel bed load derived from continued reservoir erosion aggraded the channel by >1 m at the gauging station, after which the river incised back to near its initial elevation at this site. Within 15 weeks after breaching, over 1 million m3 of suspended load is estimated to have passed the gauging station, consistent with estimates that >60% of the reservoir's sediment had eroded. This dam removal highlights the influence of interactions among reservoir erosion processes, sediment composition, and style of decommissioning on rate of reservoir erosion and consequent downstream behavior of released sediment.

  11. Stress estimation in reservoirs using an integrated inverse method

    NASA Astrophysics Data System (ADS)

    Mazuyer, Antoine; Cupillard, Paul; Giot, Richard; Conin, Marianne; Leroy, Yves; Thore, Pierre

    2018-05-01

    Estimating the stress in reservoirs and their surroundings prior to the production is a key issue for reservoir management planning. In this study, we propose an integrated inverse method to estimate such initial stress state. The 3D stress state is constructed with the displacement-based finite element method assuming linear isotropic elasticity and small perturbations in the current geometry of the geological structures. The Neumann boundary conditions are defined as piecewise linear functions of depth. The discontinuous functions are determined with the CMA-ES (Covariance Matrix Adaptation Evolution Strategy) optimization algorithm to fit wellbore stress data deduced from leak-off tests and breakouts. The disregard of the geological history and the simplified rheological assumptions mean that only the stress field, statically admissible and matching the wellbore data should be exploited. The spatial domain of validity of this statement is assessed by comparing the stress estimations for a synthetic folded structure of finite amplitude with a history constructed assuming a viscous response.

  12. Identifying the Oscillatory Mechanism of the Glucose Oxidase-Catalase Coupled Enzyme System.

    PubMed

    Muzika, František; Jurašek, Radovan; Schreiberová, Lenka; Radojković, Vuk; Schreiber, Igor

    2017-10-12

    We provide experimental evidence of periodic and aperiodic oscillations in an enzymatic system of glucose oxidase-catalase in a continuous-flow stirred reactor coupled by a membrane with a continuous-flow reservoir supplied with hydrogen peroxide. To describe such dynamics, we formulate a detailed mechanism based on partial results in the literature. Finally, we introduce a novel method for estimation of unknown kinetic parameters. The method is based on matching experimental data at an oscillatory instability with stoichiometric constraints of the mechanism formulated by applying the stability theory of reaction networks. This approach has been used to estimate rate coefficients in the catalase part of the mechanism. Remarkably, model simulations show good agreement with the observed oscillatory dynamics, including apparently chaotic intermittent behavior. Our method can be applied to any reaction system with an experimentally observable dynamical instability.

  13. Dynamic Statistical Characterization of Variation in Source Processes of Microseismic Events

    NASA Astrophysics Data System (ADS)

    Smith-Boughner, L.; Viegas, G. F.; Urbancic, T.; Baig, A. M.

    2015-12-01

    During a hydraulic fracture, water is pumped at high pressure into a formation. A proppant, typically sand is later injected in the hope that it will make its way into a fracture, keep it open and provide a path for the hydrocarbon to enter the well. This injection can create micro-earthquakes, generated by deformation within the reservoir during treatment. When these injections are monitored, thousands of microseismic events are recorded within several hundred cubic meters. For each well-located event, many source parameters are estimated e.g. stress drop, Savage-Wood efficiency and apparent stress. However, because we are evaluating outputs from a power-law process, the extent to which the failure is impacted by fluid injection or stress triggering is not immediately clear. To better detect differences in source processes, we use a set of dynamic statistical parameters which characterize various force balance assumptions using the average distance to the nearest event, event rate, volume enclosed by the events, cumulative moment and energy from a group of events. One parameter, the Fracability index, approximates the ratio of viscous to elastic forcing and highlights differences in the response time of a rock to changes in stress. These dynamic parameters are applied to a database of more than 90 000 events in a shale-gas play in the Horn River Basin to characterize spatial-temporal variations in the source processes. In order to resolve these differences, a moving window, nearest neighbour approach was used. First, the center of mass of the local distribution was estimated for several source parameters. Then, a set of dynamic parameters, which characterize the response of the rock were estimated. These techniques reveal changes in seismic efficiency and apparent stress and often coincide with marked changes in the Fracability index and other dynamic statistical parameters. Utilizing these approaches allowed for the characterization of fluid injection related processes.

  14. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    NASA Astrophysics Data System (ADS)

    Shams, Bilal; Yao, Jun; Zhang, Kai; Zhang, Lei

    2017-08-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources. In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days. In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery preventing financial, economic and resource loss that previously occurred.

  15. The skin reservoir of sulphur mustard.

    PubMed

    Hattersley, I J; Jenner, J; Dalton, C; Chilcott, R P; Graham, J S

    2008-09-01

    Studies of the percutaneous reservoir of sulphur mustard (HD) formed during absorption carried out during WWI and WWII are inconclusive. More recent studies have indicated that a significant amount of unreacted HD remains in human epidermal membranes during percutaneous penetration studies in vitro. The present study investigated the nature and persistence of the HD reservoir formed during in vitro penetration studies using dermatomed slices of human and pig skin (0.5mm thick). Amounts of (14)C-HD that (a) penetrated, (b) remained on the surface, (c) were extractable from and (d) remained in the skin after extraction were estimated by liquid scintillation counting (confirmed using GC-MS analysis). The results demonstrated that there is a reservoir of HD in human and pig skin for up to 24 h after contamination of the skin surface in vitro with liquid agent. At least some of this reservoir could be extracted with acetonitrile, and the amounts of extracted and unextracted HD exceed the amount required to produce injury in vivo by at least 20 fold. The study demonstrated the presence of a reservoir whether the skin was covered (occluded) or left open to the air (unoccluded). The study concluded that the extractable reservoir was significant in terms of the amount of HD required to induce a vesicant response in human skin. The extractable reservoir was at least 20 times the amount required per cm(2) estimated to cause a response in all of the human population, as defined by studies carried out in human volunteers during the 1940s.

  16. Optimizing Environmental Flow Operation Rules based on Explicit IHA Constraints

    NASA Astrophysics Data System (ADS)

    Dongnan, L.; Wan, W.; Zhao, J.

    2017-12-01

    Multi-objective operation of reservoirs are increasingly asked to consider the environmental flow to support ecosystem health. Indicators of Hydrologic Alteration (IHA) is widely used to describe environmental flow regimes, but few studies have explicitly formulated it into optimization models and thus is difficult to direct reservoir release. In an attempt to incorporate the benefit of environmental flow into economic achievement, a two-objective reservoir optimization model is developed and all 33 hydrologic parameters of IHA are explicitly formulated into constraints. The benefit of economic is defined by Hydropower Production (HP) while the benefit of environmental flow is transformed into Eco-Index (EI) that combined 5 of the 33 IHA parameters chosen by principal component analysis method. Five scenarios (A to E) with different constraints are tested and solved by nonlinear programming. The case study of Jing Hong reservoir, located in the upstream of Mekong basin, China, shows: 1. A Pareto frontier is formed by maximizing on only HP objective in scenario A and on only EI objective in scenario B. 2. Scenario D using IHA parameters as constraints obtains the optimal benefits of both economic and ecological. 3. A sensitive weight coefficient is found in scenario E, but the trade-offs between HP and EI objectives are not within the Pareto frontier. 4. When the fraction of reservoir utilizable capacity reaches 0.8, both HP and EI capture acceptable values. At last, to make this modelmore conveniently applied to everyday practice, a simplified operation rule curve is extracted.

  17. Development and corroboration of a bioenergetics model for northern pikeminnow (Ptychocheilus oregonensis) feeding on juvenile salmonids in the Columbia River

    USGS Publications Warehouse

    Petersen, J.H.; Ward, D.L.

    1999-01-01

    A bioenergetics model was developed and corroborated for northern pikeminnow Ptychocheilus oregonensis, an important predator on juvenile salmonids in the Pacific Northwest. Predictions of modeled predation rate on salmonids were compared with field data from three areas of John Day Reservoir (Columbia River). To make bioenergetics model estimates of predation rate, three methods were used to approximate the change in mass of average predators during 30-d growth periods: observed change in mass between the first and the second month, predicted change in mass calculated with seasonal growth rates, and predicted change in mass based on an annual growth model. For all reservoir areas combined, bioenergetics model predictions of predation on salmon were 19% lower than field estimates based on observed masses, 45% lower than estimates based on seasonal growth rates, and 15% lower than estimates based on the annual growth model. For each growth approach, the largest differences in field-versus-model predation occurred at the midreservoir area (-84% to -67% difference). Model predictions of the rate of predation on salmonids were examined for sensitivity to parameter variation, swimming speed, sampling bias caused by gear selectivity, and asymmetric size distributions of predators. The specific daily growth rate of northern pikeminnow predicted by the model was highest in July and October and decreased during August. The bioenergetics model for northern pikeminnow performed well compared with models for other fish species that have been tested with field data. This model should be a useful tool for evaluating management actions such as predator removal, examining the influence of temperature on predation rates, and exploring interactions between predators in the Columbia River basin.

  18. Estimation of reservoir storage capacity using multibeam sonar and terrestrial lidar, Randy Poynter Lake, Rockdale County, Georgia, 2012

    USGS Publications Warehouse

    Lee, K.G.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Rockdale County Department of Water Resources, conducted a bathymetric and topographic survey of Randy Poynter Lake in northern Georgia in 2012. The Randy Poynter Lake watershed drains surface area from Rockdale, Gwinnett, and Walton Counties. The reservoir serves as the water supply for the Conyers-Rockdale Big Haynes Impoundment Authority. The Randy Poynter reservoir was surveyed to prepare a current bathymetric map and determine storage capacities at specified water-surface elevations. Topographic and bathymetric data were collected using a marine-based mobile mapping unit to estimate storage capacity. The marine-based mobile mapping unit operates with several components: multibeam echosounder, singlebeam echosounder, light detection and ranging system, navigation and motion-sensing system, and data acquisition computer. All data were processed and combined to develop a triangulated irregular network, a reservoir capacity table, and a bathymetric contour map.

  19. Qrtzgeotherm: An ActiveX component for the quartz solubility geothermometer

    NASA Astrophysics Data System (ADS)

    Verma, Mahendra P.

    2008-12-01

    An ActiveX component, QrtzGeotherm, to calculate temperature and vapor fraction in a geothermal reservoir using quartz solubility geothermometry was written in Visual Basic 6.0. Four quartz solubility equations along the liquid-vapor saturation curve: (i) a quadratic equation of 1/ T and pressure, (ii) a linear equation relating log SiO 2 to the inverse of absolute temperature ( T), (iii) a polynomial of T including logarithmic terms and (iv) temperature as a polynomial of SiO 2 including logarithmic terms are programmed. The QrtzGeotherm has input parameters: (i) HRes—the reservoir enthalpy (kJ/kg), (ii) SiO2TD—silica concentration in total discharge (ppm), (iii) GeoEq—number of quartz solubility equation and (iv) TempGuess—a guess value of the reservoir temperature (°C). The reservoir enthalpy Hres is assumed to be the same as the total discharge enthalpy HR. The output parameters are (i) TempRes—reservoir temperature (°C) and (ii) VapRes—reservoir vapor fraction. The first step is to calculate the total discharge concentration of silica SiO2TD from the concentration of silica SiO2Col of separated water, sampled after N-separations of vapor and water. To use QrtzGeotherm in MS-Excel, three functions SiO2TD, GeoResTemp and GeoResVap for an N-stage separation of geothermal reservoir fluid are written in Visual Basic for Application (VBA). Similarly, a demonstration program, QrtzGeothrm, is written in Visual Basic 6.0.

  20. Water Resource Assessment in KRS Reservoir Using Remote Sensing and GIS Modelling

    NASA Astrophysics Data System (ADS)

    Manubabu, V. H.; Gouda, K. C.; Bhat, N.; Reddy, A.

    2014-12-01

    In the recent time the fresh water resource becomes very important because of various reasons like population growth, pollution, over exploitation of the ground water resources etc. As there is no efficient and proper measures for recharging ground water exists and also the climatological impacts on water resources like global warming exacerbating water shortages, growing populations and rising demand for freshwater in agriculture, industry, and energy production. There is a need and challenging task for analyzing the future changes in regional water availability and it is also very much necessary to asses and predict the fresh water present in a lake or reservoir to make better decision making in the optimal usage of surface water. In the present study is intended to provide a practical discussion of methodology that deals with how to asses and predict amount of surface water available in the future using Remote Sensing(RS) data , Geographical Information System(GIS) techniques, and GCM (Global Circulation Model). Basically the study emphasized over one of the biggest reservoir i.e. the Krishna Raja Sagara (KRS) reservoir situated in the state of Karnataka in India. Multispectral satellite images like IRS LISS III and Landsat L8 from different open source web portals like NRSC-Bhuvan and NASA Earth Explorer respectively are used for the present analysis. The multispectral satellite images are used to identify the temporal changes of the water quantity in the reservoir for the period 2000 to 2014. Also the water volume are being calculated using Advances Space born Thermal Emission and Reflection Radiometer (ASTER) Global DEM over the reservoir basin. The hydro meteorological parameters are also studied using multi-source observed data and the empirical water budget models for the reservoir in terms of rainfall, temperature, run off, water inflow and outflow etc. are being developed and analyzed. Statistical analysis are also carried out to quantify the relation between reservoir water volume and the hydrological parameters (Figure 1). A general circulation model (GCM) is used for the prediction of major hydro meteorological parameters like rainfall and using the GCM predictions the water availability in terms of water volume in future are simulated using the empirical water budget model.

  1. Survey design for lakes and reservoirs in the United States to assess contaminants in fish tissue.

    PubMed

    Olsen, Anthony R; Snyder, Blaine D; Stahl, Leanne L; Pitt, Jennifer L

    2009-03-01

    The National Lake Fish Tissue Study (NLFTS) was the first survey of fish contamination in lakes and reservoirs in the 48 conterminous states based on a probability survey design. This study included the largest set (268) of persistent, bioaccumulative, and toxic (PBT) chemicals ever studied in predator and bottom-dwelling fish species. The U.S. Environmental Protection Agency (USEPA) implemented the study in cooperation with states, tribal nations, and other federal agencies, with field collection occurring at 500 lakes and reservoirs over a four-year period (2000-2003). The sampled lakes and reservoirs were selected using a spatially balanced unequal probability survey design from 270,761 lake objects in USEPA's River Reach File Version 3 (RF3). The survey design selected 900 lake objects, with a reserve sample of 900, equally distributed across six lake area categories. A total of 1,001 lake objects were evaluated to identify 500 lake objects that met the study's definition of a lake and could be accessed for sampling. Based on the 1,001 evaluated lakes, it was estimated that a target population of 147,343 (+/-7% with 95% confidence) lakes and reservoirs met the NLFTS definition of a lake. Of the estimated 147,343 target lakes, 47% were estimated not to be sampleable either due to landowner access denial (35%) or due to physical barriers (12%). It was estimated that a sampled population of 78,664 (+/-12% with 95% confidence) lakes met the NLFTS lake definition, had either predator or bottom-dwelling fish present, and could be sampled.

  2. A New Screening Methodology for Improved Oil Recovery Processes Using Soft-Computing Techniques

    NASA Astrophysics Data System (ADS)

    Parada, Claudia; Ertekin, Turgay

    2010-05-01

    The first stage of production of any oil reservoir involves oil displacement by natural drive mechanisms such as solution gas drive, gas cap drive and gravity drainage. Typically, improved oil recovery (IOR) methods are applied to oil reservoirs that have been depleted naturally. In more recent years, IOR techniques are applied to reservoirs even before their natural energy drive is exhausted by primary depletion. Descriptive screening criteria for IOR methods are used to select the appropriate recovery technique according to the fluid and rock properties. This methodology helps in assessing the most suitable recovery process for field deployment of a candidate reservoir. However, the already published screening guidelines neither provide information about the expected reservoir performance nor suggest a set of project design parameters, which can be used towards the optimization of the process. In this study, artificial neural networks (ANN) are used to build a high-performance neuro-simulation tool for screening different improved oil recovery techniques: miscible injection (CO2 and N2), waterflooding and steam injection processes. The simulation tool consists of proxy models that implement a multilayer cascade feedforward back propagation network algorithm. The tool is intended to narrow the ranges of possible scenarios to be modeled using conventional simulation, reducing the extensive time and energy spent in dynamic reservoir modeling. A commercial reservoir simulator is used to generate the data to train and validate the artificial neural networks. The proxy models are built considering four different well patterns with different well operating conditions as the field design parameters. Different expert systems are developed for each well pattern. The screening networks predict oil production rate and cumulative oil production profiles for a given set of rock and fluid properties, and design parameters. The results of this study show that the networks are able to recognize the strong correlation between the displacement mechanism and the reservoir characteristics as they effectively forecast hydrocarbon production for different types of reservoir undergoing diverse recovery processes. The artificial neuron networks are able to capture the similarities between different displacement mechanisms as same network architecture is successfully applied in both CO2 and N2 injection. The neuro-simulation application tool is built within a graphical user interface to facilitate the display of the results. The developed soft-computing tool offers an innovative approach to design a variety of efficient and feasible IOR processes by using artificial intelligence. The tool provides appropriate guidelines to the reservoir engineer, it facilitates the appraisal of diverse field development strategies for oil reservoirs, and it helps to reduce the number of scenarios evaluated with conventional reservoir simulation.

  3. Preservation of Quantum Fisher Information and Geometric Phase of a Single Qubit System in a Dissipative Reservoir Through the Addition of Qubits

    NASA Astrophysics Data System (ADS)

    Guo, Y. N.; Tian, Q. L.; Mo, Y. F.; Zhang, G. L.; Zeng, K.

    2018-04-01

    In this paper, we have investigated the preservation of quantum Fisher information (QFI) of a single-qubit system coupled to a common zero temperature reservoir through the addition of noninteracting qubits. The results show that, the QFI is completely protected in both Markovian and non-Markovian regimes by increasing the number of additional qubits. Besides, the phenomena of QFI display monotonic decay or non-monotonic with revival oscillations depending on the number of additional qubits N - 1 in a common dissipative reservoir. If N < N c (a critical number depending on the reservoirs parameters), the behavior of QFI with monotonic decay occurs. However, if N ≥ N c , QFI exhibits non-monotonic behavior with revival oscillations. Moreover, we extend this model to investigate the effect of additional qubits and the initial conditions of the system on the geometric phase (GP). It is found that, the robustness of GP against the dissipative reservoir has been demonstrated by increasing gradually the number of additional qubits N - 1. Besides, the GP is sensitive to the initial parameter 𝜃, and possesses symmetric in a range regime [0,2 π].

  4. Spatial and temporal variation in proportional stock density and relative weight of smallmouth bass in a reservoir

    USGS Publications Warehouse

    Mesa, Matthew G.; Duke, S.D.; Ward, David L.

    1990-01-01

    Population data for smallmouth bass Micropterus dolomieui in 20,235 ha John Day Reservoir on the Columbia River were used to (1) determine whether Proportional Stock Density (PSD) and Relative Weight (Wr) varied spatially and temporally in two areas of the reservoir with established smallmouth bass fisheries; (2) explore possible causes of any observed variation; and (3) discuss some management implications and recommendations. Both PSD and Wr varied spatially and monthly in all years examined. On an annual basis, PSD varied at one area but not at the other, whereas Wr showed little variation. Possible explanations for the variation in PSD and Wr are differences in growth, mortality, recruitment, and exploitation. Our data suggested that regulations established or changed on a reservoir-wide basis may have different effects on the fishery, depending on location in the reservoir. Also, pooling data from various areas within a reservoir to yield point estimates of structural indices may not represent the variation present in the population as a whole. The significant temporal variability reflects the importance of determining the proper time to sample fish to yield representative estimates of the variable of interest. In areas with valuable fisheries or markedly different population structures, we suggest that an area-specific approach be made to reservoir fishery management, and that efforts be made toward effecting consistent harvest regulations in interstate waters.

  5. A Total Economic Valuation of Wetland Ecosystem Services: An Evidence from Jagadishpur Ramsar Site, Nepal

    PubMed Central

    Basnyat, Bijendra; Khanal, Rajendra; Gauli, Kalyan

    2016-01-01

    Wetlands are the most productive ecosystem and provide wide arrays of wetland ecosystems (goods and services) to the local communities in particular and global communities in general. However, management of the wetland often does not remain priority and recognized as the unproductive waste land mainly due to poor realization of the economic value of the wetlands. Taking this into account, the study estimated the total economic value of the Jagadishpur Reservoir taking into account direct, indirect, and nonuse value. The study prioritized six major values of the reservoir which include wetland goods consumption, tourism, irrigation, carbon sequestration, biodiversity conservation, and conservation for future use (existence and option value). The study used market and nonmarket based valuation techniques to estimate total economic value of the reservoir. Household survey, focus group discussions, and interaction with the tourism entrepreneurs and district stakeholders were carried out to collect information. The study estimated the total annual economic value of the reservoir as NRs 94.5 million, where option/existence value remains main contributor followed by direct use value such as wetland goods and tourism and indirect use value, for example, carbon sequestration, biodiversity conservation, and irrigation. The study reveals that the local communities gave high importance to the future use value and are willing to make investment for conservation and restoration of reservoir given its conservation significance. PMID:27830175

  6. A Total Economic Valuation of Wetland Ecosystem Services: An Evidence from Jagadishpur Ramsar Site, Nepal.

    PubMed

    Baral, Sony; Basnyat, Bijendra; Khanal, Rajendra; Gauli, Kalyan

    Wetlands are the most productive ecosystem and provide wide arrays of wetland ecosystems (goods and services) to the local communities in particular and global communities in general. However, management of the wetland often does not remain priority and recognized as the unproductive waste land mainly due to poor realization of the economic value of the wetlands. Taking this into account, the study estimated the total economic value of the Jagadishpur Reservoir taking into account direct, indirect, and nonuse value. The study prioritized six major values of the reservoir which include wetland goods consumption, tourism, irrigation, carbon sequestration, biodiversity conservation, and conservation for future use (existence and option value). The study used market and nonmarket based valuation techniques to estimate total economic value of the reservoir. Household survey, focus group discussions, and interaction with the tourism entrepreneurs and district stakeholders were carried out to collect information. The study estimated the total annual economic value of the reservoir as NRs 94.5 million, where option/existence value remains main contributor followed by direct use value such as wetland goods and tourism and indirect use value, for example, carbon sequestration, biodiversity conservation, and irrigation. The study reveals that the local communities gave high importance to the future use value and are willing to make investment for conservation and restoration of reservoir given its conservation significance.

  7. Modelling sub-daily evaporation from a small reservoir.

    NASA Astrophysics Data System (ADS)

    McGloin, Ryan; McGowan, Hamish; McJannet, David; Burn, Stewart

    2013-04-01

    Accurate quantification of evaporation from small water storages is essential for water management and is also required as input in some regional hydrological and meteorological models. Global estimates of the number of small storages or lakes (< 0.1 kilometers) are estimated to be in the order of 300 million (Downing et al., 2006). However, direct evaporation measurements at small reservoirs using the eddy covariance or scintillometry techniques have been limited due to their expensive and complex nature. To correctly represent the effect that small water bodies have on the regional hydrometeorology, reliable estimates of sub-daily evaporation are necessary. However, evaporation modelling studies at small reservoirs have so far been limited to quantifying daily estimates. In order to ascertain suitable methods for accurately modelling hourly evaporation from a small reservoir, this study compares evaporation results measured by the eddy covariance method at a small reservoir in southeast Queensland, Australia, to results from several modelling approaches using both over-water and land-based meteorological measurements. Accurate predictions of hourly evaporation were obtained by a simple theoretical mass transfer model requiring only over-water measurements of wind speed, humidity and water surface temperature. An evaporation model that was recently developed for use in small reservoir environments by Granger and Hedstrom (2011), appeared to overestimate the impact stability had on evaporation. While evaporation predictions made by the 1-dimensional hydrodynamics model, DYRESM (Dynamic Reservoir Simulation Model) (Imberger and Patterson, 1981), showed reasonable agreement with measured values. DYRESM did not show any substantial improvement in evaporation prediction when inflows and out flows were included and only a slighter better correlation was shown when over-water meteorological measurements were used in place of land-based measurements. Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack and J. J. Middelburg (2006), The global abundance and size distribution of lakes, ponds, and impoundments, Limnology and Oceanography, 51, 2388-2397. Granger, R.J. and N. Hedstrom (2011), Modelling hourly rates of evaporation from small lakes, Hydrological and Earth System Sciences, 15, doi:10.5194/hess-15-267-2011. Imberger, J. and J.C. Patterson (1981), Dynamic Reservoir Simulation Model - DYRESM: 5, In: Transport Models for Inland and Coastal Waters. H.B. Fischer (Ed.). Academic Press, New York, 310-361.

  8. Reservoir transport and poroelastic properties from oscillating pore pressure experiments

    NASA Astrophysics Data System (ADS)

    Hasanov, Azar K.

    Hydraulic transport properties of reservoir rocks, permeability and storage capacity are traditionally defined as rock properties, responsible for the passage of fluids through the porous rock sample, as well as their storage. The evaluation of both is an important part of any reservoir characterization workflow. Moreover, permeability and storage capacity are main inputs into any reservoir simulation study, routinely performed by reservoir engineers on almost any major oil and gas field in the world. An accurate reservoir simulation is essential for production forecast and economic analysis, hence the transport properties directly control the profitability of the petroleum reservoir and their estimation is vital for oil and gas industry. This thesis is devoted to an integrated study of reservoir rocks' hydraulic, streaming potential and poroelastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressure method is traditionally used to measure hydraulic transport properties. We modified the method and built an experimental setup, capable of measuring all aforementioned rock properties simultaneously. The measurements were carried out for four conventional reservoir-rock quality samples at a range of oscillation frequencies and effective stresses. An apparent frequency dependence of permeability and streaming potential coupling coefficient was observed. Measured frequency dispersion of drained poroelastic properties indicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demonstrated the best fit to the experimental dispersion data. Pore collapse and grain crushing effects took place during hydrostatic loading of the dolomitic sample and were observed in permeability, coupling coefficient and poroelastic measurements simultaneously. I established that hydraulically-measured storage capacities are overestimated by almost one order of magnitude when compared to elastically-derived ones. The fact that the values of storage capacities as estimated from the hydraulic component of the oscillating pore pressure experiment are unreliable was also demonstrated by comparing poroelastic Biot and Skempton coefficients. These coefficients were estimated both from hydraulic and strain measurements and the comparison of two datasets points out ambiguity of hydraulic measurements. I also introduce a novel method, which allowed us to estimate the permeability from the full range of acquired frequency data by utilizing a nonlinear least-squares regression. I additionally performed numerical simulation of oscillatory fluid flow. The simulated frequency-dependent results displayed an excellent agreement with both analytical solution and experimental data. This agreement proves that numerical simulation is a powerful tool in predicting frequency response of a porous rock sample to harmonic pore pressure excitations.

  9. Factors affecting reservoir and stream-water quality in the Cambridge, Massachusetts, drinking-water source area and implications for source-water protection

    USGS Publications Warehouse

    Waldron, Marcus C.; Bent, Gardner C.

    2001-01-01

    This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the city of Cambridge, Massachusetts, Water Department, to assess reservoir and tributary-stream quality in the Cambridge drinking-water source area, and to use the information gained to help guide the design of a comprehensive water-quality monitoring program for the source area. Assessments of the quality and trophic state of the three primary storage reservoirs, Hobbs Brook Reservoir, Stony Brook Reservoir, and Fresh Pond, were conducted (September 1997-November 1998) to provide baseline information on the state of these resources and to determine the vulnerability of the reservoirs to increased loads of nutrients and other contaminants. The effects of land use, land cover, and other drainage-basin characteristics on sources, transport, and fate of fecal-indicator bacteria, highway deicing chemicals, nutrients, selected metals, and naturally occurring organic compounds in 11 subbasins that contribute water to the reservoirs also was investigated, and the data used to select sampling stations for incorporation into a water-quality monitoring network for the source area. All three reservoirs exhibited thermal and chemical stratification, despite artificial mixing by air hoses in Stony Brook Reservoir and Fresh Pond. The stratification produced anoxic or hypoxic conditions in the deepest parts of the reservoirs and these conditions resulted in the release of ammonia nitrogen orthophosphate phosphorus, and dissolved iron and manganese from the reservoir bed sediments. Concentrations of sodium and chloride in the reservoirs usually were higher than the amounts recommended by the U.S. Environmental Protection agency for drinking-water sources (20 milligrams per liter for sodium and 250 milligrams per liter for chloride). Maximum measured sodium concentrations were highest in Hobbs Brook Reservoir (113 milligrams per liter), intermediate in Stony Brook Reservoir (62 milligrams per liter), and lowest in Fresh Pond (54 milligrams per liter). Bed sediments in Hobbs Brook and Stony Brook Reservoirs were enriched in iron, manganese, and arsenic relative to those in the impounded lower Charles River in Boston, Massachusetts. Trophic state indices, calculated for each reservoir based on nutrient concentrations, water-column transparency, and phytoplankton abundances, indicated that the upper and middle basins of Hobbs Brook Reservoir were moderately to highly productive and likely to produce algal blooms; the lower basin of Hobbs Brook Reservoir and Stony Brook Reservoir were similar and intermediate in productivity, and Fresh Pond was relatively unproductive and unlikely to produce algal blooms. This pattern is likely due to sedimentation of organic and inorganic particles in the three basins of Hobbs Brook Reservoir and in Stony Brook Reservoir. Molar ratios of nitrogen to phosphorus ranged from 55 in Stony Brook Reservoir to 120 in Hobbs Brook Reservoir, indicating that phytoplankton algae in these water bodies may be phosphorus limited and therefore sensitive to small increases in phosphorus loading from the drainage basin. Nitrogen loads were found to be less important than phosphorus to the trophic condition of the reservoirs. Hobbs Brook and Stony Brook, the two principle streams draining the Cambridge drinking-water source area, differed in their relative contributions to many of the estimated constituent loads. The estimated load of fecal coliform bacteria was more than seven times larger for the mainly residential Stony Brook subbasin upstream from Kendal Green, Mass., than it was for the more commercial and industrial Hobbs Brook subbasin, though the drainage areas of the two subbasins differ only by about 20 percent. The State standard for fecal coliform bacteria in streams in the Cambridge drinking-water source area (20 colony forming units per 100 milliliters) was exceeded at all sampling stations. Estimated s

  10. Connection equation and shaly-sand correction for electrical resistivity

    USGS Publications Warehouse

    Lee, Myung W.

    2011-01-01

    Estimating the amount of conductive and nonconductive constituents in the pore space of sediments by using electrical resistivity logs generally loses accuracy where clays are present in the reservoir. Many different methods and clay models have been proposed to account for the conductivity of clay (termed the shaly-sand correction). In this study, the connectivity equation (CE), which is a new approach to model non-Archie rocks, is used to correct for the clay effect and is compared with results using the Waxman and Smits method. The CE presented here requires no parameters other than an adjustable constant, which can be derived from the resistivity of water-saturated sediments. The new approach was applied to estimate water saturation of laboratory data and to estimate gas hydrate saturations at the Mount Elbert well on the Alaska North Slope. Although not as accurate as the Waxman and Smits method to estimate water saturations for the laboratory measurements, gas hydrate saturations estimated at the Mount Elbert well using the proposed CE are comparable to estimates from the Waxman and Smits method. Considering its simplicity, it has high potential to be used to account for the clay effect on electrical resistivity measurement in other systems.

  11. Potential impacts of climate change on water quality in a shallow reservoir in China.

    PubMed

    Zhang, Chen; Lai, Shiyu; Gao, Xueping; Xu, Liping

    2015-10-01

    To study the potential effects of climate change on water quality in a shallow reservoir in China, the field data analysis method is applied to data collected over a given monitoring period. Nine water quality parameters (water temperature, ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, total nitrogen, total phosphorus, chemical oxygen demand, biochemical oxygen demand and dissolved oxygen) and three climate indicators for 20 years (1992-2011) are considered. The annual trends exhibit significant trends with respect to certain water quality and climate parameters. Five parameters exhibit significant seasonality differences in the monthly means between the two decades (1992-2001 and 2002-2011) of the monitoring period. Non-parametric regression of the statistical analyses is performed to explore potential key climate drivers of water quality in the reservoir. The results indicate that seasonal changes in temperature and rainfall may have positive impacts on water quality. However, an extremely cold spring and high wind speed are likely to affect the self-stabilising equilibrium states of the reservoir, which requires attention in the future. The results suggest that land use changes have important impact on nitrogen load. This study provides useful information regarding the potential effects of climate change on water quality in developing countries.

  12. Integrated Analysis Seismic Inversion and Rockphysics for Determining Secondary Porosity Distribution of Carbonate Reservoir at “FR” Field

    NASA Astrophysics Data System (ADS)

    Rosid, M. S.; Augusta, F. F.; Haidar, M. W.

    2018-05-01

    In general, carbonate secondary pore structure is very complex due to the significant diagenesis process. Therefore, the determination of carbonate secondary pore types is an important factor which is related to study of production. This paper mainly deals not only to figure out the secondary pores types, but also to predict the distribution of the secondary pore types of carbonate reservoir. We apply Differential Effective Medium (DEM) for analyzing pore types of carbonate rocks. The input parameter of DEM inclusion model is fraction of porosity and the output parameters are bulk moduli and shear moduli as a function of porosity, which is used as input parameter for creating Vp and Vs modelling. We also apply seismic post-stack inversion technique that is used to map the pore type distribution from 3D seismic data. Afterward, we create porosity cube which is better to use geostatistical method due to the complexity of carbonate reservoir. Thus, the results of this study might show the secondary porosity distribution of carbonate reservoir at “FR” field. In this case, North – Northwest of study area are dominated by interparticle pores and crack pores. Hence, that area has highest permeability that hydrocarbon can be more accumulated.

  13. Quantifying suspended sediment loads delivered to Cheney Reservoir, Kansas: Temporal patterns and management implications

    USGS Publications Warehouse

    Stone, Mandy L.; Juracek, Kyle E.; Graham, Jennifer L.; Foster, Guy

    2015-01-01

    Cheney Reservoir, constructed during 1962 to 1965, is the primary water supply for the city of Wichita, the largest city in Kansas. Sediment is an important concern for the reservoir as it degrades water quality and progressively decreases water storage capacity. Long-term data collection provided a unique opportunity to estimate the annual suspended sediment loads for the entire history of the reservoir. To quantify and characterize sediment loading to Cheney Reservoir, discrete suspended sediment samples and continuously measured streamflow data were collected from the North Fork Ninnescah River, the primary inflow to Cheney Reservoir, over a 48-year period. Continuous turbidity data also were collected over a 15-year period. These data were used together to develop simple linear regression models to compute continuous suspended sediment concentrations and loads from 1966 to 2013. The inclusion of turbidity as an additional explanatory variable with streamflow improved regression model diagnostics and increased the amount of variability in suspended sediment concentration explained by 14%. Using suspended sediment concentration from the streamflow-only model, the average annual suspended sediment load was 102,517 t (113,006 tn) and ranged from 4,826 t (5,320 tn) in 1966 to 967,569 t (1,066,562 tn) in 1979. The sediment load in 1979 accounted for about 20% of the total load over the 48-year history of the reservoir and 92% of the 1979 sediment load occurred in one 24-hour period during a 1% annual exceedance probability flow event (104-year flood). Nearly 60% of the reservoir sediment load during the 48-year study period occurred in 5 years with extreme flow events (9% to 1% annual exceedance probability, or 11- to 104-year flood events). A substantial portion (41%) of sediment was transported to the reservoir during five storm events spanning only eight 24-hour periods during 1966 to 2013. Annual suspended sediment load estimates based on streamflow were, on average, within ±20% of estimates based on streamflow and turbidity combined. Results demonstrate that large suspended sediment loads are delivered to Cheney Reservoir in very short time periods, indicating that sediment management plans eventually must address large, infrequent inflow events to be effective.

  14. Optimizing and Quantifying CO 2 Storage Resource in Saline Formations and Hydrocarbon Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosshart, Nicholas W.; Ayash, Scott C.; Azzolina, Nicholas A.

    In an effort to reduce carbon dioxide (CO 2) emissions from large stationary sources, carbon capture and storage (CCS) is being investigated as one approach. This work assesses CO 2 storage resource estimation methods for deep saline formations (DSFs) and hydrocarbon reservoirs undergoing CO 2 enhanced oil recovery (EOR). Project activities were conducted using geologic modeling and simulation to investigate CO 2 storage efficiency. CO 2 storage rates and efficiencies in DSFs classified by interpreted depositional environment were evaluated at the regional scale over a 100-year time frame. A focus was placed on developing results applicable to future widespread commercial-scalemore » CO 2 storage operations in which an array of injection wells may be used to optimize storage in saline formations. The results of this work suggest future investigations of prospective storage resource in closed or semiclosed formations need not have a detailed understanding of the depositional environment of the reservoir to generate meaningful estimates. However, the results of this work also illustrate the relative importance of depositional environment, formation depth, structural geometry, and boundary conditions on the rate of CO 2 storage in these types of systems. CO 2 EOR occupies an important place in the realm of geologic storage of CO 2, as it is likely to be the primary means of geologic CO 2 storage during the early stages of commercial implementation, given the lack of a national policy and the viability of the current business case. This work estimates CO 2 storage efficiency factors using a unique industry database of CO 2 EOR sites and 18 different reservoir simulation models capturing fluvial clastic and shallow shelf carbonate depositional environments for reservoir depths of 1219 and 2438 meters (4000 and 8000 feet) and 7.6-, 20-, and 64-meter (25-, 66,- and 209-foot) pay zones. The results of this work provide practical information that can be used to quantify CO 2 storage resource estimates in oil reservoirs during CO 2 EOR operations (as opposed to storage following depletion) and the uncertainty associated with those estimates.« less

  15. Significance of bacteria and viruses in the carbon flow of tropical freshwater impoundments

    NASA Astrophysics Data System (ADS)

    Peduzzi, P.; Schiemer, F.

    2003-04-01

    In two types of tropical freshwater impoundments, free and particle-attached bacterial abundance and production as well as virus abundance, frequency of viral infection and virus production were investigated together with a set of environmental factors during two characteristic seasons. Organic nitrogen, phosphorus species, dissolved organic carbon and suspended solids were elevated in the wind-mixed water body of a shallow reservoir during the dry season, whereas a deeper reservoir type exhibited no obvious seasonality in these parameters. In SYBR GREEN-stained samples, bacterial abundance showed no seasonal pattern in either reservoir type. A large proportion of the overall bacterial production was associated with particulate material. Highest densities of virus particles and elevated frequency of bacteria containing mature phages were observed in the shallow reservoir during the dry season. The specific bacterial production was related to the abundance of particulate organic matter, phosphorus species and organic nitrogen. Most virus parameters were positively linked to bacterial density, production and to organic nitrogen. We calculated that between 13.2 and 46.1% of the bacterial standing stocks would be subjected to virus-mediated mortality. Carbon budgets for the microbial and organic matter compartments of these tropical freshwater reservoirs indicate prevailing autotrophy and a substantial pathway through the viral shunt. During the dry season the shallow, wind-mixed reservoir provided favorable conditions for bacterial growth and virus propagation.

  16. Hydrographic and sedimentation survey of Kajakai Reservoir, Afghanistan

    USGS Publications Warehouse

    Perkins, Don C.; Culbertson, James K.

    1970-01-01

    A hydrographic and sedimentation survey of Band-e Kajakai (Kajakai Reservoir) on the Darya-ye Hirmand (Helmand River) was carried out during the period September through December 1968. Underwater mapping techniques were used to determine the reservoir capacity as of 1968. Sediment range lines were established and monumented to facilitate future sedimentation surveys. Afghanistan engineers and technicians were trained to carry out future reservoir surveys. Samples were obtained of the reservoir bed and in the river upstream from the reservoir. Virtually no sediments coarser than about 0.063 millimeter were found on the reservoir bed surface. The median diameter of sands being transported into the reservoir ranged from 0.040 to 0.110 millimeter. The average annual rate of sedimentation was 7,800 acre-feet. Assuming an average density of 50 pounds per cubic foot (800 kilograms per cubic meter), the estimated average sediment inflow to the reservoir was about 8,500,000 tons (7,700,000 metric tons) per year. The decrease in capacity at spillway elevation for the period 1953 to 1968 due to sediment deposition was 7.8 percent, or 117,700 acre-feet. Redefinition of several contours above the fill area resulted in an increase in capacity at spillway elevation of 13,600 acre-feet; thus, the net change in capacity was 7.0 percent, or 104,800 acre-feet. Based on current data and an estimated rate of compaction of deposited sediment, the assumption of no appreciable change in hydrologic conditions in the drainage area, the leading edge of the principal delta will reach the irrigation outlet in 40-45 years. It is recommended that a resurvey of sediment range lines be made during the period 1973-75.

  17. Towards an Improved Represenation of Reservoirs and Water Management in a Land Surface-Hydrology Model

    NASA Astrophysics Data System (ADS)

    Yassin, F.; Anis, M. R.; Razavi, S.; Wheater, H. S.

    2017-12-01

    Water management through reservoirs, diversions, and irrigation have significantly changed river flow regimes and basin-wide energy and water balance cycles. Failure to represent these effects limits the performance of land surface-hydrology models not only for streamflow prediction but also for the estimation of soil moisture, evapotranspiration, and feedbacks to the atmosphere. Despite recent research to improve the representation of water management in land surface models, there remains a need to develop improved modeling approaches that work in complex and highly regulated basins such as the 406,000 km2 Saskatchewan River Basin (SaskRB). A particular challenge for regional and global application is a lack of local information on reservoir operational management. To this end, we implemented a reservoir operation, water abstraction, and irrigation algorithm in the MESH land surface-hydrology model and tested it over the SaskRB. MESH is Environment Canada's Land Surface-hydrology modeling system that couples Canadian Land Surface Scheme (CLASS) with hydrological routing model. The implemented reservoir algorithm uses an inflow-outflow relationship that accounts for the physical characteristics of reservoirs (e.g., storage-area-elevation relationships) and includes simplified operational characteristics based on local information (e.g., monthly target volume and release under limited, normal, and flood storage zone). The irrigation algorithm uses the difference between actual and potential evapotranspiration to estimate irrigation water demand. This irrigation demand is supplied from the neighboring reservoirs/diversion in the river system. We calibrated the model enabled with the new reservoir and irrigation modules in a multi-objective optimization setting. Results showed that the reservoir and irrigation modules significantly improved the MESH model performance in generating streamflow and evapotranspiration across the SaskRB and that this our approach provides a basis for improved large scale hydrological modelling.

  18. Integrated core-log petrofacies analysis in the construction of a reservoir geomodel: A case study of a mature Mississippian carbonate reservoir using limited data

    USGS Publications Warehouse

    Bhattacharya, S.; Doveton, J.H.; Carr, T.R.; Guy, W.R.; Gerlach, P.M.

    2005-01-01

    Small independent operators produce most of the Mississippian carbonate fields in the United States mid-continent, where a lack of integrated characterization studies precludes maximization of hydrocarbon recovery. This study uses integrative techniques to leverage extant data in an Osagian and Meramecian (Mississippian) cherty carbonate reservoir in Kansas. Available data include petrophysical logs of varying vintages, limited number of cores, and production histories from each well. A consistent set of assumptions were used to extract well-level porosity and initial saturations, from logs of different types and vintages, to build a geomodel. Lacking regularly recorded well shut-in pressures, an iterative technique, based on material balance formulations, was used to estimate average reservoir-pressure decline that matched available drillstem test data and validated log-analysis assumptions. Core plugs representing the principal reservoir petrofacies provide critical inputs for characterization and simulation studies. However, assigning plugs among multiple reservoir petrofacies is difficult in complex (carbonate) reservoirs. In a bottom-up approach, raw capillary pressure (Pc) data were plotted on the Super-Pickett plot, and log- and core-derived saturation-height distributions were reconciled to group plugs by facies, to identify core plugs representative of the principal reservoir facies, and to discriminate facies in the logged interval. Pc data from representative core plugs were used for effective pay evaluation to estimate water cut from completions, in infill and producing wells, and guide-selective perforations for economic exploitation of mature fields. The results from this study were used to drill 22 infill wells. Techniques demonstrated here can be applied in other fields and reservoirs. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.

  19. Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries

    PubMed Central

    Zuloaga-Molero, Pavel; Yu, Wei; Xu, Yifei; Sepehrnoori, Kamy; Li, Baozhen

    2016-01-01

    The recent development of tight oil reservoirs has led to an increase in oil production in the past several years due to the progress in horizontal drilling and hydraulic fracturing. However, the expected oil recovery factor from these reservoirs is still very low. CO2-based enhanced oil recovery is a suitable solution to improve the recovery. One challenge of the estimation of the recovery is to properly model complex hydraulic fracture geometries which are often assumed to be planar due to the limitation of local grid refinement approach. More flexible methods like the use of unstructured grids can significantly increase the computational demand. In this study, we introduce an efficient methodology of the embedded discrete fracture model to explicitly model complex fracture geometries. We build a compositional reservoir model to investigate the effects of complex fracture geometries on performance of CO2 Huff-n-Puff and CO2 continuous injection. The results confirm that the appropriate modelling of the fracture geometry plays a critical role in the estimation of the incremental oil recovery. This study also provides new insights into the understanding of the impacts of CO2 molecular diffusion, reservoir permeability, and natural fractures on the performance of CO2-EOR processes in tight oil reservoirs. PMID:27628131

  20. Using hierarchical Bayesian multi-species mixture models to estimate tandem hoop-net based habitat associations and detection probabilities of fishes in reservoirs

    USGS Publications Warehouse

    Stewart, David R.; Long, James M.

    2015-01-01

    Species distribution models are useful tools to evaluate habitat relationships of fishes. We used hierarchical Bayesian multispecies mixture models to evaluate the relationships of both detection and abundance with habitat of reservoir fishes caught using tandem hoop nets. A total of 7,212 fish from 12 species were captured, and the majority of the catch was composed of Channel Catfish Ictalurus punctatus (46%), Bluegill Lepomis macrochirus(25%), and White Crappie Pomoxis annularis (14%). Detection estimates ranged from 8% to 69%, and modeling results suggested that fishes were primarily influenced by reservoir size and context, water clarity and temperature, and land-use types. Species were differentially abundant within and among habitat types, and some fishes were found to be more abundant in turbid, less impacted (e.g., by urbanization and agriculture) reservoirs with longer shoreline lengths; whereas, other species were found more often in clear, nutrient-rich impoundments that had generally shorter shoreline length and were surrounded by a higher percentage of agricultural land. Our results demonstrated that habitat and reservoir characteristics may differentially benefit species and assemblage structure. This study provides a useful framework for evaluating capture efficiency for not only hoop nets but other gear types used to sample fishes in reservoirs.

  1. An estimate of gas emissions and magmatic gas content from Kilauea volcano

    USGS Publications Warehouse

    Greenland, L.P.; Rose, William I.; Stokes, J.B.

    1985-01-01

    Emission rates of CO2 have been measured at Kilauea volcano, Hawaii, in the east-rift eruptive plume and CO2 and SO2 have been measured in the plume from the noneruptive fumaroles in the summit caldera. These data yield an estimate of the loading of Kilauean eruptive gases to the atmosphere and suggest that such estimates may be inferred directly from measured lava volumes. These data, combined with other chemical and geologic data, suggest that magma arrives at the shallow summit reservoir containing (wt.%) 0.32% H2O, 0.32% CO2 and 0.09% S. Magma is rapidly degassed of most of its CO2 in the shallow reservoir before transport to the eruption site. Because this summit degassing yields a magma saturated and in equilibrium with volatile species and because transport of the magma to the eruption site occurs in a zone no shallower than the summit reservoir, we suggest that eruptive gases from Kilauea characteristically should be one of two types: a 'primary' gas from fresh magma derived directly from the mantle and a carbon-depleted gas from magma stored in the summit reservoir. ?? 1995.

  2. Sediment deposition and trends and transport of phosphorus and other chemical constituents, Cheney Reservoir watershed, south-central Kansas

    USGS Publications Warehouse

    Mau, D.P.

    2001-01-01

    Sediment deposition, water-quality trends, and mass transport of phosphorus, nitrogen, selected trace elements, and selected pesticides within the Cheney Reservoir watershed in south-central Kansas were investigated using bathymetric survey data and reservoir bottom-sediment cores. Sediment loads in the reservoir were investigated by comparing 1964 topographic data to 1998 bathymetric survey data. Approximately 7,100 acre-feet of sediment deposition occurred in Cheney Reservoir from 1965 through 1998. As of 1998, sediment had filled 27 percent of the reservoir's inactive conservation storage pool, which is less than the design estimate of 34 percent. Mean annual sediment deposition was 209 acre-feet per year, or 0.22 acre-feet per year per square mile, and the mean annual sediment load was 453 million pounds per year. During the 3-year period from 1997 through 1999, 23 sediment cores were collected from the reservoir, and subsamples were analyzed for nutrients (phosphorus and nitrogen species), selected trace elements, and selected organic pesticides. Mean concentrations of total phosphorus in reservoir bottom sediment ranged from 94 milligrams per kilogram at the upstream end of the reservoir to 710 milligrams per kilogram farther downstream near the reservoir dam. The mean concentration for all sites was 480 milligrams per kilogram. Total phosphorus concentrations were greatest when more silt- and clay-sized particles were present. The implications are that if anoxic conditions (inadequate oxygen) occur near the dam, phosphorus could be released from the sediment and affect the drinking-water supply. Analysis of selected cores also indicates that total phosphorus concentrations in the reservoir sediment increased over time and were probably the result of nonpoint-source activities in the watershed, such as increased fertilizer use and livestock production. Mean annual phosphorus loading to Cheney Reservoir was estimated to be 226,000 pounds per year on the basis of calculations from deposited sediment in the reservoir. Mean total phosphorus concentration in the surface-water inflow to Cheney Reservoir was 0.76 milligram per liter, mean annual phosphorus yield of the watershed was estimated to be 0.38 pound per year per acre, and both are based on sediment deposition in the reservoir. A comparison of the Cheney Reservoir watershed to the Webster Reservoir, Tuttle Creek Lake, and Hillsdale Lake watersheds showed that phosphorus yields were smallest in the Webster Reservoir watershed where precipitation was less than in the other watersheds. Mean concentrations of total ammonia plus organic nitrogen in bottom sediment from Cheney Reservoir ranged from 1,200 to 2,400 milligrams per kilogram as nitrogen. A regression analysis between total ammonia plus organic nitrogen as nitrogen and sediment particle size showed a strong relation between the two variables and suggests, as with phosphorus, that total ammonia plus organic nitrogen as nitrogen adsorbs to the silt- and clay-sized particles that are transported to the deeper parts of the reservoir. An analysis of trends with depth of total ammonia plus organic nitrogen as nitrogen did not indicate a strong relation between the two variables despite the increase in fertilizer use in the watershed during the past 40 years. Selected cores were analyzed for trace elements. Concentrations of arsenic, chromium, copper, and nickel at many sites exceeded levels where adverse effects on aquatic organisms sometimes occur. Larger concentrations of these elements also occurred in sediment closer to the reservoir dam where there is a larger percentage of silt and clay in the bottom sediment than farther upstream. However, the lack of industrial or commercial land use in the watershed suggests that these concentrations may be the result of natural conditions. Organochlorine insecticides were detected in the reservoir-bottom sediment in Cheney Reservoir. DDT and its degradation products DDD and DD

  3. Influence of the geothermal fluid rheology in the large scale hydro-thermal circulation in Soultz-sous-Forêts reservoir.

    NASA Astrophysics Data System (ADS)

    Vallier, Bérénice; Magnenet, Vincent; Fond, Christophe; Schmittbuhl, Jean

    2017-04-01

    Many numerical models have been developed in deep geothermal reservoir engineering to interpret field measurements of the natural hydro-thermal circulations or to predict exploitation scenarios. They typically aim at analyzing the Thermo-Hydro-Mechanical and Chemical (THMC) coupling including complex rheologies of the rock matrix like thermo-poro-elasticity. Few approaches address in details the role of the fluid rheology and more specifically the non-linear sensitivity of the brine rheology with temperature and pressure. Here we use the finite element Code_Aster to solve the balance equations of a 2D THM model of the Soultz-sous-Forêts reservoir. The brine properties are assumed to depend on the fluid pressure and the temperature as in Magnenet et al. (2014). A sensitive parameter is the thermal dilatation of the brine that is assumed to depend quadratically with temperature as proposed by the experimental measurements of Rowe and Chou (1970). The rock matrix is homogenized at the scale of the equation resolution assuming to have a representative elementary volume of the fractured medium smaller than the mesh size. We still chose four main geological units to adjust the rock physic parameters at large scale: thermal conductivity, permeability, radioactive source production rate, elastic and Biot parameters. We obtain a three layer solution with a large hydro-thermal convection below the cover-basement transition. Interestingly, the geothermal gradient in the sedimentary layer is controlled by the radioactive production rate in the upper altered granite. The second part of the study deals with an inversion approach of the homogenized solid and fluid parameters at large scale using our direct THM model. The goal is to compare the large scale inverted estimates of the rock and brine properties with direct laboratory measurements on cores and discuss their upscaling in the context of a fractured network hydraulically active. Magnenet V., Fond C., Genter A. and Schmittbuhl J.: two-dimensional THM modelling of the large-scale natural hydrothermal circulation at Soultz-sous-Forêts, Geothermal Energy, (2014), 2, 1-17. Rowe A.M. and Chou J.C.S.: Pressure-volume-temperature-concentration relation of aqueous NaCl solutions, J. Chem. Eng. Data., (1970), 15, 61-66.

  4. MeProRisk - Acquisition and Prediction of thermal and hydraulic properties

    NASA Astrophysics Data System (ADS)

    Arnold, J.; Mottaghy, D.; Pechnig, R.

    2009-04-01

    MeProRisk is a joint project of five university institutes at RWTH Aachen University, Free University Berlin, and Kiel University. Two partners, namely Geophysica Beratunggesellschaft mbH (Aachen) and RWE Dea AG (Hamburg) present the industrial side. It is funded by the German Ministry of Education and Science (BMBF). The MeProRisk project aims to improve strategies to reduce the risk for planning geothermal power plants. Within our subproject we estimate geothermal relevant parameters in the laboratory and in the borehole scale. This basis data will be integrated with hydraulic and seismic experiments to provide a 3D reservoir model. Hitherto we focussed on two different type locations in Germany. These are (1) the crystalline basement in South Germany and (2) the Rotliegend formation and volcanic rocks in the Northern German Sedimentary Basin. In the case of the crystalline basement an extensive dataset could be composed from the 9 km deep KTB borehole including logging, core and cutting data. The whole data could be interpreted with respect to lithology, structure and alteration of the formation which mainly consists of alternating sequences of gneiss and metabasite. For the different rock types the data was analyzed statistically to provide specific values for geothermal key parameters. Important key parameters are for example: p-wave velocity, density, thermal conductivity, permeability and porosity. For the second type location we used logging data recovered within one borehole (> 5 km deep) which was drilled in the so called Voelkersen gas field. The data was supplied by the RWE DEA company. The formation comprises volcanic rocks and sandstones. On corresponding cores we measured p-wave velocity, thermal conductivity, density and porosity in the laboratory. In the same way as for type location (1) the complete data set was analyzed statistically to derive specific values which are relevant for the geothermal reservoir model. Finally this study will end up in a multi-scale implementation of the bore and its direct environment into a 3D reservoir model. For this purpose we provide the basic data which is suitable for the model calculations.

  5. Effective Stress Law in Unconventional Reservoirs under Different Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Saurabh, S.; Harpalani, S.

    2017-12-01

    Unconventional reservoirs have attracted a great deal of research interest worldwide during the past two decades. Low permeability and specialized techniques required to exploit these resources present opportunities for improvement in both production rates and ultimate recovery. Understanding subsurface stress modifications and permeability evolution are valuable when evaluating the prospects of unconventional reservoirs. These reservoir properties are functions of effective stress. As a part of this study, effective stress law, specifically the variation of anisotropic Biot's coefficient under various boundary conditions believed to exist in gas reservoirs by different researchers, has been established. Pressure-dependent-permeability (PdK) experiments were carried out on San Juan coal under different boundary conditions, that is, uniaxial strain condition and constant volume condition. Stress and strain in the vertical and horizontal directions were monitored throughout the experiment. Data collected during the experiments was used to determine the Biot's coefficient in vertical and horizontal directions under these two boundary conditions, treating coal as transversely isotropic. The variation of Biot's coefficient was found to be well correlated with the variation in coal permeability. Based on the estimated values of Biot's coefficients, a theory of variation in its value is presented for other boundary conditions. The findings of the study shed light on the inherent behavior of Biot's coefficient under different reservoir boundary conditions. This knowledge can improve the modeling work requiring estimation of effective stress in reservoirs, such as, pressure-/stress- dependent permeability. At the same time, if the effective stresses are known with more certainty by other methods, it enables assessment of the unknown reservoir boundary conditions.

  6. On the Resolvability of Steam Assisted Gravity Drainage Reservoirs Using Time-Lapse Gravity Gradiometry

    NASA Astrophysics Data System (ADS)

    Elliott, E. Judith; Braun, Alexander

    2017-11-01

    Unconventional heavy oil resource plays are important contributors to oil and gas production, as well as controversial for posing environmental hazards. Monitoring those reservoirs before, during, and after operations would assist both the optimization of economic benefits and the mitigation of potential environmental hazards. This study investigates how gravity gradiometry using superconducting gravimeters could resolve depletion areas in steam assisted gravity drainage (SAGD) reservoirs. This is achieved through modelling of a SAGD reservoir at 1.25 and 5 years of operation. Specifically, the density change structure identified from geological, petrological, and seismic observations is forward modelled for gravity and gradients. Three main parameters have an impact on the resolvability of bitumen depletion volumes and are varied through a suitable parameter space: well pair separation, depth to the well pairs, and survey grid sampling. The results include a resolvability matrix, which identifies reservoirs that could benefit from time-lapse gravity gradiometry monitoring. After 1.25 years of operation, during the rising phase, the resolvable maximum reservoir depth ranges between the surface and 230 m, considering a well pair separation between 80 and 200 m. After 5 years of production, during the spreading phase, the resolvability of depletion volumes around single well pairs is greatly compromised as the depletion volume is closer to the surface, which translates to a larger portion of the gravity signal. The modelled resolvability matrices were derived from visual inspection and spectral analysis of the gravity gradient signatures and can be used to assess the applicability of time-lapse gradiometry to monitor reservoir density changes.

  7. Skiff-based Sonar/LiDAR Survey to Calibrate Reservoir Volumes for Watershed Sediment Yield Studies: Carmel River Example

    NASA Astrophysics Data System (ADS)

    Smith, D. P.; Kvitek, R.; Quan, S.; Iampietro, P.; Paddock, E.; Richmond, S. F.; Gomez, K.; Aiello, I. W.; Consulo, P.

    2009-12-01

    Models of watershed sediment yield are complicated by spatial and temporal variability of geologic substrate, land cover, and precipitation parameters. Episodic events such as ENSO cycles and severe wildfire are frequent enough to matter in the long-term average yield, and they can produce short-lived, extreme geomorphic responses. The sediment yield from extreme events is difficult to accurately capture because of the obvious dangers associated with field measurements during flood conditions, but it is critical to include extreme values for developing realistic models of rainfall-sediment yield relations, and for calculating long term average denudation rates. Dammed rivers provide a time-honored natural laboratory for quantifying average annual sediment yield and extreme-event sediment yield. While lead-line surveys of the past provided crude estimates of reservoir sediment trapping, recent advances in geospatial technology now provide unprecedented opportunities to improve volume change measurements. High-precision digital elevation models surveyed on an annual basis, or before-and-after specific rainfall-runoff events can be used to quantify relations between rainfall and sediment yield as a function of landscape parameters, including spatially explicit fire intensity. The Basin-Complex Fire of June and July 2008 resulted in moderate to severe burns in the 114 km^2 portion of the Carmel River watershed above Los Padres Dam. The US Geological Survey produced a debris flow probability/volume model for the region indicating that the reservoir could lose considerable capacity if intense enough precipitation occurred in the 2009-10 winter. Loss of Los Padres reservoir capacity has implications for endangered steelhead and red-legged frogs, and groundwater on municipal water supply. In anticipation of potentially catastrophic erosion, we produced an accurate volume calculation of the Los Padres reservoir in fall 2009, and locally monitored hillslope and fluvial processes during winter months. The pre-runoff reservoir volume was developed by collecting and merging sonar and LiDAR data from a small research skiff equipped with a high-precision positioning and attitude-correcting system. The terrestrial LiDAR data were augmented with shore-based total station positioning. Watershed monitoring included benchmarked serial stream surveys and semi-quantitative assessment of a variety of near-channel colluvial processes. Rainfall in the 2009-10 water year was not intense enough to trigger widespread debris flows of slope failure in the burned watershed, but dry ravel was apparently accelerated. The geomorphic analysis showed that sediment yield was not significantly higher during this low-rainfall year, despite the wide-spread presence of very steep, fire-impacted slopes. Because there was little to no increase in sediment yield this year, we have postponed our second reservoir survey. A predicted ENSO event that might bring very intense rains to the watershed is currently predicted for winter 2009-10.

  8. Bathymetric maps and water-quality profiles of Table Rock and North Saluda Reservoirs, Greenville County, South Carolina

    USGS Publications Warehouse

    Clark, Jimmy M.; Journey, Celeste A.; Nagle, Doug D.; Lanier, Timothy H.

    2014-01-01

    Lakes and reservoirs are the water-supply source for many communities. As such, water-resource managers that oversee these water supplies require monitoring of the quantity and quality of the resource. Monitoring information can be used to assess the basic conditions within the reservoir and to establish a reliable estimate of storage capacity. In April and May 2013, a global navigation satellite system receiver and fathometer were used to collect bathymetric data, and an autonomous underwater vehicle was used to collect water-quality and bathymetric data at Table Rock Reservoir and North Saluda Reservoir in Greenville County, South Carolina. These bathymetric data were used to create a bathymetric contour map and stage-area and stage-volume relation tables for each reservoir. Additionally, statistical summaries of the water-quality data were used to provide a general description of water-quality conditions in the reservoirs.

  9. Sediment transport and capacity change in three reservoirs, Lower Susquehanna River Basin, Pennsylvania and Maryland, 1900-2012

    USGS Publications Warehouse

    Langland, Michael J.

    2015-01-01

    The U.S. Geological Survey (USGS) has conducted numerous sediment transport studies in the Susquehanna River and in particular in three reservoirs in the Lower Susquehanna River Basin to determine sediment transport rates over the past century and to document changes in storage capacity. The Susquehanna River is the largest tributary to Chesapeake Bay and transports about one-half of the total freshwater input and substantial amounts of sediment and nutrients to the bay. The transported loads are affected by deposition in reservoirs (Lake Clarke, Lake Aldred, and Conowingo Reservoir) behind three hydropower dams. The geometry and texture of the deposited sediments in each reservoir upstream from the three dams has been a subject of research in recent decades. Particle size deposition and sediment scouring processes are part of the reservoir dynamics. A Total Maximum Daily Load (TMDL) for nitrogen, phosphorus, and sediment was established for Chesapeake Bay to attain water-quality standards. Six states and the District of Columbia agreed to reduce loads to the bay and to meet load allocation goals for the TMDL. The USGS has been estimating annual sediment loads at the Susquehanna River at Marietta, Pennsylvania (above Lake Clarke), and Susquehanna River at Conowingo, Maryland (below Conowingo Reservoir), since the mid-1980s to predict the mass balance of sediment transport through the reservoir system. Using streamflow and sediment data from the Susquehanna River at Harrisburg, Pennsylvania (upstream from the reservoirs), from 1900 to 1981, sediment loads were greatest in the early to mid-1900s when land disturbance activities from coal production and agriculture were at their peak. Sediment loads declined in the 1950s with the introduction of agricultural soil conservation practices. Loads were dominated by climatic factors in the 1960s (drought) and 1970s (very wet) and have been declining since the 1980s through 2012. The USGS developed a regression equation to predict the sediment scour load for daily mean streamflows greater than 300,000 cubic feet per second for the Lower Susquehanna River reservoirs. A compilation of data from various sources produced a range in total sediment transported through the reservoir system and allowed for apportioning to source (watershed or scour) for various streamflows. In 2011, Conowingo Reservoir was estimated to be about 92 percent of sediment storage capacity. Since construction of Conowingo Dam in 1929 through 2012, approximately 470 million tons of sediment was transported down the Susquehanna River into the reservoir system, approximately 290 million tons were trapped, and approximately 180 million tons were transported to Chesapeake Bay. Spatial and estimated total sand deposition in Conowingo Reservoir based on historical sediment cores indicated continued migration of sand downgradient toward the dam and the winnowing of silts and clays near the dam due to scour.

  10. Survival of cyanobacteria in rivers following their release in water from large headwater reservoirs.

    PubMed

    Williamson, Nicholas; Kobayashi, Tsuyoshi; Outhet, David; Bowling, Lee C

    2018-05-01

    Cyanobacterial survival following their release in water from major headwaters reservoirs was compared in five New South Wales rivers. Under low flow conditions, cyanobacterial presence disappeared rapidly with distance downstream in the Cudgegong and Hunter Rivers, whereas the other three rivers were contaminated for at least 300 km. Cyanobacterial survival is likely to be impacted by the geomorphology of each river, especially the extent of gravel riffle reaches (cells striking rocks can destroy them) and by the different turbulent flow conditions it produces within each. Flow conditions at gauging stations were used to estimate the turbulent strain rate experienced by suspended cyanobacteria. These indicate average turbulent strain rates in the Cudgegong and Hunter Rivers can be above 33 and 83 s -1 while for the Murray, Edward and Macquarie Rivers average strain rate was estimated to be less than 30 s -1 . These turbulent strain rate estimates are substantially above published thresholds of approximately 2 s -1 for impacts indicated from laboratory tests. Estimates of strain rate were correlated with changes in cyanobacterial biovolume at stations along the rivers. These measurements indicate a weak but significant negative linear relationship between average strain rate and change in cyanobacterial biomass. River management often involves releasing cold deep water with low cyanobacterial presence from these reservoirs, leading to ecological impacts from cold water pollution downstream. The pollution may be avoided if cyanobacteria die off rapidly downstream of the reservoir, allowing surface water to be released instead. However high concentrations of soluble cyanotoxins may remain even after the cyanobacterial cells have been destroyed. The geomorphology of the river (length of riffle reaches) is an important consideration for river management during cyanobacterial blooms in headwater reservoirs. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Q estimation of seismic data using the generalized S-transform

    NASA Astrophysics Data System (ADS)

    Hao, Yaju; Wen, Xiaotao; Zhang, Bo; He, Zhenhua; Zhang, Rui; Zhang, Jinming

    2016-12-01

    Quality factor, Q, is a parameter that characterizes the energy dissipation during seismic wave propagation. The reservoir pore is one of the main factors that affect the value of Q. Especially, when pore space is filled with oil or gas, the rock usually exhibits a relative low Q value. Such a low Q value has been used as a direct hydrocarbon indicator by many researchers. The conventional Q estimation method based on spectral ratio suffers from the problem of waveform tuning; hence, many researchers have introduced time-frequency analysis techniques to tackle this problem. Unfortunately, the window functions adopted in time-frequency analysis algorithms such as continuous wavelet transform (CWT) and S-transform (ST) contaminate the amplitude spectra because the seismic signal is multiplied by the window functions during time-frequency decomposition. The basic assumption of the spectral ratio method is that there is a linear relationship between natural logarithmic spectral ratio and frequency. However, this assumption does not hold if we take the influence of window functions into consideration. In this paper, we first employ a recently developed two-parameter generalized S-transform (GST) to obtain the time-frequency spectra of seismic traces. We then deduce the non-linear relationship between natural logarithmic spectral ratio and frequency. Finally, we obtain a linear relationship between natural logarithmic spectral ratio and a newly defined parameter γ by ignoring the negligible second order term. The gradient of this linear relationship is 1/Q. Here, the parameter γ is a function of frequency and source wavelet. Numerical examples for VSP and post-stack reflection data confirm that our algorithm is capable of yielding accurate results. The Q-value results estimated from field data acquired in western China show reasonable comparison with oil-producing well location.

  12. Study on Dissipation of Landslide Generated Waves in Different Shape of Reservoirs

    NASA Astrophysics Data System (ADS)

    An, Y.; Liu, Q.

    2017-12-01

    The landslide generated waves are major risks for many reservoirs located in mountainous areas. As the initial wave is often very huge (e.g. 30m of the height in Xiaowan event, 2009, China), the dissipation of the wave, which is closely connected with the shape of the reservoir (e.g. channel type vs. lake type), is a crucial factor in risk estimation and prevention. While even for channel type reservoir, the wave damping also varies a lot due to details of the shape such as branches and turnings. Focusing on the influence of this shape details on the wave damping in channel type reservoir, we numerically studied two landslide generated wave events with both a triangle shape of the cross section but different longitudinal shape configurations (Xiaowan event in 2009 and an assuming event in real topography). The two-dimensional Saint-Venant equation and dry-wet boundary treatment method are used to simulate the wave generation and propagation processes. The simulation is based on an open source code called `Basilisk' and the adaptive mesh refinement technique is used to achieve enough precision with affordable computational resources. The sensitivity of the parameters representing bed drag and the vortex viscosity is discussed. We found that the damping is relatively not sensitive to the bed drag coefficient, which is natural as the water depth is large compared with wave height. While the vortex viscosity needs to be chosen carefully as it is related to cross sectional velocity distribution. It is also found that the longitudinal shape, i.e. the number of turning points and branches, is the key factor influencing the wave damping. The wave height at the far field could be only one seventh comparing with the initial wave in the case with complex longitudinal shape, while the damping is much weaker in the straight channel case. We guess that this phenomenon is due to the increasing sloshing at these abruptly changed positions. This work could provide a deeper understanding on the landslide generated waves in the reservoir and helps engineers design better risk prevention facilities.

  13. Constraints on the magnitude and rate of carbon dioxide dissolution at Bravo Dome natural gas field

    NASA Astrophysics Data System (ADS)

    Sathaye, K.; Hesse, M. A.

    2013-12-01

    The Bravo Dome field in northeastern New Mexico contains at least 10 trillion cubic feet (tcf) of magmatic CO2. The CO2 has been emplaced in the reservoir for at least 10,000 years, providing a useful analog for geologic CO2 storage. The reservoir is comprised of a CO2 gas layer overlying brine water in a sandstone reservoir. Previous estimates have used differences in the CO2/3He ratio in the gas to infer that locally, half of the CO2 originally emplaced has dissolved into the underlying brine. This study presents the first estimate of the total amount of CO2 dissolved. We incorporate gas pressure, reservoir geometry, and gas layer thickness to show that over 80% of the CO2 originally emplaced is still present in the gas layer. It is generally assumed that the dissolution of CO2 is driven by convective currents in the brine. We present an alternative hypothesis for the spatial differences of the CO2/3He ratio seen in this reservoir. Gas injection theory predicts that as gas displaces a liquid, relatively insoluble gas components will become enriched at the front of the displacement. If the emplacement occurred from west to east this would cause 3He enrichment in the eastern portion of the Bravo Dome field overlying the brine. This effect could be responsible for the spatial differences in the CO2/3He ratio. Mass per area in the gas layer of the reservoir is seen in the 2 right panes. The measured bottom hole pressure data from 1981 is used in combination with CO2/3He measurements to estimate the mass of CO2 originally in place. The water thickness is inversely correlated with the CO2/3He ratio, suggesting that there may be convective dissolution occurring in the eastern part of the reservoir. Present day mass of CO2 is roughly 83% of the original total.

  14. Single-dose volume regulation algorithm for a gas-compensated intrathecal infusion pump.

    PubMed

    Nam, Kyoung Won; Kim, Kwang Gi; Sung, Mun Hyun; Choi, Seong Wook; Kim, Dae Hyun; Jo, Yung Ho

    2011-01-01

    The internal pressures of medication reservoirs of gas-compensated intrathecal medication infusion pumps decrease when medication is discharged, and these discharge-induced pressure drops can decrease the volume of medication discharged. To prevent these reductions, the volumes discharged must be adjusted to maintain the required dosage levels. In this study, the authors developed an automatic control algorithm for an intrathecal infusion pump developed by the Korean National Cancer Center that regulates single-dose volumes. The proposed algorithm estimates the amount of medication remaining and adjusts control parameters automatically to maintain single-dose volumes at predetermined levels. Experimental results demonstrated that the proposed algorithm can regulate mean single-dose volumes with a variation of <3% and estimate the remaining medication volume with an accuracy of >98%. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Effects of May through July 2015 storm events on suspended sediment loads, sediment trapping efficiency, and storage capacity of John Redmond Reservoir, east-central Kansas

    USGS Publications Warehouse

    Foster, Guy M.

    2016-06-20

    The U.S. Geological Survey, in cooperation with the Kansas Water Office, computed the suspended-sediment inflows and retention in John Redmond Reservoir during May through July 2015. Computations relied upon previously published turbidity-suspended sediment relations at water-quality monitoring sites located upstream and downstream from the reservoir. During the 3-month period, approximately 872,000 tons of sediment entered the reservoir, and 57,000 tons were released through the reservoir outlet. The average monthly trapping efficiency during this period was 93 percent, and monthly averages ranged from 83 to 97 percent. During the study period, an estimated 980 acre-feet of storage was lost, over 2.4 times the design annual sedimentation rate of the reservoir. Storm inflows during the 3-month analysis period reduced reservoir storage in the conservation pool approximately 1.6 percent. This indicates that large inflows, coupled with minimal releases, can have substantial effects on reservoir storage and lifespan.

  16. Daily reservoir sedimentation model: Case study from the Fena Valley Reservoir, Guam

    USGS Publications Warehouse

    Marineau, Mathieu D.; Wright, Scott A.

    2017-01-01

    A model to compute reservoir sedimentation rates at daily timescales is presented. The model uses streamflow and sediment load data from nearby stream gauges to obtain an initial estimate of sediment yield for the reservoir’s watershed; it is then calibrated to the total deposition calculated from repeat bathymetric surveys. Long-term changes to reservoir trapping efficiency are also taken into account. The model was applied to the Fena Valley Reservoir, a water supply reservoir on the island of Guam. This reservoir became operational in 1951 and was recently surveyed in 2014. The model results show that the highest rate of deposition occurred during two typhoons (Typhoon Alice in 1953 and Typhoon Tingting in 2004); each storm decreased reservoir capacity by approximately 2–3% in only a few days. The presented model can be used to evaluate the impact of an extreme event, or it can be coupled with a watershed runoff model to evaluate potential impacts to storage capacity as a result of climate change or other hydrologic modifications.

  17. Characterization of fish assemblages and population structure of freshwater fish in two Tunisian reservoirs: implications for fishery management.

    PubMed

    Mili, Sami; Ennouri, Rym; Dhib, Amel; Laouar, Houcine; Missaoui, Hechmi; Aleya, Lotfi

    2016-06-01

    To monitor and assess the state of Tunisian freshwater fisheries, two surveys were undertaken at Ghezala and Lahjar reservoirs. Samples were taken in April and May 2013, a period when the fish catchability is high. The selected reservoirs have different surface areas and bathymetries. Using multi-mesh gill nets (EN 14575 amended) designed for sampling fish in lakes, standard fishing methods were applied to estimate species composition, abundance, biomass, and size distribution. Four species were caught in the two reservoirs: barbel, mullet, pike-perch, and roach. Fish abundance showed significant change according to sampling sites, depth strata, and the different mesh sizes used. From the reservoir to the tributary, it was concluded that fish biomass distribution was governed by depth and was most abundant in the upper water layers. Species size distribution differed significantly between the two reservoirs, exceeding the length at first maturity. Species composition and abundance were greater in Lahjar reservoir than in Ghezala. Both reservoirs require support actions to improve fish productivity.

  18. CFD convective flow simulation of the varying properties of CO2-H2O mixtures in geothermal systems.

    PubMed

    Yousefi, S; Atrens, A D; Sauret, E; Dahari, M; Hooman, K

    2015-01-01

    Numerical simulation of a geothermal reservoir, modelled as a bottom-heated square box, filled with water-CO2 mixture is presented in this work. Furthermore, results for two limiting cases of a reservoir filled with either pure water or CO2 are presented. Effects of different parameters including CO2 concentration as well as reservoir pressure and temperature on the overall performance of the system are investigated. It has been noted that, with a fixed reservoir pressure and temperature, any increase in CO2 concentration leads to better performance, that is, stronger convection and higher heat transfer rates. With a fixed CO2 concentration, however, the reservoir pressure and temperature can significantly affect the overall heat transfer and flow rate from the reservoir. Details of such variations are documented and discussed in the present paper.

  19. CFD Convective Flow Simulation of the Varying Properties of CO2-H2O Mixtures in Geothermal Systems

    PubMed Central

    Yousefi, S.; Atrens, A. D.; Sauret, E.; Dahari, M.; Hooman, K.

    2015-01-01

    Numerical simulation of a geothermal reservoir, modelled as a bottom-heated square box, filled with water-CO2 mixture is presented in this work. Furthermore, results for two limiting cases of a reservoir filled with either pure water or CO2 are presented. Effects of different parameters including CO2 concentration as well as reservoir pressure and temperature on the overall performance of the system are investigated. It has been noted that, with a fixed reservoir pressure and temperature, any increase in CO2 concentration leads to better performance, that is, stronger convection and higher heat transfer rates. With a fixed CO2 concentration, however, the reservoir pressure and temperature can significantly affect the overall heat transfer and flow rate from the reservoir. Details of such variations are documented and discussed in the present paper. PMID:25879074

  20. Gravity Recovery and Climate Experiment (GRACE) detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements

    NASA Astrophysics Data System (ADS)

    Wang, Xianwei; de Linage, Caroline; Famiglietti, James; Zender, Charles S.

    2011-12-01

    Water impoundment in the Three Gorges Reservoir (TGR) of China caused a large mass redistribution from the oceans to a concentrated land area in a short time period. We show that this mass shift is captured by the Gravity Recovery and Climate Experiment (GRACE) unconstrained global solutions at a 400 km spatial resolution after removing correlated errors. The WaterGAP Global Hydrology Model (WGHM) is selected to isolate the TGR contribution from regional water storage changes. For the first time, this study compares the GRACE (minus WGHM) estimated TGR volume changes with in situ measurements from April 2002 to May 2010 at a monthly time scale. During the 8 year study period, GRACE-WGHM estimated TGR volume changes show an increasing trend consistent with the TGR in situ measurements and lead to similar estimates of impounded water volume. GRACE-WGHM estimated total volume increase agrees to within 14% (3.2 km3) of the in situ measurements. This indicates that GRACE can retrieve the true amplitudes of large surface water storage changes in a concentrated area that is much smaller than the spatial resolution of its global harmonic solutions. The GRACE-WGHM estimated TGR monthly volume changes explain 76% (r2 = 0.76) of in situ measurement monthly variability and have an uncertainty of 4.62 km3. Our results also indicate reservoir leakage and groundwater recharge due to TGR filling and contamination from neighboring lakes are nonnegligible in the GRACE total water storage changes. Moreover, GRACE observations could provide a relatively accurate estimate of global water volume withheld by newly constructed large reservoirs and their impacts on global sea level rise since 2002.

  1. National Dam Safety Program. Little Creek Reservoir Dam (Inventory Number VA 09506), James River Basin, James City County, Commonwealth of Virginia. Phase I Inspection Report.

    DTIC Science & Technology

    1981-02-01

    losses for the PMF were estimated at an initial loss of 1.0 inch and a constant loss rate of 0.05 inches per hour thereafter. 5.5 Reservoir Regulation ...Pertinent dam and reservoir data are shown in Table 1.1, paragraph 1.3.3. Regulation of flow from the reservoir is primarily an automatic function...Normal flows are maintained by the crest of the spillway riser at elevation 60.0 feet M.S.L. Some flow regulation can be exercised by the operation of

  2. Improved pressure contour analysis for estimating cardiac stroke volume using pulse wave velocity measurement.

    PubMed

    Kamoi, Shun; Pretty, Christopher; Balmer, Joel; Davidson, Shaun; Pironet, Antoine; Desaive, Thomas; Shaw, Geoffrey M; Chase, J Geoffrey

    2017-04-24

    Pressure contour analysis is commonly used to estimate cardiac performance for patients suffering from cardiovascular dysfunction in the intensive care unit. However, the existing techniques for continuous estimation of stroke volume (SV) from pressure measurement can be unreliable during hemodynamic instability, which is inevitable for patients requiring significant treatment. For this reason, pressure contour methods must be improved to capture changes in vascular properties and thus provide accurate conversion from pressure to flow. This paper presents a novel pressure contour method utilizing pulse wave velocity (PWV) measurement to capture vascular properties. A three-element Windkessel model combined with the reservoir-wave concept are used to decompose the pressure contour into components related to storage and flow. The model parameters are identified beat-to-beat from the water-hammer equation using measured PWV, wave component of the pressure, and an estimate of subject-specific aortic dimension. SV is then calculated by converting pressure to flow using identified model parameters. The accuracy of this novel method is investigated using data from porcine experiments (N = 4 Pietrain pigs, 20-24.5 kg), where hemodynamic properties were significantly altered using dobutamine, fluid administration, and mechanical ventilation. In the experiment, left ventricular volume was measured using admittance catheter, and aortic pressure waveforms were measured at two locations, the aortic arch and abdominal aorta. Bland-Altman analysis comparing gold-standard SV measured by the admittance catheter and estimated SV from the novel method showed average limits of agreement of ±26% across significant hemodynamic alterations. This result shows the method is capable of estimating clinically acceptable absolute SV values according to Critchely and Critchely. The novel pressure contour method presented can accurately estimate and track SV even when hemodynamic properties are significantly altered. Integrating PWV measurements into pressure contour analysis improves identification of beat-to-beat changes in Windkessel model parameters, and thus, provides accurate estimate of blood flow from measured pressure contour. The method has great potential for overcoming weaknesses associated with current pressure contour methods for estimating SV.

  3. Ground-Water Contributions to Reservoir Storage and the Effect on Estimates of Firm Yield for Reservoirs in Massachusetts

    USGS Publications Warehouse

    Archfield, Stacey A.; Carlson, Carl S.

    2006-01-01

    Potential ground-water contributions to reservoir storage were determined for nine reservoirs in Massachusetts that had shorelines in contact with sand and gravel aquifers. The effect of ground water on firm yield was not only substantial, but furthermore, the firm yield of a reservoir in contact with a sand and gravel aquifer was always greater when the ground-water contribution was included in the water balance. Increases in firm yield ranged from 2 to 113 percent, with a median increase in firm yield of 10 percent. Additionally, the increase in firm yield in two reservoirs was greater than 85 percent. This study identified a set of equations that are based on an analytical solution to the ground-water-flow equation for the case of one-dimensional flow in a finite-width aquifer bounded by a linear surface-water feature such as a stream. These equations, which require only five input variables, were incorporated into an existing firm-yield-estimator (FYE) model, and the potential effect of ground water on firm yield was evaluated. To apply the FYE model to a reservoir in Massachusetts, the model requires that the drainage area to the reservoir be clearly defined and that some surface water flows into the reservoir. For surface-water-body shapes having a more realistic representation of a reservoir shoreline than a stream, a comparison of ground-water-flow rates simulated by the ground-water equations with flow rates simulated by a two-dimensional, finite-difference ground-water-flow model indicate that the agreement between the simulated flow rates is within ?10 percent when the ratio of the distance from the reservoir shoreline to the aquifer boundary to the length of shoreline in contact with the aquifer is between values of 0.5 and 3.5. Idealized reservoir-aquifer systems were assumed to verify that the ground-water-flow equations were implemented correctly into the existing FYE model; however, the modified FYE model has not been validated through a comparison of simulated and observed data. A comparison of simulated and observed reservoir water levels would further define limitations to the applicability of the ground-water-flow equations to reservoirs in Massachusetts whose shorelines are in contact with a sand and gravel aquifer.

  4. Seasonal and diel effects on acoustic fish biomass estimates: application to a shallow reservoir with untargeted common carp (Cyprinus carpio)

    USGS Publications Warehouse

    Djemali, Imed; Yule, Daniel; Guillard, Jean

    2016-01-01

    The aim of the present study was to understand how seasonal fish distributions affect acoustically derived fish biomass estimates in a shallow reservoir in a semi-arid country (Tunisia). To that end, sampling events were performed during four seasons (spring (June), summer (September), autumn (December) and winter (March)) that included day and night surveys. A Simrad EK60 echosounder, equipped with two 120-kHz split-beam transducers for simultaneous horizontal and vertical beaming, was used to sample the entire water column. Surveys during spring and summer and daytime hours of winter were deemed unusable owing to high methane flux from the sediment, and during the day survey of autumn, fish were close to the reservoir bottom leading to low detectability. It follows that acoustic surveys should be conducted only at night during the cold season (December–March) for shallow reservoirs having carp Cyprinus carpio (L.) as the dominant species. Further, night-time biomass estimates during the cold season declined significantly (P < 0.001) from autumn to winter. Based on our autumn night-time survey, overall fish biomass in the Bir-Mcherga Reservoir was high (mean (± s.d.) 185 ± 98 tonnes (Mg)), but annual fishery exploitation is low (19.3–24.1 Mg) because the fish biomass is likely dominated by invasive carp not targeted by fishers. The results suggest that controlling carp would help improve the fishery.

  5. Statistical modelling of suspended sediment load in small basin located at Colombian Andes

    NASA Astrophysics Data System (ADS)

    Javier, Montoya Luis

    2016-04-01

    In this study a statistical modelling for the estimate the sediment yield based on available observations of water discharge and suspended sediment concentration were done. A multivariate model was applicate to analyze the 33 years of daily suspended sediments load available at a La Garrucha gauging station. A regional analysis were conducted to find a non-dimensional sediment load duration curve. These curves were used to estimate flow and sediments regimen at other inner point at the basin where there are located the Calderas reservoir. The record of sedimentation in the reservoir were used to validate the estimate mean sediments load. A periodical flushing in the reservoir is necessary to maintain the reservoir at the best operating capacity. The non-dimensional sediment load duration curve obtaining was used to find a sediment concentration during high flow regimen (10% of time these values were met or exceeded).These sediment concentration of high flow regimen has been assumed as a concentration that allow an 'environmental flushing', because it try to reproduce the natural regimen of sediments at the river and it sends a sediment concentration that environment can withstand. The sediment transport capacity for these sediment load were verified with a 1D model in order to respect the environmental constraints downstream of the dam. Field data were collected to understand the physical phenomena involved in flushing dynamics in the reservoir and downstream of the dam. These model allow to define an operations rules for the flushing to minimize the environmental effects.

  6. Assessing ecosystem effects of reservoir operations using food web-energy transfer and water quality models

    USGS Publications Warehouse

    Saito, L.; Johnson, B.M.; Bartholow, J.; Hanna, R.B.

    2001-01-01

    We investigated the effects on the reservoir food web of a new temperature control device (TCD) on the dam at Shasta Lake, California. We followed a linked modeling approach that used a specialized reservoir water quality model to forecast operation-induced changes in phytoplankton production. A food web–energy transfer model was also applied to propagate predicted changes in phytoplankton up through the food web to the predators and sport fishes of interest. The food web–energy transfer model employed a 10% trophic transfer efficiency through a food web that was mapped using carbon and nitrogen stable isotope analysis. Stable isotope analysis provided an efficient and comprehensive means of estimating the structure of the reservoir's food web with minimal sampling and background data. We used an optimization procedure to estimate the diet proportions of all food web components simultaneously from their isotopic signatures. Some consumers were estimated to be much more sensitive than others to perturbations to phytoplankton supply. The linked modeling approach demonstrated that interdisciplinary efforts enhance the value of information obtained from studies of managed ecosystems. The approach exploited the strengths of engineering and ecological modeling methods to address concerns that neither of the models could have addressed alone: (a) the water quality model could not have addressed quantitatively the possible impacts to fish, and (b) the food web model could not have examined how phytoplankton availability might change due to reservoir operations.

  7. 3D characterization of the fracture network in a deformed chalk reservoir analogue: The Lagerdorf case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koestler, A.G.; Reksten, K.

    1994-12-31

    Quantitative descriptions of the 3D fracture networks in terms of connectivity, fracture types, fracture surface roughness and flow characteristics are necessary for reservoir evaluation, management, and enhanced oil recovery programs of fractured reservoirs. For a period of 2 years, a research project focused on an analogue to fractured chalk reservoirs excellently exposed near Laegerdorf, NW Germany. Upper Cretaceous chalk has been uplifted and deformed by an underlying salt diapir, and is now exploited for the cement industry. In the production wall of a quarry, the fracture network of the deformed chalk was characterized and mapped at different scales. The wallmore » was scraped off as chalk exploitation proceeded, continuously revealing new sections through the faulted and fractured chalk body. A 230 m long part of the 35m high production wall was investigated during its recess of 25m. The large amount of fracture data were analyzed with respect to parameters such as fracture density distribution, orientation- and length distribution, and in terms of the representativity of data sets collected from restricted rock volumes. This 3D description and analysis of a fracture network revealed quantitative generic parameters of importance for modeling chalk reservoirs with less data and lower data quality.« less

  8. Contaminants in fish tissue from US lakes and reservoirs: A national probabilistic study

    EPA Science Inventory

    An unequal probability design was used to develop national estimates for 268 persistent, bioaccumulative, and toxic chemicals in fish tissue from lakes and reservoirs of the conterminous United States (excluding the Laurentian Great Lakes and Great Salt Lake). Predator (fillet) ...

  9. Role of reservoir engineering in the assessment of undiscovered oil and gas resources in the National Petroleum Reserve, Alaska

    USGS Publications Warehouse

    Verma, M.K.; Bird, K.J.

    2005-01-01

    The geology and reservoir-engineering data were integrated in the 2002 U.S. Geological Survey assessment of the National Petroleum Reserve in Alaska (NPRA). VVhereas geology defined the analog pools and fields and provided the basic information on sizes and numbers of hypothesized petroleum accumulations, reservoir engineering helped develop necessary equations and correlations, which allowed the determination of reservoir parameters for better quantification of in-place petroleum volumes and recoverable reserves. Seismic- and sequence-stratigraphic study of the NPRA resulted in identification of 24 plays. Depth ranges in these 24 plays, however, were typically greater than depth ranges of analog plays for which there were available data, necessitating the need for establishing correlations. The basic parameters required were pressure, temperature, oil and gas formation volume factors, liquid/gas ratios for the associated and nonassociated gas, and recovery factors. Finally, the re sults of U.S. Geological Survey deposit simulation were used in carrying out an economic evaluation, which has been separately published. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.

  10. Geophysical Surveys of the San Andreas and Crystal Springs Reservoir System Including Seismic-Reflection Profiles and Swath Bathymetry, San Mateo County, California

    USGS Publications Warehouse

    Finlayson, David P.; Triezenberg, Peter J.; Hart, Patrick E.

    2010-01-01

    This report describes geophysical data acquired by the U.S. Geological Survey (USGS) in San Andreas Reservoir and Upper and Lower Crystal Springs Reservoirs, San Mateo County, California, as part of an effort to refine knowledge of the location of traces of the San Andreas Fault within the reservoir system and to provide improved reservoir bathymetry for estimates of reservoir water volume. The surveys were conducted by the Western Coastal and Marine Geology (WCMG) Team of the USGS for the San Francisco Public Utilities Commission (SFPUC). The data were acquired in three separate surveys: (1) in June 2007, personnel from WCMG completed a three-day survey of San Andreas Reservoir, collecting approximately 50 km of high-resolution Chirp subbottom seismic-reflection data; (2) in November 2007, WCMG conducted a swath-bathymetry survey of San Andreas reservoir; and finally (3) in April 2008, WCMG conducted a swath-bathymetry survey of both the upper and lower Crystal Springs Reservoir system. Top of PageFor more information, contact David Finlayson.

  11. Impact of Sedimentation hazard at Jor Reservoir, Batang Padang Hydroelectric Scheme in Malaysia

    NASA Astrophysics Data System (ADS)

    Luis, Jansen; Mohd Sidek, Lariyah; Jajarmizadeh, Milad

    2016-03-01

    Sedimentation in reservoir can be treated as a hazard because it affects the overall safety of the dam. It is a growing concern for reservoir operators throughout the world as it impacts the operability of the hydropower plant and its function as flood control. The objective of the study is to carry out reservoir bathymetric survey to determine the storage volume available at Jor reservoir. The paper intends to discuss the results of two successive surveys carried out in year 2007 and 2010 and comparison with historical data in1968 owing to analyse of sedimentation trend. The result showed that the total storage loss is approximately 43% with an estimated deposited sediment volume of 1.4 million m3 in year 2010. The sedimentation rate is estimated at 3.3% for the years surveyed which is greater than the world average of 0.93%. The findings from the survey are used to develop a revised elevation-storage curve which could be used by the operator and engineers to carry out future power generation planning and flood study predictions. The findings are also expected to be used to determine the optimum method for sediment management and hydro-mechanical protection.

  12. Pre- and postprocessing for reservoir simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, W.L.; Ingalls, L.J.; Prasad, S.J.

    1991-05-01

    This paper describes the functionality and underlying programing paradigms of Shell's simulator-related reservoir-engineering graphics system. THis system includes the simulation postprocessing programs Reservoir Display System (RDS) and Fast Reservoir Engineering Displays (FRED), a hypertext-like on-line documentation system (DOC), and a simulator input preprocessor (SIMPLSIM). RDS creates displays of reservoir simulation results. These displays represent the areal or cross-section distribution of computer reservoir parameters, such as pressure, phase saturation, or temperature. Generation of these images at real-time animation rates is discussed. FRED facilitates the creation of plot files from reservoir simulation output. The use of dynamic memory allocation, asynchronous I/O, amore » table-driven screen manager, and mixed-language (FORTRAN and C) programming are detailed. DOC is used to create and access on-line documentation for the pre-and post-processing programs and the reservoir simulators. DOC can be run by itself or can be accessed from within any other graphics or nongraphics application program. DOC includes a text editor, which is that basis for a reservoir simulation tutorial and greatly simplifies the preparation of simulator input. The use of sharable images, graphics, and the documentation file network are described. Finally, SIMPLSIM is a suite of program that uses interactive graphics in the preparation of reservoir description data for input into reservoir simulators. The SIMPLSIM user-interface manager (UIM) and its graphic interface for reservoir description are discussed.« less

  13. Gas Reservoir Identification Basing on Deep Learning of Seismic-print Characteristics

    NASA Astrophysics Data System (ADS)

    Cao, J.; Wu, S.; He, X.

    2016-12-01

    Reservoir identification based on seismic data analysis is the core task in oil and gas geophysical exploration. The essence of reservoir identification is to identify the properties of rock pore fluid. We developed a novel gas reservoir identification method named seismic-print analysis by imitation of the vocal-print analysis techniques in speaker identification. The term "seismic-print" is referred to the characteristics of the seismic waveform which can identify determinedly the property of the geological objectives, for instance, a nature gas reservoir. Seismic-print can be characterized by one or a few parameters named as seismic-print parameters. It has been proven that gas reservoirs are of characteristics of negative 1-order cepstrum coefficient anomaly and Positive 2-order cepstrum coefficient anomaly, concurrently. The method is valid for sandstone gas reservoir, carbonate reservoir and shale gas reservoirs, and the accuracy rate may reach up to 90%. There are two main problems to deal with in the application of seismic-print analysis method. One is to identify the "ripple" of a reservoir on the seismogram, and another is to construct the mapping relationship between the seismic-print and the gas reservoirs. Deep learning developed in recent years is of the ability to reveal the complex non-linear relationship between the attribute and the data, and of ability to extract automatically the features of the objective from the data. Thus, deep learning could been used to deal with these two problems. There are lots of algorithms to carry out deep learning. The algorithms can be roughly divided into two categories: Belief Networks Network (DBNs) and Convolutional Neural Network (CNN). DBNs is a probabilistic generative model, which can establish a joint distribution of the observed data and tags. CNN is a feedforward neural network, which can be used to extract the 2D structure feature of the input data. Both DBNs and CNN can be used to deal with seismic data. We use an improved DBNs to identify carbonate rocks from log data, the accuracy rate can reach up to 83%. DBNs is used to deal with seismic waveform data, more information is obtained. The work was supported by NSFC under grant No. 41430323 and No. 41274128, and State Key Lab. of Oil and Gas Reservoir Geology and Exploration.

  14. Gas Resource Potential of Volcanic Reservoir in Yingtai Fault Depression of Southern Songliao Basin,China

    NASA Astrophysics Data System (ADS)

    Zheng, M.

    2016-12-01

    There are 2 kinds of volcanic reservoir of gas resource in the Yingtai fault depression, southern Songliao basin,China: volcanic lava reservoir in the Yingcheng-1formation and sedimentary pryoclastics rock of the Yingcheng-2 formation. Based on analysis of the 2 kinds of gas pool features and controlling factors, distribution of each kind has been studied. The resources of these gas reservoirs have been estimated by Delphi method and volumetric method, respectively. The results of resources assessment show the total volcanic gas resources of the Yingtai depression is rich, and the resource proving rate is low, with the remaining gas resource in volcanic reservoir accounting for more than 70%. Thus there will be great exploration potential in the volcanic reservoir in the future gas exploration of this area.

  15. Research on the physical properties of supercritical CO2 and the log evaluation of CO2-bearing volcanic reservoirs

    NASA Astrophysics Data System (ADS)

    Pan, Baozhi; Lei, Jian; Zhang, Lihua; Guo, Yuhang

    2017-10-01

    CO2-bearing reservoirs are difficult to distinguish from other natural gas reservoirs during gas explorations. Due to the lack of physical parameters for supercritical CO2, particularly neutron porosity, at present a hydrocarbon gas log evaluation method is used to evaluate CO2-bearing reservoirs. The differences in the physical properties of hydrocarbon and CO2 gases have led to serious errors. In this study, the deep volcanic rock of the Songliao Basin was the research area. In accordance with the relationship between the density and acoustic velocity of supercritical CO2 and temperature and pressure, the regularity between the CO2 density and acoustic velocity, and the depth of the area was established. A neutron logging simulation was completed based on a Monte Carlo method. Through the simulation of the wet limestone neutron logging, the relationship between the count rate ratio of short and long space detectors and the neutron porosity was acquired. Then, the nature of the supercritical CO2 neutron moderation was obtained. With consideration given to the complexity of the volcanic rock mineral composition, a volcanic rock volume model was established, and the matrix neutron and density parameters were acquired using the ECS log. The properties of CO2 were applied in the log evaluation of the CO2-bearing volcanic reservoirs in the southern Songliao Basin. The porosity and saturation of CO2 were obtained, and a reasonable application was achieved in the CO2-bearing reservoir.

  16. Impact of fluid injection velocity on CO2 saturation and pore pressure in porous sandstone

    NASA Astrophysics Data System (ADS)

    Kitamura, Keigo; Honda, Hiroyuki; Takaki, Shinnosuke; Imasato, Mitsunori; Mitani, Yasuhiro

    2017-04-01

    The elucidation of CO2 behavior in sandstone is an essential issue to understand the fate of injecting CO2 in reservoirs. Injected CO2 invades pore spaces and replaces with resident brine and forms complex two-phase flow with brine. It is considered that this complex CO2 flow arises CO2 saturation (SCO_2)and pore fluid pressure(Pp) and makes various types of CO2 distribution pattern in pore space. The estimation of SCO_2 in the reservoir is one of important task in CCS projects. Fluid pressure (Pp) is also important to estimate the integrity of CO2 reservoir and overlying cap rocks. Generally, elastic waves are used to monitor the changes of SCO_2. Previous experimental and theoretical studies indicated that SCO_2 and Pp are controlled by the fluid velocity (flow rate) of invaded phase. In this study, we conducted the CO2 injection test for Berea sandstone (φ=18.1{%}) under deep CO2 reservoir conditions (confining pressure: 20MPa; temperature: 40 rC). We try to estimate the changes of SCO_2 and Pp with changing CO2 injection rate (FR) from 10 to 5000 μ l/min for Berea sandstone. P-wave velocities (Vp) are also measured during CO2 injection test and used to investigate the relationships between SCO2 and these geophysical parameters. We set three Vp-measurement channels (ch.1, ch2 and ch.3 from the bottom) monitor the CO2 behavior. The result shows step-wise SCO_2 changes with increasing FR from 9 to 25 {%} in low-FR condition (10-500 μ l/min). Vp also shows step wise change from ch1 to ch.3. The lowermost channel (ch.1) indicates that Vp-reduction stops around 4{%} at 10μ m/min condition. However, ch.3 changes slightly from 4{%} at 10 μ l/min to 5{%} at 100 μ l/min. On the other hand, differential Pp (Δ P) dose not shows obvious changes from 10kPa to 30kPa. Over 1000 μ l/min, SCO_2 increases from 35 to 47 {%}. Vp of all channels show slight reductions and Vp-reductions reach constant values as 8{%}, 6{%} and 8{%}, respectively at 5000{}μ l/min. On the other hand, Δ P shows rapid increasing from 50kPa to 500 kPa. It suggests a drastic change of CO2 behavior with injection rate. CO2 flows gently and enlarges SCO_2up to 25 {%} under low FR conditions without arisen Δ P (

  17. An Analysis of the Distribution and Economics of Oil Fields for Enhanced Oil Recovery-Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Hall, Kristyn Ann

    The rising carbon dioxide emissions contributing to climate change has lead to the examination of potential ways to mitigate the environmental impact. One such method is through the geological sequestration of carbon (CCS). Although there are several different forms of geological sequestration (i.e. Saline Aquifers, Oil and Gas Reservoirs, Unminable Coal Seams) the current projects are just initiating the large scale-testing phase. The lead entry point into CCS projects is to combine the sequestration with enhanced oil recovery (EOR) due to the improved economic model as a result of the oil recovery and the pre-existing knowledge of the geological structures. The potential scope of CCS-EOR projects throughout the continental United States in terms of a systematic examination of individual reservoir storage potential has not been examined. Instead the majority of the research completed has centered on either estimating the total United States storage potential or the potential of a single specific reservoir. The purpose of this paper is to examine the relationship between oil recovery, carbon dioxide storage and cost during CCS-EOR. The characteristics of the oil and gas reservoirs examined in this study from the Nehring Oil and Gas Database were used in the CCS-EOR model developed by Sean McCoy to estimate the lifting and storage costs of the different reservoirs throughout the continental United States. This allows for an examination of both technical and financial viability of CCS-EOR as an intermediate step for future CCS projects in other geological formations. One option for mitigating climate change is to store industrial CO2 emissions in geologic reservoirs as part of a process known as carbon capture and storage (CCS). There is general consensus that large-scale deployment of CCS would best be initiated by combining geologic sequestration with enhanced oil recovery (EOR), which can use CO2 to improve production from declining oil fields. Revenues from the produced oil could help offset the current high costs of CCS. The cumulative potential of CCS-EOR in the continental U.S. has been evaluated in terms of both CO2 storage capacity and additional oil production. This thesis examines the same potential, but on a reservoir-by-reservoir basis. Reservoir properties from the Nehring Oil and Gas Database are used as inputs to a CCS-EOR model developed by McCoy (YR) to estimate the storage capacity, oil production and CCS-EOR costs for over 10,000 oil reservoirs located throughout the continental United States. We find that 86% of the reservoirs could store ≤1 y or CO2 emissions from a single 500 MW coal-fired power plant (i.e., 3 Mtons CO2). Less than 1% of the reservoirs, on the other hand, appear capable of storing ≥30 y of CO2 emissions from a 500 MW plan. But these larger reservoirs are also estimated to contain 48% of the predicted additional oil that could be produced through CCS-EOR. The McCoy model also predicts that the reservoirs will on average produce 4.5 bbl of oil for each ton of sequestered CO2, a ratio known as the utilization factor. This utilization factor is 1.5 times higher that arrived at by the U.S. Department of Energy, and leads to a cumulative production of oil for all the reservoirs examined of ˜183 billion barrels along with a cumulative storage capacity of 41 Mtons CO2. This is equivalent to 26.5 y of current oil consumption by the nation, and 8.5 y of current coal plant emissions.

  18. Predicting phase behavior of mixtures of reservoir fluids with carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigg, R.B.; Lingane, P.J.

    1983-10-01

    The use of an equation of state to predict phase behavior during carbon dioxide flooding is well established. There is consensus that the characterization of the C fraction, the grouping of this fraction into ''pseudo components'', and the selection of interaction parameters are the most important variables. However, the literature is vague as to how to best select the pseudo components, especially when aiming for a few-component representation as for a field scale compositional simulation. Single-contact phase behavior is presented for mixtures of Ford Geraldine (Delaware), Maljamar (Grayburg), West Sussex (Shannon), and Reservoir D reservoir fluids, and of a syntheticmore » oil C/C/C, with carbon dioxide. One can reproduce the phase behavior of these mixtures using 3-5 pseudo components and common interaction parameters. The critical properties of the pseudo components are calculated from detailed oil characterizations. Because the parameters are not further adjusted, this approach reduces the empiricism in fitting phase data and may result in a more accurate representation of the system as the composition of the oil changes during the approach to miscibility.« less

  19. An optimization based sampling approach for multiple metrics uncertainty analysis using generalized likelihood uncertainty estimation

    NASA Astrophysics Data System (ADS)

    Zhou, Rurui; Li, Yu; Lu, Di; Liu, Haixing; Zhou, Huicheng

    2016-09-01

    This paper investigates the use of an epsilon-dominance non-dominated sorted genetic algorithm II (ɛ-NSGAII) as a sampling approach with an aim to improving sampling efficiency for multiple metrics uncertainty analysis using Generalized Likelihood Uncertainty Estimation (GLUE). The effectiveness of ɛ-NSGAII based sampling is demonstrated compared with Latin hypercube sampling (LHS) through analyzing sampling efficiency, multiple metrics performance, parameter uncertainty and flood forecasting uncertainty with a case study of flood forecasting uncertainty evaluation based on Xinanjiang model (XAJ) for Qing River reservoir, China. Results obtained demonstrate the following advantages of the ɛ-NSGAII based sampling approach in comparison to LHS: (1) The former performs more effective and efficient than LHS, for example the simulation time required to generate 1000 behavioral parameter sets is shorter by 9 times; (2) The Pareto tradeoffs between metrics are demonstrated clearly with the solutions from ɛ-NSGAII based sampling, also their Pareto optimal values are better than those of LHS, which means better forecasting accuracy of ɛ-NSGAII parameter sets; (3) The parameter posterior distributions from ɛ-NSGAII based sampling are concentrated in the appropriate ranges rather than uniform, which accords with their physical significance, also parameter uncertainties are reduced significantly; (4) The forecasted floods are close to the observations as evaluated by three measures: the normalized total flow outside the uncertainty intervals (FOUI), average relative band-width (RB) and average deviation amplitude (D). The flood forecasting uncertainty is also reduced a lot with ɛ-NSGAII based sampling. This study provides a new sampling approach to improve multiple metrics uncertainty analysis under the framework of GLUE, and could be used to reveal the underlying mechanisms of parameter sets under multiple conflicting metrics in the uncertainty analysis process.

  20. Games between stakeholders and the payment for ecological services: evidence from the Wuxijiang River reservoir area in China

    PubMed Central

    2018-01-01

    A gambling or “game” phenomenon can be observed in the complex relationship between sources and receptors of ecological compensation among multiple stakeholders. This paper investigates the problem of gambling to determine payment amounts, and details a method to estimate the ecological compensation amount related to water resources in the Wuxijiang River reservoir area in China. Public statistics and first-hand data obtained from a field investigation were used as data sources. Estimation of the source and receptor amount of ecological compensation relevant to the water resource being investigated was achieved using the contingent valuation method (CVM). The ecological compensation object and its benefit and gambling for the Wuxijiang River water source area are also analyzed in this paper. According to the results of a CVM survey, the ecological compensation standard for the Wuxijiang River was determined by the CVM, and the amount of compensation was estimated. Fifteen blocks downstream of the Wuxijiang River and 12 blocks in the water source area were used as samples to administer a survey that estimated the willingness to pay (WTP) and the willingness to accept (WTA) the ecological compensation of Wuxijiang River for both nonparametric and parametric estimation. Finally, the theoretical value of the ecological compensation amount was estimated. Without taking other factors into account, the WTP of residents in the Wuxi River water source was 297.48 yuan per year, while the WTAs were 3864.48 yuan per year. The theoretical standard of ecological compensation is 2294.39–2993.81 yuan per year. Under the parameter estimation of other factors, the WTP of residents in the Wuxi River water source area was 528.72 yuan per year, while the WTA was 1514.04 yuan per year. The theoretical standard of ecological compensation is 4076.25–5434.99 yuan per year. The main factors influencing the WTP ecological compensation in the Wuxi River basin are annual income and age. The main factors affecting WTA are gender and attention to the environment, age, marital status, local birth, and location in the main village. PMID:29568707

  1. Games between stakeholders and the payment for ecological services: evidence from the Wuxijiang River reservoir area in China.

    PubMed

    Shu, Lin

    2018-01-01

    A gambling or "game" phenomenon can be observed in the complex relationship between sources and receptors of ecological compensation among multiple stakeholders. This paper investigates the problem of gambling to determine payment amounts, and details a method to estimate the ecological compensation amount related to water resources in the Wuxijiang River reservoir area in China. Public statistics and first-hand data obtained from a field investigation were used as data sources. Estimation of the source and receptor amount of ecological compensation relevant to the water resource being investigated was achieved using the contingent valuation method (CVM). The ecological compensation object and its benefit and gambling for the Wuxijiang River water source area are also analyzed in this paper. According to the results of a CVM survey, the ecological compensation standard for the Wuxijiang River was determined by the CVM, and the amount of compensation was estimated. Fifteen blocks downstream of the Wuxijiang River and 12 blocks in the water source area were used as samples to administer a survey that estimated the willingness to pay (WTP) and the willingness to accept (WTA) the ecological compensation of Wuxijiang River for both nonparametric and parametric estimation. Finally, the theoretical value of the ecological compensation amount was estimated. Without taking other factors into account, the WTP of residents in the Wuxi River water source was 297.48 yuan per year, while the WTAs were 3864.48 yuan per year. The theoretical standard of ecological compensation is 2294.39-2993.81 yuan per year. Under the parameter estimation of other factors, the WTP of residents in the Wuxi River water source area was 528.72 yuan per year, while the WTA was 1514.04 yuan per year. The theoretical standard of ecological compensation is 4076.25-5434.99 yuan per year. The main factors influencing the WTP ecological compensation in the Wuxi River basin are annual income and age. The main factors affecting WTA are gender and attention to the environment, age, marital status, local birth, and location in the main village.

  2. A National Probabilistic Study of Polybrominated Diphenyl Ethers in Fish from US Lakes and Reservoirs

    EPA Science Inventory

    National estimates were developed for polybrominated diphenyl ethers (PBDEs) in fish from lakes and reservoirs of the conterminous United States (excluding the Laurentian Great Lakes and Great Salt Lake) using an unequal probability design. Predator (fillet) and bottom-dweller (w...

  3. The Modular Modeling System (MMS): A toolbox for water- and environmental-resources management

    USGS Publications Warehouse

    Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.; Hay, L.E.; ,

    2005-01-01

    The increasing complexity of water- and environmental-resource problems require modeling approaches that incorporate knowledge from a broad range of scientific and software disciplines. To address this need, the U.S. Geological Survey (USGS) has developed the Modular Modeling System (MMS). MMS is an integrated system of computer software for model development, integration, and application. Its modular design allows a high level of flexibility and adaptability to enable modelers to incorporate their own software into a rich array of built-in models and modeling tools. These include individual process models, tightly coupled models, loosely coupled models, and fully- integrated decision support systems. A geographic information system (GIS) interface, the USGS GIS Weasel, has been integrated with MMS to enable spatial delineation and characterization of basin and ecosystem features, and to provide objective parameter-estimation methods for models using available digital data. MMS provides optimization and sensitivity-analysis tools to analyze model parameters and evaluate the extent to which uncertainty in model parameters affects uncertainty in simulation results. MMS has been coupled with the Bureau of Reclamation object-oriented reservoir and river-system modeling framework, RiverWare, to develop models to evaluate and apply optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. This decision support system approach has been developed, tested, and implemented in the Gunnison, Yakima, San Joaquin, Rio Grande, and Truckee River basins of the western United States. MMS is currently being coupled with the U.S. Forest Service model SIMulating Patterns and Processes at Landscape Scales (SIMPPLLE) to assess the effects of alternative vegetation-management strategies on a variety of hydrological and ecological responses. Initial development and testing of the MMS-SIMPPLLE integration is being conducted on the Colorado Plateau region of the western United Sates.

  4. Seasonal occurrence of anoxygenic photosynthesis in Tillari and Selaulim reservoirs, Western India

    NASA Astrophysics Data System (ADS)

    Kurian, S.; Roy, R.; Repeta, D. J.; Gauns, M.; Shenoy, D. M.; Suresh, T.; Sarkar, A.; Narvenkar, G.; Johnson, C. G.; Naqvi, S. W. A.

    2012-07-01

    Phytoplankton and bacterial pigment compositions were determined by high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) in two freshwater reservoirs (Tillari Dam and Selaulim Dam), which are located at the foothills of the Western Ghats in India. These reservoirs experience anoxia in the hypolimnion during summer. Water samples were collected from both reservoirs during anoxic periods while one of them (Tillari Reservoir) was also sampled in winter, when convective mixing results in well-oxygenated conditions throughout the water column. During the period of anoxia (summer), bacteriochlorophyll (BChl) e isomers and isorenieratene, characteristic of brown sulfur bacteria, were dominant in the anoxic (sulfidic) layer of the Tillari Reservoir under low light intensities. The winter observations showed the dominance of small cells of Chlorophyll b-containing green algae and cyanobacteria, with minor presence of fucoxanthin-containing diatoms and peridinin-containing dinoflagellates. Using total BChl e concentration observed in June, the standing stock of brown sulfur bacteria carbon in the anoxic compartment of Tillari Reservoir was estimated to be 2.27 gC m-2, which is much higher than the similar estimate for carbon derived from oxygenic photosynthesis (0.82 gC m-2. The Selaulim Reservoir also displayed similar characteristics with the presence of BChl e isomers and isorenieratene in the anoxic hypolimnion during summer. Although sulfidic conditions prevailed in the water column below the thermocline, the occurrence of photo-autotrophic bacteria was restricted only to mid-depths (maximal concentration of BChl e isomers was detected at 0.2% of the surface incident light). This shows that the vertical distribution of photo-autotrophic sulfur bacteria is primarily controlled by light penetration in the water column where the presence of H2S provides a suitable biogeochemical environment for them to flourish.

  5. The blue water footprint of the world's artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation

    NASA Astrophysics Data System (ADS)

    Hogeboom, Rick J.; Knook, Luuk; Hoekstra, Arjen Y.

    2018-03-01

    For centuries, humans have resorted to building dams to gain control over freshwater available for human consumption. Although dams and their reservoirs have made many important contributions to human development, they receive negative attention as well, because of the large amounts of water they can consume through evaporation. We estimate the blue water footprint of the world's artificial reservoirs and attribute it to the purposes hydroelectricity generation, irrigation water supply, residential and industrial water supply, flood protection, fishing and recreation, based on their economic value. We estimate that economic benefits from 2235 reservoirs included in this study amount to 265 × 109 US a year, with residential and industrial water supply and hydroelectricity generation as major contributors. The water footprint associated with these benefits is the sum of the water footprint of dam construction (<1% contribution) and evaporation from the reservoir's surface area, and globally adds up to 66 × 109 m3 y-1. The largest share of this water footprint (57%) is located in non-water scarce basins and only 1% in year-round scarce basins. The primary purposes of a reservoir change with increasing water scarcity, from mainly hydroelectricity generation in non-scarce basins, to residential and industrial water supply, irrigation water supply and flood control in scarcer areas.

  6. Groundwater Salinity Simulation of a Subsurface Reservoir in Taiwan

    NASA Astrophysics Data System (ADS)

    Fang, H. T.

    2015-12-01

    The subsurface reservoir is located in Chi-Ken Basin, Pescadores (a group islands located at western part of Taiwan). There is no river in these remote islands and thus the freshwater supply is relied on the subsurface reservoir. The basin area of the subsurface reservoir is 2.14 km2 , discharge of groundwater is 1.27×106m3 , annual planning water supplies is 7.9×105m3 , which include for domestic agricultural usage. The annual average temperature is 23.3oC, average moisture is 80~85%, annual average rainfall is 913 mm, but ET rate is 1975mm. As there is no single river in the basin; the major recharge of groundwater is by infiltration. Chi-Ken reservoir is the first subsurface reservoir in Taiwan. Originally, the water quality of the reservoir is good. The reservoir has had the salinity problem since 1991 and it became more and more serious from 1992 until 1994. Possible reason of the salinity problem was the shortage of rainfall or the leakage of the subsurface barrier which caused the seawater intrusion. The present study aimed to determine the leakage position of subsurface barrier that caused the salinity problem. In order to perform the simulation for different possible leakage position of the subsurface reservoir, a Groundwater Modeling System (GMS) is used to define soils layer data, hydro-geological parameters, initial conditions, boundary conditions and the generation of three dimension meshes. A three dimension FEMWATER(Yeh , 1996) numerical model was adopted to find the possible leakage position of the subsurface barrier and location of seawater intrusion by comparing the simulation of different possible leakage with the observations. 1.By assuming the leakage position in the bottom of barrier, the simulated numerical result matched the observation better than the other assumed leakage positions. It showed that the most possible leakage position was at the bottom of the barrier. 2.The research applied three dimension FEMWATER and GMS as an interface to input parameter. The simulation of water level and chloride concentration already showed the real situation, and the result can be applied to the future study of the Chi-Ken subsurface reservoir salinity problems.

  7. Microbial diversity in degraded and non-degraded petroleum samples and comparison across oil reservoirs at local and global scales.

    PubMed

    Sierra-Garcia, Isabel Natalia; Dellagnezze, Bruna M; Santos, Viviane P; Chaves B, Michel R; Capilla, Ramsés; Santos Neto, Eugenio V; Gray, Neil; Oliveira, Valeria M

    2017-01-01

    Microorganisms have shown their ability to colonize extreme environments including deep subsurface petroleum reservoirs. Physicochemical parameters may vary greatly among petroleum reservoirs worldwide and so do the microbial communities inhabiting these different environments. The present work aimed at the characterization of the microbiota in biodegraded and non-degraded petroleum samples from three Brazilian reservoirs and the comparison of microbial community diversity across oil reservoirs at local and global scales using 16S rRNA clone libraries. The analysis of 620 16S rRNA bacterial and archaeal sequences obtained from Brazilian oil samples revealed 42 bacterial OTUs and 21 archaeal OTUs. The bacterial community from the degraded oil was more diverse than the non-degraded samples. Non-degraded oil samples were overwhelmingly dominated by gammaproteobacterial sequences with a predominance of the genera Marinobacter and Marinobacterium. Comparisons of microbial diversity among oil reservoirs worldwide suggested an apparent correlation of prokaryotic communities with reservoir temperature and depth and no influence of geographic distance among reservoirs. The detailed analysis of the phylogenetic diversity across reservoirs allowed us to define a core microbiome encompassing three bacterial classes (Gammaproteobacteria, Clostridia, and Bacteroidia) and one archaeal class (Methanomicrobia) ubiquitous in petroleum reservoirs and presumably owning the abilities to sustain life in these environments.

  8. Combined natural gamma ray spectral/litho-density measurements applied to complex lithologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quirein, J.A.; Gardner, J.S.; Watson, J.T.

    1982-09-01

    Well log data has long been used to provide lithological descriptions of complex formations. Historically, most of the approaches used have been restrictive because they assumed fixed, known, and distinct lithologies for specified zones. The approach described in this paper attempts to alleviate this restriction by estimating the ''probability of a model'' for the models suggested as most likely by the reservoir geology. Lithological variables are simultaneously estimated from response equations for each model and combined in accordance with the probability of each respective model. The initial application of this approach has been the estimation of calcite, quartz, and dolomitemore » in the presence of clays, feldspars, anhydrite, or salt. Estimations were made by using natural gamma ray spectra, photoelectric effect, bulk density, and neutron porosity information. For each model, response equations and parameter selections are obtained from the thorium vs potassium crossplot and the apparent matrix density vs apparent volumetric photoelectric cross section crossplot. The thorium and potassium response equations are used to estimate the volumes of clay and feldspar. The apparent matrix density and volumetric cross section response equations can then be corrected for the presence of clay and feldspar. A test ensures that the clay correction lies within the limits for the assumed lithology model. Results are presented for varying lithologies. For one test well, 6,000 feet were processed in a single pass, without zoning and without adjusting more than one parameter pick. The program recognized sand, limestone, dolomite, clay, feldspar, anhydrite, and salt without analyst intervention.« less

  9. Sedimentation and occurrence and trends of selected nutrients, other chemical constituents, and cyanobacteria in bottom sediment, Clinton Lake, northeast Kansas, 1977-2009

    USGS Publications Warehouse

    Juracek, Kyle E.

    2011-01-01

    A combination of available bathymetric-survey information and bottom-sediment coring was used to investigate sedimentation and the occurrence of selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, cyanobacterial akinetes, and the radionuclide cesium-137 in the bottom sediment of Clinton Lake, northeast Kansas. The total estimated volume and mass of bottom sediment deposited from 1977 through 2009 in the conservation (multi-purpose) pool of the reservoir was 438 million cubic feet and 18 billion pounds, respectively. The estimated sediment volume occupied about 8 percent of the conservation-pool, water-storage capacity of the reservoir. Sedimentation in the conservation pool has occurred about 70 percent faster than originally projected at the time the reservoir was completed. Water-storage capacity in the conservation pool has been lost to sedimentation at a rate of about 0.25 percent annually. Mean annual net sediment deposition since 1977 in the conservation pool of the reservoir was estimated to be 563 million pounds per year. Mean annual net sediment yield from the Clinton Lake Basin was estimated to be 1.5 million pounds per square mile per year. Typically, the bottom sediment sampled in Clinton Lake was at least 99 percent silt and clay. The mean annual net loads of total nitrogen and total phosphorus deposited in the bottom sediment of Clinton Lake were estimated to be 1.29 million pounds per year and 556,000 pounds per year, respectively. The estimated mean annual net yields of total nitrogen and total phosphorus from the Clinton Lake Basin were 3,510 pounds per square mile per year and 1,510 pounds per square mile per year, respectively. Throughout the history of Clinton Lake, total nitrogen concentrations in the deposited sediment generally were uniform and indicated consistent inputs to the reservoir over time. Likewise, total phosphorus concentrations in the deposited sediment generally were uniform. Although, for two of three coring sites, a possible positive trend in phosphorus deposition was indicated. The Wakarusa River possibly was a larger contributor of nitrogen and phosphorus to Clinton Lake than was Rock Creek. As a principal limiting factor for primary production in most freshwater environments, phosphorus is of particular importance because increased inputs can contribute to accelerated reservoir eutrophication and the production of algal toxins and taste-and-odor compounds. Trace-element concentrations in the bottom sediment of Clinton Lake generally were uniform over time. As is typical for eastern Kansas reservoirs, arsenic, chromium, and nickel concentrations typically exceeded the threshold-effects guidelines, which represent the concentrations above which toxic biological effects occasionally occur. Zinc concentrations frequently exceeded the threshold-effects guideline. Trace-element concentrations did not exceed the probable-effects guidelines (available for eight trace elements), which represent the concentrations above which toxic biological effects usually or frequently occur. Cyanobacterial akinetes (cyanobacteria resting stage) in the bottom sediment of Clinton Lake, combined with historical water-quality data on chlorophyll-a and total phosphorus concentrations, indicated that the reservoir likely has been eutrophic throughout most of its history. A statistically significant increase in cyanobacterial akinetes in the bottom sediment indicated that Clinton Lake may have become more eutrophic over the life of the reservoir. The increase in cyanobacterial akinetes may, in part, be related to a possible increase in total phosphorus concentrations.

  10. Pioneering offshore excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, R.P.; Grattan, L.

    1996-11-01

    Hibernia Management and Development Company Ltd. (HMDC) was formed in 1990 by a consortium of oil companies to develop their interests in the Hibernia and Avalon reservoirs offshore Newfoundland in a safe and environmentally responsible manner. The reservoirs are located 315km ESE of St. John`s in the North Atlantic. The water depth is about 80m. The entire Hibernia field is estimated to contain more than three billion barrels of oil in place and the owners development plan area is estimated to contain two billion barrels. Recoverable reserves are estimated to be approximately 615 million barrels. The Hibernia reservoir, the principlemore » reservoir, is located at an average depth of 3,700m. HMDC is building a large concrete gravity based structure (GBS) that which will support the platform drilling and processing facilities and living quarters for 280 personnel. In 1997 the platform will be towed to the production site and production will commence late 1997. Oil will be exported by a 2 km long pipeline to an offshore loading system. Dynamically positioned tankers will then take the oil to market. Average daily production is expected to plateau between 125,000 and 135,000 BOPD. It will be the first major development on the east coast of Canada and is located in an area that is prone to pack ice and icebergs.« less

  11. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters

    NASA Astrophysics Data System (ADS)

    Mamouri, R. E.; Ansmann, A.

    2015-12-01

    We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of number concentrations of aerosol particles with radius > 50 nm (APC50, reservoir of favorable CCN) and with radius > 250 nm (APC250, reservoir of favorable INP), as well as profiles of the aerosol particle surface area concentration (ASC, used in INP parameterization) can be retrieved from lidar-derived aerosol extinction coefficients (AEC) with relative uncertainties of a factor of around 2 (APC50), and of about 25-50 % (APC250, ASC). Of key importance is the potential of polarization lidar to identify mineral dust particles and to distinguish and separate the aerosol properties of basic aerosol types such as mineral dust and continental pollution (haze, smoke). We investigate the relationship between AEC and APC50, APC250, and ASC for the main lidar wavelengths of 355, 532 and 1064 nm and main aerosol types (dust, pollution, marine). Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures of continental pollution, mineral dust, and marine aerosol. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple relationship between APC50 and the CCN-reservoir particles (APCCCN) and published INP parameterization schemes (with APC250 and ASC as input) we finally compute APCCCN and INP concentration profiles. We apply the full methodology to a lidar observation of a heavy dust outbreak crossing Cyprus with dust up to 8 km height and to a case during which anthropogenic pollution dominated.

  12. Reservoir Changes Derived from Seismic Observations at The Geysers Geothermal Field, CA, USA

    NASA Astrophysics Data System (ADS)

    Gritto, R.; Jarpre, S.

    2012-04-01

    Induced seismicity associated with the exploitation of geothermal fields is used as a tool to characterize and delineate changes associated with injection and production of fluids from the reservoir. At the same time public concern of felt seismicity has led to objections against the operation of geothermal reservoirs in close proximity to population centers. Production at the EGS sites in Basel (Switzerland) was stopped after renewed seismicity caused concern and objection from the public in the city. Operations in other geothermal reservoirs had to be scaled back or interrupted due to an unexpected increase in seismicity (Soultz-sous-forêt, France, Berlín, El Salvador). As a consequence of these concerns and in order to optimize the use of induced seismicity for reservoir engineering purposes, it becomes imperative to understand the relationship between seismic events and stress changes in the reservoir. We will address seismicity trends at The Geysers Geothermal Reservoir, CA USA, to understand the role of historical seismicity associated with past injection of water and/or production of steam. Our analysis makes use of a comprehensive database of earthquakes and associated phase arrivals from 2004 to 2011. A high-precision sub-set of the earthquake data was selected to analyze temporal changes in seismic velocities and Vp/Vs-ratio throughout the whole reservoir. We find relatively low Vp/Vs values in 2004 suggestive of a vapor dominated reservoir. With passing time, however, the observed temporal increase in Vp/Vs, coupled with a decrease in P- and S-wave velocities suggests the presence of fluid-filled fractured rock. Considering the start of a continuous water injection project in 2004, it can be concluded that the fluid saturation of the reservoir has successfully recovered. Preliminary results of 3-D velocity inversions of seismic data appear to corroborate earlier findings that the lowest Vp/Vs estimates are observed in the center of the reservoir. Vertical depth-sections indicate that these low values are co-located with production zones and production related seismicity. In contrast, the highest Vp/Vs estimates are co-located with injection zones and their associated seismicity.

  13. A new model for simulating spring discharge recession and estimating effective porosity of karst aquifers

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Ye, Ming; Dong, Shuning; Dai, Zhenxue; Pei, Yongzhen

    2018-07-01

    Quantitative analysis of recession curves of karst spring hydrographs is a vital tool for understanding karst hydrology and inferring hydraulic properties of karst aquifers. This paper presents a new model for simulating karst spring recession curves. The new model has the following characteristics: (1) the model considers two separate but hydraulically connected reservoirs: matrix reservoir and conduit reservoir; (2) the model separates karst spring hydrograph recession into three stages: conduit-drainage stage, mixed-drainage stage (with both conduit drainage and matrix drainage), and matrix-drainage stage; and (3) in the mixed-drainage stage, the model uses multiple conduit layers to present different levels of conduit development. The new model outperforms the classical Mangin model and the recently developed Fiorillo model for simulating observed discharge at the Madison Blue Spring located in northern Florida. This is attributed to the latter two characteristics of the new model. Based on the new model, a method is developed for estimating effective porosity of the matrix and conduit reservoirs for the three drainage stages. The estimated porosity values are consistent with measured matrix porosity at the study site and with estimated conduit porosity reported in literature. The new model for simulating karst spring hydrograph recession is mathematically general, and can be applied to a wide range of karst spring hydrographs to understand groundwater flow in karst aquifers. The limitations of the model are discussed at the end of this paper.

  14. Petro-elastic modelling and characterization of solid-filled reservoirs: Comparative analysis on a Triassic North Sea reservoir

    NASA Astrophysics Data System (ADS)

    Auduson, Aaron E.

    2018-07-01

    One of the most common problems in the North Sea is the occurrence of salt (solid) in the pores of Triassic sandstones. Many wells have failed due to interpretation errors based conventional substitution as described by the Gassmann equation. A way forward is to device a means to model and characterize the salt-plugging scenarios. Modelling the effects of fluid and solids on rock velocity and density will ascertain the influence of pore material types on seismic data. In this study, two different rock physics modelling approaches are adopted in solid-fluid substitution, namely the extended Gassmann theory and multi-mineral mixing modelling. Using the modified new Gassmann equation, solid-and-fluid substitutions were performed from gas or water filling in the hydrocarbon reservoirs to salt materials being the pore-filling. Inverse substitutions were also performed from salt-filled case to gas- and water-filled scenarios. The modelling results show very consistent results - Salt-plugged wells clearly showing different elastic parameters when compared with gas- and water-bearing wells. While the Gassmann equation-based modelling was used to discretely compute effective bulk and shear moduli of the salt plugs, the algorithm based on the mineral-mixing (Hashin-Shtrikman) can only predict elastic moduli in a narrow range. Thus, inasmuch as both of these methods can be used to model elastic parameters and characterize pore-fill scenarios, the New Gassmann-based algorithm, which is capable of precisely predicting the elastic parameters, is recommended for use in forward seismic modelling and characterization of this reservoir and other reservoir types. This will significantly help in reducing seismic interpretation errors.

  15. Global Sampling for Integrating Physics-Specific Subsystems and Quantifying Uncertainties of CO 2 Geological Sequestration

    DOE PAGES

    Sun, Y.; Tong, C.; Trainor-Guitten, W. J.; ...

    2012-12-20

    The risk of CO 2 leakage from a deep storage reservoir into a shallow aquifer through a fault is assessed and studied using physics-specific computer models. The hypothetical CO 2 geological sequestration system is composed of three subsystems: a deep storage reservoir, a fault in caprock, and a shallow aquifer, which are modeled respectively by considering sub-domain-specific physics. Supercritical CO 2 is injected into the reservoir subsystem with uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and injection rate (as a decision variable). The simulated pressure and CO 2/brine saturation are connected to the fault-leakage model as amore » boundary condition. CO 2 and brine fluxes from the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source term. Moreover, uncertainties are propagated from the deep reservoir model, to the fault-leakage model, and eventually to the geochemical model in the shallow aquifer, thus contributing to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-models. The risk profiles are defined and related to CO 2 plume development for pH value and total dissolved solids (TDS) below the EPA's Maximum Contaminant Levels (MCL) for drinking water quality. A global sensitivity analysis is conducted to select the most sensitive parameters to the risk profiles. The resulting uncertainty of pH- and TDS-defined aquifer volume, which is impacted by CO 2 and brine leakage, mainly results from the uncertainty of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles are developed as functions of all the decision variables and uncertain parameters in all three subsystems.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y.; Tong, C.; Trainor-Guitten, W. J.

    The risk of CO 2 leakage from a deep storage reservoir into a shallow aquifer through a fault is assessed and studied using physics-specific computer models. The hypothetical CO 2 geological sequestration system is composed of three subsystems: a deep storage reservoir, a fault in caprock, and a shallow aquifer, which are modeled respectively by considering sub-domain-specific physics. Supercritical CO 2 is injected into the reservoir subsystem with uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and injection rate (as a decision variable). The simulated pressure and CO 2/brine saturation are connected to the fault-leakage model as amore » boundary condition. CO 2 and brine fluxes from the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source term. Moreover, uncertainties are propagated from the deep reservoir model, to the fault-leakage model, and eventually to the geochemical model in the shallow aquifer, thus contributing to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-models. The risk profiles are defined and related to CO 2 plume development for pH value and total dissolved solids (TDS) below the EPA's Maximum Contaminant Levels (MCL) for drinking water quality. A global sensitivity analysis is conducted to select the most sensitive parameters to the risk profiles. The resulting uncertainty of pH- and TDS-defined aquifer volume, which is impacted by CO 2 and brine leakage, mainly results from the uncertainty of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles are developed as functions of all the decision variables and uncertain parameters in all three subsystems.« less

  17. Effects of an experimental water-level drawdown on methane emissions from a eutrophic reservoir

    EPA Science Inventory

    Reservoirs are a globally significant source of methane (CH4) to the atmosphere. However, emission rate estimates may be biased low due to inadequate monitoring during brief periods of elevated emission rates (i.e. hot-moments). Here we investigate CH4 bubbling (i.e. ebullition...

  18. Kerr Reservoir LANDSAT experiment analysis for March 1981

    NASA Technical Reports Server (NTRS)

    Lecroy, S. R. (Principal Investigator)

    1982-01-01

    LANDSAT radiance data were used in an experiment conducted on the waters of Kerr Reservoir to determine if reliable algorithms could be developed that relate water quality parameters to remotely sensed data. A mix of different types of algorithms using the LANDSAT bands was generated to provide a thorough understanding of the relationships among the data involved. Except for secchi depth, the study demonstrated that for the ranges measured, the algorithms that satisfactorily represented the data encompass a mix of linear and nonlinear forms using only one LANDSAT band. Ratioing techniques did not improve the results since the initial design of the experiment minimized the errors against which this procedure is effective. Good correlations were found for total suspended solids, iron, turbidity, and secchi depth. Marginal correlations were discovered for nitrate and tannin + lignin. Quantification maps of Kerr Reservoir are presented for many of the water quality parameters using the developed algorithms.

  19. Predicting phase behavior of mixtures of reservoir fluids with carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigg, R.B.; Lingane, P.J.

    1983-01-01

    The use of an equation of state to predict phase behavior during carbon dioxide flooding is well established. The characterization of the C/sub 7/ fraction and the selection of interaction parameters are the most important variables. Single-contact phase behavior is presented for mixtures of Ford Geraldine (Delaware), Maljamar (Grayburg), West Sussex (Shannon), and Reservoir D reservoir fluids, and of a synthetic oil with carbon dioxide. The phase behavior of these mixtures can be reproduced using 3 to 5 pseudo components and common interaction parameters. The critical properties of the pseudo components are calculated from detailed oil characterizations. Because the parametersmore » are not further adjusted, this approach reduces the empiricism in fitting phase data and may result in a more accurate representation of the system as the composition of the oil changes during the approach to miscibility. 21 references.« less

  20. Micro- and macro-scale petrophysical characterization of potential reservoir units from the Northern Israel

    NASA Astrophysics Data System (ADS)

    Haruzi, Peleg; Halisch, Matthias; Katsman, Regina; Waldmann, Nicolas

    2016-04-01

    Lower Cretaceous sandstone serves as hydrocarbon reservoir in some places over the world, and potentially in Hatira formation in the Golan Heights, northern Israel. The purpose of the current research is to characterize the petrophysical properties of these sandstone units. The study is carried out by two alternative methods: using conventional macroscopic lab measurements, and using CT-scanning, image processing and subsequent fluid mechanics simulations at a microscale, followed by upscaling to the conventional macroscopic rock parameters (porosity and permeability). Comparison between the upscaled and measured in the lab properties will be conducted. The best way to upscale the microscopic rock characteristics will be analyzed based the models suggested in the literature. Proper characterization of the potential reservoir will provide necessary analytical parameters for the future experimenting and modeling of the macroscopic fluid flow behavior in the Lower Cretaceous sandstone.

  1. Understanding the Role of Reservoir Size on Probable Maximum Precipitation

    NASA Astrophysics Data System (ADS)

    Woldemichael, A. T.; Hossain, F.

    2011-12-01

    This study addresses the question 'Does surface area of an artificial reservoir matter in the estimation of probable maximum precipitation (PMP) for an impounded basin?' The motivation of the study was based on the notion that the stationarity assumption that is implicit in the PMP for dam design can be undermined in the post-dam era due to an enhancement of extreme precipitation patterns by an artificial reservoir. In addition, the study lays the foundation for use of regional atmospheric models as one way to perform life cycle assessment for planned or existing dams to formulate best management practices. The American River Watershed (ARW) with the Folsom dam at the confluence of the American River was selected as the study region and the Dec-Jan 1996-97 storm event was selected for the study period. The numerical atmospheric model used for the study was the Regional Atmospheric Modeling System (RAMS). First, the numerical modeling system, RAMS, was calibrated and validated with selected station and spatially interpolated precipitation data. Best combinations of parameterization schemes in RAMS were accordingly selected. Second, to mimic the standard method of PMP estimation by moisture maximization technique, relative humidity terms in the model were raised to 100% from ground up to the 500mb level. The obtained model-based maximum 72-hr precipitation values were named extreme precipitation (EP) as a distinction from the PMPs obtained by the standard methods. Third, six hypothetical reservoir size scenarios ranging from no-dam (all-dry) to the reservoir submerging half of basin were established to test the influence of reservoir size variation on EP. For the case of the ARW, our study clearly demonstrated that the assumption of stationarity that is implicit the traditional estimation of PMP can be rendered invalid to a large part due to the very presence of the artificial reservoir. Cloud tracking procedures performed on the basin also give indication of the formation of mesoscale convective systems (MCS) in the vicinity of dams/reservoirs that may have explicitly been triggered by their presence. The significance of this finding is that water resources managers need to consider the post-dam impact of water cycle and local climate due to the very reservoir and land use change triggered if efficient water resources management is desired. Future works of the study will include incorporation of the anthropogenic changes that occur as a result of the presence of dams/reservoirs in the forms of irrigation, urbanization and downstream wetland reduction. Similar hypothesis testing procedures will be applied to understand the combined effects of the reservoir size variation and anthropogenic changes in the extreme precipitation patterns.

  2. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    NASA Astrophysics Data System (ADS)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil reservoir management methodology to maximize both fluid recovery and free up currently injected HC gases for domestic consumption. Moreover, this study identified the main uncertainty parameters impacting the gas and oil production performance with all proposed alternatives. Maximizing both fluids oil and gas in oil rim reservoir are challenging. The reservoir heterogeneity will have a major impact on the performance of non hydrocarbon gas flooding. Therefore, good reservoir description is a key to achieve acceptable development process and make reliable prediction. The lab study data were used successfully to as a tool to identify the range of uncertainty parameters that are impacting the hydrocarbon recovery.

  3. A reservoir of nitrate beneath desert soils.

    PubMed

    Walvoord, Michelle A; Phillips, Fred M; Stonestrom, David A; Evans, R Dave; Hartsough, Peter C; Newman, Brent D; Striegl, Robert G

    2003-11-07

    A large reservoir of bioavailable nitrogen (up to approximately 10(4) kilograms of nitrogen per hectare, as nitrate) has been previously overlooked in studies of global nitrogen distribution. The reservoir has been accumulating in subsoil zones of arid regions throughout the Holocene. Consideration of the subsoil reservoir raises estimates of vadose-zone nitrogen inventories by 14 to 71% for warm deserts and arid shrublands worldwide and by 3 to 16% globally. Subsoil nitrate accumulation indicates long-term leaching from desert soils, impelling further evaluation of nutrient dynamics in xeric ecosystems. Evidence that subsoil accumulations are readily mobilized raises concern about groundwater contamination after land-use or climate change.

  4. A reservoir of nitrate beneath desert soils

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Phillips, Fred M.; Stonestrom, David A.; Evans, R. Dave; Hartsough, Peter C.; Newman, Brent D.; Striegl, Robert G.

    2003-01-01

    A large reservoir of bioavailable nitrogen (up to ∼104 kilograms of nitrogen per hectare, as nitrate) has been previously overlooked in studies of global nitrogen distribution. The reservoir has been accumulating in subsoil zones of arid regions throughout the Holocene. Consideration of the subsoil reservoir raises estimates of vadose-zone nitrogen inventories by 14 to 71% for warm deserts and arid shrublands worldwide and by 3 to 16% globally. Subsoil nitrate accumulation indicates long-term leaching from desert soils, impelling further evaluation of nutrient dynamics in xeric ecosystems. Evidence that subsoil accumulations are readily mobilized raises concern about groundwater contamination after land-use or climate change.

  5. Spatially distributed groundwater recharge estimated using a water-budget model for the Island of Maui, Hawai`i, 1978–2007

    USGS Publications Warehouse

    Johnson, Adam G.; Engott, John A.; Bassiouni, Maoya; Rotzoll, Kolja

    2014-12-14

    Demand for freshwater on the Island of Maui is expected to grow. To evaluate the availability of fresh groundwater, estimates of groundwater recharge are needed. A water-budget model with a daily computation interval was developed and used to estimate the spatial distribution of recharge on Maui for average climate conditions (1978–2007 rainfall and 2010 land cover) and for drought conditions (1998–2002 rainfall and 2010 land cover). For average climate conditions, mean annual recharge for Maui is about 1,309 million gallons per day, or about 44 percent of precipitation (rainfall and fog interception). Recharge for average climate conditions is about 39 percent of total water inflow consisting of precipitation, irrigation, septic leachate, and seepage from reservoirs and cesspools. Most recharge occurs on the wet, windward slopes of Haleakalā and on the wet, uplands of West Maui Mountain. Dry, coastal areas generally have low recharge. In the dry isthmus, however, irrigated fields have greater recharge than nearby unirrigated areas. For drought conditions, mean annual recharge for Maui is about 1,010 million gallons per day, which is 23 percent less than recharge for average climate conditions. For individual aquifer-system areas used for groundwater management, recharge for drought conditions is about 8 to 51 percent less than recharge for average climate conditions. The spatial distribution of rainfall is the primary factor determining spatially distributed recharge estimates for most areas on Maui. In wet areas, recharge estimates are also sensitive to water-budget parameters that are related to runoff, fog interception, and forest-canopy evaporation. In dry areas, recharge estimates are most sensitive to irrigated crop areas and parameters related to evapotranspiration.

  6. Simulation of streamflow temperatures in the Yakima River basin, Washington, April-October 1981

    USGS Publications Warehouse

    Vaccaro, J.J.

    1986-01-01

    The effects of storage, diversion, return flow, and meteorological variables on water temperature in the Yakima River, in Washington State, were simulated, and the changes in water temperature that could be expected under four alternative-management scenarios were examined for improvement in anadromous fish environment. A streamflow routing model and Lagrangian streamflow temperature model were used to simulate water discharge and temperature in the river. The estimated model errors were 12% for daily discharge and 1.7 C for daily temperature. Sensitivity analysis of the simulation of water temperatures showed that the effect of reservoir outflow temperatures diminishes in a downstream direction. A 4 C increase in outflow temperatures results in a 1.0 C increase in mean irrigation season water temperature at Umtanum in the upper Yakima River basin, but only a 0.01C increase at Prosser in the lower basin. The influence of air temperature on water temperature increases in a downstream direction and is the dominant influence in the lower basin. A 4 C increase in air temperature over the entire basin resulted in a 2.34 C increase in river temperatures at Prosser in the lower basin and 1.46 C at Umtanum in the upper basin. Changes in wind speed and model wind-function parameters had little effect on the model predicted water temperature. Of four alternative management scenarios suggested by the U.S. Bureau of Indian Affairs and the Yakima Indian Nation, the 1981 reservoir releases maintained without diversions or return flow in the river basin produced water temperatures nearest those considered as preferable for salmon and steelhead trout habitat. The alternative management scenario for no reservoir storage and no diversions or return flows in the river basin (estimate of natural conditions) produced conditions that were the least like those considered as preferable for salmon and steelhead trout habitat. (Author 's abstract)

  7. An integrated model for the assessment of global water resources Part 2: Applications and assessments

    NASA Astrophysics Data System (ADS)

    Hanasaki, N.; Kanae, S.; Oki, T.; Masuda, K.; Motoya, K.; Shirakawa, N.; Shen, Y.; Tanaka, K.

    2008-07-01

    To assess global water resources from the perspective of subannual variation in water availability and water use, an integrated water resources model was developed. In a companion report, we presented the global meteorological forcing input used to drive the model and six modules, namely, the land surface hydrology module, the river routing module, the crop growth module, the reservoir operation module, the environmental flow requirement module, and the anthropogenic withdrawal module. Here, we present the results of the model application and global water resources assessments. First, the timing and volume of simulated agriculture water use were examined because agricultural use composes approximately 85% of total consumptive water withdrawal in the world. The estimated crop calendar showed good agreement with earlier reports for wheat, maize, and rice in major countries of production. In major countries, the error in the planting date was ±1 mo, but there were some exceptional cases. The estimated irrigation water withdrawal also showed fair agreement with country statistics, but tended to be underestimated in countries in the Asian monsoon region. The results indicate the validity of the model and the input meteorological forcing because site-specific parameter tuning was not used in the series of simulations. Finally, global water resources were assessed on a subannual basis using a newly devised index. This index located water-stressed regions that were undetected in earlier studies. These regions, which are indicated by a gap in the subannual distribution of water availability and water use, include the Sahel, the Asian monsoon region, and southern Africa. The simulation results show that the reservoir operations of major reservoirs (>1 km3) and the allocation of environmental flow requirements can alter the population under high water stress by approximately -11% to +5% globally. The integrated model is applicable to assessments of various global environmental projections such as climate change.

  8. Reservoir compaction of the Belridge Diatomite and surface subsidence, south Belridge field, Kern County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowersox, J.R.; Shore, R.A.

    1990-05-01

    Surface subsidence due to reservoir compaction during production has been observed in many large oil fields. Subsidence is most obvious in coastal and offshore fields where inundation by the sea occurs. Well-known examples are Wilmington field in California and Ekofisk field in the North Sea. In South Belridge field, the Belridge Diatomite member of the late Miocene Reef Ridge Shale has proven prone to compaction during production. The reservoir, a high-porosity, low-permeability, highly compressive rock composed largely of diatomite and mudstone, is about 1,000 ft thick and lies at an average depth of 1,600 ft. Within the Belridge Diatomite, reservoirmore » compaction due to withdrawal of oil and water in Sec. 12, T28S, R20E, MDB and M, was noticed after casing failures in producing wells began occurring and tension cracks, enlarged by hydrocompaction after a heavy rainstorm were observed. Surface subsidence in Sec. 12 has been monitored since April 1987, through the surveying of benchmark monuments. The average annualized subsidence rate during 1987 was {minus}1.86 ft/yr, {minus}0.92 ft/yr during 1988, and {minus}0.65 ft/yr during 1989; the estimated peak subsidence rate reached {minus}7.50 ft/yr in July 1985, after 1.5 yrs of production from the Belridge Diatomite reservoir. Since production from the Belridge Diatomite reservoir commenced in February 1984, the surface of the 160-ac producing area has subsided about 12.5 ft. This equates to an estimated reservoir compaction of 30 ft in the Belridge Diatomite and an average loss of reservoir porosity of 2.4% from 55.2 to 52.8%. Injection of water for reservoir pressure maintenance in the Belridge diatomite began in June 1987, and has been effective in mitigating subsidence to current rates and repressurizing the reservoir to near-initial pressure. An added benefit of water injection has been improved recovery of oil from the Belridge Diatomite by waterflood.« less

  9. Using Quasiparticle Poisoning To Detect Photons

    NASA Technical Reports Server (NTRS)

    Echternach, Pierre; Day, Peter

    2006-01-01

    According to a proposal, a phenomenon associated with excitation of quasiparticles in certain superconducting quantum devices would be exploited as a means of detecting photons with exquisite sensitivity. The phenomenon could also be exploited to perform medium-resolution spectroscopy. The proposal was inspired by the observation that Coulomb blockade devices upon which some quantum logic gates are based are extremely sensitive to quasiparticles excited above the superconducting gaps in their leads. The presence of quasiparticles in the leads can be easily detected via the charge states. If quasiparticles could be generated in the leads by absorption of photons, then the devices could be used as very sensitive detectors of electromagnetic radiation over the spectral range from x-rays to submillimeter waves. The devices in question are single-Cooper-pair boxes (SCBs), which are mesoscopic superconducting devices developed for quantum computing. An SCB consists of a small superconducting island connected to a reservoir via a small tunnel junction and connected to a voltage source through a gate capacitor. An SCB is an artificial two-level quantum system, the Hamiltonian of which can be controlled by the gate voltage. One measures the expected value of the charge of the eigenvectors of this quantum system by use of a radio-frequency single-electron transistor. A plot of this expected value of charge as a function of gate voltage resembles a staircase that, in the ideal case, consists of steps of height 2 e (where e is the charge of one electron). Experiments have shown that depending on the parameters of the device, quasiparticles in the form of "broken" Cooper pairs present in the reservoir can tunnel to the island, giving rise to steps of 1 e. This effect is sometimes called "poisoning." Simulations have shown that an extremely small average number of quasiparticles can generate a 1-e periodic signal. In a device according to the proposal, this poisoning would be turned to advantage. Depending on the wavelength, an antenna or other component would be used to couple radiation into the reservoir, wherein the absorption of photons would break Cooper pairs, thereby creating quasiparticles that, in turn, would tunnel to the island, creating a 1-e signal. On the basis of conservative estimates of device parameters derived from experimental data and computational simulations that fit the data, it has been estimated that the noise equivalent power of a device according to the proposal could be as low as 6 10(exp -22) W/Hz(exp 1/2). It has also been estimated that the spectroscopic resolution (photon energy divided by increment of photon energy) of such a device in visible light would exceed 100.

  10. Trophic classification of Tennessee Valley area reservoirs derived from LANDSAT multispectral scanner data. [Alabama, Georgia, Kentucky, Tennessee, and North Carolina

    NASA Technical Reports Server (NTRS)

    Meinert, D. L.; Malone, D. L.; Voss, A. W. (Principal Investigator); Scarpace, F. L.

    1980-01-01

    LANDSAT MSS data from four different dates were extracted from computer tapes using a semiautomated digital data handling and analysis system. Reservoirs were extracted from the surrounding land matrix by using a Band 7 density level slice of 3; and descriptive statistics to include mean, variance, and ratio between bands for each of the four bands were calculated. Significant correlations ( 0.80) were identified between the MSS statistics and many trophic indicators from ground truth water quality data collected at 35 reservoirs in the greater Tennessee Valley region. Regression models were developed which gave significant estimates of each reservoir's trophic state as defined by its trophic state index and explained in all four LANDSAT frames at least 85 percent of the variability in the data. To illustrate the spatial variations within reservoirs as well as the relative variations between reservoirs, a table look up elliptical classification was used in conjunction with each reservoir's trophic state index to classify each reservoir on a pixel by pixel basis and produce color coded thematic representations.

  11. Relocation of Groningen seismicity using refracted waves

    NASA Astrophysics Data System (ADS)

    Ruigrok, E.; Trampert, J.; Paulssen, H.; Dost, B.

    2015-12-01

    The Groningen gas field is a giant natural gas accumulation in the Northeast of the Netherlands. The gas is in a reservoir at a depth of about 3 km. The naturally-fractured gas-filled sandstone extends roughly 45 by 25 km laterally and 140 m vertically. Decades of production have led to significant compaction of the sandstone. The (differential) compaction is thought to have reactivated existing faults and being the main driver of induced seismicity. Precise earthquake location is difficult due to a complicated subsurface, and that is the likely reason, the current hypocentre estimates do not clearly correlate with the well-known fault network. The seismic velocity model down to reservoir depth is quite well known from extensive seismic surveys and borehole data. Most to date earthquake detections, however, were made with a sparse pre-2015 seismic network. For shallow seismicity (<5 km depth) horizontal source-receiver distances tend to be much larger than vertical distances. Consequently, preferred source-receiver travel paths are refractions over high-velocity layers below the reservoir. However, the seismic velocities of layers below the reservoir are poorly known. We estimated an effective velocity model of the main refracting layer below the reservoir and use this for relocating past seismicity. We took advantage of vertical-borehole recordings for estimating precise P-wave (refraction) onset times and used a tomographic approach to find the laterally varying velocity field of the refracting layer. This refracting layer is then added to the known velocity model, and the combined model is used to relocate the past seismicity. From the resulting relocations we assess which of the faults are being reactivated.

  12. Carbonate pore system evaluation using the velocity-porosity-pressure relationship, digital image analysis, and differential effective medium theory

    NASA Astrophysics Data System (ADS)

    Lima Neto, Irineu A.; Misságia, Roseane M.; Ceia, Marco A.; Archilha, Nathaly L.; Oliveira, Lucas C.

    2014-11-01

    Carbonate reservoirs exhibit heterogeneous pore systems and a wide variety of grain types, which affect the rock's elastic properties and the reservoir parameter relationships. To study the Albian carbonates in the Campos Basin, a methodology is proposed to predict the amount of microporosity and the representative aspect ratio of these inclusions. The method assumes three pore-space scales in two representative inclusion scenarios: 1) a macro-mesopore median aspect ratio from the thin-section digital image analysis (DIA) and 2) a microporosity aspect ratio predicted based on the measured P-wave velocities. Through a laboratory analysis of 10 grainstone core samples of the Albian age, the P- and S-wave velocities (Vp and Vs) are evaluated at effective pressures of 0-10 MPa. The analytical theories in the proposed methodology are functions of the aspect ratios from the differential effective medium (DEM) theory, the macro-mesopore system recognized from the DIA, the amount of microporosity determined by the difference between the porosities estimated from laboratorial helium-gas and the thin-section petrographic images, and the P-wave velocities under dry effective pressure conditions. The DIA procedure is applied to estimate the local and global parameters, and the textural implications concerning ultrasonic velocities and image resolution. The macro-mesopore inclusions contribute to stiffer rocks and higher velocities, whereas the microporosity inclusions contribute to softer rocks and lower velocities. We observe a high potential for this methodology, which uses the microporosity aspect ratio inverted from Vp to predict Vs with a good agreement. The results acceptably characterize the Albian grainstones. The representative macro-mesopore aspect ratio is 0.5, and the inverted microporosity aspect ratio ranges from 0.01 to 0.07. The effective pressure induced an effect of slight porosity reduction during the triaxial tests, mainly in the microporosity inclusions, slightly changing the amount and the aspect ratio of the microporosity.

  13. Precision of channel catfish catch estimates using hoop nets in larger Oklahoma reservoirs

    USGS Publications Warehouse

    Stewart, David R.; Long, James M.

    2012-01-01

    Hoop nets are rapidly becoming the preferred gear type used to sample channel catfish Ictalurus punctatus, and many managers have reported that hoop nets effectively sample channel catfish in small impoundments (<200 ha). However, the utility and precision of this approach in larger impoundments have not been tested. We sought to determine how the number of tandem hoop net series affected the catch of channel catfish and the time involved in using 16 tandem hoop net series in larger impoundments (>200 ha). Hoop net series were fished once, set for 3 d; then we used Monte Carlo bootstrapping techniques that allowed us to estimate the number of net series required to achieve two levels of precision (relative standard errors [RSEs] of 15 and 25) at two levels of confidence (80% and 95%). Sixteen hoop net series were effective at obtaining an RSE of 25 with 80% and 95% confidence in all but one reservoir. Achieving an RSE of 15 was often less effective and required 18-96 hoop net series given the desired level of confidence. We estimated that an hour was needed, on average, to deploy and retrieve three hoop net series, which meant that 16 hoop net series per reservoir could be "set" and "retrieved" within a day, respectively. The estimated number of net series to achieve an RSE of 25 or 15 was positively associated with the coefficient of variation (CV) of the sample but not with reservoir surface area or relative abundance. Our results suggest that hoop nets are capable of providing reasonably precise estimates of channel catfish relative abundance and that the relationship with the CV of the sample reported herein can be used to determine the sampling effort for a desired level of precision.

  14. Functional wettability in carbonate reservoirs

    DOE PAGES

    Brady, Patrick V.; Thyne, Geoffrey

    2016-10-11

    Oil adsorbs to carbonate reservoirs indirectly through a relatively thick separating water layer, and directly to the surface through a relatively thin intervening water layer. Whereas directly sorbed oil desorbs slowly and incompletely in response to changes in reservoir conditions, indirectly sorbed oil can be rapidly desorbed by changing the chemistry of the separating water layer. The additional recovery might be as much as 30% original oil in place (OOIP) above the ~30% OOIP recovered from carbonates through reservoir depressurization (primary production) and viscous displacement (waterflooding). Electrostatic adhesive forces are the dominant control over carbonate reservoir wettability. A surface complexationmore » model that quantifies electrostatic adhesion accurately predicts oil recovery trends for carbonates. Furthermore, the approach should therefore be useful for estimating initial wettability and designing fluids that improve oil recovery.« less

  15. Effects of warm water inflows on the dispersion of pollutants in small reservoirs.

    PubMed

    Palancar, María C; Aragón, José M; Sánchez, Fernando; Gil, Roberto

    2006-11-01

    The effects of the warm water discharged by a nuclear power plant (NPP) into a small reservoir are studied. A case study is presented (José Cabrera NPP-Zorita Hidráulica Reservoir) with experimental data of the reservoir stratification and predicted data of the dispersion of radioactive pollutants from operative or accidental releases. The vertical and longitudinal temperature profiles, electrical conductivity and transparency of the reservoir water were measured for an annual cycle. The results indicate that the continuous warm water discharge from the NPP causes permanent and artificial reservoir stratification. The stratification is significant within 1500 m upstream and 1000 m downstream from the warm water outfall. The pollutant dispersion has been predicted by using a flow model based on N(T) perfect-mixing compartments in series with feedback. The model parameter, N(T), is calculated from the longitudinal diffusion coefficient. The prediction of pollutant dispersion by means of this model shows that the stratification slows down the vertical mixing in the whole water body, and reduces the reservoir volume that is effective for the dilution and dispersion of pollutants. This means that, in the case of a radioactive pollutant release, the reservoir radioactivity level could increase significantly.

  16. A new approach to estimating evaporation from lakes and reservoirs based on energy balance and remote sensing data

    NASA Astrophysics Data System (ADS)

    Majidi, Maysam; Sadeghi, Morteza; Shafiei, Mojtaba; Alizadeh, Amin; Farid, Alireza; Azad, Mohammadreza; Vazifedoust, Majid

    2016-04-01

    Estimating evaporation from water bodies such as lakes and reservoirs is commonly a difficult task, especially due to the lack of reliable and available ground data. Remote sensing (RS) data has shown a great potential for filling the gap. Nonetheless, interpretation of the RS data (e.g. optical reflectance, thermal emission, etc.) for estimating water evaporation has remained as a challenge. In this paper, we present a novel approach for estimating water evaporation based on satellite RS data and some readily measurable ground data. In the proposed approach, named as "Reference and Water surface Energy Balance (RWEB)", we define a reference surface and then solve the energy balance equation simultaneously for the reference surfaces and water surface. This approach was tested over the Doosti dam reservoir (north east of Iran) using whether station and RS data as well as water temperature measured biweekly along the study. Accuracy of the RWEB algorithm was examined by comparison to the standard "Bowen Ratio Energy Balance (BREB)" RS algorithm. The RMSD value of 0.047 mm/year indicated a good agreement between RWEB and BREB algorithms, while RWEB provides an easier-to-use approach regarding its required input variables.

  17. Sedimentary Geothermal Feasibility Study: October 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, Chad; Zerpa, Luis

    The objective of this project is to analyze the feasibility of commercial geothermal projects using numerical reservoir simulation, considering a sedimentary reservoir with low permeability that requires productivity enhancement. A commercial thermal reservoir simulator (STARS, from Computer Modeling Group, CMG) is used in this work for numerical modeling. In the first stage of this project (FY14), a hypothetical numerical reservoir model was developed, and validated against an analytical solution. The following model parameters were considered to obtain an acceptable match between the numerical and analytical solutions: grid block size, time step and reservoir areal dimensions; the latter related to boundarymore » effects on the numerical solution. Systematic model runs showed that insufficient grid sizing generates numerical dispersion that causes the numerical model to underestimate the thermal breakthrough time compared to the analytic model. As grid sizing is decreased, the model results converge on a solution. Likewise, insufficient reservoir model area introduces boundary effects in the numerical solution that cause the model results to differ from the analytical solution.« less

  18. Forecast on Water Locking Damage of Low Permeable Reservoir with Quantum Neural Network

    NASA Astrophysics Data System (ADS)

    Zhao, Jingyuan; Sun, Yuxue; Feng, Fuping; Zhao, Fulei; Sui, Dianjie; Xu, Jianjun

    2018-01-01

    It is of great importance in oil-gas reservoir protection to timely and correctly forecast the water locking damage, the greatest damage for low permeable reservoir. An analysis is conducted on the production mechanism and various influence factors of water locking damage, based on which a quantum neuron is constructed based on the information processing manner of a biological neuron and the principle of quantum neural algorithm, besides, the quantum neural network model forecasting the water locking of the reservoir is established and related software is also made to forecast the water locking damage of the gas reservoir. This method has overcome the defects of grey correlation analysis that requires evaluation matrix analysis and complicated operation. According to the practice in Longxi Area of Daqing Oilfield, this method is characterized by fast operation, few system parameters and high accuracy rate (the general incidence rate may reach 90%), which can provide reliable support for the protection technique of low permeable reservoir.

  19. Extending Stability Through Hierarchical Clusters in Echo State Networks

    PubMed Central

    Jarvis, Sarah; Rotter, Stefan; Egert, Ulrich

    2009-01-01

    Echo State Networks (ESN) are reservoir networks that satisfy well-established criteria for stability when constructed as feedforward networks. Recent evidence suggests that stability criteria are altered in the presence of reservoir substructures, such as clusters. Understanding how the reservoir architecture affects stability is thus important for the appropriate design of any ESN. To quantitatively determine the influence of the most relevant network parameters, we analyzed the impact of reservoir substructures on stability in hierarchically clustered ESNs, as they allow a smooth transition from highly structured to increasingly homogeneous reservoirs. Previous studies used the largest eigenvalue of the reservoir connectivity matrix (spectral radius) as a predictor for stable network dynamics. Here, we evaluate the impact of clusters, hierarchy and intercluster connectivity on the predictive power of the spectral radius for stability. Both hierarchy and low relative cluster sizes extend the range of spectral radius values, leading to stable networks, while increasing intercluster connectivity decreased maximal spectral radius. PMID:20725523

  20. Seasonal variation of Legionella in Taiwan's reservoir and its relationships with environmental factors.

    PubMed

    Kao, Po-Min; Hsu, Bing-Mu; Chang, Tien-Yu; Hsu, Tsui-Kang; Tzeng, Kai-Jiun; Huang, Yu-Li

    2015-04-01

    In this study, the presence of Legionella in major water reservoirs of Taiwan was examined with respect to seasonal variation, geographical variation, and water quality parameters using TaqMan real-time qPCR. Water samples were collected quarterly at 19 reservoirs in Taiwan between November 2012 and August 2013. The detection rate for Legionella was 35.5% (27/76), and Legionella was detected in all seasons. The Legionella concentration was relatively high in spring and summer, reaching 3.86 × 10(8) and 7.35 × 10(8) cells/L, respectively. By sampling the area, Legionella was detected at a higher proportion in reservoirs in the northern and southern areas, and the difference was consistent in all seasons. Significant association was found between detection of Legionella and various water quality parameters, including conductivity, chlorophyll a, and dissolved oxygen (Mann-Whitney U test, P < 0.05). Results of Spearman rank test showed negative correlation for Legionella detection with pH (P = 0.030, R = -0.497) and dissolved oxygen (P = 0.007, R = -0.596) in fall and positive correlation with Carlson's trophic state index (P = 0.049, R = 0.457) in spring. The identified species included Legionella pneumophila and Legionella drancourtii. The detection of Legionella in reservoirs was indicative of a potential public health risk and should be further evaluated.

Top